1 /* More subroutines needed by GCC output code on some machines. */ 2 /* Compile this one with gcc. */ 3 /* Copyright (C) 1989-2018 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 Under Section 7 of GPL version 3, you are granted additional 18 permissions described in the GCC Runtime Library Exception, version 19 3.1, as published by the Free Software Foundation. 20 21 You should have received a copy of the GNU General Public License and 22 a copy of the GCC Runtime Library Exception along with this program; 23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 24 <http://www.gnu.org/licenses/>. */ 25 26 #include "tconfig.h" 27 #include "tsystem.h" 28 #include "coretypes.h" 29 #include "tm.h" 30 #include "libgcc_tm.h" 31 32 #ifdef HAVE_GAS_HIDDEN 33 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden"))) 34 #else 35 #define ATTRIBUTE_HIDDEN 36 #endif 37 38 /* Work out the largest "word" size that we can deal with on this target. */ 39 #if MIN_UNITS_PER_WORD > 4 40 # define LIBGCC2_MAX_UNITS_PER_WORD 8 41 #elif (MIN_UNITS_PER_WORD > 2 \ 42 || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4)) 43 # define LIBGCC2_MAX_UNITS_PER_WORD 4 44 #else 45 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD 46 #endif 47 48 /* Work out what word size we are using for this compilation. 49 The value can be set on the command line. */ 50 #ifndef LIBGCC2_UNITS_PER_WORD 51 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD 52 #endif 53 54 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD 55 56 #include "libgcc2.h" 57 58 #ifdef DECLARE_LIBRARY_RENAMES 59 DECLARE_LIBRARY_RENAMES 60 #endif 61 62 #if defined (L_negdi2) 63 DWtype 64 __negdi2 (DWtype u) 65 { 66 const DWunion uu = {.ll = u}; 67 const DWunion w = { {.low = -uu.s.low, 68 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } }; 69 70 return w.ll; 71 } 72 #endif 73 74 #ifdef L_addvsi3 75 Wtype 76 __addvSI3 (Wtype a, Wtype b) 77 { 78 const Wtype w = (UWtype) a + (UWtype) b; 79 80 if (b >= 0 ? w < a : w > a) 81 abort (); 82 83 return w; 84 } 85 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC 86 SItype 87 __addvsi3 (SItype a, SItype b) 88 { 89 const SItype w = (USItype) a + (USItype) b; 90 91 if (b >= 0 ? w < a : w > a) 92 abort (); 93 94 return w; 95 } 96 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ 97 #endif 98 99 #ifdef L_addvdi3 100 DWtype 101 __addvDI3 (DWtype a, DWtype b) 102 { 103 const DWtype w = (UDWtype) a + (UDWtype) b; 104 105 if (b >= 0 ? w < a : w > a) 106 abort (); 107 108 return w; 109 } 110 #endif 111 112 #ifdef L_subvsi3 113 Wtype 114 __subvSI3 (Wtype a, Wtype b) 115 { 116 const Wtype w = (UWtype) a - (UWtype) b; 117 118 if (b >= 0 ? w > a : w < a) 119 abort (); 120 121 return w; 122 } 123 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC 124 SItype 125 __subvsi3 (SItype a, SItype b) 126 { 127 const SItype w = (USItype) a - (USItype) b; 128 129 if (b >= 0 ? w > a : w < a) 130 abort (); 131 132 return w; 133 } 134 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ 135 #endif 136 137 #ifdef L_subvdi3 138 DWtype 139 __subvDI3 (DWtype a, DWtype b) 140 { 141 const DWtype w = (UDWtype) a - (UDWtype) b; 142 143 if (b >= 0 ? w > a : w < a) 144 abort (); 145 146 return w; 147 } 148 #endif 149 150 #ifdef L_mulvsi3 151 Wtype 152 __mulvSI3 (Wtype a, Wtype b) 153 { 154 const DWtype w = (DWtype) a * (DWtype) b; 155 156 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1)) 157 abort (); 158 159 return w; 160 } 161 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC 162 #undef WORD_SIZE 163 #define WORD_SIZE (sizeof (SItype) * __CHAR_BIT__) 164 SItype 165 __mulvsi3 (SItype a, SItype b) 166 { 167 const DItype w = (DItype) a * (DItype) b; 168 169 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1)) 170 abort (); 171 172 return w; 173 } 174 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ 175 #endif 176 177 #ifdef L_negvsi2 178 Wtype 179 __negvSI2 (Wtype a) 180 { 181 const Wtype w = -(UWtype) a; 182 183 if (a >= 0 ? w > 0 : w < 0) 184 abort (); 185 186 return w; 187 } 188 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC 189 SItype 190 __negvsi2 (SItype a) 191 { 192 const SItype w = -(USItype) a; 193 194 if (a >= 0 ? w > 0 : w < 0) 195 abort (); 196 197 return w; 198 } 199 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ 200 #endif 201 202 #ifdef L_negvdi2 203 DWtype 204 __negvDI2 (DWtype a) 205 { 206 const DWtype w = -(UDWtype) a; 207 208 if (a >= 0 ? w > 0 : w < 0) 209 abort (); 210 211 return w; 212 } 213 #endif 214 215 #ifdef L_absvsi2 216 Wtype 217 __absvSI2 (Wtype a) 218 { 219 Wtype w = a; 220 221 if (a < 0) 222 #ifdef L_negvsi2 223 w = __negvSI2 (a); 224 #else 225 w = -(UWtype) a; 226 227 if (w < 0) 228 abort (); 229 #endif 230 231 return w; 232 } 233 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC 234 SItype 235 __absvsi2 (SItype a) 236 { 237 SItype w = a; 238 239 if (a < 0) 240 #ifdef L_negvsi2 241 w = __negvsi2 (a); 242 #else 243 w = -(USItype) a; 244 245 if (w < 0) 246 abort (); 247 #endif 248 249 return w; 250 } 251 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */ 252 #endif 253 254 #ifdef L_absvdi2 255 DWtype 256 __absvDI2 (DWtype a) 257 { 258 DWtype w = a; 259 260 if (a < 0) 261 #ifdef L_negvdi2 262 w = __negvDI2 (a); 263 #else 264 w = -(UDWtype) a; 265 266 if (w < 0) 267 abort (); 268 #endif 269 270 return w; 271 } 272 #endif 273 274 #ifdef L_mulvdi3 275 DWtype 276 __mulvDI3 (DWtype u, DWtype v) 277 { 278 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications, 279 but the checked multiplication needs only two. */ 280 const DWunion uu = {.ll = u}; 281 const DWunion vv = {.ll = v}; 282 283 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1)) 284 { 285 /* u fits in a single Wtype. */ 286 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1)) 287 { 288 /* v fits in a single Wtype as well. */ 289 /* A single multiplication. No overflow risk. */ 290 return (DWtype) uu.s.low * (DWtype) vv.s.low; 291 } 292 else 293 { 294 /* Two multiplications. */ 295 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low 296 * (UDWtype) (UWtype) vv.s.low}; 297 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low 298 * (UDWtype) (UWtype) vv.s.high}; 299 300 if (vv.s.high < 0) 301 w1.s.high -= uu.s.low; 302 if (uu.s.low < 0) 303 w1.ll -= vv.ll; 304 w1.ll += (UWtype) w0.s.high; 305 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1)) 306 { 307 w0.s.high = w1.s.low; 308 return w0.ll; 309 } 310 } 311 } 312 else 313 { 314 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1)) 315 { 316 /* v fits into a single Wtype. */ 317 /* Two multiplications. */ 318 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low 319 * (UDWtype) (UWtype) vv.s.low}; 320 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high 321 * (UDWtype) (UWtype) vv.s.low}; 322 323 if (uu.s.high < 0) 324 w1.s.high -= vv.s.low; 325 if (vv.s.low < 0) 326 w1.ll -= uu.ll; 327 w1.ll += (UWtype) w0.s.high; 328 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1)) 329 { 330 w0.s.high = w1.s.low; 331 return w0.ll; 332 } 333 } 334 else 335 { 336 /* A few sign checks and a single multiplication. */ 337 if (uu.s.high >= 0) 338 { 339 if (vv.s.high >= 0) 340 { 341 if (uu.s.high == 0 && vv.s.high == 0) 342 { 343 const DWtype w = (UDWtype) (UWtype) uu.s.low 344 * (UDWtype) (UWtype) vv.s.low; 