1 /* Vectorizer 2 Copyright (C) 2003-2018 Free Software Foundation, Inc. 3 Contributed by Dorit Naishlos <dorit@il.ibm.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #ifndef GCC_TREE_VECTORIZER_H 22 #define GCC_TREE_VECTORIZER_H 23 24 #include "tree-data-ref.h" 25 #include "tree-hash-traits.h" 26 #include "target.h" 27 28 /* Used for naming of new temporaries. */ 29 enum vect_var_kind { 30 vect_simple_var, 31 vect_pointer_var, 32 vect_scalar_var, 33 vect_mask_var 34 }; 35 36 /* Defines type of operation. */ 37 enum operation_type { 38 unary_op = 1, 39 binary_op, 40 ternary_op 41 }; 42 43 /* Define type of available alignment support. */ 44 enum dr_alignment_support { 45 dr_unaligned_unsupported, 46 dr_unaligned_supported, 47 dr_explicit_realign, 48 dr_explicit_realign_optimized, 49 dr_aligned 50 }; 51 52 /* Define type of def-use cross-iteration cycle. */ 53 enum vect_def_type { 54 vect_uninitialized_def = 0, 55 vect_constant_def = 1, 56 vect_external_def, 57 vect_internal_def, 58 vect_induction_def, 59 vect_reduction_def, 60 vect_double_reduction_def, 61 vect_nested_cycle, 62 vect_unknown_def_type 63 }; 64 65 /* Define type of reduction. */ 66 enum vect_reduction_type { 67 TREE_CODE_REDUCTION, 68 COND_REDUCTION, 69 INTEGER_INDUC_COND_REDUCTION, 70 CONST_COND_REDUCTION, 71 72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop 73 to implement: 74 75 for (int i = 0; i < VF; ++i) 76 res = cond[i] ? val[i] : res; */ 77 EXTRACT_LAST_REDUCTION, 78 79 /* Use a folding reduction within the loop to implement: 80 81 for (int i = 0; i < VF; ++i) 82 res = res OP val[i]; 83 84 (with no reassocation). */ 85 FOLD_LEFT_REDUCTION 86 }; 87 88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \ 89 || ((D) == vect_double_reduction_def) \ 90 || ((D) == vect_nested_cycle)) 91 92 /* Structure to encapsulate information about a group of like 93 instructions to be presented to the target cost model. */ 94 struct stmt_info_for_cost { 95 int count; 96 enum vect_cost_for_stmt kind; 97 gimple *stmt; 98 int misalign; 99 }; 100 101 typedef vec<stmt_info_for_cost> stmt_vector_for_cost; 102 103 /* Maps base addresses to an innermost_loop_behavior that gives the maximum 104 known alignment for that base. */ 105 typedef hash_map<tree_operand_hash, 106 innermost_loop_behavior *> vec_base_alignments; 107 108 /************************************************************************ 109 SLP 110 ************************************************************************/ 111 typedef struct _slp_tree *slp_tree; 112 113 /* A computation tree of an SLP instance. Each node corresponds to a group of 114 stmts to be packed in a SIMD stmt. */ 115 struct _slp_tree { 116 /* Nodes that contain def-stmts of this node statements operands. */ 117 vec<slp_tree> children; 118 /* A group of scalar stmts to be vectorized together. */ 119 vec<gimple *> stmts; 120 /* Load permutation relative to the stores, NULL if there is no 121 permutation. */ 122 vec<unsigned> load_permutation; 123 /* Vectorized stmt/s. */ 124 vec<gimple *> vec_stmts; 125 /* Number of vector stmts that are created to replace the group of scalar 126 stmts. It is calculated during the transformation phase as the number of 127 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF 128 divided by vector size. */ 129 unsigned int vec_stmts_size; 130 /* Whether the scalar computations use two different operators. */ 131 bool two_operators; 132 /* The DEF type of this node. */ 133 enum vect_def_type def_type; 134 }; 135 136 137 /* SLP instance is a sequence of stmts in a loop that can be packed into 138 SIMD stmts. */ 139 typedef struct _slp_instance { 140 /* The root of SLP tree. */ 141 slp_tree root; 142 143 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */ 144 unsigned int group_size; 145 146 /* The unrolling factor required to vectorized this SLP instance. */ 147 poly_uint64 unrolling_factor; 148 149 /* The group of nodes that contain loads of this SLP instance. */ 150 vec<slp_tree> loads; 151 152 /* The SLP node containing the reduction PHIs. */ 153 slp_tree reduc_phis; 154 } *slp_instance; 155 156 157 /* Access Functions. */ 158 #define SLP_INSTANCE_TREE(S) (S)->root 159 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size 160 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor 161 #define SLP_INSTANCE_LOADS(S) (S)->loads 162 163 #define SLP_TREE_CHILDREN(S) (S)->children 164 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts 165 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts 166 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size 167 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation 168 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators 169 #define SLP_TREE_DEF_TYPE(S) (S)->def_type 170 171 172 173 /* Describes two objects whose addresses must be unequal for the vectorized 174 loop to be valid. */ 175 typedef std::pair<tree, tree> vec_object_pair; 176 177 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE. 178 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */ 179 struct vec_lower_bound { 180 vec_lower_bound () {} 181 vec_lower_bound (tree e, bool u, poly_uint64 m) 182 : expr (e), unsigned_p (u), min_value (m) {} 183 184 tree expr; 185 bool unsigned_p; 186 poly_uint64 min_value; 187 }; 188 189 /* Vectorizer state common between loop and basic-block vectorization. */ 190 struct vec_info { 191 enum vec_kind { bb, loop }; 192 193 vec_info (vec_kind, void *); 194 ~vec_info (); 195 196 /* The type of vectorization. */ 197 vec_kind kind; 198 199 /* All SLP instances. */ 200 auto_vec<slp_instance> slp_instances; 201 202 /* All data references. Freed by free_data_refs, so not an auto_vec. */ 203 vec<data_reference_p> datarefs; 204 205 /* Maps base addresses to an innermost_loop_behavior that gives the maximum 206 known alignment for that base. */ 207 vec_base_alignments base_alignments; 208 209 /* All data dependences. Freed by free_dependence_relations, so not 210 an auto_vec. */ 211 vec<ddr_p> ddrs; 212 213 /* All interleaving chains of stores, represented by the first 214 stmt in the chain. */ 215 auto_vec<gimple *> grouped_stores; 216 217 /* Cost data used by the target cost model. */ 218 void *target_cost_data; 219 }; 220 221 struct _loop_vec_info; 222 struct _bb_vec_info; 223 224 template<> 225 template<> 226 inline bool 227 is_a_helper <_loop_vec_info *>::test (vec_info *i) 228 { 229 return i->kind == vec_info::loop; 230 } 231 232 template<> 233 template<> 234 inline bool 235 is_a_helper <_bb_vec_info *>::test (vec_info *i) 236 { 237 return i->kind == vec_info::bb; 238 } 239 240 241 /* In general, we can divide the vector statements in a vectorized loop 242 into related groups ("rgroups") and say that for each rgroup there is 243 some nS such that the rgroup operates on nS values from one scalar 244 iteration followed by nS values from the next. That is, if VF is the 245 vectorization factor of the loop, the rgroup operates on a sequence: 246 247 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS) 248 249 where (i,j) represents a scalar value with index j in a scalar 250 iteration with index i. 251 252 [ We use the term "rgroup" to emphasise that this grouping isn't 253 necessarily the same as the grouping of statements used elsewhere. 