xref: /dragonfly/contrib/gdb-7/bfd/elf.c (revision 28c26f7e)
1 /* ELF executable support for BFD.
2 
3    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4    2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5    Free Software Foundation, Inc.
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 
25 /*
26 SECTION
27 	ELF backends
28 
29 	BFD support for ELF formats is being worked on.
30 	Currently, the best supported back ends are for sparc and i386
31 	(running svr4 or Solaris 2).
32 
33 	Documentation of the internals of the support code still needs
34 	to be written.  The code is changing quickly enough that we
35 	haven't bothered yet.  */
36 
37 /* For sparc64-cross-sparc32.  */
38 #define _SYSCALL32
39 #include "sysdep.h"
40 #include "bfd.h"
41 #include "bfdlink.h"
42 #include "libbfd.h"
43 #define ARCH_SIZE 0
44 #include "elf-bfd.h"
45 #include "libiberty.h"
46 #include "safe-ctype.h"
47 
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
50 static bfd_boolean prep_headers (bfd *);
51 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
52 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
53 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
54 				    file_ptr offset);
55 
56 /* Swap version information in and out.  The version information is
57    currently size independent.  If that ever changes, this code will
58    need to move into elfcode.h.  */
59 
60 /* Swap in a Verdef structure.  */
61 
62 void
63 _bfd_elf_swap_verdef_in (bfd *abfd,
64 			 const Elf_External_Verdef *src,
65 			 Elf_Internal_Verdef *dst)
66 {
67   dst->vd_version = H_GET_16 (abfd, src->vd_version);
68   dst->vd_flags   = H_GET_16 (abfd, src->vd_flags);
69   dst->vd_ndx     = H_GET_16 (abfd, src->vd_ndx);
70   dst->vd_cnt     = H_GET_16 (abfd, src->vd_cnt);
71   dst->vd_hash    = H_GET_32 (abfd, src->vd_hash);
72   dst->vd_aux     = H_GET_32 (abfd, src->vd_aux);
73   dst->vd_next    = H_GET_32 (abfd, src->vd_next);
74 }
75 
76 /* Swap out a Verdef structure.  */
77 
78 void
79 _bfd_elf_swap_verdef_out (bfd *abfd,
80 			  const Elf_Internal_Verdef *src,
81 			  Elf_External_Verdef *dst)
82 {
83   H_PUT_16 (abfd, src->vd_version, dst->vd_version);
84   H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
85   H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
86   H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
87   H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
88   H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
89   H_PUT_32 (abfd, src->vd_next, dst->vd_next);
90 }
91 
92 /* Swap in a Verdaux structure.  */
93 
94 void
95 _bfd_elf_swap_verdaux_in (bfd *abfd,
96 			  const Elf_External_Verdaux *src,
97 			  Elf_Internal_Verdaux *dst)
98 {
99   dst->vda_name = H_GET_32 (abfd, src->vda_name);
100   dst->vda_next = H_GET_32 (abfd, src->vda_next);
101 }
102 
103 /* Swap out a Verdaux structure.  */
104 
105 void
106 _bfd_elf_swap_verdaux_out (bfd *abfd,
107 			   const Elf_Internal_Verdaux *src,
108 			   Elf_External_Verdaux *dst)
109 {
110   H_PUT_32 (abfd, src->vda_name, dst->vda_name);
111   H_PUT_32 (abfd, src->vda_next, dst->vda_next);
112 }
113 
114 /* Swap in a Verneed structure.  */
115 
116 void
117 _bfd_elf_swap_verneed_in (bfd *abfd,
118 			  const Elf_External_Verneed *src,
119 			  Elf_Internal_Verneed *dst)
120 {
121   dst->vn_version = H_GET_16 (abfd, src->vn_version);
122   dst->vn_cnt     = H_GET_16 (abfd, src->vn_cnt);
123   dst->vn_file    = H_GET_32 (abfd, src->vn_file);
124   dst->vn_aux     = H_GET_32 (abfd, src->vn_aux);
125   dst->vn_next    = H_GET_32 (abfd, src->vn_next);
126 }
127 
128 /* Swap out a Verneed structure.  */
129 
130 void
131 _bfd_elf_swap_verneed_out (bfd *abfd,
132 			   const Elf_Internal_Verneed *src,
133 			   Elf_External_Verneed *dst)
134 {
135   H_PUT_16 (abfd, src->vn_version, dst->vn_version);
136   H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
137   H_PUT_32 (abfd, src->vn_file, dst->vn_file);
138   H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
139   H_PUT_32 (abfd, src->vn_next, dst->vn_next);
140 }
141 
142 /* Swap in a Vernaux structure.  */
143 
144 void
145 _bfd_elf_swap_vernaux_in (bfd *abfd,
146 			  const Elf_External_Vernaux *src,
147 			  Elf_Internal_Vernaux *dst)
148 {
149   dst->vna_hash  = H_GET_32 (abfd, src->vna_hash);
150   dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
151   dst->vna_other = H_GET_16 (abfd, src->vna_other);
152   dst->vna_name  = H_GET_32 (abfd, src->vna_name);
153   dst->vna_next  = H_GET_32 (abfd, src->vna_next);
154 }
155 
156 /* Swap out a Vernaux structure.  */
157 
158 void
159 _bfd_elf_swap_vernaux_out (bfd *abfd,
160 			   const Elf_Internal_Vernaux *src,
161 			   Elf_External_Vernaux *dst)
162 {
163   H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
164   H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
165   H_PUT_16 (abfd, src->vna_other, dst->vna_other);
166   H_PUT_32 (abfd, src->vna_name, dst->vna_name);
167   H_PUT_32 (abfd, src->vna_next, dst->vna_next);
168 }
169 
170 /* Swap in a Versym structure.  */
171 
172 void
173 _bfd_elf_swap_versym_in (bfd *abfd,
174 			 const Elf_External_Versym *src,
175 			 Elf_Internal_Versym *dst)
176 {
177   dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
178 }
179 
180 /* Swap out a Versym structure.  */
181 
182 void
183 _bfd_elf_swap_versym_out (bfd *abfd,
184 			  const Elf_Internal_Versym *src,
185 			  Elf_External_Versym *dst)
186 {
187   H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
188 }
189 
190 /* Standard ELF hash function.  Do not change this function; you will
191    cause invalid hash tables to be generated.  */
192 
193 unsigned long
194 bfd_elf_hash (const char *namearg)
195 {
196   const unsigned char *name = (const unsigned char *) namearg;
197   unsigned long h = 0;
198   unsigned long g;
199   int ch;
200 
201   while ((ch = *name++) != '\0')
202     {
203       h = (h << 4) + ch;
204       if ((g = (h & 0xf0000000)) != 0)
205 	{
206 	  h ^= g >> 24;
207 	  /* The ELF ABI says `h &= ~g', but this is equivalent in
208 	     this case and on some machines one insn instead of two.  */
209 	  h ^= g;
210 	}
211     }
212   return h & 0xffffffff;
213 }
214 
215 /* DT_GNU_HASH hash function.  Do not change this function; you will
216    cause invalid hash tables to be generated.  */
217 
218 unsigned long
219 bfd_elf_gnu_hash (const char *namearg)
220 {
221   const unsigned char *name = (const unsigned char *) namearg;
222   unsigned long h = 5381;
223   unsigned char ch;
224 
225   while ((ch = *name++) != '\0')
226     h = (h << 5) + h + ch;
227   return h & 0xffffffff;
228 }
229 
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231    the object_id field of an elf_obj_tdata field set to OBJECT_ID.  */
232 bfd_boolean
233 bfd_elf_allocate_object (bfd *abfd,
234 			 size_t object_size,
235 			 enum elf_object_id object_id)
236 {
237   BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
238   abfd->tdata.any = bfd_zalloc (abfd, object_size);
239   if (abfd->tdata.any == NULL)
240     return FALSE;
241 
242   elf_object_id (abfd) = object_id;
243   elf_program_header_size (abfd) = (bfd_size_type) -1;
244   return TRUE;
245 }
246 
247 
248 bfd_boolean
249 bfd_elf_make_generic_object (bfd *abfd)
250 {
251   return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
252 				  GENERIC_ELF_TDATA);
253 }
254 
255 bfd_boolean
256 bfd_elf_mkcorefile (bfd *abfd)
257 {
258   /* I think this can be done just like an object file.  */
259   return bfd_elf_make_generic_object (abfd);
260 }
261 
262 static char *
263 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
264 {
265   Elf_Internal_Shdr **i_shdrp;
266   bfd_byte *shstrtab = NULL;
267   file_ptr offset;
268   bfd_size_type shstrtabsize;
269 
270   i_shdrp = elf_elfsections (abfd);
271   if (i_shdrp == 0
272       || shindex >= elf_numsections (abfd)
273       || i_shdrp[shindex] == 0)
274     return NULL;
275 
276   shstrtab = i_shdrp[shindex]->contents;
277   if (shstrtab == NULL)
278     {
279       /* No cached one, attempt to read, and cache what we read.  */
280       offset = i_shdrp[shindex]->sh_offset;
281       shstrtabsize = i_shdrp[shindex]->sh_size;
282 
283       /* Allocate and clear an extra byte at the end, to prevent crashes
284 	 in case the string table is not terminated.  */
285       if (shstrtabsize + 1 <= 1
286 	  || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
287 	  || bfd_seek (abfd, offset, SEEK_SET) != 0)
288 	shstrtab = NULL;
289       else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
290 	{
291 	  if (bfd_get_error () != bfd_error_system_call)
292 	    bfd_set_error (bfd_error_file_truncated);
293 	  shstrtab = NULL;
294 	  /* Once we've failed to read it, make sure we don't keep
295 	     trying.  Otherwise, we'll keep allocating space for
296 	     the string table over and over.  */
297 	  i_shdrp[shindex]->sh_size = 0;
298 	}
299       else
300 	shstrtab[shstrtabsize] = '\0';
301       i_shdrp[shindex]->contents = shstrtab;
302     }
303   return (char *) shstrtab;
304 }
305 
306 char *
307 bfd_elf_string_from_elf_section (bfd *abfd,
308 				 unsigned int shindex,
309 				 unsigned int strindex)
310 {
311   Elf_Internal_Shdr *hdr;
312 
313   if (strindex == 0)
314     return "";
315 
316   if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
317     return NULL;
318 
319   hdr = elf_elfsections (abfd)[shindex];
320 
321   if (hdr->contents == NULL
322       && bfd_elf_get_str_section (abfd, shindex) == NULL)
323     return NULL;
324 
325   if (strindex >= hdr->sh_size)
326     {
327       unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
328       (*_bfd_error_handler)
329 	(_("%B: invalid string offset %u >= %lu for section `%s'"),
330 	 abfd, strindex, (unsigned long) hdr->sh_size,
331 	 (shindex == shstrndx && strindex == hdr->sh_name
332 	  ? ".shstrtab"
333 	  : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
334       return NULL;
335     }
336 
337   return ((char *) hdr->contents) + strindex;
338 }
339 
340 /* Read and convert symbols to internal format.
341    SYMCOUNT specifies the number of symbols to read, starting from
342    symbol SYMOFFSET.  If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343    are non-NULL, they are used to store the internal symbols, external
344    symbols, and symbol section index extensions, respectively.
345    Returns a pointer to the internal symbol buffer (malloced if necessary)
346    or NULL if there were no symbols or some kind of problem.  */
347 
348 Elf_Internal_Sym *
349 bfd_elf_get_elf_syms (bfd *ibfd,
350 		      Elf_Internal_Shdr *symtab_hdr,
351 		      size_t symcount,
352 		      size_t symoffset,
353 		      Elf_Internal_Sym *intsym_buf,
354 		      void *extsym_buf,
355 		      Elf_External_Sym_Shndx *extshndx_buf)
356 {
357   Elf_Internal_Shdr *shndx_hdr;
358   void *alloc_ext;
359   const bfd_byte *esym;
360   Elf_External_Sym_Shndx *alloc_extshndx;
361   Elf_External_Sym_Shndx *shndx;
362   Elf_Internal_Sym *alloc_intsym;
363   Elf_Internal_Sym *isym;
364   Elf_Internal_Sym *isymend;
365   const struct elf_backend_data *bed;
366   size_t extsym_size;
367   bfd_size_type amt;
368   file_ptr pos;
369 
370   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
371     abort ();
372 
373   if (symcount == 0)
374     return intsym_buf;
375 
376   /* Normal syms might have section extension entries.  */
377   shndx_hdr = NULL;
378   if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
379     shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
380 
381   /* Read the symbols.  */
382   alloc_ext = NULL;
383   alloc_extshndx = NULL;
384   alloc_intsym = NULL;
385   bed = get_elf_backend_data (ibfd);
386   extsym_size = bed->s->sizeof_sym;
387   amt = symcount * extsym_size;
388   pos = symtab_hdr->sh_offset + symoffset * extsym_size;
389   if (extsym_buf == NULL)
390     {
391       alloc_ext = bfd_malloc2 (symcount, extsym_size);
392       extsym_buf = alloc_ext;
393     }
394   if (extsym_buf == NULL
395       || bfd_seek (ibfd, pos, SEEK_SET) != 0
396       || bfd_bread (extsym_buf, amt, ibfd) != amt)
397     {
398       intsym_buf = NULL;
399       goto out;
400     }
401 
402   if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
403     extshndx_buf = NULL;
404   else
405     {
406       amt = symcount * sizeof (Elf_External_Sym_Shndx);
407       pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
408       if (extshndx_buf == NULL)
409 	{
410 	  alloc_extshndx = (Elf_External_Sym_Shndx *)
411               bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
412 	  extshndx_buf = alloc_extshndx;
413 	}
414       if (extshndx_buf == NULL
415 	  || bfd_seek (ibfd, pos, SEEK_SET) != 0
416 	  || bfd_bread (extshndx_buf, amt, ibfd) != amt)
417 	{
418 	  intsym_buf = NULL;
419 	  goto out;
420 	}
421     }
422 
423   if (intsym_buf == NULL)
424     {
425       alloc_intsym = (Elf_Internal_Sym *)
426           bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
427       intsym_buf = alloc_intsym;
428       if (intsym_buf == NULL)
429 	goto out;
430     }
431 
432   /* Convert the symbols to internal form.  */
433   isymend = intsym_buf + symcount;
434   for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
435            shndx = extshndx_buf;
436        isym < isymend;
437        esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
438     if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
439       {
440 	symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
441 	(*_bfd_error_handler) (_("%B symbol number %lu references "
442 				 "nonexistent SHT_SYMTAB_SHNDX section"),
443 			       ibfd, (unsigned long) symoffset);
444 	if (alloc_intsym != NULL)
445 	  free (alloc_intsym);
446 	intsym_buf = NULL;
447 	goto out;
448       }
449 
450  out:
451   if (alloc_ext != NULL)
452     free (alloc_ext);
453   if (alloc_extshndx != NULL)
454     free (alloc_extshndx);
455 
456   return intsym_buf;
457 }
458 
459 /* Look up a symbol name.  */
460 const char *
461 bfd_elf_sym_name (bfd *abfd,
462 		  Elf_Internal_Shdr *symtab_hdr,
463 		  Elf_Internal_Sym *isym,
464 		  asection *sym_sec)
465 {
466   const char *name;
467   unsigned int iname = isym->st_name;
468   unsigned int shindex = symtab_hdr->sh_link;
469 
470   if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
471       /* Check for a bogus st_shndx to avoid crashing.  */
472       && isym->st_shndx < elf_numsections (abfd))
473     {
474       iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
475       shindex = elf_elfheader (abfd)->e_shstrndx;
476     }
477 
478   name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
479   if (name == NULL)
480     name = "(null)";
481   else if (sym_sec && *name == '\0')
482     name = bfd_section_name (abfd, sym_sec);
483 
484   return name;
485 }
486 
487 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
488    sections.  The first element is the flags, the rest are section
489    pointers.  */
490 
491 typedef union elf_internal_group {
492   Elf_Internal_Shdr *shdr;
493   unsigned int flags;
494 } Elf_Internal_Group;
495 
496 /* Return the name of the group signature symbol.  Why isn't the
497    signature just a string?  */
498 
499 static const char *
500 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
501 {
502   Elf_Internal_Shdr *hdr;
503   unsigned char esym[sizeof (Elf64_External_Sym)];
504   Elf_External_Sym_Shndx eshndx;
505   Elf_Internal_Sym isym;
506 
507   /* First we need to ensure the symbol table is available.  Make sure
508      that it is a symbol table section.  */
509   if (ghdr->sh_link >= elf_numsections (abfd))
510     return NULL;
511   hdr = elf_elfsections (abfd) [ghdr->sh_link];
512   if (hdr->sh_type != SHT_SYMTAB
513       || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
514     return NULL;
515 
516   /* Go read the symbol.  */
517   hdr = &elf_tdata (abfd)->symtab_hdr;
518   if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
519 			    &isym, esym, &eshndx) == NULL)
520     return NULL;
521 
522   return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
523 }
524 
525 /* Set next_in_group list pointer, and group name for NEWSECT.  */
526 
527 static bfd_boolean
528 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
529 {
530   unsigned int num_group = elf_tdata (abfd)->num_group;
531 
532   /* If num_group is zero, read in all SHT_GROUP sections.  The count
533      is set to -1 if there are no SHT_GROUP sections.  */
534   if (num_group == 0)
535     {
536       unsigned int i, shnum;
537 
538       /* First count the number of groups.  If we have a SHT_GROUP
539 	 section with just a flag word (ie. sh_size is 4), ignore it.  */
540       shnum = elf_numsections (abfd);
541       num_group = 0;
542 
543 #define IS_VALID_GROUP_SECTION_HEADER(shdr)		\
544 	(   (shdr)->sh_type == SHT_GROUP		\
545 	 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE)	\
546 	 && (shdr)->sh_entsize == GRP_ENTRY_SIZE	\
547 	 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
548 
549       for (i = 0; i < shnum; i++)
550 	{
551 	  Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
552 
553 	  if (IS_VALID_GROUP_SECTION_HEADER (shdr))
554 	    num_group += 1;
555 	}
556 
557       if (num_group == 0)
558 	{
559 	  num_group = (unsigned) -1;
560 	  elf_tdata (abfd)->num_group = num_group;
561 	}
562       else
563 	{
564 	  /* We keep a list of elf section headers for group sections,
565 	     so we can find them quickly.  */
566 	  bfd_size_type amt;
567 
568 	  elf_tdata (abfd)->num_group = num_group;
569 	  elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
570               bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
571 	  if (elf_tdata (abfd)->group_sect_ptr == NULL)
572 	    return FALSE;
573 
574 	  num_group = 0;
575 	  for (i = 0; i < shnum; i++)
576 	    {
577 	      Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
578 
579 	      if (IS_VALID_GROUP_SECTION_HEADER (shdr))
580 		{
581 		  unsigned char *src;
582 		  Elf_Internal_Group *dest;
583 
584 		  /* Add to list of sections.  */
585 		  elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
586 		  num_group += 1;
587 
588 		  /* Read the raw contents.  */
589 		  BFD_ASSERT (sizeof (*dest) >= 4);
590 		  amt = shdr->sh_size * sizeof (*dest) / 4;
591 		  shdr->contents = (unsigned char *)
592                       bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
593 		  /* PR binutils/4110: Handle corrupt group headers.  */
594 		  if (shdr->contents == NULL)
595 		    {
596 		      _bfd_error_handler
597 			(_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
598 		      bfd_set_error (bfd_error_bad_value);
599 		      return FALSE;
600 		    }
601 
602 		  memset (shdr->contents, 0, amt);
603 
604 		  if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
605 		      || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
606 			  != shdr->sh_size))
607 		    return FALSE;
608 
609 		  /* Translate raw contents, a flag word followed by an
610 		     array of elf section indices all in target byte order,
611 		     to the flag word followed by an array of elf section
612 		     pointers.  */
613 		  src = shdr->contents + shdr->sh_size;
614 		  dest = (Elf_Internal_Group *) (shdr->contents + amt);
615 		  while (1)
616 		    {
617 		      unsigned int idx;
618 
619 		      src -= 4;
620 		      --dest;
621 		      idx = H_GET_32 (abfd, src);
622 		      if (src == shdr->contents)
623 			{
624 			  dest->flags = idx;
625 			  if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
626 			    shdr->bfd_section->flags
627 			      |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
628 			  break;
629 			}
630 		      if (idx >= shnum)
631 			{
632 			  ((*_bfd_error_handler)
633 			   (_("%B: invalid SHT_GROUP entry"), abfd));
634 			  idx = 0;
635 			}
636 		      dest->shdr = elf_elfsections (abfd)[idx];
637 		    }
638 		}
639 	    }
640 	}
641     }
642 
643   if (num_group != (unsigned) -1)
644     {
645       unsigned int i;
646 
647       for (i = 0; i < num_group; i++)
648 	{
649 	  Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
650 	  Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
651 	  unsigned int n_elt = shdr->sh_size / 4;
652 
653 	  /* Look through this group's sections to see if current
654 	     section is a member.  */
655 	  while (--n_elt != 0)
656 	    if ((++idx)->shdr == hdr)
657 	      {
658 		asection *s = NULL;
659 
660 		/* We are a member of this group.  Go looking through
661 		   other members to see if any others are linked via
662 		   next_in_group.  */
663 		idx = (Elf_Internal_Group *) shdr->contents;
664 		n_elt = shdr->sh_size / 4;
665 		while (--n_elt != 0)
666 		  if ((s = (++idx)->shdr->bfd_section) != NULL
667 		      && elf_next_in_group (s) != NULL)
668 		    break;
669 		if (n_elt != 0)
670 		  {
671 		    /* Snarf the group name from other member, and
672 		       insert current section in circular list.  */
673 		    elf_group_name (newsect) = elf_group_name (s);
674 		    elf_next_in_group (newsect) = elf_next_in_group (s);
675 		    elf_next_in_group (s) = newsect;
676 		  }
677 		else
678 		  {
679 		    const char *gname;
680 
681 		    gname = group_signature (abfd, shdr);
682 		    if (gname == NULL)
683 		      return FALSE;
684 		    elf_group_name (newsect) = gname;
685 
686 		    /* Start a circular list with one element.  */
687 		    elf_next_in_group (newsect) = newsect;
688 		  }
689 
690 		/* If the group section has been created, point to the
691 		   new member.  */
692 		if (shdr->bfd_section != NULL)
693 		  elf_next_in_group (shdr->bfd_section) = newsect;
694 
695 		i = num_group - 1;
696 		break;
697 	      }
698 	}
699     }
700 
701   if (elf_group_name (newsect) == NULL)
702     {
703       (*_bfd_error_handler) (_("%B: no group info for section %A"),
704 			     abfd, newsect);
705     }
706   return TRUE;
707 }
708 
709 bfd_boolean
710 _bfd_elf_setup_sections (bfd *abfd)
711 {
712   unsigned int i;
713   unsigned int num_group = elf_tdata (abfd)->num_group;
714   bfd_boolean result = TRUE;
715   asection *s;
716 
717   /* Process SHF_LINK_ORDER.  */
718   for (s = abfd->sections; s != NULL; s = s->next)
719     {
720       Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
721       if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
722 	{
723 	  unsigned int elfsec = this_hdr->sh_link;
724 	  /* FIXME: The old Intel compiler and old strip/objcopy may
725 	     not set the sh_link or sh_info fields.  Hence we could
726 	     get the situation where elfsec is 0.  */
727 	  if (elfsec == 0)
728 	    {
729 	      const struct elf_backend_data *bed = get_elf_backend_data (abfd);
730 	      if (bed->link_order_error_handler)
731 		bed->link_order_error_handler
732 		  (_("%B: warning: sh_link not set for section `%A'"),
733 		   abfd, s);
734 	    }
735 	  else
736 	    {
737 	      asection *link = NULL;
738 
739 	      if (elfsec < elf_numsections (abfd))
740 		{
741 		  this_hdr = elf_elfsections (abfd)[elfsec];
742 		  link = this_hdr->bfd_section;
743 		}
744 
745 	      /* PR 1991, 2008:
746 		 Some strip/objcopy may leave an incorrect value in
747 		 sh_link.  We don't want to proceed.  */
748 	      if (link == NULL)
749 		{
750 		  (*_bfd_error_handler)
751 		    (_("%B: sh_link [%d] in section `%A' is incorrect"),
752 		     s->owner, s, elfsec);
753 		  result = FALSE;
754 		}
755 
756 	      elf_linked_to_section (s) = link;
757 	    }
758 	}
759     }
760 
761   /* Process section groups.  */
762   if (num_group == (unsigned) -1)
763     return result;
764 
765   for (i = 0; i < num_group; i++)
766     {
767       Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
768       Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
769       unsigned int n_elt = shdr->sh_size / 4;
770 
771       while (--n_elt != 0)
772 	if ((++idx)->shdr->bfd_section)
773 	  elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
774 	else if (idx->shdr->sh_type == SHT_RELA
775 		 || idx->shdr->sh_type == SHT_REL)
776 	  /* We won't include relocation sections in section groups in
777 	     output object files. We adjust the group section size here
778 	     so that relocatable link will work correctly when
779 	     relocation sections are in section group in input object
780 	     files.  */
781 	  shdr->bfd_section->size -= 4;
782 	else
783 	  {
784 	    /* There are some unknown sections in the group.  */
785 	    (*_bfd_error_handler)
786 	      (_("%B: unknown [%d] section `%s' in group [%s]"),
787 	       abfd,
788 	       (unsigned int) idx->shdr->sh_type,
789 	       bfd_elf_string_from_elf_section (abfd,
790 						(elf_elfheader (abfd)
791 						 ->e_shstrndx),
792 						idx->shdr->sh_name),
793 	       shdr->bfd_section->name);
794 	    result = FALSE;
795 	  }
796     }
797   return result;
798 }
799 
800 bfd_boolean
801 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
802 {
803   return elf_next_in_group (sec) != NULL;
804 }
805 
806 /* Make a BFD section from an ELF section.  We store a pointer to the
807    BFD section in the bfd_section field of the header.  */
808 
809 bfd_boolean
810 _bfd_elf_make_section_from_shdr (bfd *abfd,
811 				 Elf_Internal_Shdr *hdr,
812 				 const char *name,
813 				 int shindex)
814 {
815   asection *newsect;
816   flagword flags;
817   const struct elf_backend_data *bed;
818 
819   if (hdr->bfd_section != NULL)
820     {
821       BFD_ASSERT (strcmp (name,
822 			  bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
823       return TRUE;
824     }
825 
826   newsect = bfd_make_section_anyway (abfd, name);
827   if (newsect == NULL)
828     return FALSE;
829 
830   hdr->bfd_section = newsect;
831   elf_section_data (newsect)->this_hdr = *hdr;
832   elf_section_data (newsect)->this_idx = shindex;
833 
834   /* Always use the real type/flags.  */
835   elf_section_type (newsect) = hdr->sh_type;
836   elf_section_flags (newsect) = hdr->sh_flags;
837 
838   newsect->filepos = hdr->sh_offset;
839 
840   if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
841       || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
842       || ! bfd_set_section_alignment (abfd, newsect,
843 				      bfd_log2 (hdr->sh_addralign)))
844     return FALSE;
845 
846   flags = SEC_NO_FLAGS;
847   if (hdr->sh_type != SHT_NOBITS)
848     flags |= SEC_HAS_CONTENTS;
849   if (hdr->sh_type == SHT_GROUP)
850     flags |= SEC_GROUP | SEC_EXCLUDE;
851   if ((hdr->sh_flags & SHF_ALLOC) != 0)
852     {
853       flags |= SEC_ALLOC;
854       if (hdr->sh_type != SHT_NOBITS)
855 	flags |= SEC_LOAD;
856     }
857   if ((hdr->sh_flags & SHF_WRITE) == 0)
858     flags |= SEC_READONLY;
859   if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
860     flags |= SEC_CODE;
861   else if ((flags & SEC_LOAD) != 0)
862     flags |= SEC_DATA;
863   if ((hdr->sh_flags & SHF_MERGE) != 0)
864     {
865       flags |= SEC_MERGE;
866       newsect->entsize = hdr->sh_entsize;
867       if ((hdr->sh_flags & SHF_STRINGS) != 0)
868 	flags |= SEC_STRINGS;
869     }
870   if (hdr->sh_flags & SHF_GROUP)
871     if (!setup_group (abfd, hdr, newsect))
872       return FALSE;
873   if ((hdr->sh_flags & SHF_TLS) != 0)
874     flags |= SEC_THREAD_LOCAL;
875 
876   if ((flags & SEC_ALLOC) == 0)
877     {
878       /* The debugging sections appear to be recognized only by name,
879 	 not any sort of flag.  Their SEC_ALLOC bits are cleared.  */
880       static const struct
881 	{
882 	  const char *name;
883 	  int len;
884 	} debug_sections [] =
885 	{
886 	  { STRING_COMMA_LEN ("debug") },	/* 'd' */
887 	  { NULL,		 0  },	/* 'e' */
888 	  { NULL,		 0  },	/* 'f' */
889 	  { STRING_COMMA_LEN ("gnu.linkonce.wi.") },	/* 'g' */
890 	  { NULL,		 0  },	/* 'h' */
891 	  { NULL,		 0  },	/* 'i' */
892 	  { NULL,		 0  },	/* 'j' */
893 	  { NULL,		 0  },	/* 'k' */
894 	  { STRING_COMMA_LEN ("line") },	/* 'l' */
895 	  { NULL,		 0  },	/* 'm' */
896 	  { NULL,		 0  },	/* 'n' */
897 	  { NULL,		 0  },	/* 'o' */
898 	  { NULL,		 0  },	/* 'p' */
899 	  { NULL,		 0  },	/* 'q' */
900 	  { NULL,		 0  },	/* 'r' */
901 	  { STRING_COMMA_LEN ("stab") },	/* 's' */
902 	  { NULL,		 0  },	/* 't' */
903 	  { NULL,		 0  },	/* 'u' */
904 	  { NULL,		 0  },	/* 'v' */
905 	  { NULL,		 0  },	/* 'w' */
906 	  { NULL,		 0  },	/* 'x' */
907 	  { NULL,		 0  },	/* 'y' */
908 	  { STRING_COMMA_LEN ("zdebug") }	/* 'z' */
909 	};
910 
911       if (name [0] == '.')
912 	{
913 	  int i = name [1] - 'd';
914 	  if (i >= 0
915 	      && i < (int) ARRAY_SIZE (debug_sections)
916 	      && debug_sections [i].name != NULL
917 	      && strncmp (&name [1], debug_sections [i].name,
918 			  debug_sections [i].len) == 0)
919 	    flags |= SEC_DEBUGGING;
920 	}
921     }
922 
923   /* As a GNU extension, if the name begins with .gnu.linkonce, we
924      only link a single copy of the section.  This is used to support
925      g++.  g++ will emit each template expansion in its own section.
926      The symbols will be defined as weak, so that multiple definitions
927      are permitted.  The GNU linker extension is to actually discard
928      all but one of the sections.  */
929   if (CONST_STRNEQ (name, ".gnu.linkonce")
930       && elf_next_in_group (newsect) == NULL)
931     flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
932 
933   bed = get_elf_backend_data (abfd);
934   if (bed->elf_backend_section_flags)
935     if (! bed->elf_backend_section_flags (&flags, hdr))
936       return FALSE;
937 
938   if (! bfd_set_section_flags (abfd, newsect, flags))
939     return FALSE;
940 
941   /* We do not parse the PT_NOTE segments as we are interested even in the
942      separate debug info files which may have the segments offsets corrupted.
943      PT_NOTEs from the core files are currently not parsed using BFD.  */
944   if (hdr->sh_type == SHT_NOTE)
945     {
946       bfd_byte *contents;
947 
948       if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
949 	return FALSE;
950 
951       elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
952       free (contents);
953     }
954 
955   if ((flags & SEC_ALLOC) != 0)
956     {
957       Elf_Internal_Phdr *phdr;
958       unsigned int i, nload;
959 
960       /* Some ELF linkers produce binaries with all the program header
961 	 p_paddr fields zero.  If we have such a binary with more than
962 	 one PT_LOAD header, then leave the section lma equal to vma
963 	 so that we don't create sections with overlapping lma.  */
964       phdr = elf_tdata (abfd)->phdr;
965       for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
966 	if (phdr->p_paddr != 0)
967 	  break;
968 	else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
969 	  ++nload;
970       if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
971 	return TRUE;
972 
973       phdr = elf_tdata (abfd)->phdr;
974       for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
975 	{
976 	  if (phdr->p_type == PT_LOAD
977 	      && ELF_IS_SECTION_IN_SEGMENT (hdr, phdr))
978 	    {
979 	      if ((flags & SEC_LOAD) == 0)
980 		newsect->lma = (phdr->p_paddr
981 				+ hdr->sh_addr - phdr->p_vaddr);
982 	      else
983 		/* We used to use the same adjustment for SEC_LOAD
984 		   sections, but that doesn't work if the segment
985 		   is packed with code from multiple VMAs.
