1 /* ELF executable support for BFD. 2 3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 5 Free Software Foundation, Inc. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 25 /* 26 SECTION 27 ELF backends 28 29 BFD support for ELF formats is being worked on. 30 Currently, the best supported back ends are for sparc and i386 31 (running svr4 or Solaris 2). 32 33 Documentation of the internals of the support code still needs 34 to be written. The code is changing quickly enough that we 35 haven't bothered yet. */ 36 37 /* For sparc64-cross-sparc32. */ 38 #define _SYSCALL32 39 #include "sysdep.h" 40 #include "bfd.h" 41 #include "bfdlink.h" 42 #include "libbfd.h" 43 #define ARCH_SIZE 0 44 #include "elf-bfd.h" 45 #include "libiberty.h" 46 #include "safe-ctype.h" 47 48 static int elf_sort_sections (const void *, const void *); 49 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); 50 static bfd_boolean prep_headers (bfd *); 51 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ; 52 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ; 53 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size, 54 file_ptr offset); 55 56 /* Swap version information in and out. The version information is 57 currently size independent. If that ever changes, this code will 58 need to move into elfcode.h. */ 59 60 /* Swap in a Verdef structure. */ 61 62 void 63 _bfd_elf_swap_verdef_in (bfd *abfd, 64 const Elf_External_Verdef *src, 65 Elf_Internal_Verdef *dst) 66 { 67 dst->vd_version = H_GET_16 (abfd, src->vd_version); 68 dst->vd_flags = H_GET_16 (abfd, src->vd_flags); 69 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); 70 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); 71 dst->vd_hash = H_GET_32 (abfd, src->vd_hash); 72 dst->vd_aux = H_GET_32 (abfd, src->vd_aux); 73 dst->vd_next = H_GET_32 (abfd, src->vd_next); 74 } 75 76 /* Swap out a Verdef structure. */ 77 78 void 79 _bfd_elf_swap_verdef_out (bfd *abfd, 80 const Elf_Internal_Verdef *src, 81 Elf_External_Verdef *dst) 82 { 83 H_PUT_16 (abfd, src->vd_version, dst->vd_version); 84 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); 85 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); 86 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); 87 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); 88 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); 89 H_PUT_32 (abfd, src->vd_next, dst->vd_next); 90 } 91 92 /* Swap in a Verdaux structure. */ 93 94 void 95 _bfd_elf_swap_verdaux_in (bfd *abfd, 96 const Elf_External_Verdaux *src, 97 Elf_Internal_Verdaux *dst) 98 { 99 dst->vda_name = H_GET_32 (abfd, src->vda_name); 100 dst->vda_next = H_GET_32 (abfd, src->vda_next); 101 } 102 103 /* Swap out a Verdaux structure. */ 104 105 void 106 _bfd_elf_swap_verdaux_out (bfd *abfd, 107 const Elf_Internal_Verdaux *src, 108 Elf_External_Verdaux *dst) 109 { 110 H_PUT_32 (abfd, src->vda_name, dst->vda_name); 111 H_PUT_32 (abfd, src->vda_next, dst->vda_next); 112 } 113 114 /* Swap in a Verneed structure. */ 115 116 void 117 _bfd_elf_swap_verneed_in (bfd *abfd, 118 const Elf_External_Verneed *src, 119 Elf_Internal_Verneed *dst) 120 { 121 dst->vn_version = H_GET_16 (abfd, src->vn_version); 122 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); 123 dst->vn_file = H_GET_32 (abfd, src->vn_file); 124 dst->vn_aux = H_GET_32 (abfd, src->vn_aux); 125 dst->vn_next = H_GET_32 (abfd, src->vn_next); 126 } 127 128 /* Swap out a Verneed structure. */ 129 130 void 131 _bfd_elf_swap_verneed_out (bfd *abfd, 132 const Elf_Internal_Verneed *src, 133 Elf_External_Verneed *dst) 134 { 135 H_PUT_16 (abfd, src->vn_version, dst->vn_version); 136 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); 137 H_PUT_32 (abfd, src->vn_file, dst->vn_file); 138 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); 139 H_PUT_32 (abfd, src->vn_next, dst->vn_next); 140 } 141 142 /* Swap in a Vernaux structure. */ 143 144 void 145 _bfd_elf_swap_vernaux_in (bfd *abfd, 146 const Elf_External_Vernaux *src, 147 Elf_Internal_Vernaux *dst) 148 { 149 dst->vna_hash = H_GET_32 (abfd, src->vna_hash); 150 dst->vna_flags = H_GET_16 (abfd, src->vna_flags); 151 dst->vna_other = H_GET_16 (abfd, src->vna_other); 152 dst->vna_name = H_GET_32 (abfd, src->vna_name); 153 dst->vna_next = H_GET_32 (abfd, src->vna_next); 154 } 155 156 /* Swap out a Vernaux structure. */ 157 158 void 159 _bfd_elf_swap_vernaux_out (bfd *abfd, 160 const Elf_Internal_Vernaux *src, 161 Elf_External_Vernaux *dst) 162 { 163 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); 164 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); 165 H_PUT_16 (abfd, src->vna_other, dst->vna_other); 166 H_PUT_32 (abfd, src->vna_name, dst->vna_name); 167 H_PUT_32 (abfd, src->vna_next, dst->vna_next); 168 } 169 170 /* Swap in a Versym structure. */ 171 172 void 173 _bfd_elf_swap_versym_in (bfd *abfd, 174 const Elf_External_Versym *src, 175 Elf_Internal_Versym *dst) 176 { 177 dst->vs_vers = H_GET_16 (abfd, src->vs_vers); 178 } 179 180 /* Swap out a Versym structure. */ 181 182 void 183 _bfd_elf_swap_versym_out (bfd *abfd, 184 const Elf_Internal_Versym *src, 185 Elf_External_Versym *dst) 186 { 187 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); 188 } 189 190 /* Standard ELF hash function. Do not change this function; you will 191 cause invalid hash tables to be generated. */ 192 193 unsigned long 194 bfd_elf_hash (const char *namearg) 195 { 196 const unsigned char *name = (const unsigned char *) namearg; 197 unsigned long h = 0; 198 unsigned long g; 199 int ch; 200 201 while ((ch = *name++) != '\0') 202 { 203 h = (h << 4) + ch; 204 if ((g = (h & 0xf0000000)) != 0) 205 { 206 h ^= g >> 24; 207 /* The ELF ABI says `h &= ~g', but this is equivalent in 208 this case and on some machines one insn instead of two. */ 209 h ^= g; 210 } 211 } 212 return h & 0xffffffff; 213 } 214 215 /* DT_GNU_HASH hash function. Do not change this function; you will 216 cause invalid hash tables to be generated. */ 217 218 unsigned long 219 bfd_elf_gnu_hash (const char *namearg) 220 { 221 const unsigned char *name = (const unsigned char *) namearg; 222 unsigned long h = 5381; 223 unsigned char ch; 224 225 while ((ch = *name++) != '\0') 226 h = (h << 5) + h + ch; 227 return h & 0xffffffff; 228 } 229 230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with 231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */ 232 bfd_boolean 233 bfd_elf_allocate_object (bfd *abfd, 234 size_t object_size, 235 enum elf_object_id object_id) 236 { 237 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); 238 abfd->tdata.any = bfd_zalloc (abfd, object_size); 239 if (abfd->tdata.any == NULL) 240 return FALSE; 241 242 elf_object_id (abfd) = object_id; 243 elf_program_header_size (abfd) = (bfd_size_type) -1; 244 return TRUE; 245 } 246 247 248 bfd_boolean 249 bfd_elf_make_generic_object (bfd *abfd) 250 { 251 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), 252 GENERIC_ELF_TDATA); 253 } 254 255 bfd_boolean 256 bfd_elf_mkcorefile (bfd *abfd) 257 { 258 /* I think this can be done just like an object file. */ 259 return bfd_elf_make_generic_object (abfd); 260 } 261 262 static char * 263 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) 264 { 265 Elf_Internal_Shdr **i_shdrp; 266 bfd_byte *shstrtab = NULL; 267 file_ptr offset; 268 bfd_size_type shstrtabsize; 269 270 i_shdrp = elf_elfsections (abfd); 271 if (i_shdrp == 0 272 || shindex >= elf_numsections (abfd) 273 || i_shdrp[shindex] == 0) 274 return NULL; 275 276 shstrtab = i_shdrp[shindex]->contents; 277 if (shstrtab == NULL) 278 { 279 /* No cached one, attempt to read, and cache what we read. */ 280 offset = i_shdrp[shindex]->sh_offset; 281 shstrtabsize = i_shdrp[shindex]->sh_size; 282 283 /* Allocate and clear an extra byte at the end, to prevent crashes 284 in case the string table is not terminated. */ 285 if (shstrtabsize + 1 <= 1 286 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL 287 || bfd_seek (abfd, offset, SEEK_SET) != 0) 288 shstrtab = NULL; 289 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize) 290 { 291 if (bfd_get_error () != bfd_error_system_call) 292 bfd_set_error (bfd_error_file_truncated); 293 shstrtab = NULL; 294 /* Once we've failed to read it, make sure we don't keep 295 trying. Otherwise, we'll keep allocating space for 296 the string table over and over. */ 297 i_shdrp[shindex]->sh_size = 0; 298 } 299 else 300 shstrtab[shstrtabsize] = '\0'; 301 i_shdrp[shindex]->contents = shstrtab; 302 } 303 return (char *) shstrtab; 304 } 305 306 char * 307 bfd_elf_string_from_elf_section (bfd *abfd, 308 unsigned int shindex, 309 unsigned int strindex) 310 { 311 Elf_Internal_Shdr *hdr; 312 313 if (strindex == 0) 314 return ""; 315 316 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) 317 return NULL; 318 319 hdr = elf_elfsections (abfd)[shindex]; 320 321 if (hdr->contents == NULL 322 && bfd_elf_get_str_section (abfd, shindex) == NULL) 323 return NULL; 324 325 if (strindex >= hdr->sh_size) 326 { 327 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; 328 (*_bfd_error_handler) 329 (_("%B: invalid string offset %u >= %lu for section `%s'"), 330 abfd, strindex, (unsigned long) hdr->sh_size, 331 (shindex == shstrndx && strindex == hdr->sh_name 332 ? ".shstrtab" 333 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); 334 return NULL; 335 } 336 337 return ((char *) hdr->contents) + strindex; 338 } 339 340 /* Read and convert symbols to internal format. 341 SYMCOUNT specifies the number of symbols to read, starting from 342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF 343 are non-NULL, they are used to store the internal symbols, external 344 symbols, and symbol section index extensions, respectively. 345 Returns a pointer to the internal symbol buffer (malloced if necessary) 346 or NULL if there were no symbols or some kind of problem. */ 347 348 Elf_Internal_Sym * 349 bfd_elf_get_elf_syms (bfd *ibfd, 350 Elf_Internal_Shdr *symtab_hdr, 351 size_t symcount, 352 size_t symoffset, 353 Elf_Internal_Sym *intsym_buf, 354 void *extsym_buf, 355 Elf_External_Sym_Shndx *extshndx_buf) 356 { 357 Elf_Internal_Shdr *shndx_hdr; 358 void *alloc_ext; 359 const bfd_byte *esym; 360 Elf_External_Sym_Shndx *alloc_extshndx; 361 Elf_External_Sym_Shndx *shndx; 362 Elf_Internal_Sym *alloc_intsym; 363 Elf_Internal_Sym *isym; 364 Elf_Internal_Sym *isymend; 365 const struct elf_backend_data *bed; 366 size_t extsym_size; 367 bfd_size_type amt; 368 file_ptr pos; 369 370 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 371 abort (); 372 373 if (symcount == 0) 374 return intsym_buf; 375 376 /* Normal syms might have section extension entries. */ 377 shndx_hdr = NULL; 378 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr) 379 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr; 380 381 /* Read the symbols. */ 382 alloc_ext = NULL; 383 alloc_extshndx = NULL; 384 alloc_intsym = NULL; 385 bed = get_elf_backend_data (ibfd); 386 extsym_size = bed->s->sizeof_sym; 387 amt = symcount * extsym_size; 388 pos = symtab_hdr->sh_offset + symoffset * extsym_size; 389 if (extsym_buf == NULL) 390 { 391 alloc_ext = bfd_malloc2 (symcount, extsym_size); 392 extsym_buf = alloc_ext; 393 } 394 if (extsym_buf == NULL 395 || bfd_seek (ibfd, pos, SEEK_SET) != 0 396 || bfd_bread (extsym_buf, amt, ibfd) != amt) 397 { 398 intsym_buf = NULL; 399 goto out; 400 } 401 402 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) 403 extshndx_buf = NULL; 404 else 405 { 406 amt = symcount * sizeof (Elf_External_Sym_Shndx); 407 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); 408 if (extshndx_buf == NULL) 409 { 410 alloc_extshndx = (Elf_External_Sym_Shndx *) 411 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx)); 412 extshndx_buf = alloc_extshndx; 413 } 414 if (extshndx_buf == NULL 415 || bfd_seek (ibfd, pos, SEEK_SET) != 0 416 || bfd_bread (extshndx_buf, amt, ibfd) != amt) 417 { 418 intsym_buf = NULL; 419 goto out; 420 } 421 } 422 423 if (intsym_buf == NULL) 424 { 425 alloc_intsym = (Elf_Internal_Sym *) 426 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym)); 427 intsym_buf = alloc_intsym; 428 if (intsym_buf == NULL) 429 goto out; 430 } 431 432 /* Convert the symbols to internal form. */ 433 isymend = intsym_buf + symcount; 434 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf, 435 shndx = extshndx_buf; 436 isym < isymend; 437 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) 438 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) 439 { 440 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; 441 (*_bfd_error_handler) (_("%B symbol number %lu references " 442 "nonexistent SHT_SYMTAB_SHNDX section"), 443 ibfd, (unsigned long) symoffset); 444 if (alloc_intsym != NULL) 445 free (alloc_intsym); 446 intsym_buf = NULL; 447 goto out; 448 } 449 450 out: 451 if (alloc_ext != NULL) 452 free (alloc_ext); 453 if (alloc_extshndx != NULL) 454 free (alloc_extshndx); 455 456 return intsym_buf; 457 } 458 459 /* Look up a symbol name. */ 460 const char * 461 bfd_elf_sym_name (bfd *abfd, 462 Elf_Internal_Shdr *symtab_hdr, 463 Elf_Internal_Sym *isym, 464 asection *sym_sec) 465 { 466 const char *name; 467 unsigned int iname = isym->st_name; 468 unsigned int shindex = symtab_hdr->sh_link; 469 470 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION 471 /* Check for a bogus st_shndx to avoid crashing. */ 472 && isym->st_shndx < elf_numsections (abfd)) 473 { 474 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; 475 shindex = elf_elfheader (abfd)->e_shstrndx; 476 } 477 478 name = bfd_elf_string_from_elf_section (abfd, shindex, iname); 479 if (name == NULL) 480 name = "(null)"; 481 else if (sym_sec && *name == '\0') 482 name = bfd_section_name (abfd, sym_sec); 483 484 return name; 485 } 486 487 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP 488 sections. The first element is the flags, the rest are section 489 pointers. */ 490 491 typedef union elf_internal_group { 492 Elf_Internal_Shdr *shdr; 493 unsigned int flags; 494 } Elf_Internal_Group; 495 496 /* Return the name of the group signature symbol. Why isn't the 497 signature just a string? */ 498 499 static const char * 500 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) 501 { 502 Elf_Internal_Shdr *hdr; 503 unsigned char esym[sizeof (Elf64_External_Sym)]; 504 Elf_External_Sym_Shndx eshndx; 505 Elf_Internal_Sym isym; 506 507 /* First we need to ensure the symbol table is available. Make sure 508 that it is a symbol table section. */ 509 if (ghdr->sh_link >= elf_numsections (abfd)) 510 return NULL; 511 hdr = elf_elfsections (abfd) [ghdr->sh_link]; 512 if (hdr->sh_type != SHT_SYMTAB 513 || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) 514 return NULL; 515 516 /* Go read the symbol. */ 517 hdr = &elf_tdata (abfd)->symtab_hdr; 518 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, 519 &isym, esym, &eshndx) == NULL) 520 return NULL; 521 522 return bfd_elf_sym_name (abfd, hdr, &isym, NULL); 523 } 524 525 /* Set next_in_group list pointer, and group name for NEWSECT. */ 526 527 static bfd_boolean 528 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) 529 { 530 unsigned int num_group = elf_tdata (abfd)->num_group; 531 532 /* If num_group is zero, read in all SHT_GROUP sections. The count 533 is set to -1 if there are no SHT_GROUP sections. */ 534 if (num_group == 0) 535 { 536 unsigned int i, shnum; 537 538 /* First count the number of groups. If we have a SHT_GROUP 539 section with just a flag word (ie. sh_size is 4), ignore it. */ 540 shnum = elf_numsections (abfd); 541 num_group = 0; 542 543 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \ 544 ( (shdr)->sh_type == SHT_GROUP \ 545 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \ 546 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \ 547 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0) 548 549 for (i = 0; i < shnum; i++) 550 { 551 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 552 553 if (IS_VALID_GROUP_SECTION_HEADER (shdr)) 554 num_group += 1; 555 } 556 557 if (num_group == 0) 558 { 559 num_group = (unsigned) -1; 560 elf_tdata (abfd)->num_group = num_group; 561 } 562 else 563 { 564 /* We keep a list of elf section headers for group sections, 565 so we can find them quickly. */ 566 bfd_size_type amt; 567 568 elf_tdata (abfd)->num_group = num_group; 569 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **) 570 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *)); 571 if (elf_tdata (abfd)->group_sect_ptr == NULL) 572 return FALSE; 573 574 num_group = 0; 575 for (i = 0; i < shnum; i++) 576 { 577 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 578 579 if (IS_VALID_GROUP_SECTION_HEADER (shdr)) 580 { 581 unsigned char *src; 582 Elf_Internal_Group *dest; 583 584 /* Add to list of sections. */ 585 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; 586 num_group += 1; 587 588 /* Read the raw contents. */ 589 BFD_ASSERT (sizeof (*dest) >= 4); 590 amt = shdr->sh_size * sizeof (*dest) / 4; 591 shdr->contents = (unsigned char *) 592 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4); 593 /* PR binutils/4110: Handle corrupt group headers. */ 594 if (shdr->contents == NULL) 595 { 596 _bfd_error_handler 597 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size); 598 bfd_set_error (bfd_error_bad_value); 599 return FALSE; 600 } 601 602 memset (shdr->contents, 0, amt); 603 604 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 605 || (bfd_bread (shdr->contents, shdr->sh_size, abfd) 606 != shdr->sh_size)) 607 return FALSE; 608 609 /* Translate raw contents, a flag word followed by an 610 array of elf section indices all in target byte order, 611 to the flag word followed by an array of elf section 612 pointers. */ 613 src = shdr->contents + shdr->sh_size; 614 dest = (Elf_Internal_Group *) (shdr->contents + amt); 615 while (1) 616 { 617 unsigned int idx; 618 619 src -= 4; 620 --dest; 621 idx = H_GET_32 (abfd, src); 622 if (src == shdr->contents) 623 { 624 dest->flags = idx; 625 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) 626 shdr->bfd_section->flags 627 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 628 break; 629 } 630 if (idx >= shnum) 631 { 632 ((*_bfd_error_handler) 633 (_("%B: invalid SHT_GROUP entry"), abfd)); 634 idx = 0; 635 } 636 dest->shdr = elf_elfsections (abfd)[idx]; 637 } 638 } 639 } 640 } 641 } 642 643 if (num_group != (unsigned) -1) 644 { 645 unsigned int i; 646 647 for (i = 0; i < num_group; i++) 648 { 649 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 650 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 651 unsigned int n_elt = shdr->sh_size / 4; 652 653 /* Look through this group's sections to see if current 654 section is a member. */ 655 while (--n_elt != 0) 656 if ((++idx)->shdr == hdr) 657 { 658 asection *s = NULL; 659 660 /* We are a member of this group. Go looking through 661 other members to see if any others are linked via 662 next_in_group. */ 663 idx = (Elf_Internal_Group *) shdr->contents; 664 n_elt = shdr->sh_size / 4; 665 while (--n_elt != 0) 666 if ((s = (++idx)->shdr->bfd_section) != NULL 667 && elf_next_in_group (s) != NULL) 668 break; 669 if (n_elt != 0) 670 { 671 /* Snarf the group name from other member, and 672 insert current section in circular list. */ 673 elf_group_name (newsect) = elf_group_name (s); 674 elf_next_in_group (newsect) = elf_next_in_group (s); 675 elf_next_in_group (s) = newsect; 676 } 677 else 678 { 679 const char *gname; 680 681 gname = group_signature (abfd, shdr); 682 if (gname == NULL) 683 return FALSE; 684 elf_group_name (newsect) = gname; 685 686 /* Start a circular list with one element. */ 687 elf_next_in_group (newsect) = newsect; 688 } 689 690 /* If the group section has been created, point to the 691 new member. */ 692 if (shdr->bfd_section != NULL) 693 elf_next_in_group (shdr->bfd_section) = newsect; 694 695 i = num_group - 1; 696 break; 697 } 698 } 699 } 700 701 if (elf_group_name (newsect) == NULL) 702 { 703 (*_bfd_error_handler) (_("%B: no group info for section %A"), 704 abfd, newsect); 705 } 706 return TRUE; 707 } 708 709 bfd_boolean 710 _bfd_elf_setup_sections (bfd *abfd) 711 { 712 unsigned int i; 713 unsigned int num_group = elf_tdata (abfd)->num_group; 714 bfd_boolean result = TRUE; 715 asection *s; 716 717 /* Process SHF_LINK_ORDER. */ 718 for (s = abfd->sections; s != NULL; s = s->next) 719 { 720 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; 721 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) 722 { 723 unsigned int elfsec = this_hdr->sh_link; 724 /* FIXME: The old Intel compiler and old strip/objcopy may 725 not set the sh_link or sh_info fields. Hence we could 726 get the situation where elfsec is 0. */ 727 if (elfsec == 0) 728 { 729 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 730 if (bed->link_order_error_handler) 731 bed->link_order_error_handler 732 (_("%B: warning: sh_link not set for section `%A'"), 733 abfd, s); 734 } 735 else 736 { 737 asection *link = NULL; 738 739 if (elfsec < elf_numsections (abfd)) 740 { 741 this_hdr = elf_elfsections (abfd)[elfsec]; 742 link = this_hdr->bfd_section; 743 } 744 745 /* PR 1991, 2008: 746 Some strip/objcopy may leave an incorrect value in 747 sh_link. We don't want to proceed. */ 748 if (link == NULL) 749 { 750 (*_bfd_error_handler) 751 (_("%B: sh_link [%d] in section `%A' is incorrect"), 752 s->owner, s, elfsec); 753 result = FALSE; 754 } 755 756 elf_linked_to_section (s) = link; 757 } 758 } 759 } 760 761 /* Process section groups. */ 762 if (num_group == (unsigned) -1) 763 return result; 764 765 for (i = 0; i < num_group; i++) 766 { 767 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 768 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 769 unsigned int n_elt = shdr->sh_size / 4; 770 771 while (--n_elt != 0) 772 if ((++idx)->shdr->bfd_section) 773 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; 774 else if (idx->shdr->sh_type == SHT_RELA 775 || idx->shdr->sh_type == SHT_REL) 776 /* We won't include relocation sections in section groups in 777 output object files. We adjust the group section size here 778 so that relocatable link will work correctly when 779 relocation sections are in section group in input object 780 files. */ 781 shdr->bfd_section->size -= 4; 782 else 783 { 784 /* There are some unknown sections in the group. */ 785 (*_bfd_error_handler) 786 (_("%B: unknown [%d] section `%s' in group [%s]"), 787 abfd, 788 (unsigned int) idx->shdr->sh_type, 789 bfd_elf_string_from_elf_section (abfd, 790 (elf_elfheader (abfd) 791 ->e_shstrndx), 792 idx->shdr->sh_name), 793 shdr->bfd_section->name); 794 result = FALSE; 795 } 796 } 797 return result; 798 } 799 800 bfd_boolean 801 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) 802 { 803 return elf_next_in_group (sec) != NULL; 804 } 805 806 /* Make a BFD section from an ELF section. We store a pointer to the 807 BFD section in the bfd_section field of the header. */ 808 809 bfd_boolean 810 _bfd_elf_make_section_from_shdr (bfd *abfd, 811 Elf_Internal_Shdr *hdr, 812 const char *name, 813 int shindex) 814 { 815 asection *newsect; 816 flagword flags; 817 const struct elf_backend_data *bed; 818 819 if (hdr->bfd_section != NULL) 820 { 821 BFD_ASSERT (strcmp (name, 822 bfd_get_section_name (abfd, hdr->bfd_section)) == 0); 823 return TRUE; 824 } 825 826 newsect = bfd_make_section_anyway (abfd, name); 827 if (newsect == NULL) 828 return FALSE; 829 830 hdr->bfd_section = newsect; 831 elf_section_data (newsect)->this_hdr = *hdr; 832 elf_section_data (newsect)->this_idx = shindex; 833 834 /* Always use the real type/flags. */ 835 elf_section_type (newsect) = hdr->sh_type; 836 elf_section_flags (newsect) = hdr->sh_flags; 837 838 newsect->filepos = hdr->sh_offset; 839 840 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) 841 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) 842 || ! bfd_set_section_alignment (abfd, newsect, 843 bfd_log2 (hdr->sh_addralign))) 844 return FALSE; 845 846 flags = SEC_NO_FLAGS; 847 if (hdr->sh_type != SHT_NOBITS) 848 flags |= SEC_HAS_CONTENTS; 849 if (hdr->sh_type == SHT_GROUP) 850 flags |= SEC_GROUP | SEC_EXCLUDE; 851 if ((hdr->sh_flags & SHF_ALLOC) != 0) 852 { 853 flags |= SEC_ALLOC; 854 if (hdr->sh_type != SHT_NOBITS) 855 flags |= SEC_LOAD; 856 } 857 if ((hdr->sh_flags & SHF_WRITE) == 0) 858 flags |= SEC_READONLY; 859 if ((hdr->sh_flags & SHF_EXECINSTR) != 0) 860 flags |= SEC_CODE; 861 else if ((flags & SEC_LOAD) != 0) 862 flags |= SEC_DATA; 863 if ((hdr->sh_flags & SHF_MERGE) != 0) 864 { 865 flags |= SEC_MERGE; 866 newsect->entsize = hdr->sh_entsize; 867 if ((hdr->sh_flags & SHF_STRINGS) != 0) 868 flags |= SEC_STRINGS; 869 } 870 if (hdr->sh_flags & SHF_GROUP) 871 if (!setup_group (abfd, hdr, newsect)) 872 return FALSE; 873 if ((hdr->sh_flags & SHF_TLS) != 0) 874 flags |= SEC_THREAD_LOCAL; 875 876 if ((flags & SEC_ALLOC) == 0) 877 { 878 /* The debugging sections appear to be recognized only by name, 879 not any sort of flag. Their SEC_ALLOC bits are cleared. */ 880 static const struct 881 { 882 const char *name; 883 int len; 884 } debug_sections [] = 885 { 886 { STRING_COMMA_LEN ("debug") }, /* 'd' */ 887 { NULL, 0 }, /* 'e' */ 888 { NULL, 0 }, /* 'f' */ 889 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */ 890 { NULL, 0 }, /* 'h' */ 891 { NULL, 0 }, /* 'i' */ 892 { NULL, 0 }, /* 'j' */ 893 { NULL, 0 }, /* 'k' */ 894 { STRING_COMMA_LEN ("line") }, /* 'l' */ 895 { NULL, 0 }, /* 'm' */ 896 { NULL, 0 }, /* 'n' */ 897 { NULL, 0 }, /* 'o' */ 898 { NULL, 0 }, /* 'p' */ 899 { NULL, 0 }, /* 'q' */ 900 { NULL, 0 }, /* 'r' */ 901 { STRING_COMMA_LEN ("stab") }, /* 's' */ 902 { NULL, 0 }, /* 't' */ 903 { NULL, 0 }, /* 'u' */ 904 { NULL, 0 }, /* 'v' */ 905 { NULL, 0 }, /* 'w' */ 906 { NULL, 0 }, /* 'x' */ 907 { NULL, 0 }, /* 'y' */ 908 { STRING_COMMA_LEN ("zdebug") } /* 'z' */ 909 }; 910 911 if (name [0] == '.') 912 { 913 int i = name [1] - 'd'; 914 if (i >= 0 915 && i < (int) ARRAY_SIZE (debug_sections) 916 && debug_sections [i].name != NULL 917 && strncmp (&name [1], debug_sections [i].name, 918 debug_sections [i].len) == 0) 919 flags |= SEC_DEBUGGING; 920 } 921 } 922 923 /* As a GNU extension, if the name begins with .gnu.linkonce, we 924 only link a single copy of the section. This is used to support 925 g++. g++ will emit each template expansion in its own section. 926 The symbols will be defined as weak, so that multiple definitions 927 are permitted. The GNU linker extension is to actually discard 928 all but one of the sections. */ 929 if (CONST_STRNEQ (name, ".gnu.linkonce") 930 && elf_next_in_group (newsect) == NULL) 931 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 932 933 bed = get_elf_backend_data (abfd); 934 if (bed->elf_backend_section_flags) 935 if (! bed->elf_backend_section_flags (&flags, hdr)) 936 return FALSE; 937 938 if (! bfd_set_section_flags (abfd, newsect, flags)) 939 return FALSE; 940 941 /* We do not parse the PT_NOTE segments as we are interested even in the 942 separate debug info files which may have the segments offsets corrupted. 943 PT_NOTEs from the core files are currently not parsed using BFD. */ 944 if (hdr->sh_type == SHT_NOTE) 945 { 946 bfd_byte *contents; 947 948 if (!bfd_malloc_and_get_section (abfd, newsect, &contents)) 949 return FALSE; 950 951 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1); 952 free (contents); 953 } 954 955 if ((flags & SEC_ALLOC) != 0) 956 { 957 Elf_Internal_Phdr *phdr; 958 unsigned int i, nload; 959 960 /* Some ELF linkers produce binaries with all the program header 961 p_paddr fields zero. If we have such a binary with more than 962 one PT_LOAD header, then leave the section lma equal to vma 963 so that we don't create sections with overlapping lma. */ 964 phdr = elf_tdata (abfd)->phdr; 965 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 966 if (phdr->p_paddr != 0) 967 break; 968 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) 969 ++nload; 970 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) 971 return TRUE; 972 973 phdr = elf_tdata (abfd)->phdr; 974 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 975 { 976 if (phdr->p_type == PT_LOAD 977 && ELF_IS_SECTION_IN_SEGMENT (hdr, phdr)) 978 { 979 if ((flags & SEC_LOAD) == 0) 980 newsect->lma = (phdr->p_paddr 981 + hdr->sh_addr - phdr->p_vaddr); 982 else 983 /* We used to use the same adjustment for SEC_LOAD 984 sections, but that doesn't work if the segment 985 is packed with code from multiple VMAs. 986 Instead we calculate the section LMA based on 987 the segment LMA. It is assumed that the 988 segment will contain sections with contiguous 989 LMAs, even if the VMAs are not. */ 990 newsect->lma = (phdr->p_paddr 991 + hdr->sh_offset - phdr->p_offset); 992 993 /* With contiguous segments, we can't tell from file 994 offsets whether a section with zero size should 995 be placed at the end of one segment or the 996 beginning of the next. Decide based on vaddr. */ 997 if (hdr->sh_addr >= phdr->p_vaddr 998 && (hdr->sh_addr + hdr->sh_size 999 <= phdr->p_vaddr + phdr->p_memsz)) 1000 break; 1001 } 1002 } 1003 } 1004 1005 return TRUE; 1006 } 1007 1008 const char *const bfd_elf_section_type_names[] = { 1009 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", 1010 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", 1011 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", 1012 }; 1013 1014 /* ELF relocs are against symbols. If we are producing relocatable 1015 output, and the reloc is against an external symbol, and nothing 1016 has given us any additional addend, the resulting reloc will also 1017 be against the same symbol. In such a case, we don't want to 1018 change anything about the way the reloc is handled, since it will 1019 all be done at final link time. Rather than put special case code 1020 into bfd_perform_relocation, all the reloc types use this howto 1021 function. It just short circuits the reloc if producing 1022 relocatable output against an external symbol. */ 1023 1024 bfd_reloc_status_type 1025 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, 1026 arelent *reloc_entry, 1027 asymbol *symbol, 1028 void *data ATTRIBUTE_UNUSED, 1029 asection *input_section, 1030 bfd *output_bfd, 1031 char **error_message ATTRIBUTE_UNUSED) 1032 { 1033 if (output_bfd != NULL 1034 && (symbol->flags & BSF_SECTION_SYM) == 0 1035 && (! reloc_entry->howto->partial_inplace 1036 || reloc_entry->addend == 0)) 1037 { 1038 reloc_entry->address += input_section->output_offset; 1039 return bfd_reloc_ok; 1040 } 1041 1042 return bfd_reloc_continue; 1043 } 1044 1045 /* Copy the program header and other data from one object module to 1046 another. */ 1047 1048 bfd_boolean 1049 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 1050 { 1051 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1052 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1053 return TRUE; 1054 1055 BFD_ASSERT (!elf_flags_init (obfd) 1056 || (elf_elfheader (obfd)->e_flags 1057 == elf_elfheader (ibfd)->e_flags)); 1058 1059 elf_gp (obfd) = elf_gp (ibfd); 1060 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 1061 elf_flags_init (obfd) = TRUE; 1062 1063 /* Copy object attributes. */ 1064 _bfd_elf_copy_obj_attributes (ibfd, obfd); 1065 1066 return TRUE; 1067 } 1068 1069 static const char * 1070 get_segment_type (unsigned int p_type) 1071 { 1072 const char *pt; 1073 switch (p_type) 1074 { 1075 case PT_NULL: pt = "NULL"; break; 1076 case PT_LOAD: pt = "LOAD"; break; 1077 case PT_DYNAMIC: pt = "DYNAMIC"; break; 1078 case PT_INTERP: pt = "INTERP"; break; 1079 case PT_NOTE: pt = "NOTE"; break; 1080 case PT_SHLIB: pt = "SHLIB"; break; 1081 case PT_PHDR: pt = "PHDR"; break; 1082 case PT_TLS: pt = "TLS"; break; 1083 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; 1084 case PT_GNU_STACK: pt = "STACK"; break; 1085 case PT_GNU_RELRO: pt = "RELRO"; break; 1086 default: pt = NULL; break; 1087 } 1088 return pt; 1089 } 1090 1091 /* Print out the program headers. */ 1092 1093 bfd_boolean 1094 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) 1095 { 1096 FILE *f = (FILE *) farg; 1097 Elf_Internal_Phdr *p; 1098 asection *s; 1099 bfd_byte *dynbuf = NULL; 1100 1101 p = elf_tdata (abfd)->phdr; 1102 if (p != NULL) 1103 { 1104 unsigned int i, c; 1105 1106 fprintf (f, _("\nProgram Header:\n")); 1107 c = elf_elfheader (abfd)->e_phnum; 1108 for (i = 0; i < c; i++, p++) 1109 { 1110 const char *pt = get_segment_type (p->p_type); 1111 char buf[20]; 1112 1113 if (pt == NULL) 1114 { 1115 sprintf (buf, "0x%lx", p->p_type); 1116 pt = buf; 1117 } 1118 fprintf (f, "%8s off 0x", pt); 1119 bfd_fprintf_vma (abfd, f, p->p_offset); 1120 fprintf (f, " vaddr 0x"); 1121 bfd_fprintf_vma (abfd, f, p->p_vaddr); 1122 fprintf (f, " paddr 0x"); 1123 bfd_fprintf_vma (abfd, f, p->p_paddr); 1124 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); 1125 fprintf (f, " filesz 0x"); 1126 bfd_fprintf_vma (abfd, f, p->p_filesz); 1127 fprintf (f, " memsz 0x"); 1128 bfd_fprintf_vma (abfd, f, p->p_memsz); 1129 fprintf (f, " flags %c%c%c", 1130 (p->p_flags & PF_R) != 0 ? 'r' : '-', 1131 (p->p_flags & PF_W) != 0 ? 'w' : '-', 1132 (p->p_flags & PF_X) != 0 ? 