254 For example, if we implement a group of scalar loads using gather 255 loads, we'll use a separate gather load for each scalar load, and 256 thus each gather load will belong to its own rgroup. ] 257 258 In general this sequence will occupy nV vectors concatenated 259 together. If these vectors have nL lanes each, the total number 260 of scalar values N is given by: 261 262 N = nS * VF = nV * nL 263 264 None of nS, VF, nV and nL are required to be a power of 2. nS and nV 265 are compile-time constants but VF and nL can be variable (if the target 266 supports variable-length vectors). 267 268 In classical vectorization, each iteration of the vector loop would 269 handle exactly VF iterations of the original scalar loop. However, 270 in a fully-masked loop, a particular iteration of the vector loop 271 might handle fewer than VF iterations of the scalar loop. The vector 272 lanes that correspond to iterations of the scalar loop are said to be 273 "active" and the other lanes are said to be "inactive". 274 275 In a fully-masked loop, many rgroups need to be masked to ensure that 276 they have no effect for the inactive lanes. Each such rgroup needs a 277 sequence of booleans in the same order as above, but with each (i,j) 278 replaced by a boolean that indicates whether iteration i is active. 279 This sequence occupies nV vector masks that again have nL lanes each. 280 Thus the mask sequence as a whole consists of VF independent booleans 281 that are each repeated nS times. 282 283 We make the simplifying assumption that if a sequence of nV masks is 284 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by 285 VIEW_CONVERTing it. This holds for all current targets that support 286 fully-masked loops. For example, suppose the scalar loop is: 287 288 float *f; 289 double *d; 290 for (int i = 0; i < n; ++i) 291 { 292 f[i * 2 + 0] += 1.0f; 293 f[i * 2 + 1] += 2.0f; 294 d[i] += 3.0; 295 } 296 297 and suppose that vectors have 256 bits. The vectorized f accesses 298 will belong to one rgroup and the vectorized d access to another: 299 300 f rgroup: nS = 2, nV = 1, nL = 8 301 d rgroup: nS = 1, nV = 1, nL = 4 302 VF = 4 303 304 [ In this simple example the rgroups do correspond to the normal 305 SLP grouping scheme. ] 306 307 If only the first three lanes are active, the masks we need are: 308 309 f rgroup: 1 1 | 1 1 | 1 1 | 0 0 310 d rgroup: 1 | 1 | 1 | 0 311 312 Here we can use a mask calculated for f's rgroup for d's, but not 313 vice versa. 314 315 Thus for each value of nV, it is enough to provide nV masks, with the 316 mask being calculated based on the highest nL (or, equivalently, based 317 on the highest nS) required by any rgroup with that nV. We therefore 318 represent the entire collection of masks as a two-level table, with the 319 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and 320 the second being indexed by the mask index 0 <= i < nV. */ 321 322 /* The masks needed by rgroups with nV vectors, according to the 323 description above. */ 324 struct rgroup_masks { 325 /* The largest nS for all rgroups that use these masks. */ 326 unsigned int max_nscalars_per_iter; 327 328 /* The type of mask to use, based on the highest nS recorded above. */ 329 tree mask_type; 330 331 /* A vector of nV masks, in iteration order. */ 332 vec<tree> masks; 333 }; 334 335 typedef auto_vec<rgroup_masks> vec_loop_masks; 336 337 /*-----------------------------------------------------------------*/ 338 /* Info on vectorized loops. */ 339 /*-----------------------------------------------------------------*/ 340 typedef struct _loop_vec_info : public vec_info { 341 _loop_vec_info (struct loop *); 342 ~_loop_vec_info (); 343 344 /* The loop to which this info struct refers to. */ 345 struct loop *loop; 346 347 /* The loop basic blocks. */ 348 basic_block *bbs; 349 350 /* Number of latch executions. */ 351 tree num_itersm1; 352 /* Number of iterations. */ 353 tree num_iters; 354 /* Number of iterations of the original loop. */ 355 tree num_iters_unchanged; 356 /* Condition under which this loop is analyzed and versioned. */ 357 tree num_iters_assumptions; 358 359 /* Threshold of number of iterations below which vectorzation will not be 360 performed. It is calculated from MIN_PROFITABLE_ITERS and 361 PARAM_MIN_VECT_LOOP_BOUND. */ 362 unsigned int th; 363 364 /* When applying loop versioning, the vector form should only be used 365 if the number of scalar iterations is >= this value, on top of all 366 the other requirements. Ignored when loop versioning is not being 367 used. */ 368 poly_uint64 versioning_threshold; 369 370 /* Unrolling factor */ 371 poly_uint64 vectorization_factor; 372 373 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR 374 if there is no particular limit. */ 375 unsigned HOST_WIDE_INT max_vectorization_factor; 376 377 /* The masks that a fully-masked loop should use to avoid operating 378 on inactive scalars. */ 379 vec_loop_masks masks; 380 381 /* If we are using a loop mask to align memory addresses, this variable 382 contains the number of vector elements that we should skip in the 383 first iteration of the vector loop (i.e. the number of leading 384 elements that should be false in the first mask). */ 385 tree mask_skip_niters; 386 387 /* Type of the variables to use in the WHILE_ULT call for fully-masked 388 loops. */ 389 tree mask_compare_type; 390 391 /* Unknown DRs according to which loop was peeled. */ 392 struct data_reference *unaligned_dr; 393 394 /* peeling_for_alignment indicates whether peeling for alignment will take 395 place, and what the peeling factor should be: 396 peeling_for_alignment = X means: 397 If X=0: Peeling for alignment will not be applied. 398 If X>0: Peel first X iterations. 399 If X=-1: Generate a runtime test to calculate the number of iterations 400 to be peeled, using the dataref recorded in the field 401 unaligned_dr. */ 402 int peeling_for_alignment; 403 404 /* The mask used to check the alignment of pointers or arrays. */ 405 int ptr_mask; 406 407 /* The loop nest in which the data dependences are computed. */ 408 auto_vec<loop_p> loop_nest; 409 410 /* Data Dependence Relations defining address ranges that are candidates 411 for a run-time aliasing check. */ 412 auto_vec<ddr_p> may_alias_ddrs; 413 414 /* Data Dependence Relations defining address ranges together with segment 415 lengths from which the run-time aliasing check is built. */ 416 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs; 417 418 /* Check that the addresses of each pair of objects is unequal. */ 419 auto_vec<vec_object_pair> check_unequal_addrs; 420 421 /* List of values that are required to be nonzero. This is used to check 422 whether things like "x[i * n] += 1;" are safe and eventually gets added 423 to the checks for lower bounds below. */ 424 auto_vec<tree> check_nonzero; 425 426 /* List of values that need to be checked for a minimum value. */ 427 auto_vec<vec_lower_bound> lower_bounds; 428 429 /* Statements in the loop that have data references that are candidates for a 430 runtime (loop versioning) misalignment check. */ 431 auto_vec<gimple *> may_misalign_stmts; 432 433 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */ 434 auto_vec<gimple *> reductions; 435 436 /* All reduction chains in the loop, represented by the first 437 stmt in the chain. */ 