1 /* X86-64 specific support for ELF 2 Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 3 2010 Free Software Foundation, Inc. 4 Contributed by Jan Hubicka <jh@suse.cz>. 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "sysdep.h" 24 #include "bfd.h" 25 #include "bfdlink.h" 26 #include "libbfd.h" 27 #include "elf-bfd.h" 28 #include "bfd_stdint.h" 29 #include "objalloc.h" 30 #include "hashtab.h" 31 32 #include "elf/x86-64.h" 33 34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 35 #define MINUS_ONE (~ (bfd_vma) 0) 36 37 /* Since both 32-bit and 64-bit x86-64 encode relocation type in the 38 identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get 39 relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE 40 since they are the same. */ 41 42 #define ABI_64_P(abfd) \ 43 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 44 45 /* The relocation "howto" table. Order of fields: 46 type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow, 47 special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */ 48 static reloc_howto_type x86_64_elf_howto_table[] = 49 { 50 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, 51 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000, 52 FALSE), 53 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 54 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE, 55 FALSE), 56 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 57 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff, 58 TRUE), 59 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 60 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff, 61 FALSE), 62 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 63 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff, 64 TRUE), 65 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 66 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff, 67 FALSE), 68 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 69 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE, 70 MINUS_ONE, FALSE), 71 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 72 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE, 73 MINUS_ONE, FALSE), 74 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 75 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE, 76 MINUS_ONE, FALSE), 77 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed, 78 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff, 79 0xffffffff, TRUE), 80 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned, 81 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff, 82 FALSE), 83 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed, 84 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff, 85 FALSE), 86 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, 87 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE), 88 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield, 89 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE), 90 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, 91 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE), 92 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, 93 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE), 94 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 95 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE, 96 MINUS_ONE, FALSE), 97 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 98 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE, 99 MINUS_ONE, FALSE), 100 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 101 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE, 102 MINUS_ONE, FALSE), 103 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed, 104 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff, 105 0xffffffff, TRUE), 106 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed, 107 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff, 108 0xffffffff, TRUE), 109 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 110 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff, 111 0xffffffff, FALSE), 112 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed, 113 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff, 114 0xffffffff, TRUE), 115 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 116 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff, 117 0xffffffff, FALSE), 118 HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield, 119 bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE, 120 TRUE), 121 HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 122 bfd_elf_generic_reloc, "R_X86_64_GOTOFF64", 123 FALSE, MINUS_ONE, MINUS_ONE, FALSE), 124 HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed, 125 bfd_elf_generic_reloc, "R_X86_64_GOTPC32", 126 FALSE, 0xffffffff, 0xffffffff, TRUE), 127 HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, 128 bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE, 129 FALSE), 130 HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed, 131 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE, 132 MINUS_ONE, TRUE), 133 HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed, 134 bfd_elf_generic_reloc, "R_X86_64_GOTPC64", 135 FALSE, MINUS_ONE, MINUS_ONE, TRUE), 136 HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed, 137 bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE, 138 MINUS_ONE, FALSE), 139 HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed, 