986 		   Instead we calculate the section LMA based on
987 		   the segment LMA.  It is assumed that the
988 		   segment will contain sections with contiguous
989 		   LMAs, even if the VMAs are not.  */
990 		newsect->lma = (phdr->p_paddr
991 				+ hdr->sh_offset - phdr->p_offset);
992 
993 	      /* With contiguous segments, we can't tell from file
994 		 offsets whether a section with zero size should
995 		 be placed at the end of one segment or the
996 		 beginning of the next.  Decide based on vaddr.  */
997 	      if (hdr->sh_addr >= phdr->p_vaddr
998 		  && (hdr->sh_addr + hdr->sh_size
999 		      <= phdr->p_vaddr + phdr->p_memsz))
1000 		break;
1001 	    }
1002 	}
1003     }
1004 
1005   return TRUE;
1006 }
1007 
1008 const char *const bfd_elf_section_type_names[] = {
1009   "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1010   "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1011   "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1012 };
1013 
1014 /* ELF relocs are against symbols.  If we are producing relocatable
1015    output, and the reloc is against an external symbol, and nothing
1016    has given us any additional addend, the resulting reloc will also
1017    be against the same symbol.  In such a case, we don't want to
1018    change anything about the way the reloc is handled, since it will
1019    all be done at final link time.  Rather than put special case code
1020    into bfd_perform_relocation, all the reloc types use this howto
1021    function.  It just short circuits the reloc if producing
1022    relocatable output against an external symbol.  */
1023 
1024 bfd_reloc_status_type
1025 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1026 		       arelent *reloc_entry,
1027 		       asymbol *symbol,
1028 		       void *data ATTRIBUTE_UNUSED,
1029 		       asection *input_section,
1030 		       bfd *output_bfd,
1031 		       char **error_message ATTRIBUTE_UNUSED)
1032 {
1033   if (output_bfd != NULL
1034       && (symbol->flags & BSF_SECTION_SYM) == 0
1035       && (! reloc_entry->howto->partial_inplace
1036 	  || reloc_entry->addend == 0))
1037     {
1038       reloc_entry->address += input_section->output_offset;
1039       return bfd_reloc_ok;
1040     }
1041 
1042   return bfd_reloc_continue;
1043 }
1044 
1045 /* Copy the program header and other data from one object module to
1046    another.  */
1047 
1048 bfd_boolean
1049 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1050 {
1051   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1052       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1053     return TRUE;
1054 
1055   BFD_ASSERT (!elf_flags_init (obfd)
1056 	      || (elf_elfheader (obfd)->e_flags
1057 		  == elf_elfheader (ibfd)->e_flags));
1058 
1059   elf_gp (obfd) = elf_gp (ibfd);
1060   elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1061   elf_flags_init (obfd) = TRUE;
1062 
1063   /* Copy object attributes.  */
1064   _bfd_elf_copy_obj_attributes (ibfd, obfd);
1065 
1066   return TRUE;
1067 }
1068 
1069 static const char *
1070 get_segment_type (unsigned int p_type)
1071 {
1072   const char *pt;
1073   switch (p_type)
1074     {
1075     case PT_NULL: pt = "NULL"; break;
1076     case PT_LOAD: pt = "LOAD"; break;
1077     case PT_DYNAMIC: pt = "DYNAMIC"; break;
1078     case PT_INTERP: pt = "INTERP"; break;
1079     case PT_NOTE: pt = "NOTE"; break;
1080     case PT_SHLIB: pt = "SHLIB"; break;
1081     case PT_PHDR: pt = "PHDR"; break;
1082     case PT_TLS: pt = "TLS"; break;
1083     case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1084     case PT_GNU_STACK: pt = "STACK"; break;
1085     case PT_GNU_RELRO: pt = "RELRO"; break;
1086     default: pt = NULL; break;
1087     }
1088   return pt;
1089 }
1090 
1091 /* Print out the program headers.  */
1092 
1093 bfd_boolean
1094 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1095 {
1096   FILE *f = (FILE *) farg;
1097   Elf_Internal_Phdr *p;
1098   asection *s;
1099   bfd_byte *dynbuf = NULL;
1100 
1101   p = elf_tdata (abfd)->phdr;
1102   if (p != NULL)
1103     {
1104       unsigned int i, c;
1105 
1106       fprintf (f, _("\nProgram Header:\n"));
1107       c = elf_elfheader (abfd)->e_phnum;
1108       for (i = 0; i < c; i++, p++)
1109 	{
1110 	  const char *pt = get_segment_type (p->p_type);
1111 	  char buf[20];
1112 
1113 	  if (pt == NULL)
1114 	    {
1115 	      sprintf (buf, "0x%lx", p->p_type);
1116 	      pt = buf;
1117 	    }
1118 	  fprintf (f, "%8s off    0x", pt);
1119 	  bfd_fprintf_vma (abfd, f, p->p_offset);
1120 	  fprintf (f, " vaddr 0x");
1121 	  bfd_fprintf_vma (abfd, f, p->p_vaddr);
1122 	  fprintf (f, " paddr 0x");
1123 	  bfd_fprintf_vma (abfd, f, p->p_paddr);
1124 	  fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1125 	  fprintf (f, "         filesz 0x");
1126 	  bfd_fprintf_vma (abfd, f, p->p_filesz);
1127 	  fprintf (f, " memsz 0x");
1128 	  bfd_fprintf_vma (abfd, f, p->p_memsz);
1129 	  fprintf (f, " flags %c%c%c",
1130 		   (p->p_flags & PF_R) != 0 ? 'r' : '-',
1131 		   (p->p_flags & PF_W) != 0 ? 'w' : '-',
1132 		   (p->p_flags & PF_X) != 0 ? 'x' : '-');
1133 	  if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1134 	    fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1135 	  fprintf (f, "\n");
1136 	}
1137     }
1138 
1139   s = bfd_get_section_by_name (abfd, ".dynamic");
1140   if (s != NULL)
1141     {
1142       unsigned int elfsec;
1143       unsigned long shlink;
1144       bfd_byte *extdyn, *extdynend;
1145       size_t extdynsize;
1146       void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1147 
1148       fprintf (f, _("\nDynamic Section:\n"));
1149 
1150       if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1151 	goto error_return;
1152 
1153       elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1154       if (elfsec == SHN_BAD)
1155 	goto error_return;
1156       shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1157 
1158       extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1159       swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1160 
1161       extdyn = dynbuf;
1162       extdynend = extdyn + s->size;
1163       for (; extdyn < extdynend; extdyn += extdynsize)
1164 	{
1165 	  Elf_Internal_Dyn dyn;
1166 	  const char *name = "";
1167 	  char ab[20];
1168 	  bfd_boolean stringp;
1169 	  const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1170 
1171 	  (*swap_dyn_in) (abfd, extdyn, &dyn);
1172 
1173 	  if (dyn.d_tag == DT_NULL)
1174 	    break;
1175 
1176 	  stringp = FALSE;
1177 	  switch (dyn.d_tag)
1178 	    {
1179 	    default:
1180 	      if (bed->elf_backend_get_target_dtag)
1181 		name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1182 
1183 	      if (!strcmp (name, ""))
1184 		{
1185 		  sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1186 		  name = ab;
1187 		}
1188 	      break;
1189 
1190 	    case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1191 	    case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1192 	    case DT_PLTGOT: name = "PLTGOT"; break;
1193 	    case DT_HASH: name = "HASH"; break;
1194 	    case DT_STRTAB: name = "STRTAB"; break;
1195 	    case DT_SYMTAB: name = "SYMTAB"; break;
1196 	    case DT_RELA: name = "RELA"; break;
1197 	    case DT_RELASZ: name = "RELASZ"; break;
1198 	    case DT_RELAENT: name = "RELAENT"; break;
1199 	    case DT_STRSZ: name = "STRSZ"; break;
1200 	    case DT_SYMENT: name = "SYMENT"; break;
1201 	    case DT_INIT: name = "INIT"; break;
1202 	    case DT_FINI: name = "FINI"; break;
1203 	    case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1204 	    case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1205 	    case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1206 	    case DT_REL: name = "REL"; break;
1207 	    case DT_RELSZ: name = "RELSZ"; break;
1208 	    case DT_RELENT: name = "RELENT"; break;
1209 	    case DT_PLTREL: name = "PLTREL"; break;
1210 	    case DT_DEBUG: name = "DEBUG"; break;
1211 	    case DT_TEXTREL: name = "TEXTREL"; break;
1212 	    case DT_JMPREL: name = "JMPREL"; break;
1213 	    case DT_BIND_NOW: name = "BIND_NOW"; break;
1214 	    case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1215 	    case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1216 	    case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1217 	    case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1218 	    case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1219 	    case DT_FLAGS: name = "FLAGS"; break;
1220 	    case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1221 	    case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1222 	    case DT_CHECKSUM: name = "CHECKSUM"; break;
1223 	    case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1224 	    case DT_MOVEENT: name = "MOVEENT"; break;
1225 	    case DT_MOVESZ: name = "MOVESZ"; break;
1226 	    case DT_FEATURE: name = "FEATURE"; break;
1227 	    case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1228 	    case DT_SYMINSZ: name = "SYMINSZ"; break;
1229 	    case DT_SYMINENT: name = "SYMINENT"; break;
1230 	    case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1231 	    case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1232 	    case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1233 	    case DT_PLTPAD: name = "PLTPAD"; break;
1234 	    case DT_MOVETAB: name = "MOVETAB"; break;
1235 	    case DT_SYMINFO: name = "SYMINFO"; break;
1236 	    case DT_RELACOUNT: name = "RELACOUNT"; break;
1237 	    case DT_RELCOUNT: name = "RELCOUNT"; break;
1238 	    case DT_FLAGS_1: name = "FLAGS_1"; break;
1239 	    case DT_VERSYM: name = "VERSYM"; break;
1240 	    case DT_VERDEF: name = "VERDEF"; break;
1241 	    case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1242 	    case DT_VERNEED: name = "VERNEED"; break;
1243 	    case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1244 	    case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1245 	    case DT_USED: name = "USED"; break;
1246 	    case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1247 	    case DT_GNU_HASH: name = "GNU_HASH"; break;
1248 	    }
1249 
1250 	  fprintf (f, "  %-20s ", name);
1251 	  if (! stringp)
1252 	    {
1253 	      fprintf (f, "0x");
1254 	      bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1255 	    }
1256 	  else
1257 	    {
1258 	      const char *string;
1259 	      unsigned int tagv = dyn.d_un.d_val;
1260 
1261 	      string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1262 	      if (string == NULL)
1263 		goto error_return;
1264 	      fprintf (f, "%s", string);
1265 	    }
1266 	  fprintf (f, "\n");
1267 	}
1268 
1269       free (dynbuf);
1270       dynbuf = NULL;
1271     }
1272 
1273   if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1274       || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1275     {
1276       if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1277 	return FALSE;
1278     }
1279 
1280   if (elf_dynverdef (abfd) != 0)
1281     {
1282       Elf_Internal_Verdef *t;
1283 
1284       fprintf (f, _("\nVersion definitions:\n"));
1285       for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1286 	{
1287 	  fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1288 		   t->vd_flags, t->vd_hash,
1289 		   t->vd_nodename ? t->vd_nodename : "<corrupt>");
1290 	  if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1291 	    {
1292 	      Elf_Internal_Verdaux *a;
1293 
1294 	      fprintf (f, "\t");
1295 	      for (a = t->vd_auxptr->vda_nextptr;
1296 		   a != NULL;
1297 		   a = a->vda_nextptr)
1298 		fprintf (f, "%s ",
1299 			 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1300 	      fprintf (f, "\n");
1301 	    }
1302 	}
1303     }
1304 
1305   if (elf_dynverref (abfd) != 0)
1306     {
1307       Elf_Internal_Verneed *t;
1308 
1309       fprintf (f, _("\nVersion References:\n"));
1310       for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1311 	{
1312 	  Elf_Internal_Vernaux *a;
1313 
1314 	  fprintf (f, _("  required from %s:\n"),
1315 		   t->vn_filename ? t->vn_filename : "<corrupt>");
1316 	  for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1317 	    fprintf (f, "    0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1318 		     a->vna_flags, a->vna_other,
1319 		     a->vna_nodename ? a->vna_nodename : "<corrupt>");
1320 	}
1321     }
1322 
1323   return TRUE;
1324 
1325  error_return:
1326   if (dynbuf != NULL)
1327     free (dynbuf);
1328   return FALSE;
1329 }
1330 
1331 /* Display ELF-specific fields of a symbol.  */
1332 
1333 void
1334 bfd_elf_print_symbol (bfd *abfd,
1335 		      void *filep,
1336 		      asymbol *symbol,
1337 		      bfd_print_symbol_type how)
1338 {
1339   FILE *file = (FILE *) filep;
1340   switch (how)
1341     {
1342     case bfd_print_symbol_name:
1343       fprintf (file, "%s", symbol->name);
1344       break;
1345     case bfd_print_symbol_more:
1346       fprintf (file, "elf ");
1347       bfd_fprintf_vma (abfd, file, symbol->value);
1348       fprintf (file, " %lx", (unsigned long) symbol->flags);
1349       break;
1350     case bfd_print_symbol_all:
1351       {
1352 	const char *section_name;
1353 	const char *name = NULL;
1354 	const struct elf_backend_data *bed;
1355 	unsigned char st_other;
1356 	bfd_vma val;
1357 
1358 	section_name = symbol->section ? symbol->section->name : "(*none*)";
1359 
1360 	bed = get_elf_backend_data (abfd);
1361 	if (bed->elf_backend_print_symbol_all)
1362 	  name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1363 
1364 	if (name == NULL)
1365 	  {
1366 	    name = symbol->name;
1367 	    bfd_print_symbol_vandf (abfd, file, symbol);
1368 	  }
1369 
1370 	fprintf (file, " %s\t", section_name);
1371 	/* Print the "other" value for a symbol.  For common symbols,
1372 	   we've already printed the size; now print the alignment.
1373 	   For other symbols, we have no specified alignment, and
1374 	   we've printed the address; now print the size.  */
1375 	if (symbol->section && bfd_is_com_section (symbol->section))
1376 	  val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1377 	else
1378 	  val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1379 	bfd_fprintf_vma (abfd, file, val);
1380 
1381 	/* If we have version information, print it.  */
1382 	if (elf_tdata (abfd)->dynversym_section != 0
1383 	    && (elf_tdata (abfd)->dynverdef_section != 0
1384 		|| elf_tdata (abfd)->dynverref_section != 0))
1385 	  {
1386 	    unsigned int vernum;
1387 	    const char *version_string;
1388 
1389 	    vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1390 
1391 	    if (vernum == 0)
1392 	      version_string = "";
1393 	    else if (vernum == 1)
1394 	      version_string = "Base";
1395 	    else if (vernum <= elf_tdata (abfd)->cverdefs)
1396 	      version_string =
1397 		elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1398 	    else
1399 	      {
1400 		Elf_Internal_Verneed *t;
1401 
1402 		version_string = "";
1403 		for (t = elf_tdata (abfd)->verref;
1404 		     t != NULL;
1405 		     t = t->vn_nextref)
1406 		  {
1407 		    Elf_Internal_Vernaux *a;
1408 
1409 		    for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1410 		      {
1411 			if (a->vna_other == vernum)
1412 			  {
1413 			    version_string = a->vna_nodename;
1414 			    break;
1415 			  }
1416 		      }
1417 		  }
1418 	      }
1419 
1420 	    if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1421 	      fprintf (file, "  %-11s", version_string);
1422 	    else
1423 	      {
1424 		int i;
1425 
1426 		fprintf (file, " (%s)", version_string);
1427 		for (i = 10 - strlen (version_string); i > 0; --i)
1428 		  putc (' ', file);
1429 	      }
1430 	  }
1431 
1432 	/* If the st_other field is not zero, print it.  */
1433 	st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1434 
1435 	switch (st_other)
1436 	  {
1437 	  case 0: break;
1438 	  case STV_INTERNAL:  fprintf (file, " .internal");  break;
1439 	  case STV_HIDDEN:    fprintf (file, " .hidden");    break;
1440 	  case STV_PROTECTED: fprintf (file, " .protected"); break;
1441 	  default:
1442 	    /* Some other non-defined flags are also present, so print
1443 	       everything hex.  */
1444 	    fprintf (file, " 0x%02x", (unsigned int) st_other);
1445 	  }
1446 
1447 	fprintf (file, " %s", name);
1448       }
1449       break;
1450     }
1451 }
1452 
1453 /* Allocate an ELF string table--force the first byte to be zero.  */
1454 
1455 struct bfd_strtab_hash *
1456 _bfd_elf_stringtab_init (void)
1457 {
1458   struct bfd_strtab_hash *ret;
1459 
1460   ret = _bfd_stringtab_init ();
1461   if (ret != NULL)
1462     {
1463       bfd_size_type loc;
1464 
1465       loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1466       BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1467       if (loc == (bfd_size_type) -1)
1468 	{
1469 	  _bfd_stringtab_free (ret);
1470 	  ret = NULL;
1471 	}
1472     }
1473   return ret;
1474 }
1475 
1476 /* ELF .o/exec file reading */
1477 
1478 /* Create a new bfd section from an ELF section header.  */
1479 
1480 bfd_boolean
1481 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1482 {
1483   Elf_Internal_Shdr *hdr;
1484   Elf_Internal_Ehdr *ehdr;
1485   const struct elf_backend_data *bed;
1486   const char *name;
1487 
1488   if (shindex >= elf_numsections (abfd))
1489     return FALSE;
1490 
1491   hdr = elf_elfsections (abfd)[shindex];
1492   ehdr = elf_elfheader (abfd);
1493   name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1494 					  hdr->sh_name);
1495   if (name == NULL)
1496     return FALSE;
1497 
1498   bed = get_elf_backend_data (abfd);
1499   switch (hdr->sh_type)
1500     {
1501     case SHT_NULL:
1502       /* Inactive section. Throw it away.  */
1503       return TRUE;
1504 
1505     case SHT_PROGBITS:	/* Normal section with contents.  */
1506     case SHT_NOBITS:	/* .bss section.  */
1507     case SHT_HASH:	/* .hash section.  */
1508     case SHT_NOTE:	/* .note section.  */
1509     case SHT_INIT_ARRAY:	/* .init_array section.  */
1510     case SHT_FINI_ARRAY:	/* .fini_array section.  */
1511     case SHT_PREINIT_ARRAY:	/* .preinit_array section.  */
1512     case SHT_GNU_LIBLIST:	/* .gnu.liblist section.  */
1513     case SHT_GNU_HASH:		/* .gnu.hash section.  */
1514       return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1515 
1516     case SHT_DYNAMIC:	/* Dynamic linking information.  */
1517       if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1518 	return FALSE;
1519       if (hdr->sh_link > elf_numsections (abfd))
1520 	{
1521 	  /* PR 10478: Accept sparc binaries with a sh_link
1522 	     field set to SHN_BEFORE or SHN_AFTER.  */
1523 	  switch (bfd_get_arch (abfd))
1524 	    {
1525 	    case bfd_arch_sparc:
1526 	      if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1527 		  || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1528 		break;
1529 	      /* Otherwise fall through.  */
1530 	    default:
1531 	      return FALSE;
1532 	    }
1533 	}
1534       else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1535 	return FALSE;
1536       else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1537 	{
1538 	  Elf_Internal_Shdr *dynsymhdr;
1539 
1540 	  /* The shared libraries distributed with hpux11 have a bogus
1541 	     sh_link field for the ".dynamic" section.  Find the
1542 	     string table for the ".dynsym" section instead.  */
1543 	  if (elf_dynsymtab (abfd) != 0)
1544 	    {
1545 	      dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1546 	      hdr->sh_link = dynsymhdr->sh_link;
1547 	    }
1548 	  else
1549 	    {
1550 	      unsigned int i, num_sec;
1551 
1552 	      num_sec = elf_numsections (abfd);
1553 	      for (i = 1; i < num_sec; i++)
1554 		{
1555 		  dynsymhdr = elf_elfsections (abfd)[i];
1556 		  if (dynsymhdr->sh_type == SHT_DYNSYM)
1557 		    {
1558 		      hdr->sh_link = dynsymhdr->sh_link;
1559 		      break;
1560 		    }
1561 		}
1562 	    }
1563 	}
1564       break;
1565 
1566     case SHT_SYMTAB:		/* A symbol table */
1567       if (elf_onesymtab (abfd) == shindex)
1568 	return TRUE;
1569 
1570       if (hdr->sh_entsize != bed->s->sizeof_sym)
1571 	return FALSE;
1572       if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1573 	return FALSE;
1574       BFD_ASSERT (elf_onesymtab (abfd) == 0);
1575       elf_onesymtab (abfd) = shindex;
1576       elf_tdata (abfd)->symtab_hdr = *hdr;
1577       elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1578       abfd->flags |= HAS_SYMS;
1579 
1580       /* Sometimes a shared object will map in the symbol table.  If
1581 	 SHF_ALLOC is set, and this is a shared object, then we also
1582 	 treat this section as a BFD section.  We can not base the
1583 	 decision purely on SHF_ALLOC, because that flag is sometimes
1584 	 set in a relocatable object file, which would confuse the
1585 	 linker.  */
1586       if ((hdr->sh_flags & SHF_ALLOC) != 0
1587 	  && (abfd->flags & DYNAMIC) != 0
1588 	  && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1589 						shindex))
1590 	return FALSE;
1591 
1592       /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1593 	 can't read symbols without that section loaded as well.  It
1594 	 is most likely specified by the next section header.  */
1595       if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1596 	{
1597 	  unsigned int i, num_sec;
1598 
1599 	  num_sec = elf_numsections (abfd);
1600 	  for (i = shindex + 1; i < num_sec; i++)
1601 	    {
1602 	      Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1603 	      if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1604 		  && hdr2->sh_link == shindex)
1605 		break;
1606 	    }
1607 	  if (i == num_sec)
1608 	    for (i = 1; i < shindex; i++)
1609 	      {
1610 		Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1611 		if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1612 		    && hdr2->sh_link == shindex)
1613 		  break;
1614 	      }
1615 	  if (i != shindex)
1616 	    return bfd_section_from_shdr (abfd, i);
1617 	}
1618       return TRUE;
1619 
1620     case SHT_DYNSYM:		/* A dynamic symbol table */
1621       if (elf_dynsymtab (abfd) == shindex)
1622 	return TRUE;
1623 
1624       if (hdr->sh_entsize != bed->s->sizeof_sym)
1625 	return FALSE;
1626       BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1627       elf_dynsymtab (abfd) = shindex;
1628       elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1629       elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1630       abfd->flags |= HAS_SYMS;
1631 
1632       /* Besides being a symbol table, we also treat this as a regular
1633 	 section, so that objcopy can handle it.  */
1634       return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1635 
1636     case SHT_SYMTAB_SHNDX:	/* Symbol section indices when >64k sections */
1637       if (elf_symtab_shndx (abfd) == shindex)
1638 	return TRUE;
1639 
1640       BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1641       elf_symtab_shndx (abfd) = shindex;
1642       elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1643       elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1644       return TRUE;
1645 
1646     case SHT_STRTAB:		/* A string table */
1647       if (hdr->bfd_section != NULL)
1648 	return TRUE;
1649       if (ehdr->e_shstrndx == shindex)
1650 	{
1651 	  elf_tdata (abfd)->shstrtab_hdr = *hdr;
1652 	  elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1653 	  return TRUE;
1654 	}
1655       if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1656 	{
1657 	symtab_strtab:
1658 	  elf_tdata (abfd)->strtab_hdr = *hdr;
1659 	  elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1660 	  return TRUE;
1661 	}
1662       if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1663 	{
1664 	dynsymtab_strtab:
1665 	  elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1666 	  hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1667 	  elf_elfsections (abfd)[shindex] = hdr;
1668 	  /* We also treat this as a regular section, so that objcopy
1669 	     can handle it.  */
1670 	  return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1671 						  shindex);
1672 	}
1673 
1674       /* If the string table isn't one of the above, then treat it as a
1675 	 regular section.  We need to scan all the headers to be sure,
1676 	 just in case this strtab section appeared before the above.  */
1677       if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1678 	{
1679 	  unsigned int i, num_sec;
1680 
1681 	  num_sec = elf_numsections (abfd);
1682 	  for (i = 1; i < num_sec; i++)
1683 	    {
1684 	      Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1685 	      if (hdr2->sh_link == shindex)
1686 		{
1687 		  /* Prevent endless recursion on broken objects.  */
1688 		  if (i == shindex)
1689 		    return FALSE;
1690 		  if (! bfd_section_from_shdr (abfd, i))
1691 		    return FALSE;
1692 		  if (elf_onesymtab (abfd) == i)
1693 		    goto symtab_strtab;
1694 		  if (elf_dynsymtab (abfd) == i)
1695 		    goto dynsymtab_strtab;
1696 		}
1697 	    }
1698 	}
1699       return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1700 
1701     case SHT_REL:
1702     case SHT_RELA:
1703       /* *These* do a lot of work -- but build no sections!  */
1704       {
1705 	asection *target_sect;
1706 	Elf_Internal_Shdr *hdr2;
1707 	unsigned int num_sec = elf_numsections (abfd);
1708 
1709 	if (hdr->sh_entsize
1710 	    != (bfd_size_type) (hdr->sh_type == SHT_REL
1711 				? bed->s->sizeof_rel : bed->s->sizeof_rela))
1712 	  return FALSE;
1713 
1714 	/* Check for a bogus link to avoid crashing.  */
1715 	if (hdr->sh_link >= num_sec)
1716 	  {
1717 	    ((*_bfd_error_handler)
1718 	     (_("%B: invalid link %lu for reloc section %s (index %u)"),
1719 	      abfd, hdr->sh_link, name, shindex));
1720 	    return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1721 						    shindex);
1722 	  }
1723 
1724 	/* For some incomprehensible reason Oracle distributes
1725 	   libraries for Solaris in which some of the objects have
1726 	   bogus sh_link fields.  It would be nice if we could just
1727 	   reject them, but, unfortunately, some people need to use
1728 	   them.  We scan through the section headers; if we find only
1729 	   one suitable symbol table, we clobber the sh_link to point
1730 	   to it.  I hope this doesn't break anything.
1731 
1732 	   Don't do it on executable nor shared library.  */
1733 	if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1734 	    && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1735 	    && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1736 	  {
1737 	    unsigned int scan;
1738 	    int found;
1739 
1740 	    found = 0;
1741 	    for (scan = 1; scan < num_sec; scan++)
1742 	      {
1743 		if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1744 		    || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1745 		  {
1746 		    if (found != 0)
1747 		      {
1748 			found = 0;
1749 			break;
1750 		      }
1751 		    found = scan;
1752 		  }
1753 	      }
1754 	    if (found != 0)
1755 	      hdr->sh_link = found;
1756 	  }
1757 
1758 	/* Get the symbol table.  */
1759 	if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1760 	     || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1761 	    && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1762 	  return FALSE;
1763 
1764 	/* If this reloc section does not use the main symbol table we
1765 	   don't treat it as a reloc section.  BFD can't adequately
1766 	   represent such a section, so at least for now, we don't
1767 	   try.  We just present it as a normal section.  We also
1768 	   can't use it as a reloc section if it points to the null
1769 	   section, an invalid section, another reloc section, or its
1770 	   sh_link points to the null section.  */
1771 	if (hdr->sh_link != elf_onesymtab (abfd)
1772 	    || hdr->sh_link == SHN_UNDEF
1773 	    || hdr->sh_info == SHN_UNDEF
1774 	    || hdr->sh_info >= num_sec
1775 	    || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1776 	    || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1777 	  return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1778 						  shindex);
1779 
1780 	if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1781 	  return FALSE;
1782 	target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1783 	if (target_sect == NULL)
1784 	  return FALSE;
1785 
1786 	if ((target_sect->flags & SEC_RELOC) == 0
1787 	    || target_sect->reloc_count == 0)
1788 	  hdr2 = &elf_section_data (target_sect)->rel_hdr;
1789 	else
1790 	  {
1791 	    bfd_size_type amt;
1792 	    BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1793 	    amt = sizeof (*hdr2);
1794 	    hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1795 	    if (hdr2 == NULL)
1796 	      return FALSE;
1797 	    elf_section_data (target_sect)->rel_hdr2 = hdr2;
1798 	  }
1799 	*hdr2 = *hdr;
1800 	elf_elfsections (abfd)[shindex] = hdr2;
1801 	target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1802 	target_sect->flags |= SEC_RELOC;
1803 	target_sect->relocation = NULL;
1804 	target_sect->rel_filepos = hdr->sh_offset;
1805 	/* In the section to which the relocations apply, mark whether
1806 	   its relocations are of the REL or RELA variety.  */
1807 	if (hdr->sh_size != 0)
1808 	  target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1809 	abfd->flags |= HAS_RELOC;
1810 	return TRUE;
1811       }
1812 
1813     case SHT_GNU_verdef:
1814       elf_dynverdef (abfd) = shindex;
1815       elf_tdata (abfd)->dynverdef_hdr = *hdr;
1816       return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1817 
1818     case SHT_GNU_versym:
1819       if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1820 	return FALSE;
1821       elf_dynversym (abfd) = shindex;
1822       elf_tdata (abfd)->dynversym_hdr = *hdr;
1823       return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1824 
1825     case SHT_GNU_verneed:
1826       elf_dynverref (abfd) = shindex;
1827       elf_tdata (abfd)->dynverref_hdr = *hdr;
1828       return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1829 
1830     case SHT_SHLIB:
1831       return TRUE;
1832 
1833     case SHT_GROUP:
1834       if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1835 	return FALSE;
1836       if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1837 	return FALSE;
1838       if (hdr->contents != NULL)
1839 	{
1840 	  Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1841 	  unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1842 	  asection *s;
1843 
1844 	  if (idx->flags & GRP_COMDAT)
1845 	    hdr->bfd_section->flags
1846 	      |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1847 
1848 	  /* We try to keep the same section order as it comes in.  */
1849 	  idx += n_elt;
1850 	  while (--n_elt != 0)
1851 	    {
1852 	      --idx;
1853 
1854 	      if (idx->shdr != NULL
1855 		  && (s = idx->shdr->bfd_section) != NULL
1856 		  && elf_next_in_group (s) != NULL)
1857 		{
1858 		  elf_next_in_group (hdr->bfd_section) = s;
1859 		  break;
1860 		}
1861 	    }
1862 	}
1863       break;
1864 
1865     default:
1866       /* Possibly an attributes section.  */
1867       if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1868 	  || hdr->sh_type == bed->obj_attrs_section_type)
1869 	{
1870 	  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1871 	    return FALSE;
1872 	  _bfd_elf_parse_attributes (abfd, hdr);
1873 	  return TRUE;
1874 	}
1875 
1876       /* Check for any processor-specific section types.  */
1877       if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1878 	return TRUE;
1879 
1880       if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1881 	{
1882 	  if ((hdr->sh_flags & SHF_ALLOC) != 0)
1883 	    /* FIXME: How to properly handle allocated section reserved
1884 	       for applications?  */
1885 	    (*_bfd_error_handler)
1886 	      (_("%B: don't know how to handle allocated, application "
1887 		 "specific section `%s' [0x%8x]"),
1888 	       abfd, name, hdr->sh_type);
1889 	  else
1890 	    /* Allow sections reserved for applications.  */
1891 	    return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1892 						    shindex);
1893 	}
1894       else if (hdr->sh_type >= SHT_LOPROC
1895 	       && hdr->sh_type <= SHT_HIPROC)
1896 	/* FIXME: We should handle this section.  */
1897 	(*_bfd_error_handler)
1898 	  (_("%B: don't know how to handle processor specific section "
1899 	     "`%s' [0x%8x]"),
1900 	   abfd, name, hdr->sh_type);
1901       else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1902 	{
1903 	  /* Unrecognised OS-specific sections.  */
1904 	  if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1905 	    /* SHF_OS_NONCONFORMING indicates that special knowledge is
1906 	       required to correctly process the section and the file should
1907 	       be rejected with an error message.  */
1908 	    (*_bfd_error_handler)
1909 	      (_("%B: don't know how to handle OS specific section "
1910 		 "`%s' [0x%8x]"),
1911 	       abfd, name, hdr->sh_type);
1912 	  else
1913 	    /* Otherwise it should be processed.  */
1914 	    return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915 	}
1916       else
1917 	/* FIXME: We should handle this section.  */
1918 	(*_bfd_error_handler)
1919 	  (_("%B: don't know how to handle section `%s' [0x%8x]"),
1920 	   abfd, name, hdr->sh_type);
1921 
1922       return FALSE;
1923     }
1924 
1925   return TRUE;
1926 }
1927 
1928 /* Return the local symbol specified by ABFD, R_SYMNDX.  */
1929 
1930 Elf_Internal_Sym *
1931 bfd_sym_from_r_symndx (struct sym_cache *cache,
1932 		       bfd *abfd,
1933 		       unsigned long r_symndx)
1934 {
1935   unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1936 
1937   if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1938     {
1939       Elf_Internal_Shdr *symtab_hdr;
1940       unsigned char esym[sizeof (Elf64_External_Sym)];
1941       Elf_External_Sym_Shndx eshndx;
1942 
1943       symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1944       if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1945 				&cache->sym[ent], esym, &eshndx) == NULL)
1946 	return NULL;
1947 
1948       if (cache->abfd != abfd)
1949 	{
1950 	  memset (cache->indx, -1, sizeof (cache->indx));
1951 	  cache->abfd = abfd;
1952 	}
1953       cache->indx[ent] = r_symndx;
1954     }
1955 
1956   return &cache->sym[ent];
1957 }
1958 
1959 /* Given an ELF section number, retrieve the corresponding BFD
1960    section.  */
1961 
1962 asection *
1963 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1964 {
1965   if (index >= elf_numsections (abfd))
1966     return NULL;
1967   return elf_elfsections (abfd)[index]->bfd_section;
1968 }
1969 
1970 static const struct bfd_elf_special_section special_sections_b[] =
1971 {
1972   { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE },
1973   { NULL,                   0,  0, 0,            0 }
1974 };
1975 
1976 static const struct bfd_elf_special_section special_sections_c[] =
1977 {
1978   { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1979   { NULL,                       0, 0, 0,            0 }
1980 };
1981 
1982 static const struct bfd_elf_special_section special_sections_d[] =
1983 {
1984   { STRING_COMMA_LEN (".data"),         -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1985   { STRING_COMMA_LEN (".data1"),         0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1986   { STRING_COMMA_LEN (".debug"),         0, SHT_PROGBITS, 0 },
1987   { STRING_COMMA_LEN (".debug_line"),    0, SHT_PROGBITS, 0 },
1988   { STRING_COMMA_LEN (".debug_info"),    0, SHT_PROGBITS, 0 },
1989   { STRING_COMMA_LEN (".debug_abbrev"),  0, SHT_PROGBITS, 0 },
1990   { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1991   { STRING_COMMA_LEN (".dynamic"),       0, SHT_DYNAMIC,  SHF_ALLOC },
1992   { STRING_COMMA_LEN (".dynstr"),        0, SHT_STRTAB,   SHF_ALLOC },
1993   { STRING_COMMA_LEN (".dynsym"),        0, SHT_DYNSYM,   SHF_ALLOC },
1994   { NULL,                      0,        0, 0,            0 }
1995 };
1996 
1997 static const struct bfd_elf_special_section special_sections_f[] =
1998 {
1999   { STRING_COMMA_LEN (".fini"),       0, SHT_PROGBITS,   SHF_ALLOC + SHF_EXECINSTR },
2000   { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2001   { NULL,                          0, 0, 0,              0 }
2002 };
2003 
2004 static const struct bfd_elf_special_section special_sections_g[] =
2005 {
2006   { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS,      SHF_ALLOC + SHF_WRITE },
2007   { STRING_COMMA_LEN (".got"),             0, SHT_PROGBITS,    SHF_ALLOC + SHF_WRITE },
2008   { STRING_COMMA_LEN (".gnu.version"),     0, SHT_GNU_versym,  0 },
2009   { STRING_COMMA_LEN (".gnu.version_d"),   0, SHT_GNU_verdef,  0 },
2010   { STRING_COMMA_LEN (".gnu.version_r"),   0, SHT_GNU_verneed, 0 },
2011   { STRING_COMMA_LEN (".gnu.liblist"),     0, SHT_GNU_LIBLIST, SHF_ALLOC },
2012   { STRING_COMMA_LEN (".gnu.conflict"),    0, SHT_RELA,        SHF_ALLOC },
2013   { STRING_COMMA_LEN (".gnu.hash"),        0, SHT_GNU_HASH,    SHF_ALLOC },
2014   { NULL,                        0,        0, 0,               0 }
2015 };
2016 
2017 static const struct bfd_elf_special_section special_sections_h[] =
2018 {
2019   { STRING_COMMA_LEN (".hash"), 0, SHT_HASH,     SHF_ALLOC },
2020   { NULL,                    0, 0, 0,            0 }
2021 };
2022 
2023 static const struct bfd_elf_special_section special_sections_i[] =
2024 {
2025   { STRING_COMMA_LEN (".init"),       0, SHT_PROGBITS,   SHF_ALLOC + SHF_EXECINSTR },
2026   { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2027   { STRING_COMMA_LEN (".interp"),     0, SHT_PROGBITS,   0 },
2028   { NULL,                      0,     0, 0,              0 }
2029 };
2030 
2031 static const struct bfd_elf_special_section special_sections_l[] =
2032 {
2033   { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2034   { NULL,                    0, 0, 0,            0 }
2035 };
2036 
2037 static const struct bfd_elf_special_section special_sections_n[] =
2038 {
2039   { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2040   { STRING_COMMA_LEN (".note"),          -1, SHT_NOTE,     0 },
2041   { NULL,                    0,           0, 0,            0 }
2042 };
2043 
2044 static const struct bfd_elf_special_section special_sections_p[] =
2045 {
2046   { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2047   { STRING_COMMA_LEN (".plt"),           0, SHT_PROGBITS,      SHF_ALLOC + SHF_EXECINSTR },
2048   { NULL,                   0,           0, 0,                 0 }
2049 };
2050 
2051 static const struct bfd_elf_special_section special_sections_r[] =
2052 {
2053   { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2054   { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2055   { STRING_COMMA_LEN (".rela"),   -1, SHT_RELA,     0 },
2056   { STRING_COMMA_LEN (".rel"),    -1, SHT_REL,      0 },
2057   { NULL,                   0,     0, 0,            0 }
2058 };
2059 
2060 static const struct bfd_elf_special_section special_sections_s[] =
2061 {
2062   { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2063   { STRING_COMMA_LEN (".strtab"),   0, SHT_STRTAB, 0 },
2064   { STRING_COMMA_LEN (".symtab"),   0, SHT_SYMTAB, 0 },
2065   /* See struct bfd_elf_special_section declaration for the semantics of
2066      this special case where .prefix_length != strlen (.prefix).  */
2067   { ".stabstr",			5,  3, SHT_STRTAB, 0 },
2068   { NULL,                       0,  0, 0,          0 }
2069 };
2070 
2071 static const struct bfd_elf_special_section special_sections_t[] =
2072 {
2073   { STRING_COMMA_LEN (".text"),  -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2074   { STRING_COMMA_LEN (".tbss"),  -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_TLS },
2075   { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2076   { NULL,                     0,  0, 0,            0 }
2077 };
2078 
2079 static const struct bfd_elf_special_section special_sections_z[] =
2080 {
2081   { STRING_COMMA_LEN (".zdebug_line"),    0, SHT_PROGBITS, 0 },
2082   { STRING_COMMA_LEN (".zdebug_info"),    0, SHT_PROGBITS, 0 },
2083   { STRING_COMMA_LEN (".zdebug_abbrev"),  0, SHT_PROGBITS, 0 },
2084   { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2085   { NULL,                     0,  0, 0,            0 }
2086 };
2087 
2088 static const struct bfd_elf_special_section *special_sections[] =
2089 {
2090   special_sections_b,		/* 'b' */
2091   special_sections_c,		/* 'c' */
2092   special_sections_d,		/* 'd' */
2093   NULL,				/* 'e' */
2094   special_sections_f,		/* 'f' */
2095   special_sections_g,		/* 'g' */
2096   special_sections_h,		/* 'h' */
2097   special_sections_i,		/* 'i' */
2098   NULL,				/* 'j' */
2099   NULL,				/* 'k' */
2100   special_sections_l,		/* 'l' */
2101   NULL,				/* 'm' */
2102   special_sections_n,		/* 'n' */
2103   NULL,				/* 'o' */
2104   special_sections_p,		/* 'p' */
2105   NULL,				/* 'q' */
2106   special_sections_r,		/* 'r' */
2107   special_sections_s,		/* 's' */
2108   special_sections_t,		/* 't' */
2109   NULL,				/* 'u' */
2110   NULL,				/* 'v' */
2111   NULL,				/* 'w' */
2112   NULL,				/* 'x' */
2113   NULL,				/* 'y' */
2114   special_sections_z		/* 'z' */
2115 };
2116 
2117 const struct bfd_elf_special_section *
2118 _bfd_elf_get_special_section (const char *name,
2119 			      const struct bfd_elf_special_section *spec,
2120 			      unsigned int rela)
2121 {
2122   int i;
2123   int len;
2124 
2125   len = strlen (name);
2126 
2127   for (i = 0; spec[i].prefix != NULL; i++)
2128     {
2129       int suffix_len;
2130       int prefix_len = spec[i].prefix_length;
2131 
2132       if (len < prefix_len)
2133 	continue;
2134       if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2135 	continue;
2136 
2137       suffix_len = spec[i].suffix_length;
2138       if (suffix_len <= 0)
2139 	{
2140 	  if (name[prefix_len] != 0)
2141 	    {
2142 	      if (suffix_len == 0)
2143 		continue;
2144 	      if (name[prefix_len] != '.'