'x' : '-'); 1133 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) 1134 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); 1135 fprintf (f, "\n"); 1136 } 1137 } 1138 1139 s = bfd_get_section_by_name (abfd, ".dynamic"); 1140 if (s != NULL) 1141 { 1142 unsigned int elfsec; 1143 unsigned long shlink; 1144 bfd_byte *extdyn, *extdynend; 1145 size_t extdynsize; 1146 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 1147 1148 fprintf (f, _("\nDynamic Section:\n")); 1149 1150 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 1151 goto error_return; 1152 1153 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 1154 if (elfsec == SHN_BAD) 1155 goto error_return; 1156 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 1157 1158 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 1159 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 1160 1161 extdyn = dynbuf; 1162 extdynend = extdyn + s->size; 1163 for (; extdyn < extdynend; extdyn += extdynsize) 1164 { 1165 Elf_Internal_Dyn dyn; 1166 const char *name = ""; 1167 char ab[20]; 1168 bfd_boolean stringp; 1169 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1170 1171 (*swap_dyn_in) (abfd, extdyn, &dyn); 1172 1173 if (dyn.d_tag == DT_NULL) 1174 break; 1175 1176 stringp = FALSE; 1177 switch (dyn.d_tag) 1178 { 1179 default: 1180 if (bed->elf_backend_get_target_dtag) 1181 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); 1182 1183 if (!strcmp (name, "")) 1184 { 1185 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); 1186 name = ab; 1187 } 1188 break; 1189 1190 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break; 1191 case DT_PLTRELSZ: name = "PLTRELSZ"; break; 1192 case DT_PLTGOT: name = "PLTGOT"; break; 1193 case DT_HASH: name = "HASH"; break; 1194 case DT_STRTAB: name = "STRTAB"; break; 1195 case DT_SYMTAB: name = "SYMTAB"; break; 1196 case DT_RELA: name = "RELA"; break; 1197 case DT_RELASZ: name = "RELASZ"; break; 1198 case DT_RELAENT: name = "RELAENT"; break; 1199 case DT_STRSZ: name = "STRSZ"; break; 1200 case DT_SYMENT: name = "SYMENT"; break; 1201 case DT_INIT: name = "INIT"; break; 1202 case DT_FINI: name = "FINI"; break; 1203 case DT_SONAME: name = "SONAME"; stringp = TRUE; break; 1204 case DT_RPATH: name = "RPATH"; stringp = TRUE; break; 1205 case DT_SYMBOLIC: name = "SYMBOLIC"; break; 1206 case DT_REL: name = "REL"; break; 1207 case DT_RELSZ: name = "RELSZ"; break; 1208 case DT_RELENT: name = "RELENT"; break; 1209 case DT_PLTREL: name = "PLTREL"; break; 1210 case DT_DEBUG: name = "DEBUG"; break; 1211 case DT_TEXTREL: name = "TEXTREL"; break; 1212 case DT_JMPREL: name = "JMPREL"; break; 1213 case DT_BIND_NOW: name = "BIND_NOW"; break; 1214 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; 1215 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; 1216 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; 1217 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; 1218 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break; 1219 case DT_FLAGS: name = "FLAGS"; break; 1220 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; 1221 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; 1222 case DT_CHECKSUM: name = "CHECKSUM"; break; 1223 case DT_PLTPADSZ: name = "PLTPADSZ"; break; 1224 case DT_MOVEENT: name = "MOVEENT"; break; 1225 case DT_MOVESZ: name = "MOVESZ"; break; 1226 case DT_FEATURE: name = "FEATURE"; break; 1227 case DT_POSFLAG_1: name = "POSFLAG_1"; break; 1228 case DT_SYMINSZ: name = "SYMINSZ"; break; 1229 case DT_SYMINENT: name = "SYMINENT"; break; 1230 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break; 1231 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break; 1232 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break; 1233 case DT_PLTPAD: name = "PLTPAD"; break; 1234 case DT_MOVETAB: name = "MOVETAB"; break; 1235 case DT_SYMINFO: name = "SYMINFO"; break; 1236 case DT_RELACOUNT: name = "RELACOUNT"; break; 1237 case DT_RELCOUNT: name = "RELCOUNT"; break; 1238 case DT_FLAGS_1: name = "FLAGS_1"; break; 1239 case DT_VERSYM: name = "VERSYM"; break; 1240 case DT_VERDEF: name = "VERDEF"; break; 1241 case DT_VERDEFNUM: name = "VERDEFNUM"; break; 1242 case DT_VERNEED: name = "VERNEED"; break; 1243 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; 1244 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break; 1245 case DT_USED: name = "USED"; break; 1246 case DT_FILTER: name = "FILTER"; stringp = TRUE; break; 1247 case DT_GNU_HASH: name = "GNU_HASH"; break; 1248 } 1249 1250 fprintf (f, " %-20s ", name); 1251 if (! stringp) 1252 { 1253 fprintf (f, "0x"); 1254 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); 1255 } 1256 else 1257 { 1258 const char *string; 1259 unsigned int tagv = dyn.d_un.d_val; 1260 1261 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 1262 if (string == NULL) 1263 goto error_return; 1264 fprintf (f, "%s", string); 1265 } 1266 fprintf (f, "\n"); 1267 } 1268 1269 free (dynbuf); 1270 dynbuf = NULL; 1271 } 1272 1273 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) 1274 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) 1275 { 1276 if (! _bfd_elf_slurp_version_tables (abfd, FALSE)) 1277 return FALSE; 1278 } 1279 1280 if (elf_dynverdef (abfd) != 0) 1281 { 1282 Elf_Internal_Verdef *t; 1283 1284 fprintf (f, _("\nVersion definitions:\n")); 1285 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) 1286 { 1287 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, 1288 t->vd_flags, t->vd_hash, 1289 t->vd_nodename ? t->vd_nodename : "<corrupt>"); 1290 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) 1291 { 1292 Elf_Internal_Verdaux *a; 1293 1294 fprintf (f, "\t"); 1295 for (a = t->vd_auxptr->vda_nextptr; 1296 a != NULL; 1297 a = a->vda_nextptr) 1298 fprintf (f, "%s ", 1299 a->vda_nodename ? a->vda_nodename : "<corrupt>"); 1300 fprintf (f, "\n"); 1301 } 1302 } 1303 } 1304 1305 if (elf_dynverref (abfd) != 0) 1306 { 1307 Elf_Internal_Verneed *t; 1308 1309 fprintf (f, _("\nVersion References:\n")); 1310 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) 1311 { 1312 Elf_Internal_Vernaux *a; 1313 1314 fprintf (f, _(" required from %s:\n"), 1315 t->vn_filename ? t->vn_filename : "<corrupt>"); 1316 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1317 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, 1318 a->vna_flags, a->vna_other, 1319 a->vna_nodename ? a->vna_nodename : "<corrupt>"); 1320 } 1321 } 1322 1323 return TRUE; 1324 1325 error_return: 1326 if (dynbuf != NULL) 1327 free (dynbuf); 1328 return FALSE; 1329 } 1330 1331 /* Display ELF-specific fields of a symbol. */ 1332 1333 void 1334 bfd_elf_print_symbol (bfd *abfd, 1335 void *filep, 1336 asymbol *symbol, 1337 bfd_print_symbol_type how) 1338 { 1339 FILE *file = (FILE *) filep; 1340 switch (how) 1341 { 1342 case bfd_print_symbol_name: 1343 fprintf (file, "%s", symbol->name); 1344 break; 1345 case bfd_print_symbol_more: 1346 fprintf (file, "elf "); 1347 bfd_fprintf_vma (abfd, file, symbol->value); 1348 fprintf (file, " %lx", (unsigned long) symbol->flags); 1349 break; 1350 case bfd_print_symbol_all: 1351 { 1352 const char *section_name; 1353 const char *name = NULL; 1354 const struct elf_backend_data *bed; 1355 unsigned char st_other; 1356 bfd_vma val; 1357 1358 section_name = symbol->section ? symbol->section->name : "(*none*)"; 1359 1360 bed = get_elf_backend_data (abfd); 1361 if (bed->elf_backend_print_symbol_all) 1362 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); 1363 1364 if (name == NULL) 1365 { 1366 name = symbol->name; 1367 bfd_print_symbol_vandf (abfd, file, symbol); 1368 } 1369 1370 fprintf (file, " %s\t", section_name); 1371 /* Print the "other" value for a symbol. For common symbols, 1372 we've already printed the size; now print the alignment. 1373 For other symbols, we have no specified alignment, and 1374 we've printed the address; now print the size. */ 1375 if (symbol->section && bfd_is_com_section (symbol->section)) 1376 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 1377 else 1378 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; 1379 bfd_fprintf_vma (abfd, file, val); 1380 1381 /* If we have version information, print it. */ 1382 if (elf_tdata (abfd)->dynversym_section != 0 1383 && (elf_tdata (abfd)->dynverdef_section != 0 1384 || elf_tdata (abfd)->dynverref_section != 0)) 1385 { 1386 unsigned int vernum; 1387 const char *version_string; 1388 1389 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION; 1390 1391 if (vernum == 0) 1392 version_string = ""; 1393 else if (vernum == 1) 1394 version_string = "Base"; 1395 else if (vernum <= elf_tdata (abfd)->cverdefs) 1396 version_string = 1397 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 1398 else 1399 { 1400 Elf_Internal_Verneed *t; 1401 1402 version_string = ""; 1403 for (t = elf_tdata (abfd)->verref; 1404 t != NULL; 1405 t = t->vn_nextref) 1406 { 1407 Elf_Internal_Vernaux *a; 1408 1409 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1410 { 1411 if (a->vna_other == vernum) 1412 { 1413 version_string = a->vna_nodename; 1414 break; 1415 } 1416 } 1417 } 1418 } 1419 1420 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0) 1421 fprintf (file, " %-11s", version_string); 1422 else 1423 { 1424 int i; 1425 1426 fprintf (file, " (%s)", version_string); 1427 for (i = 10 - strlen (version_string); i > 0; --i) 1428 putc (' ', file); 1429 } 1430 } 1431 1432 /* If the st_other field is not zero, print it. */ 1433 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; 1434 1435 switch (st_other) 1436 { 1437 case 0: break; 1438 case STV_INTERNAL: fprintf (file, " .internal"); break; 1439 case STV_HIDDEN: fprintf (file, " .hidden"); break; 1440 case STV_PROTECTED: fprintf (file, " .protected"); break; 1441 default: 1442 /* Some other non-defined flags are also present, so print 1443 everything hex. */ 1444 fprintf (file, " 0x%02x", (unsigned int) st_other); 1445 } 1446 1447 fprintf (file, " %s", name); 1448 } 1449 break; 1450 } 1451 } 1452 1453 /* Allocate an ELF string table--force the first byte to be zero. */ 1454 1455 struct bfd_strtab_hash * 1456 _bfd_elf_stringtab_init (void) 1457 { 1458 struct bfd_strtab_hash *ret; 1459 1460 ret = _bfd_stringtab_init (); 1461 if (ret != NULL) 1462 { 1463 bfd_size_type loc; 1464 1465 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE); 1466 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); 1467 if (loc == (bfd_size_type) -1) 1468 { 1469 _bfd_stringtab_free (ret); 1470 ret = NULL; 1471 } 1472 } 1473 return ret; 1474 } 1475 1476 /* ELF .o/exec file reading */ 1477 1478 /* Create a new bfd section from an ELF section header. */ 1479 1480 bfd_boolean 1481 bfd_section_from_shdr (bfd *abfd, unsigned int shindex) 1482 { 1483 Elf_Internal_Shdr *hdr; 1484 Elf_Internal_Ehdr *ehdr; 1485 const struct elf_backend_data *bed; 1486 const char *name; 1487 1488 if (shindex >= elf_numsections (abfd)) 1489 return FALSE; 1490 1491 hdr = elf_elfsections (abfd)[shindex]; 1492 ehdr = elf_elfheader (abfd); 1493 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, 1494 hdr->sh_name); 1495 if (name == NULL) 1496 return FALSE; 1497 1498 bed = get_elf_backend_data (abfd); 1499 switch (hdr->sh_type) 1500 { 1501 case SHT_NULL: 1502 /* Inactive section. Throw it away. */ 1503 return TRUE; 1504 1505 case SHT_PROGBITS: /* Normal section with contents. */ 1506 case SHT_NOBITS: /* .bss section. */ 1507 case SHT_HASH: /* .hash section. */ 1508 case SHT_NOTE: /* .note section. */ 1509 case SHT_INIT_ARRAY: /* .init_array section. */ 1510 case SHT_FINI_ARRAY: /* .fini_array section. */ 1511 case SHT_PREINIT_ARRAY: /* .preinit_array section. */ 1512 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ 1513 case SHT_GNU_HASH: /* .gnu.hash section. */ 1514 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1515 1516 case SHT_DYNAMIC: /* Dynamic linking information. */ 1517 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1518 return FALSE; 1519 if (hdr->sh_link > elf_numsections (abfd)) 1520 { 1521 /* PR 10478: Accept sparc binaries with a sh_link 1522 field set to SHN_BEFORE or SHN_AFTER. */ 1523 switch (bfd_get_arch (abfd)) 1524 { 1525 case bfd_arch_sparc: 1526 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */ 1527 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */) 1528 break; 1529 /* Otherwise fall through. */ 1530 default: 1531 return FALSE; 1532 } 1533 } 1534 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL) 1535 return FALSE; 1536 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) 1537 { 1538 Elf_Internal_Shdr *dynsymhdr; 1539 1540 /* The shared libraries distributed with hpux11 have a bogus 1541 sh_link field for the ".dynamic" section. Find the 1542 string table for the ".dynsym" section instead. */ 1543 if (elf_dynsymtab (abfd) != 0) 1544 { 1545 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; 1546 hdr->sh_link = dynsymhdr->sh_link; 1547 } 1548 else 1549 { 1550 unsigned int i, num_sec; 1551 1552 num_sec = elf_numsections (abfd); 1553 for (i = 1; i < num_sec; i++) 1554 { 1555 dynsymhdr = elf_elfsections (abfd)[i]; 1556 if (dynsymhdr->sh_type == SHT_DYNSYM) 1557 { 1558 hdr->sh_link = dynsymhdr->sh_link; 1559 break; 1560 } 1561 } 1562 } 1563 } 1564 break; 1565 1566 case SHT_SYMTAB: /* A symbol table */ 1567 if (elf_onesymtab (abfd) == shindex) 1568 return TRUE; 1569 1570 if (hdr->sh_entsize != bed->s->sizeof_sym) 1571 return FALSE; 1572 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 1573 return FALSE; 1574 BFD_ASSERT (elf_onesymtab (abfd) == 0); 1575 elf_onesymtab (abfd) = shindex; 1576 elf_tdata (abfd)->symtab_hdr = *hdr; 1577 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; 1578 abfd->flags |= HAS_SYMS; 1579 1580 /* Sometimes a shared object will map in the symbol table. If 1581 SHF_ALLOC is set, and this is a shared object, then we also 1582 treat this section as a BFD section. We can not base the 1583 decision purely on SHF_ALLOC, because that flag is sometimes 1584 set in a relocatable object file, which would confuse the 1585 linker. */ 1586 if ((hdr->sh_flags & SHF_ALLOC) != 0 1587 && (abfd->flags & DYNAMIC) != 0 1588 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1589 shindex)) 1590 return FALSE; 1591 1592 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we 1593 can't read symbols without that section loaded as well. It 1594 is most likely specified by the next section header. */ 1595 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex) 1596 { 1597 unsigned int i, num_sec; 1598 1599 num_sec = elf_numsections (abfd); 1600 for (i = shindex + 1; i < num_sec; i++) 1601 { 1602 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1603 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 1604 && hdr2->sh_link == shindex) 1605 break; 1606 } 1607 if (i == num_sec) 1608 for (i = 1; i < shindex; i++) 1609 { 1610 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1611 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 1612 && hdr2->sh_link == shindex) 1613 break; 1614 } 1615 if (i != shindex) 1616 return bfd_section_from_shdr (abfd, i); 1617 } 1618 return TRUE; 1619 1620 case SHT_DYNSYM: /* A dynamic symbol table */ 1621 if (elf_dynsymtab (abfd) == shindex) 1622 return TRUE; 1623 1624 if (hdr->sh_entsize != bed->s->sizeof_sym) 1625 return FALSE; 1626 BFD_ASSERT (elf_dynsymtab (abfd) == 0); 1627 elf_dynsymtab (abfd) = shindex; 1628 elf_tdata (abfd)->dynsymtab_hdr = *hdr; 1629 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; 1630 abfd->flags |= HAS_SYMS; 1631 1632 /* Besides being a symbol table, we also treat this as a regular 1633 section, so that objcopy can handle it. */ 1634 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1635 1636 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */ 1637 if (elf_symtab_shndx (abfd) == shindex) 1638 return TRUE; 1639 1640 BFD_ASSERT (elf_symtab_shndx (abfd) == 0); 1641 elf_symtab_shndx (abfd) = shindex; 1642 elf_tdata (abfd)->symtab_shndx_hdr = *hdr; 1643 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr; 1644 return TRUE; 1645 1646 case SHT_STRTAB: /* A string table */ 1647 if (hdr->bfd_section != NULL) 1648 return TRUE; 1649 if (ehdr->e_shstrndx == shindex) 1650 { 1651 elf_tdata (abfd)->shstrtab_hdr = *hdr; 1652 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; 1653 return TRUE; 1654 } 1655 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) 1656 { 1657 symtab_strtab: 1658 elf_tdata (abfd)->strtab_hdr = *hdr; 1659 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; 1660 return TRUE; 1661 } 1662 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) 1663 { 1664 dynsymtab_strtab: 1665 elf_tdata (abfd)->dynstrtab_hdr = *hdr; 1666 hdr = &elf_tdata (abfd)->dynstrtab_hdr; 1667 elf_elfsections (abfd)[shindex] = hdr; 1668 /* We also treat this as a regular section, so that objcopy 1669 can handle it. */ 1670 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1671 shindex); 1672 } 1673 1674 /* If the string table isn't one of the above, then treat it as a 1675 regular section. We need to scan all the headers to be sure, 1676 just in case this strtab section appeared before the above. */ 1677 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) 1678 { 1679 unsigned int i, num_sec; 1680 1681 num_sec = elf_numsections (abfd); 1682 for (i = 1; i < num_sec; i++) 1683 { 1684 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 1685 if (hdr2->sh_link == shindex) 1686 { 1687 /* Prevent endless recursion on broken objects. */ 1688 if (i == shindex) 1689 return FALSE; 1690 if (! bfd_section_from_shdr (abfd, i)) 1691 return FALSE; 1692 if (elf_onesymtab (abfd) == i) 1693 goto symtab_strtab; 1694 if (elf_dynsymtab (abfd) == i) 1695 goto dynsymtab_strtab; 1696 } 1697 } 1698 } 1699 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1700 1701 case SHT_REL: 1702 case SHT_RELA: 1703 /* *These* do a lot of work -- but build no sections! */ 1704 { 1705 asection *target_sect; 1706 Elf_Internal_Shdr *hdr2; 1707 unsigned int num_sec = elf_numsections (abfd); 1708 1709 if (hdr->sh_entsize 1710 != (bfd_size_type) (hdr->sh_type == SHT_REL 1711 ? bed->s->sizeof_rel : bed->s->sizeof_rela)) 1712 return FALSE; 1713 1714 /* Check for a bogus link to avoid crashing. */ 1715 if (hdr->sh_link >= num_sec) 1716 { 1717 ((*_bfd_error_handler) 1718 (_("%B: invalid link %lu for reloc section %s (index %u)"), 1719 abfd, hdr->sh_link, name, shindex)); 1720 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1721 shindex); 1722 } 1723 1724 /* For some incomprehensible reason Oracle distributes 1725 libraries for Solaris in which some of the objects have 1726 bogus sh_link fields. It would be nice if we could just 1727 reject them, but, unfortunately, some people need to use 1728 them. We scan through the section headers; if we find only 1729 one suitable symbol table, we clobber the sh_link to point 1730 to it. I hope this doesn't break anything. 1731 1732 Don't do it on executable nor shared library. */ 1733 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 1734 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB 1735 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) 1736 { 1737 unsigned int scan; 1738 int found; 1739 1740 found = 0; 1741 for (scan = 1; scan < num_sec; scan++) 1742 { 1743 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB 1744 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) 1745 { 1746 if (found != 0) 1747 { 1748 found = 0; 1749 break; 1750 } 1751 found = scan; 1752 } 1753 } 1754 if (found != 0) 1755 hdr->sh_link = found; 1756 } 1757 1758 /* Get the symbol table. */ 1759 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB 1760 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) 1761 && ! bfd_section_from_shdr (abfd, hdr->sh_link)) 1762 return FALSE; 1763 1764 /* If this reloc section does not use the main symbol table we 1765 don't treat it as a reloc section. BFD can't adequately 1766 represent such a section, so at least for now, we don't 1767 try. We just present it as a normal section. We also 1768 can't use it as a reloc section if it points to the null 1769 section, an invalid section, another reloc section, or its 1770 sh_link points to the null section. */ 1771 if (hdr->sh_link != elf_onesymtab (abfd) 1772 || hdr->sh_link == SHN_UNDEF 1773 || hdr->sh_info == SHN_UNDEF 1774 || hdr->sh_info >= num_sec 1775 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL 1776 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) 1777 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1778 shindex); 1779 1780 if (! bfd_section_from_shdr (abfd, hdr->sh_info)) 1781 return FALSE; 1782 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); 1783 if (target_sect == NULL) 1784 return FALSE; 1785 1786 if ((target_sect->flags & SEC_RELOC) == 0 1787 || target_sect->reloc_count == 0) 1788 hdr2 = &elf_section_data (target_sect)->rel_hdr; 1789 else 1790 { 1791 bfd_size_type amt; 1792 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); 1793 amt = sizeof (*hdr2); 1794 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt); 1795 if (hdr2 == NULL) 1796 return FALSE; 1797 elf_section_data (target_sect)->rel_hdr2 = hdr2; 1798 } 1799 *hdr2 = *hdr; 1800 elf_elfsections (abfd)[shindex] = hdr2; 1801 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); 1802 target_sect->flags |= SEC_RELOC; 1803 target_sect->relocation = NULL; 1804 target_sect->rel_filepos = hdr->sh_offset; 1805 /* In the section to which the relocations apply, mark whether 1806 its relocations are of the REL or RELA variety. */ 1807 if (hdr->sh_size != 0) 1808 target_sect->use_rela_p = hdr->sh_type == SHT_RELA; 1809 abfd->flags |= HAS_RELOC; 1810 return TRUE; 1811 } 1812 1813 case SHT_GNU_verdef: 1814 elf_dynverdef (abfd) = shindex; 1815 elf_tdata (abfd)->dynverdef_hdr = *hdr; 1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1817 1818 case SHT_GNU_versym: 1819 if (hdr->sh_entsize != sizeof (Elf_External_Versym)) 1820 return FALSE; 1821 elf_dynversym (abfd) = shindex; 1822 elf_tdata (abfd)->dynversym_hdr = *hdr; 1823 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1824 1825 case SHT_GNU_verneed: 1826 elf_dynverref (abfd) = shindex; 1827 elf_tdata (abfd)->dynverref_hdr = *hdr; 1828 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1829 1830 case SHT_SHLIB: 1831 return TRUE; 1832 1833 case SHT_GROUP: 1834 if (! IS_VALID_GROUP_SECTION_HEADER (hdr)) 1835 return FALSE; 1836 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1837 return FALSE; 1838 if (hdr->contents != NULL) 1839 { 1840 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents; 1841 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE; 1842 asection *s; 1843 1844 if (idx->flags & GRP_COMDAT) 1845 hdr->bfd_section->flags 1846 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 1847 1848 /* We try to keep the same section order as it comes in. */ 1849 idx += n_elt; 1850 while (--n_elt != 0) 1851 { 1852 --idx; 1853 1854 if (idx->shdr != NULL 1855 && (s = idx->shdr->bfd_section) != NULL 1856 && elf_next_in_group (s) != NULL) 1857 { 1858 elf_next_in_group (hdr->bfd_section) = s; 1859 break; 1860 } 1861 } 1862 } 1863 break; 1864 1865 default: 1866 /* Possibly an attributes section. */ 1867 if (hdr->sh_type == SHT_GNU_ATTRIBUTES 1868 || hdr->sh_type == bed->obj_attrs_section_type) 1869 { 1870 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1871 return FALSE; 1872 _bfd_elf_parse_attributes (abfd, hdr); 1873 return TRUE; 1874 } 1875 1876 /* Check for any processor-specific section types. */ 1877 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) 1878 return TRUE; 1879 1880 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) 1881 { 1882 if ((hdr->sh_flags & SHF_ALLOC) != 0) 1883 /* FIXME: How to properly handle allocated section reserved 1884 for applications? */ 1885 (*_bfd_error_handler) 1886 (_("%B: don't know how to handle allocated, application " 1887 "specific section `%s' [0x%8x]"), 1888 abfd, name, hdr->sh_type); 1889 else 1890 /* Allow sections reserved for applications. */ 1891 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, 1892 shindex); 1893 } 1894 else if (hdr->sh_type >= SHT_LOPROC 1895 && hdr->sh_type <= SHT_HIPROC) 1896 /* FIXME: We should handle this section. */ 1897 (*_bfd_error_handler) 1898 (_("%B: don't know how to handle processor specific section " 1899 "`%s' [0x%8x]"), 1900 abfd, name, hdr->sh_type); 1901 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) 1902 { 1903 /* Unrecognised OS-specific sections. */ 1904 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) 1905 /* SHF_OS_NONCONFORMING indicates that special knowledge is 1906 required to correctly process the section and the file should 1907 be rejected with an error message. */ 1908 (*_bfd_error_handler) 1909 (_("%B: don't know how to handle OS specific section " 1910 "`%s' [0x%8x]"), 1911 abfd, name, hdr->sh_type); 1912 else 1913 /* Otherwise it should be processed. */ 1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1915 } 1916 else 1917 /* FIXME: We should handle this section. */ 1918 (*_bfd_error_handler) 1919 (_("%B: don't know how to handle section `%s' [0x%8x]"), 1920 abfd, name, hdr->sh_type); 1921 1922 return FALSE; 1923 } 1924 1925 return TRUE; 1926 } 1927 1928 /* Return the local symbol specified by ABFD, R_SYMNDX. */ 1929 1930 Elf_Internal_Sym * 1931 bfd_sym_from_r_symndx (struct sym_cache *cache, 1932 bfd *abfd, 1933 unsigned long r_symndx) 1934 { 1935 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; 1936 1937 if (cache->abfd != abfd || cache->indx[ent] != r_symndx) 1938 { 1939 Elf_Internal_Shdr *symtab_hdr; 1940 unsigned char esym[sizeof (Elf64_External_Sym)]; 1941 Elf_External_Sym_Shndx eshndx; 1942 1943 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1944 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, 1945 &cache->sym[ent], esym, &eshndx) == NULL) 1946 return NULL; 1947 1948 if (cache->abfd != abfd) 1949 { 1950 memset (cache->indx, -1, sizeof (cache->indx)); 1951 cache->abfd = abfd; 1952 } 1953 cache->indx[ent] = r_symndx; 1954 } 1955 1956 return &cache->sym[ent]; 1957 } 1958 1959 /* Given an ELF section number, retrieve the corresponding BFD 1960 section. */ 1961 1962 asection * 1963 bfd_section_from_elf_index (bfd *abfd, unsigned int index) 1964 { 1965 if (index >= elf_numsections (abfd)) 1966 return NULL; 1967 return elf_elfsections (abfd)[index]->bfd_section; 1968 } 1969 1970 static const struct bfd_elf_special_section special_sections_b[] = 1971 { 1972 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 1973 { NULL, 0, 0, 0, 0 } 1974 }; 1975 1976 static const struct bfd_elf_special_section special_sections_c[] = 1977 { 1978 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, 1979 { NULL, 0, 0, 0, 0 } 1980 }; 1981 1982 static const struct bfd_elf_special_section special_sections_d[] = 1983 { 1984 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 1985 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 1986 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 }, 1987 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 }, 1988 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 }, 1989 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 }, 1990 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, 1991 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC }, 1992 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC }, 1993 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC }, 1994 { NULL, 0, 0, 0, 0 } 1995 }; 1996 1997 static const struct bfd_elf_special_section special_sections_f[] = 1998 { 1999 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2000 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, 2001 { NULL, 0, 0, 0, 0 } 2002 }; 2003 2004 static const struct bfd_elf_special_section special_sections_g[] = 2005 { 2006 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2007 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2008 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 }, 2009 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 }, 2010 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 }, 2011 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC }, 2012 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC }, 2013 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC }, 2014 { NULL, 0, 0, 0, 0 } 2015 }; 2016 2017 static const struct bfd_elf_special_section special_sections_h[] = 2018 { 2019 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC }, 2020 { NULL, 0, 0, 0, 0 } 2021 }; 2022 2023 static const struct bfd_elf_special_section special_sections_i[] = 2024 { 2025 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2026 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2027 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 }, 2028 { NULL, 0, 0, 0, 0 } 2029 }; 2030 2031 static const struct bfd_elf_special_section special_sections_l[] = 2032 { 2033 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, 2034 { NULL, 0, 0, 0, 0 } 2035 }; 2036 2037 static const struct bfd_elf_special_section special_sections_n[] = 2038 { 2039 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, 2040 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 }, 2041 { NULL, 0, 0, 0, 0 } 2042 }; 2043 2044 static const struct bfd_elf_special_section special_sections_p[] = 2045 { 2046 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2047 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2048 { NULL, 0, 0, 0, 0 } 2049 }; 2050 2051 static const struct bfd_elf_special_section special_sections_r[] = 2052 { 2053 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, 2054 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, 2055 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 }, 2056 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 }, 2057 { NULL, 0, 0, 0, 0 } 2058 }; 2059 2060 static const struct bfd_elf_special_section special_sections_s[] = 2061 { 2062 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, 2063 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 }, 2064 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 }, 2065 /* See struct bfd_elf_special_section declaration for the semantics of 2066 this special case where .prefix_length != strlen (.prefix). */ 2067 { ".stabstr", 5, 3, SHT_STRTAB, 0 }, 2068 { NULL, 0, 0, 0, 0 } 2069 }; 2070 2071 static const struct bfd_elf_special_section special_sections_t[] = 2072 { 2073 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2074 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2075 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2076 { NULL, 0, 0, 0, 0 } 2077 }; 2078 2079 static const struct bfd_elf_special_section special_sections_z[] = 2080 { 2081 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 }, 2082 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 }, 2083 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 }, 2084 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, 2085 { NULL, 0, 0, 0, 0 } 2086 }; 2087 2088 static const struct bfd_elf_special_section *special_sections[] = 2089 { 2090 special_sections_b, /* 'b' */ 2091 special_sections_c, /* 'c' */ 2092 special_sections_d, /* 'd' */ 2093 NULL, /* 'e' */ 2094 special_sections_f, /* 'f' */ 2095 special_sections_g, /* 'g' */ 2096 special_sections_h, /* 'h' */ 2097 special_sections_i, /* 'i' */ 2098 NULL, /* 'j' */ 2099 NULL, /* 'k' */ 2100 special_sections_l, /* 'l' */ 2101 NULL, /* 'm' */ 2102 special_sections_n, /* 'n' */ 2103 NULL, /* 'o' */ 2104 special_sections_p, /* 'p' */ 2105 NULL, /* 'q' */ 2106 special_sections_r, /* 'r' */ 2107 special_sections_s, /* 's' */ 2108 special_sections_t, /* 't' */ 2109 NULL, /* 'u' */ 2110 NULL, /* 'v' */ 2111 NULL, /* 'w' */ 2112 NULL, /* 'x' */ 2113 NULL, /* 'y' */ 2114 special_sections_z /* 'z' */ 2115 }; 2116 2117 const struct bfd_elf_special_section * 2118 _bfd_elf_get_special_section (const char *name, 2119 const struct bfd_elf_special_section *spec, 2120 unsigned int rela) 2121 { 2122 int i; 2123 int len; 2124 2125 len = strlen (name); 2126 2127 for (i = 0; spec[i].prefix != NULL; i++) 2128 { 2129 int suffix_len; 2130 int prefix_len = spec[i].prefix_length; 2131 2132 if (len < prefix_len) 2133 continue; 2134 if (memcmp (name, spec[i].prefix, prefix_len) != 0) 2135 continue; 2136 2137 suffix_len = spec[i].suffix_length; 2138 if (suffix_len <= 0) 2139 { 2140 if (name[prefix_len] != 0) 2141 { 2142 if (suffix_len == 0) 2143 continue; 2144 if (name[prefix_len] != '.' 2145 && (suffix_len == -2 2146 || (rela && spec[i].type == SHT_REL))) 2147 continue; 2148 } 2149 } 2150 else 2151 { 2152 if (len < prefix_len + suffix_len) 2153 continue; 2154 if (memcmp (name + len - suffix_len, 2155 spec[i].prefix + prefix_len, 2156 suffix_len) != 0) 2157 continue; 2158 } 2159 return &spec[i]; 2160 } 2161 2162 return NULL; 2163 } 2164 2165 const struct bfd_elf_special_section * 2166 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) 2167 { 2168 int i; 2169 const struct bfd_elf_special_section *spec; 2170 const struct elf_backend_data *bed; 2171 2172 /* See if this is one of the special sections. */ 2173 if (sec->name == NULL) 2174 return NULL; 2175 2176 bed = get_elf_backend_data (abfd); 2177 spec = bed->special_sections; 2178 if (spec) 2179 { 2180 spec = _bfd_elf_get_special_section (sec->name, 2181 bed->special_sections, 2182 sec->use_rela_p); 2183 if (spec != NULL) 2184 return spec; 2185 } 2186 2187 if (sec->name[0] != '.') 