140 bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE, 141 MINUS_ONE, FALSE), 142 EMPTY_HOWTO (32), 143 EMPTY_HOWTO (33), 144 HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0, 145 complain_overflow_bitfield, bfd_elf_generic_reloc, 146 "R_X86_64_GOTPC32_TLSDESC", 147 FALSE, 0xffffffff, 0xffffffff, TRUE), 148 HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0, 149 complain_overflow_dont, bfd_elf_generic_reloc, 150 "R_X86_64_TLSDESC_CALL", 151 FALSE, 0, 0, FALSE), 152 HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0, 153 complain_overflow_bitfield, bfd_elf_generic_reloc, 154 "R_X86_64_TLSDESC", 155 FALSE, MINUS_ONE, MINUS_ONE, FALSE), 156 HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield, 157 bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE, 158 MINUS_ONE, FALSE), 159 160 /* We have a gap in the reloc numbers here. 161 R_X86_64_standard counts the number up to this point, and 162 R_X86_64_vt_offset is the value to subtract from a reloc type of 163 R_X86_64_GNU_VT* to form an index into this table. */ 164 #define R_X86_64_standard (R_X86_64_IRELATIVE + 1) 165 #define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard) 166 167 /* GNU extension to record C++ vtable hierarchy. */ 168 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont, 169 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE), 170 171 /* GNU extension to record C++ vtable member usage. */ 172 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont, 173 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0, 174 FALSE) 175 }; 176 177 #define IS_X86_64_PCREL_TYPE(TYPE) \ 178 ( ((TYPE) == R_X86_64_PC8) \ 179 || ((TYPE) == R_X86_64_PC16) \ 180 || ((TYPE) == R_X86_64_PC32) \ 181 || ((TYPE) == R_X86_64_PC64)) 182 183 /* Map BFD relocs to the x86_64 elf relocs. */ 184 struct elf_reloc_map 185 { 186 bfd_reloc_code_real_type bfd_reloc_val; 187 unsigned char elf_reloc_val; 188 }; 189 190 static const struct elf_reloc_map x86_64_reloc_map[] = 191 { 192 { BFD_RELOC_NONE, R_X86_64_NONE, }, 193 { BFD_RELOC_64, R_X86_64_64, }, 194 { BFD_RELOC_32_PCREL, R_X86_64_PC32, }, 195 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,}, 196 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,}, 197 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, }, 198 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, }, 199 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, }, 200 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, }, 201 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, }, 202 { BFD_RELOC_32, R_X86_64_32, }, 203 { BFD_RELOC_X86_64_32S, R_X86_64_32S, }, 204 { BFD_RELOC_16, R_X86_64_16, }, 205 { BFD_RELOC_16_PCREL, R_X86_64_PC16, }, 206 { BFD_RELOC_8, R_X86_64_8, }, 207 { BFD_RELOC_8_PCREL, R_X86_64_PC8, }, 208 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, }, 209 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, }, 210 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, }, 211 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, }, 212 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, }, 213 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, }, 214 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, }, 215 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, }, 216 { BFD_RELOC_64_PCREL, R_X86_64_PC64, }, 217 { BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, }, 218 { BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, }, 219 { BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, }, 220 { BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, }, 221 { BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, }, 222 { BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, }, 223 { BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, }, 224 { BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, }, 225 { BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, }, 226 { BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, }, 227 { BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, }, 228 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, }, 229 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, }, 230 }; 231 232 static reloc_howto_type * 233 elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type) 234 { 235 unsigned i; 236 237 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT 238 || r_type >= (unsigned int) R_X86_64_max) 239 { 240 if (r_type >= (unsigned int) R_X86_64_standard) 241 { 242 (*_bfd_error_handler) (_("%B: invalid relocation type %d"), 243 abfd, (int) r_type); 244 r_type = R_X86_64_NONE; 245 } 246 i = r_type; 247 } 248 else 249 i = r_type - (unsigned int) R_X86_64_vt_offset; 250 BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type); 251 return &x86_64_elf_howto_table[i]; 252 } 253 254 /* Given a BFD reloc type, return a HOWTO structure. */ 255 static reloc_howto_type * 256 elf_x86_64_reloc_type_lookup (bfd *abfd, 257 bfd_reloc_code_real_type code) 258 { 259 unsigned int i; 260 261 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map); 262 i++) 263 { 264 if (x86_64_reloc_map[i].bfd_reloc_val == code) 265 return elf_x86_64_rtype_to_howto (abfd, 266 x86_64_reloc_map[i].elf_reloc_val); 267 } 268 return 0; 269 } 270 271 static reloc_howto_type * 272 elf_x86_64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 273 const char *r_name) 274 { 275 