2145 		  && (suffix_len == -2
2146 		      || (rela && spec[i].type == SHT_REL)))
2147 		continue;
2148 	    }
2149 	}
2150       else
2151 	{
2152 	  if (len < prefix_len + suffix_len)
2153 	    continue;
2154 	  if (memcmp (name + len - suffix_len,
2155 		      spec[i].prefix + prefix_len,
2156 		      suffix_len) != 0)
2157 	    continue;
2158 	}
2159       return &spec[i];
2160     }
2161 
2162   return NULL;
2163 }
2164 
2165 const struct bfd_elf_special_section *
2166 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2167 {
2168   int i;
2169   const struct bfd_elf_special_section *spec;
2170   const struct elf_backend_data *bed;
2171 
2172   /* See if this is one of the special sections.  */
2173   if (sec->name == NULL)
2174     return NULL;
2175 
2176   bed = get_elf_backend_data (abfd);
2177   spec = bed->special_sections;
2178   if (spec)
2179     {
2180       spec = _bfd_elf_get_special_section (sec->name,
2181 					   bed->special_sections,
2182 					   sec->use_rela_p);
2183       if (spec != NULL)
2184 	return spec;
2185     }
2186 
2187   if (sec->name[0] != '.')
2188     return NULL;
2189 
2190   i = sec->name[1] - 'b';
2191   if (i < 0 || i > 'z' - 'b')
2192     return NULL;
2193 
2194   spec = special_sections[i];
2195 
2196   if (spec == NULL)
2197     return NULL;
2198 
2199   return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2200 }
2201 
2202 bfd_boolean
2203 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2204 {
2205   struct bfd_elf_section_data *sdata;
2206   const struct elf_backend_data *bed;
2207   const struct bfd_elf_special_section *ssect;
2208 
2209   sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2210   if (sdata == NULL)
2211     {
2212       sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2213                                                           sizeof (*sdata));
2214       if (sdata == NULL)
2215 	return FALSE;
2216       sec->used_by_bfd = sdata;
2217     }
2218 
2219   /* Indicate whether or not this section should use RELA relocations.  */
2220   bed = get_elf_backend_data (abfd);
2221   sec->use_rela_p = bed->default_use_rela_p;
2222 
2223   /* When we read a file, we don't need to set ELF section type and
2224      flags.  They will be overridden in _bfd_elf_make_section_from_shdr
2225      anyway.  We will set ELF section type and flags for all linker
2226      created sections.  If user specifies BFD section flags, we will
2227      set ELF section type and flags based on BFD section flags in
2228      elf_fake_sections.  */
2229   if ((!sec->flags && abfd->direction != read_direction)
2230       || (sec->flags & SEC_LINKER_CREATED) != 0)
2231     {
2232       ssect = (*bed->get_sec_type_attr) (abfd, sec);
2233       if (ssect != NULL)
2234 	{
2235 	  elf_section_type (sec) = ssect->type;
2236 	  elf_section_flags (sec) = ssect->attr;
2237 	}
2238     }
2239 
2240   return _bfd_generic_new_section_hook (abfd, sec);
2241 }
2242 
2243 /* Create a new bfd section from an ELF program header.
2244 
2245    Since program segments have no names, we generate a synthetic name
2246    of the form segment<NUM>, where NUM is generally the index in the
2247    program header table.  For segments that are split (see below) we
2248    generate the names segment<NUM>a and segment<NUM>b.
2249 
2250    Note that some program segments may have a file size that is different than
2251    (less than) the memory size.  All this means is that at execution the
2252    system must allocate the amount of memory specified by the memory size,
2253    but only initialize it with the first "file size" bytes read from the
2254    file.  This would occur for example, with program segments consisting
2255    of combined data+bss.
2256 
2257    To handle the above situation, this routine generates TWO bfd sections
2258    for the single program segment.  The first has the length specified by
2259    the file size of the segment, and the second has the length specified
2260    by the difference between the two sizes.  In effect, the segment is split
2261    into its initialized and uninitialized parts.
2262 
2263  */
2264 
2265 bfd_boolean
2266 _bfd_elf_make_section_from_phdr (bfd *abfd,
2267 				 Elf_Internal_Phdr *hdr,
2268 				 int index,
2269 				 const char *type_name)
2270 {
2271   asection *newsect;
2272   char *name;
2273   char namebuf[64];
2274   size_t len;
2275   int split;
2276 
2277   split = ((hdr->p_memsz > 0)
2278 	    && (hdr->p_filesz > 0)
2279 	    && (hdr->p_memsz > hdr->p_filesz));
2280 
2281   if (hdr->p_filesz > 0)
2282     {
2283       sprintf (namebuf, "%s%d%s", type_name, index, split ? "a" : "");
2284       len = strlen (namebuf) + 1;
2285       name = (char *) bfd_alloc (abfd, len);
2286       if (!name)
2287 	return FALSE;
2288       memcpy (name, namebuf, len);
2289       newsect = bfd_make_section (abfd, name);
2290       if (newsect == NULL)
2291 	return FALSE;
2292       newsect->vma = hdr->p_vaddr;
2293       newsect->lma = hdr->p_paddr;
2294       newsect->size = hdr->p_filesz;
2295       newsect->filepos = hdr->p_offset;
2296       newsect->flags |= SEC_HAS_CONTENTS;
2297       newsect->alignment_power = bfd_log2 (hdr->p_align);
2298       if (hdr->p_type == PT_LOAD)
2299 	{
2300 	  newsect->flags |= SEC_ALLOC;
2301 	  newsect->flags |= SEC_LOAD;
2302 	  if (hdr->p_flags & PF_X)
2303 	    {
2304 	      /* FIXME: all we known is that it has execute PERMISSION,
2305 		 may be data.  */
2306 	      newsect->flags |= SEC_CODE;
2307 	    }
2308 	}
2309       if (!(hdr->p_flags & PF_W))
2310 	{
2311 	  newsect->flags |= SEC_READONLY;
2312 	}
2313     }
2314 
2315   if (hdr->p_memsz > hdr->p_filesz)
2316     {
2317       bfd_vma align;
2318 
2319       sprintf (namebuf, "%s%d%s", type_name, index, split ? "b" : "");
2320       len = strlen (namebuf) + 1;
2321       name = (char *) bfd_alloc (abfd, len);
2322       if (!name)
2323 	return FALSE;
2324       memcpy (name, namebuf, len);
2325       newsect = bfd_make_section (abfd, name);
2326       if (newsect == NULL)
2327 	return FALSE;
2328       newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2329       newsect->lma = hdr->p_paddr + hdr->p_filesz;
2330       newsect->size = hdr->p_memsz - hdr->p_filesz;
2331       newsect->filepos = hdr->p_offset + hdr->p_filesz;
2332       align = newsect->vma & -newsect->vma;
2333       if (align == 0 || align > hdr->p_align)
2334 	align = hdr->p_align;
2335       newsect->alignment_power = bfd_log2 (align);
2336       if (hdr->p_type == PT_LOAD)
2337 	{
2338 	  /* Hack for gdb.  Segments that have not been modified do
2339 	     not have their contents written to a core file, on the
2340 	     assumption that a debugger can find the contents in the
2341 	     executable.  We flag this case by setting the fake
2342 	     section size to zero.  Note that "real" bss sections will
2343 	     always have their contents dumped to the core file.  */
2344 	  if (bfd_get_format (abfd) == bfd_core)
2345 	    newsect->size = 0;
2346 	  newsect->flags |= SEC_ALLOC;
2347 	  if (hdr->p_flags & PF_X)
2348 	    newsect->flags |= SEC_CODE;
2349 	}
2350       if (!(hdr->p_flags & PF_W))
2351 	newsect->flags |= SEC_READONLY;
2352     }
2353 
2354   return TRUE;
2355 }
2356 
2357 bfd_boolean
2358 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2359 {
2360   const struct elf_backend_data *bed;
2361 
2362   switch (hdr->p_type)
2363     {
2364     case PT_NULL:
2365       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2366 
2367     case PT_LOAD:
2368       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2369 
2370     case PT_DYNAMIC:
2371       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2372 
2373     case PT_INTERP:
2374       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2375 
2376     case PT_NOTE:
2377       if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2378 	return FALSE;
2379       if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2380 	return FALSE;
2381       return TRUE;
2382 
2383     case PT_SHLIB:
2384       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2385 
2386     case PT_PHDR:
2387       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2388 
2389     case PT_GNU_EH_FRAME:
2390       return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2391 					      "eh_frame_hdr");
2392 
2393     case PT_GNU_STACK:
2394       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2395 
2396     case PT_GNU_RELRO:
2397       return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2398 
2399     default:
2400       /* Check for any processor-specific program segment types.  */
2401       bed = get_elf_backend_data (abfd);
2402       return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2403     }
2404 }
2405 
2406 /* Initialize REL_HDR, the section-header for new section, containing
2407    relocations against ASECT.  If USE_RELA_P is TRUE, we use RELA
2408    relocations; otherwise, we use REL relocations.  */
2409 
2410 bfd_boolean
2411 _bfd_elf_init_reloc_shdr (bfd *abfd,
2412 			  Elf_Internal_Shdr *rel_hdr,
2413 			  asection *asect,
2414 			  bfd_boolean use_rela_p)
2415 {
2416   char *name;
2417   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2418   bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2419 
2420   name = (char *) bfd_alloc (abfd, amt);
2421   if (name == NULL)
2422     return FALSE;
2423   sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2424   rel_hdr->sh_name =
2425     (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2426 					FALSE);
2427   if (rel_hdr->sh_name == (unsigned int) -1)
2428     return FALSE;
2429   rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2430   rel_hdr->sh_entsize = (use_rela_p
2431 			 ? bed->s->sizeof_rela
2432 			 : bed->s->sizeof_rel);
2433   rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2434   rel_hdr->sh_flags = 0;
2435   rel_hdr->sh_addr = 0;
2436   rel_hdr->sh_size = 0;
2437   rel_hdr->sh_offset = 0;
2438 
2439   return TRUE;
2440 }
2441 
2442 /* Return the default section type based on the passed in section flags.  */
2443 
2444 int
2445 bfd_elf_get_default_section_type (flagword flags)
2446 {
2447   if ((flags & SEC_ALLOC) != 0
2448       && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0
2449 	  || (flags & SEC_NEVER_LOAD) != 0))
2450     return SHT_NOBITS;
2451   return SHT_PROGBITS;
2452 }
2453 
2454 /* Set up an ELF internal section header for a section.  */
2455 
2456 static void
2457 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2458 {
2459   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2460   bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2461   Elf_Internal_Shdr *this_hdr;
2462   unsigned int sh_type;
2463 
2464   if (*failedptr)
2465     {
2466       /* We already failed; just get out of the bfd_map_over_sections
2467 	 loop.  */
2468       return;
2469     }
2470 
2471   this_hdr = &elf_section_data (asect)->this_hdr;
2472 
2473   this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2474 							  asect->name, FALSE);
2475   if (this_hdr->sh_name == (unsigned int) -1)
2476     {
2477       *failedptr = TRUE;
2478       return;
2479     }
2480 
2481   /* Don't clear sh_flags. Assembler may set additional bits.  */
2482 
2483   if ((asect->flags & SEC_ALLOC) != 0
2484       || asect->user_set_vma)
2485     this_hdr->sh_addr = asect->vma;
2486   else
2487     this_hdr->sh_addr = 0;
2488 
2489   this_hdr->sh_offset = 0;
2490   this_hdr->sh_size = asect->size;
2491   this_hdr->sh_link = 0;
2492   this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2493   /* The sh_entsize and sh_info fields may have been set already by
2494      copy_private_section_data.  */
2495 
2496   this_hdr->bfd_section = asect;
2497   this_hdr->contents = NULL;
2498 
2499   /* If the section type is unspecified, we set it based on
2500      asect->flags.  */
2501   if ((asect->flags & SEC_GROUP) != 0)
2502     sh_type = SHT_GROUP;
2503   else
2504     sh_type = bfd_elf_get_default_section_type (asect->flags);
2505 
2506   if (this_hdr->sh_type == SHT_NULL)
2507     this_hdr->sh_type = sh_type;
2508   else if (this_hdr->sh_type == SHT_NOBITS
2509 	   && sh_type == SHT_PROGBITS
2510 	   && (asect->flags & SEC_ALLOC) != 0)
2511     {
2512       /* Warn if we are changing a NOBITS section to PROGBITS, but
2513 	 allow the link to proceed.  This can happen when users link
2514 	 non-bss input sections to bss output sections, or emit data
2515 	 to a bss output section via a linker script.  */
2516       (*_bfd_error_handler)
2517 	(_("warning: section `%A' type changed to PROGBITS"), asect);
2518       this_hdr->sh_type = sh_type;
2519     }
2520 
2521   switch (this_hdr->sh_type)
2522     {
2523     default:
2524       break;
2525 
2526     case SHT_STRTAB:
2527     case SHT_INIT_ARRAY:
2528     case SHT_FINI_ARRAY:
2529     case SHT_PREINIT_ARRAY:
2530     case SHT_NOTE:
2531     case SHT_NOBITS:
2532     case SHT_PROGBITS:
2533       break;
2534 
2535     case SHT_HASH:
2536       this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2537       break;
2538 
2539     case SHT_DYNSYM:
2540       this_hdr->sh_entsize = bed->s->sizeof_sym;
2541       break;
2542 
2543     case SHT_DYNAMIC:
2544       this_hdr->sh_entsize = bed->s->sizeof_dyn;
2545       break;
2546 
2547     case SHT_RELA:
2548       if (get_elf_backend_data (abfd)->may_use_rela_p)
2549 	this_hdr->sh_entsize = bed->s->sizeof_rela;
2550       break;
2551 
2552      case SHT_REL:
2553       if (get_elf_backend_data (abfd)->may_use_rel_p)
2554 	this_hdr->sh_entsize = bed->s->sizeof_rel;
2555       break;
2556 
2557      case SHT_GNU_versym:
2558       this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2559       break;
2560 
2561      case SHT_GNU_verdef:
2562       this_hdr->sh_entsize = 0;
2563       /* objcopy or strip will copy over sh_info, but may not set
2564 	 cverdefs.  The linker will set cverdefs, but sh_info will be
2565 	 zero.  */
2566       if (this_hdr->sh_info == 0)
2567 	this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2568       else
2569 	BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2570 		    || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2571       break;
2572 
2573     case SHT_GNU_verneed:
2574       this_hdr->sh_entsize = 0;
2575       /* objcopy or strip will copy over sh_info, but may not set
2576 	 cverrefs.  The linker will set cverrefs, but sh_info will be
2577 	 zero.  */
2578       if (this_hdr->sh_info == 0)
2579 	this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2580       else
2581 	BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2582 		    || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2583       break;
2584 
2585     case SHT_GROUP:
2586       this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2587       break;
2588 
2589     case SHT_GNU_HASH:
2590       this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2591       break;
2592     }
2593 
2594   if ((asect->flags & SEC_ALLOC) != 0)
2595     this_hdr->sh_flags |= SHF_ALLOC;
2596   if ((asect->flags & SEC_READONLY) == 0)
2597     this_hdr->sh_flags |= SHF_WRITE;
2598   if ((asect->flags & SEC_CODE) != 0)
2599     this_hdr->sh_flags |= SHF_EXECINSTR;
2600   if ((asect->flags & SEC_MERGE) != 0)
2601     {
2602       this_hdr->sh_flags |= SHF_MERGE;
2603       this_hdr->sh_entsize = asect->entsize;
2604       if ((asect->flags & SEC_STRINGS) != 0)
2605 	this_hdr->sh_flags |= SHF_STRINGS;
2606     }
2607   if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2608     this_hdr->sh_flags |= SHF_GROUP;
2609   if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2610     {
2611       this_hdr->sh_flags |= SHF_TLS;
2612       if (asect->size == 0
2613 	  && (asect->flags & SEC_HAS_CONTENTS) == 0)
2614 	{
2615 	  struct bfd_link_order *o = asect->map_tail.link_order;
2616 
2617 	  this_hdr->sh_size = 0;
2618 	  if (o != NULL)
2619 	    {
2620 	      this_hdr->sh_size = o->offset + o->size;
2621 	      if (this_hdr->sh_size != 0)
2622 		this_hdr->sh_type = SHT_NOBITS;
2623 	    }
2624 	}
2625     }
2626 
2627   /* Check for processor-specific section types.  */
2628   sh_type = this_hdr->sh_type;
2629   if (bed->elf_backend_fake_sections
2630       && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2631     *failedptr = TRUE;
2632 
2633   if (sh_type == SHT_NOBITS && asect->size != 0)
2634     {
2635       /* Don't change the header type from NOBITS if we are being
2636 	 called for objcopy --only-keep-debug.  */
2637       this_hdr->sh_type = sh_type;
2638     }
2639 
2640   /* If the section has relocs, set up a section header for the
2641      SHT_REL[A] section.  If two relocation sections are required for
2642      this section, it is up to the processor-specific back-end to
2643      create the other.  */
2644   if ((asect->flags & SEC_RELOC) != 0
2645       && !_bfd_elf_init_reloc_shdr (abfd,
2646 				    &elf_section_data (asect)->rel_hdr,
2647 				    asect,
2648 				    asect->use_rela_p))
2649     *failedptr = TRUE;
2650 }
2651 
2652 /* Fill in the contents of a SHT_GROUP section.  Called from
2653    _bfd_elf_compute_section_file_positions for gas, objcopy, and
2654    when ELF targets use the generic linker, ld.  Called for ld -r
2655    from bfd_elf_final_link.  */
2656 
2657 void
2658 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2659 {
2660   bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2661   asection *elt, *first;
2662   unsigned char *loc;
2663   bfd_boolean gas;
2664 
2665   /* Ignore linker created group section.  See elfNN_ia64_object_p in
2666      elfxx-ia64.c.  */
2667   if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2668       || *failedptr)
2669     return;
2670 
2671   if (elf_section_data (sec)->this_hdr.sh_info == 0)
2672     {
2673       unsigned long symindx = 0;
2674 
2675       /* elf_group_id will have been set up by objcopy and the
2676 	 generic linker.  */
2677       if (elf_group_id (sec) != NULL)
2678 	symindx = elf_group_id (sec)->udata.i;
2679 
2680       if (symindx == 0)
2681 	{
2682 	  /* If called from the assembler, swap_out_syms will have set up
2683 	     elf_section_syms.  */
2684 	  BFD_ASSERT (elf_section_syms (abfd) != NULL);
2685 	  symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2686 	}
2687       elf_section_data (sec)->this_hdr.sh_info = symindx;
2688     }
2689   else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2690     {
2691       /* The ELF backend linker sets sh_info to -2 when the group
2692 	 signature symbol is global, and thus the index can't be
2693 	 set until all local symbols are output.  */
2694       asection *igroup = elf_sec_group (elf_next_in_group (sec));
2695       struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2696       unsigned long symndx = sec_data->this_hdr.sh_info;
2697       unsigned long extsymoff = 0;
2698       struct elf_link_hash_entry *h;
2699 
2700       if (!elf_bad_symtab (igroup->owner))
2701 	{
2702 	  Elf_Internal_Shdr *symtab_hdr;
2703 
2704 	  symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2705 	  extsymoff = symtab_hdr->sh_info;
2706 	}
2707       h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2708       while (h->root.type == bfd_link_hash_indirect
2709 	     || h->root.type == bfd_link_hash_warning)
2710 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2711 
2712       elf_section_data (sec)->this_hdr.sh_info = h->indx;
2713     }
2714 
2715   /* The contents won't be allocated for "ld -r" or objcopy.  */
2716   gas = TRUE;
2717   if (sec->contents == NULL)
2718     {
2719       gas = FALSE;
2720       sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2721 
2722       /* Arrange for the section to be written out.  */
2723       elf_section_data (sec)->this_hdr.contents = sec->contents;
2724       if (sec->contents == NULL)
2725 	{
2726 	  *failedptr = TRUE;
2727 	  return;
2728 	}
2729     }
2730 
2731   loc = sec->contents + sec->size;
2732 
2733   /* Get the pointer to the first section in the group that gas
2734      squirreled away here.  objcopy arranges for this to be set to the
2735      start of the input section group.  */
2736   first = elt = elf_next_in_group (sec);
2737 
2738   /* First element is a flag word.  Rest of section is elf section
2739      indices for all the sections of the group.  Write them backwards
2740      just to keep the group in the same order as given in .section
2741      directives, not that it matters.  */
2742   while (elt != NULL)
2743     {
2744       asection *s;
2745       unsigned int idx;
2746 
2747       s = elt;
2748       if (! elf_discarded_section (s))
2749 	{
2750 	  loc -= 4;
2751 	  if (!gas)
2752 	    s = s->output_section;
2753 	  idx = 0;
2754 	  if (s != NULL)
2755 	    idx = elf_section_data (s)->this_idx;
2756 	  H_PUT_32 (abfd, idx, loc);
2757 	}
2758       elt = elf_next_in_group (elt);
2759       if (elt == first)
2760 	break;
2761     }
2762 
2763   if ((loc -= 4) != sec->contents)
2764     abort ();
2765 
2766   H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2767 }
2768 
2769 /* Assign all ELF section numbers.  The dummy first section is handled here
2770    too.  The link/info pointers for the standard section types are filled
2771    in here too, while we're at it.  */
2772 
2773 static bfd_boolean
2774 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2775 {
2776   struct elf_obj_tdata *t = elf_tdata (abfd);
2777   asection *sec;
2778   unsigned int section_number, secn;
2779   Elf_Internal_Shdr **i_shdrp;
2780   struct bfd_elf_section_data *d;
2781   bfd_boolean need_symtab;
2782 
2783   section_number = 1;
2784 
2785   _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2786 
2787   /* SHT_GROUP sections are in relocatable files only.  */
2788   if (link_info == NULL || link_info->relocatable)
2789     {
2790       /* Put SHT_GROUP sections first.  */
2791       for (sec = abfd->sections; sec != NULL; sec = sec->next)
2792 	{
2793 	  d = elf_section_data (sec);
2794 
2795 	  if (d->this_hdr.sh_type == SHT_GROUP)
2796 	    {
2797 	      if (sec->flags & SEC_LINKER_CREATED)
2798 		{
2799 		  /* Remove the linker created SHT_GROUP sections.  */
2800 		  bfd_section_list_remove (abfd, sec);
2801 		  abfd->section_count--;
2802 		}
2803 	      else
2804 		d->this_idx = section_number++;
2805 	    }
2806 	}
2807     }
2808 
2809   for (sec = abfd->sections; sec; sec = sec->next)
2810     {
2811       d = elf_section_data (sec);
2812 
2813       if (d->this_hdr.sh_type != SHT_GROUP)
2814 	d->this_idx = section_number++;
2815       _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2816       if ((sec->flags & SEC_RELOC) == 0)
2817 	d->rel_idx = 0;
2818       else
2819 	{
2820 	  d->rel_idx = section_number++;
2821 	  _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2822 	}
2823 
2824       if (d->rel_hdr2)
2825 	{
2826 	  d->rel_idx2 = section_number++;
2827 	  _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2828 	}
2829       else
2830 	d->rel_idx2 = 0;
2831     }
2832 
2833   t->shstrtab_section = section_number++;
2834   _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2835   elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2836 
2837   need_symtab = (bfd_get_symcount (abfd) > 0
2838 		|| (link_info == NULL
2839 		    && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2840 			== HAS_RELOC)));
2841   if (need_symtab)
2842     {
2843       t->symtab_section = section_number++;
2844       _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2845       if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2846 	{
2847 	  t->symtab_shndx_section = section_number++;
2848 	  t->symtab_shndx_hdr.sh_name
2849 	    = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2850 						  ".symtab_shndx", FALSE);
2851 	  if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2852 	    return FALSE;
2853 	}
2854       t->strtab_section = section_number++;
2855       _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2856     }
2857 
2858   _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2859   t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2860 
2861   elf_numsections (abfd) = section_number;
2862   elf_elfheader (abfd)->e_shnum = section_number;
2863 
2864   /* Set up the list of section header pointers, in agreement with the
2865      indices.  */
2866   i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
2867                                                 sizeof (Elf_Internal_Shdr *));
2868   if (i_shdrp == NULL)
2869     return FALSE;
2870 
2871   i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
2872                                                  sizeof (Elf_Internal_Shdr));
2873   if (i_shdrp[0] == NULL)
2874     {
2875       bfd_release (abfd, i_shdrp);
2876       return FALSE;
2877     }
2878 
2879   elf_elfsections (abfd) = i_shdrp;
2880 
2881   i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2882   if (need_symtab)
2883     {
2884       i_shdrp[t->symtab_section] = &t->symtab_hdr;
2885       if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2886 	{
2887 	  i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2888 	  t->symtab_shndx_hdr.sh_link = t->symtab_section;
2889 	}
2890       i_shdrp[t->strtab_section] = &t->strtab_hdr;
2891       t->symtab_hdr.sh_link = t->strtab_section;
2892     }
2893 
2894   for (sec = abfd->sections; sec; sec = sec->next)
2895     {
2896       struct bfd_elf_section_data *d = elf_section_data (sec);
2897       asection *s;
2898       const char *name;
2899 
2900       i_shdrp[d->this_idx] = &d->this_hdr;
2901       if (d->rel_idx != 0)
2902 	i_shdrp[d->rel_idx] = &d->rel_hdr;
2903       if (d->rel_idx2 != 0)
2904 	i_shdrp[d->rel_idx2] = d->rel_hdr2;
2905 
2906       /* Fill in the sh_link and sh_info fields while we're at it.  */
2907 
2908       /* sh_link of a reloc section is the section index of the symbol
2909 	 table.  sh_info is the section index of the section to which
2910 	 the relocation entries apply.  */
2911       if (d->rel_idx != 0)
2912 	{
2913 	  d->rel_hdr.sh_link = t->symtab_section;
2914 	  d->rel_hdr.sh_info = d->this_idx;
2915 	}
2916       if (d->rel_idx2 != 0)
2917 	{
2918 	  d->rel_hdr2->sh_link = t->symtab_section;
2919 	  d->rel_hdr2->sh_info = d->this_idx;
2920 	}
2921 
2922       /* We need to set up sh_link for SHF_LINK_ORDER.  */
2923       if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2924 	{
2925 	  s = elf_linked_to_section (sec);
2926 	  if (s)
2927 	    {
2928 	      /* elf_linked_to_section points to the input section.  */
2929 	      if (link_info != NULL)
2930 		{
2931 		  /* Check discarded linkonce section.  */
2932 		  if (elf_discarded_section (s))
2933 		    {
2934 		      asection *kept;
2935 		      (*_bfd_error_handler)
2936 			(_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2937 			 abfd, d->this_hdr.bfd_section,
2938 			 s, s->owner);
2939 		      /* Point to the kept section if it has the same
2940 			 size as the discarded one.  */
2941 		      kept = _bfd_elf_check_kept_section (s, link_info);
2942 		      if (kept == NULL)
2943 			{
2944 			  bfd_set_error (bfd_error_bad_value);
2945 			  return FALSE;
2946 			}
2947 		      s = kept;
2948 		    }
2949 
2950 		  s = s->output_section;
2951 		  BFD_ASSERT (s != NULL);
2952 		}
2953 	      else
2954 		{
2955 		  /* Handle objcopy. */
2956 		  if (s->output_section == NULL)
2957 		    {
2958 		      (*_bfd_error_handler)
2959 			(_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2960 			 abfd, d->this_hdr.bfd_section, s, s->owner);
2961 		      bfd_set_error (bfd_error_bad_value);
2962 		      return FALSE;
2963 		    }
2964 		  s = s->output_section;
2965 		}
2966 	      d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2967 	    }
2968 	  else
2969 	    {
2970 	      /* PR 290:
2971 		 The Intel C compiler generates SHT_IA_64_UNWIND with
2972 		 SHF_LINK_ORDER.  But it doesn't set the sh_link or
2973 		 sh_info fields.  Hence we could get the situation
2974 		 where s is NULL.  */
2975 	      const struct elf_backend_data *bed
2976 		= get_elf_backend_data (abfd);
2977 	      if (bed->link_order_error_handler)
2978 		bed->link_order_error_handler
2979 		  (_("%B: warning: sh_link not set for section `%A'"),
2980 		   abfd, sec);
2981 	    }
2982 	}
2983 
2984       switch (d->this_hdr.sh_type)
2985 	{
2986 	case SHT_REL:
2987 	case SHT_RELA:
2988 	  /* A reloc section which we are treating as a normal BFD
2989 	     section.  sh_link is the section index of the symbol
2990 	     table.  sh_info is the section index of the section to
2991 	     which the relocation entries apply.  We assume that an
2992 	     allocated reloc section uses the dynamic symbol table.
2993 	     FIXME: How can we be sure?  */
2994 	  s = bfd_get_section_by_name (abfd, ".dynsym");
2995 	  if (s != NULL)
2996 	    d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2997 
2998 	  /* We look up the section the relocs apply to by name.  */
2999 	  name = sec->name;
3000 	  if (d->this_hdr.sh_type == SHT_REL)
3001 	    name += 4;
3002 	  else
3003 	    name += 5;
3004 	  s = bfd_get_section_by_name (abfd, name);
3005 	  if (s != NULL)
3006 	    d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3007 	  break;
3008 
3009 	case SHT_STRTAB:
3010 	  /* We assume that a section named .stab*str is a stabs
3011 	     string section.  We look for a section with the same name
3012 	     but without the trailing ``str'', and set its sh_link
3013 	     field to point to this section.  */
3014 	  if (CONST_STRNEQ (sec->name, ".stab")
3015 	      && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3016 	    {
3017 	      size_t len;
3018 	      char *alc;
3019 
3020 	      len = strlen (sec->name);
3021 	      alc = (char *) bfd_malloc (len - 2);
3022 	      if (alc == NULL)
3023 		return FALSE;
3024 	      memcpy (alc, sec->name, len - 3);
3025 	      alc[len - 3] = '\0';
3026 	      s = bfd_get_section_by_name (abfd, alc);
3027 	      free (alc);
3028 	      if (s != NULL)
3029 		{
3030 		  elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3031 
3032 		  /* This is a .stab section.  */
3033 		  if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3034 		    elf_section_data (s)->this_hdr.sh_entsize
3035 		      = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3036 		}
3037 	    }
3038 	  break;
3039 
3040 	case SHT_DYNAMIC:
3041 	case SHT_DYNSYM:
3042 	case SHT_GNU_verneed:
3043 	case SHT_GNU_verdef:
3044 	  /* sh_link is the section header index of the string table
3045 	     used for the dynamic entries, or the symbol table, or the
3046 	     version strings.  */
3047 	  s = bfd_get_section_by_name (abfd, ".dynstr");
3048 	  if (s != NULL)
3049 	    d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3050 	  break;
3051 
3052 	case SHT_GNU_LIBLIST:
3053 	  /* sh_link is the section header index of the prelink library
3054 	     list used for the dynamic entries, or the symbol table, or
3055 	     the version strings.  */
3056 	  s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3057 					     ? ".dynstr" : ".gnu.libstr");
3058 	  if (s != NULL)
3059 	    d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3060 	  break;
3061 
3062 	case SHT_HASH:
3063 	case SHT_GNU_HASH:
3064 	case SHT_GNU_versym:
3065 	  /* sh_link is the section header index of the symbol table
3066 	     this hash table or version table is for.  */
3067 	  s = bfd_get_section_by_name (abfd, ".dynsym");
3068 	  if (s != NULL)
3069 	    d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3070 	  break;
3071 
3072 	case SHT_GROUP:
3073 	  d->this_hdr.sh_link = t->symtab_section;
3074 	}
3075     }
3076 
3077   for (secn = 1; secn < section_number; ++secn)
3078     if (i_shdrp[secn] == NULL)
3079       i_shdrp[secn] = i_shdrp[0];
3080     else
3081       i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3082 						       i_shdrp[secn]->sh_name);
3083   return TRUE;
3084 }
3085 
3086 /* Map symbol from it's internal number to the external number, moving
3087    all local symbols to be at the head of the list.  */
3088 
3089 static bfd_boolean
3090 sym_is_global (bfd *abfd, asymbol *sym)
3091 {
3092   /* If the backend has a special mapping, use it.  */
3093   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3094   if (bed->elf_backend_sym_is_global)
3095     return (*bed->elf_backend_sym_is_global) (abfd, sym);
3096 
3097   return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3098 	  || bfd_is_und_section (bfd_get_section (sym))
3099 	  || bfd_is_com_section (bfd_get_section (sym)));
3100 }
3101 
3102 /* Don't output section symbols for sections that are not going to be
3103    output.  */
3104 
3105 static bfd_boolean
3106 ignore_section_sym (bfd *abfd, asymbol *sym)
3107 {
3108   return ((sym->flags & BSF_SECTION_SYM) != 0
3109 	  && !(sym->section->owner == abfd
3110 	       || (sym->section->output_section->owner == abfd
3111 		   && sym->section->output_offset == 0)));
3112 }
3113 
3114 static bfd_boolean
3115 elf_map_symbols (bfd *abfd)
3116 {
3117   unsigned int symcount = bfd_get_symcount (abfd);
3118   asymbol **syms = bfd_get_outsymbols (abfd);
3119   asymbol **sect_syms;
3120   unsigned int num_locals = 0;
3121   unsigned int num_globals = 0;
3122   unsigned int num_locals2 = 0;
3123   unsigned int num_globals2 = 0;
3124   int max_index = 0;
3125   unsigned int idx;
3126   asection *asect;
3127   asymbol **new_syms;
3128 
3129 #ifdef DEBUG
3130   fprintf (stderr, "elf_map_symbols\n");
3131   fflush (stderr);
3132 #endif
3133 
3134   for (asect = abfd->sections; asect; asect = asect->next)
3135     {
3136       if (max_index < asect->index)
3137 	max_index = asect->index;
3138     }
3139 
3140   max_index++;
3141   sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3142   if (sect_syms == NULL)
3143     return FALSE;
3144   elf_section_syms (abfd) = sect_syms;
3145   elf_num_section_syms (abfd) = max_index;
3146 
3147   /* Init sect_syms entries for any section symbols we have already
3148      decided to output.  */
3149   for (idx = 0; idx < symcount; idx++)
3150     {
3151       asymbol *sym = syms[idx];
3152 
3153       if ((sym->flags & BSF_SECTION_SYM) != 0
3154 	  && sym->value == 0
3155 	  && !ignore_section_sym (abfd, sym))
3156 	{
3157 	  asection *sec = sym->section;
3158 
3159 	  if (sec->owner != abfd)
3160 	    sec = sec->output_section;
3161 
3162 	  sect_syms[sec->index] = syms[idx];
3163 	}
3164     }
3165 
3166   /* Classify all of the symbols.  */
3167   for (idx = 0; idx < symcount; idx++)
3168     {
3169       if (ignore_section_sym (abfd, syms[idx]))
3170 	continue;
3171       if (!sym_is_global (abfd, syms[idx]))
3172 	num_locals++;
3173       else
3174 	num_globals++;
3175     }
3176 
3177   /* We will be adding a section symbol for each normal BFD section.  Most
3178      sections will already have a section symbol in outsymbols, but
3179      eg. SHT_GROUP sections will not, and we need the section symbol mapped
3180      at least in that case.  */
3181   for (asect = abfd->sections; asect; asect = asect->next)
3182     {
3183       if (sect_syms[asect->index] == NULL)
3184 	{
3185 	  if (!sym_is_global (abfd, asect->symbol))
3186 	    num_locals++;
3187 	  else
3188 	    num_globals++;
3189 	}
3190     }
3191 
3192   /* Now sort the symbols so the local symbols are first.  */
3193   new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3194                                       sizeof (asymbol *));
3195 
3196   if (new_syms == NULL)
3197     return FALSE;
3198 
3199   for (idx = 0; idx < symcount; idx++)
3200     {
3201       asymbol *sym = syms[idx];
3202       unsigned int i;
3203 
3204       if (ignore_section_sym (abfd, sym))
3205 	continue;
3206       if (!sym_is_global (abfd, sym))
3207 	i = num_locals2++;
3208       else
3209 	i = num_locals + num_globals2++;
3210       new_syms[i] = sym;
3211       sym->udata.i = i + 1;
3212     }
3213   for (asect = abfd->sections; asect; asect = asect->next)
3214     {
3215       if (sect_syms[asect->index] == NULL)
3216 	{
3217 	  asymbol *sym = asect->symbol;
3218 	  unsigned int i;
3219 
3220 	  sect_syms[asect->index] = sym;
3221 	  if (!sym_is_global (abfd, sym))
3222 	    i = num_locals2++;
3223 	  else
3224 	    i = num_locals + num_globals2++;
3225 	  new_syms[i] = sym;
3226 	  sym->udata.i = i + 1;
3227 	}
3228     }
3229 
3230   bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3231 
3232   elf_num_locals (abfd) = num_locals;
3233   elf_num_globals (abfd) = num_globals;
3234   return TRUE;
3235 }
3236 
3237 /* Align to the maximum file alignment that could be required for any
3238    ELF data structure.  */
3239 
3240 static inline file_ptr
3241 align_file_position (file_ptr off, int align)
3242 {
3243   return (off + align - 1) & ~(align - 1);
3244 }
3245 
3246 /* Assign a file position to a section, optionally aligning to the
3247    required section alignment.  */
3248 
3249 file_ptr
3250 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3251 					   file_ptr offset,
3252 					   bfd_boolean align)
3253 {
3254   if (align && i_shdrp->sh_addralign > 1)
3255     offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3256   i_shdrp->sh_offset = offset;
3257   if (i_shdrp->bfd_section != NULL)
3258     i_shdrp->bfd_section->filepos = offset;
3259   if (i_shdrp->sh_type != SHT_NOBITS)
3260     offset += i_shdrp->sh_size;
3261   return offset;
3262 }
3263 
3264 /* Compute the file positions we are going to put the sections at, and
3265    otherwise prepare to begin writing out the ELF file.  If LINK_INFO
3266    is not NULL, this is being called by the ELF backend linker.  */
3267 
3268 bfd_boolean
3269 _bfd_elf_compute_section_file_positions (bfd *abfd,
3270 					 struct bfd_link_info *link_info)
3271 {
3272   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3273   bfd_boolean failed;
3274   struct bfd_strtab_hash *strtab = NULL;
3275   Elf_Internal_Shdr *shstrtab_hdr;
3276   bfd_boolean need_symtab;
3277 
3278   if (abfd->output_has_begun)
3279     return TRUE;
3280 
3281   /* Do any elf backend specific processing first.  */
3282   if (bed->elf_backend_begin_write_processing)
3283     (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3284 
3285   if (! prep_headers (abfd))
3286     return FALSE;
3287 
3288   /* Post process the headers if necessary.  */
3289   if (bed->elf_backend_post_process_headers)
3290     (*bed->elf_backend_post_process_headers) (abfd, link_info);
3291 
3292   failed = FALSE;
3293   bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3294   if (failed)
3295     return FALSE;
3296 
3297   if (!assign_section_numbers (abfd, link_info))
3298     return FALSE;
3299 
3300   /* The backend linker builds symbol table information itself.  */
3301   need_symtab = (link_info == NULL
3302 		 && (bfd_get_symcount (abfd) > 0
3303 		     || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3304 			 == HAS_RELOC)));
3305   if (need_symtab)
3306     {
3307       /* Non-zero if doing a relocatable link.  */
3308       int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3309 
3310       if (! swap_out_syms (abfd, &strtab, relocatable_p))
3311 	return FALSE;
3312     }
3313 
3314   if (link_info == NULL)
3315     {
3316       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3317       if (failed)
3318 	return FALSE;
3319     }
3320 
3321   shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3322   /* sh_name was set in prep_headers.  */
3323   shstrtab_hdr->sh_type = SHT_STRTAB;
3324   shstrtab_hdr->sh_flags = 0;
3325   shstrtab_hdr->sh_addr = 0;
3326   shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3327   shstrtab_hdr->sh_entsize = 0;
3328   shstrtab_hdr->sh_link = 0;
3329   shstrtab_hdr->sh_info = 0;
3330   /* sh_offset is set in assign_file_positions_except_relocs.  */
3331   shstrtab_hdr->sh_addralign = 1;
3332 
3333   if (!assign_file_positions_except_relocs (abfd, link_info))
3334     return FALSE;
3335 
3336   if (need_symtab)
3337     {
3338       file_ptr off;
3339       Elf_Internal_Shdr *hdr;
3340 
3341       off = elf_tdata (abfd)->next_file_pos;
3342 
3343       hdr = &elf_tdata (abfd)->symtab_hdr;
3344       off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3345 
3346       hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3347       if (hdr->sh_size != 0)
3348 	off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3349 
3350       hdr = &elf_tdata (abfd)->strtab_hdr;
3351       off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3352 
3353       elf_tdata (abfd)->next_file_pos = off;
3354 
3355       /* Now that we know where the .strtab section goes, write it
3356 	 out.  */
3357       if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3358 	  || ! _bfd_stringtab_emit (abfd, strtab))
3359 	return FALSE;
3360       _bfd_stringtab_free (strtab);
3361     }
3362 
3363   abfd->output_has_begun = TRUE;
3364 
3365   return TRUE;
3366 }
3367 
3368 /* Make an initial estimate of the size of the program header.  If we
3369    get the number wrong here, we'll redo section placement.  */
3370 
3371 static bfd_size_type
3372 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3373 {
3374   size_t segs;
3375   asection *s;
3376   const struct elf_backend_data *bed;
3377 
3378   /* Assume we will need exactly two PT_LOAD segments: one for text
3379      and one for data.  */
3380   segs = 2;
3381 
3382   s = bfd_get_section_by_name (abfd, ".interp");
3383   if (s != NULL && (s->flags & SEC_LOAD) != 0)
3384     {
3385       /* If we have a loadable interpreter section, we need a
3386 	 PT_INTERP segment.  In this case, assume we also need a
3387 	 PT_PHDR segment, although that may not be true for all
3388 	 targets.  */
3389       segs += 2;
3390     }
3391 
3392   if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3393     {
3394       /* We need a PT_DYNAMIC segment.  */
3395       ++segs;
3396     }
3397 
3398   if (info != NULL && info->relro)
3399     {
3400       /* We need a PT_GNU_RELRO segment.  */
3401       ++segs;
3402     }
3403 
3404   if (elf_tdata (abfd)->eh_frame_hdr)
3405     {
3406       /* We need a PT_GNU_EH_FRAME segment.  */
3407       ++segs;
3408     }
3409 
3410   if (elf_tdata (abfd)->stack_flags)
3411     {
3412       /* We need a PT_GNU_STACK segment.  */
3413       ++segs;
3414     }
3415 
3416   for (s = abfd->sections; s != NULL; s = s->next)
3417     {
3418       if ((s->flags & SEC_LOAD) != 0
3419 	  && CONST_STRNEQ (s->name, ".note"))
3420 	{
3421 	  /* We need a PT_NOTE segment.  */
3422 	  ++segs;
3423 	  /* Try to create just one PT_NOTE segment
3424 	     for all adjacent loadable .note* sections.
