1 /* Lower complex number operations to scalar operations. 2 Copyright (C) 2004-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "fold-const.h" 31 #include "stor-layout.h" 32 #include "tree-eh.h" 33 #include "gimplify.h" 34 #include "gimple-iterator.h" 35 #include "gimplify-me.h" 36 #include "tree-cfg.h" 37 #include "tree-dfa.h" 38 #include "tree-ssa.h" 39 #include "tree-ssa-propagate.h" 40 #include "tree-hasher.h" 41 #include "cfgloop.h" 42 #include "cfganal.h" 43 44 45 /* For each complex ssa name, a lattice value. We're interested in finding 46 out whether a complex number is degenerate in some way, having only real 47 or only complex parts. */ 48 49 enum 50 { 51 UNINITIALIZED = 0, 52 ONLY_REAL = 1, 53 ONLY_IMAG = 2, 54 VARYING = 3 55 }; 56 57 /* The type complex_lattice_t holds combinations of the above 58 constants. */ 59 typedef int complex_lattice_t; 60 61 #define PAIR(a, b) ((a) << 2 | (b)) 62 63 class complex_propagate : public ssa_propagation_engine 64 { 65 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE; 66 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE; 67 }; 68 69 static vec<complex_lattice_t> complex_lattice_values; 70 71 /* For each complex variable, a pair of variables for the components exists in 72 the hashtable. */ 73 static int_tree_htab_type *complex_variable_components; 74 75 /* For each complex SSA_NAME, a pair of ssa names for the components. */ 76 static vec<tree> complex_ssa_name_components; 77 78 /* Vector of PHI triplets (original complex PHI and corresponding real and 79 imag PHIs if real and/or imag PHIs contain temporarily 80 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */ 81 static vec<gphi *> phis_to_revisit; 82 83 /* BBs that need EH cleanup. */ 84 static bitmap need_eh_cleanup; 85 86 /* Lookup UID in the complex_variable_components hashtable and return the 87 associated tree. */ 88 static tree 89 cvc_lookup (unsigned int uid) 90 { 91 struct int_tree_map in; 92 in.uid = uid; 93 return complex_variable_components->find_with_hash (in, uid).to; 94 } 95 96 /* Insert the pair UID, TO into the complex_variable_components hashtable. */ 97 98 static void 99 cvc_insert (unsigned int uid, tree to) 100 { 101 int_tree_map h; 102 int_tree_map *loc; 103 104 h.uid = uid; 105 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT); 106 loc->uid = uid; 107 loc->to = to; 108 } 109 110 /* Return true if T is not a zero constant. In the case of real values, 111 we're only interested in +0.0. */ 112 113 static int 114 some_nonzerop (tree t) 115 { 116 int zerop = false; 117 118 /* Operations with real or imaginary part of a complex number zero 119 cannot be treated the same as operations with a real or imaginary 120 operand if we care about the signs of zeros in the result. */ 121 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) 122 zerop = real_identical (&TREE_REAL_CST (t), &dconst0); 123 else if (TREE_CODE (t) == FIXED_CST) 124 zerop = fixed_zerop (t); 125 else if (TREE_CODE (t) == INTEGER_CST) 126 zerop = integer_zerop (t); 127 128 return !zerop; 129 } 130 131 132 /* Compute a lattice value from the components of a complex type REAL 133 and IMAG. */ 134 135 static complex_lattice_t 136 find_lattice_value_parts (tree real, tree imag) 137 { 138 int r, i; 139 complex_lattice_t ret; 140 141 r = some_nonzerop (real); 142 i = some_nonzerop (imag); 143 ret = r * ONLY_REAL + i * ONLY_IMAG; 144 145 /* ??? On occasion we could do better than mapping 0+0i to real, but we 146 certainly don't want to leave it UNINITIALIZED, which eventually gets 147 mapped to VARYING. */ 148 if (ret == UNINITIALIZED) 149 ret = ONLY_REAL; 150 151 return ret; 152 } 153 154 155 /* Compute a lattice value from gimple_val T. */ 156 157 static complex_lattice_t 158 find_lattice_value (tree t) 159 { 160 tree real, imag; 161 162 switch (TREE_CODE (t)) 163 { 164 case SSA_NAME: 165 return complex_lattice_values[SSA_NAME_VERSION (t)]; 166 167 case COMPLEX_CST: 168 real = TREE_REALPART (t); 169 imag = TREE_IMAGPART (t); 170 break; 171 172 default: 173 gcc_unreachable (); 174 } 175 176 return find_lattice_value_parts (real, imag); 177 } 178 179 /* Determine if LHS is something for which we're interested in seeing 180 simulation results. */ 181 182 static bool 183 is_complex_reg (tree lhs) 184 { 185 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); 186 } 187 188 /* Mark the incoming parameters to the function as VARYING. */ 189 190 static void 191 init_parameter_lattice_values (void) 192 { 193 tree parm, ssa_name; 194 195 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 196 if (is_complex_reg (parm) 197 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE) 198 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING; 199 } 200 201 /* Initialize simulation state for each statement. Return false if we 202 found no statements we want to simulate, and thus there's nothing 203 for the entire pass to do. */ 204 205 static bool 206 init_dont_simulate_again (void) 207 { 208 basic_block bb; 209 bool saw_a_complex_op = false; 210 211 FOR_EACH_BB_FN (bb, cfun) 212 { 213 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 214 gsi_next (&gsi)) 215 { 216 gphi *phi = gsi.phi (); 217 prop_set_simulate_again (phi, 218 is_complex_reg (gimple_phi_result (phi))); 219 } 220 221 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 222 gsi_next (&gsi)) 223 { 224 gimple *stmt; 225 tree op0, op1; 226 bool sim_again_p; 227 228 stmt = gsi_stmt (gsi); 229 op0 = op1 = NULL_TREE; 230 231 /* Most control-altering statements must be initially 232 simulated, else we won't cover the entire cfg. */ 233 sim_again_p = stmt_ends_bb_p (stmt); 234 235 switch (gimple_code (stmt)) 236 { 237 case GIMPLE_CALL: 238 if (gimple_call_lhs (stmt)) 239 sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); 240 break; 241 242 case GIMPLE_ASSIGN: 243 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); 244 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR 245 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 246 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); 247 else 248 op0 = gimple_assign_rhs1 (stmt); 249 if (gimple_num_ops (stmt) > 2) 250 op1 = gimple_assign_rhs2 (stmt); 251 break; 252 253 case GIMPLE_COND: 254 op0 = gimple_cond_lhs (stmt); 255 op1 = gimple_cond_rhs (stmt); 