345 if (__builtin_expect (w >= 0, 1)) 346 return w; 347 } 348 } 349 else 350 { 351 if (uu.s.high == 0 && vv.s.high == (Wtype) -1) 352 { 353 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low 354 * (UDWtype) (UWtype) vv.s.low}; 355 356 ww.s.high -= uu.s.low; 357 if (__builtin_expect (ww.s.high < 0, 1)) 358 return ww.ll; 359 } 360 } 361 } 362 else 363 { 364 if (vv.s.high >= 0) 365 { 366 if (uu.s.high == (Wtype) -1 && vv.s.high == 0) 367 { 368 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low 369 * (UDWtype) (UWtype) vv.s.low}; 370 371 ww.s.high -= vv.s.low; 372 if (__builtin_expect (ww.s.high < 0, 1)) 373 return ww.ll; 374 } 375 } 376 else 377 { 378 if ((uu.s.high & vv.s.high) == (Wtype) -1 379 && (uu.s.low | vv.s.low) != 0) 380 { 381 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low 382 * (UDWtype) (UWtype) vv.s.low}; 383 384 ww.s.high -= uu.s.low; 385 ww.s.high -= vv.s.low; 386 if (__builtin_expect (ww.s.high >= 0, 1)) 387 return ww.ll; 388 } 389 } 390 } 391 } 392 } 393 394 /* Overflow. */ 395 abort (); 396 } 397 #endif 398 399 400 /* Unless shift functions are defined with full ANSI prototypes, 401 parameter b will be promoted to int if shift_count_type is smaller than an int. */ 402 #ifdef L_lshrdi3 403 DWtype 404 __lshrdi3 (DWtype u, shift_count_type b) 405 { 406 if (b == 0) 407 return u; 408 409 const DWunion uu = {.ll = u}; 410 const shift_count_type bm = W_TYPE_SIZE - b; 411 DWunion w; 412 413 if (bm <= 0) 414 { 415 w.s.high = 0; 416 w.s.low = (UWtype) uu.s.high >> -bm; 417 } 418 else 419 { 420 const UWtype carries = (UWtype) uu.s.high << bm; 421 422 w.s.high = (UWtype) uu.s.high >> b; 423 w.s.low = ((UWtype) uu.s.low >> b) | carries; 424 } 425 426 return w.ll; 427 } 428 #endif 429 430 #ifdef L_ashldi3 431 DWtype 432 __ashldi3 (DWtype u, shift_count_type b) 433 { 434 if (b == 0) 435 return u; 436 437 const DWunion uu = {.ll = u}; 438 const shift_count_type bm = W_TYPE_SIZE - b; 439 DWunion w; 440 441 if (bm <= 0) 442 { 443 w.s.low = 0; 444 w.s.high = (UWtype) uu.s.low << -bm; 445 } 446 else 447 { 448 const UWtype carries = (UWtype) uu.s.low >> bm; 449 450 w.s.low = (UWtype) uu.s.low << b; 451 w.s.high = ((UWtype) uu.s.high << b) | carries; 452 } 453 454 return w.ll; 455 } 456 #endif 457 458 #ifdef L_ashrdi3 459 DWtype 460 __ashrdi3 (DWtype u, shift_count_type b) 461 { 462 if (b == 0) 463 return u; 464 465 const DWunion uu = {.ll = u}; 466 const shift_count_type bm = W_TYPE_SIZE - b; 467 DWunion w; 468 469 if (bm <= 0) 470 { 471 /* w.s.high = 1..1 or 0..0 */ 472 w.s.high = uu.s.high >> (W_TYPE_SIZE - 1); 473 w.s.low = uu.s.high >> -bm; 474 } 475 else 476 { 477 const UWtype carries = (UWtype) uu.s.high << bm; 478 479 w.s.high = uu.s.high >> b; 480 w.s.low = ((UWtype) uu.s.low >> b) | carries; 481 } 482 483 return w.ll; 484 } 485 #endif 486 487 #ifdef L_bswapsi2 488 SItype 489 __bswapsi2 (SItype u) 490 { 491 return ((((u) & 0xff000000) >> 24) 492 | (((u) & 0x00ff0000) >> 8) 493 | (((u) & 0x0000ff00) << 8) 494 | (((u) & 0x000000ff) << 24)); 495 } 496 #endif 497 #ifdef L_bswapdi2 498 DItype 499 __bswapdi2 (DItype u) 500 { 501 return ((((u) & 0xff00000000000000ull) >> 56) 502 | (((u) & 0x00ff000000000000ull) >> 40) 503 | (((u) & 0x0000ff0000000000ull) >> 24) 504 | (((u) & 0x000000ff00000000ull) >> 8) 505 | (((u) & 0x00000000ff000000ull) << 8) 506 | (((u) & 0x0000000000ff0000ull) << 24) 507 | (((u) & 0x000000000000ff00ull) << 40) 508 | (((u) & 0x00000000000000ffull) << 56)); 509 } 510 #endif 511 #ifdef L_ffssi2 512 #undef int 513 int 514 __ffsSI2 (UWtype u) 515 { 516 UWtype count; 517 518 if (u == 0) 519 return 0; 520 521 count_trailing_zeros (count, u); 522 return count + 1; 523 } 524 #endif 525 526 #ifdef L_ffsdi2 527 #undef int 528 int 529 __ffsDI2 (DWtype u) 530 { 531 const DWunion uu = {.ll = u}; 532 UWtype word, count, add; 533 534 if (uu.s.low != 0) 535 word = uu.s.low, add = 0; 536 else if (uu.s.high != 0) 537 word = uu.s.high, add = W_TYPE_SIZE; 538 else 539 return 0; 540 541 count_trailing_zeros (count, word); 542 return count + add + 1; 543 } 544 #endif 545 546 #ifdef L_muldi3 547 DWtype 548 __muldi3 (DWtype u, DWtype v) 549 { 550 const DWunion uu = {.ll = u}; 551 const DWunion vv = {.ll = v}; 552 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)}; 553 554 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high 555 + (UWtype) uu.s.high * (UWtype) vv.s.low); 556 557 return w.ll; 558 } 559 #endif 560 561 #if (defined (L_udivdi3) || defined (L_divdi3) || \ 562 defined (L_umoddi3) || defined (L_moddi3)) 563 #if defined (sdiv_qrnnd) 564 #define L_udiv_w_sdiv 565 #endif 566 #endif 567 568 #ifdef L_udiv_w_sdiv 569 #if defined (sdiv_qrnnd) 570 #if (defined (L_udivdi3) || defined (L_divdi3) || \ 571 defined (L_umoddi3) || defined (L_moddi3)) 572 static inline __attribute__ ((__always_inline__)) 573 #endif 574 UWtype 575 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d) 576 { 577 UWtype q, r; 578 UWtype c0, c1, b1; 579 580 if ((Wtype) d >= 0) 581 { 582 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1))) 583 { 584 /* Dividend, divisor, and quotient are nonnegative. */ 585 sdiv_qrnnd (q, r, a1, a0, d); 586 } 587 else 588 { 589 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */ 590 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1)); 591 /* Divide (c1*2^32 + c0) by d. */ 592 sdiv_qrnnd (q, r, c1, c0, d); 593 /* Add 2^31 to quotient. */ 594 q += (UWtype) 1 << (W_TYPE_SIZE - 1); 595 } 596 } 597 else 598 { 599 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ 600 c1 = a1 >> 1; /* A/2 */ 601 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1); 602 603 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ 604 { 605 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ 606 607 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ 608 if ((d & 1) != 0) 609 { 610 if (r >= q) 611 r = r - q; 612 else if (q - r <= d) 613 { 614 r = r - q + d; 615 q--; 616 } 617 else 618 { 619 r = r - q + 2*d; 620 q -= 2; 621 } 622 } 623 } 624 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ 625 { 626 c1 = (b1 - 1) - c1; 627 c0 = ~c0; /* logical NOT */ 628 629 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ 630 631 q = ~q; /* (A/2)/b1 */ 632 r = (b1 - 1) - r; 633 634 r = 2*r + (a0 & 1); /* A/(2*b1) */ 635 636 if ((d & 1) != 0) 637 { 638 if (r >= q) 639 r = r - q; 640 else if (q - r <= d) 641 { 642 r = r - q + d; 643 q--; 644 } 645 else 646 { 647 r = r - q + 2*d; 648 q -= 2; 649 } 650 } 651 } 652 else /* Implies c1 = b1 */ 653 { /* Hence a1 = d - 1 = 2*b1 - 1 */ 654 if (a0 >= -d) 655 { 656 q = -1; 657 r = a0 + d; 658 } 659 else 660 { 661 q = -2; 662 r = a0 + 2*d; 663 } 664 } 665 } 666 667 *rp = r; 668 return q; 669 } 670 #else 671 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */ 672 UWtype 673 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)), 674 UWtype a1 __attribute__ ((__unused__)), 675 UWtype a0 __attribute__ ((__unused__)), 676 UWtype d __attribute__ ((__unused__))) 677 { 678 return 0; 679 } 680 #endif 681 #endif 682 683 #if (defined (L_udivdi3) || defined (L_divdi3) || \ 684 defined (L_umoddi3) || defined (L_moddi3) || \ 685 defined (L_divmoddi4)) 686 #define L_udivmoddi4 687 #endif 688 689 #ifdef L_clz 690 const UQItype __clz_tab[256] = 691 { 692 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 693 