438 auto_vec<gimple *> reduction_chains; 439 440 /* Cost vector for a single scalar iteration. */ 441 auto_vec<stmt_info_for_cost> scalar_cost_vec; 442 443 /* Map of IV base/step expressions to inserted name in the preheader. */ 444 hash_map<tree_operand_hash, tree> *ivexpr_map; 445 446 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is 447 applied to the loop, i.e., no unrolling is needed, this is 1. */ 448 poly_uint64 slp_unrolling_factor; 449 450 /* Cost of a single scalar iteration. */ 451 int single_scalar_iteration_cost; 452 453 /* Is the loop vectorizable? */ 454 bool vectorizable; 455 456 /* Records whether we still have the option of using a fully-masked loop. */ 457 bool can_fully_mask_p; 458 459 /* True if have decided to use a fully-masked loop. */ 460 bool fully_masked_p; 461 462 /* When we have grouped data accesses with gaps, we may introduce invalid 463 memory accesses. We peel the last iteration of the loop to prevent 464 this. */ 465 bool peeling_for_gaps; 466 467 /* When the number of iterations is not a multiple of the vector size 468 we need to peel off iterations at the end to form an epilogue loop. */ 469 bool peeling_for_niter; 470 471 /* Reductions are canonicalized so that the last operand is the reduction 472 operand. If this places a constant into RHS1, this decanonicalizes 473 GIMPLE for other phases, so we must track when this has occurred and 474 fix it up. */ 475 bool operands_swapped; 476 477 /* True if there are no loop carried data dependencies in the loop. 478 If loop->safelen <= 1, then this is always true, either the loop 479 didn't have any loop carried data dependencies, or the loop is being 480 vectorized guarded with some runtime alias checks, or couldn't 481 be vectorized at all, but then this field shouldn't be used. 482 For loop->safelen >= 2, the user has asserted that there are no 483 backward dependencies, but there still could be loop carried forward 484 dependencies in such loops. This flag will be false if normal 485 vectorizer data dependency analysis would fail or require versioning 486 for alias, but because of loop->safelen >= 2 it has been vectorized 487 even without versioning for alias. E.g. in: 488 #pragma omp simd 489 for (int i = 0; i < m; i++) 490 a[i] = a[i + k] * c; 491 (or #pragma simd or #pragma ivdep) we can vectorize this and it will 492 DTRT even for k > 0 && k < m, but without safelen we would not 493 vectorize this, so this field would be false. */ 494 bool no_data_dependencies; 495 496 /* Mark loops having masked stores. */ 497 bool has_mask_store; 498 499 /* If if-conversion versioned this loop before conversion, this is the 500 loop version without if-conversion. */ 501 struct loop *scalar_loop; 502 503 /* For loops being epilogues of already vectorized loops 504 this points to the original vectorized loop. Otherwise NULL. */ 505 _loop_vec_info *orig_loop_info; 506 507 } *loop_vec_info; 508 509 /* Access Functions. */ 510 #define LOOP_VINFO_LOOP(L) (L)->loop 511 #define LOOP_VINFO_BBS(L) (L)->bbs 512 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1 513 #define LOOP_VINFO_NITERS(L) (L)->num_iters 514 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after 515 prologue peeling retain total unchanged scalar loop iterations for 516 cost model. */ 517 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged 518 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions 519 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th 520 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold 521 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable 522 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p 523 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p 524 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor 525 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor 526 #define LOOP_VINFO_MASKS(L) (L)->masks 527 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters 528 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type 529 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask 530 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest 531 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs 532 #define LOOP_VINFO_DDRS(L) (L)->ddrs 533 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters)) 534 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment 535 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr 536 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts 537 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs 538 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs 539 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs 540 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero 541 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds 542 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores 543 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances 544 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor 545 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions 546 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains 547 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data 548 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps 549 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped 550 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter 551 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies 552 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop 553 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store 554 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec 555 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost 556 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info 557 558 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \ 559 ((L)->may_misalign_stmts.length () > 0) 560 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \ 561 ((L)->comp_alias_ddrs.length () > 0 \ 562 || (L)->check_unequal_addrs.length () > 0 \ 563 || (L)->lower_bounds.length () > 0) 564 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \ 565 (LOOP_VINFO_NITERS_ASSUMPTIONS (L)) 566 #define LOOP_REQUIRES_VERSIONING(L) \ 567 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \ 568 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \ 569 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L)) 570 571 #define LOOP_VINFO_NITERS_KNOWN_P(L) \ 572 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0) 573 574 #define LOOP_VINFO_EPILOGUE_P(L) \ 575 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL) 576 577 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \ 578 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L))) 579 580 static inline loop_vec_info 581 loop_vec_info_for_loop (struct loop *loop) 582 { 583 return (loop_vec_info) loop->aux; 584 } 585 586 static inline bool 587 nested_in_vect_loop_p (struct loop *loop, gimple *stmt) 588 { 589 return (loop->inner 590 && (loop->inner == (gimple_bb (stmt))->loop_father)); 591 } 592 593 typedef struct _bb_vec_info : public vec_info 594 { 595 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator); 596 ~_bb_vec_info (); 597 598 basic_block bb; 599 gimple_stmt_iterator region_begin; 600 gimple_stmt_iterator region_end; 601 } *bb_vec_info; 602 603 #define BB_VINFO_BB(B) (B)->bb 604 