256 break; 257 258 default: 259 break; 260 } 261 262 if (op0 || op1) 263 switch (gimple_expr_code (stmt)) 264 { 265 case EQ_EXPR: 266 case NE_EXPR: 267 case PLUS_EXPR: 268 case MINUS_EXPR: 269 case MULT_EXPR: 270 case TRUNC_DIV_EXPR: 271 case CEIL_DIV_EXPR: 272 case FLOOR_DIV_EXPR: 273 case ROUND_DIV_EXPR: 274 case RDIV_EXPR: 275 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE 276 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) 277 saw_a_complex_op = true; 278 break; 279 280 case NEGATE_EXPR: 281 case CONJ_EXPR: 282 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) 283 saw_a_complex_op = true; 284 break; 285 286 case REALPART_EXPR: 287 case IMAGPART_EXPR: 288 /* The total store transformation performed during 289 gimplification creates such uninitialized loads 290 and we need to lower the statement to be able 291 to fix things up. */ 292 if (TREE_CODE (op0) == SSA_NAME 293 && ssa_undefined_value_p (op0)) 294 saw_a_complex_op = true; 295 break; 296 297 default: 298 break; 299 } 300 301 prop_set_simulate_again (stmt, sim_again_p); 302 } 303 } 304 305 return saw_a_complex_op; 306 } 307 308 309 /* Evaluate statement STMT against the complex lattice defined above. */ 310 311 enum ssa_prop_result 312 complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, 313 tree *result_p) 314 { 315 complex_lattice_t new_l, old_l, op1_l, op2_l; 316 unsigned int ver; 317 tree lhs; 318 319 lhs = gimple_get_lhs (stmt); 320 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ 321 if (!lhs) 322 return SSA_PROP_VARYING; 323 324 /* These conditions should be satisfied due to the initial filter 325 set up in init_dont_simulate_again. */ 326 gcc_assert (TREE_CODE (lhs) == SSA_NAME); 327 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 328 329 *result_p = lhs; 330 ver = SSA_NAME_VERSION (lhs); 331 old_l = complex_lattice_values[ver]; 332 333 switch (gimple_expr_code (stmt)) 334 { 335 case SSA_NAME: 336 case COMPLEX_CST: 337 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 338 break; 339 340 case COMPLEX_EXPR: 341 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), 342 gimple_assign_rhs2 (stmt)); 343 break; 344 345 case PLUS_EXPR: 346 case MINUS_EXPR: 347 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 348 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 349 350 /* We've set up the lattice values such that IOR neatly 351 models addition. */ 352 new_l = op1_l | op2_l; 353 break; 354 355 case MULT_EXPR: 356 case RDIV_EXPR: 357 case TRUNC_DIV_EXPR: 358 case CEIL_DIV_EXPR: 359 case FLOOR_DIV_EXPR: 360 case ROUND_DIV_EXPR: 361 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 362 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 363 364 /* Obviously, if either varies, so does the result. */ 365 if (op1_l == VARYING || op2_l == VARYING) 366 new_l = VARYING; 367 /* Don't prematurely promote variables if we've not yet seen 368 their inputs. */ 369 else if (op1_l == UNINITIALIZED) 370 new_l = op2_l; 371 else if (op2_l == UNINITIALIZED) 372 new_l = op1_l; 373 else 374 { 375 /* At this point both numbers have only one component. If the 376 numbers are of opposite kind, the result is imaginary, 377 otherwise the result is real. The add/subtract translates 378 the real/imag from/to 0/1; the ^ performs the comparison. */ 379 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; 380 381 /* Don't allow the lattice value to flip-flop indefinitely. */ 382 new_l |= old_l; 383 } 384 break; 385 386 case NEGATE_EXPR: 387 case CONJ_EXPR: 388 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 389 break; 390 391 default: 392 new_l = VARYING; 393 break; 394 } 395 396 /* If nothing changed this round, let the propagator know. */ 397 if (new_l == old_l) 398 return SSA_PROP_NOT_INTERESTING; 399 400 complex_lattice_values[ver] = new_l; 401 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 402 } 403 404 /* Evaluate a PHI node against the complex lattice defined above. */ 405 406 enum ssa_prop_result 407 complex_propagate::visit_phi (gphi *phi) 408 { 409 complex_lattice_t new_l, old_l; 410 unsigned int ver; 411 tree lhs; 412 int i; 413 414 lhs = gimple_phi_result (phi); 415 416 /* This condition should be satisfied due to the initial filter 417 set up in init_dont_simulate_again. */ 418 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 419 420 /* We've set up the lattice values such that IOR neatly models PHI meet. */ 421 new_l = UNINITIALIZED; 422 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) 423 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); 424 425 ver = SSA_NAME_VERSION (lhs); 426 old_l = complex_lattice_values[ver]; 427 428 if (new_l == old_l) 429 return SSA_PROP_NOT_INTERESTING; 430 431 complex_lattice_values[ver] = new_l; 432 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 433 } 434 435 /* Create one backing variable for a complex component of ORIG. */ 436 437 static tree 438 create_one_component_var (tree type, tree orig, const char *prefix, 439 const char *suffix, enum tree_code code) 440 { 441 tree r = create_tmp_var (type, prefix); 442 443 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); 444 DECL_ARTIFICIAL (r) = 1; 445 446 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) 447 { 448 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); 449 name = ACONCAT ((name, suffix, NULL)); 450 DECL_NAME (r) = get_identifier (name); 451 452 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); 453 DECL_HAS_DEBUG_EXPR_P (r) = 1; 454 DECL_IGNORED_P (r) = 0; 455 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); 456 } 457 else 458 { 459 DECL_IGNORED_P (r) = 1; 460 TREE_NO_WARNING (r) = 1; 461 } 462 463 return r; 464 } 465 466 /* Retrieve a value for a complex component of VAR. */ 467 468 static tree 469 get_component_var (tree var, bool imag_p) 470 { 471 size_t decl_index = DECL_UID (var) * 2 + imag_p; 472 tree ret = cvc_lookup (decl_index); 473 474 if (ret == NULL) 475 { 476 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, 477 imag_p ? "CI" : "CR", 478 imag_p ? "$imag" : "$real", 479 imag_p ? IMAGPART_EXPR : REALPART_EXPR); 480 cvc_insert (decl_index, ret); 481 } 482 483 return ret; 484 } 485 486 /* Retrieve a value for a complex component of SSA_NAME. */ 487 488 static tree 489 get_component_ssa_name (tree ssa_name, bool