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, 694 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 695 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 696 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 697 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 698 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 699 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 700 }; 701 #endif 702 703 #ifdef L_clzsi2 704 #undef int 705 int 706 __clzSI2 (UWtype x) 707 { 708 Wtype ret; 709 710 count_leading_zeros (ret, x); 711 712 return ret; 713 } 714 #endif 715 716 #ifdef L_clzdi2 717 #undef int 718 int 719 __clzDI2 (UDWtype x) 720 { 721 const DWunion uu = {.ll = x}; 722 UWtype word; 723 Wtype ret, add; 724 725 if (uu.s.high) 726 word = uu.s.high, add = 0; 727 else 728 word = uu.s.low, add = W_TYPE_SIZE; 729 730 count_leading_zeros (ret, word); 731 return ret + add; 732 } 733 #endif 734 735 #ifdef L_ctzsi2 736 #undef int 737 int 738 __ctzSI2 (UWtype x) 739 { 740 Wtype ret; 741 742 count_trailing_zeros (ret, x); 743 744 return ret; 745 } 746 #endif 747 748 #ifdef L_ctzdi2 749 #undef int 750 int 751 __ctzDI2 (UDWtype x) 752 { 753 const DWunion uu = {.ll = x}; 754 UWtype word; 755 Wtype ret, add; 756 757 if (uu.s.low) 758 word = uu.s.low, add = 0; 759 else 760 word = uu.s.high, add = W_TYPE_SIZE; 761 762 count_trailing_zeros (ret, word); 763 return ret + add; 764 } 765 #endif 766 767 #ifdef L_clrsbsi2 768 #undef int 769 int 770 __clrsbSI2 (Wtype x) 771 { 772 Wtype ret; 773 774 if (x < 0) 775 x = ~x; 776 if (x == 0) 777 return W_TYPE_SIZE - 1; 778 count_leading_zeros (ret, x); 779 return ret - 1; 780 } 781 #endif 782 783 #ifdef L_clrsbdi2 784 #undef int 785 int 786 __clrsbDI2 (DWtype x) 787 { 788 const DWunion uu = {.ll = x}; 789 UWtype word; 790 Wtype ret, add; 791 792 if (uu.s.high == 0) 793 word = uu.s.low, add = W_TYPE_SIZE; 794 else if (uu.s.high == -1) 795 word = ~uu.s.low, add = W_TYPE_SIZE; 796 else if (uu.s.high >= 0) 797 word = uu.s.high, add = 0; 798 else 799 word = ~uu.s.high, add = 0; 800 801 if (word == 0) 802 ret = W_TYPE_SIZE; 803 else 804 count_leading_zeros (ret, word); 805 806 return ret + add - 1; 807 } 808 #endif 809 810 #ifdef L_popcount_tab 811 const UQItype __popcount_tab[256] = 812 { 813 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5, 814 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 815 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 816 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 817 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6, 818 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 819 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7, 820 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8 821 }; 822 #endif 823 824 #if defined(L_popcountsi2) || defined(L_popcountdi2) 825 #define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x) 826 #define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x) 827 #define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x) 828 #if W_TYPE_SIZE == __CHAR_BIT__ 829 #define POPCOUNTCST(x) x 830 #elif W_TYPE_SIZE == 2 * __CHAR_BIT__ 831 #define POPCOUNTCST(x) POPCOUNTCST2 (x) 832 #elif W_TYPE_SIZE == 4 * __CHAR_BIT__ 833 #define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x)) 834 #elif W_TYPE_SIZE == 8 * __CHAR_BIT__ 835 #define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x))) 836 #endif 837 #endif 838 839 #ifdef L_popcountsi2 840 #undef int 841 int 842 __popcountSI2 (UWtype x) 843 { 844 /* Force table lookup on targets like AVR and RL78 which only 845 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually 846 have 1, and other small word targets. */ 847 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8 848 x = x - ((x >> 1) & POPCOUNTCST (0x55)); 849 x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33)); 850 x = (x + (x >> 4)) & POPCOUNTCST (0x0F); 851 return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__); 852 #else 853 int i, ret = 0; 854 855 for (i = 0; i < W_TYPE_SIZE; i += 8) 856 ret += __popcount_tab[(x >> i) & 0xff]; 857 858 return ret; 859 #endif 860 } 861 #endif 862 863 #ifdef L_popcountdi2 864 #undef int 865 int 866 __popcountDI2 (UDWtype x) 867 { 868 /* Force table lookup on targets like AVR and RL78 which only 869 pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually 870 have 1, and other small word targets. */ 871 #if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8 872 const DWunion uu = {.ll = x}; 873 UWtype x1 = uu.s.low, x2 = uu.s.high; 874 x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55)); 875 x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55)); 876 x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33)); 877 x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33)); 878 x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F); 879 x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F); 880 x1 += x2; 881 return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__); 882 #else 883 int i, ret = 0; 884 885 for (i = 0; i < 2*W_TYPE_SIZE; i += 8) 886 ret += __popcount_tab[(x >> i) & 0xff]; 887 888 return ret; 889 #endif 890 } 891 #endif 892 893 #ifdef L_paritysi2 894 #undef int 895 int 896 __paritySI2 (UWtype x) 897 { 898 #if W_TYPE_SIZE > 64 899 # error "fill out the table" 900 #endif 901 #if W_TYPE_SIZE > 32 902 x ^= x >> 32; 903 #endif 904 #if W_TYPE_SIZE > 16 905 x ^= x >> 16; 906 #endif 907 x ^= x >> 8; 908 x ^= x >> 4; 909 x &= 0xf; 910 return (0x6996 >> x) & 1; 911 } 912 #endif 913 914 #ifdef L_paritydi2 915 #undef int 916 int 917 __parityDI2 (UDWtype x) 918 { 919 const DWunion uu = {.ll = x}; 920 UWtype nx = uu.s.low ^ uu.s.high; 921 922 #if W_TYPE_SIZE > 64 923 # error "fill out the table" 924 #endif 925 #if W_TYPE_SIZE > 32 926 nx ^= nx >> 32; 927 #endif 928 #if W_TYPE_SIZE > 16 929 nx ^= nx >> 16; 930 #endif 931 nx ^= nx >> 8; 932 nx ^= nx >> 4; 933 nx &= 0xf; 934 return (0x6996 >> nx) & 1; 935 } 936 #endif 937 938 #ifdef L_udivmoddi4 939 #ifdef TARGET_HAS_NO_HW_DIVIDE 940 941 #if (defined (L_udivdi3) || defined (L_divdi3) || \ 942 defined (L_umoddi3) || defined (L_moddi3) || \ 943 defined (L_divmoddi4)) 944 static inline __attribute__ ((__always_inline__)) 945 #endif 946 UDWtype 947 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) 948 { 949 UDWtype q = 0, r = n, y = d; 950 UWtype lz1, lz2, i, k; 951 952 /* Implements align divisor shift dividend method. This algorithm 953 aligns the divisor under the dividend and then perform number of 954 test-subtract iterations which shift the dividend left. Number of 955 iterations is k + 1 where k is the number of bit positions the 956 divisor must be shifted left to align it under the dividend. 