unsigned int i; 276 277 for (i = 0; 278 i < (sizeof (x86_64_elf_howto_table) 279 / sizeof (x86_64_elf_howto_table[0])); 280 i++) 281 if (x86_64_elf_howto_table[i].name != NULL 282 && strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0) 283 return &x86_64_elf_howto_table[i]; 284 285 return NULL; 286 } 287 288 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */ 289 290 static void 291 elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr, 292 Elf_Internal_Rela *dst) 293 { 294 unsigned r_type; 295 296 r_type = ELF32_R_TYPE (dst->r_info); 297 cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type); 298 BFD_ASSERT (r_type == cache_ptr->howto->type); 299 } 300 301 /* Support for core dump NOTE sections. */ 302 static bfd_boolean 303 elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 304 { 305 int offset; 306 size_t size; 307 308 switch (note->descsz) 309 { 310 default: 311 return FALSE; 312 313 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */ 314 /* pr_cursig */ 315 elf_tdata (abfd)->core_signal 316 = bfd_get_16 (abfd, note->descdata + 12); 317 318 /* pr_pid */ 319 elf_tdata (abfd)->core_lwpid 320 = bfd_get_32 (abfd, note->descdata + 32); 321 322 /* pr_reg */ 323 offset = 112; 324 size = 216; 325 326 break; 327 } 328 329 /* Make a ".reg/999" section. */ 330 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 331 size, note->descpos + offset); 332 } 333 334 static bfd_boolean 335 elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 336 { 337 switch (note->descsz) 338 { 339 default: 340 return FALSE; 341 342 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */ 343 elf_tdata (abfd)->core_pid 344 = bfd_get_32 (abfd, note->descdata + 24); 345 elf_tdata (abfd)->core_program 346 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); 347 elf_tdata (abfd)->core_command 348 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); 349 } 350 351 /* Note that for some reason, a spurious space is tacked 352 onto the end of the args in some (at least one anyway) 353 implementations, so strip it off if it exists. */ 354 355 { 356 char *command = elf_tdata (abfd)->core_command; 357 int n = strlen (command); 358 359 if (0 < n && command[n - 1] == ' ') 360 command[n - 1] = '\0'; 361 } 362 363 return TRUE; 364 } 365 366 /* Functions for the x86-64 ELF linker. */ 367 368 /* The name of the dynamic interpreter. This is put in the .interp 369 section. */ 370 371 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1" 372 #define ELF32_DYNAMIC_INTERPRETER "/lib/ld32.so.1" 373 374 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid 375 copying dynamic variables from a shared lib into an app's dynbss 376 section, and instead use a dynamic relocation to point into the 377 shared lib. */ 378 #define ELIMINATE_COPY_RELOCS 1 379 380 /* The size in bytes of an entry in the global offset table. */ 381 382 #define GOT_ENTRY_SIZE 8 383 384 /* The size in bytes of an entry in the procedure linkage table. */ 385 386 #define PLT_ENTRY_SIZE 16 387 388 /* The first entry in a procedure linkage table looks like this. See the 389 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */ 390 391 static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] = 392 { 393 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */ 394 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */ 395 0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */ 396 }; 397 398 /* Subsequent entries in a procedure linkage table look like this. */ 399 400 static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] = 401 { 402 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */ 403 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */ 404 0x68, /* pushq immediate */ 405 0, 0, 0, 0, /* replaced with index into relocation table. */ 406 0xe9, /* jmp relative */ 407 0, 0, 0, 0 /* replaced with offset to start of .plt0. */ 408 }; 409 410 /* x86-64 ELF linker hash entry. */ 411 412 struct elf_x86_64_link_hash_entry 413 { 414 struct elf_link_hash_entry elf; 415 416 /* Track dynamic relocs copied for this symbol. */ 417 struct elf_dyn_relocs *dyn_relocs; 418 419 #define GOT_UNKNOWN 0 420 #define GOT_NORMAL 1 421 #define GOT_TLS_GD 2 422 #define GOT_TLS_IE 3 423 #define GOT_TLS_GDESC 4 424 #define GOT_TLS_GD_BOTH_P(type) \ 425 ((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) 426 #define GOT_TLS_GD_P(type) \ 427 ((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) 428 #define GOT_TLS_GDESC_P(type) \ 429 ((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) 430 #define GOT_TLS_GD_ANY_P(type) \ 431 (GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) 432 unsigned char tls_type; 433 434 /* Offset of the GOTPLT entry reserved for the TLS descriptor, 435 starting at the end of the jump table. */ 436 bfd_vma tlsdesc_got; 437 }; 438 439 #define elf_x86_64_hash_entry(ent) \ 440 ((struct elf_x86_64_link_hash_entry *)(ent)) 441 442 struct elf_x86_64_obj_tdata 443 { 444 struct elf_obj_tdata root; 445 446 /* tls_type for each local got entry. */ 447 char *local_got_tls_type; 448 449 /* GOTPLT entries for TLS descriptors. */ 450 bfd_vma *local_tlsdesc_gotent; 451 }; 452 453 #define elf_x86_64_tdata(abfd) \ 454 ((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any) 455 456 #define elf_x86_64_local_got_tls_type(abfd) \ 457 (elf_x86_64_tdata (abfd)->local_got_tls_type) 458 459 #define