imag_p) 490 { 491 complex_lattice_t lattice = find_lattice_value (ssa_name); 492 size_t ssa_name_index; 493 tree ret; 494 495 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 496 { 497 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); 498 if (SCALAR_FLOAT_TYPE_P (inner_type)) 499 return build_real (inner_type, dconst0); 500 else 501 return build_int_cst (inner_type, 0); 502 } 503 504 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 505 ret = complex_ssa_name_components[ssa_name_index]; 506 if (ret == NULL) 507 { 508 if (SSA_NAME_VAR (ssa_name)) 509 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 510 else 511 ret = TREE_TYPE (TREE_TYPE (ssa_name)); 512 ret = make_ssa_name (ret); 513 514 /* Copy some properties from the original. In particular, whether it 515 is used in an abnormal phi, and whether it's uninitialized. */ 516 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) 517 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); 518 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name) 519 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL) 520 { 521 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); 522 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret); 523 } 524 525 complex_ssa_name_components[ssa_name_index] = ret; 526 } 527 528 return ret; 529 } 530 531 /* Set a value for a complex component of SSA_NAME, return a 532 gimple_seq of stuff that needs doing. */ 533 534 static gimple_seq 535 set_component_ssa_name (tree ssa_name, bool imag_p, tree value) 536 { 537 complex_lattice_t lattice = find_lattice_value (ssa_name); 538 size_t ssa_name_index; 539 tree comp; 540 gimple *last; 541 gimple_seq list; 542 543 /* We know the value must be zero, else there's a bug in our lattice 544 analysis. But the value may well be a variable known to contain 545 zero. We should be safe ignoring it. */ 546 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 547 return NULL; 548 549 /* If we've already assigned an SSA_NAME to this component, then this 550 means that our walk of the basic blocks found a use before the set. 551 This is fine. Now we should create an initialization for the value 552 we created earlier. */ 553 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 554 comp = complex_ssa_name_components[ssa_name_index]; 555 if (comp) 556 ; 557 558 /* If we've nothing assigned, and the value we're given is already stable, 559 then install that as the value for this SSA_NAME. This preemptively 560 copy-propagates the value, which avoids unnecessary memory allocation. */ 561 else if (is_gimple_min_invariant (value) 562 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 563 { 564 complex_ssa_name_components[ssa_name_index] = value; 565 return NULL; 566 } 567 else if (TREE_CODE (value) == SSA_NAME 568 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 569 { 570 /* Replace an anonymous base value with the variable from cvc_lookup. 571 This should result in better debug info. */ 572 if (SSA_NAME_VAR (ssa_name) 573 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value))) 574 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) 575 { 576 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 577 replace_ssa_name_symbol (value, comp); 578 } 579 580 complex_ssa_name_components[ssa_name_index] = value; 581 return NULL; 582 } 583 584 /* Finally, we need to stabilize the result by installing the value into 585 a new ssa name. */ 586 else 587 comp = get_component_ssa_name (ssa_name, imag_p); 588 589 /* Do all the work to assign VALUE to COMP. */ 590 list = NULL; 591 value = force_gimple_operand (value, &list, false, NULL); 592 last = gimple_build_assign (comp, value); 593 gimple_seq_add_stmt (&list, last); 594 gcc_assert (SSA_NAME_DEF_STMT (comp) == last); 595 596 return list; 597 } 598 599 /* Extract the real or imaginary part of a complex variable or constant. 600 Make sure that it's a proper gimple_val and gimplify it if not. 601 Emit any new code before gsi. */ 602 603 static tree 604 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, 605 bool gimple_p, bool phiarg_p = false) 606 { 607 switch (TREE_CODE (t)) 608 { 609 case COMPLEX_CST: 610 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); 611 612 case COMPLEX_EXPR: 613 gcc_unreachable (); 614 615 case BIT_FIELD_REF: 616 { 617 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 618 t = unshare_expr (t); 619 TREE_TYPE (t) = inner_type; 620 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type); 621 if (imagpart_p) 622 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2), 623 TYPE_SIZE (inner_type)); 624 if (gimple_p) 625 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 626 GSI_SAME_STMT); 627 return t; 628 } 629 630 case VAR_DECL: 631 case RESULT_DECL: 632 case PARM_DECL: 633 case COMPONENT_REF: 634 case ARRAY_REF: 635 case VIEW_CONVERT_EXPR: 636 case MEM_REF: 637 { 638 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 639 640 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), 641 inner_type, unshare_expr (t)); 642 643 if (gimple_p) 644 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 645 GSI_SAME_STMT); 646 647 return t; 648 } 649 650 case SSA_NAME: 651 t = get_component_ssa_name (t, imagpart_p); 652 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL) 653 gcc_assert (phiarg_p); 654 return t; 655 656 default: 657 gcc_unreachable (); 658 } 659 } 660 661 /* Update the complex components of the ssa name on the lhs of STMT. */ 662 663 static void 664 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r, 665 tree i) 666 { 667 tree lhs; 668 gimple_seq list; 669 670 lhs = gimple_get_lhs (stmt); 671 672 list = set_component_ssa_name (lhs, false, r); 673 if (list) 674 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 675 676 list = set_component_ssa_name (lhs, true, i); 677 if (list) 678 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 679 } 680 681 static void 682 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) 683 { 684 gimple_seq list; 685 686 list = set_component_ssa_name (lhs, false, r); 687 if (list) 688 gsi_insert_seq_on_edge (e, list); 689 690 list = set_component_ssa_name (lhs, true, i); 691 if (list) 692 gsi_insert_seq_on_edge (e, list); 693 } 694 695 696 /* Update an assignment to a complex variable in place. */ 