957 quotient bits can be saved in the rightmost positions of the dividend 958 as it shifts left on each test-subtract iteration. */ 959 960 if (y <= r) 961 { 962 lz1 = __builtin_clzll (d); 963 lz2 = __builtin_clzll (n); 964 965 k = lz1 - lz2; 966 y = (y << k); 967 968 /* Dividend can exceed 2 ^ (width − 1) − 1 but still be less than the 969 aligned divisor. Normal iteration can drops the high order bit 970 of the dividend. Therefore, first test-subtract iteration is a 971 special case, saving its quotient bit in a separate location and 972 not shifting the dividend. */ 973 if (r >= y) 974 { 975 r = r - y; 976 q = (1ULL << k); 977 } 978 979 if (k > 0) 980 { 981 y = y >> 1; 982 983 /* k additional iterations where k regular test subtract shift 984 dividend iterations are done. */ 985 i = k; 986 do 987 { 988 if (r >= y) 989 r = ((r - y) << 1) + 1; 990 else 991 r = (r << 1); 992 i = i - 1; 993 } while (i != 0); 994 995 /* First quotient bit is combined with the quotient bits resulting 996 from the k regular iterations. */ 997 q = q + r; 998 r = r >> k; 999 q = q - (r << k); 1000 } 1001 } 1002 1003 if (rp) 1004 *rp = r; 1005 return q; 1006 } 1007 #else 1008 1009 #if (defined (L_udivdi3) || defined (L_divdi3) || \ 1010 defined (L_umoddi3) || defined (L_moddi3) || \ 1011 defined (L_divmoddi4)) 1012 static inline __attribute__ ((__always_inline__)) 1013 #endif 1014 UDWtype 1015 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp) 1016 { 1017 const DWunion nn = {.ll = n}; 1018 const DWunion dd = {.ll = d}; 1019 DWunion rr; 1020 UWtype d0, d1, n0, n1, n2; 1021 UWtype q0, q1; 1022 UWtype b, bm; 1023 1024 d0 = dd.s.low; 1025 d1 = dd.s.high; 1026 n0 = nn.s.low; 1027 n1 = nn.s.high; 1028 1029 #if !UDIV_NEEDS_NORMALIZATION 1030 if (d1 == 0) 1031 { 1032 if (d0 > n1) 1033 { 1034 /* 0q = nn / 0D */ 1035 1036 udiv_qrnnd (q0, n0, n1, n0, d0); 1037 q1 = 0; 1038 1039 /* Remainder in n0. */ 1040 } 1041 else 1042 { 1043 /* qq = NN / 0d */ 1044 1045 if (d0 == 0) 1046 d0 = 1 / d0; /* Divide intentionally by zero. */ 1047 1048 udiv_qrnnd (q1, n1, 0, n1, d0); 1049 udiv_qrnnd (q0, n0, n1, n0, d0); 1050 1051 /* Remainder in n0. */ 1052 } 1053 1054 if (rp != 0) 1055 { 1056 rr.s.low = n0; 1057 rr.s.high = 0; 1058 *rp = rr.ll; 1059 } 1060 } 1061 1062 #else /* UDIV_NEEDS_NORMALIZATION */ 1063 1064 if (d1 == 0) 1065 { 1066 if (d0 > n1) 1067 { 1068 /* 0q = nn / 0D */ 1069 1070 count_leading_zeros (bm, d0); 1071 1072 if (bm != 0) 1073 { 1074 /* Normalize, i.e. make the most significant bit of the 1075 denominator set. */ 1076 1077 d0 = d0 << bm; 1078 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm)); 1079 n0 = n0 << bm; 1080 } 1081 1082 udiv_qrnnd (q0, n0, n1, n0, d0); 1083 q1 = 0; 1084 1085 /* Remainder in n0 >> bm. */ 1086 } 1087 else 1088 { 1089 /* qq = NN / 0d */ 1090 1091 if (d0 == 0) 1092 d0 = 1 / d0; /* Divide intentionally by zero. */ 1093 1094 count_leading_zeros (bm, d0); 1095 1096 if (bm == 0) 1097 { 1098 /* From (n1 >= d0) /\ (the most significant bit of d0 is set), 1099 conclude (the most significant bit of n1 is set) /\ (the 1100 leading quotient digit q1 = 1). 1101 1102 This special case is necessary, not an optimization. 1103 (Shifts counts of W_TYPE_SIZE are undefined.) */ 1104 1105 n1 -= d0; 1106 q1 = 1; 1107 } 1108 else 1109 { 1110 /* Normalize. */ 1111 1112 b = W_TYPE_SIZE - bm; 1113 1114 d0 = d0 << bm; 1115 n2 = n1 >> b; 1116 n1 = (n1 << bm) | (n0 >> b); 1117 n0 = n0 << bm; 1118 1119 udiv_qrnnd (q1, n1, n2, n1, d0); 1120 } 1121 1122 /* n1 != d0... */ 1123 1124 udiv_qrnnd (q0, n0, n1, n0, d0); 1125 1126 /* Remainder in n0 >> bm. */ 1127 } 1128 1129 if (rp != 0) 1130 { 1131 rr.s.low = n0 >> bm; 1132 rr.s.high = 0; 1133 *rp = rr.ll; 1134 } 1135 } 1136 #endif /* UDIV_NEEDS_NORMALIZATION */ 1137 1138 else 1139 { 1140 if (d1 > n1) 1141 { 1142 /* 00 = nn / DD */ 1143 1144 q0 = 0; 1145 q1 = 0; 1146 1147 /* Remainder in n1n0. */ 1148 if (rp != 0) 1149 { 1150 rr.s.low = n0; 1151 rr.s.high = n1; 1152 *rp = rr.ll; 1153 } 1154 } 1155 else 1156 { 1157 /* 0q = NN / dd */ 1158 1159 count_leading_zeros (bm, d1); 1160 if (bm == 0) 1161 { 1162 /* From (n1 >= d1) /\ (the most significant bit of d1 is set), 1163 conclude (the most significant bit of n1 is set) /\ (the 1164 quotient digit q0 = 0 or 1). 1165 1166 This special case is necessary, not an optimization. */ 1167 1168 /* The condition on the next line takes advantage of that 1169 n1 >= d1 (true due to program flow). */ 1170 if (n1 > d1 || n0 >= d0) 1171 { 1172 q0 = 1; 1173 sub_ddmmss (n1, n0, n1, n0, d1, d0); 1174 } 1175 else 1176 q0 = 0; 1177 1178 q1 = 0; 1179 1180 if (rp != 0) 1181 { 1182 rr.s.low = n0; 1183 rr.s.high = n1; 1184 *rp = rr.ll; 1185 } 1186 } 1187 else 1188 { 1189 UWtype m1, m0; 1190 /* Normalize. */ 1191 1192 b = W_TYPE_SIZE - bm; 1193 1194 d1 = (d1 << bm) | (d0 >> b); 1195 d0 = d0 << bm; 1196 n2 = n1 >> b; 1197 n1 = (n1 << bm) | (n0 >> b); 1198 n0 = n0 << bm; 1199 1200 udiv_qrnnd (q0, n1, n2, n1, d1); 1201 umul_ppmm (m1, m0, q0, d0); 1202 1203 if (m1 > n1 || (m1 == n1 && m0 > n0)) 1204 { 1205 q0--; 1206 sub_ddmmss (m1, m0, m1, m0, d1, d0); 1207 } 1208 1209 q1 = 0; 1210 1211 /* Remainder in (n1n0 - m1m0) >> bm. */ 1212 if (rp != 0) 1213 { 1214 sub_ddmmss (n1, n0, n1, n0, m1, m0); 1215 rr.s.low = (n1 << b) | (n0 >> bm); 1216 rr.s.high = n1 >> bm; 1217 *rp = rr.ll; 1218 } 1219 } 1220 } 1221 } 1222 1223 const DWunion ww = {{.low = q0, .high = q1}}; 1224 return ww.ll; 1225 } 1226 #endif 1227 #endif 1228 1229 #ifdef L_divdi3 1230 DWtype 1231 __divdi3 (DWtype u, DWtype v) 1232 { 1233 Wtype c = 0; 1234 DWunion uu = {.ll = u}; 1235 DWunion vv = {.ll = v}; 1236 DWtype w; 1237 1238 if (uu.s.high < 0) 1239 c = ~c, 1240 uu.ll = -uu.ll; 1241 if (vv.s.high < 0) 1242 c = ~c, 1243 vv.ll = -vv.ll; 1244 1245 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0); 1246 if (c) 1247 w = -w; 1248 1249 return w; 1250 } 1251 #endif 1252 1253 #ifdef L_moddi3 1254 DWtype 1255 __moddi3 (DWtype u, DWtype v) 1256 { 1257 Wtype c = 0; 1258 DWunion uu = {.ll = u}; 1259 DWunion vv = {.ll = v}; 1260 DWtype w; 1261 1262 if (uu.s.high < 0) 1263 c = ~c, 1264 uu.ll = -uu.ll; 1265 if (vv.s.high < 0) 1266 vv.ll = -vv.ll; 1267 1268 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w); 1269 if (c) 1270 w = -w; 1271 1272 return w; 1273 } 1274 #endif 1275 1276 #ifdef L_divmoddi4 1277 DWtype 1278 __divmoddi4 (DWtype u, DWtype v, DWtype *rp) 1279 { 1280 Wtype c1 = 0, c2 = 0; 1281 DWunion uu = {.ll = u}; 1282 DWunion vv = {.ll = v}; 1283 DWtype w; 1284 DWtype r; 1285 1286 if (uu.s.high < 0) 1287 c1 = ~c1, c2 = ~c2, 1288 uu.ll = -uu.ll; 1289 if (vv.s.high < 0) 1290 c1 = ~c1, 1291 vv.ll = -vv.ll; 1292 1293 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r); 1294 if (c1) 1295 w = -w; 1296 if (c2) 1297 r = -r; 1298 1299 *rp = r; 1300 return w; 1301 } 1302 #endif 1303 1304 #ifdef L_umoddi3 1305 UDWtype 1306 __umoddi3 (UDWtype u, UDWtype v) 1307 { 1308 UDWtype w; 1309 1310 (void) __udivmoddi4 (u, v, &w); 1311 1312 return w; 1313 } 1314 #endif 1315 1316 #ifdef L_udivdi3 1317 UDWtype 1318 __udivdi3 (UDWtype n, UDWtype d) 1319 { 1320 return __udivmoddi4 (n, d, (UDWtype *) 0); 1321 } 1322 #endif 1323 1324 #ifdef L_cmpdi2 1325 cmp_return_type 1326 __cmpdi2 (DWtype a, DWtype b) 1327 { 1328 const DWunion au = {.ll = a}; 1329 const DWunion bu = {.ll = b}; 1330 1331 if (au.s.high < bu.s.high) 1332 return 0; 1333 else if (au.s.high > bu.s.high) 1334 return 2; 1335 if ((UWtype) au.s.low < (UWtype) bu.s.low) 1336 return 0; 1337 else if ((UWtype) au.s.low > (UWtype) bu.s.low) 1338 return 2; 1339 return 1; 1340 } 1341 #endif 1342 1343 #ifdef L_ucmpdi2 1344 cmp_return_type 1345 __ucmpdi2 (DWtype a, DWtype b) 1346 { 1347 const DWunion au = {.ll = a}; 1348 const DWunion bu = {.ll = b}; 1349 1350 if ((UWtype) au.s.high < (UWtype) bu.s.high) 1351 return 0; 1352 else if ((UWtype) au.s.high > (UWtype) bu.s.high) 1353 return 2; 1354 if ((UWtype) au.s.low < (UWtype) bu.s.low) 1355 return 0; 1356 else if ((UWtype) au.s.low > (UWtype) bu.s.low) 