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores 605 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances 606 #define BB_VINFO_DATAREFS(B) (B)->datarefs 607 #define BB_VINFO_DDRS(B) (B)->ddrs 608 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data 609 610 static inline bb_vec_info 611 vec_info_for_bb (basic_block bb) 612 { 613 return (bb_vec_info) bb->aux; 614 } 615 616 /*-----------------------------------------------------------------*/ 617 /* Info on vectorized defs. */ 618 /*-----------------------------------------------------------------*/ 619 enum stmt_vec_info_type { 620 undef_vec_info_type = 0, 621 load_vec_info_type, 622 store_vec_info_type, 623 shift_vec_info_type, 624 op_vec_info_type, 625 call_vec_info_type, 626 call_simd_clone_vec_info_type, 627 assignment_vec_info_type, 628 condition_vec_info_type, 629 comparison_vec_info_type, 630 reduc_vec_info_type, 631 induc_vec_info_type, 632 type_promotion_vec_info_type, 633 type_demotion_vec_info_type, 634 type_conversion_vec_info_type, 635 loop_exit_ctrl_vec_info_type 636 }; 637 638 /* Indicates whether/how a variable is used in the scope of loop/basic 639 block. */ 640 enum vect_relevant { 641 vect_unused_in_scope = 0, 642 643 /* The def is only used outside the loop. */ 644 vect_used_only_live, 645 /* The def is in the inner loop, and the use is in the outer loop, and the 646 use is a reduction stmt. */ 647 vect_used_in_outer_by_reduction, 648 /* The def is in the inner loop, and the use is in the outer loop (and is 649 not part of reduction). */ 650 vect_used_in_outer, 651 652 /* defs that feed computations that end up (only) in a reduction. These 653 defs may be used by non-reduction stmts, but eventually, any 654 computations/values that are affected by these defs are used to compute 655 a reduction (i.e. don't get stored to memory, for example). We use this 656 to identify computations that we can change the order in which they are 657 computed. */ 658 vect_used_by_reduction, 659 660 vect_used_in_scope 661 }; 662 663 /* The type of vectorization that can be applied to the stmt: regular loop-based 664 vectorization; pure SLP - the stmt is a part of SLP instances and does not 665 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is 666 a part of SLP instance and also must be loop-based vectorized, since it has 667 uses outside SLP sequences. 668 669 In the loop context the meanings of pure and hybrid SLP are slightly 670 different. By saying that pure SLP is applied to the loop, we mean that we 671 exploit only intra-iteration parallelism in the loop; i.e., the loop can be 672 vectorized without doing any conceptual unrolling, cause we don't pack 673 together stmts from different iterations, only within a single iteration. 674 Loop hybrid SLP means that we exploit both intra-iteration and 675 inter-iteration parallelism (e.g., number of elements in the vector is 4 676 and the slp-group-size is 2, in which case we don't have enough parallelism 677 within an iteration, so we obtain the rest of the parallelism from subsequent 678 iterations by unrolling the loop by 2). */ 679 enum slp_vect_type { 680 loop_vect = 0, 681 pure_slp, 682 hybrid 683 }; 684 685 /* Says whether a statement is a load, a store of a vectorized statement 686 result, or a store of an invariant value. */ 687 enum vec_load_store_type { 688 VLS_LOAD, 689 VLS_STORE, 690 VLS_STORE_INVARIANT 691 }; 692 693 /* Describes how we're going to vectorize an individual load or store, 694 or a group of loads or stores. */ 695 enum vect_memory_access_type { 696 /* An access to an invariant address. This is used only for loads. */ 697 VMAT_INVARIANT, 698 699 /* A simple contiguous access. */ 700 VMAT_CONTIGUOUS, 701 702 /* A contiguous access that goes down in memory rather than up, 703 with no additional permutation. This is used only for stores 704 of invariants. */ 705 VMAT_CONTIGUOUS_DOWN, 706 707 /* A simple contiguous access in which the elements need to be permuted 708 after loading or before storing. Only used for loop vectorization; 709 SLP uses separate permutes. */ 710 VMAT_CONTIGUOUS_PERMUTE, 711 712 /* A simple contiguous access in which the elements need to be reversed 713 after loading or before storing. */ 714 VMAT_CONTIGUOUS_REVERSE, 715 716 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */ 717 VMAT_LOAD_STORE_LANES, 718 719 /* An access in which each scalar element is loaded or stored 720 individually. */ 721 VMAT_ELEMENTWISE, 722 723 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped 724 SLP accesses. Each unrolled iteration uses a contiguous load 725 or store for the whole group, but the groups from separate iterations 726 are combined in the same way as for VMAT_ELEMENTWISE. */ 727 VMAT_STRIDED_SLP, 728 729 /* The access uses gather loads or scatter stores. */ 730 VMAT_GATHER_SCATTER 731 }; 732 733 typedef struct data_reference *dr_p; 734 735 typedef struct _stmt_vec_info { 736 737 enum stmt_vec_info_type type; 738 739 /* Indicates whether this stmts is part of a computation whose result is 740 used outside the loop. */ 741 bool live; 742 743 /* Stmt is part of some pattern (computation idiom) */ 744 bool in_pattern_p; 745 746 /* Is this statement vectorizable or should it be skipped in (partial) 747 vectorization. */ 748 bool vectorizable; 749 750 /* The stmt to which this info struct refers to. */ 751 gimple *stmt; 752 753 /* The vec_info with respect to which STMT is vectorized. */ 754 vec_info *vinfo; 755 756 /* The vector type to be used for the LHS of this statement. */ 757 tree vectype; 758 759 /* The vectorized version of the stmt. */ 760 gimple *vectorized_stmt; 761 762 763 /* The following is relevant only for stmts that contain a non-scalar 764 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have 765 at most one such data-ref. */ 766 767 /* Information about the data-ref (access function, etc), 768 relative to the inner-most containing loop. */ 769 struct data_reference *data_ref_info; 770 771 /* Information about the data-ref relative to this loop 772 nest (the loop that is being considered for vectorization). */ 773 innermost_loop_behavior dr_wrt_vec_loop; 774 775 /* For loop PHI nodes, the base and evolution part of it. This makes sure 776 this information is still available in vect_update_ivs_after_vectorizer 777 where we may not be able to re-analyze the PHI nodes evolution as 778 peeling for the prologue loop can make it unanalyzable. The evolution 779 part is still correct after peeling, but the base may have changed from 780 the version here. */ 781 tree loop_phi_evolution_base_unchanged; 782 tree loop_phi_evolution_part; 783 784 /* Used for various bookkeeping purposes, generally holding a pointer to 785 some other stmt S that is in some way "related" to this stmt. 786 Current use of this field is: 787 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is 788 true): S is the "pattern stmt" that represents (and replaces) the 789 sequence of stmts that constitutes the pattern. Similarly, the 790 related_stmt of the "pattern stmt" points back to this stmt (which is 791 the last stmt in the original sequence of stmts that constitutes the 792 pattern). */ 793 gimple *related_stmt; 794 795 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */ 796 gimple_seq pattern_def_seq; 797 798 /* List of