697 698 static void 699 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) 700 { 701 gimple *old_stmt = gsi_stmt (*gsi); 702 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i); 703 gimple *stmt = gsi_stmt (*gsi); 704 update_stmt (stmt); 705 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 706 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); 707 708 if (gimple_in_ssa_p (cfun)) 709 update_complex_components (gsi, gsi_stmt (*gsi), r, i); 710 } 711 712 713 /* Generate code at the entry point of the function to initialize the 714 component variables for a complex parameter. */ 715 716 static void 717 update_parameter_components (void) 718 { 719 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 720 tree parm; 721 722 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 723 { 724 tree type = TREE_TYPE (parm); 725 tree ssa_name, r, i; 726 727 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) 728 continue; 729 730 type = TREE_TYPE (type); 731 ssa_name = ssa_default_def (cfun, parm); 732 if (!ssa_name) 733 continue; 734 735 r = build1 (REALPART_EXPR, type, ssa_name); 736 i = build1 (IMAGPART_EXPR, type, ssa_name); 737 update_complex_components_on_edge (entry_edge, ssa_name, r, i); 738 } 739 } 740 741 /* Generate code to set the component variables of a complex variable 742 to match the PHI statements in block BB. */ 743 744 static void 745 update_phi_components (basic_block bb) 746 { 747 gphi_iterator gsi; 748 749 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 750 { 751 gphi *phi = gsi.phi (); 752 753 if (is_complex_reg (gimple_phi_result (phi))) 754 { 755 gphi *p[2] = { NULL, NULL }; 756 unsigned int i, j, n; 757 bool revisit_phi = false; 758 759 for (j = 0; j < 2; j++) 760 { 761 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0); 762 if (TREE_CODE (l) == SSA_NAME) 763 p[j] = create_phi_node (l, bb); 764 } 765 766 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) 767 { 768 tree comp, arg = gimple_phi_arg_def (phi, i); 769 for (j = 0; j < 2; j++) 770 if (p[j]) 771 { 772 comp = extract_component (NULL, arg, j > 0, false, true); 773 if (TREE_CODE (comp) == SSA_NAME 774 && SSA_NAME_DEF_STMT (comp) == NULL) 775 { 776 /* For the benefit of any gimple simplification during 777 this pass that might walk SSA_NAME def stmts, 778 don't add SSA_NAMEs without definitions into the 779 PHI arguments, but put a decl in there instead 780 temporarily, and revisit this PHI later on. */ 781 if (SSA_NAME_VAR (comp)) 782 comp = SSA_NAME_VAR (comp); 783 else 784 comp = create_tmp_reg (TREE_TYPE (comp), 785 get_name (comp)); 786 revisit_phi = true; 787 } 788 SET_PHI_ARG_DEF (p[j], i, comp); 789 } 790 } 791 792 if (revisit_phi) 793 { 794 phis_to_revisit.safe_push (phi); 795 phis_to_revisit.safe_push (p[0]); 796 phis_to_revisit.safe_push (p[1]); 797 } 798 } 799 } 800 } 801 802 /* Expand a complex move to scalars. */ 803 804 static void 805 expand_complex_move (gimple_stmt_iterator *gsi, tree type) 806 { 807 tree inner_type = TREE_TYPE (type); 808 tree r, i, lhs, rhs; 809 gimple *stmt = gsi_stmt (*gsi); 810 811 if (is_gimple_assign (stmt)) 812 { 813 lhs = gimple_assign_lhs (stmt); 814 if (gimple_num_ops (stmt) == 2) 815 rhs = gimple_assign_rhs1 (stmt); 816 else 817 rhs = NULL_TREE; 818 } 819 else if (is_gimple_call (stmt)) 820 { 821 lhs = gimple_call_lhs (stmt); 822 rhs = NULL_TREE; 823 } 824 else 825 gcc_unreachable (); 826 827 if (TREE_CODE (lhs) == SSA_NAME) 828 { 829 if (is_ctrl_altering_stmt (stmt)) 830 { 831 edge e; 832 833 /* The value is not assigned on the exception edges, so we need not 834 concern ourselves there. We do need to update on the fallthru 835 edge. Find it. */ 836 e = find_fallthru_edge (gsi_bb (*gsi)->succs); 837 if (!e) 838 gcc_unreachable (); 839 840 r = build1 (REALPART_EXPR, inner_type, lhs); 841 i = build1 (IMAGPART_EXPR, inner_type, lhs); 842 update_complex_components_on_edge (e, lhs, r, i); 843 } 844 else if (is_gimple_call (stmt) 845 || gimple_has_side_effects (stmt) 846 || gimple_assign_rhs_code (stmt) == PAREN_EXPR) 847 { 848 r = build1 (REALPART_EXPR, inner_type, lhs); 849 i = build1 (IMAGPART_EXPR, inner_type, lhs); 850 update_complex_components (gsi, stmt, r, i); 851 } 852 else 853 { 854 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) 855 { 856 r = extract_component (gsi, rhs, 0, true); 857 i = extract_component (gsi, rhs, 1, true); 858 } 859 else 860 { 861 r = gimple_assign_rhs1 (stmt); 862 i = gimple_assign_rhs2 (stmt); 863 } 864 update_complex_assignment (gsi, r, i); 865 } 866 } 867 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) 868 { 869 tree x; 870 gimple *t; 871 location_t loc; 872 873 loc = gimple_location (stmt); 874 r = extract_component (gsi, rhs, 0, false); 875 i = extract_component (gsi, rhs, 1, false); 876 877 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); 878 t = gimple_build_assign (x, r); 879 gimple_set_location (t, loc); 880 gsi_insert_before (gsi, t, GSI_SAME_STMT); 881 882 if (stmt == gsi_stmt (*gsi)) 883 { 884 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 885 gimple_assign_set_lhs (stmt, x); 886 gimple_assign_set_rhs1 (stmt, i); 887 } 888 else 889 { 890 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 891 t = gimple_build_assign (x, i); 892 gimple_set_location (t, loc); 893 gsi_insert_before (gsi, t, GSI_SAME_STMT); 894 895 stmt = gsi_stmt (*gsi); 896 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); 897 gimple_return_set_retval (as_a <greturn *> (stmt), lhs); 898 } 899 900 update_stmt (stmt); 901 } 902 } 903 904 /* Expand complex addition to scalars: 905 a + b = (ar + br) + i(ai + bi) 906 a - b = (ar - br) + i(ai + bi) 907 */ 908 909 static void 910 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, 911 tree ar, tree ai, tree br, tree bi, 912 enum tree_code code, 913 complex_lattice_t al, complex_lattice_t bl) 914 { 915 tree rr, ri; 916 917 switch (PAIR (al, bl)) 918 { 919 case PAIR (ONLY_REAL, ONLY_REAL): 920 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 921 ri = ai; 922 break; 923 924 case PAIR (ONLY_REAL, ONLY_IMAG): 925 rr = ar; 926 if (code == MINUS_EXPR) 927 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi); 928 else 929 ri = bi; 930 break; 931 932 case PAIR (ONLY_IMAG, ONLY_REAL): 933 if (code == MINUS_EXPR) 934 