3425 	     gABI requires that within a PT_NOTE segment
3426 	     (and also inside of each SHT_NOTE section)
3427 	     each note is padded to a multiple of 4 size,
3428 	     so we check whether the sections are correctly
3429 	     aligned.  */
3430 	  if (s->alignment_power == 2)
3431 	    while (s->next != NULL
3432 		   && s->next->alignment_power == 2
3433 		   && (s->next->flags & SEC_LOAD) != 0
3434 		   && CONST_STRNEQ (s->next->name, ".note"))
3435 	      s = s->next;
3436 	}
3437     }
3438 
3439   for (s = abfd->sections; s != NULL; s = s->next)
3440     {
3441       if (s->flags & SEC_THREAD_LOCAL)
3442 	{
3443 	  /* We need a PT_TLS segment.  */
3444 	  ++segs;
3445 	  break;
3446 	}
3447     }
3448 
3449   /* Let the backend count up any program headers it might need.  */
3450   bed = get_elf_backend_data (abfd);
3451   if (bed->elf_backend_additional_program_headers)
3452     {
3453       int a;
3454 
3455       a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3456       if (a == -1)
3457 	abort ();
3458       segs += a;
3459     }
3460 
3461   return segs * bed->s->sizeof_phdr;
3462 }
3463 
3464 /* Find the segment that contains the output_section of section.  */
3465 
3466 Elf_Internal_Phdr *
3467 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3468 {
3469   struct elf_segment_map *m;
3470   Elf_Internal_Phdr *p;
3471 
3472   for (m = elf_tdata (abfd)->segment_map,
3473 	 p = elf_tdata (abfd)->phdr;
3474        m != NULL;
3475        m = m->next, p++)
3476     {
3477       int i;
3478 
3479       for (i = m->count - 1; i >= 0; i--)
3480 	if (m->sections[i] == section)
3481 	  return p;
3482     }
3483 
3484   return NULL;
3485 }
3486 
3487 /* Create a mapping from a set of sections to a program segment.  */
3488 
3489 static struct elf_segment_map *
3490 make_mapping (bfd *abfd,
3491 	      asection **sections,
3492 	      unsigned int from,
3493 	      unsigned int to,
3494 	      bfd_boolean phdr)
3495 {
3496   struct elf_segment_map *m;
3497   unsigned int i;
3498   asection **hdrpp;
3499   bfd_size_type amt;
3500 
3501   amt = sizeof (struct elf_segment_map);
3502   amt += (to - from - 1) * sizeof (asection *);
3503   m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3504   if (m == NULL)
3505     return NULL;
3506   m->next = NULL;
3507   m->p_type = PT_LOAD;
3508   for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3509     m->sections[i - from] = *hdrpp;
3510   m->count = to - from;
3511 
3512   if (from == 0 && phdr)
3513     {
3514       /* Include the headers in the first PT_LOAD segment.  */
3515       m->includes_filehdr = 1;
3516       m->includes_phdrs = 1;
3517     }
3518 
3519   return m;
3520 }
3521 
3522 /* Create the PT_DYNAMIC segment, which includes DYNSEC.  Returns NULL
3523    on failure.  */
3524 
3525 struct elf_segment_map *
3526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3527 {
3528   struct elf_segment_map *m;
3529 
3530   m = (struct elf_segment_map *) bfd_zalloc (abfd,
3531                                              sizeof (struct elf_segment_map));
3532   if (m == NULL)
3533     return NULL;
3534   m->next = NULL;
3535   m->p_type = PT_DYNAMIC;
3536   m->count = 1;
3537   m->sections[0] = dynsec;
3538 
3539   return m;
3540 }
3541 
3542 /* Possibly add or remove segments from the segment map.  */
3543 
3544 static bfd_boolean
3545 elf_modify_segment_map (bfd *abfd,
3546 			struct bfd_link_info *info,
3547 			bfd_boolean remove_empty_load)
3548 {
3549   struct elf_segment_map **m;
3550   const struct elf_backend_data *bed;
3551 
3552   /* The placement algorithm assumes that non allocated sections are
3553      not in PT_LOAD segments.  We ensure this here by removing such
3554      sections from the segment map.  We also remove excluded
3555      sections.  Finally, any PT_LOAD segment without sections is
3556      removed.  */
3557   m = &elf_tdata (abfd)->segment_map;
3558   while (*m)
3559     {
3560       unsigned int i, new_count;
3561 
3562       for (new_count = 0, i = 0; i < (*m)->count; i++)
3563 	{
3564 	  if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3565 	      && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3566 		  || (*m)->p_type != PT_LOAD))
3567 	    {
3568 	      (*m)->sections[new_count] = (*m)->sections[i];
3569 	      new_count++;
3570 	    }
3571 	}
3572       (*m)->count = new_count;
3573 
3574       if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3575 	*m = (*m)->next;
3576       else
3577 	m = &(*m)->next;
3578     }
3579 
3580   bed = get_elf_backend_data (abfd);
3581   if (bed->elf_backend_modify_segment_map != NULL)
3582     {
3583       if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3584 	return FALSE;
3585     }
3586 
3587   return TRUE;
3588 }
3589 
3590 /* Set up a mapping from BFD sections to program segments.  */
3591 
3592 bfd_boolean
3593 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3594 {
3595   unsigned int count;
3596   struct elf_segment_map *m;
3597   asection **sections = NULL;
3598   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3599   bfd_boolean no_user_phdrs;
3600 
3601   no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3602   if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3603     {
3604       asection *s;
3605       unsigned int i;
3606       struct elf_segment_map *mfirst;
3607       struct elf_segment_map **pm;
3608       asection *last_hdr;
3609       bfd_vma last_size;
3610       unsigned int phdr_index;
3611       bfd_vma maxpagesize;
3612       asection **hdrpp;
3613       bfd_boolean phdr_in_segment = TRUE;
3614       bfd_boolean writable;
3615       int tls_count = 0;
3616       asection *first_tls = NULL;
3617       asection *dynsec, *eh_frame_hdr;
3618       bfd_size_type amt;
3619 
3620       /* Select the allocated sections, and sort them.  */
3621 
3622       sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3623                                             sizeof (asection *));
3624       if (sections == NULL)
3625 	goto error_return;
3626 
3627       i = 0;
3628       for (s = abfd->sections; s != NULL; s = s->next)
3629 	{
3630 	  if ((s->flags & SEC_ALLOC) != 0)
3631 	    {
3632 	      sections[i] = s;
3633 	      ++i;
3634 	    }
3635 	}
3636       BFD_ASSERT (i <= bfd_count_sections (abfd));
3637       count = i;
3638 
3639       qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3640 
3641       /* Build the mapping.  */
3642 
3643       mfirst = NULL;
3644       pm = &mfirst;
3645 
3646       /* If we have a .interp section, then create a PT_PHDR segment for
3647 	 the program headers and a PT_INTERP segment for the .interp
3648 	 section.  */
3649       s = bfd_get_section_by_name (abfd, ".interp");
3650       if (s != NULL && (s->flags & SEC_LOAD) != 0)
3651 	{
3652 	  amt = sizeof (struct elf_segment_map);
3653 	  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3654 	  if (m == NULL)
3655 	    goto error_return;
3656 	  m->next = NULL;
3657 	  m->p_type = PT_PHDR;
3658 	  /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not.  */
3659 	  m->p_flags = PF_R | PF_X;
3660 	  m->p_flags_valid = 1;
3661 	  m->includes_phdrs = 1;
3662 
3663 	  *pm = m;
3664 	  pm = &m->next;
3665 
3666 	  amt = sizeof (struct elf_segment_map);
3667 	  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3668 	  if (m == NULL)
3669 	    goto error_return;
3670 	  m->next = NULL;
3671 	  m->p_type = PT_INTERP;
3672 	  m->count = 1;
3673 	  m->sections[0] = s;
3674 
3675 	  *pm = m;
3676 	  pm = &m->next;
3677 	}
3678 
3679       /* Look through the sections.  We put sections in the same program
3680 	 segment when the start of the second section can be placed within
3681 	 a few bytes of the end of the first section.  */
3682       last_hdr = NULL;
3683       last_size = 0;
3684       phdr_index = 0;
3685       maxpagesize = bed->maxpagesize;
3686       writable = FALSE;
3687       dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3688       if (dynsec != NULL
3689 	  && (dynsec->flags & SEC_LOAD) == 0)
3690 	dynsec = NULL;
3691 
3692       /* Deal with -Ttext or something similar such that the first section
3693 	 is not adjacent to the program headers.  This is an
3694 	 approximation, since at this point we don't know exactly how many
3695 	 program headers we will need.  */
3696       if (count > 0)
3697 	{
3698 	  bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3699 
3700 	  if (phdr_size == (bfd_size_type) -1)
3701 	    phdr_size = get_program_header_size (abfd, info);
3702 	  if ((abfd->flags & D_PAGED) == 0
3703 	      || sections[0]->lma < phdr_size
3704 	      || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3705 	    phdr_in_segment = FALSE;
3706 	}
3707 
3708       for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3709 	{
3710 	  asection *hdr;
3711 	  bfd_boolean new_segment;
3712 
3713 	  hdr = *hdrpp;
3714 
3715 	  /* See if this section and the last one will fit in the same
3716 	     segment.  */
3717 
3718 	  if (last_hdr == NULL)
3719 	    {
3720 	      /* If we don't have a segment yet, then we don't need a new
3721 		 one (we build the last one after this loop).  */
3722 	      new_segment = FALSE;
3723 	    }
3724 	  else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3725 	    {
3726 	      /* If this section has a different relation between the
3727 		 virtual address and the load address, then we need a new
3728 		 segment.  */
3729 	      new_segment = TRUE;
3730 	    }
3731 	  /* In the next test we have to be careful when last_hdr->lma is close
3732 	     to the end of the address space.  If the aligned address wraps
3733 	     around to the start of the address space, then there are no more
3734 	     pages left in memory and it is OK to assume that the current
3735 	     section can be included in the current segment.  */
3736 	  else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3737 		    > last_hdr->lma)
3738 		   && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3739 		       <= hdr->lma))
3740 	    {
3741 	      /* If putting this section in this segment would force us to
3742 		 skip a page in the segment, then we need a new segment.  */
3743 	      new_segment = TRUE;
3744 	    }
3745 	  else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3746 		   && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3747 	    {
3748 	      /* We don't want to put a loadable section after a
3749 		 nonloadable section in the same segment.
3750 		 Consider .tbss sections as loadable for this purpose.  */
3751 	      new_segment = TRUE;
3752 	    }
3753 	  else if ((abfd->flags & D_PAGED) == 0)
3754 	    {
3755 	      /* If the file is not demand paged, which means that we
3756 		 don't require the sections to be correctly aligned in the
3757 		 file, then there is no other reason for a new segment.  */
3758 	      new_segment = FALSE;
3759 	    }
3760 	  else if (! writable
3761 		   && (hdr->flags & SEC_READONLY) == 0
3762 		   && (((last_hdr->lma + last_size - 1)
3763 			& ~(maxpagesize - 1))
3764 		       != (hdr->lma & ~(maxpagesize - 1))))
3765 	    {
3766 	      /* We don't want to put a writable section in a read only
3767 		 segment, unless they are on the same page in memory
3768 		 anyhow.  We already know that the last section does not
3769 		 bring us past the current section on the page, so the
3770 		 only case in which the new section is not on the same
3771 		 page as the previous section is when the previous section
3772 		 ends precisely on a page boundary.  */
3773 	      new_segment = TRUE;
3774 	    }
3775 	  else
3776 	    {
3777 	      /* Otherwise, we can use the same segment.  */
3778 	      new_segment = FALSE;
3779 	    }
3780 
3781 	  /* Allow interested parties a chance to override our decision.  */
3782 	  if (last_hdr != NULL
3783 	      && info != NULL
3784 	      && info->callbacks->override_segment_assignment != NULL)
3785 	    new_segment
3786 	      = info->callbacks->override_segment_assignment (info, abfd, hdr,
3787 							      last_hdr,
3788 							      new_segment);
3789 
3790 	  if (! new_segment)
3791 	    {
3792 	      if ((hdr->flags & SEC_READONLY) == 0)
3793 		writable = TRUE;
3794 	      last_hdr = hdr;
3795 	      /* .tbss sections effectively have zero size.  */
3796 	      if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3797 		  != SEC_THREAD_LOCAL)
3798 		last_size = hdr->size;
3799 	      else
3800 		last_size = 0;
3801 	      continue;
3802 	    }
3803 
3804 	  /* We need a new program segment.  We must create a new program
3805 	     header holding all the sections from phdr_index until hdr.  */
3806 
3807 	  m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3808 	  if (m == NULL)
3809 	    goto error_return;
3810 
3811 	  *pm = m;
3812 	  pm = &m->next;
3813 
3814 	  if ((hdr->flags & SEC_READONLY) == 0)
3815 	    writable = TRUE;
3816 	  else
3817 	    writable = FALSE;
3818 
3819 	  last_hdr = hdr;
3820 	  /* .tbss sections effectively have zero size.  */
3821 	  if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3822 	    last_size = hdr->size;
3823 	  else
3824 	    last_size = 0;
3825 	  phdr_index = i;
3826 	  phdr_in_segment = FALSE;
3827 	}
3828 
3829       /* Create a final PT_LOAD program segment.  */
3830       if (last_hdr != NULL)
3831 	{
3832 	  m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3833 	  if (m == NULL)
3834 	    goto error_return;
3835 
3836 	  *pm = m;
3837 	  pm = &m->next;
3838 	}
3839 
3840       /* If there is a .dynamic section, throw in a PT_DYNAMIC segment.  */
3841       if (dynsec != NULL)
3842 	{
3843 	  m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3844 	  if (m == NULL)
3845 	    goto error_return;
3846 	  *pm = m;
3847 	  pm = &m->next;
3848 	}
3849 
3850       /* For each batch of consecutive loadable .note sections,
3851 	 add a PT_NOTE segment.  We don't use bfd_get_section_by_name,
3852 	 because if we link together nonloadable .note sections and
3853 	 loadable .note sections, we will generate two .note sections
3854 	 in the output file.  FIXME: Using names for section types is
3855 	 bogus anyhow.  */
3856       for (s = abfd->sections; s != NULL; s = s->next)
3857 	{
3858 	  if ((s->flags & SEC_LOAD) != 0
3859 	      && CONST_STRNEQ (s->name, ".note"))
3860 	    {
3861 	      asection *s2;
3862 	      unsigned count = 1;
3863 	      amt = sizeof (struct elf_segment_map);
3864 	      if (s->alignment_power == 2)
3865 		for (s2 = s; s2->next != NULL; s2 = s2->next)
3866 		  {
3867 		    if (s2->next->alignment_power == 2
3868 			&& (s2->next->flags & SEC_LOAD) != 0
3869 			&& CONST_STRNEQ (s2->next->name, ".note")
3870 			&& align_power (s2->vma + s2->size, 2)
3871 			   == s2->next->vma)
3872 		      count++;
3873 		    else
3874 		      break;
3875 		  }
3876 	      amt += (count - 1) * sizeof (asection *);
3877 	      m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3878 	      if (m == NULL)
3879 		goto error_return;
3880 	      m->next = NULL;
3881 	      m->p_type = PT_NOTE;
3882 	      m->count = count;
3883 	      while (count > 1)
3884 		{
3885 		  m->sections[m->count - count--] = s;
3886 		  BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3887 		  s = s->next;
3888 		}
3889 	      m->sections[m->count - 1] = s;
3890 	      BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3891 	      *pm = m;
3892 	      pm = &m->next;
3893 	    }
3894 	  if (s->flags & SEC_THREAD_LOCAL)
3895 	    {
3896 	      if (! tls_count)
3897 		first_tls = s;
3898 	      tls_count++;
3899 	    }
3900 	}
3901 
3902       /* If there are any SHF_TLS output sections, add PT_TLS segment.  */
3903       if (tls_count > 0)
3904 	{
3905 	  int i;
3906 
3907 	  amt = sizeof (struct elf_segment_map);
3908 	  amt += (tls_count - 1) * sizeof (asection *);
3909 	  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3910 	  if (m == NULL)
3911 	    goto error_return;
3912 	  m->next = NULL;
3913 	  m->p_type = PT_TLS;
3914 	  m->count = tls_count;
3915 	  /* Mandated PF_R.  */
3916 	  m->p_flags = PF_R;
3917 	  m->p_flags_valid = 1;
3918 	  for (i = 0; i < tls_count; ++i)
3919 	    {
3920 	      BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3921 	      m->sections[i] = first_tls;
3922 	      first_tls = first_tls->next;
3923 	    }
3924 
3925 	  *pm = m;
3926 	  pm = &m->next;
3927 	}
3928 
3929       /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3930 	 segment.  */
3931       eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3932       if (eh_frame_hdr != NULL
3933 	  && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3934 	{
3935 	  amt = sizeof (struct elf_segment_map);
3936 	  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3937 	  if (m == NULL)
3938 	    goto error_return;
3939 	  m->next = NULL;
3940 	  m->p_type = PT_GNU_EH_FRAME;
3941 	  m->count = 1;
3942 	  m->sections[0] = eh_frame_hdr->output_section;
3943 
3944 	  *pm = m;
3945 	  pm = &m->next;
3946 	}
3947 
3948       if (elf_tdata (abfd)->stack_flags)
3949 	{
3950 	  amt = sizeof (struct elf_segment_map);
3951 	  m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3952 	  if (m == NULL)
3953 	    goto error_return;
3954 	  m->next = NULL;
3955 	  m->p_type = PT_GNU_STACK;
3956 	  m->p_flags = elf_tdata (abfd)->stack_flags;
3957 	  m->p_flags_valid = 1;
3958 
3959 	  *pm = m;
3960 	  pm = &m->next;
3961 	}
3962 
3963       if (info != NULL && info->relro)
3964 	{
3965 	  for (m = mfirst; m != NULL; m = m->next)
3966 	    {
3967 	      if (m->p_type == PT_LOAD)
3968 		{
3969 		  asection *last = m->sections[m->count - 1];
3970 		  bfd_vma vaddr = m->sections[0]->vma;
3971 		  bfd_vma filesz = last->vma - vaddr + last->size;
3972 
3973 		  if (vaddr < info->relro_end
3974 		      && vaddr >= info->relro_start
3975 		      && (vaddr + filesz) >= info->relro_end)
3976 		    break;
3977 		}
3978 	      }
3979 
3980 	  /* Make a PT_GNU_RELRO segment only when it isn't empty.  */
3981 	  if (m != NULL)
3982 	    {
3983 	      amt = sizeof (struct elf_segment_map);
3984 	      m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3985 	      if (m == NULL)
3986 		goto error_return;
3987 	      m->next = NULL;
3988 	      m->p_type = PT_GNU_RELRO;
3989 	      m->p_flags = PF_R;
3990 	      m->p_flags_valid = 1;
3991 
3992 	      *pm = m;
3993 	      pm = &m->next;
3994 	    }
3995 	}
3996 
3997       free (sections);
3998       elf_tdata (abfd)->segment_map = mfirst;
3999     }
4000 
4001   if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4002     return FALSE;
4003 
4004   for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4005     ++count;
4006   elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4007 
4008   return TRUE;
4009 
4010  error_return:
4011   if (sections != NULL)
4012     free (sections);
4013   return FALSE;
4014 }
4015 
4016 /* Sort sections by address.  */
4017 
4018 static int
4019 elf_sort_sections (const void *arg1, const void *arg2)
4020 {
4021   const asection *sec1 = *(const asection **) arg1;
4022   const asection *sec2 = *(const asection **) arg2;
4023   bfd_size_type size1, size2;
4024 
4025   /* Sort by LMA first, since this is the address used to
4026      place the section into a segment.  */
4027   if (sec1->lma < sec2->lma)
4028     return -1;
4029   else if (sec1->lma > sec2->lma)
4030     return 1;
4031 
4032   /* Then sort by VMA.  Normally the LMA and the VMA will be
4033      the same, and this will do nothing.  */
4034   if (sec1->vma < sec2->vma)
4035     return -1;
4036   else if (sec1->vma > sec2->vma)
4037     return 1;
4038 
4039   /* Put !SEC_LOAD sections after SEC_LOAD ones.  */
4040 
4041 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4042 
4043   if (TOEND (sec1))
4044     {
4045       if (TOEND (sec2))
4046 	{
4047 	  /* If the indicies are the same, do not return 0
4048 	     here, but continue to try the next comparison.  */
4049 	  if (sec1->target_index - sec2->target_index != 0)
4050 	    return sec1->target_index - sec2->target_index;
4051 	}
4052       else
4053 	return 1;
4054     }
4055   else if (TOEND (sec2))
4056     return -1;
4057 
4058 #undef TOEND
4059 
4060   /* Sort by size, to put zero sized sections
4061      before others at the same address.  */
4062 
4063   size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4064   size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4065 
4066   if (size1 < size2)
4067     return -1;
4068   if (size1 > size2)
4069     return 1;
4070 
4071   return sec1->target_index - sec2->target_index;
4072 }
4073 
4074 /* Ian Lance Taylor writes:
4075 
4076    We shouldn't be using % with a negative signed number.  That's just
4077    not good.  We have to make sure either that the number is not
4078    negative, or that the number has an unsigned type.  When the types
4079    are all the same size they wind up as unsigned.  When file_ptr is a
4080    larger signed type, the arithmetic winds up as signed long long,
4081    which is wrong.
4082 
4083    What we're trying to say here is something like ``increase OFF by
4084    the least amount that will cause it to be equal to the VMA modulo
4085    the page size.''  */
4086 /* In other words, something like:
4087 
4088    vma_offset = m->sections[0]->vma % bed->maxpagesize;
4089    off_offset = off % bed->maxpagesize;
4090    if (vma_offset < off_offset)
4091      adjustment = vma_offset + bed->maxpagesize - off_offset;
4092    else
4093      adjustment = vma_offset - off_offset;
4094 
4095    which can can be collapsed into the expression below.  */
4096 
4097 static file_ptr
4098 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4099 {
4100   return ((vma - off) % maxpagesize);
4101 }
4102 
4103 static void
4104 print_segment_map (const struct elf_segment_map *m)
4105 {
4106   unsigned int j;
4107   const char *pt = get_segment_type (m->p_type);
4108   char buf[32];
4109 
4110   if (pt == NULL)
4111     {
4112       if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4113 	sprintf (buf, "LOPROC+%7.7x",
4114 		 (unsigned int) (m->p_type - PT_LOPROC));
4115       else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4116 	sprintf (buf, "LOOS+%7.7x",
4117 		 (unsigned int) (m->p_type - PT_LOOS));
4118       else
4119 	snprintf (buf, sizeof (buf), "%8.8x",
4120 		  (unsigned int) m->p_type);
4121       pt = buf;
4122     }
4123   fprintf (stderr, "%s:", pt);
4124   for (j = 0; j < m->count; j++)
4125     fprintf (stderr, " %s", m->sections [j]->name);
4126   putc ('\n',stderr);
4127 }
4128 
4129 /* Assign file positions to the sections based on the mapping from
4130    sections to segments.  This function also sets up some fields in
4131    the file header.  */
4132 
4133 static bfd_boolean
4134 assign_file_positions_for_load_sections (bfd *abfd,
4135 					 struct bfd_link_info *link_info)
4136 {
4137   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4138   struct elf_segment_map *m;
4139   Elf_Internal_Phdr *phdrs;
4140   Elf_Internal_Phdr *p;
4141   file_ptr off;
4142   bfd_size_type maxpagesize;
4143   unsigned int alloc;
4144   unsigned int i, j;
4145   bfd_vma header_pad = 0;
4146 
4147   if (link_info == NULL
4148       && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4149     return FALSE;
4150 
4151   alloc = 0;
4152   for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4153     {
4154       ++alloc;
4155       if (m->header_size)
4156 	header_pad = m->header_size;
4157     }
4158 
4159   elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4160   elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4161   elf_elfheader (abfd)->e_phnum = alloc;
4162 
4163   if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4164     elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4165   else
4166     BFD_ASSERT (elf_tdata (abfd)->program_header_size
4167 		>= alloc * bed->s->sizeof_phdr);
4168 
4169   if (alloc == 0)
4170     {
4171       elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4172       return TRUE;
4173     }
4174 
4175   /* We're writing the size in elf_tdata (abfd)->program_header_size,
4176      see assign_file_positions_except_relocs, so make sure we have
4177      that amount allocated, with trailing space cleared.
4178      The variable alloc contains the computed need, while elf_tdata
4179      (abfd)->program_header_size contains the size used for the
4180      layout.
4181      See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4182      where the layout is forced to according to a larger size in the
4183      last iterations for the testcase ld-elf/header.  */
4184   BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4185 	      == 0);
4186   phdrs = (Elf_Internal_Phdr *)
4187      bfd_zalloc2 (abfd,
4188                   (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4189                   sizeof (Elf_Internal_Phdr));
4190   elf_tdata (abfd)->phdr = phdrs;
4191   if (phdrs == NULL)
4192     return FALSE;
4193 
4194   maxpagesize = 1;
4195   if ((abfd->flags & D_PAGED) != 0)
4196     maxpagesize = bed->maxpagesize;
4197 
4198   off = bed->s->sizeof_ehdr;
4199   off += alloc * bed->s->sizeof_phdr;
4200   if (header_pad < (bfd_vma) off)
4201     header_pad = 0;
4202   else
4203     header_pad -= off;
4204   off += header_pad;
4205 
4206   for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4207        m != NULL;
4208        m = m->next, p++, j++)
4209     {
4210       asection **secpp;
4211       bfd_vma off_adjust;
4212       bfd_boolean no_contents;
4213 
4214       /* If elf_segment_map is not from map_sections_to_segments, the
4215 	 sections may not be correctly ordered.  NOTE: sorting should
4216 	 not be done to the PT_NOTE section of a corefile, which may
4217 	 contain several pseudo-sections artificially created by bfd.
4218 	 Sorting these pseudo-sections breaks things badly.  */
4219       if (m->count > 1
4220 	  && !(elf_elfheader (abfd)->e_type == ET_CORE
4221 	       && m->p_type == PT_NOTE))
4222 	qsort (m->sections, (size_t) m->count, sizeof (asection *),
4223 	       elf_sort_sections);
4224 
4225       /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4226 	 number of sections with contents contributing to both p_filesz
4227 	 and p_memsz, followed by a number of sections with no contents
4228 	 that just contribute to p_memsz.  In this loop, OFF tracks next
4229 	 available file offset for PT_LOAD and PT_NOTE segments.  */
4230       p->p_type = m->p_type;
4231       p->p_flags = m->p_flags;
4232 
4233       if (m->count == 0)
4234 	p->p_vaddr = 0;
4235       else
4236 	p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4237 
4238       if (m->p_paddr_valid)
4239 	p->p_paddr = m->p_paddr;
4240       else if (m->count == 0)
4241 	p->p_paddr = 0;
4242       else
4243 	p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4244 
4245       if (p->p_type == PT_LOAD
4246 	  && (abfd->flags & D_PAGED) != 0)
4247 	{
4248 	  /* p_align in demand paged PT_LOAD segments effectively stores
4249 	     the maximum page size.  When copying an executable with
4250 	     objcopy, we set m->p_align from the input file.  Use this
4251 	     value for maxpagesize rather than bed->maxpagesize, which
4252 	     may be different.  Note that we use maxpagesize for PT_TLS
4253 	     segment alignment later in this function, so we are relying
4254 	     on at least one PT_LOAD segment appearing before a PT_TLS
4255 	     segment.  */
4256 	  if (m->p_align_valid)
4257 	    maxpagesize = m->p_align;
4258 
4259 	  p->p_align = maxpagesize;
4260 	}
4261       else if (m->p_align_valid)
4262 	p->p_align = m->p_align;
4263       else if (m->count == 0)
4264 	p->p_align = 1 << bed->s->log_file_align;
4265       else
4266 	p->p_align = 0;
4267 
4268       no_contents = FALSE;
4269       off_adjust = 0;
4270       if (p->p_type == PT_LOAD
4271 	  && m->count > 0)
4272 	{
4273 	  bfd_size_type align;
4274 	  unsigned int align_power = 0;
4275 
4276 	  if (m->p_align_valid)
4277 	    align = p->p_align;
4278 	  else
4279 	    {
4280 	      for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4281 		{
4282 		  unsigned int secalign;
4283 
4284 		  secalign = bfd_get_section_alignment (abfd, *secpp);
4285 		  if (secalign > align_power)
4286 		    align_power = secalign;
4287 		}
4288 	      align = (bfd_size_type) 1 << align_power;
4289 	      if (align < maxpagesize)
4290 		align = maxpagesize;
4291 	    }
4292 
4293 	  for (i = 0; i < m->count; i++)
4294 	    if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4295 	      /* If we aren't making room for this section, then
4296 		 it must be SHT_NOBITS regardless of what we've
4297 		 set via struct bfd_elf_special_section.  */
4298 	      elf_section_type (m->sections[i]) = SHT_NOBITS;
4299 
4300 	  /* Find out whether this segment contains any loadable
4301 	     sections.  */
4302 	  no_contents = TRUE;
4303 	  for (i = 0; i < m->count; i++)
4304 	    if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4305 	      {
4306 		no_contents = FALSE;
4307 		break;
4308 	      }
4309 
4310 	  off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4311 	  off += off_adjust;
4312 	  if (no_contents)
4313 	    {
4314 	      /* We shouldn't need to align the segment on disk since
4315 		 the segment doesn't need file space, but the gABI
4316 		 arguably requires the alignment and glibc ld.so
4317 		 checks it.  So to comply with the alignment
4318 		 requirement but not waste file space, we adjust
4319 		 p_offset for just this segment.  (OFF_ADJUST is
4320 		 subtracted from OFF later.)  This may put p_offset
4321 		 past the end of file, but that shouldn't matter.  */
4322 	    }
4323 	  else
4324 	    off_adjust = 0;
4325 	}
4326       /* Make sure the .dynamic section is the first section in the
4327 	 PT_DYNAMIC segment.  */
4328       else if (p->p_type == PT_DYNAMIC
4329 	       && m->count > 1
4330 	       && strcmp (m->sections[0]->name, ".dynamic") != 0)
4331 	{
4332 	  _bfd_error_handler
4333 	    (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4334 	     abfd);
4335 	  bfd_set_error (bfd_error_bad_value);
4336 	  return FALSE;
4337 	}
4338       /* Set the note section type to SHT_NOTE.  */
4339       else if (p->p_type == PT_NOTE)
4340 	for (i = 0; i < m->count; i++)
4341 	  elf_section_type (m->sections[i]) = SHT_NOTE;
4342 
4343       p->p_offset = 0;
4344       p->p_filesz = 0;
4345       p->p_memsz = 0;
4346 
4347       if (m->includes_filehdr)
4348 	{
4349 	  if (!m->p_flags_valid)
4350 	    p->p_flags |= PF_R;
4351 	  p->p_filesz = bed->s->sizeof_ehdr;
4352 	  p->p_memsz = bed->s->sizeof_ehdr;
4353 	  if (m->count > 0)
4354 	    {
4355 	      BFD_ASSERT (p->p_type == PT_LOAD);
4356 
4357 	      if (p->p_vaddr < (bfd_vma) off)
4358 		{
4359 		  (*_bfd_error_handler)
4360 		    (_("%B: Not enough room for program headers, try linking with -N"),
4361 		     abfd);
4362 		  bfd_set_error (bfd_error_bad_value);
4363 		  return FALSE;
4364 		}
4365 
4366 	      p->p_vaddr -= off;
4367 	      if (!m->p_paddr_valid)
4368 		p->p_paddr -= off;
4369 	    }
4370 	}
4371 
4372       if (m->includes_phdrs)
4373 	{
4374 	  if (!m->p_flags_valid)
4375 	    p->p_flags |= PF_R;
4376 
4377 	  if (!m->includes_filehdr)
4378 	    {
4379 	      p->p_offset = bed->s->sizeof_ehdr;
4380 
4381 	      if (m->count > 0)
4382 		{
4383 		  BFD_ASSERT (p->p_type == PT_LOAD);
4384 		  p->p_vaddr -= off - p->p_offset;
4385 		  if (!m->p_paddr_valid)
4386 		    p->p_paddr -= off - p->p_offset;
4387 		}
4388 	    }
4389 
4390 	  p->p_filesz += alloc * bed->s->sizeof_phdr;
4391 	  p->p_memsz += alloc * bed->s->sizeof_phdr;
4392 	  if (m->count)
4393 	    {
4394 	      p->p_filesz += header_pad;
4395 	      p->p_memsz += header_pad;
4396 	    }
4397 	}
4398 
4399       if (p->p_type == PT_LOAD
4400 	  || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4401 	{
4402 	  if (!m->includes_filehdr && !m->includes_phdrs)
4403 	    p->p_offset = off;
4404 	  else
4405 	    {
4406 	      file_ptr adjust;
4407 
4408 	      adjust = off - (p->p_offset + p->p_filesz);
4409 	      if (!no_contents)
4410 		p->p_filesz += adjust;
4411 	      p->p_memsz += adjust;
4412 	    }
4413 	}
4414 
4415       /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4416 	 maps.  Set filepos for sections in PT_LOAD segments, and in
4417 	 core files, for sections in PT_NOTE segments.