2188 return NULL; 2189 2190 i = sec->name[1] - 'b'; 2191 if (i < 0 || i > 'z' - 'b') 2192 return NULL; 2193 2194 spec = special_sections[i]; 2195 2196 if (spec == NULL) 2197 return NULL; 2198 2199 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); 2200 } 2201 2202 bfd_boolean 2203 _bfd_elf_new_section_hook (bfd *abfd, asection *sec) 2204 { 2205 struct bfd_elf_section_data *sdata; 2206 const struct elf_backend_data *bed; 2207 const struct bfd_elf_special_section *ssect; 2208 2209 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; 2210 if (sdata == NULL) 2211 { 2212 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, 2213 sizeof (*sdata)); 2214 if (sdata == NULL) 2215 return FALSE; 2216 sec->used_by_bfd = sdata; 2217 } 2218 2219 /* Indicate whether or not this section should use RELA relocations. */ 2220 bed = get_elf_backend_data (abfd); 2221 sec->use_rela_p = bed->default_use_rela_p; 2222 2223 /* When we read a file, we don't need to set ELF section type and 2224 flags. They will be overridden in _bfd_elf_make_section_from_shdr 2225 anyway. We will set ELF section type and flags for all linker 2226 created sections. If user specifies BFD section flags, we will 2227 set ELF section type and flags based on BFD section flags in 2228 elf_fake_sections. */ 2229 if ((!sec->flags && abfd->direction != read_direction) 2230 || (sec->flags & SEC_LINKER_CREATED) != 0) 2231 { 2232 ssect = (*bed->get_sec_type_attr) (abfd, sec); 2233 if (ssect != NULL) 2234 { 2235 elf_section_type (sec) = ssect->type; 2236 elf_section_flags (sec) = ssect->attr; 2237 } 2238 } 2239 2240 return _bfd_generic_new_section_hook (abfd, sec); 2241 } 2242 2243 /* Create a new bfd section from an ELF program header. 2244 2245 Since program segments have no names, we generate a synthetic name 2246 of the form segment<NUM>, where NUM is generally the index in the 2247 program header table. For segments that are split (see below) we 2248 generate the names segment<NUM>a and segment<NUM>b. 2249 2250 Note that some program segments may have a file size that is different than 2251 (less than) the memory size. All this means is that at execution the 2252 system must allocate the amount of memory specified by the memory size, 2253 but only initialize it with the first "file size" bytes read from the 2254 file. This would occur for example, with program segments consisting 2255 of combined data+bss. 2256 2257 To handle the above situation, this routine generates TWO bfd sections 2258 for the single program segment. The first has the length specified by 2259 the file size of the segment, and the second has the length specified 2260 by the difference between the two sizes. In effect, the segment is split 2261 into its initialized and uninitialized parts. 2262 2263 */ 2264 2265 bfd_boolean 2266 _bfd_elf_make_section_from_phdr (bfd *abfd, 2267 Elf_Internal_Phdr *hdr, 2268 int index, 2269 const char *type_name) 2270 { 2271 asection *newsect; 2272 char *name; 2273 char namebuf[64]; 2274 size_t len; 2275 int split; 2276 2277 split = ((hdr->p_memsz > 0) 2278 && (hdr->p_filesz > 0) 2279 && (hdr->p_memsz > hdr->p_filesz)); 2280 2281 if (hdr->p_filesz > 0) 2282 { 2283 sprintf (namebuf, "%s%d%s", type_name, index, split ? "a" : ""); 2284 len = strlen (namebuf) + 1; 2285 name = (char *) bfd_alloc (abfd, len); 2286 if (!name) 2287 return FALSE; 2288 memcpy (name, namebuf, len); 2289 newsect = bfd_make_section (abfd, name); 2290 if (newsect == NULL) 2291 return FALSE; 2292 newsect->vma = hdr->p_vaddr; 2293 newsect->lma = hdr->p_paddr; 2294 newsect->size = hdr->p_filesz; 2295 newsect->filepos = hdr->p_offset; 2296 newsect->flags |= SEC_HAS_CONTENTS; 2297 newsect->alignment_power = bfd_log2 (hdr->p_align); 2298 if (hdr->p_type == PT_LOAD) 2299 { 2300 newsect->flags |= SEC_ALLOC; 2301 newsect->flags |= SEC_LOAD; 2302 if (hdr->p_flags & PF_X) 2303 { 2304 /* FIXME: all we known is that it has execute PERMISSION, 2305 may be data. */ 2306 newsect->flags |= SEC_CODE; 2307 } 2308 } 2309 if (!(hdr->p_flags & PF_W)) 2310 { 2311 newsect->flags |= SEC_READONLY; 2312 } 2313 } 2314 2315 if (hdr->p_memsz > hdr->p_filesz) 2316 { 2317 bfd_vma align; 2318 2319 sprintf (namebuf, "%s%d%s", type_name, index, split ? "b" : ""); 2320 len = strlen (namebuf) + 1; 2321 name = (char *) bfd_alloc (abfd, len); 2322 if (!name) 2323 return FALSE; 2324 memcpy (name, namebuf, len); 2325 newsect = bfd_make_section (abfd, name); 2326 if (newsect == NULL) 2327 return FALSE; 2328 newsect->vma = hdr->p_vaddr + hdr->p_filesz; 2329 newsect->lma = hdr->p_paddr + hdr->p_filesz; 2330 newsect->size = hdr->p_memsz - hdr->p_filesz; 2331 newsect->filepos = hdr->p_offset + hdr->p_filesz; 2332 align = newsect->vma & -newsect->vma; 2333 if (align == 0 || align > hdr->p_align) 2334 align = hdr->p_align; 2335 newsect->alignment_power = bfd_log2 (align); 2336 if (hdr->p_type == PT_LOAD) 2337 { 2338 /* Hack for gdb. Segments that have not been modified do 2339 not have their contents written to a core file, on the 2340 assumption that a debugger can find the contents in the 2341 executable. We flag this case by setting the fake 2342 section size to zero. Note that "real" bss sections will 2343 always have their contents dumped to the core file. */ 2344 if (bfd_get_format (abfd) == bfd_core) 2345 newsect->size = 0; 2346 newsect->flags |= SEC_ALLOC; 2347 if (hdr->p_flags & PF_X) 2348 newsect->flags |= SEC_CODE; 2349 } 2350 if (!(hdr->p_flags & PF_W)) 2351 newsect->flags |= SEC_READONLY; 2352 } 2353 2354 return TRUE; 2355 } 2356 2357 bfd_boolean 2358 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index) 2359 { 2360 const struct elf_backend_data *bed; 2361 2362 switch (hdr->p_type) 2363 { 2364 case PT_NULL: 2365 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null"); 2366 2367 case PT_LOAD: 2368 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load"); 2369 2370 case PT_DYNAMIC: 2371 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic"); 2372 2373 case PT_INTERP: 2374 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp"); 2375 2376 case PT_NOTE: 2377 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note")) 2378 return FALSE; 2379 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) 2380 return FALSE; 2381 return TRUE; 2382 2383 case PT_SHLIB: 2384 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib"); 2385 2386 case PT_PHDR: 2387 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr"); 2388 2389 case PT_GNU_EH_FRAME: 2390 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, 2391 "eh_frame_hdr"); 2392 2393 case PT_GNU_STACK: 2394 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack"); 2395 2396 case PT_GNU_RELRO: 2397 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro"); 2398 2399 default: 2400 /* Check for any processor-specific program segment types. */ 2401 bed = get_elf_backend_data (abfd); 2402 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc"); 2403 } 2404 } 2405 2406 /* Initialize REL_HDR, the section-header for new section, containing 2407 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA 2408 relocations; otherwise, we use REL relocations. */ 2409 2410 bfd_boolean 2411 _bfd_elf_init_reloc_shdr (bfd *abfd, 2412 Elf_Internal_Shdr *rel_hdr, 2413 asection *asect, 2414 bfd_boolean use_rela_p) 2415 { 2416 char *name; 2417 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2418 bfd_size_type amt = sizeof ".rela" + strlen (asect->name); 2419 2420 name = (char *) bfd_alloc (abfd, amt); 2421 if (name == NULL) 2422 return FALSE; 2423 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); 2424 rel_hdr->sh_name = 2425 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, 2426 FALSE); 2427 if (rel_hdr->sh_name == (unsigned int) -1) 2428 return FALSE; 2429 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; 2430 rel_hdr->sh_entsize = (use_rela_p 2431 ? bed->s->sizeof_rela 2432 : bed->s->sizeof_rel); 2433 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 2434 rel_hdr->sh_flags = 0; 2435 rel_hdr->sh_addr = 0; 2436 rel_hdr->sh_size = 0; 2437 rel_hdr->sh_offset = 0; 2438 2439 return TRUE; 2440 } 2441 2442 /* Return the default section type based on the passed in section flags. */ 2443 2444 int 2445 bfd_elf_get_default_section_type (flagword flags) 2446 { 2447 if ((flags & SEC_ALLOC) != 0 2448 && ((flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0 2449 || (flags & SEC_NEVER_LOAD) != 0)) 2450 return SHT_NOBITS; 2451 return SHT_PROGBITS; 2452 } 2453 2454 /* Set up an ELF internal section header for a section. */ 2455 2456 static void 2457 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg) 2458 { 2459 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2460 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg; 2461 Elf_Internal_Shdr *this_hdr; 2462 unsigned int sh_type; 2463 2464 if (*failedptr) 2465 { 2466 /* We already failed; just get out of the bfd_map_over_sections 2467 loop. */ 2468 return; 2469 } 2470 2471 this_hdr = &elf_section_data (asect)->this_hdr; 2472 2473 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 2474 asect->name, FALSE); 2475 if (this_hdr->sh_name == (unsigned int) -1) 2476 { 2477 *failedptr = TRUE; 2478 return; 2479 } 2480 2481 /* Don't clear sh_flags. Assembler may set additional bits. */ 2482 2483 if ((asect->flags & SEC_ALLOC) != 0 2484 || asect->user_set_vma) 2485 this_hdr->sh_addr = asect->vma; 2486 else 2487 this_hdr->sh_addr = 0; 2488 2489 this_hdr->sh_offset = 0; 2490 this_hdr->sh_size = asect->size; 2491 this_hdr->sh_link = 0; 2492 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power; 2493 /* The sh_entsize and sh_info fields may have been set already by 2494 copy_private_section_data. */ 2495 2496 this_hdr->bfd_section = asect; 2497 this_hdr->contents = NULL; 2498 2499 /* If the section type is unspecified, we set it based on 2500 asect->flags. */ 2501 if ((asect->flags & SEC_GROUP) != 0) 2502 sh_type = SHT_GROUP; 2503 else 2504 sh_type = bfd_elf_get_default_section_type (asect->flags); 2505 2506 if (this_hdr->sh_type == SHT_NULL) 2507 this_hdr->sh_type = sh_type; 2508 else if (this_hdr->sh_type == SHT_NOBITS 2509 && sh_type == SHT_PROGBITS 2510 && (asect->flags & SEC_ALLOC) != 0) 2511 { 2512 /* Warn if we are changing a NOBITS section to PROGBITS, but 2513 allow the link to proceed. This can happen when users link 2514 non-bss input sections to bss output sections, or emit data 2515 to a bss output section via a linker script. */ 2516 (*_bfd_error_handler) 2517 (_("warning: section `%A' type changed to PROGBITS"), asect); 2518 this_hdr->sh_type = sh_type; 2519 } 2520 2521 switch (this_hdr->sh_type) 2522 { 2523 default: 2524 break; 2525 2526 case SHT_STRTAB: 2527 case SHT_INIT_ARRAY: 2528 case SHT_FINI_ARRAY: 2529 case SHT_PREINIT_ARRAY: 2530 case SHT_NOTE: 2531 case SHT_NOBITS: 2532 case SHT_PROGBITS: 2533 break; 2534 2535 case SHT_HASH: 2536 this_hdr->sh_entsize = bed->s->sizeof_hash_entry; 2537 break; 2538 2539 case SHT_DYNSYM: 2540 this_hdr->sh_entsize = bed->s->sizeof_sym; 2541 break; 2542 2543 case SHT_DYNAMIC: 2544 this_hdr->sh_entsize = bed->s->sizeof_dyn; 2545 break; 2546 2547 case SHT_RELA: 2548 if (get_elf_backend_data (abfd)->may_use_rela_p) 2549 this_hdr->sh_entsize = bed->s->sizeof_rela; 2550 break; 2551 2552 case SHT_REL: 2553 if (get_elf_backend_data (abfd)->may_use_rel_p) 2554 this_hdr->sh_entsize = bed->s->sizeof_rel; 2555 break; 2556 2557 case SHT_GNU_versym: 2558 this_hdr->sh_entsize = sizeof (Elf_External_Versym); 2559 break; 2560 2561 case SHT_GNU_verdef: 2562 this_hdr->sh_entsize = 0; 2563 /* objcopy or strip will copy over sh_info, but may not set 2564 cverdefs. The linker will set cverdefs, but sh_info will be 2565 zero. */ 2566 if (this_hdr->sh_info == 0) 2567 this_hdr->sh_info = elf_tdata (abfd)->cverdefs; 2568 else 2569 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 2570 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); 2571 break; 2572 2573 case SHT_GNU_verneed: 2574 this_hdr->sh_entsize = 0; 2575 /* objcopy or strip will copy over sh_info, but may not set 2576 cverrefs. The linker will set cverrefs, but sh_info will be 2577 zero. */ 2578 if (this_hdr->sh_info == 0) 2579 this_hdr->sh_info = elf_tdata (abfd)->cverrefs; 2580 else 2581 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 2582 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); 2583 break; 2584 2585 case SHT_GROUP: 2586 this_hdr->sh_entsize = GRP_ENTRY_SIZE; 2587 break; 2588 2589 case SHT_GNU_HASH: 2590 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; 2591 break; 2592 } 2593 2594 if ((asect->flags & SEC_ALLOC) != 0) 2595 this_hdr->sh_flags |= SHF_ALLOC; 2596 if ((asect->flags & SEC_READONLY) == 0) 2597 this_hdr->sh_flags |= SHF_WRITE; 2598 if ((asect->flags & SEC_CODE) != 0) 2599 this_hdr->sh_flags |= SHF_EXECINSTR; 2600 if ((asect->flags & SEC_MERGE) != 0) 2601 { 2602 this_hdr->sh_flags |= SHF_MERGE; 2603 this_hdr->sh_entsize = asect->entsize; 2604 if ((asect->flags & SEC_STRINGS) != 0) 2605 this_hdr->sh_flags |= SHF_STRINGS; 2606 } 2607 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) 2608 this_hdr->sh_flags |= SHF_GROUP; 2609 if ((asect->flags & SEC_THREAD_LOCAL) != 0) 2610 { 2611 this_hdr->sh_flags |= SHF_TLS; 2612 if (asect->size == 0 2613 && (asect->flags & SEC_HAS_CONTENTS) == 0) 2614 { 2615 struct bfd_link_order *o = asect->map_tail.link_order; 2616 2617 this_hdr->sh_size = 0; 2618 if (o != NULL) 2619 { 2620 this_hdr->sh_size = o->offset + o->size; 2621 if (this_hdr->sh_size != 0) 2622 this_hdr->sh_type = SHT_NOBITS; 2623 } 2624 } 2625 } 2626 2627 /* Check for processor-specific section types. */ 2628 sh_type = this_hdr->sh_type; 2629 if (bed->elf_backend_fake_sections 2630 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) 2631 *failedptr = TRUE; 2632 2633 if (sh_type == SHT_NOBITS && asect->size != 0) 2634 { 2635 /* Don't change the header type from NOBITS if we are being 2636 called for objcopy --only-keep-debug. */ 2637 this_hdr->sh_type = sh_type; 2638 } 2639 2640 /* If the section has relocs, set up a section header for the 2641 SHT_REL[A] section. If two relocation sections are required for 2642 this section, it is up to the processor-specific back-end to 2643 create the other. */ 2644 if ((asect->flags & SEC_RELOC) != 0 2645 && !_bfd_elf_init_reloc_shdr (abfd, 2646 &elf_section_data (asect)->rel_hdr, 2647 asect, 2648 asect->use_rela_p)) 2649 *failedptr = TRUE; 2650 } 2651 2652 /* Fill in the contents of a SHT_GROUP section. Called from 2653 _bfd_elf_compute_section_file_positions for gas, objcopy, and 2654 when ELF targets use the generic linker, ld. Called for ld -r 2655 from bfd_elf_final_link. */ 2656 2657 void 2658 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) 2659 { 2660 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg; 2661 asection *elt, *first; 2662 unsigned char *loc; 2663 bfd_boolean gas; 2664 2665 /* Ignore linker created group section. See elfNN_ia64_object_p in 2666 elfxx-ia64.c. */ 2667 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP) 2668 || *failedptr) 2669 return; 2670 2671 if (elf_section_data (sec)->this_hdr.sh_info == 0) 2672 { 2673 unsigned long symindx = 0; 2674 2675 /* elf_group_id will have been set up by objcopy and the 2676 generic linker. */ 2677 if (elf_group_id (sec) != NULL) 2678 symindx = elf_group_id (sec)->udata.i; 2679 2680 if (symindx == 0) 2681 { 2682 /* If called from the assembler, swap_out_syms will have set up 2683 elf_section_syms. */ 2684 BFD_ASSERT (elf_section_syms (abfd) != NULL); 2685 symindx = elf_section_syms (abfd)[sec->index]->udata.i; 2686 } 2687 elf_section_data (sec)->this_hdr.sh_info = symindx; 2688 } 2689 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) 2690 { 2691 /* The ELF backend linker sets sh_info to -2 when the group 2692 signature symbol is global, and thus the index can't be 2693 set until all local symbols are output. */ 2694 asection *igroup = elf_sec_group (elf_next_in_group (sec)); 2695 struct bfd_elf_section_data *sec_data = elf_section_data (igroup); 2696 unsigned long symndx = sec_data->this_hdr.sh_info; 2697 unsigned long extsymoff = 0; 2698 struct elf_link_hash_entry *h; 2699 2700 if (!elf_bad_symtab (igroup->owner)) 2701 { 2702 Elf_Internal_Shdr *symtab_hdr; 2703 2704 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; 2705 extsymoff = symtab_hdr->sh_info; 2706 } 2707 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; 2708 while (h->root.type == bfd_link_hash_indirect 2709 || h->root.type == bfd_link_hash_warning) 2710 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2711 2712 elf_section_data (sec)->this_hdr.sh_info = h->indx; 2713 } 2714 2715 /* The contents won't be allocated for "ld -r" or objcopy. */ 2716 gas = TRUE; 2717 if (sec->contents == NULL) 2718 { 2719 gas = FALSE; 2720 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size); 2721 2722 /* Arrange for the section to be written out. */ 2723 elf_section_data (sec)->this_hdr.contents = sec->contents; 2724 if (sec->contents == NULL) 2725 { 2726 *failedptr = TRUE; 2727 return; 2728 } 2729 } 2730 2731 loc = sec->contents + sec->size; 2732 2733 /* Get the pointer to the first section in the group that gas 2734 squirreled away here. objcopy arranges for this to be set to the 2735 start of the input section group. */ 2736 first = elt = elf_next_in_group (sec); 2737 2738 /* First element is a flag word. Rest of section is elf section 2739 indices for all the sections of the group. Write them backwards 2740 just to keep the group in the same order as given in .section 2741 directives, not that it matters. */ 2742 while (elt != NULL) 2743 { 2744 asection *s; 2745 unsigned int idx; 2746 2747 s = elt; 2748 if (! elf_discarded_section (s)) 2749 { 2750 loc -= 4; 2751 if (!gas) 2752 s = s->output_section; 2753 idx = 0; 2754 if (s != NULL) 2755 idx = elf_section_data (s)->this_idx; 2756 H_PUT_32 (abfd, idx, loc); 2757 } 2758 elt = elf_next_in_group (elt); 2759 if (elt == first) 2760 break; 2761 } 2762 2763 if ((loc -= 4) != sec->contents) 2764 abort (); 2765 2766 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); 2767 } 2768 2769 /* Assign all ELF section numbers. The dummy first section is handled here 2770 too. The link/info pointers for the standard section types are filled 2771 in here too, while we're at it. */ 2772 2773 static bfd_boolean 2774 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) 2775 { 2776 struct elf_obj_tdata *t = elf_tdata (abfd); 2777 asection *sec; 2778 unsigned int section_number, secn; 2779 Elf_Internal_Shdr **i_shdrp; 2780 struct bfd_elf_section_data *d; 2781 bfd_boolean need_symtab; 2782 2783 section_number = 1; 2784 2785 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); 2786 2787 /* SHT_GROUP sections are in relocatable files only. */ 2788 if (link_info == NULL || link_info->relocatable) 2789 { 2790 /* Put SHT_GROUP sections first. */ 2791 for (sec = abfd->sections; sec != NULL; sec = sec->next) 2792 { 2793 d = elf_section_data (sec); 2794 2795 if (d->this_hdr.sh_type == SHT_GROUP) 2796 { 2797 if (sec->flags & SEC_LINKER_CREATED) 2798 { 2799 /* Remove the linker created SHT_GROUP sections. */ 2800 bfd_section_list_remove (abfd, sec); 2801 abfd->section_count--; 2802 } 2803 else 2804 d->this_idx = section_number++; 2805 } 2806 } 2807 } 2808 2809 for (sec = abfd->sections; sec; sec = sec->next) 2810 { 2811 d = elf_section_data (sec); 2812 2813 if (d->this_hdr.sh_type != SHT_GROUP) 2814 d->this_idx = section_number++; 2815 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); 2816 if ((sec->flags & SEC_RELOC) == 0) 2817 d->rel_idx = 0; 2818 else 2819 { 2820 d->rel_idx = section_number++; 2821 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name); 2822 } 2823 2824 if (d->rel_hdr2) 2825 { 2826 d->rel_idx2 = section_number++; 2827 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name); 2828 } 2829 else 2830 d->rel_idx2 = 0; 2831 } 2832 2833 t->shstrtab_section = section_number++; 2834 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); 2835 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; 2836 2837 need_symtab = (bfd_get_symcount (abfd) > 0 2838 || (link_info == NULL 2839 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 2840 == HAS_RELOC))); 2841 if (need_symtab) 2842 { 2843 t->symtab_section = section_number++; 2844 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); 2845 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) 2846 { 2847 t->symtab_shndx_section = section_number++; 2848 t->symtab_shndx_hdr.sh_name 2849 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 2850 ".symtab_shndx", FALSE); 2851 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1) 2852 return FALSE; 2853 } 2854 t->strtab_section = section_number++; 2855 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); 2856 } 2857 2858 _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); 2859 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 2860 2861 elf_numsections (abfd) = section_number; 2862 elf_elfheader (abfd)->e_shnum = section_number; 2863 2864 /* Set up the list of section header pointers, in agreement with the 2865 indices. */ 2866 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number, 2867 sizeof (Elf_Internal_Shdr *)); 2868 if (i_shdrp == NULL) 2869 return FALSE; 2870 2871 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, 2872 sizeof (Elf_Internal_Shdr)); 2873 if (i_shdrp[0] == NULL) 2874 { 2875 bfd_release (abfd, i_shdrp); 2876 return FALSE; 2877 } 2878 2879 elf_elfsections (abfd) = i_shdrp; 2880 2881 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; 2882 if (need_symtab) 2883 { 2884 i_shdrp[t->symtab_section] = &t->symtab_hdr; 2885 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) 2886 { 2887 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr; 2888 t->symtab_shndx_hdr.sh_link = t->symtab_section; 2889 } 2890 i_shdrp[t->strtab_section] = &t->strtab_hdr; 2891 t->symtab_hdr.sh_link = t->strtab_section; 2892 } 2893 2894 for (sec = abfd->sections; sec; sec = sec->next) 2895 { 2896 struct bfd_elf_section_data *d = elf_section_data (sec); 2897 asection *s; 2898 const char *name; 2899 2900 i_shdrp[d->this_idx] = &d->this_hdr; 2901 if (d->rel_idx != 0) 2902 i_shdrp[d->rel_idx] = &d->rel_hdr; 2903 if (d->rel_idx2 != 0) 2904 i_shdrp[d->rel_idx2] = d->rel_hdr2; 2905 2906 /* Fill in the sh_link and sh_info fields while we're at it. */ 2907 2908 /* sh_link of a reloc section is the section index of the symbol 2909 table. sh_info is the section index of the section to which 2910 the relocation entries apply. */ 2911 if (d->rel_idx != 0) 2912 { 2913 d->rel_hdr.sh_link = t->symtab_section; 2914 d->rel_hdr.sh_info = d->this_idx; 2915 } 2916 if (d->rel_idx2 != 0) 2917 { 2918 d->rel_hdr2->sh_link = t->symtab_section; 2919 d->rel_hdr2->sh_info = d->this_idx; 2920 } 2921 2922 /* We need to set up sh_link for SHF_LINK_ORDER. */ 2923 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) 2924 { 2925 s = elf_linked_to_section (sec); 2926 if (s) 2927 { 2928 /* elf_linked_to_section points to the input section. */ 2929 if (link_info != NULL) 2930 { 2931 /* Check discarded linkonce section. */ 2932 if (elf_discarded_section (s)) 2933 { 2934 asection *kept; 2935 (*_bfd_error_handler) 2936 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"), 2937 abfd, d->this_hdr.bfd_section, 2938 s, s->owner); 2939 /* Point to the kept section if it has the same 2940 size as the discarded one. */ 2941 kept = _bfd_elf_check_kept_section (s, link_info); 2942 if (kept == NULL) 2943 { 2944 bfd_set_error (bfd_error_bad_value); 2945 return FALSE; 2946 } 2947 s = kept; 2948 } 2949 2950 s = s->output_section; 2951 BFD_ASSERT (s != NULL); 2952 } 2953 else 2954 { 2955 /* Handle objcopy. */ 2956 if (s->output_section == NULL) 2957 { 2958 (*_bfd_error_handler) 2959 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"), 2960 abfd, d->this_hdr.bfd_section, s, s->owner); 2961 bfd_set_error (bfd_error_bad_value); 2962 return FALSE; 2963 } 2964 s = s->output_section; 2965 } 2966 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 2967 } 2968 else 2969 { 2970 /* PR 290: 2971 The Intel C compiler generates SHT_IA_64_UNWIND with 2972 SHF_LINK_ORDER. But it doesn't set the sh_link or 2973 sh_info fields. Hence we could get the situation 2974 where s is NULL. */ 2975 const struct elf_backend_data *bed 2976 = get_elf_backend_data (abfd); 2977 if (bed->link_order_error_handler) 2978 bed->link_order_error_handler 2979 (_("%B: warning: sh_link not set for section `%A'"), 2980 abfd, sec); 2981 } 2982 } 2983 2984 switch (d->this_hdr.sh_type) 2985 { 2986 case SHT_REL: 2987 case SHT_RELA: 2988 /* A reloc section which we are treating as a normal BFD 2989 section. sh_link is the section index of the symbol 2990 table. sh_info is the section index of the section to 2991 which the relocation entries apply. We assume that an 2992 allocated reloc section uses the dynamic symbol table. 2993 FIXME: How can we be sure? */ 2994 s = bfd_get_section_by_name (abfd, ".dynsym"); 2995 if (s != NULL) 2996 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 2997 2998 /* We look up the section the relocs apply to by name. */ 2999 name = sec->name; 3000 if (d->this_hdr.sh_type == SHT_REL) 3001 name += 4; 3002 else 3003 name += 5; 3004 s = bfd_get_section_by_name (abfd, name); 3005 if (s != NULL) 3006 d->this_hdr.sh_info = elf_section_data (s)->this_idx; 3007 break; 3008 3009 case SHT_STRTAB: 3010 /* We assume that a section named .stab*str is a stabs 3011 string section. We look for a section with the same name 3012 but without the trailing ``str'', and set its sh_link 3013 field to point to this section. */ 3014 if (CONST_STRNEQ (sec->name, ".stab") 3015 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) 3016 { 3017 size_t len; 3018 char *alc; 3019 3020 len = strlen (sec->name); 3021 alc = (char *) bfd_malloc (len - 2); 3022 if (alc == NULL) 3023 return FALSE; 3024 memcpy (alc, sec->name, len - 3); 3025 alc[len - 3] = '\0'; 3026 s = bfd_get_section_by_name (abfd, alc); 3027 free (alc); 3028 if (s != NULL) 3029 { 3030 elf_section_data (s)->this_hdr.sh_link = d->this_idx; 3031 3032 /* This is a .stab section. */ 3033 if (elf_section_data (s)->this_hdr.sh_entsize == 0) 3034 elf_section_data (s)->this_hdr.sh_entsize 3035 = 4 + 2 * bfd_get_arch_size (abfd) / 8; 3036 } 3037 } 3038 break; 3039 3040 case SHT_DYNAMIC: 3041 case SHT_DYNSYM: 3042 case SHT_GNU_verneed: 3043 case SHT_GNU_verdef: 3044 /* sh_link is the section header index of the string table 3045 used for the dynamic entries, or the symbol table, or the 3046 version strings. */ 3047 s = bfd_get_section_by_name (abfd, ".dynstr"); 3048 if (s != NULL) 3049 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3050 break; 3051 3052 case SHT_GNU_LIBLIST: 3053 /* sh_link is the section header index of the prelink library 3054 list used for the dynamic entries, or the symbol table, or 3055 the version strings. */ 3056 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) 3057 ? ".dynstr" : ".gnu.libstr"); 3058 if (s != NULL) 3059 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3060 break; 3061 3062 case SHT_HASH: 3063 case SHT_GNU_HASH: 3064 case SHT_GNU_versym: 3065 /* sh_link is the section header index of the symbol table 3066 this hash table or version table is for. */ 3067 s = bfd_get_section_by_name (abfd, ".dynsym"); 3068 if (s != NULL) 3069 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3070 break; 3071 3072 case SHT_GROUP: 3073 d->this_hdr.sh_link = t->symtab_section; 3074 } 3075 } 3076 3077 for (secn = 1; secn < section_number; ++secn) 3078 if (i_shdrp[secn] == NULL) 3079 i_shdrp[secn] = i_shdrp[0]; 3080 else 3081 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd), 3082 i_shdrp[secn]->sh_name); 3083 return TRUE; 3084 } 3085 3086 /* Map symbol from it's internal number to the external number, moving 3087 all local symbols to be at the head of the list. */ 3088 3089 static bfd_boolean 3090 sym_is_global (bfd *abfd, asymbol *sym) 3091 { 3092 /* If the backend has a special mapping, use it. */ 3093 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3094 if (bed->elf_backend_sym_is_global) 3095 return (*bed->elf_backend_sym_is_global) (abfd, sym); 3096 3097 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0 3098 || bfd_is_und_section (bfd_get_section (sym)) 3099 || bfd_is_com_section (bfd_get_section (sym))); 3100 } 3101 3102 /* Don't output section symbols for sections that are not going to be 3103 output. */ 3104 3105 static bfd_boolean 3106 ignore_section_sym (bfd *abfd, asymbol *sym) 3107 { 3108 return ((sym->flags & BSF_SECTION_SYM) != 0 3109 && !(sym->section->owner == abfd 3110 || (sym->section->output_section->owner == abfd 3111 && sym->section->output_offset == 0))); 3112 } 3113 3114 static bfd_boolean 3115 elf_map_symbols (bfd *abfd) 3116 { 3117 unsigned int symcount = bfd_get_symcount (abfd); 3118 asymbol **syms = bfd_get_outsymbols (abfd); 3119 asymbol **sect_syms; 3120 unsigned int num_locals = 0; 3121 unsigned int num_globals = 0; 3122 unsigned int num_locals2 = 0; 3123 unsigned int num_globals2 = 0; 3124 int max_index = 0; 3125 unsigned int idx; 3126 asection *asect; 3127 asymbol **new_syms; 3128 3129 #ifdef DEBUG 3130 fprintf (stderr, "elf_map_symbols\n"); 3131 fflush (stderr); 3132 #endif 3133 3134 for (asect = abfd->sections; asect; asect = asect->next) 3135 { 3136 if (max_index < asect->index) 3137 max_index = asect->index; 3138 } 3139 3140 max_index++; 3141 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *)); 3142 if (sect_syms == NULL) 3143 return FALSE; 3144 elf_section_syms (abfd) = sect_syms; 3145 elf_num_section_syms (abfd) = max_index; 3146 3147 /* Init sect_syms entries for any section symbols we have already 3148 decided to output. */ 3149 for (idx = 0; idx < symcount; idx++) 3150 { 3151 asymbol *sym = syms[idx]; 3152 3153 if ((sym->flags & BSF_SECTION_SYM) != 0 3154 && sym->value == 0 3155 && !ignore_section_sym (abfd, sym)) 3156 { 3157 asection *sec = sym->section; 3158 3159 if (sec->owner != abfd) 3160 sec = sec->output_section; 3161 3162 sect_syms[sec->index] = syms[idx]; 3163 } 3164 } 3165 3166 /* Classify all of the symbols. */ 3167 for (idx = 0; idx < symcount; idx++) 3168 { 3169 if (ignore_section_sym (abfd, syms[idx])) 3170 continue; 3171 if (!sym_is_global (abfd, syms[idx])) 3172 num_locals++; 3173 else 3174 num_globals++; 3175 } 3176 3177 /* We will be adding a section symbol for each normal BFD section. Most 3178 sections will already have a section symbol in outsymbols, but 3179 eg. SHT_GROUP sections will not, and we need the section symbol mapped 3180 at least in that case. */ 3181 for (asect = abfd->sections; asect; asect = asect->next) 3182 { 3183 if (sect_syms[asect->index] == NULL) 3184 { 3185 if (!sym_is_global (abfd, asect->symbol)) 3186 num_locals++; 3187 else 3188 num_globals++; 3189 } 3190 } 3191 3192 /* Now sort the symbols so the local symbols are first. */ 3193 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals, 3194 sizeof (asymbol *)); 3195 3196 if (new_syms == NULL) 3197 return FALSE; 3198 3199 for (idx = 0; idx < symcount; idx++) 3200 { 3201 asymbol *sym = syms[idx]; 3202 unsigned int i; 3203 3204 if (ignore_section_sym (abfd, sym)) 3205 continue; 3206 if (!sym_is_global (abfd, sym)) 3207 i = num_locals2++; 3208 else 3209 i = num_locals + num_globals2++; 3210 new_syms[i] = sym; 3211 sym->udata.i = i + 1; 3212 } 3213 for (asect = abfd->sections; asect; asect = asect->next) 3214 { 3215 if (sect_syms[asect->index] == NULL) 3216 { 3217 asymbol *sym = asect->symbol; 3218 unsigned int i; 3219 3220 sect_syms[asect->index] = sym; 3221 if (!sym_is_global (abfd, sym)) 3222 i = num_locals2++; 3223 else 3224 i = num_locals + num_globals2++; 3225 new_syms[i] = sym; 3226 sym->udata.i = i + 1; 3227 } 3228 } 3229 3230 bfd_set_symtab (abfd, new_syms, num_locals + num_globals); 3231 3232 elf_num_locals (abfd) = num_locals; 3233 elf_num_globals (abfd) = num_globals; 3234 return TRUE; 3235 } 3236 3237 /* Align to the maximum file alignment that could be required for any 3238 ELF data structure. */ 3239 3240 static inline file_ptr 3241 align_file_position (file_ptr off, int align) 3242 { 3243 return (off + align - 1) & ~(align - 1); 3244 } 3245 3246 /* Assign a file position to a section, optionally aligning to the 3247 required section alignment. */ 3248 3249 file_ptr 3250 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, 3251 file_ptr offset, 3252 bfd_boolean align) 3253 { 3254 if (align && i_shdrp->sh_addralign > 1) 3255 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign); 3256 i_shdrp->sh_offset = offset; 3257 if (i_shdrp->bfd_section != NULL) 3258 i_shdrp->bfd_section->filepos = offset; 3259 if (i_shdrp->sh_type != SHT_NOBITS) 3260 offset += i_shdrp->sh_size; 3261 return offset; 3262 } 3263 3264 /* Compute the file positions we are going to put the sections at, and 3265 otherwise prepare to begin writing out the ELF file. If LINK_INFO 3266 is not NULL, this is being called by the ELF backend linker. */ 3267 3268 bfd_boolean 3269 _bfd_elf_compute_section_file_positions (bfd *abfd, 3270 struct bfd_link_info *link_info) 3271 { 3272 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3273 bfd_boolean failed; 3274 struct bfd_strtab_hash *strtab = NULL; 3275 Elf_Internal_Shdr *shstrtab_hdr; 3276 bfd_boolean need_symtab; 3277 3278 if (abfd->output_has_begun) 3279 return TRUE; 3280 3281 /* Do any elf backend specific processing first. */ 3282 if (bed->elf_backend_begin_write_processing) 3283 (*bed->elf_backend_begin_write_processing) (abfd, link_info); 3284 3285 if (! prep_headers (abfd)) 3286 return FALSE; 3287 3288 /* Post process the headers if necessary. */ 3289 if (bed->elf_backend_post_process_headers) 3290 (*bed->elf_backend_post_process_headers) (abfd, link_info); 3291 3292 failed = FALSE; 3293 bfd_map_over_sections (abfd, elf_fake_sections, &failed); 3294 if (failed) 3295 return FALSE; 3296 3297 if (!assign_section_numbers (abfd, link_info)) 3298 return FALSE; 3299 3300 /* The backend linker builds symbol table information itself. */ 3301 need_symtab = (link_info == NULL 3302 && (bfd_get_symcount (abfd) > 0 3303 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 3304 == HAS_RELOC))); 3305 if (need_symtab) 3306 { 3307 /* Non-zero if doing a relocatable link. */ 3308 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); 3309 3310 if (! swap_out_syms (abfd, &strtab, relocatable_p)) 3311 return FALSE; 3312 } 3313 3314 if (link_info == NULL) 3315 { 3316 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 3317 if (failed) 3318 return FALSE; 3319 } 3320 3321 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; 3322 /* sh_name was set in prep_headers. */ 3323 shstrtab_hdr->sh_type = SHT_STRTAB; 3324 shstrtab_hdr->sh_flags = 0; 3325 shstrtab_hdr->sh_addr = 0; 3326 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 3327 shstrtab_hdr->sh_entsize = 0; 3328 shstrtab_hdr->sh_link = 0; 3329 shstrtab_hdr->sh_info = 0; 3330 /* sh_offset is set in assign_file_positions_except_relocs. */ 3331 shstrtab_hdr->sh_addralign = 1; 3332 3333 if (!assign_file_positions_except_relocs (abfd, link_info)) 3334 return FALSE; 3335 3336 if (need_symtab) 3337 { 3338 file_ptr off; 3339 Elf_Internal_Shdr *hdr; 3340 3341 off = elf_tdata (abfd)->next_file_pos; 3342 3343 hdr = &elf_tdata (abfd)->symtab_hdr; 3344 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3345 3346 hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 3347 if (hdr->sh_size != 0) 3348 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3349 3350 hdr = &elf_tdata (abfd)->strtab_hdr; 3351 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 3352 3353 elf_tdata (abfd)->next_file_pos = off; 3354 3355 /* Now that we know where the .strtab section goes, write it 3356 out. */ 3357 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 3358 || ! _bfd_stringtab_emit (abfd, strtab)) 3359 return FALSE; 3360 _bfd_stringtab_free (strtab); 3361 } 3362 3363 abfd->output_has_begun = TRUE; 3364 3365 return TRUE; 3366 } 3367 3368 /* Make an initial estimate of the size of the program header. If we 3369 get the number wrong here, we'll redo section placement. */ 3370 3371 static bfd_size_type 3372 get_program_header_size (bfd *abfd, struct bfd_link_info *info) 3373 { 3374 size_t segs; 3375 asection *s; 3376 const struct elf_backend_data *bed; 3377 3378 /* Assume we will need exactly two PT_LOAD segments: one for text 3379 and one for data. */ 3380 segs = 2; 3381 3382 s = bfd_get_section_by_name (abfd, ".interp"); 3383 if (s != NULL && (s->flags & SEC_LOAD) != 0) 3384 { 3385 /* If we have a loadable interpreter section, we need a 3386 PT_INTERP segment. In this case, assume we also need a 3387 PT_PHDR segment, although that may not be true for all 3388 targets. */ 3389 segs += 2; 3390 } 3391 3392 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) 3393 { 3394 /* We need a PT_DYNAMIC segment. */ 3395 ++segs; 3396 } 3397 3398 if (info != NULL && info->relro) 3399 { 3400 /* We need a PT_GNU_RELRO segment. */ 3401 ++segs; 3402 } 3403 3404 if (elf_tdata (abfd)->eh_frame_hdr) 3405 { 3406 /* We need a PT_GNU_EH_FRAME segment. */ 3407 ++segs; 3408 } 3409 3410 if (elf_tdata (abfd)->stack_flags) 3411 { 3412 /* We need a PT_GNU_STACK segment. */ 3413 ++segs; 3414 } 3415 3416 for (s = abfd->sections; s != NULL; s = s->next) 3417 { 3418 if ((s->flags & SEC_LOAD) != 0 3419 && CONST_STRNEQ (s->name, ".note")) 3420 { 3421 /* We need a PT_NOTE segment. */ 3422 ++segs; 3423 /* Try to create just one PT_NOTE segment 3424 for all adjacent loadable .note* sections. 