1357 return 2; 1358 return 1; 1359 } 1360 #endif 1361 1362 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE 1363 UDWtype 1364 __fixunstfDI (TFtype a) 1365 { 1366 if (a < 0) 1367 return 0; 1368 1369 /* Compute high word of result, as a flonum. */ 1370 const TFtype b = (a / Wtype_MAXp1_F); 1371 /* Convert that to fixed (but not to DWtype!), 1372 and shift it into the high word. */ 1373 UDWtype v = (UWtype) b; 1374 v <<= W_TYPE_SIZE; 1375 /* Remove high part from the TFtype, leaving the low part as flonum. */ 1376 a -= (TFtype)v; 1377 /* Convert that to fixed (but not to DWtype!) and add it in. 1378 Sometimes A comes out negative. This is significant, since 1379 A has more bits than a long int does. */ 1380 if (a < 0) 1381 v -= (UWtype) (- a); 1382 else 1383 v += (UWtype) a; 1384 return v; 1385 } 1386 #endif 1387 1388 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE 1389 DWtype 1390 __fixtfdi (TFtype a) 1391 { 1392 if (a < 0) 1393 return - __fixunstfDI (-a); 1394 return __fixunstfDI (a); 1395 } 1396 #endif 1397 1398 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE 1399 UDWtype 1400 __fixunsxfDI (XFtype a) 1401 { 1402 if (a < 0) 1403 return 0; 1404 1405 /* Compute high word of result, as a flonum. */ 1406 const XFtype b = (a / Wtype_MAXp1_F); 1407 /* Convert that to fixed (but not to DWtype!), 1408 and shift it into the high word. */ 1409 UDWtype v = (UWtype) b; 1410 v <<= W_TYPE_SIZE; 1411 /* Remove high part from the XFtype, leaving the low part as flonum. */ 1412 a -= (XFtype)v; 1413 /* Convert that to fixed (but not to DWtype!) and add it in. 1414 Sometimes A comes out negative. This is significant, since 1415 A has more bits than a long int does. */ 1416 if (a < 0) 1417 v -= (UWtype) (- a); 1418 else 1419 v += (UWtype) a; 1420 return v; 1421 } 1422 #endif 1423 1424 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE 1425 DWtype 1426 __fixxfdi (XFtype a) 1427 { 1428 if (a < 0) 1429 return - __fixunsxfDI (-a); 1430 return __fixunsxfDI (a); 1431 } 1432 #endif 1433 1434 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE 1435 UDWtype 1436 __fixunsdfDI (DFtype a) 1437 { 1438 /* Get high part of result. The division here will just moves the radix 1439 point and will not cause any rounding. Then the conversion to integral 1440 type chops result as desired. */ 1441 const UWtype hi = a / Wtype_MAXp1_F; 1442 1443 /* Get low part of result. Convert `hi' to floating type and scale it back, 1444 then subtract this from the number being converted. This leaves the low 1445 part. Convert that to integral type. */ 1446 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F; 1447 1448 /* Assemble result from the two parts. */ 1449 return ((UDWtype) hi << W_TYPE_SIZE) | lo; 1450 } 1451 #endif 1452 1453 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE 1454 DWtype 1455 __fixdfdi (DFtype a) 1456 { 1457 if (a < 0) 1458 return - __fixunsdfDI (-a); 1459 return __fixunsdfDI (a); 1460 } 1461 #endif 1462 1463 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE 1464 UDWtype 1465 __fixunssfDI (SFtype a) 1466 { 1467 #if LIBGCC2_HAS_DF_MODE 1468 /* Convert the SFtype to a DFtype, because that is surely not going 1469 to lose any bits. Some day someone else can write a faster version 1470 that avoids converting to DFtype, and verify it really works right. */ 1471 const DFtype dfa = a; 1472 1473 /* Get high part of result. The division here will just moves the radix 1474 point and will not cause any rounding. Then the conversion to integral 1475 type chops result as desired. */ 1476 const UWtype hi = dfa / Wtype_MAXp1_F; 1477 1478 /* Get low part of result. Convert `hi' to floating type and scale it back, 1479 then subtract this from the number being converted. This leaves the low 1480 part. Convert that to integral type. */ 1481 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F; 1482 1483 /* Assemble result from the two parts. */ 1484 return ((UDWtype) hi << W_TYPE_SIZE) | lo; 1485 #elif FLT_MANT_DIG < W_TYPE_SIZE 1486 if (a < 1) 1487 return 0; 1488 if (a < Wtype_MAXp1_F) 1489 return (UWtype)a; 1490 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F) 1491 { 1492 /* Since we know that there are fewer significant bits in the SFmode 1493 quantity than in a word, we know that we can convert out all the 1494 significant bits in one step, and thus avoid losing bits. */ 1495 1496 /* ??? This following loop essentially performs frexpf. If we could 1497 use the real libm function, or poke at the actual bits of the fp 1498 format, it would be significantly faster. */ 1499 1500 UWtype shift = 0, counter; 1501 SFtype msb; 1502 1503 a /= Wtype_MAXp1_F; 1504 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1) 1505 { 1506 SFtype counterf = (UWtype)1 << counter; 1507 if (a >= counterf) 1508 { 1509 shift |= counter; 1510 a /= counterf; 1511 } 1512 } 1513 1514 /* Rescale into the range of one word, extract the bits of that 1515 one word, and shift the result into position. */ 1516 a *= Wtype_MAXp1_F; 1517 counter = a; 1518 return (DWtype)counter << shift; 1519 } 1520 return -1; 1521 #else 1522 # error 1523 #endif 1524 } 1525 #endif 1526 1527 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE 1528 DWtype 1529 __fixsfdi (SFtype a) 1530 { 1531 if (a < 0) 1532 return - __fixunssfDI (-a); 1533 return __fixunssfDI (a); 1534 } 1535 #endif 1536 1537 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE 1538 XFtype 1539 __floatdixf (DWtype u) 1540 { 1541 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__ 1542 # error 1543 #endif 1544 XFtype d = (Wtype) (u >> W_TYPE_SIZE); 1545 d *= Wtype_MAXp1_F; 1546 d += (UWtype)u; 1547 return d; 1548 } 1549 #endif 1550 1551 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE 1552 XFtype 1553 __floatundixf (UDWtype u) 1554 { 1555 #if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__ 1556 # error 1557 #endif 1558 XFtype d = (UWtype) (u >> W_TYPE_SIZE); 1559 d *= Wtype_MAXp1_F; 1560 d += (UWtype)u; 1561 return d; 1562 } 1563 #endif 1564 1565 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE 1566 TFtype 1567 __floatditf (DWtype u) 1568 { 1569 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__ 1570 # error 1571 #endif 1572 TFtype d = (Wtype) (u >> W_TYPE_SIZE); 1573 d *= Wtype_MAXp1_F; 1574 d += (UWtype)u; 1575 return d; 1576 } 1577 #endif 1578 1579 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE 1580 TFtype 1581 __floatunditf (UDWtype u) 1582 { 1583 #if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__ 1584 # error 1585 #endif 1586 TFtype d = (UWtype) (u >> W_TYPE_SIZE); 1587 d *= Wtype_MAXp1_F; 1588 d += (UWtype)u; 1589 return d; 1590 } 1591 #endif 1592 1593 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \ 1594 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE) 1595 #define DI_SIZE (W_TYPE_SIZE * 2) 1596 #define F_MODE_OK(SIZE) \ 1597 (SIZE < DI_SIZE \ 1598 && SIZE > (DI_SIZE - SIZE + FSSIZE) \ 1599 && !AVOID_FP_TYPE_CONVERSION(SIZE)) 1600 #if defined(L_floatdisf) 1601 #define FUNC __floatdisf 1602 #define FSTYPE SFtype 1603 #define FSSIZE __LIBGCC_SF_MANT_DIG__ 1604 #else 1605 #define FUNC __floatdidf 1606 #define FSTYPE DFtype 1607 #define FSSIZE __LIBGCC_DF_MANT_DIG__ 1608 #endif 1609 1610 FSTYPE 1611 FUNC (DWtype u) 1612 { 1613 #if FSSIZE >= W_TYPE_SIZE 1614 /* When the word size is small, we never get any rounding error. */ 1615 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE); 1616 f *= Wtype_MAXp1_F; 1617 f += (UWtype)u; 1618 return f; 1619 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \ 1620 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \ 1621 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) 1622 1623 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) 1624 # define FSIZE __LIBGCC_DF_MANT_DIG__ 1625 # define FTYPE DFtype 1626 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) 1627 # define FSIZE __LIBGCC_XF_MANT_DIG__ 1628 # define FTYPE XFtype 1629 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) 1630 # define FSIZE __LIBGCC_TF_MANT_DIG__ 1631 # define FTYPE TFtype 1632 #else 1633 # error 1634 #endif 1635 1636 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE)) 1637 1638 /* Protect against double-rounding error. 