datarefs that are known to have the same alignment as the dataref 799 of this stmt. */ 800 vec<dr_p> same_align_refs; 801 802 /* Selected SIMD clone's function info. First vector element 803 is SIMD clone's function decl, followed by a pair of trees (base + step) 804 for linear arguments (pair of NULLs for other arguments). */ 805 vec<tree> simd_clone_info; 806 807 /* Classify the def of this stmt. */ 808 enum vect_def_type def_type; 809 810 /* Whether the stmt is SLPed, loop-based vectorized, or both. */ 811 enum slp_vect_type slp_type; 812 813 /* Interleaving and reduction chains info. */ 814 /* First element in the group. */ 815 gimple *first_element; 816 /* Pointer to the next element in the group. */ 817 gimple *next_element; 818 /* For data-refs, in case that two or more stmts share data-ref, this is the 819 pointer to the previously detected stmt with the same dr. */ 820 gimple *same_dr_stmt; 821 /* The size of the group. */ 822 unsigned int size; 823 /* For stores, number of stores from this group seen. We vectorize the last 824 one. */ 825 unsigned int store_count; 826 /* For loads only, the gap from the previous load. For consecutive loads, GAP 827 is 1. */ 828 unsigned int gap; 829 830 /* The minimum negative dependence distance this stmt participates in 831 or zero if none. */ 832 unsigned int min_neg_dist; 833 834 /* Not all stmts in the loop need to be vectorized. e.g, the increment 835 of the loop induction variable and computation of array indexes. relevant 836 indicates whether the stmt needs to be vectorized. */ 837 enum vect_relevant relevant; 838 839 /* For loads if this is a gather, for stores if this is a scatter. */ 840 bool gather_scatter_p; 841 842 /* True if this is an access with loop-invariant stride. */ 843 bool strided_p; 844 845 /* For both loads and stores. */ 846 bool simd_lane_access_p; 847 848 /* Classifies how the load or store is going to be implemented 849 for loop vectorization. */ 850 vect_memory_access_type memory_access_type; 851 852 /* For reduction loops, this is the type of reduction. */ 853 enum vect_reduction_type v_reduc_type; 854 855 /* For CONST_COND_REDUCTION, record the reduc code. */ 856 enum tree_code const_cond_reduc_code; 857 858 /* On a reduction PHI the reduction type as detected by 859 vect_force_simple_reduction. */ 860 enum vect_reduction_type reduc_type; 861 862 /* On a reduction PHI the def returned by vect_force_simple_reduction. 863 On the def returned by vect_force_simple_reduction the 864 corresponding PHI. */ 865 gimple *reduc_def; 866 867 /* The number of scalar stmt references from active SLP instances. */ 868 unsigned int num_slp_uses; 869 } *stmt_vec_info; 870 871 /* Information about a gather/scatter call. */ 872 struct gather_scatter_info { 873 /* The internal function to use for the gather/scatter operation, 874 or IFN_LAST if a built-in function should be used instead. */ 875 internal_fn ifn; 876 877 /* The FUNCTION_DECL for the built-in gather/scatter function, 878 or null if an internal function should be used instead. */ 879 tree decl; 880 881 /* The loop-invariant base value. */ 882 tree base; 883 884 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */ 885 tree offset; 886 887 /* Each offset element should be multiplied by this amount before 888 being added to the base. */ 889 int scale; 890 891 /* The definition type for the vectorized offset. */ 892 enum vect_def_type offset_dt; 893 894 /* The type of the vectorized offset. */ 895 tree offset_vectype; 896 897 /* The type of the scalar elements after loading or before storing. */ 898 tree element_type; 899 900 /* The type of the scalar elements being loaded or stored. */ 901 tree memory_type; 902 }; 903 904 /* Access Functions. */ 905 #define STMT_VINFO_TYPE(S) (S)->type 906 #define STMT_VINFO_STMT(S) (S)->stmt 907 inline loop_vec_info 908 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo) 909 { 910 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo)) 911 return loop_vinfo; 912 return NULL; 913 } 914 inline bb_vec_info 915 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo) 916 { 917 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo)) 918 return bb_vinfo; 919 return NULL; 920 } 921 #define STMT_VINFO_RELEVANT(S) (S)->relevant 922 #define STMT_VINFO_LIVE_P(S) (S)->live 923 #define STMT_VINFO_VECTYPE(S) (S)->vectype 924 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt 925 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable 926 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info 927 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p 928 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p 929 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type 930 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p 931 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type 932 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code 933 934 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop 935 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address 936 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init 937 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset 938 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step 939 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment 940 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \ 941 (S)->dr_wrt_vec_loop.base_misalignment 942 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \ 943 (S)->dr_wrt_vec_loop.offset_alignment 944 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \ 945 (S)->dr_wrt_vec_loop.step_alignment 946 947 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p 948 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt 949 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq 950 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs 951 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info 952 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type 953 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element 954 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element 955 #define STMT_VINFO_GROUP_SIZE(S) (S)->size 956 #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count 957 #define STMT_VINFO_GROUP_GAP(S) (S)->gap 958 #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt 959 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info) 960 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged 961 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part 962 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist 963 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses 964 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type 965 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def 966 967 #define GROUP_FIRST_ELEMENT(S) (S)->first_element 968 #define GROUP_NEXT_ELEMENT(S) (S)->next_element 969 #define GROUP_SIZE(S) (S)->size 970 #define GROUP_STORE_COUNT(S) (S)->store_count 971 #define GROUP_GAP(S) (S)->gap 972 #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt 973 974 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope) 975 976 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid) 977 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp) 978 #define STMT_SLP_TYPE(S) (S)->slp_type 979 980 struct dataref_aux { 981 /* The misalignment in