3425 gABI requires that within a PT_NOTE segment 3426 (and also inside of each SHT_NOTE section) 3427 each note is padded to a multiple of 4 size, 3428 so we check whether the sections are correctly 3429 aligned. */ 3430 if (s->alignment_power == 2) 3431 while (s->next != NULL 3432 && s->next->alignment_power == 2 3433 && (s->next->flags & SEC_LOAD) != 0 3434 && CONST_STRNEQ (s->next->name, ".note")) 3435 s = s->next; 3436 } 3437 } 3438 3439 for (s = abfd->sections; s != NULL; s = s->next) 3440 { 3441 if (s->flags & SEC_THREAD_LOCAL) 3442 { 3443 /* We need a PT_TLS segment. */ 3444 ++segs; 3445 break; 3446 } 3447 } 3448 3449 /* Let the backend count up any program headers it might need. */ 3450 bed = get_elf_backend_data (abfd); 3451 if (bed->elf_backend_additional_program_headers) 3452 { 3453 int a; 3454 3455 a = (*bed->elf_backend_additional_program_headers) (abfd, info); 3456 if (a == -1) 3457 abort (); 3458 segs += a; 3459 } 3460 3461 return segs * bed->s->sizeof_phdr; 3462 } 3463 3464 /* Find the segment that contains the output_section of section. */ 3465 3466 Elf_Internal_Phdr * 3467 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section) 3468 { 3469 struct elf_segment_map *m; 3470 Elf_Internal_Phdr *p; 3471 3472 for (m = elf_tdata (abfd)->segment_map, 3473 p = elf_tdata (abfd)->phdr; 3474 m != NULL; 3475 m = m->next, p++) 3476 { 3477 int i; 3478 3479 for (i = m->count - 1; i >= 0; i--) 3480 if (m->sections[i] == section) 3481 return p; 3482 } 3483 3484 return NULL; 3485 } 3486 3487 /* Create a mapping from a set of sections to a program segment. */ 3488 3489 static struct elf_segment_map * 3490 make_mapping (bfd *abfd, 3491 asection **sections, 3492 unsigned int from, 3493 unsigned int to, 3494 bfd_boolean phdr) 3495 { 3496 struct elf_segment_map *m; 3497 unsigned int i; 3498 asection **hdrpp; 3499 bfd_size_type amt; 3500 3501 amt = sizeof (struct elf_segment_map); 3502 amt += (to - from - 1) * sizeof (asection *); 3503 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3504 if (m == NULL) 3505 return NULL; 3506 m->next = NULL; 3507 m->p_type = PT_LOAD; 3508 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) 3509 m->sections[i - from] = *hdrpp; 3510 m->count = to - from; 3511 3512 if (from == 0 && phdr) 3513 { 3514 /* Include the headers in the first PT_LOAD segment. */ 3515 m->includes_filehdr = 1; 3516 m->includes_phdrs = 1; 3517 } 3518 3519 return m; 3520 } 3521 3522 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL 3523 on failure. */ 3524 3525 struct elf_segment_map * 3526 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) 3527 { 3528 struct elf_segment_map *m; 3529 3530 m = (struct elf_segment_map *) bfd_zalloc (abfd, 3531 sizeof (struct elf_segment_map)); 3532 if (m == NULL) 3533 return NULL; 3534 m->next = NULL; 3535 m->p_type = PT_DYNAMIC; 3536 m->count = 1; 3537 m->sections[0] = dynsec; 3538 3539 return m; 3540 } 3541 3542 /* Possibly add or remove segments from the segment map. */ 3543 3544 static bfd_boolean 3545 elf_modify_segment_map (bfd *abfd, 3546 struct bfd_link_info *info, 3547 bfd_boolean remove_empty_load) 3548 { 3549 struct elf_segment_map **m; 3550 const struct elf_backend_data *bed; 3551 3552 /* The placement algorithm assumes that non allocated sections are 3553 not in PT_LOAD segments. We ensure this here by removing such 3554 sections from the segment map. We also remove excluded 3555 sections. Finally, any PT_LOAD segment without sections is 3556 removed. */ 3557 m = &elf_tdata (abfd)->segment_map; 3558 while (*m) 3559 { 3560 unsigned int i, new_count; 3561 3562 for (new_count = 0, i = 0; i < (*m)->count; i++) 3563 { 3564 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0 3565 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0 3566 || (*m)->p_type != PT_LOAD)) 3567 { 3568 (*m)->sections[new_count] = (*m)->sections[i]; 3569 new_count++; 3570 } 3571 } 3572 (*m)->count = new_count; 3573 3574 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0) 3575 *m = (*m)->next; 3576 else 3577 m = &(*m)->next; 3578 } 3579 3580 bed = get_elf_backend_data (abfd); 3581 if (bed->elf_backend_modify_segment_map != NULL) 3582 { 3583 if (!(*bed->elf_backend_modify_segment_map) (abfd, info)) 3584 return FALSE; 3585 } 3586 3587 return TRUE; 3588 } 3589 3590 /* Set up a mapping from BFD sections to program segments. */ 3591 3592 bfd_boolean 3593 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info) 3594 { 3595 unsigned int count; 3596 struct elf_segment_map *m; 3597 asection **sections = NULL; 3598 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3599 bfd_boolean no_user_phdrs; 3600 3601 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL; 3602 if (no_user_phdrs && bfd_count_sections (abfd) != 0) 3603 { 3604 asection *s; 3605 unsigned int i; 3606 struct elf_segment_map *mfirst; 3607 struct elf_segment_map **pm; 3608 asection *last_hdr; 3609 bfd_vma last_size; 3610 unsigned int phdr_index; 3611 bfd_vma maxpagesize; 3612 asection **hdrpp; 3613 bfd_boolean phdr_in_segment = TRUE; 3614 bfd_boolean writable; 3615 int tls_count = 0; 3616 asection *first_tls = NULL; 3617 asection *dynsec, *eh_frame_hdr; 3618 bfd_size_type amt; 3619 3620 /* Select the allocated sections, and sort them. */ 3621 3622 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd), 3623 sizeof (asection *)); 3624 if (sections == NULL) 3625 goto error_return; 3626 3627 i = 0; 3628 for (s = abfd->sections; s != NULL; s = s->next) 3629 { 3630 if ((s->flags & SEC_ALLOC) != 0) 3631 { 3632 sections[i] = s; 3633 ++i; 3634 } 3635 } 3636 BFD_ASSERT (i <= bfd_count_sections (abfd)); 3637 count = i; 3638 3639 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); 3640 3641 /* Build the mapping. */ 3642 3643 mfirst = NULL; 3644 pm = &mfirst; 3645 3646 /* If we have a .interp section, then create a PT_PHDR segment for 3647 the program headers and a PT_INTERP segment for the .interp 3648 section. */ 3649 s = bfd_get_section_by_name (abfd, ".interp"); 3650 if (s != NULL && (s->flags & SEC_LOAD) != 0) 3651 { 3652 amt = sizeof (struct elf_segment_map); 3653 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3654 if (m == NULL) 3655 goto error_return; 3656 m->next = NULL; 3657 m->p_type = PT_PHDR; 3658 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ 3659 m->p_flags = PF_R | PF_X; 3660 m->p_flags_valid = 1; 3661 m->includes_phdrs = 1; 3662 3663 *pm = m; 3664 pm = &m->next; 3665 3666 amt = sizeof (struct elf_segment_map); 3667 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3668 if (m == NULL) 3669 goto error_return; 3670 m->next = NULL; 3671 m->p_type = PT_INTERP; 3672 m->count = 1; 3673 m->sections[0] = s; 3674 3675 *pm = m; 3676 pm = &m->next; 3677 } 3678 3679 /* Look through the sections. We put sections in the same program 3680 segment when the start of the second section can be placed within 3681 a few bytes of the end of the first section. */ 3682 last_hdr = NULL; 3683 last_size = 0; 3684 phdr_index = 0; 3685 maxpagesize = bed->maxpagesize; 3686 writable = FALSE; 3687 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 3688 if (dynsec != NULL 3689 && (dynsec->flags & SEC_LOAD) == 0) 3690 dynsec = NULL; 3691 3692 /* Deal with -Ttext or something similar such that the first section 3693 is not adjacent to the program headers. This is an 3694 approximation, since at this point we don't know exactly how many 3695 program headers we will need. */ 3696 if (count > 0) 3697 { 3698 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size; 3699 3700 if (phdr_size == (bfd_size_type) -1) 3701 phdr_size = get_program_header_size (abfd, info); 3702 if ((abfd->flags & D_PAGED) == 0 3703 || sections[0]->lma < phdr_size 3704 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize) 3705 phdr_in_segment = FALSE; 3706 } 3707 3708 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) 3709 { 3710 asection *hdr; 3711 bfd_boolean new_segment; 3712 3713 hdr = *hdrpp; 3714 3715 /* See if this section and the last one will fit in the same 3716 segment. */ 3717 3718 if (last_hdr == NULL) 3719 { 3720 /* If we don't have a segment yet, then we don't need a new 3721 one (we build the last one after this loop). */ 3722 new_segment = FALSE; 3723 } 3724 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) 3725 { 3726 /* If this section has a different relation between the 3727 virtual address and the load address, then we need a new 3728 segment. */ 3729 new_segment = TRUE; 3730 } 3731 /* In the next test we have to be careful when last_hdr->lma is close 3732 to the end of the address space. If the aligned address wraps 3733 around to the start of the address space, then there are no more 3734 pages left in memory and it is OK to assume that the current 3735 section can be included in the current segment. */ 3736 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 3737 > last_hdr->lma) 3738 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 3739 <= hdr->lma)) 3740 { 3741 /* If putting this section in this segment would force us to 3742 skip a page in the segment, then we need a new segment. */ 3743 new_segment = TRUE; 3744 } 3745 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 3746 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0) 3747 { 3748 /* We don't want to put a loadable section after a 3749 nonloadable section in the same segment. 3750 Consider .tbss sections as loadable for this purpose. */ 3751 new_segment = TRUE; 3752 } 3753 else if ((abfd->flags & D_PAGED) == 0) 3754 { 3755 /* If the file is not demand paged, which means that we 3756 don't require the sections to be correctly aligned in the 3757 file, then there is no other reason for a new segment. */ 3758 new_segment = FALSE; 3759 } 3760 else if (! writable 3761 && (hdr->flags & SEC_READONLY) == 0 3762 && (((last_hdr->lma + last_size - 1) 3763 & ~(maxpagesize - 1)) 3764 != (hdr->lma & ~(maxpagesize - 1)))) 3765 { 3766 /* We don't want to put a writable section in a read only 3767 segment, unless they are on the same page in memory 3768 anyhow. We already know that the last section does not 3769 bring us past the current section on the page, so the 3770 only case in which the new section is not on the same 3771 page as the previous section is when the previous section 3772 ends precisely on a page boundary. */ 3773 new_segment = TRUE; 3774 } 3775 else 3776 { 3777 /* Otherwise, we can use the same segment. */ 3778 new_segment = FALSE; 3779 } 3780 3781 /* Allow interested parties a chance to override our decision. */ 3782 if (last_hdr != NULL 3783 && info != NULL 3784 && info->callbacks->override_segment_assignment != NULL) 3785 new_segment 3786 = info->callbacks->override_segment_assignment (info, abfd, hdr, 3787 last_hdr, 3788 new_segment); 3789 3790 if (! new_segment) 3791 { 3792 if ((hdr->flags & SEC_READONLY) == 0) 3793 writable = TRUE; 3794 last_hdr = hdr; 3795 /* .tbss sections effectively have zero size. */ 3796 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 3797 != SEC_THREAD_LOCAL) 3798 last_size = hdr->size; 3799 else 3800 last_size = 0; 3801 continue; 3802 } 3803 3804 /* We need a new program segment. We must create a new program 3805 header holding all the sections from phdr_index until hdr. */ 3806 3807 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 3808 if (m == NULL) 3809 goto error_return; 3810 3811 *pm = m; 3812 pm = &m->next; 3813 3814 if ((hdr->flags & SEC_READONLY) == 0) 3815 writable = TRUE; 3816 else 3817 writable = FALSE; 3818 3819 last_hdr = hdr; 3820 /* .tbss sections effectively have zero size. */ 3821 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL) 3822 last_size = hdr->size; 3823 else 3824 last_size = 0; 3825 phdr_index = i; 3826 phdr_in_segment = FALSE; 3827 } 3828 3829 /* Create a final PT_LOAD program segment. */ 3830 if (last_hdr != NULL) 3831 { 3832 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 3833 if (m == NULL) 3834 goto error_return; 3835 3836 *pm = m; 3837 pm = &m->next; 3838 } 3839 3840 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ 3841 if (dynsec != NULL) 3842 { 3843 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 3844 if (m == NULL) 3845 goto error_return; 3846 *pm = m; 3847 pm = &m->next; 3848 } 3849 3850 /* For each batch of consecutive loadable .note sections, 3851 add a PT_NOTE segment. We don't use bfd_get_section_by_name, 3852 because if we link together nonloadable .note sections and 3853 loadable .note sections, we will generate two .note sections 3854 in the output file. FIXME: Using names for section types is 3855 bogus anyhow. */ 3856 for (s = abfd->sections; s != NULL; s = s->next) 3857 { 3858 if ((s->flags & SEC_LOAD) != 0 3859 && CONST_STRNEQ (s->name, ".note")) 3860 { 3861 asection *s2; 3862 unsigned count = 1; 3863 amt = sizeof (struct elf_segment_map); 3864 if (s->alignment_power == 2) 3865 for (s2 = s; s2->next != NULL; s2 = s2->next) 3866 { 3867 if (s2->next->alignment_power == 2 3868 && (s2->next->flags & SEC_LOAD) != 0 3869 && CONST_STRNEQ (s2->next->name, ".note") 3870 && align_power (s2->vma + s2->size, 2) 3871 == s2->next->vma) 3872 count++; 3873 else 3874 break; 3875 } 3876 amt += (count - 1) * sizeof (asection *); 3877 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3878 if (m == NULL) 3879 goto error_return; 3880 m->next = NULL; 3881 m->p_type = PT_NOTE; 3882 m->count = count; 3883 while (count > 1) 3884 { 3885 m->sections[m->count - count--] = s; 3886 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 3887 s = s->next; 3888 } 3889 m->sections[m->count - 1] = s; 3890 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 3891 *pm = m; 3892 pm = &m->next; 3893 } 3894 if (s->flags & SEC_THREAD_LOCAL) 3895 { 3896 if (! tls_count) 3897 first_tls = s; 3898 tls_count++; 3899 } 3900 } 3901 3902 /* If there are any SHF_TLS output sections, add PT_TLS segment. */ 3903 if (tls_count > 0) 3904 { 3905 int i; 3906 3907 amt = sizeof (struct elf_segment_map); 3908 amt += (tls_count - 1) * sizeof (asection *); 3909 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3910 if (m == NULL) 3911 goto error_return; 3912 m->next = NULL; 3913 m->p_type = PT_TLS; 3914 m->count = tls_count; 3915 /* Mandated PF_R. */ 3916 m->p_flags = PF_R; 3917 m->p_flags_valid = 1; 3918 for (i = 0; i < tls_count; ++i) 3919 { 3920 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL); 3921 m->sections[i] = first_tls; 3922 first_tls = first_tls->next; 3923 } 3924 3925 *pm = m; 3926 pm = &m->next; 3927 } 3928 3929 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME 3930 segment. */ 3931 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr; 3932 if (eh_frame_hdr != NULL 3933 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) 3934 { 3935 amt = sizeof (struct elf_segment_map); 3936 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3937 if (m == NULL) 3938 goto error_return; 3939 m->next = NULL; 3940 m->p_type = PT_GNU_EH_FRAME; 3941 m->count = 1; 3942 m->sections[0] = eh_frame_hdr->output_section; 3943 3944 *pm = m; 3945 pm = &m->next; 3946 } 3947 3948 if (elf_tdata (abfd)->stack_flags) 3949 { 3950 amt = sizeof (struct elf_segment_map); 3951 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3952 if (m == NULL) 3953 goto error_return; 3954 m->next = NULL; 3955 m->p_type = PT_GNU_STACK; 3956 m->p_flags = elf_tdata (abfd)->stack_flags; 3957 m->p_flags_valid = 1; 3958 3959 *pm = m; 3960 pm = &m->next; 3961 } 3962 3963 if (info != NULL && info->relro) 3964 { 3965 for (m = mfirst; m != NULL; m = m->next) 3966 { 3967 if (m->p_type == PT_LOAD) 3968 { 3969 asection *last = m->sections[m->count - 1]; 3970 bfd_vma vaddr = m->sections[0]->vma; 3971 bfd_vma filesz = last->vma - vaddr + last->size; 3972 3973 if (vaddr < info->relro_end 3974 && vaddr >= info->relro_start 3975 && (vaddr + filesz) >= info->relro_end) 3976 break; 3977 } 3978 } 3979 3980 /* Make a PT_GNU_RELRO segment only when it isn't empty. */ 3981 if (m != NULL) 3982 { 3983 amt = sizeof (struct elf_segment_map); 3984 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 3985 if (m == NULL) 3986 goto error_return; 3987 m->next = NULL; 3988 m->p_type = PT_GNU_RELRO; 3989 m->p_flags = PF_R; 3990 m->p_flags_valid = 1; 3991 3992 *pm = m; 3993 pm = &m->next; 3994 } 3995 } 3996 3997 free (sections); 3998 elf_tdata (abfd)->segment_map = mfirst; 3999 } 4000 4001 if (!elf_modify_segment_map (abfd, info, no_user_phdrs)) 4002 return FALSE; 4003 4004 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 4005 ++count; 4006 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr; 4007 4008 return TRUE; 4009 4010 error_return: 4011 if (sections != NULL) 4012 free (sections); 4013 return FALSE; 4014 } 4015 4016 /* Sort sections by address. */ 4017 4018 static int 4019 elf_sort_sections (const void *arg1, const void *arg2) 4020 { 4021 const asection *sec1 = *(const asection **) arg1; 4022 const asection *sec2 = *(const asection **) arg2; 4023 bfd_size_type size1, size2; 4024 4025 /* Sort by LMA first, since this is the address used to 4026 place the section into a segment. */ 4027 if (sec1->lma < sec2->lma) 4028 return -1; 4029 else if (sec1->lma > sec2->lma) 4030 return 1; 4031 4032 /* Then sort by VMA. Normally the LMA and the VMA will be 4033 the same, and this will do nothing. */ 4034 if (sec1->vma < sec2->vma) 4035 return -1; 4036 else if (sec1->vma > sec2->vma) 4037 return 1; 4038 4039 /* Put !SEC_LOAD sections after SEC_LOAD ones. */ 4040 4041 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0) 4042 4043 if (TOEND (sec1)) 4044 { 4045 if (TOEND (sec2)) 4046 { 4047 /* If the indicies are the same, do not return 0 4048 here, but continue to try the next comparison. */ 4049 if (sec1->target_index - sec2->target_index != 0) 4050 return sec1->target_index - sec2->target_index; 4051 } 4052 else 4053 return 1; 4054 } 4055 else if (TOEND (sec2)) 4056 return -1; 4057 4058 #undef TOEND 4059 4060 /* Sort by size, to put zero sized sections 4061 before others at the same address. */ 4062 4063 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; 4064 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; 4065 4066 if (size1 < size2) 4067 return -1; 4068 if (size1 > size2) 4069 return 1; 4070 4071 return sec1->target_index - sec2->target_index; 4072 } 4073 4074 /* Ian Lance Taylor writes: 4075 4076 We shouldn't be using % with a negative signed number. That's just 4077 not good. We have to make sure either that the number is not 4078 negative, or that the number has an unsigned type. When the types 4079 are all the same size they wind up as unsigned. When file_ptr is a 4080 larger signed type, the arithmetic winds up as signed long long, 4081 which is wrong. 4082 4083 What we're trying to say here is something like ``increase OFF by 4084 the least amount that will cause it to be equal to the VMA modulo 4085 the page size.'' */ 4086 /* In other words, something like: 4087 4088 vma_offset = m->sections[0]->vma % bed->maxpagesize; 4089 off_offset = off % bed->maxpagesize; 4090 if (vma_offset < off_offset) 4091 adjustment = vma_offset + bed->maxpagesize - off_offset; 4092 else 4093 adjustment = vma_offset - off_offset; 4094 4095 which can can be collapsed into the expression below. */ 4096 4097 static file_ptr 4098 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) 4099 { 4100 return ((vma - off) % maxpagesize); 4101 } 4102 4103 static void 4104 print_segment_map (const struct elf_segment_map *m) 4105 { 4106 unsigned int j; 4107 const char *pt = get_segment_type (m->p_type); 4108 char buf[32]; 4109 4110 if (pt == NULL) 4111 { 4112 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC) 4113 sprintf (buf, "LOPROC+%7.7x", 4114 (unsigned int) (m->p_type - PT_LOPROC)); 4115 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS) 4116 sprintf (buf, "LOOS+%7.7x", 4117 (unsigned int) (m->p_type - PT_LOOS)); 4118 else 4119 snprintf (buf, sizeof (buf), "%8.8x", 4120 (unsigned int) m->p_type); 4121 pt = buf; 4122 } 4123 fprintf (stderr, "%s:", pt); 4124 for (j = 0; j < m->count; j++) 4125 fprintf (stderr, " %s", m->sections [j]->name); 4126 putc ('\n',stderr); 4127 } 4128 4129 /* Assign file positions to the sections based on the mapping from 4130 sections to segments. This function also sets up some fields in 4131 the file header. */ 4132 4133 static bfd_boolean 4134 assign_file_positions_for_load_sections (bfd *abfd, 4135 struct bfd_link_info *link_info) 4136 { 4137 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4138 struct elf_segment_map *m; 4139 Elf_Internal_Phdr *phdrs; 4140 Elf_Internal_Phdr *p; 4141 file_ptr off; 4142 bfd_size_type maxpagesize; 4143 unsigned int alloc; 4144 unsigned int i, j; 4145 bfd_vma header_pad = 0; 4146 4147 if (link_info == NULL 4148 && !_bfd_elf_map_sections_to_segments (abfd, link_info)) 4149 return FALSE; 4150 4151 alloc = 0; 4152 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 4153 { 4154 ++alloc; 4155 if (m->header_size) 4156 header_pad = m->header_size; 4157 } 4158 4159 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; 4160 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; 4161 elf_elfheader (abfd)->e_phnum = alloc; 4162 4163 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1) 4164 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr; 4165 else 4166 BFD_ASSERT (elf_tdata (abfd)->program_header_size 4167 >= alloc * bed->s->sizeof_phdr); 4168 4169 if (alloc == 0) 4170 { 4171 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr; 4172 return TRUE; 4173 } 4174 4175 /* We're writing the size in elf_tdata (abfd)->program_header_size, 4176 see assign_file_positions_except_relocs, so make sure we have 4177 that amount allocated, with trailing space cleared. 4178 The variable alloc contains the computed need, while elf_tdata 4179 (abfd)->program_header_size contains the size used for the 4180 layout. 4181 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments 4182 where the layout is forced to according to a larger size in the 4183 last iterations for the testcase ld-elf/header. */ 4184 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr 4185 == 0); 4186 phdrs = (Elf_Internal_Phdr *) 4187 bfd_zalloc2 (abfd, 4188 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr), 4189 sizeof (Elf_Internal_Phdr)); 4190 elf_tdata (abfd)->phdr = phdrs; 4191 if (phdrs == NULL) 4192 return FALSE; 4193 4194 maxpagesize = 1; 4195 if ((abfd->flags & D_PAGED) != 0) 4196 maxpagesize = bed->maxpagesize; 4197 4198 off = bed->s->sizeof_ehdr; 4199 off += alloc * bed->s->sizeof_phdr; 4200 if (header_pad < (bfd_vma) off) 4201 header_pad = 0; 4202 else 4203 header_pad -= off; 4204 off += header_pad; 4205 4206 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0; 4207 m != NULL; 4208 m = m->next, p++, j++) 4209 { 4210 asection **secpp; 4211 bfd_vma off_adjust; 4212 bfd_boolean no_contents; 4213 4214 /* If elf_segment_map is not from map_sections_to_segments, the 4215 sections may not be correctly ordered. NOTE: sorting should 4216 not be done to the PT_NOTE section of a corefile, which may 4217 contain several pseudo-sections artificially created by bfd. 4218 Sorting these pseudo-sections breaks things badly. */ 4219 if (m->count > 1 4220 && !(elf_elfheader (abfd)->e_type == ET_CORE 4221 && m->p_type == PT_NOTE)) 4222 qsort (m->sections, (size_t) m->count, sizeof (asection *), 4223 elf_sort_sections); 4224 4225 /* An ELF segment (described by Elf_Internal_Phdr) may contain a 4226 number of sections with contents contributing to both p_filesz 4227 and p_memsz, followed by a number of sections with no contents 4228 that just contribute to p_memsz. In this loop, OFF tracks next 4229 available file offset for PT_LOAD and PT_NOTE segments. */ 4230 p->p_type = m->p_type; 4231 p->p_flags = m->p_flags; 4232 4233 if (m->count == 0) 4234 p->p_vaddr = 0; 4235 else 4236 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset; 4237 4238 if (m->p_paddr_valid) 4239 p->p_paddr = m->p_paddr; 4240 else if (m->count == 0) 4241 p->p_paddr = 0; 4242 else 4243 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset; 4244 4245 if (p->p_type == PT_LOAD 4246 && (abfd->flags & D_PAGED) != 0) 4247 { 4248 /* p_align in demand paged PT_LOAD segments effectively stores 4249 the maximum page size. When copying an executable with 4250 objcopy, we set m->p_align from the input file. Use this 4251 value for maxpagesize rather than bed->maxpagesize, which 4252 may be different. Note that we use maxpagesize for PT_TLS 4253 segment alignment later in this function, so we are relying 4254 on at least one PT_LOAD segment appearing before a PT_TLS 4255 segment. */ 4256 if (m->p_align_valid) 4257 maxpagesize = m->p_align; 4258 4259 p->p_align = maxpagesize; 4260 } 4261 else if (m->p_align_valid) 4262 p->p_align = m->p_align; 4263 else if (m->count == 0) 4264 p->p_align = 1 << bed->s->log_file_align; 4265 else 4266 p->p_align = 0; 4267 4268 no_contents = FALSE; 4269 off_adjust = 0; 4270 if (p->p_type == PT_LOAD 4271 && m->count > 0) 4272 { 4273 bfd_size_type align; 4274 unsigned int align_power = 0; 4275 4276 if (m->p_align_valid) 4277 align = p->p_align; 4278 else 4279 { 4280 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4281 { 4282 unsigned int secalign; 4283 4284 secalign = bfd_get_section_alignment (abfd, *secpp); 4285 if (secalign > align_power) 4286 align_power = secalign; 4287 } 4288 align = (bfd_size_type) 1 << align_power; 4289 if (align < maxpagesize) 4290 align = maxpagesize; 4291 } 4292 4293 for (i = 0; i < m->count; i++) 4294 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 4295 /* If we aren't making room for this section, then 4296 it must be SHT_NOBITS regardless of what we've 4297 set via struct bfd_elf_special_section. */ 4298 elf_section_type (m->sections[i]) = SHT_NOBITS; 4299 4300 /* Find out whether this segment contains any loadable 4301 sections. */ 4302 no_contents = TRUE; 4303 for (i = 0; i < m->count; i++) 4304 if (elf_section_type (m->sections[i]) != SHT_NOBITS) 4305 { 4306 no_contents = FALSE; 4307 break; 4308 } 4309 4310 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align); 4311 off += off_adjust; 4312 if (no_contents) 4313 { 4314 /* We shouldn't need to align the segment on disk since 4315 the segment doesn't need file space, but the gABI 4316 arguably requires the alignment and glibc ld.so 4317 checks it. So to comply with the alignment 4318 requirement but not waste file space, we adjust 4319 p_offset for just this segment. (OFF_ADJUST is 4320 subtracted from OFF later.) This may put p_offset 4321 past the end of file, but that shouldn't matter. */ 4322 } 4323 else 4324 off_adjust = 0; 4325 } 4326 /* Make sure the .dynamic section is the first section in the 4327 PT_DYNAMIC segment. */ 4328 else if (p->p_type == PT_DYNAMIC 4329 && m->count > 1 4330 && strcmp (m->sections[0]->name, ".dynamic") != 0) 4331 { 4332 _bfd_error_handler 4333 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"), 4334 abfd); 4335 bfd_set_error (bfd_error_bad_value); 4336 return FALSE; 4337 } 4338 /* Set the note section type to SHT_NOTE. */ 4339 else if (p->p_type == PT_NOTE) 4340 for (i = 0; i < m->count; i++) 4341 elf_section_type (m->sections[i]) = SHT_NOTE; 4342 4343 p->p_offset = 0; 4344 p->p_filesz = 0; 4345 p->p_memsz = 0; 4346 4347 if (m->includes_filehdr) 4348 { 4349 if (!m->p_flags_valid) 4350 p->p_flags |= PF_R; 4351 p->p_filesz = bed->s->sizeof_ehdr; 4352 p->p_memsz = bed->s->sizeof_ehdr; 4353 if (m->count > 0) 4354 { 4355 BFD_ASSERT (p->p_type == PT_LOAD); 4356 4357 if (p->p_vaddr < (bfd_vma) off) 4358 { 4359 (*_bfd_error_handler) 4360 (_("%B: Not enough room for program headers, try linking with -N"), 4361 abfd); 4362 bfd_set_error (bfd_error_bad_value); 4363 return FALSE; 4364 } 4365 4366 p->p_vaddr -= off; 4367 if (!m->p_paddr_valid) 4368 p->p_paddr -= off; 4369 } 4370 } 4371 4372 if (m->includes_phdrs) 4373 { 4374 if (!m->p_flags_valid) 4375 p->p_flags |= PF_R; 4376 4377 if (!m->includes_filehdr) 4378 { 4379 p->p_offset = bed->s->sizeof_ehdr; 4380 4381 if (m->count > 0) 4382 { 4383 BFD_ASSERT (p->p_type == PT_LOAD); 4384 p->p_vaddr -= off - p->p_offset; 4385 if (!m->p_paddr_valid) 4386 p->p_paddr -= off - p->p_offset; 4387 } 4388 } 4389 4390 p->p_filesz += alloc * bed->s->sizeof_phdr; 4391 p->p_memsz += alloc * bed->s->sizeof_phdr; 4392 if (m->count) 4393 { 4394 p->p_filesz += header_pad; 4395 p->p_memsz += header_pad; 4396 } 4397 } 4398 4399 if (p->p_type == PT_LOAD 4400 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) 4401 { 4402 if (!m->includes_filehdr && !m->includes_phdrs) 4403 p->p_offset = off; 4404 else 4405 { 4406 file_ptr adjust; 4407 4408 adjust = off - (p->p_offset + p->p_filesz); 4409 if (!no_contents) 4410 p->p_filesz += adjust; 4411 p->p_memsz += adjust; 4412 } 4413 } 4414 4415 /* Set up p_filesz, p_memsz, p_align and p_flags from the section 4416 maps. Set filepos for sections in PT_LOAD segments, and in 4417 core files, for sections in PT_NOTE segments. 