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br); 935 else 936 rr = br; 937 ri = ai; 938 break; 939 940 case PAIR (ONLY_IMAG, ONLY_IMAG): 941 rr = ar; 942 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 943 break; 944 945 case PAIR (VARYING, ONLY_REAL): 946 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 947 ri = ai; 948 break; 949 950 case PAIR (VARYING, ONLY_IMAG): 951 rr = ar; 952 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 953 break; 954 955 case PAIR (ONLY_REAL, VARYING): 956 if (code == MINUS_EXPR) 957 goto general; 958 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 959 ri = bi; 960 break; 961 962 case PAIR (ONLY_IMAG, VARYING): 963 if (code == MINUS_EXPR) 964 goto general; 965 rr = br; 966 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 967 break; 968 969 case PAIR (VARYING, VARYING): 970 general: 971 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 972 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 973 break; 974 975 default: 976 gcc_unreachable (); 977 } 978 979 update_complex_assignment (gsi, rr, ri); 980 } 981 982 /* Expand a complex multiplication or division to a libcall to the c99 983 compliant routines. */ 984 985 static void 986 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai, 987 tree br, tree bi, enum tree_code code) 988 { 989 machine_mode mode; 990 enum built_in_function bcode; 991 tree fn, type, lhs; 992 gimple *old_stmt; 993 gcall *stmt; 994 995 old_stmt = gsi_stmt (*gsi); 996 lhs = gimple_assign_lhs (old_stmt); 997 type = TREE_TYPE (lhs); 998 999 mode = TYPE_MODE (type); 1000 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); 1001 1002 if (code == MULT_EXPR) 1003 bcode = ((enum built_in_function) 1004 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1005 else if (code == RDIV_EXPR) 1006 bcode = ((enum built_in_function) 1007 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1008 else 1009 gcc_unreachable (); 1010 fn = builtin_decl_explicit (bcode); 1011 1012 stmt = gimple_build_call (fn, 4, ar, ai, br, bi); 1013 gimple_call_set_lhs (stmt, lhs); 1014 update_stmt (stmt); 1015 gsi_replace (gsi, stmt, false); 1016 1017 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1018 gimple_purge_dead_eh_edges (gsi_bb (*gsi)); 1019 1020 if (gimple_in_ssa_p (cfun)) 1021 { 1022 type = TREE_TYPE (type); 1023 update_complex_components (gsi, stmt, 1024 build1 (REALPART_EXPR, type, lhs), 1025 build1 (IMAGPART_EXPR, type, lhs)); 1026 SSA_NAME_DEF_STMT (lhs) = stmt; 1027 } 1028 } 1029 1030 /* Expand complex multiplication to scalars: 1031 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) 1032 */ 1033 1034 static void 1035 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type, 1036 tree ar, tree ai, tree br, tree bi, 1037 complex_lattice_t al, complex_lattice_t bl) 1038 { 1039 tree rr, ri; 1040 1041 if (al < bl) 1042 { 1043 complex_lattice_t tl; 1044 rr = ar, ar = br, br = rr; 1045 ri = ai, ai = bi, bi = ri; 1046 tl = al, al = bl, bl = tl; 1047 } 1048 1049 switch (PAIR (al, bl)) 1050 { 1051 case PAIR (ONLY_REAL, ONLY_REAL): 1052 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1053 ri = ai; 1054 break; 1055 1056 case PAIR (ONLY_IMAG, ONLY_REAL): 1057 rr = ar; 1058 if (TREE_CODE (ai) == REAL_CST 1059 && real_identical (&TREE_REAL_CST (ai), &dconst1)) 1060 ri = br; 1061 else 1062 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1063 break; 1064 1065 case PAIR (ONLY_IMAG, ONLY_IMAG): 1066 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1067 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1068 ri = ar; 1069 break; 1070 1071 case PAIR (VARYING, ONLY_REAL): 1072 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1073 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1074 break; 1075 1076 case PAIR (VARYING, ONLY_IMAG): 1077 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1078 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1079 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1080 break; 1081 1082 case PAIR (VARYING, VARYING): 1083 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) 1084 { 1085 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR); 1086 return; 1087 } 1088 else 1089 { 1090 tree t1, t2, t3, t4; 1091 1092 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1093 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1094 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1095 1096 /* Avoid expanding redundant multiplication for the common 1097 case of squaring a complex number. */ 1098 if (ar == br && ai == bi) 1099 t4 = t3; 1100 else 1101 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1102 1103 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1104 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4); 1105 } 1106 break; 1107 1108 default: 1109 gcc_unreachable (); 1110 } 1111 1112 update_complex_assignment (gsi, rr, ri); 1113 } 1114 1115 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1116 1117 Expand complex division to scalars, straightforward algorithm. 1118 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1119 t = br*br + bi*bi 1120 */ 1121 1122 static void 1123 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, 1124 tree ar, tree ai, tree br, tree bi, 1125 enum tree_code code) 1126 { 1127 tree rr, ri, div, t1, t2, t3; 1128 1129 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br); 1130 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi); 1131 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1132 1133 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1134 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1135 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1136 rr = gimplify_build2 (gsi, code, inner_type, t3, div); 1137 1138 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1139 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1140 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1141 ri = gimplify_build2 (gsi, code, inner_type, t3, div); 1142 1143 update_complex_assignment (gsi, rr, ri); 1144 } 1145 1146 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1147 1148 Expand complex division to scalars, modified algorithm to minimize 1149 overflow with wide input ranges. */ 1150 1151 static void 1152 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, 1153 tree ar, tree ai, tree br, tree