bytes of the reference, or -1 if not known. */ 982 int misalignment; 983 /* The byte alignment that we'd ideally like the reference to have, 984 and the value that misalignment is measured against. */ 985 int target_alignment; 986 /* If true the alignment of base_decl needs to be increased. */ 987 bool base_misaligned; 988 tree base_decl; 989 }; 990 991 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux) 992 993 #define VECT_MAX_COST 1000 994 995 /* The maximum number of intermediate steps required in multi-step type 996 conversion. */ 997 #define MAX_INTERM_CVT_STEPS 3 998 999 #define MAX_VECTORIZATION_FACTOR INT_MAX 1000 1001 /* Nonzero if TYPE represents a (scalar) boolean type or type 1002 in the middle-end compatible with it (unsigned precision 1 integral 1003 types). Used to determine which types should be vectorized as 1004 VECTOR_BOOLEAN_TYPE_P. */ 1005 1006 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \ 1007 (TREE_CODE (TYPE) == BOOLEAN_TYPE \ 1008 || ((TREE_CODE (TYPE) == INTEGER_TYPE \ 1009 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \ 1010 && TYPE_PRECISION (TYPE) == 1 \ 1011 && TYPE_UNSIGNED (TYPE))) 1012 1013 extern vec<stmt_vec_info> stmt_vec_info_vec; 1014 1015 void init_stmt_vec_info_vec (void); 1016 void free_stmt_vec_info_vec (void); 1017 1018 /* Return a stmt_vec_info corresponding to STMT. */ 1019 1020 static inline stmt_vec_info 1021 vinfo_for_stmt (gimple *stmt) 1022 { 1023 int uid = gimple_uid (stmt); 1024 if (uid <= 0) 1025 return NULL; 1026 1027 return stmt_vec_info_vec[uid - 1]; 1028 } 1029 1030 /* Set vectorizer information INFO for STMT. */ 1031 1032 static inline void 1033 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info) 1034 { 1035 unsigned int uid = gimple_uid (stmt); 1036 if (uid == 0) 1037 { 1038 gcc_checking_assert (info); 1039 uid = stmt_vec_info_vec.length () + 1; 1040 gimple_set_uid (stmt, uid); 1041 stmt_vec_info_vec.safe_push (info); 1042 } 1043 else 1044 { 1045 gcc_checking_assert (info == NULL); 1046 stmt_vec_info_vec[uid - 1] = info; 1047 } 1048 } 1049 1050 /* Return TRUE if a statement represented by STMT_INFO is a part of a 1051 pattern. */ 1052 1053 static inline bool 1054 is_pattern_stmt_p (stmt_vec_info stmt_info) 1055 { 1056 gimple *related_stmt; 1057 stmt_vec_info related_stmt_info; 1058 1059 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info); 1060 if (related_stmt 1061 && (related_stmt_info = vinfo_for_stmt (related_stmt)) 1062 && STMT_VINFO_IN_PATTERN_P (related_stmt_info)) 1063 return true; 1064 1065 return false; 1066 } 1067 1068 /* Return the later statement between STMT1 and STMT2. */ 1069 1070 static inline gimple * 1071 get_later_stmt (gimple *stmt1, gimple *stmt2) 1072 { 1073 unsigned int uid1, uid2; 1074 1075 if (stmt1 == NULL) 1076 return stmt2; 1077 1078 if (stmt2 == NULL) 1079 return stmt1; 1080 1081 stmt_vec_info stmt_info1 = vinfo_for_stmt (stmt1); 1082 stmt_vec_info stmt_info2 = vinfo_for_stmt (stmt2); 1083 uid1 = gimple_uid (is_pattern_stmt_p (stmt_info1) 1084 ? STMT_VINFO_RELATED_STMT (stmt_info1) : stmt1); 1085 uid2 = gimple_uid (is_pattern_stmt_p (stmt_info2) 1086 ? STMT_VINFO_RELATED_STMT (stmt_info2) : stmt2); 1087 1088 if (uid1 == 0 || uid2 == 0) 1089 return NULL; 1090 1091 gcc_assert (uid1 <= stmt_vec_info_vec.length ()); 1092 gcc_assert (uid2 <= stmt_vec_info_vec.length ()); 1093 1094 if (uid1 > uid2) 1095 return stmt1; 1096 else 1097 return stmt2; 1098 } 1099 1100 /* Return true if BB is a loop header. */ 1101 1102 static inline bool 1103 is_loop_header_bb_p (basic_block bb) 1104 { 1105 if (bb == (bb->loop_father)->header) 1106 return true; 1107 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1); 1108 return false; 1109 } 1110 1111 /* Return pow2 (X). */ 1112 1113 static inline int 1114 vect_pow2 (int x) 1115 { 1116 int i, res = 1; 1117 1118 for (i = 0; i < x; i++) 1119 res *= 2; 1120 1121 return res; 1122 } 1123 1124 /* Alias targetm.vectorize.builtin_vectorization_cost. */ 1125 1126 static inline int 1127 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost, 1128 tree vectype, int misalign) 1129 { 1130 return targetm.vectorize.builtin_vectorization_cost (type_of_cost, 1131 vectype, misalign); 1132 } 1133 1134 /* Get cost by calling cost target builtin. */ 1135 1136 static inline 1137 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost) 1138 { 1139 return builtin_vectorization_cost (type_of_cost, NULL, 0); 1140 } 1141 1142 /* Alias targetm.vectorize.init_cost. */ 1143 1144 static inline void * 1145 init_cost (struct loop *loop_info) 1146 { 1147 return targetm.vectorize.init_cost (loop_info); 1148 } 1149 1150 /* Alias targetm.vectorize.add_stmt_cost. */ 1151 1152 static inline unsigned 1153 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind, 1154 stmt_vec_info stmt_info, int misalign, 1155 enum vect_cost_model_location where) 1156 { 1157 return targetm.vectorize.add_stmt_cost (data, count, kind, 1158 stmt_info, misalign, where); 1159 } 1160 1161 /* Alias targetm.vectorize.finish_cost. */ 1162 1163 static inline void 1164 finish_cost (void *data, unsigned *prologue_cost, 1165 unsigned *body_cost, unsigned *epilogue_cost) 1166 { 1167 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost); 1168 } 1169 1170 /* Alias targetm.vectorize.destroy_cost_data. */ 1171 1172 static inline void 1173 destroy_cost_data (void *data) 1174 { 1175 targetm.vectorize.destroy_cost_data (data); 1176 } 1177 1178 /*-----------------------------------------------------------------*/ 1179 /* Info on data references alignment. */ 1180 /*-----------------------------------------------------------------*/ 1181 inline void 1182 set_dr_misalignment (struct data_reference *dr, int val) 1183 { 1184 dataref_aux *data_aux = DR_VECT_AUX (dr); 1185 1186 if (!data_aux) 1187 { 1188 data_aux = XCNEW (dataref_aux); 1189 dr->aux = data_aux; 1190 } 1191 1192 data_aux->misalignment = val; 1193 } 1194 1195 inline int 1196 dr_misalignment (struct data_reference *dr) 1197 { 1198 return DR_VECT_AUX (dr)->misalignment; 1199 } 1200 1201 /* Reflects actual alignment of first access in the vectorized loop, 1202 taking into account peeling/versioning if applied. */ 1203 #define DR_MISALIGNMENT(DR) dr_misalignment (DR) 1204 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL) 1205 #define DR_MISALIGNMENT_UNKNOWN (-1) 1206 1207 /* Only defined once DR_MISALIGNMENT is defined. */ 1208 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment 1209 1210 /* Return true if data access DR is aligned to its target alignment 1211 (which may be less than a full vector). */ 1212 1213 static inline bool 1214 aligned_access_p (struct data_reference *data_ref_info) 1215 { 1216 return (DR_MISALIGNMENT (data_ref_info) == 0); 1217 } 1218 1219 /* Return TRUE if the alignment of the data access is known, and FALSE 1220 otherwise. */ 1221 1222 static inline bool 1223 known_alignment_for_access_p (struct data_reference *data_ref_info) 1224 { 1225 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN); 1226 } 1227 1228 /* Return the minimum alignment in bytes that the vectorized version 1229 of DR is guaranteed to have. */ 1230 1231 static inline unsigned int 1232 vect_known_alignment_in_bytes (struct data_reference *dr) 1233 { 1234 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN) 1235 