4418 assign_file_positions_for_non_load_sections will set filepos 4419 for other sections and update p_filesz for other segments. */ 4420 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4421 { 4422 asection *sec; 4423 bfd_size_type align; 4424 Elf_Internal_Shdr *this_hdr; 4425 4426 sec = *secpp; 4427 this_hdr = &elf_section_data (sec)->this_hdr; 4428 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec); 4429 4430 if ((p->p_type == PT_LOAD 4431 || p->p_type == PT_TLS) 4432 && (this_hdr->sh_type != SHT_NOBITS 4433 || ((this_hdr->sh_flags & SHF_ALLOC) != 0 4434 && ((this_hdr->sh_flags & SHF_TLS) == 0 4435 || p->p_type == PT_TLS)))) 4436 { 4437 bfd_signed_vma adjust = sec->vma - (p->p_vaddr + p->p_memsz); 4438 4439 if (adjust < 0) 4440 { 4441 (*_bfd_error_handler) 4442 (_("%B: section %A vma 0x%lx overlaps previous sections"), 4443 abfd, sec, (unsigned long) sec->vma); 4444 adjust = 0; 4445 } 4446 p->p_memsz += adjust; 4447 4448 if (this_hdr->sh_type != SHT_NOBITS) 4449 { 4450 off += adjust; 4451 p->p_filesz += adjust; 4452 } 4453 } 4454 4455 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) 4456 { 4457 /* The section at i == 0 is the one that actually contains 4458 everything. */ 4459 if (i == 0) 4460 { 4461 this_hdr->sh_offset = sec->filepos = off; 4462 off += this_hdr->sh_size; 4463 p->p_filesz = this_hdr->sh_size; 4464 p->p_memsz = 0; 4465 p->p_align = 1; 4466 } 4467 else 4468 { 4469 /* The rest are fake sections that shouldn't be written. */ 4470 sec->filepos = 0; 4471 sec->size = 0; 4472 sec->flags = 0; 4473 continue; 4474 } 4475 } 4476 else 4477 { 4478 if (p->p_type == PT_LOAD) 4479 { 4480 this_hdr->sh_offset = sec->filepos = off; 4481 if (this_hdr->sh_type != SHT_NOBITS) 4482 off += this_hdr->sh_size; 4483 } 4484 4485 if (this_hdr->sh_type != SHT_NOBITS) 4486 { 4487 p->p_filesz += this_hdr->sh_size; 4488 /* A load section without SHF_ALLOC is something like 4489 a note section in a PT_NOTE segment. These take 4490 file space but are not loaded into memory. */ 4491 if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 4492 p->p_memsz += this_hdr->sh_size; 4493 } 4494 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 4495 { 4496 if (p->p_type == PT_TLS) 4497 p->p_memsz += this_hdr->sh_size; 4498 4499 /* .tbss is special. It doesn't contribute to p_memsz of 4500 normal segments. */ 4501 else if ((this_hdr->sh_flags & SHF_TLS) == 0) 4502 p->p_memsz += this_hdr->sh_size; 4503 } 4504 4505 if (align > p->p_align 4506 && !m->p_align_valid 4507 && (p->p_type != PT_LOAD 4508 || (abfd->flags & D_PAGED) == 0)) 4509 p->p_align = align; 4510 } 4511 4512 if (!m->p_flags_valid) 4513 { 4514 p->p_flags |= PF_R; 4515 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0) 4516 p->p_flags |= PF_X; 4517 if ((this_hdr->sh_flags & SHF_WRITE) != 0) 4518 p->p_flags |= PF_W; 4519 } 4520 } 4521 off -= off_adjust; 4522 4523 /* Check that all sections are in a PT_LOAD segment. 4524 Don't check funky gdb generated core files. */ 4525 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core) 4526 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 4527 { 4528 Elf_Internal_Shdr *this_hdr; 4529 asection *sec; 4530 4531 sec = *secpp; 4532 this_hdr = &(elf_section_data(sec)->this_hdr); 4533 if (this_hdr->sh_size != 0 4534 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p)) 4535 { 4536 (*_bfd_error_handler) 4537 (_("%B: section `%A' can't be allocated in segment %d"), 4538 abfd, sec, j); 4539 print_segment_map (m); 4540 bfd_set_error (bfd_error_bad_value); 4541 return FALSE; 4542 } 4543 } 4544 } 4545 4546 elf_tdata (abfd)->next_file_pos = off; 4547 return TRUE; 4548 } 4549 4550 /* Assign file positions for the other sections. */ 4551 4552 static bfd_boolean 4553 assign_file_positions_for_non_load_sections (bfd *abfd, 4554 struct bfd_link_info *link_info) 4555 { 4556 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4557 Elf_Internal_Shdr **i_shdrpp; 4558 Elf_Internal_Shdr **hdrpp; 4559 Elf_Internal_Phdr *phdrs; 4560 Elf_Internal_Phdr *p; 4561 struct elf_segment_map *m; 4562 bfd_vma filehdr_vaddr, filehdr_paddr; 4563 bfd_vma phdrs_vaddr, phdrs_paddr; 4564 file_ptr off; 4565 unsigned int num_sec; 4566 unsigned int i; 4567 unsigned int count; 4568 4569 i_shdrpp = elf_elfsections (abfd); 4570 num_sec = elf_numsections (abfd); 4571 off = elf_tdata (abfd)->next_file_pos; 4572 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 4573 { 4574 struct elf_obj_tdata *tdata = elf_tdata (abfd); 4575 Elf_Internal_Shdr *hdr; 4576 4577 hdr = *hdrpp; 4578 if (hdr->bfd_section != NULL 4579 && (hdr->bfd_section->filepos != 0 4580 || (hdr->sh_type == SHT_NOBITS 4581 && hdr->contents == NULL))) 4582 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos); 4583 else if ((hdr->sh_flags & SHF_ALLOC) != 0) 4584 { 4585 if (hdr->sh_size != 0) 4586 ((*_bfd_error_handler) 4587 (_("%B: warning: allocated section `%s' not in segment"), 4588 abfd, 4589 (hdr->bfd_section == NULL 4590 ? "*unknown*" 4591 : hdr->bfd_section->name))); 4592 /* We don't need to page align empty sections. */ 4593 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0) 4594 off += vma_page_aligned_bias (hdr->sh_addr, off, 4595 bed->maxpagesize); 4596 else 4597 off += vma_page_aligned_bias (hdr->sh_addr, off, 4598 hdr->sh_addralign); 4599 off = _bfd_elf_assign_file_position_for_section (hdr, off, 4600 FALSE); 4601 } 4602 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 4603 && hdr->bfd_section == NULL) 4604 || hdr == i_shdrpp[tdata->symtab_section] 4605 || hdr == i_shdrpp[tdata->symtab_shndx_section] 4606 || hdr == i_shdrpp[tdata->strtab_section]) 4607 hdr->sh_offset = -1; 4608 else 4609 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 4610 } 4611 4612 /* Now that we have set the section file positions, we can set up 4613 the file positions for the non PT_LOAD segments. */ 4614 count = 0; 4615 filehdr_vaddr = 0; 4616 filehdr_paddr = 0; 4617 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; 4618 phdrs_paddr = 0; 4619 phdrs = elf_tdata (abfd)->phdr; 4620 for (m = elf_tdata (abfd)->segment_map, p = phdrs; 4621 m != NULL; 4622 m = m->next, p++) 4623 { 4624 ++count; 4625 if (p->p_type != PT_LOAD) 4626 continue; 4627 4628 if (m->includes_filehdr) 4629 { 4630 filehdr_vaddr = p->p_vaddr; 4631 filehdr_paddr = p->p_paddr; 4632 } 4633 if (m->includes_phdrs) 4634 { 4635 phdrs_vaddr = p->p_vaddr; 4636 phdrs_paddr = p->p_paddr; 4637 if (m->includes_filehdr) 4638 { 4639 phdrs_vaddr += bed->s->sizeof_ehdr; 4640 phdrs_paddr += bed->s->sizeof_ehdr; 4641 } 4642 } 4643 } 4644 4645 for (m = elf_tdata (abfd)->segment_map, p = phdrs; 4646 m != NULL; 4647 m = m->next, p++) 4648 { 4649 if (p->p_type == PT_GNU_RELRO) 4650 { 4651 const Elf_Internal_Phdr *lp; 4652 4653 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs); 4654 4655 if (link_info != NULL) 4656 { 4657 /* During linking the range of the RELRO segment is passed 4658 in link_info. */ 4659 for (lp = phdrs; lp < phdrs + count; ++lp) 4660 { 4661 if (lp->p_type == PT_LOAD 4662 && lp->p_vaddr >= link_info->relro_start 4663 && lp->p_vaddr < link_info->relro_end 4664 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end) 4665 break; 4666 } 4667 } 4668 else 4669 { 4670 /* Otherwise we are copying an executable or shared 4671 library, but we need to use the same linker logic. */ 4672 for (lp = phdrs; lp < phdrs + count; ++lp) 4673 { 4674 if (lp->p_type == PT_LOAD 4675 && lp->p_paddr == p->p_paddr) 4676 break; 4677 } 4678 } 4679 4680 if (lp < phdrs + count) 4681 { 4682 p->p_vaddr = lp->p_vaddr; 4683 p->p_paddr = lp->p_paddr; 4684 p->p_offset = lp->p_offset; 4685 if (link_info != NULL) 4686 p->p_filesz = link_info->relro_end - lp->p_vaddr; 4687 else if (m->p_size_valid) 4688 p->p_filesz = m->p_size; 4689 else 4690 abort (); 4691 p->p_memsz = p->p_filesz; 4692 p->p_align = 1; 4693 p->p_flags = (lp->p_flags & ~PF_W); 4694 } 4695 else 4696 { 4697 memset (p, 0, sizeof *p); 4698 p->p_type = PT_NULL; 4699 } 4700 } 4701 else if (m->count != 0) 4702 { 4703 if (p->p_type != PT_LOAD 4704 && (p->p_type != PT_NOTE 4705 || bfd_get_format (abfd) != bfd_core)) 4706 { 4707 Elf_Internal_Shdr *hdr; 4708 asection *sect; 4709 4710 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs); 4711 4712 sect = m->sections[m->count - 1]; 4713 hdr = &elf_section_data (sect)->this_hdr; 4714 p->p_filesz = sect->filepos - m->sections[0]->filepos; 4715 if (hdr->sh_type != SHT_NOBITS) 4716 p->p_filesz += hdr->sh_size; 4717 p->p_offset = m->sections[0]->filepos; 4718 } 4719 } 4720 else if (m->includes_filehdr) 4721 { 4722 p->p_vaddr = filehdr_vaddr; 4723 if (! m->p_paddr_valid) 4724 p->p_paddr = filehdr_paddr; 4725 } 4726 else if (m->includes_phdrs) 4727 { 4728 p->p_vaddr = phdrs_vaddr; 4729 if (! m->p_paddr_valid) 4730 p->p_paddr = phdrs_paddr; 4731 } 4732 } 4733 4734 elf_tdata (abfd)->next_file_pos = off; 4735 4736 return TRUE; 4737 } 4738 4739 /* Work out the file positions of all the sections. This is called by 4740 _bfd_elf_compute_section_file_positions. All the section sizes and 4741 VMAs must be known before this is called. 4742 4743 Reloc sections come in two flavours: Those processed specially as 4744 "side-channel" data attached to a section to which they apply, and 4745 those that bfd doesn't process as relocations. The latter sort are 4746 stored in a normal bfd section by bfd_section_from_shdr. We don't 4747 consider the former sort here, unless they form part of the loadable 4748 image. Reloc sections not assigned here will be handled later by 4749 assign_file_positions_for_relocs. 4750 4751 We also don't set the positions of the .symtab and .strtab here. */ 4752 4753 static bfd_boolean 4754 assign_file_positions_except_relocs (bfd *abfd, 4755 struct bfd_link_info *link_info) 4756 { 4757 struct elf_obj_tdata *tdata = elf_tdata (abfd); 4758 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 4759 file_ptr off; 4760 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4761 4762 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 4763 && bfd_get_format (abfd) != bfd_core) 4764 { 4765 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); 4766 unsigned int num_sec = elf_numsections (abfd); 4767 Elf_Internal_Shdr **hdrpp; 4768 unsigned int i; 4769 4770 /* Start after the ELF header. */ 4771 off = i_ehdrp->e_ehsize; 4772 4773 /* We are not creating an executable, which means that we are 4774 not creating a program header, and that the actual order of 4775 the sections in the file is unimportant. */ 4776 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 4777 { 4778 Elf_Internal_Shdr *hdr; 4779 4780 hdr = *hdrpp; 4781 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 4782 && hdr->bfd_section == NULL) 4783 || i == tdata->symtab_section 4784 || i == tdata->symtab_shndx_section 4785 || i == tdata->strtab_section) 4786 { 4787 hdr->sh_offset = -1; 4788 } 4789 else 4790 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 4791 } 4792 } 4793 else 4794 { 4795 unsigned int alloc; 4796 4797 /* Assign file positions for the loaded sections based on the 4798 assignment of sections to segments. */ 4799 if (!assign_file_positions_for_load_sections (abfd, link_info)) 4800 return FALSE; 4801 4802 /* And for non-load sections. */ 4803 if (!assign_file_positions_for_non_load_sections (abfd, link_info)) 4804 return FALSE; 4805 4806 if (bed->elf_backend_modify_program_headers != NULL) 4807 { 4808 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info)) 4809 return FALSE; 4810 } 4811 4812 /* Write out the program headers. */ 4813 alloc = tdata->program_header_size / bed->s->sizeof_phdr; 4814 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0 4815 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0) 4816 return FALSE; 4817 4818 off = tdata->next_file_pos; 4819 } 4820 4821 /* Place the section headers. */ 4822 off = align_file_position (off, 1 << bed->s->log_file_align); 4823 i_ehdrp->e_shoff = off; 4824 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; 4825 4826 tdata->next_file_pos = off; 4827 4828 return TRUE; 4829 } 4830 4831 static bfd_boolean 4832 prep_headers (bfd *abfd) 4833 { 4834 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */ 4835 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */ 4836 struct elf_strtab_hash *shstrtab; 4837 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4838 4839 i_ehdrp = elf_elfheader (abfd); 4840 4841 shstrtab = _bfd_elf_strtab_init (); 4842 if (shstrtab == NULL) 4843 return FALSE; 4844 4845 elf_shstrtab (abfd) = shstrtab; 4846 4847 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; 4848 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; 4849 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; 4850 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; 4851 4852 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; 4853 i_ehdrp->e_ident[EI_DATA] = 4854 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; 4855 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; 4856 4857 if ((abfd->flags & DYNAMIC) != 0) 4858 i_ehdrp->e_type = ET_DYN; 4859 else if ((abfd->flags & EXEC_P) != 0) 4860 i_ehdrp->e_type = ET_EXEC; 4861 else if (bfd_get_format (abfd) == bfd_core) 4862 i_ehdrp->e_type = ET_CORE; 4863 else 4864 i_ehdrp->e_type = ET_REL; 4865 4866 switch (bfd_get_arch (abfd)) 4867 { 4868 case bfd_arch_unknown: 4869 i_ehdrp->e_machine = EM_NONE; 4870 break; 4871 4872 /* There used to be a long list of cases here, each one setting 4873 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE 4874 in the corresponding bfd definition. To avoid duplication, 4875 the switch was removed. Machines that need special handling 4876 can generally do it in elf_backend_final_write_processing(), 4877 unless they need the information earlier than the final write. 4878 Such need can generally be supplied by replacing the tests for 4879 e_machine with the conditions used to determine it. */ 4880 default: 4881 i_ehdrp->e_machine = bed->elf_machine_code; 4882 } 4883 4884 i_ehdrp->e_version = bed->s->ev_current; 4885 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; 4886 4887 /* No program header, for now. */ 4888 i_ehdrp->e_phoff = 0; 4889 i_ehdrp->e_phentsize = 0; 4890 i_ehdrp->e_phnum = 0; 4891 4892 /* Each bfd section is section header entry. */ 4893 i_ehdrp->e_entry = bfd_get_start_address (abfd); 4894 i_ehdrp->e_shentsize = bed->s->sizeof_shdr; 4895 4896 /* If we're building an executable, we'll need a program header table. */ 4897 if (abfd->flags & EXEC_P) 4898 /* It all happens later. */ 4899 ; 4900 else 4901 { 4902 i_ehdrp->e_phentsize = 0; 4903 i_phdrp = 0; 4904 i_ehdrp->e_phoff = 0; 4905 } 4906 4907 elf_tdata (abfd)->symtab_hdr.sh_name = 4908 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE); 4909 elf_tdata (abfd)->strtab_hdr.sh_name = 4910 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE); 4911 elf_tdata (abfd)->shstrtab_hdr.sh_name = 4912 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE); 4913 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 4914 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 4915 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) 4916 return FALSE; 4917 4918 return TRUE; 4919 } 4920 4921 /* Assign file positions for all the reloc sections which are not part 4922 of the loadable file image. */ 4923 4924 void 4925 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd) 4926 { 4927 file_ptr off; 4928 unsigned int i, num_sec; 4929 Elf_Internal_Shdr **shdrpp; 4930 4931 off = elf_tdata (abfd)->next_file_pos; 4932 4933 num_sec = elf_numsections (abfd); 4934 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++) 4935 { 4936 Elf_Internal_Shdr *shdrp; 4937 4938 shdrp = *shdrpp; 4939 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA) 4940 && shdrp->sh_offset == -1) 4941 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE); 4942 } 4943 4944 elf_tdata (abfd)->next_file_pos = off; 4945 } 4946 4947 bfd_boolean 4948 _bfd_elf_write_object_contents (bfd *abfd) 4949 { 4950 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4951 Elf_Internal_Ehdr *i_ehdrp; 4952 Elf_Internal_Shdr **i_shdrp; 4953 bfd_boolean failed; 4954 unsigned int count, num_sec; 4955 4956 if (! abfd->output_has_begun 4957 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 4958 return FALSE; 4959 4960 i_shdrp = elf_elfsections (abfd); 4961 i_ehdrp = elf_elfheader (abfd); 4962 4963 failed = FALSE; 4964 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); 4965 if (failed) 4966 return FALSE; 4967 4968 _bfd_elf_assign_file_positions_for_relocs (abfd); 4969 4970 /* After writing the headers, we need to write the sections too... */ 4971 num_sec = elf_numsections (abfd); 4972 for (count = 1; count < num_sec; count++) 4973 { 4974 if (bed->elf_backend_section_processing) 4975 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); 4976 if (i_shdrp[count]->contents) 4977 { 4978 bfd_size_type amt = i_shdrp[count]->sh_size; 4979 4980 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 4981 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt) 4982 return FALSE; 4983 } 4984 } 4985 4986 /* Write out the section header names. */ 4987 if (elf_shstrtab (abfd) != NULL 4988 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0 4989 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) 4990 return FALSE; 4991 4992 if (bed->elf_backend_final_write_processing) 4993 (*bed->elf_backend_final_write_processing) (abfd, 4994 elf_tdata (abfd)->linker); 4995 4996 if (!bed->s->write_shdrs_and_ehdr (abfd)) 4997 return FALSE; 4998 4999 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */ 5000 if (elf_tdata (abfd)->after_write_object_contents) 5001 return (*elf_tdata (abfd)->after_write_object_contents) (abfd); 5002 5003 return TRUE; 5004 } 5005 5006 bfd_boolean 5007 _bfd_elf_write_corefile_contents (bfd *abfd) 5008 { 5009 /* Hopefully this can be done just like an object file. */ 5010 return _bfd_elf_write_object_contents (abfd); 5011 } 5012 5013 /* Given a section, search the header to find them. */ 5014 5015 unsigned int 5016 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) 5017 { 5018 const struct elf_backend_data *bed; 5019 unsigned int index; 5020 5021 if (elf_section_data (asect) != NULL 5022 && elf_section_data (asect)->this_idx != 0) 5023 return elf_section_data (asect)->this_idx; 5024 5025 if (bfd_is_abs_section (asect)) 5026 index = SHN_ABS; 5027 else if (bfd_is_com_section (asect)) 5028 index = SHN_COMMON; 5029 else if (bfd_is_und_section (asect)) 5030 index = SHN_UNDEF; 5031 else 5032 index = SHN_BAD; 5033 5034 bed = get_elf_backend_data (abfd); 5035 if (bed->elf_backend_section_from_bfd_section) 5036 { 5037 int retval = index; 5038 5039 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) 5040 return retval; 5041 } 5042 5043 if (index == SHN_BAD) 5044 bfd_set_error (bfd_error_nonrepresentable_section); 5045 5046 return index; 5047 } 5048 5049 /* Given a BFD symbol, return the index in the ELF symbol table, or -1 5050 on error. */ 5051 5052 int 5053 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) 5054 { 5055 asymbol *asym_ptr = *asym_ptr_ptr; 5056 int idx; 5057 flagword flags = asym_ptr->flags; 5058 5059 /* When gas creates relocations against local labels, it creates its 5060 own symbol for the section, but does put the symbol into the 5061 symbol chain, so udata is 0. When the linker is generating 5062 relocatable output, this section symbol may be for one of the 5063 input sections rather than the output section. */ 5064 if (asym_ptr->udata.i == 0 5065 && (flags & BSF_SECTION_SYM) 5066 && asym_ptr->section) 5067 { 5068 asection *sec; 5069 int indx; 5070 5071 sec = asym_ptr->section; 5072 if (sec->owner != abfd && sec->output_section != NULL) 5073 sec = sec->output_section; 5074 if (sec->owner == abfd 5075 && (indx = sec->index) < elf_num_section_syms (abfd) 5076 && elf_section_syms (abfd)[indx] != NULL) 5077 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; 5078 } 5079 5080 idx = asym_ptr->udata.i; 5081 5082 if (idx == 0) 5083 { 5084 /* This case can occur when using --strip-symbol on a symbol 5085 which is used in a relocation entry. */ 5086 (*_bfd_error_handler) 5087 (_("%B: symbol `%s' required but not present"), 5088 abfd, bfd_asymbol_name (asym_ptr)); 5089 bfd_set_error (bfd_error_no_symbols); 5090 return -1; 5091 } 5092 5093 #if DEBUG & 4 5094 { 5095 fprintf (stderr, 5096 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n", 5097 (long) asym_ptr, asym_ptr->name, idx, flags, 5098 elf_symbol_flags (flags)); 5099 fflush (stderr); 5100 } 5101 #endif 5102 5103 return idx; 5104 } 5105 5106 /* Rewrite program header information. */ 5107 5108 static bfd_boolean 5109 rewrite_elf_program_header (bfd *ibfd, bfd *obfd) 5110 { 5111 Elf_Internal_Ehdr *iehdr; 5112 struct elf_segment_map *map; 5113 struct elf_segment_map *map_first; 5114 struct elf_segment_map **pointer_to_map; 5115 Elf_Internal_Phdr *segment; 5116 asection *section; 5117 unsigned int i; 5118 unsigned int num_segments; 5119 bfd_boolean phdr_included = FALSE; 5120 bfd_boolean p_paddr_valid; 5121 bfd_vma maxpagesize; 5122 struct elf_segment_map *phdr_adjust_seg = NULL; 5123 unsigned int phdr_adjust_num = 0; 5124 const struct elf_backend_data *bed; 5125 5126 bed = get_elf_backend_data (ibfd); 5127 iehdr = elf_elfheader (ibfd); 5128 5129 map_first = NULL; 5130 pointer_to_map = &map_first; 5131 5132 num_segments = elf_elfheader (ibfd)->e_phnum; 5133 maxpagesize = get_elf_backend_data (obfd)->maxpagesize; 5134 5135 /* Returns the end address of the segment + 1. */ 5136 #define SEGMENT_END(segment, start) \ 5137 (start + (segment->p_memsz > segment->p_filesz \ 5138 ? segment->p_memsz : segment->p_filesz)) 5139 5140 #define SECTION_SIZE(section, segment) \ 5141 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \ 5142 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \ 5143 ? section->size : 0) 5144 5145 /* Returns TRUE if the given section is contained within 5146 the given segment. VMA addresses are compared. */ 5147 #define IS_CONTAINED_BY_VMA(section, segment) \ 5148 (section->vma >= segment->p_vaddr \ 5149 && (section->vma + SECTION_SIZE (section, segment) \ 5150 <= (SEGMENT_END (segment, segment->p_vaddr)))) 5151 5152 /* Returns TRUE if the given section is contained within 5153 the given segment. LMA addresses are compared. */ 5154 #define IS_CONTAINED_BY_LMA(section, segment, base) \ 5155 (section->lma >= base \ 5156 && (section->lma + SECTION_SIZE (section, segment) \ 5157 <= SEGMENT_END (segment, base))) 5158 5159 /* Handle PT_NOTE segment. */ 5160 #define IS_NOTE(p, s) \ 5161 (p->p_type == PT_NOTE \ 5162 && elf_section_type (s) == SHT_NOTE \ 5163 && (bfd_vma) s->filepos >= p->p_offset \ 5164 && ((bfd_vma) s->filepos + s->size \ 5165 <= p->p_offset + p->p_filesz)) 5166 5167 /* Special case: corefile "NOTE" section containing regs, prpsinfo 5168 etc. */ 5169 #define IS_COREFILE_NOTE(p, s) \ 5170 (IS_NOTE (p, s) \ 5171 && bfd_get_format (ibfd) == bfd_core \ 5172 && s->vma == 0 \ 5173 && s->lma == 0) 5174 5175 /* The complicated case when p_vaddr is 0 is to handle the Solaris 5176 linker, which generates a PT_INTERP section with p_vaddr and 5177 p_memsz set to 0. */ 5178 #define IS_SOLARIS_PT_INTERP(p, s) \ 5179 (p->p_vaddr == 0 \ 5180 && p->p_paddr == 0 \ 5181 && p->p_memsz == 0 \ 5182 && p->p_filesz > 0 \ 5183 && (s->flags & SEC_HAS_CONTENTS) != 0 \ 5184 && s->size > 0 \ 5185 && (bfd_vma) s->filepos >= p->p_offset \ 5186 && ((bfd_vma) s->filepos + s->size \ 5187 <= p->p_offset + p->p_filesz)) 5188 5189 /* Decide if the given section should be included in the given segment. 5190 A section will be included if: 5191 1. It is within the address space of the segment -- we use the LMA 5192 if that is set for the segment and the VMA otherwise, 5193 2. It is an allocated section or a NOTE section in a PT_NOTE 5194 segment. 5195 3. There is an output section associated with it, 5196 4. The section has not already been allocated to a previous segment. 5197 5. PT_GNU_STACK segments do not include any sections. 5198 6. PT_TLS segment includes only SHF_TLS sections. 5199 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. 5200 8. PT_DYNAMIC should not contain empty sections at the beginning 5201 (with the possible exception of .dynamic). */ 5202 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \ 5203 ((((segment->p_paddr \ 5204 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \ 5205 : IS_CONTAINED_BY_VMA (section, segment)) \ 5206 && (section->flags & SEC_ALLOC) != 0) \ 5207 || IS_NOTE (segment, section)) \ 5208 && segment->p_type != PT_GNU_STACK \ 5209 && (segment->p_type != PT_TLS \ 5210 || (section->flags & SEC_THREAD_LOCAL)) \ 5211 && (segment->p_type == PT_LOAD \ 5212 || segment->p_type == PT_TLS \ 5213 || (section->flags & SEC_THREAD_LOCAL) == 0) \ 5214 && (segment->p_type != PT_DYNAMIC \ 5215 || SECTION_SIZE (section, segment) > 0 \ 5216 || (segment->p_paddr \ 5217 ? segment->p_paddr != section->lma \ 5218 : segment->p_vaddr != section->vma) \ 5219 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \ 5220 == 0)) \ 5221 && !section->segment_mark) 5222 5223 /* If the output section of a section in the input segment is NULL, 5224 it is removed from the corresponding output segment. */ 5225 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \ 5226 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \ 5227 && section->output_section != NULL) 5228 5229 /* Returns TRUE iff seg1 starts after the end of seg2. */ 5230 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \ 5231 (seg1->field >= SEGMENT_END (seg2, seg2->field)) 5232 5233 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both 5234 their VMA address ranges and their LMA address ranges overlap. 5235 It is possible to have overlapping VMA ranges without overlapping LMA 5236 ranges. RedBoot images for example can have both .data and .bss mapped 5237 to the same VMA range, but with the .data section mapped to a different 5238 LMA. */ 5239 #define SEGMENT_OVERLAPS(seg1, seg2) \ 5240 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \ 5241 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \ 5242 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \ 5243 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) 5244 5245 /* Initialise the segment mark field. */ 5246 for (section = ibfd->sections; section != NULL; section = section->next) 5247 section->segment_mark = FALSE; 5248 5249 /* The Solaris linker creates program headers in which all the 5250 p_paddr fields are zero. When we try to objcopy or strip such a 5251 file, we get confused. Check for this case, and if we find it 5252 don't set the p_paddr_valid fields. */ 5253 p_paddr_valid = FALSE; 5254 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5255 i < num_segments; 5256 i++, segment++) 5257 if (segment->p_paddr != 0) 5258 { 5259 p_paddr_valid = TRUE; 5260 break; 5261 } 5262 5263 /* Scan through the segments specified in the program header 5264 of the input BFD. For this first scan we look for overlaps 5265 in the loadable segments. These can be created by weird 5266 parameters to objcopy. Also, fix some solaris weirdness. */ 5267 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5268 i < num_segments; 5269 i++, segment++) 5270 { 5271 unsigned int j; 5272 Elf_Internal_Phdr *segment2; 5273 5274 if (segment->p_type == PT_INTERP) 5275 for (section = ibfd->sections; section; section = section->next) 5276 if (IS_SOLARIS_PT_INTERP (segment, section)) 5277 { 5278 /* Mininal change so that the normal section to segment 5279 assignment code will work. */ 5280 segment->p_vaddr = section->vma; 5281 break; 5282 } 5283 5284 if (segment->p_type != PT_LOAD) 5285 { 5286 /* Remove PT_GNU_RELRO segment. */ 5287 if (segment->p_type == PT_GNU_RELRO) 5288 segment->p_type = PT_NULL; 5289 continue; 5290 } 5291 5292 /* Determine if this segment overlaps any previous segments. */ 5293 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++) 5294 { 5295 bfd_signed_vma extra_length; 5296 5297 if (segment2->p_type != PT_LOAD 5298 || !SEGMENT_OVERLAPS (segment, segment2)) 5299 continue; 5300 5301 /* Merge the two segments together. */ 5302 if (segment2->p_vaddr < segment->p_vaddr) 5303 { 5304 /* Extend SEGMENT2 to include SEGMENT and then delete 5305 SEGMENT. */ 5306 extra_length = (SEGMENT_END (segment, segment->p_vaddr) 5307 - SEGMENT_END (segment2, segment2->p_vaddr)); 5308 5309 if (extra_length > 0) 5310 { 5311 segment2->p_memsz += extra_length; 5312 segment2->p_filesz += extra_length; 5313 } 5314 5315 segment->p_type = PT_NULL; 5316 5317 /* Since we have deleted P we must restart the outer loop. */ 5318 i = 0; 5319 segment = elf_tdata (ibfd)->phdr; 5320 break; 5321 } 5322 else 5323 { 5324 /* Extend SEGMENT to include SEGMENT2 and then delete 5325 SEGMENT2. */ 5326 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr) 5327 - SEGMENT_END (segment, segment->p_vaddr)); 5328 5329 if (extra_length > 0) 5330 { 5331 segment->p_memsz += extra_length; 5332 segment->p_filesz += extra_length; 5333 } 5334 5335 segment2->p_type = PT_NULL; 5336 } 5337 } 5338 } 5339 5340 /* The second scan attempts to assign sections to segments. */ 5341 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5342 i < num_segments; 5343 i++, segment++) 5344 { 5345 unsigned int section_count; 5346 asection **sections; 5347 asection *output_section; 5348 unsigned int isec; 5349 bfd_vma matching_lma; 5350 bfd_vma suggested_lma; 5351 unsigned int j; 5352 bfd_size_type amt; 5353 asection *first_section; 5354 bfd_boolean first_matching_lma; 5355 bfd_boolean first_suggested_lma; 5356 5357 if (segment->p_type == PT_NULL) 5358 continue; 5359 5360 first_section = NULL; 5361 /* Compute how many sections might be placed into this segment. */ 5362 for (section = ibfd->sections, section_count = 0; 5363 section != NULL; 5364 section = section->next) 5365 { 5366 /* Find the first section in the input segment, which may be 5367 removed from the corresponding output segment. */ 5368 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)) 5369 { 5370 if (first_section == NULL) 5371 first_section = section; 5372 if (section->output_section != NULL) 5373 ++section_count; 5374 } 5375 } 5376 5377 /* Allocate a segment map big enough to contain 5378 all of the sections we have selected. */ 5379 amt = sizeof (struct elf_segment_map); 5380 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 5381 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 5382 if (map == NULL) 5383 return FALSE; 5384 5385 /* Initialise the fields of the segment map. Default to 5386 using the physical address of the segment in the input BFD. */ 5387 map->next = NULL; 5388 map->p_type = segment->p_type; 5389 map->p_flags = segment->p_flags; 5390 map->p_flags_valid = 1; 5391 5392 /* If the first section in the input segment is removed, there is 5393 no need to preserve segment physical address in the corresponding 5394 output segment. */ 5395 if (!first_section || first_section->output_section != NULL) 5396 { 5397 map->p_paddr = segment->p_paddr; 5398 map->p_paddr_valid = p_paddr_valid; 5399 } 5400 5401 /* Determine if this segment contains the ELF file header 5402 and if it contains the program headers themselves. */ 5403 map->includes_filehdr = (segment->p_offset == 0 5404 && segment->p_filesz >= iehdr->e_ehsize); 5405 map->includes_phdrs = 0; 5406 5407 if (!phdr_included || segment->p_type != PT_LOAD) 5408 { 5409 map->includes_phdrs = 5410 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 5411 && (segment->p_offset + segment->p_filesz 5412 >= ((bfd_vma) iehdr->e_phoff 5413 + iehdr->e_phnum * iehdr->e_phentsize))); 5414 5415 if (segment->p_type == PT_LOAD && map->includes_phdrs) 5416 phdr_included = TRUE; 5417 } 5418 5419 if (section_count == 0) 5420 { 5421 /* Special segments, such as the PT_PHDR segment, may contain 5422 no sections, but ordinary, loadable segments should contain 5423 something. They are allowed by the ELF spec however, so only 5424 a warning is produced. */ 5425 if (segment->p_type == PT_LOAD) 5426 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment" 5427 " detected, is this intentional ?\n"), 5428 ibfd); 5429 5430 map->count = 0; 5431 *pointer_to_map = map; 5432 pointer_to_map = &map->next; 5433 5434 continue; 5435 } 5436 5437 /* Now scan the sections in the input BFD again and attempt 5438 to add their corresponding output sections to the segment map. 5439 The problem here is how to handle an output section which has 5440 been moved (ie had its LMA changed). There are four possibilities: 5441 5442 1. None of the sections have been moved. 5443 In this case we can continue to use the segment LMA from the 5444 input BFD. 5445 5446 2. All of the sections have been moved by the same amount. 5447 In this case we can change the segment's LMA to match the LMA 5448 of the first section. 5449 5450 3. Some of the sections have been moved, others have not. 5451 In this case those sections which have not been moved can be 5452 placed in the current segment which will have to have its size, 5453 and possibly its LMA changed, and a new segment or segments will 5454 have to be created to contain the other sections. 5455 5456 4. The sections have been moved, but not by the same amount. 5457 In this case we can change the segment's LMA to match the LMA 5458 of the first section and we will have to create a new segment 5459 or segments to contain the other sections. 5460 5461 In order to save time, we allocate an array to hold the section 5462 pointers that we are interested in. As these sections get assigned 5463 to a segment, they are removed from this array. */ 5464 5465 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *)); 5466 if (sections == NULL) 5467 return FALSE; 5468 5469 /* Step One: Scan for segment vs section LMA conflicts. 5470 Also add the sections to the section array allocated above. 5471 Also add the sections to the current segment. In the common 5472 case, where the sections have not been moved, this means that 5473 we have completely filled the segment, and there is nothing 5474 more to do. */ 5475 isec = 0; 5476 matching_lma = 0; 5477 suggested_lma = 0; 5478 first_matching_lma = TRUE; 5479 first_suggested_lma = TRUE; 5480 5481 for (section = ibfd->sections; 5482 section != NULL; 5483 section = section->next) 5484 if (section == first_section) 5485 break; 5486 5487 for (j = 0; section != NULL; section = section->next) 5488 { 5489 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed)) 5490 { 5491 output_section = section->output_section; 5492 5493 sections[j++] = section; 5494 5495 /* The Solaris native linker always sets p_paddr to 0. 