1 // Special functions -*- C++ -*-
2 
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/riemann_zeta.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{tr1/cmath}
28  */
29 
30 //
31 // ISO C++ 14882 TR1: 5.2  Special functions
32 //
33 
34 // Written by Edward Smith-Rowland based on:
35 //   (1) Handbook of Mathematical Functions,
36 //       Ed. by Milton Abramowitz and Irene A. Stegun,
37 //       Dover Publications, New-York, Section 5, pp. 807-808.
38 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
39 //   (3) Gamma, Exploring Euler's Constant, Julian Havil,
40 //       Princeton, 2003.
41 
42 #ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
43 #define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
44 
45 #include "special_function_util.h"
46 
47 namespace std _GLIBCXX_VISIBILITY(default)
48 {
49 _GLIBCXX_BEGIN_NAMESPACE_VERSION
50 
51 #if _GLIBCXX_USE_STD_SPEC_FUNCS
52 # define _GLIBCXX_MATH_NS ::std
53 #elif defined(_GLIBCXX_TR1_CMATH)
54 namespace tr1
55 {
56 # define _GLIBCXX_MATH_NS ::std::tr1
57 #else
58 # error do not include this header directly, use <cmath> or <tr1/cmath>
59 #endif
60   // [5.2] Special functions
61 
62   // Implementation-space details.
63   namespace __detail
64   {
65     /**
66      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
67      *           by summation for s > 1.
68      *
69      *   The Riemann zeta function is defined by:
70      *    \f[
71      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
72      *    \f]
73      *   For s < 1 use the reflection formula:
74      *    \f[
75      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
76      *    \f]
77      */
78     template<typename _Tp>
79     _Tp
80     __riemann_zeta_sum(_Tp __s)
81     {
82       //  A user shouldn't get to this.
83       if (__s < _Tp(1))
84         std::__throw_domain_error(__N("Bad argument in zeta sum."));
85 
86       const unsigned int max_iter = 10000;
87       _Tp __zeta = _Tp(0);
88       for (unsigned int __k = 1; __k < max_iter; ++__k)
89         {
90           _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
91           if (__term < std::numeric_limits<_Tp>::epsilon())
92             {
93               break;
94             }
95           __zeta += __term;
96         }
97 
98       return __zeta;
99     }
100 
101 
102     /**
103      *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
104      *           by an alternate series for s > 0.
105      *
106      *   The Riemann zeta function is defined by:
107      *    \f[
108      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
109      *    \f]
110      *   For s < 1 use the reflection formula:
111      *    \f[
112      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
113      *    \f]
114      */
115     template<typename _Tp>
116     _Tp
117     __riemann_zeta_alt(_Tp __s)
118     {
119       _Tp __sgn = _Tp(1);
120       _Tp __zeta = _Tp(0);
121       for (unsigned int __i = 1; __i < 10000000; ++__i)
122         {
123           _Tp __term = __sgn / std::pow(__i, __s);
124           if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
125             break;
126           __zeta += __term;
127           __sgn *= _Tp(-1);
128         }
129       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
130 
131       return __zeta;
132     }
133 
134 
135     /**
136      *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
137      *           Convergence is great until largish negative numbers.
138      *           Then the convergence of the > 0 sum gets better.
139      *
140      *   The series is:
141      *    \f[
142      *      \zeta(s) = \frac{1}{1-2^{1-s}}
143      *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
144      *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
145      *    \f]
146      *   Havil 2003, p. 206.
147      *
148      *   The Riemann zeta function is defined by:
149      *    \f[
150      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
151      *    \f]
152      *   For s < 1 use the reflection formula:
153      *    \f[
154      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
155      *    \f]
156      */
157     template<typename _Tp>
158     _Tp
159     __riemann_zeta_glob(_Tp __s)
160     {
161       _Tp __zeta = _Tp(0);
162 
163       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
164       //  Max e exponent before overflow.