bi, 1154 enum tree_code code) 1155 { 1156 tree rr, ri, ratio, div, t1, t2, tr, ti, compare; 1157 basic_block bb_cond, bb_true, bb_false, bb_join; 1158 gimple *stmt; 1159 1160 /* Examine |br| < |bi|, and branch. */ 1161 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br); 1162 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi); 1163 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), 1164 LT_EXPR, boolean_type_node, t1, t2); 1165 STRIP_NOPS (compare); 1166 1167 bb_cond = bb_true = bb_false = bb_join = NULL; 1168 rr = ri = tr = ti = NULL; 1169 if (TREE_CODE (compare) != INTEGER_CST) 1170 { 1171 edge e; 1172 gimple *stmt; 1173 tree cond, tmp; 1174 1175 tmp = create_tmp_var (boolean_type_node); 1176 stmt = gimple_build_assign (tmp, compare); 1177 if (gimple_in_ssa_p (cfun)) 1178 { 1179 tmp = make_ssa_name (tmp, stmt); 1180 gimple_assign_set_lhs (stmt, tmp); 1181 } 1182 1183 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1184 1185 cond = fold_build2_loc (gimple_location (stmt), 1186 EQ_EXPR, boolean_type_node, tmp, boolean_true_node); 1187 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE); 1188 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1189 1190 /* Split the original block, and create the TRUE and FALSE blocks. */ 1191 e = split_block (gsi_bb (*gsi), stmt); 1192 bb_cond = e->src; 1193 bb_join = e->dest; 1194 bb_true = create_empty_bb (bb_cond); 1195 bb_false = create_empty_bb (bb_true); 1196 bb_true->count = bb_false->count 1197 = bb_cond->count.apply_probability (profile_probability::even ()); 1198 1199 /* Wire the blocks together. */ 1200 e->flags = EDGE_TRUE_VALUE; 1201 /* TODO: With value profile we could add an historgram to determine real 1202 branch outcome. */ 1203 e->probability = profile_probability::even (); 1204 redirect_edge_succ (e, bb_true); 1205 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); 1206 e2->probability = profile_probability::even (); 1207 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU); 1208 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU); 1209 add_bb_to_loop (bb_true, bb_cond->loop_father); 1210 add_bb_to_loop (bb_false, bb_cond->loop_father); 1211 1212 /* Update dominance info. Note that bb_join's data was 1213 updated by split_block. */ 1214 if (dom_info_available_p (CDI_DOMINATORS)) 1215 { 1216 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); 1217 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); 1218 } 1219 1220 rr = create_tmp_reg (inner_type); 1221 ri = create_tmp_reg (inner_type); 1222 } 1223 1224 /* In the TRUE branch, we compute 1225 ratio = br/bi; 1226 div = (br * ratio) + bi; 1227 tr = (ar * ratio) + ai; 1228 ti = (ai * ratio) - ar; 1229 tr = tr / div; 1230 ti = ti / div; */ 1231 if (bb_true || integer_nonzerop (compare)) 1232 { 1233 if (bb_true) 1234 { 1235 *gsi = gsi_last_bb (bb_true); 1236 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1237 } 1238 1239 ratio = gimplify_build2 (gsi, code, inner_type, br, bi); 1240 1241 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio); 1242 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi); 1243 1244 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1245 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai); 1246 1247 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1248 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar); 1249 1250 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1251 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1252 1253 if (bb_true) 1254 { 1255 stmt = gimple_build_assign (rr, tr); 1256 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1257 stmt = gimple_build_assign (ri, ti); 1258 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1259 gsi_remove (gsi, true); 1260 } 1261 } 1262 1263 /* In the FALSE branch, we compute 1264 ratio = d/c; 1265 divisor = (d * ratio) + c; 1266 tr = (b * ratio) + a; 1267 ti = b - (a * ratio); 1268 tr = tr / div; 1269 ti = ti / div; */ 1270 if (bb_false || integer_zerop (compare)) 1271 { 1272 if (bb_false) 1273 { 1274 *gsi = gsi_last_bb (bb_false); 1275 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1276 } 1277 1278 ratio = gimplify_build2 (gsi, code, inner_type, bi, br); 1279 1280 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio); 1281 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br); 1282 1283 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1284 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar); 1285 1286 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1287 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1); 1288 1289 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1290 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1291 1292 if (bb_false) 1293 { 1294 stmt = gimple_build_assign (rr, tr); 1295 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1296 stmt = gimple_build_assign (ri, ti); 1297 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1298 gsi_remove (gsi, true); 1299 } 1300 } 1301 1302 if (bb_join) 1303 *gsi = gsi_start_bb (bb_join); 1304 else 1305 rr = tr, ri = ti; 1306 1307 update_complex_assignment (gsi, rr, ri); 1308 } 1309 1310 /* Expand complex division to scalars. */ 1311 1312 static void 1313 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type, 1314 tree ar, tree ai, tree br, tree bi, 1315 enum tree_code code, 1316 complex_lattice_t al, complex_lattice_t bl) 1317 { 1318 tree rr, ri; 1319 1320 switch (PAIR (al, bl)) 1321 { 1322 case PAIR (ONLY_REAL, ONLY_REAL): 1323 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1324 ri = ai; 1325 break; 1326 1327 case PAIR (ONLY_REAL, ONLY_IMAG): 1328 rr = ai; 1329 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1330 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1331 break; 1332 1333 case PAIR (ONLY_IMAG, ONLY_REAL): 1334 rr = ar; 1335 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1336 break; 1337 1338 case PAIR (ONLY_IMAG, ONLY_IMAG): 1339 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1340 ri = ar; 1341 break; 1342 1343 case PAIR (VARYING, ONLY_REAL): 1344 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1345 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1346 break; 1347 1348 case PAIR (VARYING, ONLY_IMAG): 1349 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1350 