5496 We try to catch that case here, and set it to the 5497 correct value. Note - some backends require that 5498 p_paddr be left as zero. */ 5499 if (!p_paddr_valid 5500 && segment->p_vaddr != 0 5501 && !bed->want_p_paddr_set_to_zero 5502 && isec == 0 5503 && output_section->lma != 0 5504 && output_section->vma == (segment->p_vaddr 5505 + (map->includes_filehdr 5506 ? iehdr->e_ehsize 5507 : 0) 5508 + (map->includes_phdrs 5509 ? (iehdr->e_phnum 5510 * iehdr->e_phentsize) 5511 : 0))) 5512 map->p_paddr = segment->p_vaddr; 5513 5514 /* Match up the physical address of the segment with the 5515 LMA address of the output section. */ 5516 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 5517 || IS_COREFILE_NOTE (segment, section) 5518 || (bed->want_p_paddr_set_to_zero 5519 && IS_CONTAINED_BY_VMA (output_section, segment))) 5520 { 5521 if (first_matching_lma || output_section->lma < matching_lma) 5522 { 5523 matching_lma = output_section->lma; 5524 first_matching_lma = FALSE; 5525 } 5526 5527 /* We assume that if the section fits within the segment 5528 then it does not overlap any other section within that 5529 segment. */ 5530 map->sections[isec++] = output_section; 5531 } 5532 else if (first_suggested_lma) 5533 { 5534 suggested_lma = output_section->lma; 5535 first_suggested_lma = FALSE; 5536 } 5537 5538 if (j == section_count) 5539 break; 5540 } 5541 } 5542 5543 BFD_ASSERT (j == section_count); 5544 5545 /* Step Two: Adjust the physical address of the current segment, 5546 if necessary. */ 5547 if (isec == section_count) 5548 { 5549 /* All of the sections fitted within the segment as currently 5550 specified. This is the default case. Add the segment to 5551 the list of built segments and carry on to process the next 5552 program header in the input BFD. */ 5553 map->count = section_count; 5554 *pointer_to_map = map; 5555 pointer_to_map = &map->next; 5556 5557 if (p_paddr_valid 5558 && !bed->want_p_paddr_set_to_zero 5559 && matching_lma != map->p_paddr 5560 && !map->includes_filehdr 5561 && !map->includes_phdrs) 5562 /* There is some padding before the first section in the 5563 segment. So, we must account for that in the output 5564 segment's vma. */ 5565 map->p_vaddr_offset = matching_lma - map->p_paddr; 5566 5567 free (sections); 5568 continue; 5569 } 5570 else 5571 { 5572 if (!first_matching_lma) 5573 { 5574 /* At least one section fits inside the current segment. 5575 Keep it, but modify its physical address to match the 5576 LMA of the first section that fitted. */ 5577 map->p_paddr = matching_lma; 5578 } 5579 else 5580 { 5581 /* None of the sections fitted inside the current segment. 5582 Change the current segment's physical address to match 5583 the LMA of the first section. */ 5584 map->p_paddr = suggested_lma; 5585 } 5586 5587 /* Offset the segment physical address from the lma 5588 to allow for space taken up by elf headers. */ 5589 if (map->includes_filehdr) 5590 { 5591 if (map->p_paddr >= iehdr->e_ehsize) 5592 map->p_paddr -= iehdr->e_ehsize; 5593 else 5594 { 5595 map->includes_filehdr = FALSE; 5596 map->includes_phdrs = FALSE; 5597 } 5598 } 5599 5600 if (map->includes_phdrs) 5601 { 5602 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize) 5603 { 5604 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; 5605 5606 /* iehdr->e_phnum is just an estimate of the number 5607 of program headers that we will need. Make a note 5608 here of the number we used and the segment we chose 5609 to hold these headers, so that we can adjust the 5610 offset when we know the correct value. */ 5611 phdr_adjust_num = iehdr->e_phnum; 5612 phdr_adjust_seg = map; 5613 } 5614 else 5615 map->includes_phdrs = FALSE; 5616 } 5617 } 5618 5619 /* Step Three: Loop over the sections again, this time assigning 5620 those that fit to the current segment and removing them from the 5621 sections array; but making sure not to leave large gaps. Once all 5622 possible sections have been assigned to the current segment it is 5623 added to the list of built segments and if sections still remain 5624 to be assigned, a new segment is constructed before repeating 5625 the loop. */ 5626 isec = 0; 5627 do 5628 { 5629 map->count = 0; 5630 suggested_lma = 0; 5631 first_suggested_lma = TRUE; 5632 5633 /* Fill the current segment with sections that fit. */ 5634 for (j = 0; j < section_count; j++) 5635 { 5636 section = sections[j]; 5637 5638 if (section == NULL) 5639 continue; 5640 5641 output_section = section->output_section; 5642 5643 BFD_ASSERT (output_section != NULL); 5644 5645 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 5646 || IS_COREFILE_NOTE (segment, section)) 5647 { 5648 if (map->count == 0) 5649 { 5650 /* If the first section in a segment does not start at 5651 the beginning of the segment, then something is 5652 wrong. */ 5653 if (output_section->lma 5654 != (map->p_paddr 5655 + (map->includes_filehdr ? iehdr->e_ehsize : 0) 5656 + (map->includes_phdrs 5657 ? iehdr->e_phnum * iehdr->e_phentsize 5658 : 0))) 5659 abort (); 5660 } 5661 else 5662 { 5663 asection *prev_sec; 5664 5665 prev_sec = map->sections[map->count - 1]; 5666 5667 /* If the gap between the end of the previous section 5668 and the start of this section is more than 5669 maxpagesize then we need to start a new segment. */ 5670 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, 5671 maxpagesize) 5672 < BFD_ALIGN (output_section->lma, maxpagesize)) 5673 || (prev_sec->lma + prev_sec->size 5674 > output_section->lma)) 5675 { 5676 if (first_suggested_lma) 5677 { 5678 suggested_lma = output_section->lma; 5679 first_suggested_lma = FALSE; 5680 } 5681 5682 continue; 5683 } 5684 } 5685 5686 map->sections[map->count++] = output_section; 5687 ++isec; 5688 sections[j] = NULL; 5689 section->segment_mark = TRUE; 5690 } 5691 else if (first_suggested_lma) 5692 { 5693 suggested_lma = output_section->lma; 5694 first_suggested_lma = FALSE; 5695 } 5696 } 5697 5698 BFD_ASSERT (map->count > 0); 5699 5700 /* Add the current segment to the list of built segments. */ 5701 *pointer_to_map = map; 5702 pointer_to_map = &map->next; 5703 5704 if (isec < section_count) 5705 { 5706 /* We still have not allocated all of the sections to 5707 segments. Create a new segment here, initialise it 5708 and carry on looping. */ 5709 amt = sizeof (struct elf_segment_map); 5710 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 5711 map = (struct elf_segment_map *) bfd_alloc (obfd, amt); 5712 if (map == NULL) 5713 { 5714 free (sections); 5715 return FALSE; 5716 } 5717 5718 /* Initialise the fields of the segment map. Set the physical 5719 physical address to the LMA of the first section that has 5720 not yet been assigned. */ 5721 map->next = NULL; 5722 map->p_type = segment->p_type; 5723 map->p_flags = segment->p_flags; 5724 map->p_flags_valid = 1; 5725 map->p_paddr = suggested_lma; 5726 map->p_paddr_valid = p_paddr_valid; 5727 map->includes_filehdr = 0; 5728 map->includes_phdrs = 0; 5729 } 5730 } 5731 while (isec < section_count); 5732 5733 free (sections); 5734 } 5735 5736 elf_tdata (obfd)->segment_map = map_first; 5737 5738 /* If we had to estimate the number of program headers that were 5739 going to be needed, then check our estimate now and adjust 5740 the offset if necessary. */ 5741 if (phdr_adjust_seg != NULL) 5742 { 5743 unsigned int count; 5744 5745 for (count = 0, map = map_first; map != NULL; map = map->next) 5746 count++; 5747 5748 if (count > phdr_adjust_num) 5749 phdr_adjust_seg->p_paddr 5750 -= (count - phdr_adjust_num) * iehdr->e_phentsize; 5751 } 5752 5753 #undef SEGMENT_END 5754 #undef SECTION_SIZE 5755 #undef IS_CONTAINED_BY_VMA 5756 #undef IS_CONTAINED_BY_LMA 5757 #undef IS_NOTE 5758 #undef IS_COREFILE_NOTE 5759 #undef IS_SOLARIS_PT_INTERP 5760 #undef IS_SECTION_IN_INPUT_SEGMENT 5761 #undef INCLUDE_SECTION_IN_SEGMENT 5762 #undef SEGMENT_AFTER_SEGMENT 5763 #undef SEGMENT_OVERLAPS 5764 return TRUE; 5765 } 5766 5767 /* Copy ELF program header information. */ 5768 5769 static bfd_boolean 5770 copy_elf_program_header (bfd *ibfd, bfd *obfd) 5771 { 5772 Elf_Internal_Ehdr *iehdr; 5773 struct elf_segment_map *map; 5774 struct elf_segment_map *map_first; 5775 struct elf_segment_map **pointer_to_map; 5776 Elf_Internal_Phdr *segment; 5777 unsigned int i; 5778 unsigned int num_segments; 5779 bfd_boolean phdr_included = FALSE; 5780 bfd_boolean p_paddr_valid; 5781 5782 iehdr = elf_elfheader (ibfd); 5783 5784 map_first = NULL; 5785 pointer_to_map = &map_first; 5786 5787 /* If all the segment p_paddr fields are zero, don't set 5788 map->p_paddr_valid. */ 5789 p_paddr_valid = FALSE; 5790 num_segments = elf_elfheader (ibfd)->e_phnum; 5791 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5792 i < num_segments; 5793 i++, segment++) 5794 if (segment->p_paddr != 0) 5795 { 5796 p_paddr_valid = TRUE; 5797 break; 5798 } 5799 5800 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5801 i < num_segments; 5802 i++, segment++) 5803 { 5804 asection *section; 5805 unsigned int section_count; 5806 bfd_size_type amt; 5807 Elf_Internal_Shdr *this_hdr; 5808 asection *first_section = NULL; 5809 asection *lowest_section = NULL; 5810 5811 /* Compute how many sections are in this segment. */ 5812 for (section = ibfd->sections, section_count = 0; 5813 section != NULL; 5814 section = section->next) 5815 { 5816 this_hdr = &(elf_section_data(section)->this_hdr); 5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment)) 5818 { 5819 if (!first_section) 5820 first_section = lowest_section = section; 5821 if (section->lma < lowest_section->lma) 5822 lowest_section = section; 5823 section_count++; 5824 } 5825 } 5826 5827 /* Allocate a segment map big enough to contain 5828 all of the sections we have selected. */ 5829 amt = sizeof (struct elf_segment_map); 5830 if (section_count != 0) 5831 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 5832 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 5833 if (map == NULL) 5834 return FALSE; 5835 5836 /* Initialize the fields of the output segment map with the 5837 input segment. */ 5838 map->next = NULL; 5839 map->p_type = segment->p_type; 5840 map->p_flags = segment->p_flags; 5841 map->p_flags_valid = 1; 5842 map->p_paddr = segment->p_paddr; 5843 map->p_paddr_valid = p_paddr_valid; 5844 map->p_align = segment->p_align; 5845 map->p_align_valid = 1; 5846 map->p_vaddr_offset = 0; 5847 5848 if (map->p_type == PT_GNU_RELRO) 5849 { 5850 /* The PT_GNU_RELRO segment may contain the first a few 5851 bytes in the .got.plt section even if the whole .got.plt 5852 section isn't in the PT_GNU_RELRO segment. We won't 5853 change the size of the PT_GNU_RELRO segment. */ 5854 map->p_size = segment->p_memsz; 5855 map->p_size_valid = 1; 5856 } 5857 5858 /* Determine if this segment contains the ELF file header 5859 and if it contains the program headers themselves. */ 5860 map->includes_filehdr = (segment->p_offset == 0 5861 && segment->p_filesz >= iehdr->e_ehsize); 5862 5863 map->includes_phdrs = 0; 5864 if (! phdr_included || segment->p_type != PT_LOAD) 5865 { 5866 map->includes_phdrs = 5867 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 5868 && (segment->p_offset + segment->p_filesz 5869 >= ((bfd_vma) iehdr->e_phoff 5870 + iehdr->e_phnum * iehdr->e_phentsize))); 5871 5872 if (segment->p_type == PT_LOAD && map->includes_phdrs) 5873 phdr_included = TRUE; 5874 } 5875 5876 if (map->includes_filehdr && first_section) 5877 /* We need to keep the space used by the headers fixed. */ 5878 map->header_size = first_section->vma - segment->p_vaddr; 5879 5880 if (!map->includes_phdrs 5881 && !map->includes_filehdr 5882 && map->p_paddr_valid) 5883 /* There is some other padding before the first section. */ 5884 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0) 5885 - segment->p_paddr); 5886 5887 if (section_count != 0) 5888 { 5889 unsigned int isec = 0; 5890 5891 for (section = first_section; 5892 section != NULL; 5893 section = section->next) 5894 { 5895 this_hdr = &(elf_section_data(section)->this_hdr); 5896 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment)) 5897 { 5898 map->sections[isec++] = section->output_section; 5899 if (isec == section_count) 5900 break; 5901 } 5902 } 5903 } 5904 5905 map->count = section_count; 5906 *pointer_to_map = map; 5907 pointer_to_map = &map->next; 5908 } 5909 5910 elf_tdata (obfd)->segment_map = map_first; 5911 return TRUE; 5912 } 5913 5914 /* Copy private BFD data. This copies or rewrites ELF program header 5915 information. */ 5916 5917 static bfd_boolean 5918 copy_private_bfd_data (bfd *ibfd, bfd *obfd) 5919 { 5920 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 5921 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 5922 return TRUE; 5923 5924 if (elf_tdata (ibfd)->phdr == NULL) 5925 return TRUE; 5926 5927 if (ibfd->xvec == obfd->xvec) 5928 { 5929 /* Check to see if any sections in the input BFD 5930 covered by ELF program header have changed. */ 5931 Elf_Internal_Phdr *segment; 5932 asection *section, *osec; 5933 unsigned int i, num_segments; 5934 Elf_Internal_Shdr *this_hdr; 5935 const struct elf_backend_data *bed; 5936 5937 bed = get_elf_backend_data (ibfd); 5938 5939 /* Regenerate the segment map if p_paddr is set to 0. */ 5940 if (bed->want_p_paddr_set_to_zero) 5941 goto rewrite; 5942 5943 /* Initialize the segment mark field. */ 5944 for (section = obfd->sections; section != NULL; 5945 section = section->next) 5946 section->segment_mark = FALSE; 5947 5948 num_segments = elf_elfheader (ibfd)->e_phnum; 5949 for (i = 0, segment = elf_tdata (ibfd)->phdr; 5950 i < num_segments; 5951 i++, segment++) 5952 { 5953 /* PR binutils/3535. The Solaris linker always sets the p_paddr 5954 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0 5955 which severly confuses things, so always regenerate the segment 5956 map in this case. */ 5957 if (segment->p_paddr == 0 5958 && segment->p_memsz == 0 5959 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC)) 5960 goto rewrite; 5961 5962 for (section = ibfd->sections; 5963 section != NULL; section = section->next) 5964 { 5965 /* We mark the output section so that we know it comes 5966 from the input BFD. */ 5967 osec = section->output_section; 5968 if (osec) 5969 osec->segment_mark = TRUE; 5970 5971 /* Check if this section is covered by the segment. */ 5972 this_hdr = &(elf_section_data(section)->this_hdr); 5973 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment)) 5974 { 5975 /* FIXME: Check if its output section is changed or 5976 removed. What else do we need to check? */ 5977 if (osec == NULL 5978 || section->flags != osec->flags 5979 || section->lma != osec->lma 5980 || section->vma != osec->vma 5981 || section->size != osec->size 5982 || section->rawsize != osec->rawsize 5983 || section->alignment_power != osec->alignment_power) 5984 goto rewrite; 5985 } 5986 } 5987 } 5988 5989 /* Check to see if any output section do not come from the 5990 input BFD. */ 5991 for (section = obfd->sections; section != NULL; 5992 section = section->next) 5993 { 5994 if (section->segment_mark == FALSE) 5995 goto rewrite; 5996 else 5997 section->segment_mark = FALSE; 5998 } 5999 6000 return copy_elf_program_header (ibfd, obfd); 6001 } 6002 6003 rewrite: 6004 return rewrite_elf_program_header (ibfd, obfd); 6005 } 6006 6007 /* Initialize private output section information from input section. */ 6008 6009 bfd_boolean 6010 _bfd_elf_init_private_section_data (bfd *ibfd, 6011 asection *isec, 6012 bfd *obfd, 6013 asection *osec, 6014 struct bfd_link_info *link_info) 6015 6016 { 6017 Elf_Internal_Shdr *ihdr, *ohdr; 6018 bfd_boolean need_group = link_info == NULL || link_info->relocatable; 6019 6020 if (ibfd->xvec->flavour != bfd_target_elf_flavour 6021 || obfd->xvec->flavour != bfd_target_elf_flavour) 6022 return TRUE; 6023 6024 /* Don't copy the output ELF section type from input if the 6025 output BFD section flags have been set to something different. 6026 elf_fake_sections will set ELF section type based on BFD 6027 section flags. */ 6028 if (elf_section_type (osec) == SHT_NULL 6029 && (osec->flags == isec->flags || !osec->flags)) 6030 elf_section_type (osec) = elf_section_type (isec); 6031 6032 /* FIXME: Is this correct for all OS/PROC specific flags? */ 6033 elf_section_flags (osec) |= (elf_section_flags (isec) 6034 & (SHF_MASKOS | SHF_MASKPROC)); 6035 6036 /* Set things up for objcopy and relocatable link. The output 6037 SHT_GROUP section will have its elf_next_in_group pointing back 6038 to the input group members. Ignore linker created group section. 6039 See elfNN_ia64_object_p in elfxx-ia64.c. */ 6040 if (need_group) 6041 { 6042 if (elf_sec_group (isec) == NULL 6043 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0) 6044 { 6045 if (elf_section_flags (isec) & SHF_GROUP) 6046 elf_section_flags (osec) |= SHF_GROUP; 6047 elf_next_in_group (osec) = elf_next_in_group (isec); 6048 elf_section_data (osec)->group = elf_section_data (isec)->group; 6049 } 6050 } 6051 6052 ihdr = &elf_section_data (isec)->this_hdr; 6053 6054 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We 6055 don't use the output section of the linked-to section since it 6056 may be NULL at this point. */ 6057 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0) 6058 { 6059 ohdr = &elf_section_data (osec)->this_hdr; 6060 ohdr->sh_flags |= SHF_LINK_ORDER; 6061 elf_linked_to_section (osec) = elf_linked_to_section (isec); 6062 } 6063 6064 osec->use_rela_p = isec->use_rela_p; 6065 6066 return TRUE; 6067 } 6068 6069 /* Copy private section information. This copies over the entsize 6070 field, and sometimes the info field. */ 6071 6072 bfd_boolean 6073 _bfd_elf_copy_private_section_data (bfd *ibfd, 6074 asection *isec, 6075 bfd *obfd, 6076 asection *osec) 6077 { 6078 Elf_Internal_Shdr *ihdr, *ohdr; 6079 6080 if (ibfd->xvec->flavour != bfd_target_elf_flavour 6081 || obfd->xvec->flavour != bfd_target_elf_flavour) 6082 return TRUE; 6083 6084 ihdr = &elf_section_data (isec)->this_hdr; 6085 ohdr = &elf_section_data (osec)->this_hdr; 6086 6087 ohdr->sh_entsize = ihdr->sh_entsize; 6088 6089 if (ihdr->sh_type == SHT_SYMTAB 6090 || ihdr->sh_type == SHT_DYNSYM 6091 || ihdr->sh_type == SHT_GNU_verneed 6092 || ihdr->sh_type == SHT_GNU_verdef) 6093 ohdr->sh_info = ihdr->sh_info; 6094 6095 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec, 6096 NULL); 6097 } 6098 6099 /* Copy private header information. */ 6100 6101 bfd_boolean 6102 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) 6103 { 6104 asection *isec; 6105 6106 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6107 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6108 return TRUE; 6109 6110 /* Copy over private BFD data if it has not already been copied. 6111 This must be done here, rather than in the copy_private_bfd_data 6112 entry point, because the latter is called after the section 6113 contents have been set, which means that the program headers have 6114 already been worked out. */ 6115 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL) 6116 { 6117 if (! copy_private_bfd_data (ibfd, obfd)) 6118 return FALSE; 6119 } 6120 6121 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag 6122 but this might be wrong if we deleted the group section. */ 6123 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 6124 if (elf_section_type (isec) == SHT_GROUP 6125 && isec->output_section == NULL) 6126 { 6127 asection *first = elf_next_in_group (isec); 6128 asection *s = first; 6129 while (s != NULL) 6130 { 6131 if (s->output_section != NULL) 6132 { 6133 elf_section_flags (s->output_section) &= ~SHF_GROUP; 6134 elf_group_name (s->output_section) = NULL; 6135 } 6136 s = elf_next_in_group (s); 6137 if (s == first) 6138 break; 6139 } 6140 } 6141 6142 return TRUE; 6143 } 6144 6145 /* Copy private symbol information. If this symbol is in a section 6146 which we did not map into a BFD section, try to map the section 6147 index correctly. We use special macro definitions for the mapped 6148 section indices; these definitions are interpreted by the 6149 swap_out_syms function. */ 6150 6151 #define MAP_ONESYMTAB (SHN_HIOS + 1) 6152 #define MAP_DYNSYMTAB (SHN_HIOS + 2) 6153 #define MAP_STRTAB (SHN_HIOS + 3) 6154 #define MAP_SHSTRTAB (SHN_HIOS + 4) 6155 #define MAP_SYM_SHNDX (SHN_HIOS + 5) 6156 6157 bfd_boolean 6158 _bfd_elf_copy_private_symbol_data (bfd *ibfd, 6159 asymbol *isymarg, 6160 bfd *obfd, 6161 asymbol *osymarg) 6162 { 6163 elf_symbol_type *isym, *osym; 6164 6165 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 6166 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 6167 return TRUE; 6168 6169 isym = elf_symbol_from (ibfd, isymarg); 6170 osym = elf_symbol_from (obfd, osymarg); 6171 6172 if (isym != NULL 6173 && isym->internal_elf_sym.st_shndx != 0 6174 && osym != NULL 6175 && bfd_is_abs_section (isym->symbol.section)) 6176 { 6177 unsigned int shndx; 6178 6179 shndx = isym->internal_elf_sym.st_shndx; 6180 if (shndx == elf_onesymtab (ibfd)) 6181 shndx = MAP_ONESYMTAB; 6182 else if (shndx == elf_dynsymtab (ibfd)) 6183 shndx = MAP_DYNSYMTAB; 6184 else if (shndx == elf_tdata (ibfd)->strtab_section) 6185 shndx = MAP_STRTAB; 6186 else if (shndx == elf_tdata (ibfd)->shstrtab_section) 6187 shndx = MAP_SHSTRTAB; 6188 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section) 6189 shndx = MAP_SYM_SHNDX; 6190 osym->internal_elf_sym.st_shndx = shndx; 6191 } 6192 6193 return TRUE; 6194 } 6195 6196 /* Swap out the symbols. */ 6197 6198 static bfd_boolean 6199 swap_out_syms (bfd *abfd, 6200 struct bfd_strtab_hash **sttp, 6201 int relocatable_p) 6202 { 6203 const struct elf_backend_data *bed; 6204 int symcount; 6205 asymbol **syms; 6206 struct bfd_strtab_hash *stt; 6207 Elf_Internal_Shdr *symtab_hdr; 6208 Elf_Internal_Shdr *symtab_shndx_hdr; 6209 Elf_Internal_Shdr *symstrtab_hdr; 6210 bfd_byte *outbound_syms; 6211 bfd_byte *outbound_shndx; 6212 int idx; 6213 bfd_size_type amt; 6214 bfd_boolean name_local_sections; 6215 6216 if (!elf_map_symbols (abfd)) 6217 return FALSE; 6218 6219 /* Dump out the symtabs. */ 6220 stt = _bfd_elf_stringtab_init (); 6221 if (stt == NULL) 6222 return FALSE; 6223 6224 bed = get_elf_backend_data (abfd); 6225 symcount = bfd_get_symcount (abfd); 6226 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 6227 symtab_hdr->sh_type = SHT_SYMTAB; 6228 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 6229 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); 6230 symtab_hdr->sh_info = elf_num_locals (abfd) + 1; 6231 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 6232 6233 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 6234 symstrtab_hdr->sh_type = SHT_STRTAB; 6235 6236 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount, 6237 bed->s->sizeof_sym); 6238 if (outbound_syms == NULL) 6239 { 6240 _bfd_stringtab_free (stt); 6241 return FALSE; 6242 } 6243 symtab_hdr->contents = outbound_syms; 6244 6245 outbound_shndx = NULL; 6246 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr; 6247 if (symtab_shndx_hdr->sh_name != 0) 6248 { 6249 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx); 6250 outbound_shndx = (bfd_byte *) 6251 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx)); 6252 if (outbound_shndx == NULL) 6253 { 6254 _bfd_stringtab_free (stt); 6255 return FALSE; 6256 } 6257 6258 symtab_shndx_hdr->contents = outbound_shndx; 6259 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 6260 symtab_shndx_hdr->sh_size = amt; 6261 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 6262 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 6263 } 6264 6265 /* Now generate the data (for "contents"). */ 6266 { 6267 /* Fill in zeroth symbol and swap it out. */ 6268 Elf_Internal_Sym sym; 6269 sym.st_name = 0; 6270 sym.st_value = 0; 6271 sym.st_size = 0; 6272 sym.st_info = 0; 6273 sym.st_other = 0; 6274 sym.st_shndx = SHN_UNDEF; 6275 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); 6276 outbound_syms += bed->s->sizeof_sym; 6277 if (outbound_shndx != NULL) 6278 outbound_shndx += sizeof (Elf_External_Sym_Shndx); 6279 } 6280 6281 name_local_sections 6282 = (bed->elf_backend_name_local_section_symbols 6283 && bed->elf_backend_name_local_section_symbols (abfd)); 6284 6285 syms = bfd_get_outsymbols (abfd); 6286 for (idx = 0; idx < symcount; idx++) 6287 { 6288 Elf_Internal_Sym sym; 6289 bfd_vma value = syms[idx]->value; 6290 elf_symbol_type *type_ptr; 6291 flagword flags = syms[idx]->flags; 6292 int type; 6293 6294 if (!name_local_sections 6295 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) 6296 { 6297 /* Local section symbols have no name. */ 6298 sym.st_name = 0; 6299 } 6300 else 6301 { 6302 sym.st_name = (unsigned long) _bfd_stringtab_add (stt, 6303 syms[idx]->name, 6304 TRUE, FALSE); 6305 if (sym.st_name == (unsigned long) -1) 6306 { 6307 _bfd_stringtab_free (stt); 6308 return FALSE; 6309 } 6310 } 6311 6312 type_ptr = elf_symbol_from (abfd, syms[idx]); 6313 6314 if ((flags & BSF_SECTION_SYM) == 0 6315 && bfd_is_com_section (syms[idx]->section)) 6316 { 6317 /* ELF common symbols put the alignment into the `value' field, 6318 and the size into the `size' field. This is backwards from 6319 how BFD handles it, so reverse it here. */ 6320 sym.st_size = value; 6321 if (type_ptr == NULL 6322 || type_ptr->internal_elf_sym.st_value == 0) 6323 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); 6324 else 6325 sym.st_value = type_ptr->internal_elf_sym.st_value; 6326 sym.st_shndx = _bfd_elf_section_from_bfd_section 6327 (abfd, syms[idx]->section); 6328 } 6329 else 6330 { 6331 asection *sec = syms[idx]->section; 6332 unsigned int shndx; 6333 6334 if (sec->output_section) 6335 { 6336 value += sec->output_offset; 6337 sec = sec->output_section; 6338 } 6339 6340 /* Don't add in the section vma for relocatable output. */ 6341 if (! relocatable_p) 6342 value += sec->vma; 6343 sym.st_value = value; 6344 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; 6345 6346 if (bfd_is_abs_section (sec) 6347 && type_ptr != NULL 6348 && type_ptr->internal_elf_sym.st_shndx != 0) 6349 { 6350 /* This symbol is in a real ELF section which we did 6351 not create as a BFD section. Undo the mapping done 6352 by copy_private_symbol_data. */ 6353 shndx = type_ptr->internal_elf_sym.st_shndx; 6354 switch (shndx) 6355 { 6356 case MAP_ONESYMTAB: 6357 shndx = elf_onesymtab (abfd); 6358 break; 6359 case MAP_DYNSYMTAB: 6360 shndx = elf_dynsymtab (abfd); 6361 break; 6362 case MAP_STRTAB: 6363 shndx = elf_tdata (abfd)->strtab_section; 6364 break; 6365 case MAP_SHSTRTAB: 6366 shndx = elf_tdata (abfd)->shstrtab_section; 6367 break; 6368 case MAP_SYM_SHNDX: 6369 shndx = elf_tdata (abfd)->symtab_shndx_section; 6370 break; 6371 default: 6372 break; 6373 } 6374 } 6375 else 6376 { 6377 shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 6378 6379 if (shndx == SHN_BAD) 6380 { 6381 asection *sec2; 6382 6383 /* Writing this would be a hell of a lot easier if 6384 we had some decent documentation on bfd, and 6385 knew what to expect of the library, and what to 6386 demand of applications. For example, it 6387 appears that `objcopy' might not set the 6388 section of a symbol to be a section that is 6389 actually in the output file. */ 6390 sec2 = bfd_get_section_by_name (abfd, sec->name); 6391 if (sec2 == NULL) 6392 { 6393 _bfd_error_handler (_("\ 6394 Unable to find equivalent output section for symbol '%s' from section '%s'"), 6395 syms[idx]->name ? syms[idx]->name : "<Local sym>", 6396 sec->name); 6397 bfd_set_error (bfd_error_invalid_operation); 6398 _bfd_stringtab_free (stt); 6399 return FALSE; 6400 } 6401 6402 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); 6403 BFD_ASSERT (shndx != SHN_BAD); 6404 } 6405 } 6406 6407 sym.st_shndx = shndx; 6408 } 6409 6410 if ((flags & BSF_THREAD_LOCAL) != 0) 6411 type = STT_TLS; 6412 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0) 6413 type = STT_GNU_IFUNC; 6414 else if ((flags & BSF_FUNCTION) != 0) 6415 type = STT_FUNC; 6416 else if ((flags & BSF_OBJECT) != 0) 6417 type = STT_OBJECT; 6418 else if ((flags & BSF_RELC) != 0) 6419 type = STT_RELC; 6420 else if ((flags & BSF_SRELC) != 0) 6421 type = STT_SRELC; 6422 else 6423 type = STT_NOTYPE; 6424 6425 if (syms[idx]->section->flags & SEC_THREAD_LOCAL) 6426 type = STT_TLS; 6427 6428 /* Processor-specific types. */ 6429 if (type_ptr != NULL 6430 && bed->elf_backend_get_symbol_type) 6431 type = ((*bed->elf_backend_get_symbol_type) 6432 (&type_ptr->internal_elf_sym, type)); 6433 6434 if (flags & BSF_SECTION_SYM) 6435 { 6436 if (flags & BSF_GLOBAL) 6437 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 6438 else 6439 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 6440 } 6441 else if (bfd_is_com_section (syms[idx]->section)) 6442 { 6443 #ifdef USE_STT_COMMON 6444 if (type == STT_OBJECT) 6445 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON); 6446 else 6447 #endif 6448 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 6449 } 6450 else if (bfd_is_und_section (syms[idx]->section)) 6451 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) 6452 ? STB_WEAK 6453 : STB_GLOBAL), 6454 type); 6455 else if (flags & BSF_FILE) 6456 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 6457 else 6458 { 6459 int bind = STB_LOCAL; 6460 6461 if (flags & BSF_LOCAL) 6462 bind = STB_LOCAL; 6463 else if (flags & BSF_GNU_UNIQUE) 6464 bind = STB_GNU_UNIQUE; 6465 else if (flags & BSF_WEAK) 6466 bind = STB_WEAK; 6467 else if (flags & BSF_GLOBAL) 6468 bind = STB_GLOBAL; 6469 6470 sym.st_info = ELF_ST_INFO (bind, type); 6471 } 6472 6473 if (type_ptr != NULL) 6474 sym.st_other = type_ptr->internal_elf_sym.st_other; 6475 else 6476 sym.st_other = 0; 6477 6478 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx); 6479 outbound_syms += bed->s->sizeof_sym; 6480 if (outbound_shndx != NULL) 6481 outbound_shndx += sizeof (Elf_External_Sym_Shndx); 6482 } 6483 6484 *sttp = stt; 6485 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt); 6486 symstrtab_hdr->sh_type = SHT_STRTAB; 6487 6488 symstrtab_hdr->sh_flags = 0; 6489 symstrtab_hdr->sh_addr = 0; 6490 symstrtab_hdr->sh_entsize = 0; 6491 symstrtab_hdr->sh_link = 0; 6492 symstrtab_hdr->sh_info = 0; 6493 symstrtab_hdr->sh_addralign = 1; 6494 6495 return TRUE; 6496 } 6497 6498 /* Return the number of bytes required to hold the symtab vector. 