1639 Represent any low-order bits, that might be truncated by a bit that 1640 won't be lost. The bit can go in anywhere below the rounding position 1641 of the FSTYPE. A fixed mask and bit position handles all usual 1642 configurations. */ 1643 if (! (- ((DWtype) 1 << FSIZE) < u 1644 && u < ((DWtype) 1 << FSIZE))) 1645 { 1646 if ((UDWtype) u & (REP_BIT - 1)) 1647 { 1648 u &= ~ (REP_BIT - 1); 1649 u |= REP_BIT; 1650 } 1651 } 1652 1653 /* Do the calculation in a wider type so that we don't lose any of 1654 the precision of the high word while multiplying it. */ 1655 FTYPE f = (Wtype) (u >> W_TYPE_SIZE); 1656 f *= Wtype_MAXp1_F; 1657 f += (UWtype)u; 1658 return (FSTYPE) f; 1659 #else 1660 #if FSSIZE >= W_TYPE_SIZE - 2 1661 # error 1662 #endif 1663 /* Finally, the word size is larger than the number of bits in the 1664 required FSTYPE, and we've got no suitable wider type. The only 1665 way to avoid double rounding is to special case the 1666 extraction. */ 1667 1668 /* If there are no high bits set, fall back to one conversion. */ 1669 if ((Wtype)u == u) 1670 return (FSTYPE)(Wtype)u; 1671 1672 /* Otherwise, find the power of two. */ 1673 Wtype hi = u >> W_TYPE_SIZE; 1674 if (hi < 0) 1675 hi = -(UWtype) hi; 1676 1677 UWtype count, shift; 1678 #if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE 1679 if (hi == 0) 1680 count = W_TYPE_SIZE; 1681 else 1682 #endif 1683 count_leading_zeros (count, hi); 1684 1685 /* No leading bits means u == minimum. */ 1686 if (count == 0) 1687 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2)); 1688 1689 shift = 1 + W_TYPE_SIZE - count; 1690 1691 /* Shift down the most significant bits. */ 1692 hi = u >> shift; 1693 1694 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */ 1695 if ((UWtype)u << (W_TYPE_SIZE - shift)) 1696 hi |= 1; 1697 1698 /* Convert the one word of data, and rescale. */ 1699 FSTYPE f = hi, e; 1700 if (shift == W_TYPE_SIZE) 1701 e = Wtype_MAXp1_F; 1702 /* The following two cases could be merged if we knew that the target 1703 supported a native unsigned->float conversion. More often, we only 1704 have a signed conversion, and have to add extra fixup code. */ 1705 else if (shift == W_TYPE_SIZE - 1) 1706 e = Wtype_MAXp1_F / 2; 1707 else 1708 e = (Wtype)1 << shift; 1709 return f * e; 1710 #endif 1711 } 1712 #endif 1713 1714 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \ 1715 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE) 1716 #define DI_SIZE (W_TYPE_SIZE * 2) 1717 #define F_MODE_OK(SIZE) \ 1718 (SIZE < DI_SIZE \ 1719 && SIZE > (DI_SIZE - SIZE + FSSIZE) \ 1720 && !AVOID_FP_TYPE_CONVERSION(SIZE)) 1721 #if defined(L_floatundisf) 1722 #define FUNC __floatundisf 1723 #define FSTYPE SFtype 1724 #define FSSIZE __LIBGCC_SF_MANT_DIG__ 1725 #else 1726 #define FUNC __floatundidf 1727 #define FSTYPE DFtype 1728 #define FSSIZE __LIBGCC_DF_MANT_DIG__ 1729 #endif 1730 1731 FSTYPE 1732 FUNC (UDWtype u) 1733 { 1734 #if FSSIZE >= W_TYPE_SIZE 1735 /* When the word size is small, we never get any rounding error. */ 1736 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE); 1737 f *= Wtype_MAXp1_F; 1738 f += (UWtype)u; 1739 return f; 1740 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \ 1741 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \ 1742 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) 1743 1744 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) 1745 # define FSIZE __LIBGCC_DF_MANT_DIG__ 1746 # define FTYPE DFtype 1747 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) 1748 # define FSIZE __LIBGCC_XF_MANT_DIG__ 1749 # define FTYPE XFtype 1750 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__)) 1751 # define FSIZE __LIBGCC_TF_MANT_DIG__ 1752 # define FTYPE TFtype 1753 #else 1754 # error 1755 #endif 1756 1757 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE)) 1758 1759 /* Protect against double-rounding error. 1760 Represent any low-order bits, that might be truncated by a bit that 1761 won't be lost. The bit can go in anywhere below the rounding position 1762 of the FSTYPE. A fixed mask and bit position handles all usual 1763 configurations. */ 1764 if (u >= ((UDWtype) 1 << FSIZE)) 1765 { 1766 if ((UDWtype) u & (REP_BIT - 1)) 1767 { 1768 u &= ~ (REP_BIT - 1); 1769 u |= REP_BIT; 1770 } 1771 } 1772 1773 /* Do the calculation in a wider type so that we don't lose any of 1774 the precision of the high word while multiplying it. */ 1775 FTYPE f = (UWtype) (u >> W_TYPE_SIZE); 1776 f *= Wtype_MAXp1_F; 1777 f += (UWtype)u; 1778 return (FSTYPE) f; 1779 #else 1780 #if FSSIZE == W_TYPE_SIZE - 1 1781 # error 1782 #endif 1783 /* Finally, the word size is larger than the number of bits in the 1784 required FSTYPE, and we've got no suitable wider type. The only 1785 way to avoid double rounding is to special case the 1786 extraction. */ 1787 1788 /* If there are no high bits set, fall back to one conversion. */ 1789 if ((UWtype)u == u) 1790 return (FSTYPE)(UWtype)u; 1791 1792 /* Otherwise, find the power of two. */ 1793 UWtype hi = u >> W_TYPE_SIZE; 1794 1795 UWtype count, shift; 1796 count_leading_zeros (count, hi); 1797 1798 shift = W_TYPE_SIZE - count; 1799 1800 /* Shift down the most significant bits. */ 1801 hi = u >> shift; 1802 1803 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */ 1804 if ((UWtype)u << (W_TYPE_SIZE - shift)) 1805 hi |= 1; 1806 1807 /* Convert the one word of data, and rescale. */ 1808 FSTYPE f = hi, e; 1809 if (shift == W_TYPE_SIZE) 1810 e = Wtype_MAXp1_F; 1811 /* The following two cases could be merged if we knew that the target 1812 supported a native unsigned->float conversion. More often, we only 1813 have a signed conversion, and have to add extra fixup code. */ 1814 else if (shift == W_TYPE_SIZE - 1) 1815 e = Wtype_MAXp1_F / 2; 1816 else 1817 e = (Wtype)1 << shift; 1818 return f * e; 1819 #endif 1820 } 1821 #endif 1822 1823 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE 1824 UWtype 1825 __fixunsxfSI (XFtype a) 1826 { 1827 if (a >= - (DFtype) Wtype_MIN) 1828 return (Wtype) (a + Wtype_MIN) - Wtype_MIN; 1829 return (Wtype) a; 1830 } 1831 #endif 1832 1833 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE 1834 UWtype 1835 __fixunsdfSI (DFtype a) 1836 { 1837 if (a >= - (DFtype) Wtype_MIN) 1838 return (Wtype) (a + Wtype_MIN) - Wtype_MIN; 1839 return (Wtype) a; 1840 } 1841 #endif 1842 1843 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE 1844 UWtype 1845 __fixunssfSI (SFtype a) 1846 { 1847 if (a >= - (SFtype) Wtype_MIN) 1848 return (Wtype) (a + Wtype_MIN) - Wtype_MIN; 1849 return (Wtype) a; 1850 } 1851 #endif 1852 1853 /* Integer power helper used from __builtin_powi for non-constant 1854 exponents. */ 1855 1856 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \ 1857 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \ 1858 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \ 1859 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE) 1860 # if defined(L_powisf2) 1861 # define TYPE SFtype 1862 # define NAME __powisf2 1863 # elif defined(L_powidf2) 1864 # define TYPE DFtype 1865 # define NAME __powidf2 1866 # elif defined(L_powixf2) 1867 # define TYPE XFtype 1868 # define NAME __powixf2 1869 # elif defined(L_powitf2) 1870 # define TYPE TFtype 1871 # define NAME __powitf2 1872 # endif 1873 1874 #undef int 1875 #undef unsigned 1876 TYPE 1877 NAME (TYPE x, int m) 1878 { 1879 unsigned int n = m < 0 ? -m : m; 1880 TYPE y = n % 2 ? x : 1; 1881 while (n >>= 1) 1882 { 1883 x = x * x; 1884 if (n % 2) 1885 y = y * x; 1886 } 1887 return m < 0 ? 