4418 	 assign_file_positions_for_non_load_sections will set filepos
4419 	 for other sections and update p_filesz for other segments.  */
4420       for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4421 	{
4422 	  asection *sec;
4423 	  bfd_size_type align;
4424 	  Elf_Internal_Shdr *this_hdr;
4425 
4426 	  sec = *secpp;
4427 	  this_hdr = &elf_section_data (sec)->this_hdr;
4428 	  align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4429 
4430 	  if ((p->p_type == PT_LOAD
4431 	       || p->p_type == PT_TLS)
4432 	      && (this_hdr->sh_type != SHT_NOBITS
4433 		  || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4434 		      && ((this_hdr->sh_flags & SHF_TLS) == 0
4435 			  || p->p_type == PT_TLS))))
4436 	    {
4437 	      bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz);
4438 
4439 	      if (adjust < 0)
4440 		{
4441 		  (*_bfd_error_handler)
4442 		    (_("%B: section %A vma 0x%lx overlaps previous sections"),
4443 		     abfd, sec, (unsigned long) sec->vma);
4444 		  adjust = 0;
4445 		}
4446 	      p->p_memsz += adjust;
4447 
4448 	      if (this_hdr->sh_type != SHT_NOBITS)
4449 		{
4450 		  off += adjust;
4451 		  p->p_filesz += adjust;
4452 		}
4453 	    }
4454 
4455 	  if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4456 	    {
4457 	      /* The section at i == 0 is the one that actually contains
4458 		 everything.  */
4459 	      if (i == 0)
4460 		{
4461 		  this_hdr->sh_offset = sec->filepos = off;
4462 		  off += this_hdr->sh_size;
4463 		  p->p_filesz = this_hdr->sh_size;
4464 		  p->p_memsz = 0;
4465 		  p->p_align = 1;
4466 		}
4467 	      else
4468 		{
4469 		  /* The rest are fake sections that shouldn't be written.  */
4470 		  sec->filepos = 0;
4471 		  sec->size = 0;
4472 		  sec->flags = 0;
4473 		  continue;
4474 		}
4475 	    }
4476 	  else
4477 	    {
4478 	      if (p->p_type == PT_LOAD)
4479 		{
4480 		  this_hdr->sh_offset = sec->filepos = off;
4481 		  if (this_hdr->sh_type != SHT_NOBITS)
4482 		    off += this_hdr->sh_size;
4483 		}
4484 
4485 	      if (this_hdr->sh_type != SHT_NOBITS)
4486 		{
4487 		  p->p_filesz += this_hdr->sh_size;
4488 		  /* A load section without SHF_ALLOC is something like
4489 		     a note section in a PT_NOTE segment.  These take
4490 		     file space but are not loaded into memory.  */
4491 		  if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4492 		    p->p_memsz += this_hdr->sh_size;
4493 		}
4494 	      else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4495 		{
4496 		  if (p->p_type == PT_TLS)
4497 		    p->p_memsz += this_hdr->sh_size;
4498 
4499 		  /* .tbss is special.  It doesn't contribute to p_memsz of
4500 		     normal segments.  */
4501 		  else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4502 		    p->p_memsz += this_hdr->sh_size;
4503 		}
4504 
4505 	      if (align > p->p_align
4506 		  && !m->p_align_valid
4507 		  && (p->p_type != PT_LOAD
4508 		      || (abfd->flags & D_PAGED) == 0))
4509 		p->p_align = align;
4510 	    }
4511 
4512 	  if (!m->p_flags_valid)
4513 	    {
4514 	      p->p_flags |= PF_R;
4515 	      if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4516 		p->p_flags |= PF_X;
4517 	      if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4518 		p->p_flags |= PF_W;
4519 	    }
4520 	}
4521       off -= off_adjust;
4522 
4523       /* Check that all sections are in a PT_LOAD segment.
4524 	 Don't check funky gdb generated core files.  */
4525       if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4526 	for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4527 	  {
4528 	    Elf_Internal_Shdr *this_hdr;
4529 	    asection *sec;
4530 
4531 	    sec = *secpp;
4532 	    this_hdr = &(elf_section_data(sec)->this_hdr);
4533 	    if (this_hdr->sh_size != 0
4534 		&& !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4535 	      {
4536 		(*_bfd_error_handler)
4537 		  (_("%B: section `%A' can't be allocated in segment %d"),
4538 		   abfd, sec, j);
4539 		print_segment_map (m);
4540 		bfd_set_error (bfd_error_bad_value);
4541 		return FALSE;
4542 	      }
4543 	  }
4544     }
4545 
4546   elf_tdata (abfd)->next_file_pos = off;
4547   return TRUE;
4548 }
4549 
4550 /* Assign file positions for the other sections.  */
4551 
4552 static bfd_boolean
4553 assign_file_positions_for_non_load_sections (bfd *abfd,
4554 					     struct bfd_link_info *link_info)
4555 {
4556   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4557   Elf_Internal_Shdr **i_shdrpp;
4558   Elf_Internal_Shdr **hdrpp;
4559   Elf_Internal_Phdr *phdrs;
4560   Elf_Internal_Phdr *p;
4561   struct elf_segment_map *m;
4562   bfd_vma filehdr_vaddr, filehdr_paddr;
4563   bfd_vma phdrs_vaddr, phdrs_paddr;
4564   file_ptr off;
4565   unsigned int num_sec;
4566   unsigned int i;
4567   unsigned int count;
4568 
4569   i_shdrpp = elf_elfsections (abfd);
4570   num_sec = elf_numsections (abfd);
4571   off = elf_tdata (abfd)->next_file_pos;
4572   for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4573     {
4574       struct elf_obj_tdata *tdata = elf_tdata (abfd);
4575       Elf_Internal_Shdr *hdr;
4576 
4577       hdr = *hdrpp;
4578       if (hdr->bfd_section != NULL
4579 	  && (hdr->bfd_section->filepos != 0
4580 	      || (hdr->sh_type == SHT_NOBITS
4581 		  && hdr->contents == NULL)))
4582 	BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4583       else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4584 	{
4585 	  if (hdr->sh_size != 0)
4586 	    ((*_bfd_error_handler)
4587 	     (_("%B: warning: allocated section `%s' not in segment"),
4588 	      abfd,
4589 	      (hdr->bfd_section == NULL
4590 	       ? "*unknown*"
4591 	       : hdr->bfd_section->name)));
4592 	  /* We don't need to page align empty sections.  */
4593 	  if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4594 	    off += vma_page_aligned_bias (hdr->sh_addr, off,
4595 					  bed->maxpagesize);
4596 	  else
4597 	    off += vma_page_aligned_bias (hdr->sh_addr, off,
4598 					  hdr->sh_addralign);
4599 	  off = _bfd_elf_assign_file_position_for_section (hdr, off,
4600 							   FALSE);
4601 	}
4602       else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4603 		&& hdr->bfd_section == NULL)
4604 	       || hdr == i_shdrpp[tdata->symtab_section]
4605 	       || hdr == i_shdrpp[tdata->symtab_shndx_section]
4606 	       || hdr == i_shdrpp[tdata->strtab_section])
4607 	hdr->sh_offset = -1;
4608       else
4609 	off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4610     }
4611 
4612   /* Now that we have set the section file positions, we can set up
4613      the file positions for the non PT_LOAD segments.  */
4614   count = 0;
4615   filehdr_vaddr = 0;
4616   filehdr_paddr = 0;
4617   phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4618   phdrs_paddr = 0;
4619   phdrs = elf_tdata (abfd)->phdr;
4620   for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4621        m != NULL;
4622        m = m->next, p++)
4623     {
4624       ++count;
4625       if (p->p_type != PT_LOAD)
4626 	continue;
4627 
4628       if (m->includes_filehdr)
4629 	{
4630 	  filehdr_vaddr = p->p_vaddr;
4631 	  filehdr_paddr = p->p_paddr;
4632 	}
4633       if (m->includes_phdrs)
4634 	{
4635 	  phdrs_vaddr = p->p_vaddr;
4636 	  phdrs_paddr = p->p_paddr;
4637 	  if (m->includes_filehdr)
4638 	    {
4639 	      phdrs_vaddr += bed->s->sizeof_ehdr;
4640 	      phdrs_paddr += bed->s->sizeof_ehdr;
4641 	    }
4642 	}
4643     }
4644 
4645   for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4646        m != NULL;
4647        m = m->next, p++)
4648     {
4649       if (p->p_type == PT_GNU_RELRO)
4650 	{
4651 	  const Elf_Internal_Phdr *lp;
4652 
4653 	  BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4654 
4655 	  if (link_info != NULL)
4656 	    {
4657 	      /* During linking the range of the RELRO segment is passed
4658 		 in link_info.  */
4659 	      for (lp = phdrs; lp < phdrs + count; ++lp)
4660 		{
4661 		  if (lp->p_type == PT_LOAD
4662 		      && lp->p_vaddr >= link_info->relro_start
4663 		      && lp->p_vaddr < link_info->relro_end
4664 		      && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4665 		    break;
4666 		}
4667 	    }
4668 	  else
4669 	    {
4670 	      /* Otherwise we are copying an executable or shared
4671 		 library, but we need to use the same linker logic.  */
4672 	      for (lp = phdrs; lp < phdrs + count; ++lp)
4673 		{
4674 		  if (lp->p_type == PT_LOAD
4675 		      && lp->p_paddr == p->p_paddr)
4676 		    break;
4677 		}
4678 	    }
4679 
4680 	  if (lp < phdrs + count)
4681 	    {
4682 	      p->p_vaddr = lp->p_vaddr;
4683 	      p->p_paddr = lp->p_paddr;
4684 	      p->p_offset = lp->p_offset;
4685 	      if (link_info != NULL)
4686 		p->p_filesz = link_info->relro_end - lp->p_vaddr;
4687 	      else if (m->p_size_valid)
4688 		p->p_filesz = m->p_size;
4689 	      else
4690 		abort ();
4691 	      p->p_memsz = p->p_filesz;
4692 	      p->p_align = 1;
4693 	      p->p_flags = (lp->p_flags & ~PF_W);
4694 	    }
4695 	  else
4696 	    {
4697 	      memset (p, 0, sizeof *p);
4698 	      p->p_type = PT_NULL;
4699 	    }
4700 	}
4701       else if (m->count != 0)
4702 	{
4703 	  if (p->p_type != PT_LOAD
4704 	      && (p->p_type != PT_NOTE
4705 		  || bfd_get_format (abfd) != bfd_core))
4706 	    {
4707 	      Elf_Internal_Shdr *hdr;
4708 	      asection *sect;
4709 
4710 	      BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4711 
4712 	      sect = m->sections[m->count - 1];
4713 	      hdr = &elf_section_data (sect)->this_hdr;
4714 	      p->p_filesz = sect->filepos - m->sections[0]->filepos;
4715 	      if (hdr->sh_type != SHT_NOBITS)
4716 		p->p_filesz += hdr->sh_size;
4717 	      p->p_offset = m->sections[0]->filepos;
4718 	    }
4719 	}
4720       else if (m->includes_filehdr)
4721 	{
4722 	  p->p_vaddr = filehdr_vaddr;
4723 	  if (! m->p_paddr_valid)
4724 	    p->p_paddr = filehdr_paddr;
4725 	}
4726       else if (m->includes_phdrs)
4727 	{
4728 	  p->p_vaddr = phdrs_vaddr;
4729 	  if (! m->p_paddr_valid)
4730 	    p->p_paddr = phdrs_paddr;
4731 	}
4732     }
4733 
4734   elf_tdata (abfd)->next_file_pos = off;
4735 
4736   return TRUE;
4737 }
4738 
4739 /* Work out the file positions of all the sections.  This is called by
4740    _bfd_elf_compute_section_file_positions.  All the section sizes and
4741    VMAs must be known before this is called.
4742 
4743    Reloc sections come in two flavours: Those processed specially as
4744    "side-channel" data attached to a section to which they apply, and
4745    those that bfd doesn't process as relocations.  The latter sort are
4746    stored in a normal bfd section by bfd_section_from_shdr.   We don't
4747    consider the former sort here, unless they form part of the loadable
4748    image.  Reloc sections not assigned here will be handled later by
4749    assign_file_positions_for_relocs.
4750 
4751    We also don't set the positions of the .symtab and .strtab here.  */
4752 
4753 static bfd_boolean
4754 assign_file_positions_except_relocs (bfd *abfd,
4755 				     struct bfd_link_info *link_info)
4756 {
4757   struct elf_obj_tdata *tdata = elf_tdata (abfd);
4758   Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4759   file_ptr off;
4760   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4761 
4762   if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4763       && bfd_get_format (abfd) != bfd_core)
4764     {
4765       Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4766       unsigned int num_sec = elf_numsections (abfd);
4767       Elf_Internal_Shdr **hdrpp;
4768       unsigned int i;
4769 
4770       /* Start after the ELF header.  */
4771       off = i_ehdrp->e_ehsize;
4772 
4773       /* We are not creating an executable, which means that we are
4774 	 not creating a program header, and that the actual order of
4775 	 the sections in the file is unimportant.  */
4776       for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4777 	{
4778 	  Elf_Internal_Shdr *hdr;
4779 
4780 	  hdr = *hdrpp;
4781 	  if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4782 	       && hdr->bfd_section == NULL)
4783 	      || i == tdata->symtab_section
4784 	      || i == tdata->symtab_shndx_section
4785 	      || i == tdata->strtab_section)
4786 	    {
4787 	      hdr->sh_offset = -1;
4788 	    }
4789 	  else
4790 	    off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4791 	}
4792     }
4793   else
4794     {
4795       unsigned int alloc;
4796 
4797       /* Assign file positions for the loaded sections based on the
4798 	 assignment of sections to segments.  */
4799       if (!assign_file_positions_for_load_sections (abfd, link_info))
4800 	return FALSE;
4801 
4802       /* And for non-load sections.  */
4803       if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4804 	return FALSE;
4805 
4806       if (bed->elf_backend_modify_program_headers != NULL)
4807 	{
4808 	  if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4809 	    return FALSE;
4810 	}
4811 
4812       /* Write out the program headers.  */
4813       alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4814       if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4815 	  || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4816 	return FALSE;
4817 
4818       off = tdata->next_file_pos;
4819     }
4820 
4821   /* Place the section headers.  */
4822   off = align_file_position (off, 1 << bed->s->log_file_align);
4823   i_ehdrp->e_shoff = off;
4824   off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4825 
4826   tdata->next_file_pos = off;
4827 
4828   return TRUE;
4829 }
4830 
4831 static bfd_boolean
4832 prep_headers (bfd *abfd)
4833 {
4834   Elf_Internal_Ehdr *i_ehdrp;	/* Elf file header, internal form */
4835   Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4836   struct elf_strtab_hash *shstrtab;
4837   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4838 
4839   i_ehdrp = elf_elfheader (abfd);
4840 
4841   shstrtab = _bfd_elf_strtab_init ();
4842   if (shstrtab == NULL)
4843     return FALSE;
4844 
4845   elf_shstrtab (abfd) = shstrtab;
4846 
4847   i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4848   i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4849   i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4850   i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4851 
4852   i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4853   i_ehdrp->e_ident[EI_DATA] =
4854     bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4855   i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4856 
4857   if ((abfd->flags & DYNAMIC) != 0)
4858     i_ehdrp->e_type = ET_DYN;
4859   else if ((abfd->flags & EXEC_P) != 0)
4860     i_ehdrp->e_type = ET_EXEC;
4861   else if (bfd_get_format (abfd) == bfd_core)
4862     i_ehdrp->e_type = ET_CORE;
4863   else
4864     i_ehdrp->e_type = ET_REL;
4865 
4866   switch (bfd_get_arch (abfd))
4867     {
4868     case bfd_arch_unknown:
4869       i_ehdrp->e_machine = EM_NONE;
4870       break;
4871 
4872       /* There used to be a long list of cases here, each one setting
4873 	 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4874 	 in the corresponding bfd definition.  To avoid duplication,
4875 	 the switch was removed.  Machines that need special handling
4876 	 can generally do it in elf_backend_final_write_processing(),
4877 	 unless they need the information earlier than the final write.
4878 	 Such need can generally be supplied by replacing the tests for
4879 	 e_machine with the conditions used to determine it.  */
4880     default:
4881       i_ehdrp->e_machine = bed->elf_machine_code;
4882     }
4883 
4884   i_ehdrp->e_version = bed->s->ev_current;
4885   i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4886 
4887   /* No program header, for now.  */
4888   i_ehdrp->e_phoff = 0;
4889   i_ehdrp->e_phentsize = 0;
4890   i_ehdrp->e_phnum = 0;
4891 
4892   /* Each bfd section is section header entry.  */
4893   i_ehdrp->e_entry = bfd_get_start_address (abfd);
4894   i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4895 
4896   /* If we're building an executable, we'll need a program header table.  */
4897   if (abfd->flags & EXEC_P)
4898     /* It all happens later.  */
4899     ;
4900   else
4901     {
4902       i_ehdrp->e_phentsize = 0;
4903       i_phdrp = 0;
4904       i_ehdrp->e_phoff = 0;
4905     }
4906 
4907   elf_tdata (abfd)->symtab_hdr.sh_name =
4908     (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4909   elf_tdata (abfd)->strtab_hdr.sh_name =
4910     (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4911   elf_tdata (abfd)->shstrtab_hdr.sh_name =
4912     (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4913   if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4914       || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4915       || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4916     return FALSE;
4917 
4918   return TRUE;
4919 }
4920 
4921 /* Assign file positions for all the reloc sections which are not part
4922    of the loadable file image.  */
4923 
4924 void
4925 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4926 {
4927   file_ptr off;
4928   unsigned int i, num_sec;
4929   Elf_Internal_Shdr **shdrpp;
4930 
4931   off = elf_tdata (abfd)->next_file_pos;
4932 
4933   num_sec = elf_numsections (abfd);
4934   for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4935     {
4936       Elf_Internal_Shdr *shdrp;
4937 
4938       shdrp = *shdrpp;
4939       if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4940 	  && shdrp->sh_offset == -1)
4941 	off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4942     }
4943 
4944   elf_tdata (abfd)->next_file_pos = off;
4945 }
4946 
4947 bfd_boolean
4948 _bfd_elf_write_object_contents (bfd *abfd)
4949 {
4950   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4951   Elf_Internal_Ehdr *i_ehdrp;
4952   Elf_Internal_Shdr **i_shdrp;
4953   bfd_boolean failed;
4954   unsigned int count, num_sec;
4955 
4956   if (! abfd->output_has_begun
4957       && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4958     return FALSE;
4959 
4960   i_shdrp = elf_elfsections (abfd);
4961   i_ehdrp = elf_elfheader (abfd);
4962 
4963   failed = FALSE;
4964   bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4965   if (failed)
4966     return FALSE;
4967 
4968   _bfd_elf_assign_file_positions_for_relocs (abfd);
4969 
4970   /* After writing the headers, we need to write the sections too...  */
4971   num_sec = elf_numsections (abfd);
4972   for (count = 1; count < num_sec; count++)
4973     {
4974       if (bed->elf_backend_section_processing)
4975 	(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4976       if (i_shdrp[count]->contents)
4977 	{
4978 	  bfd_size_type amt = i_shdrp[count]->sh_size;
4979 
4980 	  if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4981 	      || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4982 	    return FALSE;
4983 	}
4984     }
4985 
4986   /* Write out the section header names.  */
4987   if (elf_shstrtab (abfd) != NULL
4988       && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4989 	  || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4990     return FALSE;
4991 
4992   if (bed->elf_backend_final_write_processing)
4993     (*bed->elf_backend_final_write_processing) (abfd,
4994 						elf_tdata (abfd)->linker);
4995 
4996   if (!bed->s->write_shdrs_and_ehdr (abfd))
4997     return FALSE;
4998 
4999   /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0].  */
5000   if (elf_tdata (abfd)->after_write_object_contents)
5001     return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5002 
5003   return TRUE;
5004 }
5005 
5006 bfd_boolean
5007 _bfd_elf_write_corefile_contents (bfd *abfd)
5008 {
5009   /* Hopefully this can be done just like an object file.  */
5010   return _bfd_elf_write_object_contents (abfd);
5011 }
5012 
5013 /* Given a section, search the header to find them.  */
5014 
5015 unsigned int
5016 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5017 {
5018   const struct elf_backend_data *bed;
5019   unsigned int index;
5020 
5021   if (elf_section_data (asect) != NULL
5022       && elf_section_data (asect)->this_idx != 0)
5023     return elf_section_data (asect)->this_idx;
5024 
5025   if (bfd_is_abs_section (asect))
5026     index = SHN_ABS;
5027   else if (bfd_is_com_section (asect))
5028     index = SHN_COMMON;
5029   else if (bfd_is_und_section (asect))
5030     index = SHN_UNDEF;
5031   else
5032     index = SHN_BAD;
5033 
5034   bed = get_elf_backend_data (abfd);
5035   if (bed->elf_backend_section_from_bfd_section)
5036     {
5037       int retval = index;
5038 
5039       if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5040 	return retval;
5041     }
5042 
5043   if (index == SHN_BAD)
5044     bfd_set_error (bfd_error_nonrepresentable_section);
5045 
5046   return index;
5047 }
5048 
5049 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5050    on error.  */
5051 
5052 int
5053 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5054 {
5055   asymbol *asym_ptr = *asym_ptr_ptr;
5056   int idx;
5057   flagword flags = asym_ptr->flags;
5058 
5059   /* When gas creates relocations against local labels, it creates its
5060      own symbol for the section, but does put the symbol into the
5061      symbol chain, so udata is 0.  When the linker is generating
5062      relocatable output, this section symbol may be for one of the
5063      input sections rather than the output section.  */
5064   if (asym_ptr->udata.i == 0
5065       && (flags & BSF_SECTION_SYM)
5066       && asym_ptr->section)
5067     {
5068       asection *sec;
5069       int indx;
5070 
5071       sec = asym_ptr->section;
5072       if (sec->owner != abfd && sec->output_section != NULL)
5073 	sec = sec->output_section;
5074       if (sec->owner == abfd
5075 	  && (indx = sec->index) < elf_num_section_syms (abfd)
5076 	  && elf_section_syms (abfd)[indx] != NULL)
5077 	asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5078     }
5079 
5080   idx = asym_ptr->udata.i;
5081 
5082   if (idx == 0)
5083     {
5084       /* This case can occur when using --strip-symbol on a symbol
5085 	 which is used in a relocation entry.  */
5086       (*_bfd_error_handler)
5087 	(_("%B: symbol `%s' required but not present"),
5088 	 abfd, bfd_asymbol_name (asym_ptr));
5089       bfd_set_error (bfd_error_no_symbols);
5090       return -1;
5091     }
5092 
5093 #if DEBUG & 4
5094   {
5095     fprintf (stderr,
5096 	     "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5097 	     (long) asym_ptr, asym_ptr->name, idx, flags,
5098 	     elf_symbol_flags (flags));
5099     fflush (stderr);
5100   }
5101 #endif
5102 
5103   return idx;
5104 }
5105 
5106 /* Rewrite program header information.  */
5107 
5108 static bfd_boolean
5109 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5110 {
5111   Elf_Internal_Ehdr *iehdr;
5112   struct elf_segment_map *map;
5113   struct elf_segment_map *map_first;
5114   struct elf_segment_map **pointer_to_map;
5115   Elf_Internal_Phdr *segment;
5116   asection *section;
5117   unsigned int i;
5118   unsigned int num_segments;
5119   bfd_boolean phdr_included = FALSE;
5120   bfd_boolean p_paddr_valid;
5121   bfd_vma maxpagesize;
5122   struct elf_segment_map *phdr_adjust_seg = NULL;
5123   unsigned int phdr_adjust_num = 0;
5124   const struct elf_backend_data *bed;
5125 
5126   bed = get_elf_backend_data (ibfd);
5127   iehdr = elf_elfheader (ibfd);
5128 
5129   map_first = NULL;
5130   pointer_to_map = &map_first;
5131 
5132   num_segments = elf_elfheader (ibfd)->e_phnum;
5133   maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5134 
5135   /* Returns the end address of the segment + 1.  */
5136 #define SEGMENT_END(segment, start)					\
5137   (start + (segment->p_memsz > segment->p_filesz			\
5138 	    ? segment->p_memsz : segment->p_filesz))
5139 
5140 #define SECTION_SIZE(section, segment)					\
5141   (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL))		\
5142     != SEC_THREAD_LOCAL || segment->p_type == PT_TLS)			\
5143    ? section->size : 0)
5144 
5145   /* Returns TRUE if the given section is contained within
5146      the given segment.  VMA addresses are compared.  */
5147 #define IS_CONTAINED_BY_VMA(section, segment)				\
5148   (section->vma >= segment->p_vaddr					\
5149    && (section->vma + SECTION_SIZE (section, segment)			\
5150        <= (SEGMENT_END (segment, segment->p_vaddr))))
5151 
5152   /* Returns TRUE if the given section is contained within
5153      the given segment.  LMA addresses are compared.  */
5154 #define IS_CONTAINED_BY_LMA(section, segment, base)			\
5155   (section->lma >= base							\
5156    && (section->lma + SECTION_SIZE (section, segment)			\
5157        <= SEGMENT_END (segment, base)))
5158 
5159   /* Handle PT_NOTE segment.  */
5160 #define IS_NOTE(p, s)							\
5161   (p->p_type == PT_NOTE							\
5162    && elf_section_type (s) == SHT_NOTE					\
5163    && (bfd_vma) s->filepos >= p->p_offset				\
5164    && ((bfd_vma) s->filepos + s->size					\
5165        <= p->p_offset + p->p_filesz))
5166 
5167   /* Special case: corefile "NOTE" section containing regs, prpsinfo
5168      etc.  */
5169 #define IS_COREFILE_NOTE(p, s)						\
5170   (IS_NOTE (p, s)							\
5171    && bfd_get_format (ibfd) == bfd_core					\
5172    && s->vma == 0							\
5173    && s->lma == 0)
5174 
5175   /* The complicated case when p_vaddr is 0 is to handle the Solaris
5176      linker, which generates a PT_INTERP section with p_vaddr and
5177      p_memsz set to 0.  */
5178 #define IS_SOLARIS_PT_INTERP(p, s)					\
5179   (p->p_vaddr == 0							\
5180    && p->p_paddr == 0							\
5181    && p->p_memsz == 0							\
5182    && p->p_filesz > 0							\
5183    && (s->flags & SEC_HAS_CONTENTS) != 0				\
5184    && s->size > 0							\
5185    && (bfd_vma) s->filepos >= p->p_offset				\
5186    && ((bfd_vma) s->filepos + s->size					\
5187        <= p->p_offset + p->p_filesz))
5188 
5189   /* Decide if the given section should be included in the given segment.
5190      A section will be included if:
5191        1. It is within the address space of the segment -- we use the LMA
5192 	  if that is set for the segment and the VMA otherwise,
5193        2. It is an allocated section or a NOTE section in a PT_NOTE
5194 	  segment.
5195        3. There is an output section associated with it,
5196        4. The section has not already been allocated to a previous segment.
5197        5. PT_GNU_STACK segments do not include any sections.
5198        6. PT_TLS segment includes only SHF_TLS sections.
5199        7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5200        8. PT_DYNAMIC should not contain empty sections at the beginning
5201 	  (with the possible exception of .dynamic).  */
5202 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed)		\
5203   ((((segment->p_paddr							\
5204       ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr)	\
5205       : IS_CONTAINED_BY_VMA (section, segment))				\
5206      && (section->flags & SEC_ALLOC) != 0)				\
5207     || IS_NOTE (segment, section))					\
5208    && segment->p_type != PT_GNU_STACK					\
5209    && (segment->p_type != PT_TLS					\
5210        || (section->flags & SEC_THREAD_LOCAL))				\
5211    && (segment->p_type == PT_LOAD					\
5212        || segment->p_type == PT_TLS					\
5213        || (section->flags & SEC_THREAD_LOCAL) == 0)			\
5214    && (segment->p_type != PT_DYNAMIC					\
5215        || SECTION_SIZE (section, segment) > 0				\
5216        || (segment->p_paddr						\
5217 	   ? segment->p_paddr != section->lma				\
5218 	   : segment->p_vaddr != section->vma)				\
5219        || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic")	\
5220 	   == 0))							\
5221    && !section->segment_mark)
5222 
5223 /* If the output section of a section in the input segment is NULL,
5224    it is removed from the corresponding output segment.   */
5225 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed)		\
5226   (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)		\
5227    && section->output_section != NULL)
5228 
5229   /* Returns TRUE iff seg1 starts after the end of seg2.  */
5230 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field)			\
5231   (seg1->field >= SEGMENT_END (seg2, seg2->field))
5232 
5233   /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5234      their VMA address ranges and their LMA address ranges overlap.
5235      It is possible to have overlapping VMA ranges without overlapping LMA
5236      ranges.  RedBoot images for example can have both .data and .bss mapped
5237      to the same VMA range, but with the .data section mapped to a different
5238      LMA.  */
5239 #define SEGMENT_OVERLAPS(seg1, seg2)					\
5240   (   !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr)			\
5241 	|| SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr))			\
5242    && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr)			\
5243 	|| SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5244 
5245   /* Initialise the segment mark field.  */
5246   for (section = ibfd->sections; section != NULL; section = section->next)
5247     section->segment_mark = FALSE;
5248 
5249   /* The Solaris linker creates program headers in which all the
5250      p_paddr fields are zero.  When we try to objcopy or strip such a
5251      file, we get confused.  Check for this case, and if we find it
5252      don't set the p_paddr_valid fields.  */
5253   p_paddr_valid = FALSE;
5254   for (i = 0, segment = elf_tdata (ibfd)->phdr;
5255        i < num_segments;
5256        i++, segment++)
5257     if (segment->p_paddr != 0)
5258       {
5259 	p_paddr_valid = TRUE;
5260 	break;
5261       }
5262 
5263   /* Scan through the segments specified in the program header
5264      of the input BFD.  For this first scan we look for overlaps
5265      in the loadable segments.  These can be created by weird
5266      parameters to objcopy.  Also, fix some solaris weirdness.  */
5267   for (i = 0, segment = elf_tdata (ibfd)->phdr;
5268        i < num_segments;
5269        i++, segment++)
5270     {
5271       unsigned int j;
5272       Elf_Internal_Phdr *segment2;
5273 
5274       if (segment->p_type == PT_INTERP)
5275 	for (section = ibfd->sections; section; section = section->next)
5276 	  if (IS_SOLARIS_PT_INTERP (segment, section))
5277 	    {
5278 	      /* Mininal change so that the normal section to segment
5279 		 assignment code will work.  */
5280 	      segment->p_vaddr = section->vma;
5281 	      break;
5282 	    }
5283 
5284       if (segment->p_type != PT_LOAD)
5285 	{
5286 	  /* Remove PT_GNU_RELRO segment.  */
5287 	  if (segment->p_type == PT_GNU_RELRO)
5288 	    segment->p_type = PT_NULL;
5289 	  continue;
5290 	}
5291 
5292       /* Determine if this segment overlaps any previous segments.  */
5293       for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5294 	{
5295 	  bfd_signed_vma extra_length;
5296 
5297 	  if (segment2->p_type != PT_LOAD
5298 	      || !SEGMENT_OVERLAPS (segment, segment2))
5299 	    continue;
5300 
5301 	  /* Merge the two segments together.  */
5302 	  if (segment2->p_vaddr < segment->p_vaddr)
5303 	    {
5304 	      /* Extend SEGMENT2 to include SEGMENT and then delete
5305 		 SEGMENT.  */
5306 	      extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5307 			      - SEGMENT_END (segment2, segment2->p_vaddr));
5308 
5309 	      if (extra_length > 0)
5310 		{
5311 		  segment2->p_memsz += extra_length;
5312 		  segment2->p_filesz += extra_length;
5313 		}
5314 
5315 	      segment->p_type = PT_NULL;
5316 
5317 	      /* Since we have deleted P we must restart the outer loop.  */
5318 	      i = 0;
5319 	      segment = elf_tdata (ibfd)->phdr;
5320 	      break;
5321 	    }
5322 	  else
5323 	    {
5324 	      /* Extend SEGMENT to include SEGMENT2 and then delete
5325 		 SEGMENT2.  */
5326 	      extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5327 			      - SEGMENT_END (segment, segment->p_vaddr));
5328 
5329 	      if (extra_length > 0)
5330 		{
5331 		  segment->p_memsz += extra_length;
5332 		  segment->p_filesz += extra_length;
5333 		}
5334 
5335 	      segment2->p_type = PT_NULL;
5336 	    }
5337 	}
5338     }
5339 
5340   /* The second scan attempts to assign sections to segments.  */
5341   for (i = 0, segment = elf_tdata (ibfd)->phdr;
5342        i < num_segments;
5343        i++, segment++)
5344     {
5345       unsigned int section_count;
5346       asection **sections;
5347       asection *output_section;
5348       unsigned int isec;
5349       bfd_vma matching_lma;
5350       bfd_vma suggested_lma;
5351       unsigned int j;
5352       bfd_size_type amt;
5353       asection *first_section;
5354       bfd_boolean first_matching_lma;
5355       bfd_boolean first_suggested_lma;
5356 
5357       if (segment->p_type == PT_NULL)
5358 	continue;
5359 
5360       first_section = NULL;
5361       /* Compute how many sections might be placed into this segment.  */
5362       for (section = ibfd->sections, section_count = 0;
5363 	   section != NULL;
5364 	   section = section->next)
5365 	{
5366 	  /* Find the first section in the input segment, which may be
5367 	     removed from the corresponding output segment.   */
5368 	  if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5369 	    {
5370 	      if (first_section == NULL)
5371 		first_section = section;
5372 	      if (section->output_section != NULL)
5373 		++section_count;
5374 	    }
5375 	}
5376 
5377       /* Allocate a segment map big enough to contain
5378 	 all of the sections we have selected.  */
5379       amt = sizeof (struct elf_segment_map);
5380       amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5381       map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5382       if (map == NULL)
5383 	return FALSE;
5384 
5385       /* Initialise the fields of the segment map.  Default to
5386 	 using the physical address of the segment in the input BFD.  */
5387       map->next = NULL;
5388       map->p_type = segment->p_type;
5389       map->p_flags = segment->p_flags;
5390       map->p_flags_valid = 1;
5391 
5392       /* If the first section in the input segment is removed, there is
5393 	 no need to preserve segment physical address in the corresponding
5394 	 output segment.  */
5395       if (!first_section || first_section->output_section != NULL)
5396 	{
5397 	  map->p_paddr = segment->p_paddr;
5398 	  map->p_paddr_valid = p_paddr_valid;
5399 	}
5400 
5401       /* Determine if this segment contains the ELF file header
5402 	 and if it contains the program headers themselves.  */
5403       map->includes_filehdr = (segment->p_offset == 0
5404 			       && segment->p_filesz >= iehdr->e_ehsize);
5405       map->includes_phdrs = 0;
5406 
5407       if (!phdr_included || segment->p_type != PT_LOAD)
5408 	{
5409 	  map->includes_phdrs =
5410 	    (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5411 	     && (segment->p_offset + segment->p_filesz
5412 		 >= ((bfd_vma) iehdr->e_phoff
5413 		     + iehdr->e_phnum * iehdr->e_phentsize)));
5414 
5415 	  if (segment->p_type == PT_LOAD && map->includes_phdrs)
5416 	    phdr_included = TRUE;
5417 	}
5418 
5419       if (section_count == 0)
5420 	{
5421 	  /* Special segments, such as the PT_PHDR segment, may contain
5422 	     no sections, but ordinary, loadable segments should contain
5423 	     something.  They are allowed by the ELF spec however, so only
5424 	     a warning is produced.  */
5425 	  if (segment->p_type == PT_LOAD)
5426 	    (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5427 				     " detected, is this intentional ?\n"),
5428 				   ibfd);
5429 
5430 	  map->count = 0;
5431 	  *pointer_to_map = map;
5432 	  pointer_to_map = &map->next;
5433 
5434 	  continue;
5435 	}
5436 
5437       /* Now scan the sections in the input BFD again and attempt
5438 	 to add their corresponding output sections to the segment map.
5439 	 The problem here is how to handle an output section which has
5440 	 been moved (ie had its LMA changed).  There are four possibilities:
5441 
5442 	 1. None of the sections have been moved.
5443 	    In this case we can continue to use the segment LMA from the
5444 	    input BFD.
5445 
5446 	 2. All of the sections have been moved by the same amount.
5447 	    In this case we can change the segment's LMA to match the LMA
5448 	    of the first section.
5449 
5450 	 3. Some of the sections have been moved, others have not.
5451 	    In this case those sections which have not been moved can be
5452 	    placed in the current segment which will have to have its size,
5453 	    and possibly its LMA changed, and a new segment or segments will
5454 	    have to be created to contain the other sections.
5455 
5456 	 4. The sections have been moved, but not by the same amount.