6499 6500 Note that we base it on the count plus 1, since we will null terminate 6501 the vector allocated based on this size. However, the ELF symbol table 6502 always has a dummy entry as symbol #0, so it ends up even. */ 6503 6504 long 6505 _bfd_elf_get_symtab_upper_bound (bfd *abfd) 6506 { 6507 long symcount; 6508 long symtab_size; 6509 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; 6510 6511 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 6512 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 6513 if (symcount > 0) 6514 symtab_size -= sizeof (asymbol *); 6515 6516 return symtab_size; 6517 } 6518 6519 long 6520 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) 6521 { 6522 long symcount; 6523 long symtab_size; 6524 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; 6525 6526 if (elf_dynsymtab (abfd) == 0) 6527 { 6528 bfd_set_error (bfd_error_invalid_operation); 6529 return -1; 6530 } 6531 6532 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 6533 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 6534 if (symcount > 0) 6535 symtab_size -= sizeof (asymbol *); 6536 6537 return symtab_size; 6538 } 6539 6540 long 6541 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, 6542 sec_ptr asect) 6543 { 6544 return (asect->reloc_count + 1) * sizeof (arelent *); 6545 } 6546 6547 /* Canonicalize the relocs. */ 6548 6549 long 6550 _bfd_elf_canonicalize_reloc (bfd *abfd, 6551 sec_ptr section, 6552 arelent **relptr, 6553 asymbol **symbols) 6554 { 6555 arelent *tblptr; 6556 unsigned int i; 6557 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 6558 6559 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 6560 return -1; 6561 6562 tblptr = section->relocation; 6563 for (i = 0; i < section->reloc_count; i++) 6564 *relptr++ = tblptr++; 6565 6566 *relptr = NULL; 6567 6568 return section->reloc_count; 6569 } 6570 6571 long 6572 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) 6573 { 6574 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 6575 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE); 6576 6577 if (symcount >= 0) 6578 bfd_get_symcount (abfd) = symcount; 6579 return symcount; 6580 } 6581 6582 long 6583 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, 6584 asymbol **allocation) 6585 { 6586 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 6587 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE); 6588 6589 if (symcount >= 0) 6590 bfd_get_dynamic_symcount (abfd) = symcount; 6591 return symcount; 6592 } 6593 6594 /* Return the size required for the dynamic reloc entries. Any loadable 6595 section that was actually installed in the BFD, and has type SHT_REL 6596 or SHT_RELA, and uses the dynamic symbol table, is considered to be a 6597 dynamic reloc section. */ 6598 6599 long 6600 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) 6601 { 6602 long ret; 6603 asection *s; 6604 6605 if (elf_dynsymtab (abfd) == 0) 6606 { 6607 bfd_set_error (bfd_error_invalid_operation); 6608 return -1; 6609 } 6610 6611 ret = sizeof (arelent *); 6612 for (s = abfd->sections; s != NULL; s = s->next) 6613 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 6614 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 6615 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 6616 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize) 6617 * sizeof (arelent *)); 6618 6619 return ret; 6620 } 6621 6622 /* Canonicalize the dynamic relocation entries. Note that we return the 6623 dynamic relocations as a single block, although they are actually 6624 associated with particular sections; the interface, which was 6625 designed for SunOS style shared libraries, expects that there is only 6626 one set of dynamic relocs. Any loadable section that was actually 6627 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the 6628 dynamic symbol table, is considered to be a dynamic reloc section. */ 6629 6630 long 6631 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, 6632 arelent **storage, 6633 asymbol **syms) 6634 { 6635 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 6636 asection *s; 6637 long ret; 6638 6639 if (elf_dynsymtab (abfd) == 0) 6640 { 6641 bfd_set_error (bfd_error_invalid_operation); 6642 return -1; 6643 } 6644 6645 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 6646 ret = 0; 6647 for (s = abfd->sections; s != NULL; s = s->next) 6648 { 6649 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 6650 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 6651 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 6652 { 6653 arelent *p; 6654 long count, i; 6655 6656 if (! (*slurp_relocs) (abfd, s, syms, TRUE)) 6657 return -1; 6658 count = s->size / elf_section_data (s)->this_hdr.sh_entsize; 6659 p = s->relocation; 6660 for (i = 0; i < count; i++) 6661 *storage++ = p++; 6662 ret += count; 6663 } 6664 } 6665 6666 *storage = NULL; 6667 6668 return ret; 6669 } 6670 6671 /* Read in the version information. */ 6672 6673 bfd_boolean 6674 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver) 6675 { 6676 bfd_byte *contents = NULL; 6677 unsigned int freeidx = 0; 6678 6679 if (elf_dynverref (abfd) != 0) 6680 { 6681 Elf_Internal_Shdr *hdr; 6682 Elf_External_Verneed *everneed; 6683 Elf_Internal_Verneed *iverneed; 6684 unsigned int i; 6685 bfd_byte *contents_end; 6686 6687 hdr = &elf_tdata (abfd)->dynverref_hdr; 6688 6689 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) 6690 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed)); 6691 if (elf_tdata (abfd)->verref == NULL) 6692 goto error_return; 6693 6694 elf_tdata (abfd)->cverrefs = hdr->sh_info; 6695 6696 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 6697 if (contents == NULL) 6698 { 6699 error_return_verref: 6700 elf_tdata (abfd)->verref = NULL; 6701 elf_tdata (abfd)->cverrefs = 0; 6702 goto error_return; 6703 } 6704 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 6705 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 6706 goto error_return_verref; 6707 6708 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed)) 6709 goto error_return_verref; 6710 6711 BFD_ASSERT (sizeof (Elf_External_Verneed) 6712 == sizeof (Elf_External_Vernaux)); 6713 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed); 6714 everneed = (Elf_External_Verneed *) contents; 6715 iverneed = elf_tdata (abfd)->verref; 6716 for (i = 0; i < hdr->sh_info; i++, iverneed++) 6717 { 6718 Elf_External_Vernaux *evernaux; 6719 Elf_Internal_Vernaux *ivernaux; 6720 unsigned int j; 6721 6722 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); 6723 6724 iverneed->vn_bfd = abfd; 6725 6726 iverneed->vn_filename = 6727 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 6728 iverneed->vn_file); 6729 if (iverneed->vn_filename == NULL) 6730 goto error_return_verref; 6731 6732 if (iverneed->vn_cnt == 0) 6733 iverneed->vn_auxptr = NULL; 6734 else 6735 { 6736 iverneed->vn_auxptr = (struct elf_internal_vernaux *) 6737 bfd_alloc2 (abfd, iverneed->vn_cnt, 6738 sizeof (Elf_Internal_Vernaux)); 6739 if (iverneed->vn_auxptr == NULL) 6740 goto error_return_verref; 6741 } 6742 6743 if (iverneed->vn_aux 6744 > (size_t) (contents_end - (bfd_byte *) everneed)) 6745 goto error_return_verref; 6746 6747 evernaux = ((Elf_External_Vernaux *) 6748 ((bfd_byte *) everneed + iverneed->vn_aux)); 6749 ivernaux = iverneed->vn_auxptr; 6750 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) 6751 { 6752 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); 6753 6754 ivernaux->vna_nodename = 6755 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 6756 ivernaux->vna_name); 6757 if (ivernaux->vna_nodename == NULL) 6758 goto error_return_verref; 6759 6760 if (j + 1 < iverneed->vn_cnt) 6761 ivernaux->vna_nextptr = ivernaux + 1; 6762 else 6763 ivernaux->vna_nextptr = NULL; 6764 6765 if (ivernaux->vna_next 6766 > (size_t) (contents_end - (bfd_byte *) evernaux)) 6767 goto error_return_verref; 6768 6769 evernaux = ((Elf_External_Vernaux *) 6770 ((bfd_byte *) evernaux + ivernaux->vna_next)); 6771 6772 if (ivernaux->vna_other > freeidx) 6773 freeidx = ivernaux->vna_other; 6774 } 6775 6776 if (i + 1 < hdr->sh_info) 6777 iverneed->vn_nextref = iverneed + 1; 6778 else 6779 iverneed->vn_nextref = NULL; 6780 6781 if (iverneed->vn_next 6782 > (size_t) (contents_end - (bfd_byte *) everneed)) 6783 goto error_return_verref; 6784 6785 everneed = ((Elf_External_Verneed *) 6786 ((bfd_byte *) everneed + iverneed->vn_next)); 6787 } 6788 6789 free (contents); 6790 contents = NULL; 6791 } 6792 6793 if (elf_dynverdef (abfd) != 0) 6794 { 6795 Elf_Internal_Shdr *hdr; 6796 Elf_External_Verdef *everdef; 6797 Elf_Internal_Verdef *iverdef; 6798 Elf_Internal_Verdef *iverdefarr; 6799 Elf_Internal_Verdef iverdefmem; 6800 unsigned int i; 6801 unsigned int maxidx; 6802 bfd_byte *contents_end_def, *contents_end_aux; 6803 6804 hdr = &elf_tdata (abfd)->dynverdef_hdr; 6805 6806 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 6807 if (contents == NULL) 6808 goto error_return; 6809 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 6810 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 6811 goto error_return; 6812 6813 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef)) 6814 goto error_return; 6815 6816 BFD_ASSERT (sizeof (Elf_External_Verdef) 6817 >= sizeof (Elf_External_Verdaux)); 6818 contents_end_def = contents + hdr->sh_size 6819 - sizeof (Elf_External_Verdef); 6820 contents_end_aux = contents + hdr->sh_size 6821 - sizeof (Elf_External_Verdaux); 6822 6823 /* We know the number of entries in the section but not the maximum 6824 index. Therefore we have to run through all entries and find 6825 the maximum. */ 6826 everdef = (Elf_External_Verdef *) contents; 6827 maxidx = 0; 6828 for (i = 0; i < hdr->sh_info; ++i) 6829 { 6830 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 6831 6832 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) 6833 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); 6834 6835 if (iverdefmem.vd_next 6836 > (size_t) (contents_end_def - (bfd_byte *) everdef)) 6837 goto error_return; 6838 6839 everdef = ((Elf_External_Verdef *) 6840 ((bfd_byte *) everdef + iverdefmem.vd_next)); 6841 } 6842 6843 if (default_imported_symver) 6844 { 6845 if (freeidx > maxidx) 6846 maxidx = ++freeidx; 6847 else 6848 freeidx = ++maxidx; 6849 } 6850 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 6851 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef)); 6852 if (elf_tdata (abfd)->verdef == NULL) 6853 goto error_return; 6854 6855 elf_tdata (abfd)->cverdefs = maxidx; 6856 6857 everdef = (Elf_External_Verdef *) contents; 6858 iverdefarr = elf_tdata (abfd)->verdef; 6859 for (i = 0; i < hdr->sh_info; i++) 6860 { 6861 Elf_External_Verdaux *everdaux; 6862 Elf_Internal_Verdaux *iverdaux; 6863 unsigned int j; 6864 6865 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 6866 6867 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) 6868 { 6869 error_return_verdef: 6870 elf_tdata (abfd)->verdef = NULL; 6871 elf_tdata (abfd)->cverdefs = 0; 6872 goto error_return; 6873 } 6874 6875 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; 6876 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef)); 6877 6878 iverdef->vd_bfd = abfd; 6879 6880 if (iverdef->vd_cnt == 0) 6881 iverdef->vd_auxptr = NULL; 6882 else 6883 { 6884 iverdef->vd_auxptr = (struct elf_internal_verdaux *) 6885 bfd_alloc2 (abfd, iverdef->vd_cnt, 6886 sizeof (Elf_Internal_Verdaux)); 6887 if (iverdef->vd_auxptr == NULL) 6888 goto error_return_verdef; 6889 } 6890 6891 if (iverdef->vd_aux 6892 > (size_t) (contents_end_aux - (bfd_byte *) everdef)) 6893 goto error_return_verdef; 6894 6895 everdaux = ((Elf_External_Verdaux *) 6896 ((bfd_byte *) everdef + iverdef->vd_aux)); 6897 iverdaux = iverdef->vd_auxptr; 6898 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) 6899 { 6900 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); 6901 6902 iverdaux->vda_nodename = 6903 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 6904 iverdaux->vda_name); 6905 if (iverdaux->vda_nodename == NULL) 6906 goto error_return_verdef; 6907 6908 if (j + 1 < iverdef->vd_cnt) 6909 iverdaux->vda_nextptr = iverdaux + 1; 6910 else 6911 iverdaux->vda_nextptr = NULL; 6912 6913 if (iverdaux->vda_next 6914 > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) 6915 goto error_return_verdef; 6916 6917 everdaux = ((Elf_External_Verdaux *) 6918 ((bfd_byte *) everdaux + iverdaux->vda_next)); 6919 } 6920 6921 if (iverdef->vd_cnt) 6922 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; 6923 6924 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) 6925 iverdef->vd_nextdef = iverdef + 1; 6926 else 6927 iverdef->vd_nextdef = NULL; 6928 6929 everdef = ((Elf_External_Verdef *) 6930 ((bfd_byte *) everdef + iverdef->vd_next)); 6931 } 6932 6933 free (contents); 6934 contents = NULL; 6935 } 6936 else if (default_imported_symver) 6937 { 6938 if (freeidx < 3) 6939 freeidx = 3; 6940 else 6941 freeidx++; 6942 6943 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 6944 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef)); 6945 if (elf_tdata (abfd)->verdef == NULL) 6946 goto error_return; 6947 6948 elf_tdata (abfd)->cverdefs = freeidx; 6949 } 6950 6951 /* Create a default version based on the soname. */ 6952 if (default_imported_symver) 6953 { 6954 Elf_Internal_Verdef *iverdef; 6955 Elf_Internal_Verdaux *iverdaux; 6956 6957 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];; 6958 6959 iverdef->vd_version = VER_DEF_CURRENT; 6960 iverdef->vd_flags = 0; 6961 iverdef->vd_ndx = freeidx; 6962 iverdef->vd_cnt = 1; 6963 6964 iverdef->vd_bfd = abfd; 6965 6966 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); 6967 if (iverdef->vd_nodename == NULL) 6968 goto error_return_verdef; 6969 iverdef->vd_nextdef = NULL; 6970 iverdef->vd_auxptr = (struct elf_internal_verdaux *) 6971 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux)); 6972 if (iverdef->vd_auxptr == NULL) 6973 goto error_return_verdef; 6974 6975 iverdaux = iverdef->vd_auxptr; 6976 iverdaux->vda_nodename = iverdef->vd_nodename; 6977 iverdaux->vda_nextptr = NULL; 6978 } 6979 6980 return TRUE; 6981 6982 error_return: 6983 if (contents != NULL) 6984 free (contents); 6985 return FALSE; 6986 } 6987 6988 asymbol * 6989 _bfd_elf_make_empty_symbol (bfd *abfd) 6990 { 6991 elf_symbol_type *newsym; 6992 bfd_size_type amt = sizeof (elf_symbol_type); 6993 6994 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt); 6995 if (!newsym) 6996 return NULL; 6997 else 6998 { 6999 newsym->symbol.the_bfd = abfd; 7000 return &newsym->symbol; 7001 } 7002 } 7003 7004 void 7005 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 7006 asymbol *symbol, 7007 symbol_info *ret) 7008 { 7009 bfd_symbol_info (symbol, ret); 7010 } 7011 7012 /* Return whether a symbol name implies a local symbol. Most targets 7013 use this function for the is_local_label_name entry point, but some 7014 override it. */ 7015 7016 bfd_boolean 7017 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 7018 const char *name) 7019 { 7020 /* Normal local symbols start with ``.L''. */ 7021 if (name[0] == '.' && name[1] == 'L') 7022 return TRUE; 7023 7024 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate 7025 DWARF debugging symbols starting with ``..''. */ 7026 if (name[0] == '.' && name[1] == '.') 7027 return TRUE; 7028 7029 /* gcc will sometimes generate symbols beginning with ``_.L_'' when 7030 emitting DWARF debugging output. I suspect this is actually a 7031 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call 7032 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading 7033 underscore to be emitted on some ELF targets). For ease of use, 7034 we treat such symbols as local. */ 7035 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') 7036 return TRUE; 7037 7038 return FALSE; 7039 } 7040 7041 alent * 7042 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, 7043 asymbol *symbol ATTRIBUTE_UNUSED) 7044 { 7045 abort (); 7046 return NULL; 7047 } 7048 7049 bfd_boolean 7050 _bfd_elf_set_arch_mach (bfd *abfd, 7051 enum bfd_architecture arch, 7052 unsigned long machine) 7053 { 7054 /* If this isn't the right architecture for this backend, and this 7055 isn't the generic backend, fail. */ 7056 if (arch != get_elf_backend_data (abfd)->arch 7057 && arch != bfd_arch_unknown 7058 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) 7059 return FALSE; 7060 7061 return bfd_default_set_arch_mach (abfd, arch, machine); 7062 } 7063 7064 /* Find the function to a particular section and offset, 7065 for error reporting. */ 7066 7067 static bfd_boolean 7068 elf_find_function (bfd *abfd, 7069 asection *section, 7070 asymbol **symbols, 7071 bfd_vma offset, 7072 const char **filename_ptr, 7073 const char **functionname_ptr) 7074 { 7075 const char *filename; 7076 asymbol *func, *file; 7077 bfd_vma low_func; 7078 asymbol **p; 7079 /* ??? Given multiple file symbols, it is impossible to reliably 7080 choose the right file name for global symbols. File symbols are 7081 local symbols, and thus all file symbols must sort before any 7082 global symbols. The ELF spec may be interpreted to say that a 7083 file symbol must sort before other local symbols, but currently 7084 ld -r doesn't do this. So, for ld -r output, it is possible to 7085 make a better choice of file name for local symbols by ignoring 7086 file symbols appearing after a given local symbol. */ 7087 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state; 7088 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7089 7090 filename = NULL; 7091 func = NULL; 7092 file = NULL; 7093 low_func = 0; 7094 state = nothing_seen; 7095 7096 for (p = symbols; *p != NULL; p++) 7097 { 7098 elf_symbol_type *q; 7099 unsigned int type; 7100 7101 q = (elf_symbol_type *) *p; 7102 7103 type = ELF_ST_TYPE (q->internal_elf_sym.st_info); 7104 switch (type) 7105 { 7106 case STT_FILE: 7107 file = &q->symbol; 7108 if (state == symbol_seen) 7109 state = file_after_symbol_seen; 7110 continue; 7111 default: 7112 if (!bed->is_function_type (type)) 7113 break; 7114 case STT_NOTYPE: 7115 if (bfd_get_section (&q->symbol) == section 7116 && q->symbol.value >= low_func 7117 && q->symbol.value <= offset) 7118 { 7119 func = (asymbol *) q; 7120 low_func = q->symbol.value; 7121 filename = NULL; 7122 if (file != NULL 7123 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL 7124 || state != file_after_symbol_seen)) 7125 filename = bfd_asymbol_name (file); 7126 } 7127 break; 7128 } 7129 if (state == nothing_seen) 7130 state = symbol_seen; 7131 } 7132 7133 if (func == NULL) 7134 return FALSE; 7135 7136 if (filename_ptr) 7137 *filename_ptr = filename; 7138 if (functionname_ptr) 7139 *functionname_ptr = bfd_asymbol_name (func); 7140 7141 return TRUE; 7142 } 7143 7144 /* Find the nearest line to a particular section and offset, 7145 for error reporting. */ 7146 7147 bfd_boolean 7148 _bfd_elf_find_nearest_line (bfd *abfd, 7149 asection *section, 7150 asymbol **symbols, 7151 bfd_vma offset, 7152 const char **filename_ptr, 7153 const char **functionname_ptr, 7154 unsigned int *line_ptr) 7155 { 7156 bfd_boolean found; 7157 7158 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, 7159 filename_ptr, functionname_ptr, 7160 line_ptr)) 7161 { 7162 if (!*functionname_ptr) 7163 elf_find_function (abfd, section, symbols, offset, 7164 *filename_ptr ? NULL : filename_ptr, 7165 functionname_ptr); 7166 7167 return TRUE; 7168 } 7169 7170 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, 7171 filename_ptr, functionname_ptr, 7172 line_ptr, 0, 7173 &elf_tdata (abfd)->dwarf2_find_line_info)) 7174 { 7175 if (!*functionname_ptr) 7176 elf_find_function (abfd, section, symbols, offset, 7177 *filename_ptr ? NULL : filename_ptr, 7178 functionname_ptr); 7179 7180 return TRUE; 7181 } 7182 7183 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 7184 &found, filename_ptr, 7185 functionname_ptr, line_ptr, 7186 &elf_tdata (abfd)->line_info)) 7187 return FALSE; 7188 if (found && (*functionname_ptr || *line_ptr)) 7189 return TRUE; 7190 7191 if (symbols == NULL) 7192 return FALSE; 7193 7194 if (! elf_find_function (abfd, section, symbols, offset, 7195 filename_ptr, functionname_ptr)) 7196 return FALSE; 7197 7198 *line_ptr = 0; 7199 return TRUE; 7200 } 7201 7202 /* Find the line for a symbol. */ 7203 7204 bfd_boolean 7205 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, 7206 const char **filename_ptr, unsigned int *line_ptr) 7207 { 7208 return _bfd_dwarf2_find_line (abfd, symbols, symbol, 7209 filename_ptr, line_ptr, 0, 7210 &elf_tdata (abfd)->dwarf2_find_line_info); 7211 } 7212 7213 /* After a call to bfd_find_nearest_line, successive calls to 7214 bfd_find_inliner_info can be used to get source information about 7215 each level of function inlining that terminated at the address 7216 passed to bfd_find_nearest_line. Currently this is only supported 7217 for DWARF2 with appropriate DWARF3 extensions. */ 7218 7219 bfd_boolean 7220 _bfd_elf_find_inliner_info (bfd *abfd, 7221 const char **filename_ptr, 7222 const char **functionname_ptr, 7223 unsigned int *line_ptr) 7224 { 7225 bfd_boolean found; 7226 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 7227 functionname_ptr, line_ptr, 7228 & elf_tdata (abfd)->dwarf2_find_line_info); 7229 return found; 7230 } 7231 7232 int 7233 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info) 7234 { 7235 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7236 int ret = bed->s->sizeof_ehdr; 7237 7238 if (!info->relocatable) 7239 { 7240 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size; 7241 7242 if (phdr_size == (bfd_size_type) -1) 7243 { 7244 struct elf_segment_map *m; 7245 7246 phdr_size = 0; 7247 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 7248 phdr_size += bed->s->sizeof_phdr; 7249 7250 if (phdr_size == 0) 7251 phdr_size = get_program_header_size (abfd, info); 7252 } 7253 7254 elf_tdata (abfd)->program_header_size = phdr_size; 7255 ret += phdr_size; 7256 } 7257 7258 return ret; 7259 } 7260 7261 bfd_boolean 7262 _bfd_elf_set_section_contents (bfd *abfd, 7263 sec_ptr section, 7264 const void *location, 7265 file_ptr offset, 7266 bfd_size_type count) 7267 { 7268 Elf_Internal_Shdr *hdr; 7269 bfd_signed_vma pos; 7270 7271 if (! abfd->output_has_begun 7272 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 7273 return FALSE; 7274 7275 hdr = &elf_section_data (section)->this_hdr; 7276 pos = hdr->sh_offset + offset; 7277 if (bfd_seek (abfd, pos, SEEK_SET) != 0 7278 || bfd_bwrite (location, count, abfd) != count) 7279 return FALSE; 7280 7281 return TRUE; 7282 } 7283 7284 void 7285 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, 7286 arelent *cache_ptr ATTRIBUTE_UNUSED, 7287 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) 7288 { 7289 abort (); 7290 } 7291 7292 /* Try to convert a non-ELF reloc into an ELF one. */ 7293 7294 bfd_boolean 7295 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) 7296 { 7297 /* Check whether we really have an ELF howto. */ 7298 7299 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) 7300 { 7301 bfd_reloc_code_real_type code; 7302 reloc_howto_type *howto; 7303 7304 /* Alien reloc: Try to determine its type to replace it with an 7305 equivalent ELF reloc. */ 7306 7307 if (areloc->howto->pc_relative) 7308 { 7309 switch (areloc->howto->bitsize) 7310 { 7311 case 8: 7312 code = BFD_RELOC_8_PCREL; 7313 break; 7314 case 12: 7315 code = BFD_RELOC_12_PCREL; 7316 break; 7317 case 16: 7318 code = BFD_RELOC_16_PCREL; 7319 break; 7320 case 24: 7321 code = BFD_RELOC_24_PCREL; 7322 break; 7323 case 32: 7324 code = BFD_RELOC_32_PCREL; 7325 break; 7326 case 64: 7327 code = BFD_RELOC_64_PCREL; 7328 break; 7329 default: 7330 goto fail; 7331 } 7332 7333 howto = bfd_reloc_type_lookup (abfd, code); 7334 7335 if (areloc->howto->pcrel_offset != howto->pcrel_offset) 7336 { 7337 if (howto->pcrel_offset) 7338 areloc->addend += areloc->address; 7339 else 7340 areloc->addend -= areloc->address; /* addend is unsigned!! */ 7341 } 7342 } 7343 else 7344 { 7345 switch (areloc->howto->bitsize) 7346 { 7347 case 8: 7348 code = BFD_RELOC_8; 7349 break; 7350 case 14: 7351 code = BFD_RELOC_14; 7352 break; 7353 case 16: 7354 code = BFD_RELOC_16; 7355 break; 7356 case 26: 7357 code = BFD_RELOC_26; 7358 break; 7359 case 32: 7360 code = BFD_RELOC_32; 7361 break; 7362 case 64: 7363 code = BFD_RELOC_64; 7364 break; 7365 default: 7366 goto fail; 7367 } 7368 7369 howto = bfd_reloc_type_lookup (abfd, code); 7370 } 7371 7372 if (howto) 7373 areloc->howto = howto; 7374 else 7375 goto fail; 7376 } 7377 7378 return TRUE; 7379 7380 fail: 7381 (*_bfd_error_handler) 7382 (_("%B: unsupported relocation type %s"), 7383 abfd, areloc->howto->name); 7384 bfd_set_error (bfd_error_bad_value); 7385 return FALSE; 7386 } 7387 7388 bfd_boolean 7389 _bfd_elf_close_and_cleanup (bfd *abfd) 7390 { 7391 if (bfd_get_format (abfd) == bfd_object) 7392 { 7393 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL) 7394 _bfd_elf_strtab_free (elf_shstrtab (abfd)); 7395 _bfd_dwarf2_cleanup_debug_info (abfd); 7396 } 7397 7398 return _bfd_generic_close_and_cleanup (abfd); 7399 } 7400 7401 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY 7402 in the relocation's offset. Thus we cannot allow any sort of sanity 7403 range-checking to interfere. There is nothing else to do in processing 7404 this reloc. */ 7405 7406 bfd_reloc_status_type 7407 _bfd_elf_rel_vtable_reloc_fn 7408 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, 7409 struct bfd_symbol *symbol ATTRIBUTE_UNUSED, 7410 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, 7411 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) 7412 { 7413 return bfd_reloc_ok; 7414 } 7415 7416 /* Elf core file support. Much of this only works on native 7417 toolchains, since we rely on knowing the 7418 machine-dependent procfs structure in order to pick 7419 out details about the corefile. */ 7420 7421 #ifdef HAVE_SYS_PROCFS_H 7422 # include <sys/procfs.h> 7423 #endif 7424 7425 /* FIXME: this is kinda wrong, but it's what gdb wants. */ 7426 7427 static int 7428 elfcore_make_pid (bfd *abfd) 7429 { 7430 return ((elf_tdata (abfd)->core_lwpid << 16) 7431 + (elf_tdata (abfd)->core_pid)); 7432 } 7433 7434 /* If there isn't a section called NAME, make one, using 7435 data from SECT. Note, this function will generate a 7436 reference to NAME, so you shouldn't deallocate or 7437 overwrite it. */ 7438 7439 static bfd_boolean 7440 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) 7441 { 7442 asection *sect2; 7443 7444 if (bfd_get_section_by_name (abfd, name) != NULL) 7445 return TRUE; 7446 7447 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags); 7448 if (sect2 == NULL) 7449 return FALSE; 7450 7451 sect2->size = sect->size; 7452 sect2->filepos = sect->filepos; 7453 sect2->alignment_power = sect->alignment_power; 7454 return TRUE; 7455 } 7456 7457 /* Create a pseudosection containing SIZE bytes at FILEPOS. This 7458 actually creates up to two pseudosections: 7459 - For the single-threaded case, a section named NAME, unless 7460 such a section already exists. 7461 - For the multi-threaded case, a section named "NAME/PID", where 7462 PID is elfcore_make_pid (abfd). 7463 Both pseudosections have identical contents. */ 7464 bfd_boolean 7465 _bfd_elfcore_make_pseudosection (bfd *abfd, 7466 char *name, 7467 size_t size, 7468 ufile_ptr filepos) 7469 { 7470 char buf[100]; 7471 char *threaded_name; 7472 size_t len; 7473 asection *sect; 7474 7475 /* Build the section name. */ 7476 7477 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); 7478 len = strlen (buf) + 1; 7479 threaded_name = (char *) bfd_alloc (abfd, len); 7480 if (threaded_name == NULL) 7481 return FALSE; 7482 memcpy (threaded_name, buf, len); 7483 7484 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name, 7485 SEC_HAS_CONTENTS); 7486 if (sect == NULL) 7487 return FALSE; 7488 sect->size = size; 7489 sect->filepos = filepos; 7490 sect->alignment_power = 2; 7491 7492 return elfcore_maybe_make_sect (abfd, name, sect); 7493 } 7494 7495 /* prstatus_t exists on: 7496 solaris 2.5+ 7497 linux 2.[01] + glibc 7498 unixware 4.2 7499 */ 7500 7501 #if defined (HAVE_PRSTATUS_T) 7502 7503 static bfd_boolean 7504 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 7505 { 7506 size_t size; 7507 int offset; 7508 7509 if (note->descsz == sizeof (prstatus_t)) 7510 { 7511 prstatus_t prstat; 7512 7513 size = sizeof (prstat.pr_reg); 7514 offset = offsetof (prstatus_t, pr_reg); 7515 memcpy (&prstat, note->descdata, sizeof (prstat)); 7516 7517 /* Do not overwrite the core signal if it 7518 has already been set by another thread. */ 7519 if (elf_tdata (abfd)->core_signal == 0) 7520 elf_tdata (abfd)->core_signal = prstat.pr_cursig; 7521 elf_tdata (abfd)->core_pid = prstat.pr_pid; 7522 7523 /* pr_who exists on: 7524 solaris 2.5+ 7525 unixware 4.2 7526 pr_who doesn't exist on: 7527 linux 2.[01] 7528 */ 7529 #if defined (HAVE_PRSTATUS_T_PR_WHO) 7530 elf_tdata (abfd)->core_lwpid = prstat.pr_who; 7531 #endif 7532 } 7533 #if defined (HAVE_PRSTATUS32_T) 7534 else if (note->descsz == sizeof (prstatus32_t)) 7535 { 7536 /* 64-bit host, 32-bit corefile */ 7537 prstatus32_t prstat; 7538 7539 size = sizeof (prstat.pr_reg); 7540 offset = offsetof (prstatus32_t, pr_reg); 7541 memcpy (&prstat, note->descdata, sizeof (prstat)); 7542 7543 /* Do not overwrite the core signal if it 7544 has already been set by another thread. */ 7545 if (elf_tdata (abfd)->core_signal == 0) 7546 elf_tdata (abfd)->core_signal = prstat.pr_cursig; 7547 elf_tdata (abfd)->core_pid = prstat.pr_pid; 7548 7549 /* pr_who exists on: 7550 solaris 2.5+ 7551 unixware 4.2 7552 pr_who doesn't exist on: 7553 linux 2.[01] 7554 */ 7555 #if defined (HAVE_PRSTATUS32_T_PR_WHO) 7556 elf_tdata (abfd)->core_lwpid = prstat.pr_who; 7557 #endif 7558 } 7559 #endif /* HAVE_PRSTATUS32_T */ 7560 else 7561 { 7562 /* Fail - we don't know how to handle any other 7563 note size (ie. data object type). */ 7564 return TRUE; 7565 } 7566 7567 /* Make a ".reg/999" section and a ".reg" section. */ 7568 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 7569 size, note->descpos + offset); 7570 } 7571 #endif /* defined (HAVE_PRSTATUS_T) */ 7572 7573 /* Create a pseudosection containing the exact contents of NOTE. */ 7574 static bfd_boolean 7575 elfcore_make_note_pseudosection (bfd *abfd, 7576 char *name, 7577 Elf_Internal_Note *note) 7578 { 7579 return _bfd_elfcore_make_pseudosection (abfd, name, 7580 note->descsz, note->descpos); 7581 } 7582 7583 /* There isn't a consistent prfpregset_t across platforms, 7584 but it doesn't matter, because we don't have to pick this 7585 data structure apart. */ 7586 7587 static bfd_boolean 7588 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) 7589 { 7590 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 7591 } 7592 7593 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note 7594 type of NT_PRXFPREG. Just include the whole note's contents 7595 literally. */ 7596 7597 static bfd_boolean 7598 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) 7599 { 7600 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 7601 } 7602 7603 static bfd_boolean 7604 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note) 7605 { 7606 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note); 7607 } 7608 7609 static bfd_boolean 7610 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note) 7611 { 7612 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note); 7613 } 7614 7615 #if defined (HAVE_PRPSINFO_T) 7616 typedef prpsinfo_t elfcore_psinfo_t; 7617 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ 7618 typedef prpsinfo32_t elfcore_psinfo32_t; 7619 #endif 7620 #endif 7621 7622 #if defined (HAVE_PSINFO_T) 7623 typedef psinfo_t elfcore_psinfo_t; 7624 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ 7625 typedef psinfo32_t elfcore_psinfo32_t; 7626 #endif 7627 #endif 7628 7629 /* return a malloc'ed copy of a string at START which is at 7630 most MAX bytes long, possibly without a terminating '\0'. 