1/y : y; 1888 } 1889 1890 #endif 1891 1892 #if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \ 1893 || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \ 1894 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \ 1895 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \ 1896 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE) 1897 1898 #undef float 1899 #undef double 1900 #undef long 1901 1902 #if defined(L_mulhc3) || defined(L_divhc3) 1903 # define MTYPE HFtype 1904 # define CTYPE HCtype 1905 # define MODE hc 1906 # define CEXT __LIBGCC_HF_FUNC_EXT__ 1907 # define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__) 1908 #elif defined(L_mulsc3) || defined(L_divsc3) 1909 # define MTYPE SFtype 1910 # define CTYPE SCtype 1911 # define MODE sc 1912 # define CEXT __LIBGCC_SF_FUNC_EXT__ 1913 # define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__) 1914 #elif defined(L_muldc3) || defined(L_divdc3) 1915 # define MTYPE DFtype 1916 # define CTYPE DCtype 1917 # define MODE dc 1918 # define CEXT __LIBGCC_DF_FUNC_EXT__ 1919 # define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__) 1920 #elif defined(L_mulxc3) || defined(L_divxc3) 1921 # define MTYPE XFtype 1922 # define CTYPE XCtype 1923 # define MODE xc 1924 # define CEXT __LIBGCC_XF_FUNC_EXT__ 1925 # define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__) 1926 #elif defined(L_multc3) || defined(L_divtc3) 1927 # define MTYPE TFtype 1928 # define CTYPE TCtype 1929 # define MODE tc 1930 # define CEXT __LIBGCC_TF_FUNC_EXT__ 1931 # define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__) 1932 #else 1933 # error 1934 #endif 1935 1936 #define CONCAT3(A,B,C) _CONCAT3(A,B,C) 1937 #define _CONCAT3(A,B,C) A##B##C 1938 1939 #define CONCAT2(A,B) _CONCAT2(A,B) 1940 #define _CONCAT2(A,B) A##B 1941 1942 /* All of these would be present in a full C99 implementation of <math.h> 1943 and <complex.h>. Our problem is that only a few systems have such full 1944 implementations. Further, libgcc_s.so isn't currently linked against 1945 libm.so, and even for systems that do provide full C99, the extra overhead 1946 of all programs using libgcc having to link against libm. So avoid it. */ 1947 1948 #define isnan(x) __builtin_expect ((x) != (x), 0) 1949 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1) 1950 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0) 1951 1952 #define INFINITY CONCAT2(__builtin_huge_val, CEXT) () 1953 #define I 1i 1954 1955 /* Helpers to make the following code slightly less gross. */ 1956 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT) 1957 #define FABS CONCAT2(__builtin_fabs, CEXT) 1958 1959 /* Verify that MTYPE matches up with CEXT. */ 1960 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1]; 1961 1962 /* Ensure that we've lost any extra precision. */ 1963 #if NOTRUNC 1964 # define TRUNC(x) 1965 #else 1966 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x)) 1967 #endif 1968 1969 #if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \ 1970 || defined(L_mulxc3) || defined(L_multc3) 1971 1972 CTYPE 1973 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) 1974 { 1975 MTYPE ac, bd, ad, bc, x, y; 1976 CTYPE res; 1977 1978 ac = a * c; 1979 bd = b * d; 1980 ad = a * d; 1981 bc = b * c; 1982 1983 TRUNC (ac); 1984 TRUNC (bd); 1985 TRUNC (ad); 1986 TRUNC (bc); 1987 1988 x = ac - bd; 1989 y = ad + bc; 1990 1991 if (isnan (x) && isnan (y)) 1992 { 1993 /* Recover infinities that computed as NaN + iNaN. */ 1994 _Bool recalc = 0; 1995 if (isinf (a) || isinf (b)) 1996 { 1997 /* z is infinite. "Box" the infinity and change NaNs in 1998 the other factor to 0. */ 1999 a = COPYSIGN (isinf (a) ? 1 : 0, a); 2000 b = COPYSIGN (isinf (b) ? 1 : 0, b); 2001 if (isnan (c)) c = COPYSIGN (0, c); 2002 if (isnan (d)) d = COPYSIGN (0, d); 2003 recalc = 1; 2004 } 2005 if (isinf (c) || isinf (d)) 2006 { 2007 /* w is infinite. "Box" the infinity and change NaNs in 2008 the other factor to 0. */ 2009 c = COPYSIGN (isinf (c) ? 1 : 0, c); 2010 d = COPYSIGN (isinf (d) ? 1 : 0, d); 2011 if (isnan (a)) a = COPYSIGN (0, a); 2012 if (isnan (b)) b = COPYSIGN (0, b); 2013 recalc = 1; 2014 } 2015 if (!recalc 2016 && (isinf (ac) || isinf (bd) 2017 || isinf (ad) || isinf (bc))) 2018 { 2019 /* Recover infinities from overflow by changing NaNs to 0. */ 2020 if (isnan (a)) a = COPYSIGN (0, a); 2021 if (isnan (b)) b = COPYSIGN (0, b); 2022 if (isnan (c)) c = COPYSIGN (0, c); 2023 if (isnan (d)) d = COPYSIGN (0, d); 2024 recalc = 1; 2025 } 2026 if (recalc) 2027 { 2028 x = INFINITY * (a * c - b * d); 2029 y = INFINITY * (a * d + b * c); 2030 } 2031 } 2032 2033 __real__ res = x; 2034 __imag__ res = y; 2035 return res; 2036 } 2037 #endif /* complex multiply */ 2038 2039 #if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \ 2040 || defined(L_divxc3) || defined(L_divtc3) 2041 2042 CTYPE 2043 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d) 2044 { 2045 MTYPE denom, ratio, x, y; 2046 CTYPE res; 2047 2048 /* ??? We can get better behavior from logarithmic scaling instead of 2049 the division. But that would mean starting to link libgcc against 2050 libm. We could implement something akin to ldexp/frexp as gcc builtins 2051 fairly easily... */ 2052 if (FABS (c) < FABS (d)) 2053 { 2054 ratio = c / d; 2055 denom = (c * ratio) + d; 2056 x = ((a * ratio) + b) / denom; 2057 y = ((b * ratio) - a) / denom; 2058 } 2059 else 2060 { 2061 ratio = d / c; 2062 denom = (d * ratio) + c; 2063 x = ((b * ratio) + a) / denom; 2064 y = (b - (a * ratio)) / denom; 2065 } 2066 2067 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases 2068 are nonzero/zero, infinite/finite, and finite/infinite. */ 2069 if (isnan (x) && isnan (y)) 2070 { 2071 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b))) 2072 { 2073 x = COPYSIGN (INFINITY, c) * a; 2074 y = COPYSIGN (INFINITY, c) * b; 2075 } 2076 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d)) 2077 { 2078 a = COPYSIGN (isinf (a) ? 1 : 0, a); 2079 b = COPYSIGN (isinf (b) ? 1 : 0, b); 2080 x = INFINITY * (a * c + b * d); 2081 y = INFINITY * (b * c - a * d); 2082 } 2083 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b)) 2084 { 2085 c = COPYSIGN (isinf (c) ? 1 : 0, c); 2086 d = COPYSIGN (isinf (d) ? 