5457 	    In this case we can change the segment's LMA to match the LMA
5458 	    of the first section and we will have to create a new segment
5459 	    or segments to contain the other sections.
5460 
5461 	 In order to save time, we allocate an array to hold the section
5462 	 pointers that we are interested in.  As these sections get assigned
5463 	 to a segment, they are removed from this array.  */
5464 
5465       sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5466       if (sections == NULL)
5467 	return FALSE;
5468 
5469       /* Step One: Scan for segment vs section LMA conflicts.
5470 	 Also add the sections to the section array allocated above.
5471 	 Also add the sections to the current segment.  In the common
5472 	 case, where the sections have not been moved, this means that
5473 	 we have completely filled the segment, and there is nothing
5474 	 more to do.  */
5475       isec = 0;
5476       matching_lma = 0;
5477       suggested_lma = 0;
5478       first_matching_lma = TRUE;
5479       first_suggested_lma = TRUE;
5480 
5481       for (section = ibfd->sections;
5482 	   section != NULL;
5483 	   section = section->next)
5484 	if (section == first_section)
5485 	  break;
5486 
5487       for (j = 0; section != NULL; section = section->next)
5488 	{
5489 	  if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5490 	    {
5491 	      output_section = section->output_section;
5492 
5493 	      sections[j++] = section;
5494 
5495 	      /* The Solaris native linker always sets p_paddr to 0.
5496 		 We try to catch that case here, and set it to the
5497 		 correct value.  Note - some backends require that
5498 		 p_paddr be left as zero.  */
5499 	      if (!p_paddr_valid
5500 		  && segment->p_vaddr != 0
5501 		  && !bed->want_p_paddr_set_to_zero
5502 		  && isec == 0
5503 		  && output_section->lma != 0
5504 		  && output_section->vma == (segment->p_vaddr
5505 					     + (map->includes_filehdr
5506 						? iehdr->e_ehsize
5507 						: 0)
5508 					     + (map->includes_phdrs
5509 						? (iehdr->e_phnum
5510 						   * iehdr->e_phentsize)
5511 						: 0)))
5512 		map->p_paddr = segment->p_vaddr;
5513 
5514 	      /* Match up the physical address of the segment with the
5515 		 LMA address of the output section.  */
5516 	      if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5517 		  || IS_COREFILE_NOTE (segment, section)
5518 		  || (bed->want_p_paddr_set_to_zero
5519 		      && IS_CONTAINED_BY_VMA (output_section, segment)))
5520 		{
5521 		  if (first_matching_lma || output_section->lma < matching_lma)
5522 		    {
5523 		      matching_lma = output_section->lma;
5524 		      first_matching_lma = FALSE;
5525 		    }
5526 
5527 		  /* We assume that if the section fits within the segment
5528 		     then it does not overlap any other section within that
5529 		     segment.  */
5530 		  map->sections[isec++] = output_section;
5531 		}
5532 	      else if (first_suggested_lma)
5533 		{
5534 		  suggested_lma = output_section->lma;
5535 		  first_suggested_lma = FALSE;
5536 		}
5537 
5538 	      if (j == section_count)
5539 		break;
5540 	    }
5541 	}
5542 
5543       BFD_ASSERT (j == section_count);
5544 
5545       /* Step Two: Adjust the physical address of the current segment,
5546 	 if necessary.  */
5547       if (isec == section_count)
5548 	{
5549 	  /* All of the sections fitted within the segment as currently
5550 	     specified.  This is the default case.  Add the segment to
5551 	     the list of built segments and carry on to process the next
5552 	     program header in the input BFD.  */
5553 	  map->count = section_count;
5554 	  *pointer_to_map = map;
5555 	  pointer_to_map = &map->next;
5556 
5557 	  if (p_paddr_valid
5558 	      && !bed->want_p_paddr_set_to_zero
5559 	      && matching_lma != map->p_paddr
5560 	      && !map->includes_filehdr
5561 	      && !map->includes_phdrs)
5562 	    /* There is some padding before the first section in the
5563 	       segment.  So, we must account for that in the output
5564 	       segment's vma.  */
5565 	    map->p_vaddr_offset = matching_lma - map->p_paddr;
5566 
5567 	  free (sections);
5568 	  continue;
5569 	}
5570       else
5571 	{
5572 	  if (!first_matching_lma)
5573 	    {
5574 	      /* At least one section fits inside the current segment.
5575 		 Keep it, but modify its physical address to match the
5576 		 LMA of the first section that fitted.  */
5577 	      map->p_paddr = matching_lma;
5578 	    }
5579 	  else
5580 	    {
5581 	      /* None of the sections fitted inside the current segment.
5582 		 Change the current segment's physical address to match
5583 		 the LMA of the first section.  */
5584 	      map->p_paddr = suggested_lma;
5585 	    }
5586 
5587 	  /* Offset the segment physical address from the lma
5588 	     to allow for space taken up by elf headers.  */
5589 	  if (map->includes_filehdr)
5590 	    {
5591 	      if (map->p_paddr >= iehdr->e_ehsize)
5592 		map->p_paddr -= iehdr->e_ehsize;
5593 	      else
5594 		{
5595 		  map->includes_filehdr = FALSE;
5596 		  map->includes_phdrs = FALSE;
5597 		}
5598 	    }
5599 
5600 	  if (map->includes_phdrs)
5601 	    {
5602 	      if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5603 		{
5604 		  map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5605 
5606 		  /* iehdr->e_phnum is just an estimate of the number
5607 		     of program headers that we will need.  Make a note
5608 		     here of the number we used and the segment we chose
5609 		     to hold these headers, so that we can adjust the
5610 		     offset when we know the correct value.  */
5611 		  phdr_adjust_num = iehdr->e_phnum;
5612 		  phdr_adjust_seg = map;
5613 		}
5614 	      else
5615 		map->includes_phdrs = FALSE;
5616 	    }
5617 	}
5618 
5619       /* Step Three: Loop over the sections again, this time assigning
5620 	 those that fit to the current segment and removing them from the
5621 	 sections array; but making sure not to leave large gaps.  Once all
5622 	 possible sections have been assigned to the current segment it is
5623 	 added to the list of built segments and if sections still remain
5624 	 to be assigned, a new segment is constructed before repeating
5625 	 the loop.  */
5626       isec = 0;
5627       do
5628 	{
5629 	  map->count = 0;
5630 	  suggested_lma = 0;
5631 	  first_suggested_lma = TRUE;
5632 
5633 	  /* Fill the current segment with sections that fit.  */
5634 	  for (j = 0; j < section_count; j++)
5635 	    {
5636 	      section = sections[j];
5637 
5638 	      if (section == NULL)
5639 		continue;
5640 
5641 	      output_section = section->output_section;
5642 
5643 	      BFD_ASSERT (output_section != NULL);
5644 
5645 	      if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5646 		  || IS_COREFILE_NOTE (segment, section))
5647 		{
5648 		  if (map->count == 0)
5649 		    {
5650 		      /* If the first section in a segment does not start at
5651 			 the beginning of the segment, then something is
5652 			 wrong.  */
5653 		      if (output_section->lma
5654 			  != (map->p_paddr
5655 			      + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5656 			      + (map->includes_phdrs
5657 				 ? iehdr->e_phnum * iehdr->e_phentsize
5658 				 : 0)))
5659 			abort ();
5660 		    }
5661 		  else
5662 		    {
5663 		      asection *prev_sec;
5664 
5665 		      prev_sec = map->sections[map->count - 1];
5666 
5667 		      /* If the gap between the end of the previous section
5668 			 and the start of this section is more than
5669 			 maxpagesize then we need to start a new segment.  */
5670 		      if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5671 				      maxpagesize)
5672 			   < BFD_ALIGN (output_section->lma, maxpagesize))
5673 			  || (prev_sec->lma + prev_sec->size
5674 			      > output_section->lma))
5675 			{
5676 			  if (first_suggested_lma)
5677 			    {
5678 			      suggested_lma = output_section->lma;
5679 			      first_suggested_lma = FALSE;
5680 			    }
5681 
5682 			  continue;
5683 			}
5684 		    }
5685 
5686 		  map->sections[map->count++] = output_section;
5687 		  ++isec;
5688 		  sections[j] = NULL;
5689 		  section->segment_mark = TRUE;
5690 		}
5691 	      else if (first_suggested_lma)
5692 		{
5693 		  suggested_lma = output_section->lma;
5694 		  first_suggested_lma = FALSE;
5695 		}
5696 	    }
5697 
5698 	  BFD_ASSERT (map->count > 0);
5699 
5700 	  /* Add the current segment to the list of built segments.  */
5701 	  *pointer_to_map = map;
5702 	  pointer_to_map = &map->next;
5703 
5704 	  if (isec < section_count)
5705 	    {
5706 	      /* We still have not allocated all of the sections to
5707 		 segments.  Create a new segment here, initialise it
5708 		 and carry on looping.  */
5709 	      amt = sizeof (struct elf_segment_map);
5710 	      amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5711 	      map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5712 	      if (map == NULL)
5713 		{
5714 		  free (sections);
5715 		  return FALSE;
5716 		}
5717 
5718 	      /* Initialise the fields of the segment map.  Set the physical
5719 		 physical address to the LMA of the first section that has
5720 		 not yet been assigned.  */
5721 	      map->next = NULL;
5722 	      map->p_type = segment->p_type;
5723 	      map->p_flags = segment->p_flags;
5724 	      map->p_flags_valid = 1;
5725 	      map->p_paddr = suggested_lma;
5726 	      map->p_paddr_valid = p_paddr_valid;
5727 	      map->includes_filehdr = 0;
5728 	      map->includes_phdrs = 0;
5729 	    }
5730 	}
5731       while (isec < section_count);
5732 
5733       free (sections);
5734     }
5735 
5736   elf_tdata (obfd)->segment_map = map_first;
5737 
5738   /* If we had to estimate the number of program headers that were
5739      going to be needed, then check our estimate now and adjust
5740      the offset if necessary.  */
5741   if (phdr_adjust_seg != NULL)
5742     {
5743       unsigned int count;
5744 
5745       for (count = 0, map = map_first; map != NULL; map = map->next)
5746 	count++;
5747 
5748       if (count > phdr_adjust_num)
5749 	phdr_adjust_seg->p_paddr
5750 	  -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5751     }
5752 
5753 #undef SEGMENT_END
5754 #undef SECTION_SIZE
5755 #undef IS_CONTAINED_BY_VMA
5756 #undef IS_CONTAINED_BY_LMA
5757 #undef IS_NOTE
5758 #undef IS_COREFILE_NOTE
5759 #undef IS_SOLARIS_PT_INTERP
5760 #undef IS_SECTION_IN_INPUT_SEGMENT
5761 #undef INCLUDE_SECTION_IN_SEGMENT
5762 #undef SEGMENT_AFTER_SEGMENT
5763 #undef SEGMENT_OVERLAPS
5764   return TRUE;
5765 }
5766 
5767 /* Copy ELF program header information.  */
5768 
5769 static bfd_boolean
5770 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5771 {
5772   Elf_Internal_Ehdr *iehdr;
5773   struct elf_segment_map *map;
5774   struct elf_segment_map *map_first;
5775   struct elf_segment_map **pointer_to_map;
5776   Elf_Internal_Phdr *segment;
5777   unsigned int i;
5778   unsigned int num_segments;
5779   bfd_boolean phdr_included = FALSE;
5780   bfd_boolean p_paddr_valid;
5781 
5782   iehdr = elf_elfheader (ibfd);
5783 
5784   map_first = NULL;
5785   pointer_to_map = &map_first;
5786 
5787   /* If all the segment p_paddr fields are zero, don't set
5788      map->p_paddr_valid.  */
5789   p_paddr_valid = FALSE;
5790   num_segments = elf_elfheader (ibfd)->e_phnum;
5791   for (i = 0, segment = elf_tdata (ibfd)->phdr;
5792        i < num_segments;
5793        i++, segment++)
5794     if (segment->p_paddr != 0)
5795       {
5796 	p_paddr_valid = TRUE;
5797 	break;
5798       }
5799 
5800   for (i = 0, segment = elf_tdata (ibfd)->phdr;
5801        i < num_segments;
5802        i++, segment++)
5803     {
5804       asection *section;
5805       unsigned int section_count;
5806       bfd_size_type amt;
5807       Elf_Internal_Shdr *this_hdr;
5808       asection *first_section = NULL;
5809       asection *lowest_section = NULL;
5810 
5811       /* Compute how many sections are in this segment.  */
5812       for (section = ibfd->sections, section_count = 0;
5813 	   section != NULL;
5814 	   section = section->next)
5815 	{
5816 	  this_hdr = &(elf_section_data(section)->this_hdr);
5817 	  if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5818 	    {
5819 	      if (!first_section)
5820 		first_section = lowest_section = section;
5821 	      if (section->lma < lowest_section->lma)
5822 		lowest_section = section;
5823 	      section_count++;
5824 	    }
5825 	}
5826 
5827       /* Allocate a segment map big enough to contain
5828 	 all of the sections we have selected.  */
5829       amt = sizeof (struct elf_segment_map);
5830       if (section_count != 0)
5831 	amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5832       map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5833       if (map == NULL)
5834 	return FALSE;
5835 
5836       /* Initialize the fields of the output segment map with the
5837 	 input segment.  */
5838       map->next = NULL;
5839       map->p_type = segment->p_type;
5840       map->p_flags = segment->p_flags;
5841       map->p_flags_valid = 1;
5842       map->p_paddr = segment->p_paddr;
5843       map->p_paddr_valid = p_paddr_valid;
5844       map->p_align = segment->p_align;
5845       map->p_align_valid = 1;
5846       map->p_vaddr_offset = 0;
5847 
5848       if (map->p_type == PT_GNU_RELRO)
5849 	{
5850 	  /* The PT_GNU_RELRO segment may contain the first a few
5851 	     bytes in the .got.plt section even if the whole .got.plt
5852 	     section isn't in the PT_GNU_RELRO segment.  We won't
5853 	     change the size of the PT_GNU_RELRO segment.  */
5854 	  map->p_size = segment->p_memsz;
5855 	  map->p_size_valid = 1;
5856 	}
5857 
5858       /* Determine if this segment contains the ELF file header
5859 	 and if it contains the program headers themselves.  */
5860       map->includes_filehdr = (segment->p_offset == 0
5861 			       && segment->p_filesz >= iehdr->e_ehsize);
5862 
5863       map->includes_phdrs = 0;
5864       if (! phdr_included || segment->p_type != PT_LOAD)
5865 	{
5866 	  map->includes_phdrs =
5867 	    (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5868 	     && (segment->p_offset + segment->p_filesz
5869 		 >= ((bfd_vma) iehdr->e_phoff
5870 		     + iehdr->e_phnum * iehdr->e_phentsize)));
5871 
5872 	  if (segment->p_type == PT_LOAD && map->includes_phdrs)
5873 	    phdr_included = TRUE;
5874 	}
5875 
5876       if (map->includes_filehdr && first_section)
5877 	/* We need to keep the space used by the headers fixed.  */
5878 	map->header_size = first_section->vma - segment->p_vaddr;
5879 
5880       if (!map->includes_phdrs
5881 	  && !map->includes_filehdr
5882 	  && map->p_paddr_valid)
5883 	/* There is some other padding before the first section.  */
5884 	map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5885 			       - segment->p_paddr);
5886 
5887       if (section_count != 0)
5888 	{
5889 	  unsigned int isec = 0;
5890 
5891 	  for (section = first_section;
5892 	       section != NULL;
5893 	       section = section->next)
5894 	    {
5895 	      this_hdr = &(elf_section_data(section)->this_hdr);
5896 	      if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5897 		{
5898 		  map->sections[isec++] = section->output_section;
5899 		  if (isec == section_count)
5900 		    break;
5901 		}
5902 	    }
5903 	}
5904 
5905       map->count = section_count;
5906       *pointer_to_map = map;
5907       pointer_to_map = &map->next;
5908     }
5909 
5910   elf_tdata (obfd)->segment_map = map_first;
5911   return TRUE;
5912 }
5913 
5914 /* Copy private BFD data.  This copies or rewrites ELF program header
5915    information.  */
5916 
5917 static bfd_boolean
5918 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5919 {
5920   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5921       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5922     return TRUE;
5923 
5924   if (elf_tdata (ibfd)->phdr == NULL)
5925     return TRUE;
5926 
5927   if (ibfd->xvec == obfd->xvec)
5928     {
5929       /* Check to see if any sections in the input BFD
5930 	 covered by ELF program header have changed.  */
5931       Elf_Internal_Phdr *segment;
5932       asection *section, *osec;
5933       unsigned int i, num_segments;
5934       Elf_Internal_Shdr *this_hdr;
5935       const struct elf_backend_data *bed;
5936 
5937       bed = get_elf_backend_data (ibfd);
5938 
5939       /* Regenerate the segment map if p_paddr is set to 0.  */
5940       if (bed->want_p_paddr_set_to_zero)
5941 	goto rewrite;
5942 
5943       /* Initialize the segment mark field.  */
5944       for (section = obfd->sections; section != NULL;
5945 	   section = section->next)
5946 	section->segment_mark = FALSE;
5947 
5948       num_segments = elf_elfheader (ibfd)->e_phnum;
5949       for (i = 0, segment = elf_tdata (ibfd)->phdr;
5950 	   i < num_segments;
5951 	   i++, segment++)
5952 	{
5953 	  /* PR binutils/3535.  The Solaris linker always sets the p_paddr
5954 	     and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5955 	     which severly confuses things, so always regenerate the segment
5956 	     map in this case.  */
5957 	  if (segment->p_paddr == 0
5958 	      && segment->p_memsz == 0
5959 	      && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5960 	    goto rewrite;
5961 
5962 	  for (section = ibfd->sections;
5963 	       section != NULL; section = section->next)
5964 	    {
5965 	      /* We mark the output section so that we know it comes
5966 		 from the input BFD.  */
5967 	      osec = section->output_section;
5968 	      if (osec)
5969 		osec->segment_mark = TRUE;
5970 
5971 	      /* Check if this section is covered by the segment.  */
5972 	      this_hdr = &(elf_section_data(section)->this_hdr);
5973 	      if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5974 		{
5975 		  /* FIXME: Check if its output section is changed or
5976 		     removed.  What else do we need to check?  */
5977 		  if (osec == NULL
5978 		      || section->flags != osec->flags
5979 		      || section->lma != osec->lma
5980 		      || section->vma != osec->vma
5981 		      || section->size != osec->size
5982 		      || section->rawsize != osec->rawsize
5983 		      || section->alignment_power != osec->alignment_power)
5984 		    goto rewrite;
5985 		}
5986 	    }
5987 	}
5988 
5989       /* Check to see if any output section do not come from the
5990 	 input BFD.  */
5991       for (section = obfd->sections; section != NULL;
5992 	   section = section->next)
5993 	{
5994 	  if (section->segment_mark == FALSE)
5995 	    goto rewrite;
5996 	  else
5997 	    section->segment_mark = FALSE;
5998 	}
5999 
6000       return copy_elf_program_header (ibfd, obfd);
6001     }
6002 
6003 rewrite:
6004   return rewrite_elf_program_header (ibfd, obfd);
6005 }
6006 
6007 /* Initialize private output section information from input section.  */
6008 
6009 bfd_boolean
6010 _bfd_elf_init_private_section_data (bfd *ibfd,
6011 				    asection *isec,
6012 				    bfd *obfd,
6013 				    asection *osec,
6014 				    struct bfd_link_info *link_info)
6015 
6016 {
6017   Elf_Internal_Shdr *ihdr, *ohdr;
6018   bfd_boolean need_group = link_info == NULL || link_info->relocatable;
6019 
6020   if (ibfd->xvec->flavour != bfd_target_elf_flavour
6021       || obfd->xvec->flavour != bfd_target_elf_flavour)
6022     return TRUE;
6023 
6024   /* Don't copy the output ELF section type from input if the
6025      output BFD section flags have been set to something different.
6026      elf_fake_sections will set ELF section type based on BFD
6027      section flags.  */
6028   if (elf_section_type (osec) == SHT_NULL
6029       && (osec->flags == isec->flags || !osec->flags))
6030     elf_section_type (osec) = elf_section_type (isec);
6031 
6032   /* FIXME: Is this correct for all OS/PROC specific flags?  */
6033   elf_section_flags (osec) |= (elf_section_flags (isec)
6034 			       & (SHF_MASKOS | SHF_MASKPROC));
6035 
6036   /* Set things up for objcopy and relocatable link.  The output
6037      SHT_GROUP section will have its elf_next_in_group pointing back
6038      to the input group members.  Ignore linker created group section.
6039      See elfNN_ia64_object_p in elfxx-ia64.c.  */
6040   if (need_group)
6041     {
6042       if (elf_sec_group (isec) == NULL
6043 	  || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6044 	{
6045 	  if (elf_section_flags (isec) & SHF_GROUP)
6046 	    elf_section_flags (osec) |= SHF_GROUP;
6047 	  elf_next_in_group (osec) = elf_next_in_group (isec);
6048 	  elf_section_data (osec)->group = elf_section_data (isec)->group;
6049 	}
6050     }
6051 
6052   ihdr = &elf_section_data (isec)->this_hdr;
6053 
6054   /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6055      don't use the output section of the linked-to section since it
6056      may be NULL at this point.  */
6057   if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6058     {
6059       ohdr = &elf_section_data (osec)->this_hdr;
6060       ohdr->sh_flags |= SHF_LINK_ORDER;
6061       elf_linked_to_section (osec) = elf_linked_to_section (isec);
6062     }
6063 
6064   osec->use_rela_p = isec->use_rela_p;
6065 
6066   return TRUE;
6067 }
6068 
6069 /* Copy private section information.  This copies over the entsize
6070    field, and sometimes the info field.  */
6071 
6072 bfd_boolean
6073 _bfd_elf_copy_private_section_data (bfd *ibfd,
6074 				    asection *isec,
6075 				    bfd *obfd,
6076 				    asection *osec)
6077 {
6078   Elf_Internal_Shdr *ihdr, *ohdr;
6079 
6080   if (ibfd->xvec->flavour != bfd_target_elf_flavour
6081       || obfd->xvec->flavour != bfd_target_elf_flavour)
6082     return TRUE;
6083 
6084   ihdr = &elf_section_data (isec)->this_hdr;
6085   ohdr = &elf_section_data (osec)->this_hdr;
6086 
6087   ohdr->sh_entsize = ihdr->sh_entsize;
6088 
6089   if (ihdr->sh_type == SHT_SYMTAB
6090       || ihdr->sh_type == SHT_DYNSYM
6091       || ihdr->sh_type == SHT_GNU_verneed
6092       || ihdr->sh_type == SHT_GNU_verdef)
6093     ohdr->sh_info = ihdr->sh_info;
6094 
6095   return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6096 					     NULL);
6097 }
6098 
6099 /* Copy private header information.  */
6100 
6101 bfd_boolean
6102 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6103 {
6104   asection *isec;
6105 
6106   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6107       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6108     return TRUE;
6109 
6110   /* Copy over private BFD data if it has not already been copied.
6111      This must be done here, rather than in the copy_private_bfd_data
6112      entry point, because the latter is called after the section
6113      contents have been set, which means that the program headers have
6114      already been worked out.  */
6115   if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6116     {
6117       if (! copy_private_bfd_data (ibfd, obfd))
6118 	return FALSE;
6119     }
6120 
6121   /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6122      but this might be wrong if we deleted the group section.  */
6123   for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6124     if (elf_section_type (isec) == SHT_GROUP
6125 	&& isec->output_section == NULL)
6126       {
6127 	asection *first = elf_next_in_group (isec);
6128 	asection *s = first;
6129 	while (s != NULL)
6130 	  {
6131 	    if (s->output_section != NULL)
6132 	      {
6133 		elf_section_flags (s->output_section) &= ~SHF_GROUP;
6134 		elf_group_name (s->output_section) = NULL;
6135 	      }
6136 	    s = elf_next_in_group (s);
6137 	    if (s == first)
6138 	      break;
6139 	  }
6140       }
6141 
6142   return TRUE;
6143 }
6144 
6145 /* Copy private symbol information.  If this symbol is in a section
6146    which we did not map into a BFD section, try to map the section
6147    index correctly.  We use special macro definitions for the mapped
6148    section indices; these definitions are interpreted by the
6149    swap_out_syms function.  */
6150 
6151 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6152 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6153 #define MAP_STRTAB    (SHN_HIOS + 3)
6154 #define MAP_SHSTRTAB  (SHN_HIOS + 4)
6155 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6156 
6157 bfd_boolean
6158 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6159 				   asymbol *isymarg,
6160 				   bfd *obfd,
6161 				   asymbol *osymarg)
6162 {
6163   elf_symbol_type *isym, *osym;
6164 
6165   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6166       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6167     return TRUE;
6168 
6169   isym = elf_symbol_from (ibfd, isymarg);
6170   osym = elf_symbol_from (obfd, osymarg);
6171 
6172   if (isym != NULL
6173       && isym->internal_elf_sym.st_shndx != 0
6174       && osym != NULL
6175       && bfd_is_abs_section (isym->symbol.section))
6176     {
6177       unsigned int shndx;
6178 
6179       shndx = isym->internal_elf_sym.st_shndx;
6180       if (shndx == elf_onesymtab (ibfd))
6181 	shndx = MAP_ONESYMTAB;
6182       else if (shndx == elf_dynsymtab (ibfd))
6183 	shndx = MAP_DYNSYMTAB;
6184       else if (shndx == elf_tdata (ibfd)->strtab_section)
6185 	shndx = MAP_STRTAB;
6186       else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6187 	shndx = MAP_SHSTRTAB;
6188       else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6189 	shndx = MAP_SYM_SHNDX;
6190       osym->internal_elf_sym.st_shndx = shndx;
6191     }
6192 
6193   return TRUE;
6194 }
6195 
6196 /* Swap out the symbols.  */
6197 
6198 static bfd_boolean
6199 swap_out_syms (bfd *abfd,
6200 	       struct bfd_strtab_hash **sttp,
6201 	       int relocatable_p)
6202 {
6203   const struct elf_backend_data *bed;
6204   int symcount;
6205   asymbol **syms;
6206   struct bfd_strtab_hash *stt;
6207   Elf_Internal_Shdr *symtab_hdr;
6208   Elf_Internal_Shdr *symtab_shndx_hdr;
6209   Elf_Internal_Shdr *symstrtab_hdr;
6210   bfd_byte *outbound_syms;
6211   bfd_byte *outbound_shndx;
6212   int idx;
6213   bfd_size_type amt;
6214   bfd_boolean name_local_sections;
6215 
6216   if (!elf_map_symbols (abfd))
6217     return FALSE;
6218 
6219   /* Dump out the symtabs.  */
6220   stt = _bfd_elf_stringtab_init ();
6221   if (stt == NULL)
6222     return FALSE;
6223 
6224   bed = get_elf_backend_data (abfd);
6225   symcount = bfd_get_symcount (abfd);
6226   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6227   symtab_hdr->sh_type = SHT_SYMTAB;
6228   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6229   symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6230   symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6231   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6232 
6233   symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6234   symstrtab_hdr->sh_type = SHT_STRTAB;
6235 
6236   outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6237                                            bed->s->sizeof_sym);
6238   if (outbound_syms == NULL)
6239     {
6240       _bfd_stringtab_free (stt);
6241       return FALSE;
6242     }
6243   symtab_hdr->contents = outbound_syms;
6244 
6245   outbound_shndx = NULL;
6246   symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6247   if (symtab_shndx_hdr->sh_name != 0)
6248     {
6249       amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6250       outbound_shndx =  (bfd_byte *)
6251           bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6252       if (outbound_shndx == NULL)
6253 	{
6254 	  _bfd_stringtab_free (stt);
6255 	  return FALSE;
6256 	}
6257 
6258       symtab_shndx_hdr->contents = outbound_shndx;
6259       symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6260       symtab_shndx_hdr->sh_size = amt;
6261       symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6262       symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6263     }
6264 
6265   /* Now generate the data (for "contents").  */
6266   {
6267     /* Fill in zeroth symbol and swap it out.  */
6268     Elf_Internal_Sym sym;
6269     sym.st_name = 0;
6270     sym.st_value = 0;
6271     sym.st_size = 0;
6272     sym.st_info = 0;
6273     sym.st_other = 0;
6274     sym.st_shndx = SHN_UNDEF;
6275     bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6276     outbound_syms += bed->s->sizeof_sym;
6277     if (outbound_shndx != NULL)
6278       outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6279   }
6280 
6281   name_local_sections
6282     = (bed->elf_backend_name_local_section_symbols
6283        && bed->elf_backend_name_local_section_symbols (abfd));
6284 
6285   syms = bfd_get_outsymbols (abfd);
6286   for (idx = 0; idx < symcount; idx++)
6287     {
6288       Elf_Internal_Sym sym;
6289       bfd_vma value = syms[idx]->value;
6290       elf_symbol_type *type_ptr;
6291       flagword flags = syms[idx]->flags;
6292       int type;
6293 
6294       if (!name_local_sections
6295 	  && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6296 	{
6297 	  /* Local section symbols have no name.  */
6298 	  sym.st_name = 0;
6299 	}
6300       else
6301 	{
6302 	  sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6303 							    syms[idx]->name,
6304 							    TRUE, FALSE);
6305 	  if (sym.st_name == (unsigned long) -1)
6306 	    {
6307 	      _bfd_stringtab_free (stt);
6308 	      return FALSE;
6309 	    }
6310 	}
6311 
6312       type_ptr = elf_symbol_from (abfd, syms[idx]);
6313 
6314       if ((flags & BSF_SECTION_SYM) == 0
6315 	  && bfd_is_com_section (syms[idx]->section))
6316 	{
6317 	  /* ELF common symbols put the alignment into the `value' field,
6318 	     and the size into the `size' field.  This is backwards from
6319 	     how BFD handles it, so reverse it here.  */
6320 	  sym.st_size = value;
6321 	  if (type_ptr == NULL
6322 	      || type_ptr->internal_elf_sym.st_value == 0)
6323 	    sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6324 	  else
6325 	    sym.st_value = type_ptr->internal_elf_sym.st_value;
6326 	  sym.st_shndx = _bfd_elf_section_from_bfd_section
6327 	    (abfd, syms[idx]->section);
6328 	}
6329       else
6330 	{
6331 	  asection *sec = syms[idx]->section;
6332 	  unsigned int shndx;
6333 
6334 	  if (sec->output_section)
6335 	    {
6336 	      value += sec->output_offset;
6337 	      sec = sec->output_section;
6338 	    }
6339 
6340 	  /* Don't add in the section vma for relocatable output.  */
6341 	  if (! relocatable_p)
6342 	    value += sec->vma;
6343 	  sym.st_value = value;
6344 	  sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6345 
6346 	  if (bfd_is_abs_section (sec)
6347 	      && type_ptr != NULL
6348 	      && type_ptr->internal_elf_sym.st_shndx != 0)
6349 	    {
6350 	      /* This symbol is in a real ELF section which we did
6351 		 not create as a BFD section.  Undo the mapping done
6352 		 by copy_private_symbol_data.  */
6353 	      shndx = type_ptr->internal_elf_sym.st_shndx;
6354 	      switch (shndx)
6355 		{
6356 		case MAP_ONESYMTAB:
6357 		  shndx = elf_onesymtab (abfd);
6358 		  break;
6359 		case MAP_DYNSYMTAB:
6360 		  shndx = elf_dynsymtab (abfd);
6361 		  break;
6362 		case MAP_STRTAB:
6363 		  shndx = elf_tdata (abfd)->strtab_section;
6364 		  break;
6365 		case MAP_SHSTRTAB:
6366 		  shndx = elf_tdata (abfd)->shstrtab_section;
6367 		  break;
6368 		case MAP_SYM_SHNDX:
6369 		  shndx = elf_tdata (abfd)->symtab_shndx_section;
6370 		  break;
6371 		default:
6372 		  break;
6373 		}
6374 	    }
6375 	  else
6376 	    {
6377 	      shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6378 
6379 	      if (shndx == SHN_BAD)
6380 		{
6381 		  asection *sec2;
6382 
6383 		  /* Writing this would be a hell of a lot easier if
6384 		     we had some decent documentation on bfd, and
6385 		     knew what to expect of the library, and what to
6386 		     demand of applications.  For example, it
6387 		     appears that `objcopy' might not set the
6388 		     section of a symbol to be a section that is
6389 		     actually in the output file.  */
6390 		  sec2 = bfd_get_section_by_name (abfd, sec->name);
6391 		  if (sec2 == NULL)
6392 		    {
6393 		      _bfd_error_handler (_("\
6394 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6395 					  syms[idx]->name ? syms[idx]->name : "<Local sym>",
6396 					  sec->name);
6397 		      bfd_set_error (bfd_error_invalid_operation);
6398 		      _bfd_stringtab_free (stt);
6399 		      return FALSE;
6400 		    }
6401 
6402 		  shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6403 		  BFD_ASSERT (shndx != SHN_BAD);
6404 		}
6405 	    }
6406 
6407 	  sym.st_shndx = shndx;
6408 	}
6409 
6410       if ((flags & BSF_THREAD_LOCAL) != 0)
6411 	type = STT_TLS;
6412       else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6413 	type = STT_GNU_IFUNC;
6414       else if ((flags & BSF_FUNCTION) != 0)
6415 	type = STT_FUNC;
6416       else if ((flags & BSF_OBJECT) != 0)
6417 	type = STT_OBJECT;
6418       else if ((flags & BSF_RELC) != 0)
6419 	type = STT_RELC;
6420       else if ((flags & BSF_SRELC) != 0)
6421 	type = STT_SRELC;
6422       else
6423 	type = STT_NOTYPE;
6424 
6425       if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6426 	type = STT_TLS;
6427 
6428       /* Processor-specific types.  */
6429       if (type_ptr != NULL
6430 	  && bed->elf_backend_get_symbol_type)
6431 	type = ((*bed->elf_backend_get_symbol_type)
6432 		(&type_ptr->internal_elf_sym, type));
6433 
6434       if (flags & BSF_SECTION_SYM)
6435 	{
6436 	  if (flags & BSF_GLOBAL)
6437 	    sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6438 	  else
6439 	    sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6440 	}
6441       else if (bfd_is_com_section (syms[idx]->section))
6442 	{
6443 #ifdef USE_STT_COMMON
6444 	  if (type == STT_OBJECT)
6445 	    sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6446 	  else
6447 #endif
6448 	    sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6449 	}
6450       else if (bfd_is_und_section (syms[idx]->section))
6451 	sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6452 				    ? STB_WEAK
6453 				    : STB_GLOBAL),
6454 				   type);
6455       else if (flags & BSF_FILE)
6456 	sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6457       else
6458 	{
6459 	  int bind = STB_LOCAL;
6460 
6461 	  if (flags & BSF_LOCAL)
6462 	    bind = STB_LOCAL;
6463 	  else if (flags & BSF_GNU_UNIQUE)
6464 	    bind = STB_GNU_UNIQUE;
6465 	  else if (flags & BSF_WEAK)
6466 	    bind = STB_WEAK;
6467 	  else if (flags & BSF_GLOBAL)
6468 	    bind = STB_GLOBAL;
6469 
6470 	  sym.st_info = ELF_ST_INFO (bind, type);
6471 	}
6472 
6473       if (type_ptr != NULL)
6474 	sym.st_other = type_ptr->internal_elf_sym.st_other;
6475       else
6476 	sym.st_other = 0;
6477 
6478       bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6479       outbound_syms += bed->s->sizeof_sym;
6480       if (outbound_shndx != NULL)
6481 	outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6482     }
6483 
6484   *sttp = stt;
6485   symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6486   symstrtab_hdr->sh_type = SHT_STRTAB;
6487 
6488   symstrtab_hdr->sh_flags = 0;
6489   symstrtab_hdr->sh_addr = 0;
6490   symstrtab_hdr->sh_entsize = 0;
6491   symstrtab_hdr->sh_link = 0;
6492   symstrtab_hdr->sh_info = 0;
6493   symstrtab_hdr->sh_addralign = 1;
6494 
6495   return TRUE;
6496 }
6497 
6498 /* Return the number of bytes required to hold the symtab vector.