7631 the copy will always have a terminating '\0'. */ 7632 7633 char * 7634 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) 7635 { 7636 char *dups; 7637 char *end = (char *) memchr (start, '\0', max); 7638 size_t len; 7639 7640 if (end == NULL) 7641 len = max; 7642 else 7643 len = end - start; 7644 7645 dups = (char *) bfd_alloc (abfd, len + 1); 7646 if (dups == NULL) 7647 return NULL; 7648 7649 memcpy (dups, start, len); 7650 dups[len] = '\0'; 7651 7652 return dups; 7653 } 7654 7655 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 7656 static bfd_boolean 7657 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 7658 { 7659 if (note->descsz == sizeof (elfcore_psinfo_t)) 7660 { 7661 elfcore_psinfo_t psinfo; 7662 7663 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 7664 7665 elf_tdata (abfd)->core_program 7666 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 7667 sizeof (psinfo.pr_fname)); 7668 7669 elf_tdata (abfd)->core_command 7670 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 7671 sizeof (psinfo.pr_psargs)); 7672 } 7673 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 7674 else if (note->descsz == sizeof (elfcore_psinfo32_t)) 7675 { 7676 /* 64-bit host, 32-bit corefile */ 7677 elfcore_psinfo32_t psinfo; 7678 7679 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 7680 7681 elf_tdata (abfd)->core_program 7682 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 7683 sizeof (psinfo.pr_fname)); 7684 7685 elf_tdata (abfd)->core_command 7686 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 7687 sizeof (psinfo.pr_psargs)); 7688 } 7689 #endif 7690 7691 else 7692 { 7693 /* Fail - we don't know how to handle any other 7694 note size (ie. data object type). */ 7695 return TRUE; 7696 } 7697 7698 /* Note that for some reason, a spurious space is tacked 7699 onto the end of the args in some (at least one anyway) 7700 implementations, so strip it off if it exists. */ 7701 7702 { 7703 char *command = elf_tdata (abfd)->core_command; 7704 int n = strlen (command); 7705 7706 if (0 < n && command[n - 1] == ' ') 7707 command[n - 1] = '\0'; 7708 } 7709 7710 return TRUE; 7711 } 7712 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ 7713 7714 #if defined (HAVE_PSTATUS_T) 7715 static bfd_boolean 7716 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) 7717 { 7718 if (note->descsz == sizeof (pstatus_t) 7719 #if defined (HAVE_PXSTATUS_T) 7720 || note->descsz == sizeof (pxstatus_t) 7721 #endif 7722 ) 7723 { 7724 pstatus_t pstat; 7725 7726 memcpy (&pstat, note->descdata, sizeof (pstat)); 7727 7728 elf_tdata (abfd)->core_pid = pstat.pr_pid; 7729 } 7730 #if defined (HAVE_PSTATUS32_T) 7731 else if (note->descsz == sizeof (pstatus32_t)) 7732 { 7733 /* 64-bit host, 32-bit corefile */ 7734 pstatus32_t pstat; 7735 7736 memcpy (&pstat, note->descdata, sizeof (pstat)); 7737 7738 elf_tdata (abfd)->core_pid = pstat.pr_pid; 7739 } 7740 #endif 7741 /* Could grab some more details from the "representative" 7742 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an 7743 NT_LWPSTATUS note, presumably. */ 7744 7745 return TRUE; 7746 } 7747 #endif /* defined (HAVE_PSTATUS_T) */ 7748 7749 #if defined (HAVE_LWPSTATUS_T) 7750 static bfd_boolean 7751 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) 7752 { 7753 lwpstatus_t lwpstat; 7754 char buf[100]; 7755 char *name; 7756 size_t len; 7757 asection *sect; 7758 7759 if (note->descsz != sizeof (lwpstat) 7760 #if defined (HAVE_LWPXSTATUS_T) 7761 && note->descsz != sizeof (lwpxstatus_t) 7762 #endif 7763 ) 7764 return TRUE; 7765 7766 memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); 7767 7768 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid; 7769 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig; 7770 7771 /* Make a ".reg/999" section. */ 7772 7773 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); 7774 len = strlen (buf) + 1; 7775 name = bfd_alloc (abfd, len); 7776 if (name == NULL) 7777 return FALSE; 7778 memcpy (name, buf, len); 7779 7780 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 7781 if (sect == NULL) 7782 return FALSE; 7783 7784 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 7785 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); 7786 sect->filepos = note->descpos 7787 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); 7788 #endif 7789 7790 #if defined (HAVE_LWPSTATUS_T_PR_REG) 7791 sect->size = sizeof (lwpstat.pr_reg); 7792 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); 7793 #endif 7794 7795 sect->alignment_power = 2; 7796 7797 if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) 7798 return FALSE; 7799 7800 /* Make a ".reg2/999" section */ 7801 7802 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); 7803 len = strlen (buf) + 1; 7804 name = bfd_alloc (abfd, len); 7805 if (name == NULL) 7806 return FALSE; 7807 memcpy (name, buf, len); 7808 7809 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 7810 if (sect == NULL) 7811 return FALSE; 7812 7813 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 7814 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); 7815 sect->filepos = note->descpos 7816 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); 7817 #endif 7818 7819 #if defined (HAVE_LWPSTATUS_T_PR_FPREG) 7820 sect->size = sizeof (lwpstat.pr_fpreg); 7821 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); 7822 #endif 7823 7824 sect->alignment_power = 2; 7825 7826 return elfcore_maybe_make_sect (abfd, ".reg2", sect); 7827 } 7828 #endif /* defined (HAVE_LWPSTATUS_T) */ 7829 7830 static bfd_boolean 7831 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) 7832 { 7833 char buf[30]; 7834 char *name; 7835 size_t len; 7836 asection *sect; 7837 int type; 7838 int is_active_thread; 7839 bfd_vma base_addr; 7840 7841 if (note->descsz < 728) 7842 return TRUE; 7843 7844 if (! CONST_STRNEQ (note->namedata, "win32")) 7845 return TRUE; 7846 7847 type = bfd_get_32 (abfd, note->descdata); 7848 7849 switch (type) 7850 { 7851 case 1 /* NOTE_INFO_PROCESS */: 7852 /* FIXME: need to add ->core_command. */ 7853 /* process_info.pid */ 7854 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8); 7855 /* process_info.signal */ 7856 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12); 7857 break; 7858 7859 case 2 /* NOTE_INFO_THREAD */: 7860 /* Make a ".reg/999" section. */ 7861 /* thread_info.tid */ 7862 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8)); 7863 7864 len = strlen (buf) + 1; 7865 name = (char *) bfd_alloc (abfd, len); 7866 if (name == NULL) 7867 return FALSE; 7868 7869 memcpy (name, buf, len); 7870 7871 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 7872 if (sect == NULL) 7873 return FALSE; 7874 7875 /* sizeof (thread_info.thread_context) */ 7876 sect->size = 716; 7877 /* offsetof (thread_info.thread_context) */ 7878 sect->filepos = note->descpos + 12; 7879 sect->alignment_power = 2; 7880 7881 /* thread_info.is_active_thread */ 7882 is_active_thread = bfd_get_32 (abfd, note->descdata + 8); 7883 7884 if (is_active_thread) 7885 if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) 7886 return FALSE; 7887 break; 7888 7889 case 3 /* NOTE_INFO_MODULE */: 7890 /* Make a ".module/xxxxxxxx" section. */ 7891 /* module_info.base_address */ 7892 base_addr = bfd_get_32 (abfd, note->descdata + 4); 7893 sprintf (buf, ".module/%08lx", (unsigned long) base_addr); 7894 7895 len = strlen (buf) + 1; 7896 name = (char *) bfd_alloc (abfd, len); 7897 if (name == NULL) 7898 return FALSE; 7899 7900 memcpy (name, buf, len); 7901 7902 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 7903 7904 if (sect == NULL) 7905 return FALSE; 7906 7907 sect->size = note->descsz; 7908 sect->filepos = note->descpos; 7909 sect->alignment_power = 2; 7910 break; 7911 7912 default: 7913 return TRUE; 7914 } 7915 7916 return TRUE; 7917 } 7918 7919 static bfd_boolean 7920 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) 7921 { 7922 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7923 7924 switch (note->type) 7925 { 7926 default: 7927 return TRUE; 7928 7929 case NT_PRSTATUS: 7930 if (bed->elf_backend_grok_prstatus) 7931 if ((*bed->elf_backend_grok_prstatus) (abfd, note)) 7932 return TRUE; 7933 #if defined (HAVE_PRSTATUS_T) 7934 return elfcore_grok_prstatus (abfd, note); 7935 #else 7936 return TRUE; 7937 #endif 7938 7939 #if defined (HAVE_PSTATUS_T) 7940 case NT_PSTATUS: 7941 return elfcore_grok_pstatus (abfd, note); 7942 #endif 7943 7944 #if defined (HAVE_LWPSTATUS_T) 7945 case NT_LWPSTATUS: 7946 return elfcore_grok_lwpstatus (abfd, note); 7947 #endif 7948 7949 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ 7950 return elfcore_grok_prfpreg (abfd, note); 7951 7952 case NT_WIN32PSTATUS: 7953 return elfcore_grok_win32pstatus (abfd, note); 7954 7955 case NT_PRXFPREG: /* Linux SSE extension */ 7956 if (note->namesz == 6 7957 && strcmp (note->namedata, "LINUX") == 0) 7958 return elfcore_grok_prxfpreg (abfd, note); 7959 else 7960 return TRUE; 7961 7962 case NT_PPC_VMX: 7963 if (note->namesz == 6 7964 && strcmp (note->namedata, "LINUX") == 0) 7965 return elfcore_grok_ppc_vmx (abfd, note); 7966 else 7967 return TRUE; 7968 7969 case NT_PPC_VSX: 7970 if (note->namesz == 6 7971 && strcmp (note->namedata, "LINUX") == 0) 7972 return elfcore_grok_ppc_vsx (abfd, note); 7973 else 7974 return TRUE; 7975 7976 case NT_PRPSINFO: 7977 case NT_PSINFO: 7978 if (bed->elf_backend_grok_psinfo) 7979 if ((*bed->elf_backend_grok_psinfo) (abfd, note)) 7980 return TRUE; 7981 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 7982 return elfcore_grok_psinfo (abfd, note); 7983 #else 7984 return TRUE; 7985 #endif 7986 7987 case NT_AUXV: 7988 { 7989 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 7990 SEC_HAS_CONTENTS); 7991 7992 if (sect == NULL) 7993 return FALSE; 7994 sect->size = note->descsz; 7995 sect->filepos = note->descpos; 7996 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 7997 7998 return TRUE; 7999 } 8000 } 8001 } 8002 8003 static bfd_boolean 8004 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note) 8005 { 8006 elf_tdata (abfd)->build_id_size = note->descsz; 8007 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz); 8008 if (elf_tdata (abfd)->build_id == NULL) 8009 return FALSE; 8010 8011 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz); 8012 8013 return TRUE; 8014 } 8015 8016 static bfd_boolean 8017 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note) 8018 { 8019 switch (note->type) 8020 { 8021 default: 8022 return TRUE; 8023 8024 case NT_GNU_BUILD_ID: 8025 return elfobj_grok_gnu_build_id (abfd, note); 8026 } 8027 } 8028 8029 static bfd_boolean 8030 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) 8031 { 8032 char *cp; 8033 8034 cp = strchr (note->namedata, '@'); 8035 if (cp != NULL) 8036 { 8037 *lwpidp = atoi(cp + 1); 8038 return TRUE; 8039 } 8040 return FALSE; 8041 } 8042 8043 static bfd_boolean 8044 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 8045 { 8046 /* Signal number at offset 0x08. */ 8047 elf_tdata (abfd)->core_signal 8048 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 8049 8050 /* Process ID at offset 0x50. */ 8051 elf_tdata (abfd)->core_pid 8052 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); 8053 8054 /* Command name at 0x7c (max 32 bytes, including nul). */ 8055 elf_tdata (abfd)->core_command 8056 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); 8057 8058 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", 8059 note); 8060 } 8061 8062 static bfd_boolean 8063 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) 8064 { 8065 int lwp; 8066 8067 if (elfcore_netbsd_get_lwpid (note, &lwp)) 8068 elf_tdata (abfd)->core_lwpid = lwp; 8069 8070 if (note->type == NT_NETBSDCORE_PROCINFO) 8071 { 8072 /* NetBSD-specific core "procinfo". Note that we expect to 8073 find this note before any of the others, which is fine, 8074 since the kernel writes this note out first when it 8075 creates a core file. */ 8076 8077 return elfcore_grok_netbsd_procinfo (abfd, note); 8078 } 8079 8080 /* As of Jan 2002 there are no other machine-independent notes 8081 defined for NetBSD core files. If the note type is less 8082 than the start of the machine-dependent note types, we don't 8083 understand it. */ 8084 8085 if (note->type < NT_NETBSDCORE_FIRSTMACH) 8086 return TRUE; 8087 8088 8089 switch (bfd_get_arch (abfd)) 8090 { 8091 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and 8092 PT_GETFPREGS == mach+2. */ 8093 8094 case bfd_arch_alpha: 8095 case bfd_arch_sparc: 8096 switch (note->type) 8097 { 8098 case NT_NETBSDCORE_FIRSTMACH+0: 8099 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8100 8101 case NT_NETBSDCORE_FIRSTMACH+2: 8102 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8103 8104 default: 8105 return TRUE; 8106 } 8107 8108 /* On all other arch's, PT_GETREGS == mach+1 and 8109 PT_GETFPREGS == mach+3. */ 8110 8111 default: 8112 switch (note->type) 8113 { 8114 case NT_NETBSDCORE_FIRSTMACH+1: 8115 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8116 8117 case NT_NETBSDCORE_FIRSTMACH+3: 8118 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8119 8120 default: 8121 return TRUE; 8122 } 8123 } 8124 /* NOTREACHED */ 8125 } 8126 8127 static bfd_boolean 8128 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 8129 { 8130 /* Signal number at offset 0x08. */ 8131 elf_tdata (abfd)->core_signal 8132 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 8133 8134 /* Process ID at offset 0x20. */ 8135 elf_tdata (abfd)->core_pid 8136 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20); 8137 8138 /* Command name at 0x48 (max 32 bytes, including nul). */ 8139 elf_tdata (abfd)->core_command 8140 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31); 8141 8142 return TRUE; 8143 } 8144 8145 static bfd_boolean 8146 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note) 8147 { 8148 if (note->type == NT_OPENBSD_PROCINFO) 8149 return elfcore_grok_openbsd_procinfo (abfd, note); 8150 8151 if (note->type == NT_OPENBSD_REGS) 8152 return elfcore_make_note_pseudosection (abfd, ".reg", note); 8153 8154 if (note->type == NT_OPENBSD_FPREGS) 8155 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8156 8157 if (note->type == NT_OPENBSD_XFPREGS) 8158 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 8159 8160 if (note->type == NT_OPENBSD_AUXV) 8161 { 8162 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 8163 SEC_HAS_CONTENTS); 8164 8165 if (sect == NULL) 8166 return FALSE; 8167 sect->size = note->descsz; 8168 sect->filepos = note->descpos; 8169 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8170 8171 return TRUE; 8172 } 8173 8174 if (note->type == NT_OPENBSD_WCOOKIE) 8175 { 8176 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie", 8177 SEC_HAS_CONTENTS); 8178 8179 if (sect == NULL) 8180 return FALSE; 8181 sect->size = note->descsz; 8182 sect->filepos = note->descpos; 8183 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 8184 8185 return TRUE; 8186 } 8187 8188 return TRUE; 8189 } 8190 8191 static bfd_boolean 8192 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid) 8193 { 8194 void *ddata = note->descdata; 8195 char buf[100]; 8196 char *name; 8197 asection *sect; 8198 short sig; 8199 unsigned flags; 8200 8201 /* nto_procfs_status 'pid' field is at offset 0. */ 8202 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata); 8203 8204 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */ 8205 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); 8206 8207 /* nto_procfs_status 'flags' field is at offset 8. */ 8208 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); 8209 8210 /* nto_procfs_status 'what' field is at offset 14. */ 8211 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) 8212 { 8213 elf_tdata (abfd)->core_signal = sig; 8214 elf_tdata (abfd)->core_lwpid = *tid; 8215 } 8216 8217 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores 8218 do not come from signals so we make sure we set the current 8219 thread just in case. */ 8220 if (flags & 0x00000080) 8221 elf_tdata (abfd)->core_lwpid = *tid; 8222 8223 /* Make a ".qnx_core_status/%d" section. */ 8224 sprintf (buf, ".qnx_core_status/%ld", *tid); 8225 8226 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 8227 if (name == NULL) 8228 return FALSE; 8229 strcpy (name, buf); 8230 8231 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8232 if (sect == NULL) 8233 return FALSE; 8234 8235 sect->size = note->descsz; 8236 sect->filepos = note->descpos; 8237 sect->alignment_power = 2; 8238 8239 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); 8240 } 8241 8242 static bfd_boolean 8243 elfcore_grok_nto_regs (bfd *abfd, 8244 Elf_Internal_Note *note, 8245 long tid, 8246 char *base) 8247 { 8248 char buf[100]; 8249 char *name; 8250 asection *sect; 8251 8252 /* Make a "(base)/%d" section. */ 8253 sprintf (buf, "%s/%ld", base, tid); 8254 8255 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 8256 if (name == NULL) 8257 return FALSE; 8258 strcpy (name, buf); 8259 8260 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8261 if (sect == NULL) 8262 return FALSE; 8263 8264 sect->size = note->descsz; 8265 sect->filepos = note->descpos; 8266 sect->alignment_power = 2; 8267 8268 /* This is the current thread. */ 8269 if (elf_tdata (abfd)->core_lwpid == tid) 8270 return elfcore_maybe_make_sect (abfd, base, sect); 8271 8272 return TRUE; 8273 } 8274 8275 #define BFD_QNT_CORE_INFO 7 8276 #define BFD_QNT_CORE_STATUS 8 8277 #define BFD_QNT_CORE_GREG 9 8278 #define BFD_QNT_CORE_FPREG 10 8279 8280 static bfd_boolean 8281 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) 8282 { 8283 /* Every GREG section has a STATUS section before it. Store the 8284 tid from the previous call to pass down to the next gregs 8285 function. */ 8286 static long tid = 1; 8287 8288 switch (note->type) 8289 { 8290 case BFD_QNT_CORE_INFO: 8291 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); 8292 case BFD_QNT_CORE_STATUS: 8293 return elfcore_grok_nto_status (abfd, note, &tid); 8294 case BFD_QNT_CORE_GREG: 8295 return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); 8296 case BFD_QNT_CORE_FPREG: 8297 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); 8298 default: 8299 return TRUE; 8300 } 8301 } 8302 8303 static bfd_boolean 8304 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note) 8305 { 8306 char *name; 8307 asection *sect; 8308 size_t len; 8309 8310 /* Use note name as section name. */ 8311 len = note->namesz; 8312 name = (char *) bfd_alloc (abfd, len); 8313 if (name == NULL) 8314 return FALSE; 8315 memcpy (name, note->namedata, len); 8316 name[len - 1] = '\0'; 8317 8318 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 8319 if (sect == NULL) 8320 return FALSE; 8321 8322 sect->size = note->descsz; 8323 sect->filepos = note->descpos; 8324 sect->alignment_power = 1; 8325 8326 return TRUE; 8327 } 8328 8329 /* Function: elfcore_write_note 8330 8331 Inputs: 8332 buffer to hold note, and current size of buffer 8333 name of note 8334 type of note 8335 data for note 8336 size of data for note 8337 8338 Writes note to end of buffer. ELF64 notes are written exactly as 8339 for ELF32, despite the current (as of 2006) ELF gabi specifying 8340 that they ought to have 8-byte namesz and descsz field, and have 8341 8-byte alignment. Other writers, eg. Linux kernel, do the same. 8342 8343 Return: 8344 Pointer to realloc'd buffer, *BUFSIZ updated. */ 8345 8346 char * 8347 elfcore_write_note (bfd *abfd, 8348 char *buf, 8349 int *bufsiz, 8350 const char *name, 8351 int type, 8352 const void *input, 8353 int size) 8354 { 8355 Elf_External_Note *xnp; 8356 size_t namesz; 8357 size_t newspace; 8358 char *dest; 8359 8360 namesz = 0; 8361 if (name != NULL) 8362 namesz = strlen (name) + 1; 8363 8364 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4); 8365 8366 buf = (char *) realloc (buf, *bufsiz + newspace); 8367 if (buf == NULL) 8368 return buf; 8369 dest = buf + *bufsiz; 8370 *bufsiz += newspace; 8371 xnp = (Elf_External_Note *) dest; 8372 H_PUT_32 (abfd, namesz, xnp->namesz); 8373 H_PUT_32 (abfd, size, xnp->descsz); 8374 H_PUT_32 (abfd, type, xnp->type); 8375 dest = xnp->name; 8376 if (name != NULL) 8377 { 8378 memcpy (dest, name, namesz); 8379 dest += namesz; 8380 while (namesz & 3) 8381 { 8382 *dest++ = '\0'; 8383 ++namesz; 8384 } 8385 } 8386 memcpy (dest, input, size); 8387 dest += size; 8388 while (size & 3) 8389 { 8390 *dest++ = '\0'; 8391 ++size; 8392 } 8393 return buf; 8394 } 8395 8396 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 8397 char * 8398 elfcore_write_prpsinfo (bfd *abfd, 8399 char *buf, 8400 int *bufsiz, 8401 const char *fname, 8402 const char *psargs) 8403 { 8404 const char *note_name = "CORE"; 8405 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8406 8407 if (bed->elf_backend_write_core_note != NULL) 8408 { 8409 char *ret; 8410 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 8411 NT_PRPSINFO, fname, psargs); 8412 if (ret != NULL) 8413 return ret; 8414 } 8415 8416 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 8417 if (bed->s->elfclass == ELFCLASS32) 8418 { 8419 #if defined (HAVE_PSINFO32_T) 8420 psinfo32_t data; 8421 int note_type = NT_PSINFO; 8422 #else 8423 prpsinfo32_t data; 8424 int note_type = NT_PRPSINFO; 8425 #endif 8426 8427 memset (&data, 0, sizeof (data)); 8428 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 8429 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 8430 return elfcore_write_note (abfd, buf, bufsiz, 8431 note_name, note_type, &data, sizeof (data)); 8432 } 8433 else 8434 #endif 8435 { 8436 #if defined (HAVE_PSINFO_T) 8437 psinfo_t data; 8438 int note_type = NT_PSINFO; 8439 #else 8440 prpsinfo_t data; 8441 int note_type = NT_PRPSINFO; 8442 #endif 8443 8444 memset (&data, 0, sizeof (data)); 8445 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 8446 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 8447 return elfcore_write_note (abfd, buf, bufsiz, 8448 note_name, note_type, &data, sizeof (data)); 8449 } 8450 } 8451 #endif /* PSINFO_T or PRPSINFO_T */ 8452 8453 #if defined (HAVE_PRSTATUS_T) 8454 char * 8455 elfcore_write_prstatus (bfd *abfd, 8456 char *buf, 8457 int *bufsiz, 8458 long pid, 8459 int cursig, 8460 const void *gregs) 8461 { 8462 const char *note_name = "CORE"; 8463 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8464 8465 if (bed->elf_backend_write_core_note != NULL) 8466 { 8467 char *ret; 8468 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 8469 NT_PRSTATUS, 8470 pid, cursig, gregs); 8471 if (ret != NULL) 8472 return ret; 8473 } 8474 8475 #if defined (HAVE_PRSTATUS32_T) 8476 if (bed->s->elfclass == ELFCLASS32) 8477 { 8478 prstatus32_t prstat; 8479 8480 memset (&prstat, 0, sizeof (prstat)); 8481 prstat.pr_pid = pid; 8482 prstat.pr_cursig = cursig; 8483 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 8484 return elfcore_write_note (abfd, buf, bufsiz, note_name, 8485 NT_PRSTATUS, &prstat, sizeof (prstat)); 8486 } 8487 else 8488 #endif 8489 { 8490 prstatus_t prstat; 8491 8492 memset (&prstat, 0, sizeof (prstat)); 8493 prstat.pr_pid = pid; 8494 prstat.pr_cursig = cursig; 8495 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 8496 return elfcore_write_note (abfd, buf, bufsiz, note_name, 8497 NT_PRSTATUS, &prstat, sizeof (prstat)); 8498 } 8499 } 8500 #endif /* HAVE_PRSTATUS_T */ 8501 8502 #if defined (HAVE_LWPSTATUS_T) 8503 char * 8504 elfcore_write_lwpstatus (bfd *abfd, 8505 char *buf, 8506 int *bufsiz, 8507 long pid, 8508 int cursig, 8509 const void *gregs) 8510 { 8511 lwpstatus_t lwpstat; 8512 const char *note_name = "CORE"; 8513 8514 memset (&lwpstat, 0, sizeof (lwpstat)); 8515 lwpstat.pr_lwpid = pid >> 16; 8516 lwpstat.pr_cursig = cursig; 8517 #if defined (HAVE_LWPSTATUS_T_PR_REG) 8518 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); 8519 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 8520 #if !defined(gregs) 8521 memcpy (lwpstat.pr_context.uc_mcontext.gregs, 8522 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); 8523 #else 8524 memcpy (lwpstat.pr_context.uc_mcontext.__gregs, 8525 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); 8526 #endif 8527 #endif 8528 return elfcore_write_note (abfd, buf, bufsiz, note_name, 8529 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); 8530 } 8531 #endif /* HAVE_LWPSTATUS_T */ 8532 8533 #if defined (HAVE_PSTATUS_T) 8534 char * 8535 elfcore_write_pstatus (bfd *abfd, 8536 char *buf, 8537 int *bufsiz, 8538 long pid, 8539 int cursig ATTRIBUTE_UNUSED, 8540 const void *gregs ATTRIBUTE_UNUSED) 8541 { 8542 const char *note_name = "CORE"; 8543 #if defined (HAVE_PSTATUS32_T) 8544 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8545 8546 if (bed->s->elfclass == ELFCLASS32) 8547 { 8548 pstatus32_t pstat; 8549 8550 memset (&pstat, 0, sizeof (pstat)); 8551 pstat.pr_pid = pid & 0xffff; 8552 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 8553 NT_PSTATUS, &pstat, sizeof (pstat)); 8554 return buf; 8555 } 8556 else 8557 #endif 8558 { 8559 pstatus_t pstat; 8560 8561 memset (&pstat, 0, sizeof (pstat)); 8562 pstat.pr_pid = pid & 0xffff; 8563 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 8564 NT_PSTATUS, &pstat, sizeof (pstat)); 8565 return buf; 8566 } 8567 } 8568 #endif /* HAVE_PSTATUS_T */ 8569 8570 char * 8571 elfcore_write_prfpreg (bfd *abfd, 8572 char *buf, 8573 int *bufsiz, 8574 const void *fpregs, 8575 int size) 8576 { 8577 const char *note_name = "CORE"; 8578 return elfcore_write_note (abfd, buf, bufsiz, 8579 note_name, NT_FPREGSET, fpregs, size); 8580 } 8581 8582 char * 8583 elfcore_write_prxfpreg (bfd *abfd, 8584 char *buf, 8585 int *bufsiz, 8586 const void *xfpregs, 8587 int size) 8588 { 8589 char *note_name = "LINUX"; 8590 return elfcore_write_note (abfd, buf, bufsiz, 8591 note_name, NT_PRXFPREG, xfpregs, size); 8592 } 8593 8594 char * 8595 elfcore_write_ppc_vmx (bfd *abfd, 8596 char *buf, 8597 int *bufsiz, 8598 const void *ppc_vmx, 8599 int size) 8600 { 8601 char *note_name = "LINUX"; 8602 return elfcore_write_note (abfd, buf, bufsiz, 8603 note_name, NT_PPC_VMX, ppc_vmx, size); 8604 } 8605 8606 char * 8607 elfcore_write_ppc_vsx (bfd *abfd, 8608 char *buf, 8609 int *bufsiz, 8610 const void *ppc_vsx, 8611 int size) 8612 { 8613 char *note_name = "LINUX"; 8614 return elfcore_write_note (abfd, buf, bufsiz, 8615 note_name, NT_PPC_VSX, ppc_vsx, size); 8616 } 8617 8618 char * 8619 elfcore_write_register_note (bfd *abfd, 8620 char *buf, 8621 int *bufsiz, 8622 const char *section, 8623 const void *data, 8624 int size) 8625 { 8626 if (strcmp (section, ".reg2") == 0) 8627 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size); 8628 if (strcmp (section, ".reg-xfp") == 0) 8629 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size); 8630 if (strcmp (section, ".reg-ppc-vmx") == 0) 8631 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size); 8632 if (strcmp (section, ".reg-ppc-vsx") == 0) 8633 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size); 8634 return NULL; 8635 } 8636 8637 static bfd_boolean 8638 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset) 8639 { 8640 char *p; 8641 8642 p = buf; 8643 while (p < buf + size) 8644 { 8645 /* FIXME: bad alignment assumption. */ 8646 Elf_External_Note *xnp = (Elf_External_Note *) p; 8647 Elf_Internal_Note in; 8648 8649 if (offsetof (Elf_External_Note, name) > buf - p + size) 8650 return FALSE; 8651 8652 in.type = H_GET_32 (abfd, xnp->type); 8653 8654 in.namesz = H_GET_32 (abfd, xnp->namesz); 8655 in.namedata = xnp->name; 8656 if (in.namesz > buf - in.namedata + size) 8657 return FALSE; 8658 8659 in.descsz = H_GET_32 (abfd, xnp->descsz); 8660 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); 8661 in.descpos = offset + (in.descdata - buf); 8662 if (in.descsz != 0 8663 && (in.descdata >= buf + size 8664 || in.descsz > buf - in.descdata + size)) 8665 return FALSE; 8666 8667 switch (bfd_get_format (abfd)) 8668 { 8669 default: 8670 return TRUE; 8671 8672 case bfd_core: 8673 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE")) 8674 { 8675 if (! elfcore_grok_netbsd_note (abfd, &in)) 8676 return FALSE; 8677 } 8678 else if (CONST_STRNEQ (in.namedata, "OpenBSD")) 8679 { 8680 if (! elfcore_grok_openbsd_note (abfd, &in)) 8681 return FALSE; 8682 } 8683 else if (CONST_STRNEQ (in.namedata, "QNX")) 8684 { 8685 if (! elfcore_grok_nto_note (abfd, &in)) 8686 return FALSE; 8687 } 8688 else if (CONST_STRNEQ (in.namedata, "SPU/")) 8689 { 8690 if (! elfcore_grok_spu_note (abfd, &in)) 8691 return FALSE; 8692 } 8693 else 8694 { 8695 if (! elfcore_grok_note (abfd, &in)) 8696 return FALSE; 8697 } 8698 break; 8699 8700 case bfd_object: 8701 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0) 8702 { 8703 if (! elfobj_grok_gnu_note (abfd, &in)) 8704 return FALSE; 8705 } 8706 break; 8707 } 8708 8709 p = in.descdata + BFD_ALIGN (in.descsz, 4); 8710 } 8711 8712 return TRUE; 8713 } 8714 8715 static bfd_boolean 8716 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size) 8717 { 8718 char *buf; 8719 8720 if (size <= 0) 8721 return TRUE; 8722 8723 if (bfd_seek (abfd, offset, SEEK_SET) != 0) 8724 return FALSE; 8725 8726 buf = (char *) bfd_malloc (size); 8727 if (buf == NULL) 8728 return FALSE; 8729 8730 if (bfd_bread (buf, size, abfd) != size 8731 || !elf_parse_notes (abfd, buf, size, offset)) 8732 { 8733 free (buf); 8734 return FALSE; 8735 } 8736 8737 free (buf); 8738 return TRUE; 8739 } 8740 8741 /* Providing external access to the ELF program header table. */ 8742 8743 /* Return an upper bound on the number of bytes required to store a 8744 copy of ABFD's program header table entries. Return -1 if an error 8745 occurs; bfd_get_error will return an appropriate code. */ 8746 8747 long 8748 bfd_get_elf_phdr_upper_bound (bfd *abfd) 8749 { 8750 if (abfd->xvec->flavour != bfd_target_elf_flavour) 8751 { 8752 bfd_set_error (bfd_error_wrong_format); 8753 return -1; 8754 } 8755 8756 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); 8757 } 8758 8759 /* Copy ABFD's program header table entries to *PHDRS. The entries 8760 will be stored as an array of Elf_Internal_Phdr structures, as 8761 defined in include/elf/internal.h. To find out how large the 8762 buffer needs to be, call bfd_get_elf_phdr_upper_bound. 8763 8764 Return the number of program header table entries read, or -1 if an 8765 error occurs; bfd_get_error will return an appropriate code. */ 8766 8767 int 8768 bfd_get_elf_phdrs (bfd *abfd, void *phdrs) 8769 { 8770 int num_phdrs; 8771 8772 if (abfd->xvec->flavour != bfd_target_elf_flavour) 8773 { 8774 bfd_set_error (bfd_error_wrong_format); 8775 return -1; 8776 } 8777 8778 num_phdrs = elf_elfheader (abfd)->e_phnum; 8779 memcpy (phdrs, elf_tdata (abfd)->phdr, 8780 num_phdrs * sizeof (Elf_Internal_Phdr)); 8781 8782 return num_phdrs; 8783 } 8784 8785 enum elf_reloc_type_class 8786 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) 8787 { 8788 return reloc_class_normal; 8789 } 8790 8791 /* For RELA architectures, return the relocation value for a 8792 relocation against a local symbol. */ 8793 8794 bfd_vma 8795 _bfd_elf_rela_local_sym (bfd *abfd, 8796 Elf_Internal_Sym *sym, 8797 asection **psec, 8798 Elf_Internal_Rela *rel) 8799 { 8800 asection *sec = *psec; 8801 bfd_vma relocation; 8802 8803 relocation = (sec->output_section->vma 8804 + sec->output_offset 8805 + sym->st_value); 8806 if ((sec->flags & SEC_MERGE) 8807 && ELF_ST_TYPE (sym->st_info) == STT_SECTION 8808 && sec->sec_info_type == ELF_INFO_TYPE_MERGE) 8809 { 8810 rel->r_addend = 8811 _bfd_merged_section_offset (abfd, psec, 8812 elf_section_data (sec)->sec_info, 8813 sym->st_value + rel->r_addend); 8814 if (sec != *psec) 8815 { 8816 /* If we have changed the section, and our original section is 8817 marked with SEC_EXCLUDE, it means that the original 8818 SEC_MERGE section has been completely subsumed in some 8819 other SEC_MERGE section. In this case, we need to leave 8820 some info around for --emit-relocs. */ 8821 if ((sec->flags & SEC_EXCLUDE) != 0) 8822 sec->kept_section = *psec; 8823 sec = *psec; 8824 } 8825 rel->r_addend -= relocation; 8826 rel->r_addend += sec->output_section->vma + sec->output_offset; 8827 } 8828 return relocation; 8829 } 8830 8831 bfd_vma 8832 _bfd_elf_rel_local_sym (bfd *abfd, 8833 Elf_Internal_Sym *sym, 8834 asection **psec, 8835 bfd_vma addend) 8836 { 8837 asection *sec = *psec; 8838 8839 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE) 8840 return sym->st_value + addend; 8841 8842 return _bfd_merged_section_offset (abfd, psec, 8843 elf_section_data (sec)->sec_info, 8844 sym->st_value + addend); 8845 } 8846 8847 bfd_vma 8848 _bfd_elf_section_offset (bfd *abfd, 8849 struct bfd_link_info *info, 8850 asection *sec, 8851 bfd_vma offset) 8852 { 8853 switch (sec->sec_info_type) 8854 { 8855 case ELF_INFO_TYPE_STABS: 8856 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, 8857 offset); 8858 case ELF_INFO_TYPE_EH_FRAME: 8859 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); 8860 default: 8861 return offset; 8862 } 8863 } 8864 8865 /* Create a new BFD as if by bfd_openr. Rather than opening a file, 8866 reconstruct an ELF file by reading the segments out of remote memory 8867 based on the ELF file header at EHDR_VMA and the ELF program headers it 8868 points to. If not null, *LOADBASEP is filled in with the difference 8869 between the VMAs from which the segments were read, and the VMAs the 8870 file headers (and hence BFD's idea of each section's VMA) put them at. 8871 8872 The function TARGET_READ_MEMORY is called to copy LEN bytes from the 8873 remote memory at target address VMA into the local buffer at MYADDR; it 8874 should return zero on success or an `errno' code on failure. TEMPL must 8875 be a BFD for an ELF target with the word size and byte order found in 8876 the remote memory. */ 8877 8878 bfd * 8879 bfd_elf_bfd_from_remote_memory 8880 (bfd *templ, 8881 bfd_vma ehdr_vma, 8882 bfd_vma *loadbasep, 8883 int (*target_read_memory) (bfd_vma, bfd_byte *, int)) 8884 { 8885 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory) 8886 (templ, ehdr_vma, loadbasep, target_read_memory); 8887 } 8888 8889 long 8890 _bfd_elf_get_synthetic_symtab (bfd *abfd, 8891 long symcount ATTRIBUTE_UNUSED, 8892 asymbol **syms ATTRIBUTE_UNUSED, 8893 long dynsymcount, 8894 asymbol **dynsyms, 8895 asymbol **ret) 8896 { 8897 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8898 asection *relplt; 8899 asymbol *s; 8900 const char *relplt_name; 8901 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 8902 arelent *p; 8903 long count, i, n; 8904 size_t size; 8905 Elf_Internal_Shdr *hdr; 8906 char *names; 8907 asection *plt; 8908 8909 *ret = NULL; 8910 8911 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 8912 return 0; 8913 8914 if (dynsymcount <= 0) 8915 return 0; 8916 8917 if (!bed->plt_sym_val) 8918 return 0; 8919 8920 relplt_name = bed->relplt_name; 8921 if (relplt_name == NULL) 8922 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt"; 8923 relplt = bfd_get_section_by_name (abfd, relplt_name); 8924 if (relplt == NULL) 8925 return 0; 8926 8927 hdr = &elf_section_data (relplt)->this_hdr; 8928 if (hdr->sh_link != elf_dynsymtab (abfd) 8929 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 8930 return 0; 8931 8932 plt = bfd_get_section_by_name (abfd, ".plt"); 8933 if (plt == NULL) 8934 return 0; 8935 8936 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 8937 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 8938 return -1; 8939 8940 count = relplt->size / hdr->sh_entsize; 8941 size = count * sizeof (asymbol); 8942 p = relplt->relocation; 8943 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 8944 { 8945 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 8946 if (p->addend != 0) 8947 { 8948 #ifdef BFD64 8949 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64); 8950 #else 8951 size += sizeof ("+0x") - 1 + 8; 8952 #endif 8953 } 8954 } 8955 8956 s = *ret = (asymbol *) bfd_malloc (size); 8957 if (s == NULL) 8958 return -1; 8959 8960 names = (char *) (s + count); 8961 p = relplt->relocation; 8962 n = 0; 8963 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 8964 { 8965 size_t len; 8966 bfd_vma addr; 8967 8968 addr = bed->plt_sym_val (i, plt, p); 8969 if (addr == (bfd_vma) -1) 8970 continue; 8971 8972 *s = **p->sym_ptr_ptr; 8973 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 8974 we are defining a symbol, ensure one of them is set. */ 8975 if ((s->flags & BSF_LOCAL) == 0) 8976 s->flags |= BSF_GLOBAL; 8977 s->flags |= BSF_SYNTHETIC; 8978 s->section = plt; 8979 s->value = addr - plt->vma; 8980 s->name = names; 8981 s->udata.p = NULL; 8982 len = strlen ((*p->sym_ptr_ptr)->name); 8983 memcpy (names, (*p->sym_ptr_ptr)->name, len); 8984 names += len; 8985 if (p->addend != 0) 8986 { 8987 char buf[30], *a; 8988 int len; 8989 memcpy (names, "+0x", sizeof ("+0x") - 1); 8990 names += sizeof ("+0x") - 1; 8991 bfd_sprintf_vma (abfd, buf, p->addend); 8992 for (a = buf; *a == '0'; ++a) 8993 ; 8994 len = strlen (a); 8995 memcpy (names, a, len); 8996 names += len; 8997 } 8998 memcpy (names, "@plt", sizeof ("@plt")); 8999 names += sizeof ("@plt"); 9000 ++s, ++n; 9001 } 9002 9003 return n; 9004 } 9005 9006 /* It is only used by x86-64 so far. */ 9007 asection _bfd_elf_large_com_section 9008 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, 9009 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0); 9010 9011 void 9012 _bfd_elf_set_osabi (bfd * abfd, 9013 struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 9014 { 9015 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 9016 9017 i_ehdrp = elf_elfheader (abfd); 9018 9019 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; 9020 9021 /* To make things simpler for the loader on Linux systems we set the 9022 osabi field to ELFOSABI_LINUX if the binary contains symbols of 9023 the STT_GNU_IFUNC type. */ 9024 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE 9025 && elf_tdata (abfd)->has_ifunc_symbols) 9026 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; 9027 } 9028 9029 9030 /* Return TRUE for ELF symbol types that represent functions. 9031 This is the default version of this function, which is sufficient for 9032 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */ 9033 9034 bfd_boolean 9035 _bfd_elf_is_function_type (unsigned int type) 9036 { 9037 return (type == STT_FUNC 9038 || type == STT_GNU_IFUNC); 9039 } 9040