1 : 0, d); 2087 x = 0.0 * (a * c + b * d); 2088 y = 0.0 * (b * c - a * d); 2089 } 2090 } 2091 2092 __real__ res = x; 2093 __imag__ res = y; 2094 return res; 2095 } 2096 #endif /* complex divide */ 2097 2098 #endif /* all complex float routines */ 2099 2100 /* From here on down, the routines use normal data types. */ 2101 2102 #define SItype bogus_type 2103 #define USItype bogus_type 2104 #define DItype bogus_type 2105 #define UDItype bogus_type 2106 #define SFtype bogus_type 2107 #define DFtype bogus_type 2108 #undef Wtype 2109 #undef UWtype 2110 #undef HWtype 2111 #undef UHWtype 2112 #undef DWtype 2113 #undef UDWtype 2114 2115 #undef char 2116 #undef short 2117 #undef int 2118 #undef long 2119 #undef unsigned 2120 #undef float 2121 #undef double 2122 2123 #ifdef L__gcc_bcmp 2124 2125 /* Like bcmp except the sign is meaningful. 2126 Result is negative if S1 is less than S2, 2127 positive if S1 is greater, 0 if S1 and S2 are equal. */ 2128 2129 int 2130 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size) 2131 { 2132 while (size > 0) 2133 { 2134 const unsigned char c1 = *s1++, c2 = *s2++; 2135 if (c1 != c2) 2136 return c1 - c2; 2137 size--; 2138 } 2139 return 0; 2140 } 2141 2142 #endif 2143 2144 /* __eprintf used to be used by GCC's private version of <assert.h>. 2145 We no longer provide that header, but this routine remains in libgcc.a 2146 for binary backward compatibility. Note that it is not included in 2147 the shared version of libgcc. */ 2148 #ifdef L_eprintf 2149 #ifndef inhibit_libc 2150 2151 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */ 2152 #include <stdio.h> 2153 2154 void 2155 __eprintf (const char *string, const char *expression, 2156 unsigned int line, const char *filename) 2157 { 2158 fprintf (stderr, string, expression, line, filename); 2159 fflush (stderr); 2160 abort (); 2161 } 2162 2163 #endif 2164 #endif 2165 2166 2167 #ifdef L_clear_cache 2168 /* Clear part of an instruction cache. */ 2169 2170 void 2171 __clear_cache (char *beg __attribute__((__unused__)), 2172 char *end __attribute__((__unused__))) 2173 { 2174 #ifdef CLEAR_INSN_CACHE 2175 CLEAR_INSN_CACHE (beg, end); 2176 #endif /* CLEAR_INSN_CACHE */ 2177 } 2178 2179 #endif /* L_clear_cache */ 2180 2181 #ifdef L_trampoline 2182 2183 /* Jump to a trampoline, loading the static chain address. */ 2184 2185 #if defined(WINNT) && ! defined(__CYGWIN__) 2186 #include <windows.h> 2187 int getpagesize (void); 2188 int mprotect (char *,int, int); 2189 2190 int 2191 getpagesize (void) 2192 { 2193 #ifdef _ALPHA_ 2194 return 8192; 2195 #else 2196 return 4096; 2197 #endif 2198 } 2199 2200 int 2201 mprotect (char *addr, int len, int prot) 2202 { 2203 DWORD np, op; 2204 2205 if (prot == 7) 2206 np = 0x40; 2207 else if (prot == 5) 2208 np = 0x20; 2209 else if (prot == 4) 2210 np = 0x10; 2211 else if (prot == 3) 2212 np = 0x04; 2213 else if (prot == 1) 2214 np = 0x02; 2215 else if (prot == 0) 2216 np = 0x01; 2217 else 2218 return -1; 2219 2220 if (VirtualProtect (addr, len, np, &op)) 2221 return 0; 2222 else 2223 return -1; 2224 } 2225 2226 #endif /* WINNT && ! __CYGWIN__ */ 2227 2228 #ifdef TRANSFER_FROM_TRAMPOLINE 2229 TRANSFER_FROM_TRAMPOLINE 2230 #endif 2231 #endif /* L_trampoline */ 2232 2233 #ifndef __CYGWIN__ 2234 #ifdef L__main 2235 2236 #include "gbl-ctors.h" 2237 2238 /* Some systems use __main in a way incompatible with its use in gcc, in these 2239 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to 2240 give the same symbol without quotes for an alternative entry point. You 2241 must define both, or neither. */ 2242 #ifndef NAME__MAIN 2243 #define NAME__MAIN "__main" 2244 #define SYMBOL__MAIN __main 2245 #endif 2246 2247 #if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \ 2248 || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__) 2249 #undef HAS_INIT_SECTION 2250 #define HAS_INIT_SECTION 2251 #endif 2252 2253 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF) 2254 2255 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this 2256 code to run constructors. In that case, we need to handle EH here, too. 2257 But MINGW32 is special because it handles CRTSTUFF and EH on its own. */ 2258 2259 #ifdef __MINGW32__ 2260 #undef __LIBGCC_EH_FRAME_SECTION_NAME__ 2261 #endif 2262 2263 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__ 2264 #include "unwind-dw2-fde.h" 2265 extern unsigned char __EH_FRAME_BEGIN__[]; 2266 #endif 2267 2268 /* Run all the global destructors on exit from the program. */ 2269 2270 void 2271 __do_global_dtors (void) 2272 { 2273 #ifdef DO_GLOBAL_DTORS_BODY 2274 DO_GLOBAL_DTORS_BODY; 2275 #else 2276 static func_ptr *p = __DTOR_LIST__ + 1; 2277 while (*p) 2278 { 2279 p++; 2280 (*(p-1)) (); 2281 } 2282 #endif 2283 #if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION) 2284 { 2285 static int completed = 0; 2286 if (! completed) 2287 { 2288 completed = 1; 2289 __deregister_frame_info (__EH_FRAME_BEGIN__); 2290 } 2291 } 2292 #endif 2293 } 2294 #endif 2295 2296 #ifndef HAS_INIT_SECTION 2297 /* Run all the global constructors on entry to the program. */ 2298 2299 void 2300 __do_global_ctors (void) 2301 { 2302 #ifdef __LIBGCC_EH_FRAME_SECTION_NAME__ 2303 { 2304 static struct object object; 2305 __register_frame_info (__EH_FRAME_BEGIN__, &object); 2306 } 2307 #endif 2308 DO_GLOBAL_CTORS_BODY; 2309 atexit (__do_global_dtors); 2310 } 2311 #endif /* no HAS_INIT_SECTION */ 2312 2313 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main) 2314 /* Subroutine called automatically by `main'. 2315 Compiling a global function named `main' 2316 produces an automatic call to this function at the beginning. 2317 2318 For many systems, this routine calls __do_global_ctors. 2319 For systems which support a .init section we use the .init section 2320 to run __do_global_ctors, so we need not do anything here. */ 2321 2322 extern void SYMBOL__MAIN (void); 2323 void 2324 SYMBOL__MAIN (void) 2325 { 2326 /* Support recursive calls to `main': run initializers just once. */ 2327 static int initialized; 2328 if (! initialized) 2329 { 2330 initialized = 1; 2331 __do_global_ctors (); 2332 } 2333 } 2334 #endif /* no HAS_INIT_SECTION or INVOKE__main */ 2335 2336 #endif /* L__main */ 2337 #endif /* __CYGWIN__ */ 2338 2339 #ifdef L_ctors 2340 2341 #include "gbl-ctors.h" 2342 2343 /* Provide default definitions for the lists of constructors and 2344 destructors, so that we don't get linker errors. These symbols are 2345 intentionally bss symbols, so that gld and/or collect will provide 2346 the right values. */ 2347 2348 /* We declare the lists here with two elements each, 2349 so that they are valid empty lists if no other definition is loaded. 2350 2351 If we are using the old "set" extensions to have the gnu linker 2352 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__ 2353 must be in the bss/common section. 2354 2355 Long term no port should use those extensions. But many still do. */ 2356 #if !defined(__LIBGCC_INIT_SECTION_ASM_OP__) 2357 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2) 2358 func_ptr __CTOR_LIST__[2] = {0, 0}; 2359 func_ptr __DTOR_LIST__[2] = {0, 0}; 2360 #else 2361 func_ptr __CTOR_LIST__[2]; 2362 func_ptr __DTOR_LIST__[2]; 2363 #endif 2364 #endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */ 2365 #endif /* L_ctors */ 2366 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */ 2367