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1351 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1352 break; 1353 1354 case PAIR (ONLY_REAL, VARYING): 1355 case PAIR (ONLY_IMAG, VARYING): 1356 case PAIR (VARYING, VARYING): 1357 switch (flag_complex_method) 1358 { 1359 case 0: 1360 /* straightforward implementation of complex divide acceptable. */ 1361 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); 1362 break; 1363 1364 case 2: 1365 if (SCALAR_FLOAT_TYPE_P (inner_type)) 1366 { 1367 expand_complex_libcall (gsi, ar, ai, br, bi, code); 1368 break; 1369 } 1370 /* FALLTHRU */ 1371 1372 case 1: 1373 /* wide ranges of inputs must work for complex divide. */ 1374 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); 1375 break; 1376 1377 default: 1378 gcc_unreachable (); 1379 } 1380 return; 1381 1382 default: 1383 gcc_unreachable (); 1384 } 1385 1386 update_complex_assignment (gsi, rr, ri); 1387 } 1388 1389 /* Expand complex negation to scalars: 1390 -a = (-ar) + i(-ai) 1391 */ 1392 1393 static void 1394 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, 1395 tree ar, tree ai) 1396 { 1397 tree rr, ri; 1398 1399 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar); 1400 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1401 1402 update_complex_assignment (gsi, rr, ri); 1403 } 1404 1405 /* Expand complex conjugate to scalars: 1406 ~a = (ar) + i(-ai) 1407 */ 1408 1409 static void 1410 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, 1411 tree ar, tree ai) 1412 { 1413 tree ri; 1414 1415 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1416 1417 update_complex_assignment (gsi, ar, ri); 1418 } 1419 1420 /* Expand complex comparison (EQ or NE only). */ 1421 1422 static void 1423 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, 1424 tree br, tree bi, enum tree_code code) 1425 { 1426 tree cr, ci, cc, type; 1427 gimple *stmt; 1428 1429 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br); 1430 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi); 1431 cc = gimplify_build2 (gsi, 1432 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), 1433 boolean_type_node, cr, ci); 1434 1435 stmt = gsi_stmt (*gsi); 1436 1437 switch (gimple_code (stmt)) 1438 { 1439 case GIMPLE_RETURN: 1440 { 1441 greturn *return_stmt = as_a <greturn *> (stmt); 1442 type = TREE_TYPE (gimple_return_retval (return_stmt)); 1443 gimple_return_set_retval (return_stmt, fold_convert (type, cc)); 1444 } 1445 break; 1446 1447 case GIMPLE_ASSIGN: 1448 type = TREE_TYPE (gimple_assign_lhs (stmt)); 1449 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); 1450 stmt = gsi_stmt (*gsi); 1451 break; 1452 1453 case GIMPLE_COND: 1454 { 1455 gcond *cond_stmt = as_a <gcond *> (stmt); 1456 gimple_cond_set_code (cond_stmt, EQ_EXPR); 1457 gimple_cond_set_lhs (cond_stmt, cc); 1458 gimple_cond_set_rhs (cond_stmt, boolean_true_node); 1459 } 1460 break; 1461 1462 default: 1463 gcc_unreachable (); 1464 } 1465 1466 update_stmt (stmt); 1467 if (maybe_clean_eh_stmt (stmt)) 1468 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); 1469 } 1470 1471 /* Expand inline asm that sets some complex SSA_NAMEs. */ 1472 1473 static void 1474 expand_complex_asm (gimple_stmt_iterator *gsi) 1475 { 1476 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi)); 1477 unsigned int i; 1478 1479 for (i = 0; i < gimple_asm_noutputs (stmt); ++i) 1480 { 1481 tree link = gimple_asm_output_op (stmt, i); 1482 tree op = TREE_VALUE (link); 1483 if (TREE_CODE (op) == SSA_NAME 1484 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE) 1485 { 1486 tree type = TREE_TYPE (op); 1487 tree inner_type = TREE_TYPE (type); 1488 tree r = build1 (REALPART_EXPR, inner_type, op); 1489 tree i = build1 (IMAGPART_EXPR, inner_type, op); 1490 gimple_seq list = set_component_ssa_name (op, false, r); 1491 1492 if (list) 1493 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1494 1495 list = set_component_ssa_name (op, true, i); 1496 if (list) 1497 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1498 } 1499 } 1500 } 1501 1502 /* Process one statement. If we identify a complex operation, expand it. */ 1503 1504 static void 1505 expand_complex_operations_1 (gimple_stmt_iterator *gsi) 1506 { 1507 gimple *stmt = gsi_stmt (*gsi); 1508 tree type, inner_type, lhs; 1509 tree ac, ar, ai, bc, br, bi; 1510 complex_lattice_t al, bl; 1511 enum tree_code code; 1512 1513 if (gimple_code (stmt) == GIMPLE_ASM) 1514 { 1515 expand_complex_asm (gsi); 1516 return; 1517 } 1518 1519 lhs = gimple_get_lhs (stmt); 1520 if (!lhs && gimple_code (stmt) != GIMPLE_COND) 1521 return; 1522 1523 type = TREE_TYPE (gimple_op (stmt, 0)); 1524 code = gimple_expr_code (stmt); 1525 1526 /* Initial filter for operations we handle. */ 1527 switch (code) 1528 { 1529 case PLUS_EXPR: 1530 case MINUS_EXPR: 1531 case MULT_EXPR: 1532 case TRUNC_DIV_EXPR: 1533 case CEIL_DIV_EXPR: 1534 case FLOOR_DIV_EXPR: 1535 case ROUND_DIV_EXPR: 1536 case RDIV_EXPR: 1537 case NEGATE_EXPR: 1538 case CONJ_EXPR: 1539 if (TREE_CODE (type) != COMPLEX_TYPE) 1540 return; 1541 inner_type = TREE_TYPE (type); 1542 break; 1543 1544 case EQ_EXPR: 1545 case NE_EXPR: 1546 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR 1547 subcode, so we need to access the operands using gimple_op. */ 1548 inner_type = TREE_TYPE (gimple_op (stmt, 1)); 1549 if (TREE_CODE (inner_type) != COMPLEX_TYPE) 1550 return; 1551 break; 1552 1553 default: 1554 { 1555 tree rhs; 1556 1557 /* GIMPLE_COND may also fallthru here, but we do not need to 1558 do anything with it. */ 1559 if (gimple_code (stmt) == GIMPLE_COND) 1560 return; 1561 1562 if (TREE_CODE (type) == COMPLEX_TYPE) 1563 expand_complex_move (gsi, type); 1564 else if (is_gimple_assign (stmt) 1565 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR 1566 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 1567 && TREE_CODE (lhs) == SSA_NAME) 1568 { 1569 rhs = gimple_assign_rhs1 (stmt); 1570 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), 1571 gimple_assign_rhs_code (stmt) 1572 == IMAGPART_EXPR, 1573 false); 1574 gimple_assign_set_rhs_from_tree (gsi, rhs); 1575 stmt = gsi_stmt (*gsi); 1576 update_stmt (stmt); 1577 } 1578 } 1579 return; 1580 } 1581 1582 /* Extract the components of the two complex values. Make sure and 1583 handle the common case of the same