6499 
6500    Note that we base it on the count plus 1, since we will null terminate
6501    the vector allocated based on this size.  However, the ELF symbol table
6502    always has a dummy entry as symbol #0, so it ends up even.  */
6503 
6504 long
6505 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6506 {
6507   long symcount;
6508   long symtab_size;
6509   Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6510 
6511   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6512   symtab_size = (symcount + 1) * (sizeof (asymbol *));
6513   if (symcount > 0)
6514     symtab_size -= sizeof (asymbol *);
6515 
6516   return symtab_size;
6517 }
6518 
6519 long
6520 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6521 {
6522   long symcount;
6523   long symtab_size;
6524   Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6525 
6526   if (elf_dynsymtab (abfd) == 0)
6527     {
6528       bfd_set_error (bfd_error_invalid_operation);
6529       return -1;
6530     }
6531 
6532   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6533   symtab_size = (symcount + 1) * (sizeof (asymbol *));
6534   if (symcount > 0)
6535     symtab_size -= sizeof (asymbol *);
6536 
6537   return symtab_size;
6538 }
6539 
6540 long
6541 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6542 				sec_ptr asect)
6543 {
6544   return (asect->reloc_count + 1) * sizeof (arelent *);
6545 }
6546 
6547 /* Canonicalize the relocs.  */
6548 
6549 long
6550 _bfd_elf_canonicalize_reloc (bfd *abfd,
6551 			     sec_ptr section,
6552 			     arelent **relptr,
6553 			     asymbol **symbols)
6554 {
6555   arelent *tblptr;
6556   unsigned int i;
6557   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6558 
6559   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6560     return -1;
6561 
6562   tblptr = section->relocation;
6563   for (i = 0; i < section->reloc_count; i++)
6564     *relptr++ = tblptr++;
6565 
6566   *relptr = NULL;
6567 
6568   return section->reloc_count;
6569 }
6570 
6571 long
6572 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6573 {
6574   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6575   long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6576 
6577   if (symcount >= 0)
6578     bfd_get_symcount (abfd) = symcount;
6579   return symcount;
6580 }
6581 
6582 long
6583 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6584 				      asymbol **allocation)
6585 {
6586   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6587   long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6588 
6589   if (symcount >= 0)
6590     bfd_get_dynamic_symcount (abfd) = symcount;
6591   return symcount;
6592 }
6593 
6594 /* Return the size required for the dynamic reloc entries.  Any loadable
6595    section that was actually installed in the BFD, and has type SHT_REL
6596    or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6597    dynamic reloc section.  */
6598 
6599 long
6600 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6601 {
6602   long ret;
6603   asection *s;
6604 
6605   if (elf_dynsymtab (abfd) == 0)
6606     {
6607       bfd_set_error (bfd_error_invalid_operation);
6608       return -1;
6609     }
6610 
6611   ret = sizeof (arelent *);
6612   for (s = abfd->sections; s != NULL; s = s->next)
6613     if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6614 	&& (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6615 	    || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6616       ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6617 	      * sizeof (arelent *));
6618 
6619   return ret;
6620 }
6621 
6622 /* Canonicalize the dynamic relocation entries.  Note that we return the
6623    dynamic relocations as a single block, although they are actually
6624    associated with particular sections; the interface, which was
6625    designed for SunOS style shared libraries, expects that there is only
6626    one set of dynamic relocs.  Any loadable section that was actually
6627    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6628    dynamic symbol table, is considered to be a dynamic reloc section.  */
6629 
6630 long
6631 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6632 				     arelent **storage,
6633 				     asymbol **syms)
6634 {
6635   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6636   asection *s;
6637   long ret;
6638 
6639   if (elf_dynsymtab (abfd) == 0)
6640     {
6641       bfd_set_error (bfd_error_invalid_operation);
6642       return -1;
6643     }
6644 
6645   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6646   ret = 0;
6647   for (s = abfd->sections; s != NULL; s = s->next)
6648     {
6649       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6650 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6651 	      || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6652 	{
6653 	  arelent *p;
6654 	  long count, i;
6655 
6656 	  if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6657 	    return -1;
6658 	  count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6659 	  p = s->relocation;
6660 	  for (i = 0; i < count; i++)
6661 	    *storage++ = p++;
6662 	  ret += count;
6663 	}
6664     }
6665 
6666   *storage = NULL;
6667 
6668   return ret;
6669 }
6670 
6671 /* Read in the version information.  */
6672 
6673 bfd_boolean
6674 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6675 {
6676   bfd_byte *contents = NULL;
6677   unsigned int freeidx = 0;
6678 
6679   if (elf_dynverref (abfd) != 0)
6680     {
6681       Elf_Internal_Shdr *hdr;
6682       Elf_External_Verneed *everneed;
6683       Elf_Internal_Verneed *iverneed;
6684       unsigned int i;
6685       bfd_byte *contents_end;
6686 
6687       hdr = &elf_tdata (abfd)->dynverref_hdr;
6688 
6689       elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
6690           bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
6691       if (elf_tdata (abfd)->verref == NULL)
6692 	goto error_return;
6693 
6694       elf_tdata (abfd)->cverrefs = hdr->sh_info;
6695 
6696       contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6697       if (contents == NULL)
6698 	{
6699 error_return_verref:
6700 	  elf_tdata (abfd)->verref = NULL;
6701 	  elf_tdata (abfd)->cverrefs = 0;
6702 	  goto error_return;
6703 	}
6704       if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6705 	  || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6706 	goto error_return_verref;
6707 
6708       if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6709 	goto error_return_verref;
6710 
6711       BFD_ASSERT (sizeof (Elf_External_Verneed)
6712 		  == sizeof (Elf_External_Vernaux));
6713       contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6714       everneed = (Elf_External_Verneed *) contents;
6715       iverneed = elf_tdata (abfd)->verref;
6716       for (i = 0; i < hdr->sh_info; i++, iverneed++)
6717 	{
6718 	  Elf_External_Vernaux *evernaux;
6719 	  Elf_Internal_Vernaux *ivernaux;
6720 	  unsigned int j;
6721 
6722 	  _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6723 
6724 	  iverneed->vn_bfd = abfd;
6725 
6726 	  iverneed->vn_filename =
6727 	    bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6728 					     iverneed->vn_file);
6729 	  if (iverneed->vn_filename == NULL)
6730 	    goto error_return_verref;
6731 
6732 	  if (iverneed->vn_cnt == 0)
6733 	    iverneed->vn_auxptr = NULL;
6734 	  else
6735 	    {
6736 	      iverneed->vn_auxptr = (struct elf_internal_vernaux *)
6737                   bfd_alloc2 (abfd, iverneed->vn_cnt,
6738                               sizeof (Elf_Internal_Vernaux));
6739 	      if (iverneed->vn_auxptr == NULL)
6740 		goto error_return_verref;
6741 	    }
6742 
6743 	  if (iverneed->vn_aux
6744 	      > (size_t) (contents_end - (bfd_byte *) everneed))
6745 	    goto error_return_verref;
6746 
6747 	  evernaux = ((Elf_External_Vernaux *)
6748 		      ((bfd_byte *) everneed + iverneed->vn_aux));
6749 	  ivernaux = iverneed->vn_auxptr;
6750 	  for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6751 	    {
6752 	      _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6753 
6754 	      ivernaux->vna_nodename =
6755 		bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6756 						 ivernaux->vna_name);
6757 	      if (ivernaux->vna_nodename == NULL)
6758 		goto error_return_verref;
6759 
6760 	      if (j + 1 < iverneed->vn_cnt)
6761 		ivernaux->vna_nextptr = ivernaux + 1;
6762 	      else
6763 		ivernaux->vna_nextptr = NULL;
6764 
6765 	      if (ivernaux->vna_next
6766 		  > (size_t) (contents_end - (bfd_byte *) evernaux))
6767 		goto error_return_verref;
6768 
6769 	      evernaux = ((Elf_External_Vernaux *)
6770 			  ((bfd_byte *) evernaux + ivernaux->vna_next));
6771 
6772 	      if (ivernaux->vna_other > freeidx)
6773 		freeidx = ivernaux->vna_other;
6774 	    }
6775 
6776 	  if (i + 1 < hdr->sh_info)
6777 	    iverneed->vn_nextref = iverneed + 1;
6778 	  else
6779 	    iverneed->vn_nextref = NULL;
6780 
6781 	  if (iverneed->vn_next
6782 	      > (size_t) (contents_end - (bfd_byte *) everneed))
6783 	    goto error_return_verref;
6784 
6785 	  everneed = ((Elf_External_Verneed *)
6786 		      ((bfd_byte *) everneed + iverneed->vn_next));
6787 	}
6788 
6789       free (contents);
6790       contents = NULL;
6791     }
6792 
6793   if (elf_dynverdef (abfd) != 0)
6794     {
6795       Elf_Internal_Shdr *hdr;
6796       Elf_External_Verdef *everdef;
6797       Elf_Internal_Verdef *iverdef;
6798       Elf_Internal_Verdef *iverdefarr;
6799       Elf_Internal_Verdef iverdefmem;
6800       unsigned int i;
6801       unsigned int maxidx;
6802       bfd_byte *contents_end_def, *contents_end_aux;
6803 
6804       hdr = &elf_tdata (abfd)->dynverdef_hdr;
6805 
6806       contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
6807       if (contents == NULL)
6808 	goto error_return;
6809       if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6810 	  || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6811 	goto error_return;
6812 
6813       if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6814 	goto error_return;
6815 
6816       BFD_ASSERT (sizeof (Elf_External_Verdef)
6817 		  >= sizeof (Elf_External_Verdaux));
6818       contents_end_def = contents + hdr->sh_size
6819 			 - sizeof (Elf_External_Verdef);
6820       contents_end_aux = contents + hdr->sh_size
6821 			 - sizeof (Elf_External_Verdaux);
6822 
6823       /* We know the number of entries in the section but not the maximum
6824 	 index.  Therefore we have to run through all entries and find
6825 	 the maximum.  */
6826       everdef = (Elf_External_Verdef *) contents;
6827       maxidx = 0;
6828       for (i = 0; i < hdr->sh_info; ++i)
6829 	{
6830 	  _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6831 
6832 	  if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6833 	    maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6834 
6835 	  if (iverdefmem.vd_next
6836 	      > (size_t) (contents_end_def - (bfd_byte *) everdef))
6837 	    goto error_return;
6838 
6839 	  everdef = ((Elf_External_Verdef *)
6840 		     ((bfd_byte *) everdef + iverdefmem.vd_next));
6841 	}
6842 
6843       if (default_imported_symver)
6844 	{
6845 	  if (freeidx > maxidx)
6846 	    maxidx = ++freeidx;
6847 	  else
6848 	    freeidx = ++maxidx;
6849 	}
6850       elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6851           bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
6852       if (elf_tdata (abfd)->verdef == NULL)
6853 	goto error_return;
6854 
6855       elf_tdata (abfd)->cverdefs = maxidx;
6856 
6857       everdef = (Elf_External_Verdef *) contents;
6858       iverdefarr = elf_tdata (abfd)->verdef;
6859       for (i = 0; i < hdr->sh_info; i++)
6860 	{
6861 	  Elf_External_Verdaux *everdaux;
6862 	  Elf_Internal_Verdaux *iverdaux;
6863 	  unsigned int j;
6864 
6865 	  _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6866 
6867 	  if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6868 	    {
6869 error_return_verdef:
6870 	      elf_tdata (abfd)->verdef = NULL;
6871 	      elf_tdata (abfd)->cverdefs = 0;
6872 	      goto error_return;
6873 	    }
6874 
6875 	  iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6876 	  memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6877 
6878 	  iverdef->vd_bfd = abfd;
6879 
6880 	  if (iverdef->vd_cnt == 0)
6881 	    iverdef->vd_auxptr = NULL;
6882 	  else
6883 	    {
6884 	      iverdef->vd_auxptr = (struct elf_internal_verdaux *)
6885                   bfd_alloc2 (abfd, iverdef->vd_cnt,
6886                               sizeof (Elf_Internal_Verdaux));
6887 	      if (iverdef->vd_auxptr == NULL)
6888 		goto error_return_verdef;
6889 	    }
6890 
6891 	  if (iverdef->vd_aux
6892 	      > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6893 	    goto error_return_verdef;
6894 
6895 	  everdaux = ((Elf_External_Verdaux *)
6896 		      ((bfd_byte *) everdef + iverdef->vd_aux));
6897 	  iverdaux = iverdef->vd_auxptr;
6898 	  for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6899 	    {
6900 	      _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6901 
6902 	      iverdaux->vda_nodename =
6903 		bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6904 						 iverdaux->vda_name);
6905 	      if (iverdaux->vda_nodename == NULL)
6906 		goto error_return_verdef;
6907 
6908 	      if (j + 1 < iverdef->vd_cnt)
6909 		iverdaux->vda_nextptr = iverdaux + 1;
6910 	      else
6911 		iverdaux->vda_nextptr = NULL;
6912 
6913 	      if (iverdaux->vda_next
6914 		  > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6915 		goto error_return_verdef;
6916 
6917 	      everdaux = ((Elf_External_Verdaux *)
6918 			  ((bfd_byte *) everdaux + iverdaux->vda_next));
6919 	    }
6920 
6921 	  if (iverdef->vd_cnt)
6922 	    iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6923 
6924 	  if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6925 	    iverdef->vd_nextdef = iverdef + 1;
6926 	  else
6927 	    iverdef->vd_nextdef = NULL;
6928 
6929 	  everdef = ((Elf_External_Verdef *)
6930 		     ((bfd_byte *) everdef + iverdef->vd_next));
6931 	}
6932 
6933       free (contents);
6934       contents = NULL;
6935     }
6936   else if (default_imported_symver)
6937     {
6938       if (freeidx < 3)
6939 	freeidx = 3;
6940       else
6941 	freeidx++;
6942 
6943       elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
6944           bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
6945       if (elf_tdata (abfd)->verdef == NULL)
6946 	goto error_return;
6947 
6948       elf_tdata (abfd)->cverdefs = freeidx;
6949     }
6950 
6951   /* Create a default version based on the soname.  */
6952   if (default_imported_symver)
6953     {
6954       Elf_Internal_Verdef *iverdef;
6955       Elf_Internal_Verdaux *iverdaux;
6956 
6957       iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6958 
6959       iverdef->vd_version = VER_DEF_CURRENT;
6960       iverdef->vd_flags = 0;
6961       iverdef->vd_ndx = freeidx;
6962       iverdef->vd_cnt = 1;
6963 
6964       iverdef->vd_bfd = abfd;
6965 
6966       iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6967       if (iverdef->vd_nodename == NULL)
6968 	goto error_return_verdef;
6969       iverdef->vd_nextdef = NULL;
6970       iverdef->vd_auxptr = (struct elf_internal_verdaux *)
6971           bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6972       if (iverdef->vd_auxptr == NULL)
6973 	goto error_return_verdef;
6974 
6975       iverdaux = iverdef->vd_auxptr;
6976       iverdaux->vda_nodename = iverdef->vd_nodename;
6977       iverdaux->vda_nextptr = NULL;
6978     }
6979 
6980   return TRUE;
6981 
6982  error_return:
6983   if (contents != NULL)
6984     free (contents);
6985   return FALSE;
6986 }
6987 
6988 asymbol *
6989 _bfd_elf_make_empty_symbol (bfd *abfd)
6990 {
6991   elf_symbol_type *newsym;
6992   bfd_size_type amt = sizeof (elf_symbol_type);
6993 
6994   newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
6995   if (!newsym)
6996     return NULL;
6997   else
6998     {
6999       newsym->symbol.the_bfd = abfd;
7000       return &newsym->symbol;
7001     }
7002 }
7003 
7004 void
7005 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7006 			  asymbol *symbol,
7007 			  symbol_info *ret)
7008 {
7009   bfd_symbol_info (symbol, ret);
7010 }
7011 
7012 /* Return whether a symbol name implies a local symbol.  Most targets
7013    use this function for the is_local_label_name entry point, but some
7014    override it.  */
7015 
7016 bfd_boolean
7017 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7018 			      const char *name)
7019 {
7020   /* Normal local symbols start with ``.L''.  */
7021   if (name[0] == '.' && name[1] == 'L')
7022     return TRUE;
7023 
7024   /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7025      DWARF debugging symbols starting with ``..''.  */
7026   if (name[0] == '.' && name[1] == '.')
7027     return TRUE;
7028 
7029   /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7030      emitting DWARF debugging output.  I suspect this is actually a
7031      small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7032      ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7033      underscore to be emitted on some ELF targets).  For ease of use,
7034      we treat such symbols as local.  */
7035   if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7036     return TRUE;
7037 
7038   return FALSE;
7039 }
7040 
7041 alent *
7042 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7043 		     asymbol *symbol ATTRIBUTE_UNUSED)
7044 {
7045   abort ();
7046   return NULL;
7047 }
7048 
7049 bfd_boolean
7050 _bfd_elf_set_arch_mach (bfd *abfd,
7051 			enum bfd_architecture arch,
7052 			unsigned long machine)
7053 {
7054   /* If this isn't the right architecture for this backend, and this
7055      isn't the generic backend, fail.  */
7056   if (arch != get_elf_backend_data (abfd)->arch
7057       && arch != bfd_arch_unknown
7058       && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7059     return FALSE;
7060 
7061   return bfd_default_set_arch_mach (abfd, arch, machine);
7062 }
7063 
7064 /* Find the function to a particular section and offset,
7065    for error reporting.  */
7066 
7067 static bfd_boolean
7068 elf_find_function (bfd *abfd,
7069 		   asection *section,
7070 		   asymbol **symbols,
7071 		   bfd_vma offset,
7072 		   const char **filename_ptr,
7073 		   const char **functionname_ptr)
7074 {
7075   const char *filename;
7076   asymbol *func, *file;
7077   bfd_vma low_func;
7078   asymbol **p;
7079   /* ??? Given multiple file symbols, it is impossible to reliably
7080      choose the right file name for global symbols.  File symbols are
7081      local symbols, and thus all file symbols must sort before any
7082      global symbols.  The ELF spec may be interpreted to say that a
7083      file symbol must sort before other local symbols, but currently
7084      ld -r doesn't do this.  So, for ld -r output, it is possible to
7085      make a better choice of file name for local symbols by ignoring
7086      file symbols appearing after a given local symbol.  */
7087   enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7088   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7089 
7090   filename = NULL;
7091   func = NULL;
7092   file = NULL;
7093   low_func = 0;
7094   state = nothing_seen;
7095 
7096   for (p = symbols; *p != NULL; p++)
7097     {
7098       elf_symbol_type *q;
7099       unsigned int type;
7100 
7101       q = (elf_symbol_type *) *p;
7102 
7103       type = ELF_ST_TYPE (q->internal_elf_sym.st_info);
7104       switch (type)
7105 	{
7106 	case STT_FILE:
7107 	  file = &q->symbol;
7108 	  if (state == symbol_seen)
7109 	    state = file_after_symbol_seen;
7110 	  continue;
7111 	default:
7112 	  if (!bed->is_function_type (type))
7113 	    break;
7114 	case STT_NOTYPE:
7115 	  if (bfd_get_section (&q->symbol) == section
7116 	      && q->symbol.value >= low_func
7117 	      && q->symbol.value <= offset)
7118 	    {
7119 	      func = (asymbol *) q;
7120 	      low_func = q->symbol.value;
7121 	      filename = NULL;
7122 	      if (file != NULL
7123 		  && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7124 		      || state != file_after_symbol_seen))
7125 		filename = bfd_asymbol_name (file);
7126 	    }
7127 	  break;
7128 	}
7129       if (state == nothing_seen)
7130 	state = symbol_seen;
7131     }
7132 
7133   if (func == NULL)
7134     return FALSE;
7135 
7136   if (filename_ptr)
7137     *filename_ptr = filename;
7138   if (functionname_ptr)
7139     *functionname_ptr = bfd_asymbol_name (func);
7140 
7141   return TRUE;
7142 }
7143 
7144 /* Find the nearest line to a particular section and offset,
7145    for error reporting.  */
7146 
7147 bfd_boolean
7148 _bfd_elf_find_nearest_line (bfd *abfd,
7149 			    asection *section,
7150 			    asymbol **symbols,
7151 			    bfd_vma offset,
7152 			    const char **filename_ptr,
7153 			    const char **functionname_ptr,
7154 			    unsigned int *line_ptr)
7155 {
7156   bfd_boolean found;
7157 
7158   if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7159 				     filename_ptr, functionname_ptr,
7160 				     line_ptr))
7161     {
7162       if (!*functionname_ptr)
7163 	elf_find_function (abfd, section, symbols, offset,
7164 			   *filename_ptr ? NULL : filename_ptr,
7165 			   functionname_ptr);
7166 
7167       return TRUE;
7168     }
7169 
7170   if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7171 				     filename_ptr, functionname_ptr,
7172 				     line_ptr, 0,
7173 				     &elf_tdata (abfd)->dwarf2_find_line_info))
7174     {
7175       if (!*functionname_ptr)
7176 	elf_find_function (abfd, section, symbols, offset,
7177 			   *filename_ptr ? NULL : filename_ptr,
7178 			   functionname_ptr);
7179 
7180       return TRUE;
7181     }
7182 
7183   if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7184 					     &found, filename_ptr,
7185 					     functionname_ptr, line_ptr,
7186 					     &elf_tdata (abfd)->line_info))
7187     return FALSE;
7188   if (found && (*functionname_ptr || *line_ptr))
7189     return TRUE;
7190 
7191   if (symbols == NULL)
7192     return FALSE;
7193 
7194   if (! elf_find_function (abfd, section, symbols, offset,
7195 			   filename_ptr, functionname_ptr))
7196     return FALSE;
7197 
7198   *line_ptr = 0;
7199   return TRUE;
7200 }
7201 
7202 /* Find the line for a symbol.  */
7203 
7204 bfd_boolean
7205 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7206 		    const char **filename_ptr, unsigned int *line_ptr)
7207 {
7208   return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7209 				filename_ptr, line_ptr, 0,
7210 				&elf_tdata (abfd)->dwarf2_find_line_info);
7211 }
7212 
7213 /* After a call to bfd_find_nearest_line, successive calls to
7214    bfd_find_inliner_info can be used to get source information about
7215    each level of function inlining that terminated at the address
7216    passed to bfd_find_nearest_line.  Currently this is only supported
7217    for DWARF2 with appropriate DWARF3 extensions. */
7218 
7219 bfd_boolean
7220 _bfd_elf_find_inliner_info (bfd *abfd,
7221 			    const char **filename_ptr,
7222 			    const char **functionname_ptr,
7223 			    unsigned int *line_ptr)
7224 {
7225   bfd_boolean found;
7226   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7227 					 functionname_ptr, line_ptr,
7228 					 & elf_tdata (abfd)->dwarf2_find_line_info);
7229   return found;
7230 }
7231 
7232 int
7233 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7234 {
7235   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7236   int ret = bed->s->sizeof_ehdr;
7237 
7238   if (!info->relocatable)
7239     {
7240       bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7241 
7242       if (phdr_size == (bfd_size_type) -1)
7243 	{
7244 	  struct elf_segment_map *m;
7245 
7246 	  phdr_size = 0;
7247 	  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7248 	    phdr_size += bed->s->sizeof_phdr;
7249 
7250 	  if (phdr_size == 0)
7251 	    phdr_size = get_program_header_size (abfd, info);
7252 	}
7253 
7254       elf_tdata (abfd)->program_header_size = phdr_size;
7255       ret += phdr_size;
7256     }
7257 
7258   return ret;
7259 }
7260 
7261 bfd_boolean
7262 _bfd_elf_set_section_contents (bfd *abfd,
7263 			       sec_ptr section,
7264 			       const void *location,
7265 			       file_ptr offset,
7266 			       bfd_size_type count)
7267 {
7268   Elf_Internal_Shdr *hdr;
7269   bfd_signed_vma pos;
7270 
7271   if (! abfd->output_has_begun
7272       && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7273     return FALSE;
7274 
7275   hdr = &elf_section_data (section)->this_hdr;
7276   pos = hdr->sh_offset + offset;
7277   if (bfd_seek (abfd, pos, SEEK_SET) != 0
7278       || bfd_bwrite (location, count, abfd) != count)
7279     return FALSE;
7280 
7281   return TRUE;
7282 }
7283 
7284 void
7285 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7286 			   arelent *cache_ptr ATTRIBUTE_UNUSED,
7287 			   Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7288 {
7289   abort ();
7290 }
7291 
7292 /* Try to convert a non-ELF reloc into an ELF one.  */
7293 
7294 bfd_boolean
7295 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7296 {
7297   /* Check whether we really have an ELF howto.  */
7298 
7299   if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7300     {
7301       bfd_reloc_code_real_type code;
7302       reloc_howto_type *howto;
7303 
7304       /* Alien reloc: Try to determine its type to replace it with an
7305 	 equivalent ELF reloc.  */
7306 
7307       if (areloc->howto->pc_relative)
7308 	{
7309 	  switch (areloc->howto->bitsize)
7310 	    {
7311 	    case 8:
7312 	      code = BFD_RELOC_8_PCREL;
7313 	      break;
7314 	    case 12:
7315 	      code = BFD_RELOC_12_PCREL;
7316 	      break;
7317 	    case 16:
7318 	      code = BFD_RELOC_16_PCREL;
7319 	      break;
7320 	    case 24:
7321 	      code = BFD_RELOC_24_PCREL;
7322 	      break;
7323 	    case 32:
7324 	      code = BFD_RELOC_32_PCREL;
7325 	      break;
7326 	    case 64:
7327 	      code = BFD_RELOC_64_PCREL;
7328 	      break;
7329 	    default:
7330 	      goto fail;
7331 	    }
7332 
7333 	  howto = bfd_reloc_type_lookup (abfd, code);
7334 
7335 	  if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7336 	    {
7337 	      if (howto->pcrel_offset)
7338 		areloc->addend += areloc->address;
7339 	      else
7340 		areloc->addend -= areloc->address; /* addend is unsigned!! */
7341 	    }
7342 	}
7343       else
7344 	{
7345 	  switch (areloc->howto->bitsize)
7346 	    {
7347 	    case 8:
7348 	      code = BFD_RELOC_8;
7349 	      break;
7350 	    case 14:
7351 	      code = BFD_RELOC_14;
7352 	      break;
7353 	    case 16:
7354 	      code = BFD_RELOC_16;
7355 	      break;
7356 	    case 26:
7357 	      code = BFD_RELOC_26;
7358 	      break;
7359 	    case 32:
7360 	      code = BFD_RELOC_32;
7361 	      break;
7362 	    case 64:
7363 	      code = BFD_RELOC_64;
7364 	      break;
7365 	    default:
7366 	      goto fail;
7367 	    }
7368 
7369 	  howto = bfd_reloc_type_lookup (abfd, code);
7370 	}
7371 
7372       if (howto)
7373 	areloc->howto = howto;
7374       else
7375 	goto fail;
7376     }
7377 
7378   return TRUE;
7379 
7380  fail:
7381   (*_bfd_error_handler)
7382     (_("%B: unsupported relocation type %s"),
7383      abfd, areloc->howto->name);
7384   bfd_set_error (bfd_error_bad_value);
7385   return FALSE;
7386 }
7387 
7388 bfd_boolean
7389 _bfd_elf_close_and_cleanup (bfd *abfd)
7390 {
7391   if (bfd_get_format (abfd) == bfd_object)
7392     {
7393       if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7394 	_bfd_elf_strtab_free (elf_shstrtab (abfd));
7395       _bfd_dwarf2_cleanup_debug_info (abfd);
7396     }
7397 
7398   return _bfd_generic_close_and_cleanup (abfd);
7399 }
7400 
7401 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7402    in the relocation's offset.  Thus we cannot allow any sort of sanity
7403    range-checking to interfere.  There is nothing else to do in processing
7404    this reloc.  */
7405 
7406 bfd_reloc_status_type
7407 _bfd_elf_rel_vtable_reloc_fn
7408   (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7409    struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7410    void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7411    bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7412 {
7413   return bfd_reloc_ok;
7414 }
7415 
7416 /* Elf core file support.  Much of this only works on native
7417    toolchains, since we rely on knowing the
7418    machine-dependent procfs structure in order to pick
7419    out details about the corefile.  */
7420 
7421 #ifdef HAVE_SYS_PROCFS_H
7422 # include <sys/procfs.h>
7423 #endif
7424 
7425 /* FIXME: this is kinda wrong, but it's what gdb wants.  */
7426 
7427 static int
7428 elfcore_make_pid (bfd *abfd)
7429 {
7430   return ((elf_tdata (abfd)->core_lwpid << 16)
7431 	  + (elf_tdata (abfd)->core_pid));
7432 }
7433 
7434 /* If there isn't a section called NAME, make one, using
7435    data from SECT.  Note, this function will generate a
7436    reference to NAME, so you shouldn't deallocate or
7437    overwrite it.  */
7438 
7439 static bfd_boolean
7440 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7441 {
7442   asection *sect2;
7443 
7444   if (bfd_get_section_by_name (abfd, name) != NULL)
7445     return TRUE;
7446 
7447   sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7448   if (sect2 == NULL)
7449     return FALSE;
7450 
7451   sect2->size = sect->size;
7452   sect2->filepos = sect->filepos;
7453   sect2->alignment_power = sect->alignment_power;
7454   return TRUE;
7455 }
7456 
7457 /* Create a pseudosection containing SIZE bytes at FILEPOS.  This
7458    actually creates up to two pseudosections:
7459    - For the single-threaded case, a section named NAME, unless
7460      such a section already exists.
7461    - For the multi-threaded case, a section named "NAME/PID", where
7462      PID is elfcore_make_pid (abfd).
7463    Both pseudosections have identical contents. */
7464 bfd_boolean
7465 _bfd_elfcore_make_pseudosection (bfd *abfd,
7466 				 char *name,
7467 				 size_t size,
7468 				 ufile_ptr filepos)
7469 {
7470   char buf[100];
7471   char *threaded_name;
7472   size_t len;
7473   asection *sect;
7474 
7475   /* Build the section name.  */
7476 
7477   sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7478   len = strlen (buf) + 1;
7479   threaded_name = (char *) bfd_alloc (abfd, len);
7480   if (threaded_name == NULL)
7481     return FALSE;
7482   memcpy (threaded_name, buf, len);
7483 
7484   sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7485 					     SEC_HAS_CONTENTS);
7486   if (sect == NULL)
7487     return FALSE;
7488   sect->size = size;
7489   sect->filepos = filepos;
7490   sect->alignment_power = 2;
7491 
7492   return elfcore_maybe_make_sect (abfd, name, sect);
7493 }
7494 
7495 /* prstatus_t exists on:
7496      solaris 2.5+
7497      linux 2.[01] + glibc
7498      unixware 4.2
7499 */
7500 
7501 #if defined (HAVE_PRSTATUS_T)
7502 
7503 static bfd_boolean
7504 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7505 {
7506   size_t size;
7507   int offset;
7508 
7509   if (note->descsz == sizeof (prstatus_t))
7510     {
7511       prstatus_t prstat;
7512 
7513       size = sizeof (prstat.pr_reg);
7514       offset   = offsetof (prstatus_t, pr_reg);
7515       memcpy (&prstat, note->descdata, sizeof (prstat));
7516 
7517       /* Do not overwrite the core signal if it
7518 	 has already been set by another thread.  */
7519       if (elf_tdata (abfd)->core_signal == 0)
7520 	elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7521       elf_tdata (abfd)->core_pid = prstat.pr_pid;
7522 
7523       /* pr_who exists on:
7524 	 solaris 2.5+
7525 	 unixware 4.2
7526 	 pr_who doesn't exist on:
7527 	 linux 2.[01]
7528 	 */
7529 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7530       elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7531 #endif
7532     }
7533 #if defined (HAVE_PRSTATUS32_T)
7534   else if (note->descsz == sizeof (prstatus32_t))
7535     {
7536       /* 64-bit host, 32-bit corefile */
7537       prstatus32_t prstat;
7538 
7539       size = sizeof (prstat.pr_reg);
7540       offset   = offsetof (prstatus32_t, pr_reg);
7541       memcpy (&prstat, note->descdata, sizeof (prstat));
7542 
7543       /* Do not overwrite the core signal if it
7544 	 has already been set by another thread.  */
7545       if (elf_tdata (abfd)->core_signal == 0)
7546 	elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7547       elf_tdata (abfd)->core_pid = prstat.pr_pid;
7548 
7549       /* pr_who exists on:
7550 	 solaris 2.5+
7551 	 unixware 4.2
7552 	 pr_who doesn't exist on:
7553 	 linux 2.[01]
7554 	 */
7555 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7556       elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7557 #endif
7558     }
7559 #endif /* HAVE_PRSTATUS32_T */
7560   else
7561     {
7562       /* Fail - we don't know how to handle any other
7563 	 note size (ie. data object type).  */
7564       return TRUE;
7565     }
7566 
7567   /* Make a ".reg/999" section and a ".reg" section.  */
7568   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7569 					  size, note->descpos + offset);
7570 }
7571 #endif /* defined (HAVE_PRSTATUS_T) */
7572 
7573 /* Create a pseudosection containing the exact contents of NOTE.  */
7574 static bfd_boolean
7575 elfcore_make_note_pseudosection (bfd *abfd,
7576 				 char *name,
7577 				 Elf_Internal_Note *note)
7578 {
7579   return _bfd_elfcore_make_pseudosection (abfd, name,
7580 					  note->descsz, note->descpos);
7581 }
7582 
7583 /* There isn't a consistent prfpregset_t across platforms,
7584    but it doesn't matter, because we don't have to pick this
7585    data structure apart.  */
7586 
7587 static bfd_boolean
7588 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7589 {
7590   return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7591 }
7592 
7593 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7594    type of NT_PRXFPREG.  Just include the whole note's contents
7595    literally.  */
7596 
7597 static bfd_boolean
7598 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7599 {
7600   return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7601 }
7602 
7603 static bfd_boolean
7604 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7605 {
7606   return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7607 }
7608 
7609 static bfd_boolean
7610 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7611 {
7612   return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7613 }
7614 
7615 #if defined (HAVE_PRPSINFO_T)
7616 typedef prpsinfo_t   elfcore_psinfo_t;
7617 #if defined (HAVE_PRPSINFO32_T)		/* Sparc64 cross Sparc32 */
7618 typedef prpsinfo32_t elfcore_psinfo32_t;
7619 #endif
7620 #endif
7621 
7622 #if defined (HAVE_PSINFO_T)
7623 typedef psinfo_t   elfcore_psinfo_t;
7624 #if defined (HAVE_PSINFO32_T)		/* Sparc64 cross Sparc32 */
7625 typedef psinfo32_t elfcore_psinfo32_t;
7626 #endif
7627 #endif
7628 
7629 /* return a malloc'ed copy of a string at START which is at
7630    most MAX bytes long, possibly without a terminating '\0'.