165       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
166                                * std::log(_Tp(10)) - _Tp(1);
167 
168       //  This series works until the binomial coefficient blows up
169       //  so use reflection.
170       if (__s < _Tp(0))
171         {
172 #if _GLIBCXX_USE_C99_MATH_TR1
173           if (_GLIBCXX_MATH_NS::fmod(__s,_Tp(2)) == _Tp(0))
174             return _Tp(0);
175           else
176 #endif
177             {
178               _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
179               __zeta *= std::pow(_Tp(2)
180                      * __numeric_constants<_Tp>::__pi(), __s)
181                      * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
182 #if _GLIBCXX_USE_C99_MATH_TR1
183                      * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
184 #else
185                      * std::exp(__log_gamma(_Tp(1) - __s))
186 #endif
187                      / __numeric_constants<_Tp>::__pi();
188               return __zeta;
189             }
190         }
191 
192       _Tp __num = _Tp(0.5L);
193       const unsigned int __maxit = 10000;
194       for (unsigned int __i = 0; __i < __maxit; ++__i)
195         {
196           bool __punt = false;
197           _Tp __sgn = _Tp(1);
198           _Tp __term = _Tp(0);
199           for (unsigned int __j = 0; __j <= __i; ++__j)
200             {
201 #if _GLIBCXX_USE_C99_MATH_TR1
202               _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
203                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
204                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
205 #else
206               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
207                               - __log_gamma(_Tp(1 + __j))
208                               - __log_gamma(_Tp(1 + __i - __j));
209 #endif
210               if (__bincoeff > __max_bincoeff)
211                 {
212                   //  This only gets hit for x << 0.
213                   __punt = true;
214                   break;
215                 }
216               __bincoeff = std::exp(__bincoeff);
217               __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
218               __sgn *= _Tp(-1);
219             }
220           if (__punt)
221             break;
222           __term *= __num;
223           __zeta += __term;
224           if (std::abs(__term/__zeta) < __eps)
225             break;
226           __num *= _Tp(0.5L);
227         }
228 
229       __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
230 
231       return __zeta;
232     }
233 
234 
235     /**
236      *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
237      *           using the product over prime factors.
238      *    \f[
239      *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
240      *    \f]
241      *    where @f$ {p_i} @f$ are the prime numbers.
242      *
243      *   The Riemann zeta function is defined by:
244      *    \f[
245      *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
246      *    \f]
247      *   For s < 1 use the reflection formula:
248      *    \f[
249      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
250      *    \f]
251      */
252     template<typename _Tp>
253     _Tp
254     __riemann_zeta_product(_Tp __s)
255     {
256       static const _Tp __prime[] = {
257         _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
258         _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
259         _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
260         _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
261       };
262       static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
263 
264       _Tp __zeta = _Tp(1);
265       for (unsigned int __i = 0; __i < __num_primes; ++__i)
266         {
267           const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
268           __zeta *= __fact;
269           if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
270             break;
271         }
272 
273       __zeta = _Tp(1) / __zeta;
274 
275       return __zeta;
276     }
277 
278 
279     /**
280      *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
281      *
282      *   The Riemann zeta function is defined by:
283      *    \f[
284      *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
285      *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
286      *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
287      *    \f]
288      *   For s < 1 use the reflection formula:
289      *    \f[
290      *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
291      *    \f]
292      */
293     template<typename _Tp>
294     _Tp
295     __riemann_zeta(_Tp __s)
296     {
297       if (__isnan(__s))
298         return std::numeric_limits<_Tp>::quiet_NaN();
299       else if (__s == _Tp(1))
300         return std::numeric_limits<_Tp>::infinity();
301       else if (__s < -_Tp(19))
302         {
303           _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
304           __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
305                  * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
306 #if _GLIBCXX_USE_C99_MATH_TR1
307                  * std::exp(_GLIBCXX_MATH_NS::lgamma(_Tp(1) - __s))
308 #else
309                  * std::exp(__log_gamma(_Tp(1) - __s))
310 #endif
311                  / __numeric_constants<_Tp>::__pi();
312           return __zeta;
313         }
314       else if (__s < _Tp(20))
315         {
316           //  Global double sum or McLaurin?