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr))); 1236 if (DR_MISALIGNMENT (dr) == 0) 1237 return DR_TARGET_ALIGNMENT (dr); 1238 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr); 1239 } 1240 1241 /* Return the behavior of DR with respect to the vectorization context 1242 (which for outer loop vectorization might not be the behavior recorded 1243 in DR itself). */ 1244 1245 static inline innermost_loop_behavior * 1246 vect_dr_behavior (data_reference *dr) 1247 { 1248 gimple *stmt = DR_STMT (dr); 1249 stmt_vec_info stmt_info = vinfo_for_stmt (stmt); 1250 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); 1251 if (loop_vinfo == NULL 1252 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt)) 1253 return &DR_INNERMOST (dr); 1254 else 1255 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info); 1256 } 1257 1258 /* Return true if the vect cost model is unlimited. */ 1259 static inline bool 1260 unlimited_cost_model (loop_p loop) 1261 { 1262 if (loop != NULL && loop->force_vectorize 1263 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT) 1264 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED; 1265 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED); 1266 } 1267 1268 /* Return true if the loop described by LOOP_VINFO is fully-masked and 1269 if the first iteration should use a partial mask in order to achieve 1270 alignment. */ 1271 1272 static inline bool 1273 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo) 1274 { 1275 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo) 1276 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)); 1277 } 1278 1279 /* Return the number of vectors of type VECTYPE that are needed to get 1280 NUNITS elements. NUNITS should be based on the vectorization factor, 1281 so it is always a known multiple of the number of elements in VECTYPE. */ 1282 1283 static inline unsigned int 1284 vect_get_num_vectors (poly_uint64 nunits, tree vectype) 1285 { 1286 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant (); 1287 } 1288 1289 /* Return the number of copies needed for loop vectorization when 1290 a statement operates on vectors of type VECTYPE. This is the 1291 vectorization factor divided by the number of elements in 1292 VECTYPE and is always known at compile time. */ 1293 1294 static inline unsigned int 1295 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype) 1296 { 1297 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype); 1298 } 1299 1300 /* Update maximum unit count *MAX_NUNITS so that it accounts for 1301 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1 1302 if we haven't yet recorded any vector types. */ 1303 1304 static inline void 1305 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype) 1306 { 1307 /* All unit counts have the form current_vector_size * X for some 1308 rational X, so two unit sizes must have a common multiple. 1309 Everything is a multiple of the initial value of 1. */ 1310 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype); 1311 *max_nunits = force_common_multiple (*max_nunits, nunits); 1312 } 1313 1314 /* Return the vectorization factor that should be used for costing 1315 purposes while vectorizing the loop described by LOOP_VINFO. 1316 Pick a reasonable estimate if the vectorization factor isn't 1317 known at compile time. */ 1318 1319 static inline unsigned int 1320 vect_vf_for_cost (loop_vec_info loop_vinfo) 1321 { 1322 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo)); 1323 } 1324 1325 /* Estimate the number of elements in VEC_TYPE for costing purposes. 1326 Pick a reasonable estimate if the exact number isn't known at 1327 compile time. */ 1328 1329 static inline unsigned int 1330 vect_nunits_for_cost (tree vec_type) 1331 { 1332 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type)); 1333 } 1334 1335 /* Return the maximum possible vectorization factor for LOOP_VINFO. */ 1336 1337 static inline unsigned HOST_WIDE_INT 1338 vect_max_vf (loop_vec_info loop_vinfo) 1339 { 1340 unsigned HOST_WIDE_INT vf; 1341 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf)) 1342 return vf; 1343 return MAX_VECTORIZATION_FACTOR; 1344 } 1345 1346 /* Return the size of the value accessed by unvectorized data reference DR. 1347 This is only valid once STMT_VINFO_VECTYPE has been calculated for the 1348 associated gimple statement, since that guarantees that DR accesses 1349 either a scalar or a scalar equivalent. ("Scalar equivalent" here 1350 includes things like V1SI, which can be vectorized in the same way 1351 as a plain SI.) */ 1352 1353 inline unsigned int 1354 vect_get_scalar_dr_size (struct data_reference *dr) 1355 { 1356 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)))); 1357 } 1358 1359 /* Source location */ 1360 extern source_location vect_location; 1361 1362 /*-----------------------------------------------------------------*/ 1363 /* Function prototypes. */ 1364 /*-----------------------------------------------------------------*/ 1365 1366 /* Simple loop peeling and versioning utilities for vectorizer's purposes - 1367 in tree-vect-loop-manip.c. */ 1368 extern void vect_set_loop_condition (struct loop *, loop_vec_info, 1369 tree, tree, tree, bool); 1370 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge); 1371 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *, 1372 struct loop *, edge); 1373 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool, 1374 poly_uint64); 1375 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree, 1376 tree *, tree *, tree *, int, bool, bool); 1377 extern void vect_prepare_for_masked_peels (loop_vec_info); 1378 extern source_location find_loop_location (struct loop *); 1379 extern bool vect_can_advance_ivs_p (loop_vec_info); 1380 1381 /* In tree-vect-stmts.c. */ 1382 extern poly_uint64 current_vector_size; 1383 extern tree get_vectype_for_scalar_type (tree); 1384 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64); 1385 extern tree get_mask_type_for_scalar_type (tree); 1386 extern tree get_same_sized_vectype (tree, tree); 1387 extern bool vect_get_loop_mask_type (loop_vec_info); 1388 extern bool vect_is_simple_use (tree, vec_info *, gimple **, 1389 enum vect_def_type *); 1390 extern bool vect_is_simple_use (tree, vec_info *, gimple **, 1391 enum vect_def_type *, tree *); 1392 extern bool supportable_widening_operation (enum tree_code, gimple *, tree, 1393 tree, enum tree_code *, 1394 enum tree_code *, int *, 1395 vec<tree> *); 1396 extern bool supportable_narrowing_operation (enum tree_code, tree, tree, 1397 enum tree_code *, 1398 int *, vec<tree> *); 1399 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *); 1400 extern void free_stmt_vec_info (gimple *stmt); 1401 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *, 1402 int, stmt_vector_for_cost *, 1403 stmt_vector_for_cost *); 1404 extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type, 1405 vec_load_store_type, slp_tree, 1406 stmt_vector_for_cost *, 1407 stmt_vector_for_cost *); 1408 extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type, 1409 slp_tree, stmt_vector_for_cost *, 1410 stmt_vector_for_cost *); 1411 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int, 1412 enum vect_cost_for_stmt, stmt_vec_info, 1413 int, enum vect_cost_model_location); 1414 extern void vect_finish_replace_stmt (gimple *, gimple *); 1415 extern void vect_finish_stmt_generation (gimple *, gimple *, 1416 gimple_stmt_iterator *); 1417 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info); 1418 extern tree vect_get_store_rhs (gimple *); 1419 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type); 1420 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL); 1421 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *, 1422 vec<tree> *, slp_tree); 1423 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *, 1424 vec<tree> *, vec<tree> *); 1425 extern tree vect_init_vector (gimple *, tree, tree, 1426 gimple_stmt_iterator *); 1427 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree); 1428 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *, 1429 bool *, slp_tree, slp_instance); 1430 extern void vect_remove_stores (gimple *); 1431 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance); 1432 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *, 1433 gimple **, tree, int, slp_tree); 1434 extern void vect_get_load_cost (struct data_reference *, int, bool, 1435 unsigned int *, unsigned int *, 1436 stmt_vector_for_cost *, 1437 stmt_vector_for_cost *, bool); 1438 extern void vect_get_store_cost (struct data_reference *, int, 1439 unsigned int *, stmt_vector_for_cost *); 1440 extern bool vect_supportable_shift (enum tree_code, tree); 1441 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &); 1442 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &); 1443 extern void optimize_mask_stores (struct loop*); 1444 extern gcall *vect_gen_while (tree, tree, tree); 1445 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree); 1446 1447 /* In tree-vect-data-refs.c. */ 1448 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int); 1449 extern enum dr_alignment_support vect_supportable_dr_alignment 1450 (struct data_reference *, bool); 1451 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *, 1452 HOST_WIDE_INT *); 1453 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *); 1454 extern bool vect_slp_analyze_instance_dependence (slp_instance); 1455 extern bool vect_enhance_data_refs_alignment (loop_vec_info); 1456 extern bool vect_analyze_data_refs_alignment (loop_vec_info); 1457 extern bool vect_verify_datarefs_alignment (loop_vec_info); 1458 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance); 1459 extern bool vect_analyze_data_ref_accesses (vec_info *); 1460 extern bool vect_prune_runtime_alias_test_list (loop_vec_info); 1461 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int, 1462 signop, int, internal_fn *, tree *); 1463 extern bool vect_check_gather_scatter (gimple *, loop_vec_info, 1464 gather_scatter_info *); 1465 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *); 1466 extern void vect_record_base_alignments (vec_info *); 1467 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree, 1468 tree *, gimple_stmt_iterator *, 1469 gimple **, bool, bool *, 1470 tree = NULL_TREE, tree = NULL_TREE); 1471 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *, 1472 tree); 1473 extern void vect_copy_ref_info (tree, tree); 1474 extern tree vect_create_destination_var (tree, tree); 1475 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT); 1476 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool); 1477 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT); 1478 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool); 1479 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *, 1480 gimple_stmt_iterator *, vec<tree> *); 1481 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *, 1482 enum dr_alignment_support, tree, 1483 struct loop **); 1484 extern void vect_transform_grouped_load (gimple *, vec<tree> , int, 1485 gimple_stmt_iterator *); 1486 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> ); 1487 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *); 1488 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind, 1489 const char * = NULL); 1490 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *, 1491 tree, tree = NULL_TREE); 1492 1493 /* In tree-vect-loop.c. */ 1494 /* FORNOW: Used in tree-parloops.c. */ 1495 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *, 1496 bool *, bool); 1497 /* Used in gimple-loop-interchange.c. */ 1498 extern bool check_reduction_path (location_t, loop_p, gphi *, tree, 1499 enum tree_code); 1500 /* Drive for loop analysis stage. */ 1501 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info); 1502 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL); 1503 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *, 1504 tree *, bool); 1505 extern tree vect_halve_mask_nunits (tree); 1506 extern tree vect_double_mask_nunits (tree); 1507 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *, 1508 unsigned int, tree); 1509 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *, 1510 unsigned int, tree, unsigned int); 1511 1512 /* Drive for loop transformation stage. */ 1513 extern struct loop *vect_transform_loop (loop_vec_info); 1514 extern loop_vec_info vect_analyze_loop_form (struct loop *); 1515 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *, 1516 slp_tree, int, gimple **); 1517 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *, 1518 gimple **, slp_tree, slp_instance); 1519 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *, 1520 gimple **, slp_tree); 1521 extern tree get_initial_def_for_reduction (gimple *, tree, tree *); 1522 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code); 1523 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *, 1524 stmt_vector_for_cost *, 1525 stmt_vector_for_cost *, 1526 stmt_vector_for_cost *); 1527 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree); 1528 1529 /* In tree-vect-slp.c. */ 1530 extern void vect_free_slp_instance (slp_instance); 1531 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> , 1532 gimple_stmt_iterator *, poly_uint64, 1533 slp_instance, bool, unsigned *); 1534 extern bool vect_slp_analyze_operations (vec_info *); 1535 extern bool vect_schedule_slp (vec_info *); 1536 extern bool vect_analyze_slp (vec_info *, unsigned); 1537 extern bool vect_make_slp_decision (loop_vec_info); 1538 extern void vect_detect_hybrid_slp (loop_vec_info); 1539 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *); 1540 extern bool vect_slp_bb (basic_block); 1541 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree); 1542 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info); 1543 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode, 1544 unsigned int * = NULL, 1545 tree * = NULL, tree * = NULL); 1546 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>, 1547 unsigned int, vec<tree> &); 1548 extern int vect_get_place_in_interleaving_chain (gimple *, gimple *); 1549 1550 /* In tree-vect-patterns.c. */ 1551 /* Pattern recognition functions. 1552 Additional pattern recognition functions can (and will) be added 1553 in the future. */ 1554 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *); 1555 #define NUM_PATTERNS 15 1556 void vect_pattern_recog (vec_info *); 1557 1558 /* In tree-vectorizer.c. */ 1559 unsigned vectorize_loops (void); 1560 bool vect_stmt_in_region_p (vec_info *, gimple *); 1561 void vect_free_loop_info_assumptions (struct loop *); 1562 1563 #endif /* GCC_TREE_VECTORIZER_H */ 1564