7631    the copy will always have a terminating '\0'.  */
7632 
7633 char *
7634 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7635 {
7636   char *dups;
7637   char *end = (char *) memchr (start, '\0', max);
7638   size_t len;
7639 
7640   if (end == NULL)
7641     len = max;
7642   else
7643     len = end - start;
7644 
7645   dups = (char *) bfd_alloc (abfd, len + 1);
7646   if (dups == NULL)
7647     return NULL;
7648 
7649   memcpy (dups, start, len);
7650   dups[len] = '\0';
7651 
7652   return dups;
7653 }
7654 
7655 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7656 static bfd_boolean
7657 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7658 {
7659   if (note->descsz == sizeof (elfcore_psinfo_t))
7660     {
7661       elfcore_psinfo_t psinfo;
7662 
7663       memcpy (&psinfo, note->descdata, sizeof (psinfo));
7664 
7665       elf_tdata (abfd)->core_program
7666 	= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7667 				sizeof (psinfo.pr_fname));
7668 
7669       elf_tdata (abfd)->core_command
7670 	= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7671 				sizeof (psinfo.pr_psargs));
7672     }
7673 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7674   else if (note->descsz == sizeof (elfcore_psinfo32_t))
7675     {
7676       /* 64-bit host, 32-bit corefile */
7677       elfcore_psinfo32_t psinfo;
7678 
7679       memcpy (&psinfo, note->descdata, sizeof (psinfo));
7680 
7681       elf_tdata (abfd)->core_program
7682 	= _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7683 				sizeof (psinfo.pr_fname));
7684 
7685       elf_tdata (abfd)->core_command
7686 	= _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7687 				sizeof (psinfo.pr_psargs));
7688     }
7689 #endif
7690 
7691   else
7692     {
7693       /* Fail - we don't know how to handle any other
7694 	 note size (ie. data object type).  */
7695       return TRUE;
7696     }
7697 
7698   /* Note that for some reason, a spurious space is tacked
7699      onto the end of the args in some (at least one anyway)
7700      implementations, so strip it off if it exists.  */
7701 
7702   {
7703     char *command = elf_tdata (abfd)->core_command;
7704     int n = strlen (command);
7705 
7706     if (0 < n && command[n - 1] == ' ')
7707       command[n - 1] = '\0';
7708   }
7709 
7710   return TRUE;
7711 }
7712 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7713 
7714 #if defined (HAVE_PSTATUS_T)
7715 static bfd_boolean
7716 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7717 {
7718   if (note->descsz == sizeof (pstatus_t)
7719 #if defined (HAVE_PXSTATUS_T)
7720       || note->descsz == sizeof (pxstatus_t)
7721 #endif
7722       )
7723     {
7724       pstatus_t pstat;
7725 
7726       memcpy (&pstat, note->descdata, sizeof (pstat));
7727 
7728       elf_tdata (abfd)->core_pid = pstat.pr_pid;
7729     }
7730 #if defined (HAVE_PSTATUS32_T)
7731   else if (note->descsz == sizeof (pstatus32_t))
7732     {
7733       /* 64-bit host, 32-bit corefile */
7734       pstatus32_t pstat;
7735 
7736       memcpy (&pstat, note->descdata, sizeof (pstat));
7737 
7738       elf_tdata (abfd)->core_pid = pstat.pr_pid;
7739     }
7740 #endif
7741   /* Could grab some more details from the "representative"
7742      lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7743      NT_LWPSTATUS note, presumably.  */
7744 
7745   return TRUE;
7746 }
7747 #endif /* defined (HAVE_PSTATUS_T) */
7748 
7749 #if defined (HAVE_LWPSTATUS_T)
7750 static bfd_boolean
7751 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7752 {
7753   lwpstatus_t lwpstat;
7754   char buf[100];
7755   char *name;
7756   size_t len;
7757   asection *sect;
7758 
7759   if (note->descsz != sizeof (lwpstat)
7760 #if defined (HAVE_LWPXSTATUS_T)
7761       && note->descsz != sizeof (lwpxstatus_t)
7762 #endif
7763       )
7764     return TRUE;
7765 
7766   memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7767 
7768   elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7769   elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7770 
7771   /* Make a ".reg/999" section.  */
7772 
7773   sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7774   len = strlen (buf) + 1;
7775   name = bfd_alloc (abfd, len);
7776   if (name == NULL)
7777     return FALSE;
7778   memcpy (name, buf, len);
7779 
7780   sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7781   if (sect == NULL)
7782     return FALSE;
7783 
7784 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7785   sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7786   sect->filepos = note->descpos
7787     + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7788 #endif
7789 
7790 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7791   sect->size = sizeof (lwpstat.pr_reg);
7792   sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7793 #endif
7794 
7795   sect->alignment_power = 2;
7796 
7797   if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7798     return FALSE;
7799 
7800   /* Make a ".reg2/999" section */
7801 
7802   sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7803   len = strlen (buf) + 1;
7804   name = bfd_alloc (abfd, len);
7805   if (name == NULL)
7806     return FALSE;
7807   memcpy (name, buf, len);
7808 
7809   sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7810   if (sect == NULL)
7811     return FALSE;
7812 
7813 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7814   sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7815   sect->filepos = note->descpos
7816     + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7817 #endif
7818 
7819 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7820   sect->size = sizeof (lwpstat.pr_fpreg);
7821   sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7822 #endif
7823 
7824   sect->alignment_power = 2;
7825 
7826   return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7827 }
7828 #endif /* defined (HAVE_LWPSTATUS_T) */
7829 
7830 static bfd_boolean
7831 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7832 {
7833   char buf[30];
7834   char *name;
7835   size_t len;
7836   asection *sect;
7837   int type;
7838   int is_active_thread;
7839   bfd_vma base_addr;
7840 
7841   if (note->descsz < 728)
7842     return TRUE;
7843 
7844   if (! CONST_STRNEQ (note->namedata, "win32"))
7845     return TRUE;
7846 
7847   type = bfd_get_32 (abfd, note->descdata);
7848 
7849   switch (type)
7850     {
7851     case 1 /* NOTE_INFO_PROCESS */:
7852       /* FIXME: need to add ->core_command.  */
7853       /* process_info.pid */
7854       elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7855       /* process_info.signal */
7856       elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7857       break;
7858 
7859     case 2 /* NOTE_INFO_THREAD */:
7860       /* Make a ".reg/999" section.  */
7861       /* thread_info.tid */
7862       sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7863 
7864       len = strlen (buf) + 1;
7865       name = (char *) bfd_alloc (abfd, len);
7866       if (name == NULL)
7867 	return FALSE;
7868 
7869       memcpy (name, buf, len);
7870 
7871       sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7872       if (sect == NULL)
7873 	return FALSE;
7874 
7875       /* sizeof (thread_info.thread_context) */
7876       sect->size = 716;
7877       /* offsetof (thread_info.thread_context) */
7878       sect->filepos = note->descpos + 12;
7879       sect->alignment_power = 2;
7880 
7881       /* thread_info.is_active_thread */
7882       is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7883 
7884       if (is_active_thread)
7885 	if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7886 	  return FALSE;
7887       break;
7888 
7889     case 3 /* NOTE_INFO_MODULE */:
7890       /* Make a ".module/xxxxxxxx" section.  */
7891       /* module_info.base_address */
7892       base_addr = bfd_get_32 (abfd, note->descdata + 4);
7893       sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
7894 
7895       len = strlen (buf) + 1;
7896       name = (char *) bfd_alloc (abfd, len);
7897       if (name == NULL)
7898 	return FALSE;
7899 
7900       memcpy (name, buf, len);
7901 
7902       sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7903 
7904       if (sect == NULL)
7905 	return FALSE;
7906 
7907       sect->size = note->descsz;
7908       sect->filepos = note->descpos;
7909       sect->alignment_power = 2;
7910       break;
7911 
7912     default:
7913       return TRUE;
7914     }
7915 
7916   return TRUE;
7917 }
7918 
7919 static bfd_boolean
7920 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7921 {
7922   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7923 
7924   switch (note->type)
7925     {
7926     default:
7927       return TRUE;
7928 
7929     case NT_PRSTATUS:
7930       if (bed->elf_backend_grok_prstatus)
7931 	if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7932 	  return TRUE;
7933 #if defined (HAVE_PRSTATUS_T)
7934       return elfcore_grok_prstatus (abfd, note);
7935 #else
7936       return TRUE;
7937 #endif
7938 
7939 #if defined (HAVE_PSTATUS_T)
7940     case NT_PSTATUS:
7941       return elfcore_grok_pstatus (abfd, note);
7942 #endif
7943 
7944 #if defined (HAVE_LWPSTATUS_T)
7945     case NT_LWPSTATUS:
7946       return elfcore_grok_lwpstatus (abfd, note);
7947 #endif
7948 
7949     case NT_FPREGSET:		/* FIXME: rename to NT_PRFPREG */
7950       return elfcore_grok_prfpreg (abfd, note);
7951 
7952     case NT_WIN32PSTATUS:
7953       return elfcore_grok_win32pstatus (abfd, note);
7954 
7955     case NT_PRXFPREG:		/* Linux SSE extension */
7956       if (note->namesz == 6
7957 	  && strcmp (note->namedata, "LINUX") == 0)
7958 	return elfcore_grok_prxfpreg (abfd, note);
7959       else
7960 	return TRUE;
7961 
7962     case NT_PPC_VMX:
7963       if (note->namesz == 6
7964 	  && strcmp (note->namedata, "LINUX") == 0)
7965 	return elfcore_grok_ppc_vmx (abfd, note);
7966       else
7967 	return TRUE;
7968 
7969     case NT_PPC_VSX:
7970       if (note->namesz == 6
7971           && strcmp (note->namedata, "LINUX") == 0)
7972         return elfcore_grok_ppc_vsx (abfd, note);
7973       else
7974         return TRUE;
7975 
7976     case NT_PRPSINFO:
7977     case NT_PSINFO:
7978       if (bed->elf_backend_grok_psinfo)
7979 	if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7980 	  return TRUE;
7981 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7982       return elfcore_grok_psinfo (abfd, note);
7983 #else
7984       return TRUE;
7985 #endif
7986 
7987     case NT_AUXV:
7988       {
7989 	asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7990 							     SEC_HAS_CONTENTS);
7991 
7992 	if (sect == NULL)
7993 	  return FALSE;
7994 	sect->size = note->descsz;
7995 	sect->filepos = note->descpos;
7996 	sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7997 
7998 	return TRUE;
7999       }
8000     }
8001 }
8002 
8003 static bfd_boolean
8004 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8005 {
8006   elf_tdata (abfd)->build_id_size = note->descsz;
8007   elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8008   if (elf_tdata (abfd)->build_id == NULL)
8009     return FALSE;
8010 
8011   memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8012 
8013   return TRUE;
8014 }
8015 
8016 static bfd_boolean
8017 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8018 {
8019   switch (note->type)
8020     {
8021     default:
8022       return TRUE;
8023 
8024     case NT_GNU_BUILD_ID:
8025       return elfobj_grok_gnu_build_id (abfd, note);
8026     }
8027 }
8028 
8029 static bfd_boolean
8030 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8031 {
8032   char *cp;
8033 
8034   cp = strchr (note->namedata, '@');
8035   if (cp != NULL)
8036     {
8037       *lwpidp = atoi(cp + 1);
8038       return TRUE;
8039     }
8040   return FALSE;
8041 }
8042 
8043 static bfd_boolean
8044 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8045 {
8046   /* Signal number at offset 0x08. */
8047   elf_tdata (abfd)->core_signal
8048     = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8049 
8050   /* Process ID at offset 0x50. */
8051   elf_tdata (abfd)->core_pid
8052     = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8053 
8054   /* Command name at 0x7c (max 32 bytes, including nul). */
8055   elf_tdata (abfd)->core_command
8056     = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8057 
8058   return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8059 					  note);
8060 }
8061 
8062 static bfd_boolean
8063 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8064 {
8065   int lwp;
8066 
8067   if (elfcore_netbsd_get_lwpid (note, &lwp))
8068     elf_tdata (abfd)->core_lwpid = lwp;
8069 
8070   if (note->type == NT_NETBSDCORE_PROCINFO)
8071     {
8072       /* NetBSD-specific core "procinfo".  Note that we expect to
8073 	 find this note before any of the others, which is fine,
8074 	 since the kernel writes this note out first when it
8075 	 creates a core file.  */
8076 
8077       return elfcore_grok_netbsd_procinfo (abfd, note);
8078     }
8079 
8080   /* As of Jan 2002 there are no other machine-independent notes
8081      defined for NetBSD core files.  If the note type is less
8082      than the start of the machine-dependent note types, we don't
8083      understand it.  */
8084 
8085   if (note->type < NT_NETBSDCORE_FIRSTMACH)
8086     return TRUE;
8087 
8088 
8089   switch (bfd_get_arch (abfd))
8090     {
8091       /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8092 	 PT_GETFPREGS == mach+2.  */
8093 
8094     case bfd_arch_alpha:
8095     case bfd_arch_sparc:
8096       switch (note->type)
8097 	{
8098 	case NT_NETBSDCORE_FIRSTMACH+0:
8099 	  return elfcore_make_note_pseudosection (abfd, ".reg", note);
8100 
8101 	case NT_NETBSDCORE_FIRSTMACH+2:
8102 	  return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8103 
8104 	default:
8105 	  return TRUE;
8106 	}
8107 
8108       /* On all other arch's, PT_GETREGS == mach+1 and
8109 	 PT_GETFPREGS == mach+3.  */
8110 
8111     default:
8112       switch (note->type)
8113 	{
8114 	case NT_NETBSDCORE_FIRSTMACH+1:
8115 	  return elfcore_make_note_pseudosection (abfd, ".reg", note);
8116 
8117 	case NT_NETBSDCORE_FIRSTMACH+3:
8118 	  return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8119 
8120 	default:
8121 	  return TRUE;
8122 	}
8123     }
8124     /* NOTREACHED */
8125 }
8126 
8127 static bfd_boolean
8128 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8129 {
8130   /* Signal number at offset 0x08. */
8131   elf_tdata (abfd)->core_signal
8132     = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8133 
8134   /* Process ID at offset 0x20. */
8135   elf_tdata (abfd)->core_pid
8136     = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8137 
8138   /* Command name at 0x48 (max 32 bytes, including nul). */
8139   elf_tdata (abfd)->core_command
8140     = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8141 
8142   return TRUE;
8143 }
8144 
8145 static bfd_boolean
8146 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8147 {
8148   if (note->type == NT_OPENBSD_PROCINFO)
8149     return elfcore_grok_openbsd_procinfo (abfd, note);
8150 
8151   if (note->type == NT_OPENBSD_REGS)
8152     return elfcore_make_note_pseudosection (abfd, ".reg", note);
8153 
8154   if (note->type == NT_OPENBSD_FPREGS)
8155     return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8156 
8157   if (note->type == NT_OPENBSD_XFPREGS)
8158     return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8159 
8160   if (note->type == NT_OPENBSD_AUXV)
8161     {
8162       asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8163 							   SEC_HAS_CONTENTS);
8164 
8165       if (sect == NULL)
8166 	return FALSE;
8167       sect->size = note->descsz;
8168       sect->filepos = note->descpos;
8169       sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8170 
8171       return TRUE;
8172     }
8173 
8174   if (note->type == NT_OPENBSD_WCOOKIE)
8175     {
8176       asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8177 							   SEC_HAS_CONTENTS);
8178 
8179       if (sect == NULL)
8180 	return FALSE;
8181       sect->size = note->descsz;
8182       sect->filepos = note->descpos;
8183       sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8184 
8185       return TRUE;
8186     }
8187 
8188   return TRUE;
8189 }
8190 
8191 static bfd_boolean
8192 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8193 {
8194   void *ddata = note->descdata;
8195   char buf[100];
8196   char *name;
8197   asection *sect;
8198   short sig;
8199   unsigned flags;
8200 
8201   /* nto_procfs_status 'pid' field is at offset 0.  */
8202   elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8203 
8204   /* nto_procfs_status 'tid' field is at offset 4.  Pass it back.  */
8205   *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8206 
8207   /* nto_procfs_status 'flags' field is at offset 8.  */
8208   flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8209 
8210   /* nto_procfs_status 'what' field is at offset 14.  */
8211   if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8212     {
8213       elf_tdata (abfd)->core_signal = sig;
8214       elf_tdata (abfd)->core_lwpid = *tid;
8215     }
8216 
8217   /* _DEBUG_FLAG_CURTID (current thread) is 0x80.  Some cores
8218      do not come from signals so we make sure we set the current
8219      thread just in case.  */
8220   if (flags & 0x00000080)
8221     elf_tdata (abfd)->core_lwpid = *tid;
8222 
8223   /* Make a ".qnx_core_status/%d" section.  */
8224   sprintf (buf, ".qnx_core_status/%ld", *tid);
8225 
8226   name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8227   if (name == NULL)
8228     return FALSE;
8229   strcpy (name, buf);
8230 
8231   sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8232   if (sect == NULL)
8233     return FALSE;
8234 
8235   sect->size            = note->descsz;
8236   sect->filepos         = note->descpos;
8237   sect->alignment_power = 2;
8238 
8239   return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8240 }
8241 
8242 static bfd_boolean
8243 elfcore_grok_nto_regs (bfd *abfd,
8244 		       Elf_Internal_Note *note,
8245 		       long tid,
8246 		       char *base)
8247 {
8248   char buf[100];
8249   char *name;
8250   asection *sect;
8251 
8252   /* Make a "(base)/%d" section.  */
8253   sprintf (buf, "%s/%ld", base, tid);
8254 
8255   name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8256   if (name == NULL)
8257     return FALSE;
8258   strcpy (name, buf);
8259 
8260   sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8261   if (sect == NULL)
8262     return FALSE;
8263 
8264   sect->size            = note->descsz;
8265   sect->filepos         = note->descpos;
8266   sect->alignment_power = 2;
8267 
8268   /* This is the current thread.  */
8269   if (elf_tdata (abfd)->core_lwpid == tid)
8270     return elfcore_maybe_make_sect (abfd, base, sect);
8271 
8272   return TRUE;
8273 }
8274 
8275 #define BFD_QNT_CORE_INFO	7
8276 #define BFD_QNT_CORE_STATUS	8
8277 #define BFD_QNT_CORE_GREG	9
8278 #define BFD_QNT_CORE_FPREG	10
8279 
8280 static bfd_boolean
8281 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8282 {
8283   /* Every GREG section has a STATUS section before it.  Store the
8284      tid from the previous call to pass down to the next gregs
8285      function.  */
8286   static long tid = 1;
8287 
8288   switch (note->type)
8289     {
8290     case BFD_QNT_CORE_INFO:
8291       return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8292     case BFD_QNT_CORE_STATUS:
8293       return elfcore_grok_nto_status (abfd, note, &tid);
8294     case BFD_QNT_CORE_GREG:
8295       return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8296     case BFD_QNT_CORE_FPREG:
8297       return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8298     default:
8299       return TRUE;
8300     }
8301 }
8302 
8303 static bfd_boolean
8304 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8305 {
8306   char *name;
8307   asection *sect;
8308   size_t len;
8309 
8310   /* Use note name as section name.  */
8311   len = note->namesz;
8312   name = (char *) bfd_alloc (abfd, len);
8313   if (name == NULL)
8314     return FALSE;
8315   memcpy (name, note->namedata, len);
8316   name[len - 1] = '\0';
8317 
8318   sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8319   if (sect == NULL)
8320     return FALSE;
8321 
8322   sect->size            = note->descsz;
8323   sect->filepos         = note->descpos;
8324   sect->alignment_power = 1;
8325 
8326   return TRUE;
8327 }
8328 
8329 /* Function: elfcore_write_note
8330 
8331    Inputs:
8332      buffer to hold note, and current size of buffer
8333      name of note
8334      type of note
8335      data for note
8336      size of data for note
8337 
8338    Writes note to end of buffer.  ELF64 notes are written exactly as
8339    for ELF32, despite the current (as of 2006) ELF gabi specifying
8340    that they ought to have 8-byte namesz and descsz field, and have
8341    8-byte alignment.  Other writers, eg. Linux kernel, do the same.
8342 
8343    Return:
8344    Pointer to realloc'd buffer, *BUFSIZ updated.  */
8345 
8346 char *
8347 elfcore_write_note (bfd *abfd,
8348 		    char *buf,
8349 		    int *bufsiz,
8350 		    const char *name,
8351 		    int type,
8352 		    const void *input,
8353 		    int size)
8354 {
8355   Elf_External_Note *xnp;
8356   size_t namesz;
8357   size_t newspace;
8358   char *dest;
8359 
8360   namesz = 0;
8361   if (name != NULL)
8362     namesz = strlen (name) + 1;
8363 
8364   newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8365 
8366   buf = (char *) realloc (buf, *bufsiz + newspace);
8367   if (buf == NULL)
8368     return buf;
8369   dest = buf + *bufsiz;
8370   *bufsiz += newspace;
8371   xnp = (Elf_External_Note *) dest;
8372   H_PUT_32 (abfd, namesz, xnp->namesz);
8373   H_PUT_32 (abfd, size, xnp->descsz);
8374   H_PUT_32 (abfd, type, xnp->type);
8375   dest = xnp->name;
8376   if (name != NULL)
8377     {
8378       memcpy (dest, name, namesz);
8379       dest += namesz;
8380       while (namesz & 3)
8381 	{
8382 	  *dest++ = '\0';
8383 	  ++namesz;
8384 	}
8385     }
8386   memcpy (dest, input, size);
8387   dest += size;
8388   while (size & 3)
8389     {
8390       *dest++ = '\0';
8391       ++size;
8392     }
8393   return buf;
8394 }
8395 
8396 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8397 char *
8398 elfcore_write_prpsinfo (bfd  *abfd,
8399 			char *buf,
8400 			int  *bufsiz,
8401 			const char *fname,
8402 			const char *psargs)
8403 {
8404   const char *note_name = "CORE";
8405   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8406 
8407   if (bed->elf_backend_write_core_note != NULL)
8408     {
8409       char *ret;
8410       ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8411 						 NT_PRPSINFO, fname, psargs);
8412       if (ret != NULL)
8413 	return ret;
8414     }
8415 
8416 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8417   if (bed->s->elfclass == ELFCLASS32)
8418     {
8419 #if defined (HAVE_PSINFO32_T)
8420       psinfo32_t data;
8421       int note_type = NT_PSINFO;
8422 #else
8423       prpsinfo32_t data;
8424       int note_type = NT_PRPSINFO;
8425 #endif
8426 
8427       memset (&data, 0, sizeof (data));
8428       strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8429       strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8430       return elfcore_write_note (abfd, buf, bufsiz,
8431 				 note_name, note_type, &data, sizeof (data));
8432     }
8433   else
8434 #endif
8435     {
8436 #if defined (HAVE_PSINFO_T)
8437       psinfo_t data;
8438       int note_type = NT_PSINFO;
8439 #else
8440       prpsinfo_t data;
8441       int note_type = NT_PRPSINFO;
8442 #endif
8443 
8444       memset (&data, 0, sizeof (data));
8445       strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8446       strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8447       return elfcore_write_note (abfd, buf, bufsiz,
8448 				 note_name, note_type, &data, sizeof (data));
8449     }
8450 }
8451 #endif	/* PSINFO_T or PRPSINFO_T */
8452 
8453 #if defined (HAVE_PRSTATUS_T)
8454 char *
8455 elfcore_write_prstatus (bfd *abfd,
8456 			char *buf,
8457 			int *bufsiz,
8458 			long pid,
8459 			int cursig,
8460 			const void *gregs)
8461 {
8462   const char *note_name = "CORE";
8463   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8464 
8465   if (bed->elf_backend_write_core_note != NULL)
8466     {
8467       char *ret;
8468       ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8469 						 NT_PRSTATUS,
8470 						 pid, cursig, gregs);
8471       if (ret != NULL)
8472 	return ret;
8473     }
8474 
8475 #if defined (HAVE_PRSTATUS32_T)
8476   if (bed->s->elfclass == ELFCLASS32)
8477     {
8478       prstatus32_t prstat;
8479 
8480       memset (&prstat, 0, sizeof (prstat));
8481       prstat.pr_pid = pid;
8482       prstat.pr_cursig = cursig;
8483       memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8484       return elfcore_write_note (abfd, buf, bufsiz, note_name,
8485 				 NT_PRSTATUS, &prstat, sizeof (prstat));
8486     }
8487   else
8488 #endif
8489     {
8490       prstatus_t prstat;
8491 
8492       memset (&prstat, 0, sizeof (prstat));
8493       prstat.pr_pid = pid;
8494       prstat.pr_cursig = cursig;
8495       memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8496       return elfcore_write_note (abfd, buf, bufsiz, note_name,
8497 				 NT_PRSTATUS, &prstat, sizeof (prstat));
8498     }
8499 }
8500 #endif /* HAVE_PRSTATUS_T */
8501 
8502 #if defined (HAVE_LWPSTATUS_T)
8503 char *
8504 elfcore_write_lwpstatus (bfd *abfd,
8505 			 char *buf,
8506 			 int *bufsiz,
8507 			 long pid,
8508 			 int cursig,
8509 			 const void *gregs)
8510 {
8511   lwpstatus_t lwpstat;
8512   const char *note_name = "CORE";
8513 
8514   memset (&lwpstat, 0, sizeof (lwpstat));
8515   lwpstat.pr_lwpid  = pid >> 16;
8516   lwpstat.pr_cursig = cursig;
8517 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8518   memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8519 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8520 #if !defined(gregs)
8521   memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8522 	  gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8523 #else
8524   memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8525 	  gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8526 #endif
8527 #endif
8528   return elfcore_write_note (abfd, buf, bufsiz, note_name,
8529 			     NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8530 }
8531 #endif /* HAVE_LWPSTATUS_T */
8532 
8533 #if defined (HAVE_PSTATUS_T)
8534 char *
8535 elfcore_write_pstatus (bfd *abfd,
8536 		       char *buf,
8537 		       int *bufsiz,
8538 		       long pid,
8539 		       int cursig ATTRIBUTE_UNUSED,
8540 		       const void *gregs ATTRIBUTE_UNUSED)
8541 {
8542   const char *note_name = "CORE";
8543 #if defined (HAVE_PSTATUS32_T)
8544   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8545 
8546   if (bed->s->elfclass == ELFCLASS32)
8547     {
8548       pstatus32_t pstat;
8549 
8550       memset (&pstat, 0, sizeof (pstat));
8551       pstat.pr_pid = pid & 0xffff;
8552       buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8553 				NT_PSTATUS, &pstat, sizeof (pstat));
8554       return buf;
8555     }
8556   else
8557 #endif
8558     {
8559       pstatus_t pstat;
8560 
8561       memset (&pstat, 0, sizeof (pstat));
8562       pstat.pr_pid = pid & 0xffff;
8563       buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8564 				NT_PSTATUS, &pstat, sizeof (pstat));
8565       return buf;
8566     }
8567 }
8568 #endif /* HAVE_PSTATUS_T */
8569 
8570 char *
8571 elfcore_write_prfpreg (bfd *abfd,
8572 		       char *buf,
8573 		       int *bufsiz,
8574 		       const void *fpregs,
8575 		       int size)
8576 {
8577   const char *note_name = "CORE";
8578   return elfcore_write_note (abfd, buf, bufsiz,
8579 			     note_name, NT_FPREGSET, fpregs, size);
8580 }
8581 
8582 char *
8583 elfcore_write_prxfpreg (bfd *abfd,
8584 			char *buf,
8585 			int *bufsiz,
8586 			const void *xfpregs,
8587 			int size)
8588 {
8589   char *note_name = "LINUX";
8590   return elfcore_write_note (abfd, buf, bufsiz,
8591 			     note_name, NT_PRXFPREG, xfpregs, size);
8592 }
8593 
8594 char *
8595 elfcore_write_ppc_vmx (bfd *abfd,
8596 		       char *buf,
8597 		       int *bufsiz,
8598 		       const void *ppc_vmx,
8599 		       int size)
8600 {
8601   char *note_name = "LINUX";
8602   return elfcore_write_note (abfd, buf, bufsiz,
8603 			     note_name, NT_PPC_VMX, ppc_vmx, size);
8604 }
8605 
8606 char *
8607 elfcore_write_ppc_vsx (bfd *abfd,
8608                        char *buf,
8609                        int *bufsiz,
8610                        const void *ppc_vsx,
8611                        int size)
8612 {
8613   char *note_name = "LINUX";
8614   return elfcore_write_note (abfd, buf, bufsiz,
8615                              note_name, NT_PPC_VSX, ppc_vsx, size);
8616 }
8617 
8618 char *
8619 elfcore_write_register_note (bfd *abfd,
8620 			     char *buf,
8621 			     int *bufsiz,
8622 			     const char *section,
8623 			     const void *data,
8624 			     int size)
8625 {
8626   if (strcmp (section, ".reg2") == 0)
8627     return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
8628   if (strcmp (section, ".reg-xfp") == 0)
8629     return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
8630   if (strcmp (section, ".reg-ppc-vmx") == 0)
8631     return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
8632   if (strcmp (section, ".reg-ppc-vsx") == 0)
8633     return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
8634   return NULL;
8635 }
8636 
8637 static bfd_boolean
8638 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8639 {
8640   char *p;
8641 
8642   p = buf;
8643   while (p < buf + size)
8644     {
8645       /* FIXME: bad alignment assumption.  */
8646       Elf_External_Note *xnp = (Elf_External_Note *) p;
8647       Elf_Internal_Note in;
8648 
8649       if (offsetof (Elf_External_Note, name) > buf - p + size)
8650 	return FALSE;
8651 
8652       in.type = H_GET_32 (abfd, xnp->type);
8653 
8654       in.namesz = H_GET_32 (abfd, xnp->namesz);
8655       in.namedata = xnp->name;
8656       if (in.namesz > buf - in.namedata + size)
8657 	return FALSE;
8658 
8659       in.descsz = H_GET_32 (abfd, xnp->descsz);
8660       in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8661       in.descpos = offset + (in.descdata - buf);
8662       if (in.descsz != 0
8663 	  && (in.descdata >= buf + size
8664 	      || in.descsz > buf - in.descdata + size))
8665 	return FALSE;
8666 
8667       switch (bfd_get_format (abfd))
8668         {
8669 	default:
8670 	  return TRUE;
8671 
8672 	case bfd_core:
8673 	  if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8674 	    {
8675 	      if (! elfcore_grok_netbsd_note (abfd, &in))
8676 		return FALSE;
8677 	    }
8678 	  else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
8679 	    {
8680 	      if (! elfcore_grok_openbsd_note (abfd, &in))
8681 		return FALSE;
8682 	    }
8683 	  else if (CONST_STRNEQ (in.namedata, "QNX"))
8684 	    {
8685 	      if (! elfcore_grok_nto_note (abfd, &in))
8686 		return FALSE;
8687 	    }
8688 	  else if (CONST_STRNEQ (in.namedata, "SPU/"))
8689 	    {
8690 	      if (! elfcore_grok_spu_note (abfd, &in))
8691 		return FALSE;
8692 	    }
8693 	  else
8694 	    {
8695 	      if (! elfcore_grok_note (abfd, &in))
8696 		return FALSE;
8697 	    }
8698 	  break;
8699 
8700 	case bfd_object:
8701 	  if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8702 	    {
8703 	      if (! elfobj_grok_gnu_note (abfd, &in))
8704 		return FALSE;
8705 	    }
8706 	  break;
8707 	}
8708 
8709       p = in.descdata + BFD_ALIGN (in.descsz, 4);
8710     }
8711 
8712   return TRUE;
8713 }
8714 
8715 static bfd_boolean
8716 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8717 {
8718   char *buf;
8719 
8720   if (size <= 0)
8721     return TRUE;
8722 
8723   if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8724     return FALSE;
8725 
8726   buf = (char *) bfd_malloc (size);
8727   if (buf == NULL)
8728     return FALSE;
8729 
8730   if (bfd_bread (buf, size, abfd) != size
8731       || !elf_parse_notes (abfd, buf, size, offset))
8732     {
8733       free (buf);
8734       return FALSE;
8735     }
8736 
8737   free (buf);
8738   return TRUE;
8739 }
8740 
8741 /* Providing external access to the ELF program header table.  */
8742 
8743 /* Return an upper bound on the number of bytes required to store a
8744    copy of ABFD's program header table entries.  Return -1 if an error
8745    occurs; bfd_get_error will return an appropriate code.  */
8746 
8747 long
8748 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8749 {
8750   if (abfd->xvec->flavour != bfd_target_elf_flavour)
8751     {
8752       bfd_set_error (bfd_error_wrong_format);
8753       return -1;
8754     }
8755 
8756   return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8757 }
8758 
8759 /* Copy ABFD's program header table entries to *PHDRS.  The entries
8760    will be stored as an array of Elf_Internal_Phdr structures, as
8761    defined in include/elf/internal.h.  To find out how large the
8762    buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8763 
8764    Return the number of program header table entries read, or -1 if an
8765    error occurs; bfd_get_error will return an appropriate code.  */
8766 
8767 int
8768 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8769 {
8770   int num_phdrs;
8771 
8772   if (abfd->xvec->flavour != bfd_target_elf_flavour)
8773     {
8774       bfd_set_error (bfd_error_wrong_format);
8775       return -1;
8776     }
8777 
8778   num_phdrs = elf_elfheader (abfd)->e_phnum;
8779   memcpy (phdrs, elf_tdata (abfd)->phdr,
8780 	  num_phdrs * sizeof (Elf_Internal_Phdr));
8781 
8782   return num_phdrs;
8783 }
8784 
8785 enum elf_reloc_type_class
8786 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8787 {
8788   return reloc_class_normal;
8789 }
8790 
8791 /* For RELA architectures, return the relocation value for a
8792    relocation against a local symbol.  */
8793 
8794 bfd_vma
8795 _bfd_elf_rela_local_sym (bfd *abfd,
8796 			 Elf_Internal_Sym *sym,
8797 			 asection **psec,
8798 			 Elf_Internal_Rela *rel)
8799 {
8800   asection *sec = *psec;
8801   bfd_vma relocation;
8802 
8803   relocation = (sec->output_section->vma
8804 		+ sec->output_offset
8805 		+ sym->st_value);
8806   if ((sec->flags & SEC_MERGE)
8807       && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8808       && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8809     {
8810       rel->r_addend =
8811 	_bfd_merged_section_offset (abfd, psec,
8812 				    elf_section_data (sec)->sec_info,
8813 				    sym->st_value + rel->r_addend);
8814       if (sec != *psec)
8815 	{
8816 	  /* If we have changed the section, and our original section is
8817 	     marked with SEC_EXCLUDE, it means that the original
8818 	     SEC_MERGE section has been completely subsumed in some
8819 	     other SEC_MERGE section.  In this case, we need to leave
8820 	     some info around for --emit-relocs.  */
8821 	  if ((sec->flags & SEC_EXCLUDE) != 0)
8822 	    sec->kept_section = *psec;
8823 	  sec = *psec;
8824 	}
8825       rel->r_addend -= relocation;
8826       rel->r_addend += sec->output_section->vma + sec->output_offset;
8827     }
8828   return relocation;
8829 }
8830 
8831 bfd_vma
8832 _bfd_elf_rel_local_sym (bfd *abfd,
8833 			Elf_Internal_Sym *sym,
8834 			asection **psec,
8835 			bfd_vma addend)
8836 {
8837   asection *sec = *psec;
8838 
8839   if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8840     return sym->st_value + addend;
8841 
8842   return _bfd_merged_section_offset (abfd, psec,
8843 				     elf_section_data (sec)->sec_info,
8844 				     sym->st_value + addend);
8845 }
8846 
8847 bfd_vma
8848 _bfd_elf_section_offset (bfd *abfd,
8849 			 struct bfd_link_info *info,
8850 			 asection *sec,
8851 			 bfd_vma offset)
8852 {
8853   switch (sec->sec_info_type)
8854     {
8855     case ELF_INFO_TYPE_STABS:
8856       return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8857 				       offset);
8858     case ELF_INFO_TYPE_EH_FRAME:
8859       return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8860     default:
8861       return offset;
8862     }
8863 }
8864 
8865 /* Create a new BFD as if by bfd_openr.  Rather than opening a file,
8866    reconstruct an ELF file by reading the segments out of remote memory
8867    based on the ELF file header at EHDR_VMA and the ELF program headers it
8868    points to.  If not null, *LOADBASEP is filled in with the difference
8869    between the VMAs from which the segments were read, and the VMAs the
8870    file headers (and hence BFD's idea of each section's VMA) put them at.
8871 
8872    The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8873    remote memory at target address VMA into the local buffer at MYADDR; it
8874    should return zero on success or an `errno' code on failure.  TEMPL must
8875    be a BFD for an ELF target with the word size and byte order found in
8876    the remote memory.  */
8877 
8878 bfd *
8879 bfd_elf_bfd_from_remote_memory
8880   (bfd *templ,
8881    bfd_vma ehdr_vma,
8882    bfd_vma *loadbasep,
8883    int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8884 {
8885   return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8886     (templ, ehdr_vma, loadbasep, target_read_memory);
8887 }
8888 
8889 long
8890 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8891 			       long symcount ATTRIBUTE_UNUSED,
8892 			       asymbol **syms ATTRIBUTE_UNUSED,
8893 			       long dynsymcount,
8894 			       asymbol **dynsyms,
8895 			       asymbol **ret)
8896 {
8897   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8898   asection *relplt;
8899   asymbol *s;
8900   const char *relplt_name;
8901   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8902   arelent *p;
8903   long count, i, n;
8904   size_t size;
8905   Elf_Internal_Shdr *hdr;
8906   char *names;
8907   asection *plt;
8908 
8909   *ret = NULL;
8910 
8911   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8912     return 0;
8913 
8914   if (dynsymcount <= 0)
8915     return 0;
8916 
8917   if (!bed->plt_sym_val)
8918     return 0;
8919 
8920   relplt_name = bed->relplt_name;
8921   if (relplt_name == NULL)
8922     relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
8923   relplt = bfd_get_section_by_name (abfd, relplt_name);
8924   if (relplt == NULL)
8925     return 0;
8926 
8927   hdr = &elf_section_data (relplt)->this_hdr;
8928   if (hdr->sh_link != elf_dynsymtab (abfd)
8929       || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8930     return 0;
8931 
8932   plt = bfd_get_section_by_name (abfd, ".plt");
8933   if (plt == NULL)
8934     return 0;
8935 
8936   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8937   if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8938     return -1;
8939 
8940   count = relplt->size / hdr->sh_entsize;
8941   size = count * sizeof (asymbol);
8942   p = relplt->relocation;
8943   for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8944     {
8945       size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8946       if (p->addend != 0)
8947 	{
8948 #ifdef BFD64
8949 	  size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
8950 #else
8951 	  size += sizeof ("+0x") - 1 + 8;
8952 #endif
8953 	}
8954     }
8955 
8956   s = *ret = (asymbol *) bfd_malloc (size);
8957   if (s == NULL)
8958     return -1;
8959 
8960   names = (char *) (s + count);
8961   p = relplt->relocation;
8962   n = 0;
8963   for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
8964     {
8965       size_t len;
8966       bfd_vma addr;
8967 
8968       addr = bed->plt_sym_val (i, plt, p);
8969       if (addr == (bfd_vma) -1)
8970 	continue;
8971 
8972       *s = **p->sym_ptr_ptr;
8973       /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
8974 	 we are defining a symbol, ensure one of them is set.  */
8975       if ((s->flags & BSF_LOCAL) == 0)
8976 	s->flags |= BSF_GLOBAL;
8977       s->flags |= BSF_SYNTHETIC;
8978       s->section = plt;
8979       s->value = addr - plt->vma;
8980       s->name = names;
8981       s->udata.p = NULL;
8982       len = strlen ((*p->sym_ptr_ptr)->name);
8983       memcpy (names, (*p->sym_ptr_ptr)->name, len);
8984       names += len;
8985       if (p->addend != 0)
8986 	{
8987 	  char buf[30], *a;
8988 	  int len;
8989 	  memcpy (names, "+0x", sizeof ("+0x") - 1);
8990 	  names += sizeof ("+0x") - 1;
8991 	  bfd_sprintf_vma (abfd, buf, p->addend);
8992 	  for (a = buf; *a == '0'; ++a)
8993 	    ;
8994 	  len = strlen (a);
8995 	  memcpy (names, a, len);
8996 	  names += len;
8997 	}
8998       memcpy (names, "@plt", sizeof ("@plt"));
8999       names += sizeof ("@plt");
9000       ++s, ++n;
9001     }
9002 
9003   return n;
9004 }
9005 
9006 /* It is only used by x86-64 so far.  */
9007 asection _bfd_elf_large_com_section
9008   = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9009 		      SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9010 
9011 void
9012 _bfd_elf_set_osabi (bfd * abfd,
9013 		    struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9014 {
9015   Elf_Internal_Ehdr * i_ehdrp;	/* ELF file header, internal form.  */
9016 
9017   i_ehdrp = elf_elfheader (abfd);
9018 
9019   i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9020 
9021   /* To make things simpler for the loader on Linux systems we set the
9022      osabi field to ELFOSABI_LINUX if the binary contains symbols of
9023      the STT_GNU_IFUNC type.  */
9024   if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9025       && elf_tdata (abfd)->has_ifunc_symbols)
9026     i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
9027 }
9028 
9029 
9030 /* Return TRUE for ELF symbol types that represent functions.
9031    This is the default version of this function, which is sufficient for
9032    most targets.  It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC.  */
9033 
9034 bfd_boolean
9035 _bfd_elf_is_function_type (unsigned int type)
9036 {
9037   return (type == STT_FUNC
9038 	  || type == STT_GNU_IFUNC);
9039 }
9040