value used twice specially. */ 1584 if (is_gimple_assign (stmt)) 1585 { 1586 ac = gimple_assign_rhs1 (stmt); 1587 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; 1588 } 1589 /* GIMPLE_CALL can not get here. */ 1590 else 1591 { 1592 ac = gimple_cond_lhs (stmt); 1593 bc = gimple_cond_rhs (stmt); 1594 } 1595 1596 ar = extract_component (gsi, ac, false, true); 1597 ai = extract_component (gsi, ac, true, true); 1598 1599 if (ac == bc) 1600 br = ar, bi = ai; 1601 else if (bc) 1602 { 1603 br = extract_component (gsi, bc, 0, true); 1604 bi = extract_component (gsi, bc, 1, true); 1605 } 1606 else 1607 br = bi = NULL_TREE; 1608 1609 if (gimple_in_ssa_p (cfun)) 1610 { 1611 al = find_lattice_value (ac); 1612 if (al == UNINITIALIZED) 1613 al = VARYING; 1614 1615 if (TREE_CODE_CLASS (code) == tcc_unary) 1616 bl = UNINITIALIZED; 1617 else if (ac == bc) 1618 bl = al; 1619 else 1620 { 1621 bl = find_lattice_value (bc); 1622 if (bl == UNINITIALIZED) 1623 bl = VARYING; 1624 } 1625 } 1626 else 1627 al = bl = VARYING; 1628 1629 switch (code) 1630 { 1631 case PLUS_EXPR: 1632 case MINUS_EXPR: 1633 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1634 break; 1635 1636 case MULT_EXPR: 1637 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl); 1638 break; 1639 1640 case TRUNC_DIV_EXPR: 1641 case CEIL_DIV_EXPR: 1642 case FLOOR_DIV_EXPR: 1643 case ROUND_DIV_EXPR: 1644 case RDIV_EXPR: 1645 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1646 break; 1647 1648 case NEGATE_EXPR: 1649 expand_complex_negation (gsi, inner_type, ar, ai); 1650 break; 1651 1652 case CONJ_EXPR: 1653 expand_complex_conjugate (gsi, inner_type, ar, ai); 1654 break; 1655 1656 case EQ_EXPR: 1657 case NE_EXPR: 1658 expand_complex_comparison (gsi, ar, ai, br, bi, code); 1659 break; 1660 1661 default: 1662 gcc_unreachable (); 1663 } 1664 } 1665 1666 1667 /* Entry point for complex operation lowering during optimization. */ 1668 1669 static unsigned int 1670 tree_lower_complex (void) 1671 { 1672 gimple_stmt_iterator gsi; 1673 basic_block bb; 1674 int n_bbs, i; 1675 int *rpo; 1676 1677 if (!init_dont_simulate_again ()) 1678 return 0; 1679 1680 complex_lattice_values.create (num_ssa_names); 1681 complex_lattice_values.safe_grow_cleared (num_ssa_names); 1682 1683 init_parameter_lattice_values (); 1684 class complex_propagate complex_propagate; 1685 complex_propagate.ssa_propagate (); 1686 1687 need_eh_cleanup = BITMAP_ALLOC (NULL); 1688 1689 complex_variable_components = new int_tree_htab_type (10); 1690 1691 complex_ssa_name_components.create (2 * num_ssa_names); 1692 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names); 1693 1694 update_parameter_components (); 1695 1696 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); 1697 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); 1698 for (i = 0; i < n_bbs; i++) 1699 { 1700 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); 1701 if (!bb) 1702 continue; 1703 update_phi_components (bb); 1704 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1705 expand_complex_operations_1 (&gsi); 1706 } 1707 1708 free (rpo); 1709 1710 if (!phis_to_revisit.is_empty ()) 1711 { 1712 unsigned int n = phis_to_revisit.length (); 1713 for (unsigned int j = 0; j < n; j += 3) 1714 for (unsigned int k = 0; k < 2; k++) 1715 if (gphi *phi = phis_to_revisit[j + k + 1]) 1716 { 1717 unsigned int m = gimple_phi_num_args (phi); 1718 for (unsigned int l = 0; l < m; ++l) 1719 { 1720 tree op = gimple_phi_arg_def (phi, l); 1721 if (TREE_CODE (op) == SSA_NAME 1722 || is_gimple_min_invariant (op)) 1723 continue; 1724 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l); 1725 op = extract_component (NULL, arg, k > 0, false, false); 1726 SET_PHI_ARG_DEF (phi, l, op); 1727 } 1728 } 1729 phis_to_revisit.release (); 1730 } 1731 1732 gsi_commit_edge_inserts (); 1733 1734 unsigned todo 1735 = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0; 1736 BITMAP_FREE (need_eh_cleanup); 1737 1738 delete complex_variable_components; 1739 complex_variable_components = NULL; 1740 complex_ssa_name_components.release (); 1741 complex_lattice_values.release (); 1742 return todo; 1743 } 1744 1745 namespace { 1746 1747 const pass_data pass_data_lower_complex = 1748 { 1749 GIMPLE_PASS, /* type */ 1750 "cplxlower", /* name */ 1751 OPTGROUP_NONE, /* optinfo_flags */ 1752 TV_NONE, /* tv_id */ 1753 PROP_ssa, /* properties_required */ 1754 PROP_gimple_lcx, /* properties_provided */ 1755 0, /* properties_destroyed */ 1756 0, /* todo_flags_start */ 1757 TODO_update_ssa, /* todo_flags_finish */ 1758 }; 1759 1760 class pass_lower_complex : public gimple_opt_pass 1761 { 1762 public: 1763 pass_lower_complex (gcc::context *ctxt) 1764 : gimple_opt_pass (pass_data_lower_complex, ctxt) 1765 {} 1766 1767 /* opt_pass methods: */ 1768 opt_pass * clone () { return new pass_lower_complex (m_ctxt); } 1769 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1770 1771 }; // class pass_lower_complex 1772 1773 } // anon namespace 1774 1775 gimple_opt_pass * 1776 make_pass_lower_complex (gcc::context *ctxt) 1777 { 1778 return new pass_lower_complex (ctxt); 1779 } 1780 1781 1782 namespace { 1783 1784 const pass_data pass_data_lower_complex_O0 = 1785 { 1786 GIMPLE_PASS, /* type */ 1787 "cplxlower0", /* name */ 1788 OPTGROUP_NONE, /* optinfo_flags */ 1789 TV_NONE, /* tv_id */ 1790 PROP_cfg, /* properties_required */ 1791 PROP_gimple_lcx, /* properties_provided */ 1792 0, /* properties_destroyed */ 1793 0, /* todo_flags_start */ 1794 TODO_update_ssa, /* todo_flags_finish */ 1795 }; 1796 1797 class pass_lower_complex_O0 : public gimple_opt_pass 1798 { 1799 public: 1800 pass_lower_complex_O0 (gcc::context *ctxt) 1801 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt) 1802 {} 1803 1804 /* opt_pass methods: */ 1805 virtual bool gate (function *fun) 1806 { 1807 /* With errors, normal optimization passes are not run. If we don't 1808 lower complex operations at all, rtl expansion will abort. */ 1809 return !(fun->curr_properties & PROP_gimple_lcx); 1810 } 1811 1812 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1813 1814 }; // class pass_lower_complex_O0 1815 1816 } // anon namespace 1817 1818 gimple_opt_pass * 1819 make_pass_lower_complex_O0 (gcc::context *ctxt) 1820 { 1821 return new pass_lower_complex_O0 (ctxt); 1822 } 1823