317           bool __glob = true;
318           if (__glob)
319             return __riemann_zeta_glob(__s);
320           else
321             {
322               if (__s > _Tp(1))
323                 return __riemann_zeta_sum(__s);
324               else
325                 {
326                   _Tp __zeta = std::pow(_Tp(2)
327                                 * __numeric_constants<_Tp>::__pi(), __s)
328                          * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
329 #if _GLIBCXX_USE_C99_MATH_TR1
330                              * _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __s)
331 #else
332                              * std::exp(__log_gamma(_Tp(1) - __s))
333 #endif
334                              * __riemann_zeta_sum(_Tp(1) - __s);
335                   return __zeta;
336                 }
337             }
338         }
339       else
340         return __riemann_zeta_product(__s);
341     }
342 
343 
344     /**
345      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
346      *           for all s != 1 and x > -1.
347      *
348      *   The Hurwitz zeta function is defined by:
349      *   @f[
350      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
351      *   @f]
352      *   The Riemann zeta function is a special case:
353      *   @f[
354      *     \zeta(s) = \zeta(1,s)
355      *   @f]
356      *
357      *   This functions uses the double sum that converges for s != 1
358      *   and x > -1:
359      *   @f[
360      *     \zeta(x,s) = \frac{1}{s-1}
361      *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
362      *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
363      *   @f]
364      */
365     template<typename _Tp>
366     _Tp
367     __hurwitz_zeta_glob(_Tp __a, _Tp __s)
368     {
369       _Tp __zeta = _Tp(0);
370 
371       const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
372       //  Max e exponent before overflow.
373       const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
374                                * std::log(_Tp(10)) - _Tp(1);
375 
376       const unsigned int __maxit = 10000;
377       for (unsigned int __i = 0; __i < __maxit; ++__i)
378         {
379           bool __punt = false;
380           _Tp __sgn = _Tp(1);
381           _Tp __term = _Tp(0);
382           for (unsigned int __j = 0; __j <= __i; ++__j)
383             {
384 #if _GLIBCXX_USE_C99_MATH_TR1
385               _Tp __bincoeff =  _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i))
386                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __j))
387                               - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __i - __j));
388 #else
389               _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
390                               - __log_gamma(_Tp(1 + __j))
391                               - __log_gamma(_Tp(1 + __i - __j));
392 #endif
393               if (__bincoeff > __max_bincoeff)
394                 {
395                   //  This only gets hit for x << 0.
396                   __punt = true;
397                   break;
398                 }
399               __bincoeff = std::exp(__bincoeff);
400               __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
401               __sgn *= _Tp(-1);
402             }
403           if (__punt)
404             break;
405           __term /= _Tp(__i + 1);
406           if (std::abs(__term / __zeta) < __eps)
407             break;
408           __zeta += __term;
409         }
410 
411       __zeta /= __s - _Tp(1);
412 
413       return __zeta;
414     }
415 
416 
417     /**
418      *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
419      *           for all s != 1 and x > -1.
420      *
421      *   The Hurwitz zeta function is defined by:
422      *   @f[
423      *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
424      *   @f]
425      *   The Riemann zeta function is a special case:
426      *   @f[
427      *     \zeta(s) = \zeta(1,s)
428      *   @f]
429      */
430     template<typename _Tp>
431     inline _Tp
432     __hurwitz_zeta(_Tp __a, _Tp __s)
433     { return __hurwitz_zeta_glob(__a, __s); }
434   } // namespace __detail
435 #undef _GLIBCXX_MATH_NS
436 #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
437 } // namespace tr1
438 #endif
439 
440 _GLIBCXX_END_NAMESPACE_VERSION
441 }
442 
443 #endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC
444