elf_x86_64_local_tlsdesc_gotent(abfd) \ 460 (elf_x86_64_tdata (abfd)->local_tlsdesc_gotent) 461 462 #define is_x86_64_elf(bfd) \ 463 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 464 && elf_tdata (bfd) != NULL \ 465 && elf_object_id (bfd) == X86_64_ELF_DATA) 466 467 static bfd_boolean 468 elf_x86_64_mkobject (bfd *abfd) 469 { 470 return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata), 471 X86_64_ELF_DATA); 472 } 473 474 /* x86-64 ELF linker hash table. */ 475 476 struct elf_x86_64_link_hash_table 477 { 478 struct elf_link_hash_table elf; 479 480 /* Short-cuts to get to dynamic linker sections. */ 481 asection *sdynbss; 482 asection *srelbss; 483 484 union 485 { 486 bfd_signed_vma refcount; 487 bfd_vma offset; 488 } tls_ld_got; 489 490 /* The amount of space used by the jump slots in the GOT. */ 491 bfd_vma sgotplt_jump_table_size; 492 493 /* Small local sym cache. */ 494 struct sym_cache sym_cache; 495 496 bfd_vma (*r_info) (bfd_vma, bfd_vma); 497 bfd_vma (*r_sym) (bfd_vma); 498 unsigned int pointer_r_type; 499 const char *dynamic_interpreter; 500 int dynamic_interpreter_size; 501 502 /* _TLS_MODULE_BASE_ symbol. */ 503 struct bfd_link_hash_entry *tls_module_base; 504 505 /* Used by local STT_GNU_IFUNC symbols. */ 506 htab_t loc_hash_table; 507 void * loc_hash_memory; 508 509 /* The offset into splt of the PLT entry for the TLS descriptor 510 resolver. Special values are 0, if not necessary (or not found 511 to be necessary yet), and -1 if needed but not determined 512 yet. */ 513 bfd_vma tlsdesc_plt; 514 /* The offset into sgot of the GOT entry used by the PLT entry 515 above. */ 516 bfd_vma tlsdesc_got; 517 }; 518 519 /* Get the x86-64 ELF linker hash table from a link_info structure. */ 520 521 #define elf_x86_64_hash_table(p) \ 522 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 523 == X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL) 524 525 #define elf_x86_64_compute_jump_table_size(htab) \ 526 ((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE) 527 528 /* Create an entry in an x86-64 ELF linker hash table. */ 529 530 static struct bfd_hash_entry * 531 elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry, 532 struct bfd_hash_table *table, 533 const char *string) 534 { 535 /* Allocate the structure if it has not already been allocated by a 536 subclass. */ 537 if (entry == NULL) 538 { 539 entry = (struct bfd_hash_entry *) 540 bfd_hash_allocate (table, 541 sizeof (struct elf_x86_64_link_hash_entry)); 542 if (entry == NULL) 543 return entry; 544 } 545 546 /* Call the allocation method of the superclass. */ 547 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 548 if (entry != NULL) 549 { 550 struct elf_x86_64_link_hash_entry *eh; 551 552 eh = (struct elf_x86_64_link_hash_entry *) entry; 553 eh->dyn_relocs = NULL; 554 eh->tls_type = GOT_UNKNOWN; 555 eh->tlsdesc_got = (bfd_vma) -1; 556 } 557 558 return entry; 559 } 560 561 /* Compute a hash of a local hash entry. We use elf_link_hash_entry 562 for local symbol so that we can handle local STT_GNU_IFUNC symbols 563 as global symbol. We reuse indx and dynstr_index for local symbol 564 hash since they aren't used by global symbols in this backend. */ 565 566 static hashval_t 567 elf_x86_64_local_htab_hash (const void *ptr) 568 { 569 struct elf_link_hash_entry *h 570 = (struct elf_link_hash_entry *) ptr; 571 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); 572 } 573 574 /* Compare local hash entries. */ 575 576 static int 577 elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2) 578 { 579 struct elf_link_hash_entry *h1 580 = (struct elf_link_hash_entry *) ptr1; 581 struct elf_link_hash_entry *h2 582 = (struct elf_link_hash_entry *) ptr2; 583 584 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; 585 } 586 587 /* Find and/or create a hash entry for local symbol. */ 588 589 static struct elf_link_hash_entry * 590 elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab, 591 bfd *abfd, const Elf_Internal_Rela *rel, 592 bfd_boolean create) 593 { 594 struct elf_x86_64_link_hash_entry e, *ret; 595 asection *sec = abfd->sections; 596 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, 597 htab->r_sym (rel->r_info)); 598 void **slot; 599 600 e.elf.indx = sec->id; 601 e.elf.dynstr_index = htab->r_sym (rel->r_info); 602 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, 603 create ? INSERT : NO_INSERT); 604 605 if (!slot) 606 return NULL; 607 608 if (*slot) 609 { 610 ret = (struct elf_x86_64_link_hash_entry *) *slot; 611 return &ret->elf; 612 } 613 614 ret = (struct elf_x86_64_link_hash_entry *) 615 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, 616 sizeof (struct elf_x86_64_link_hash_entry)); 617 if (ret) 618 { 619 memset (ret, 0, sizeof (*ret)); 620 ret->elf.indx = sec->id; 621 ret->elf.dynstr_index = htab->r_sym (rel->r_info); 622 ret->elf.dynindx = -1; 623 *slot = ret; 624 } 625 return &ret->elf; 626 } 627 628 /* Create an X86-64 ELF linker hash table. */ 629 630 static struct bfd_link_hash_table * 631 elf_x86_64_link_hash_table_create (bfd *abfd) 632 { 633 struct elf_x86_64_link_hash_table *ret; 634 bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table); 635 636 ret = (struct elf_x86_64_link_hash_table *) bfd_malloc (amt); 637 if (ret == NULL) 638 return NULL; 639 640 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, 641 elf_x86_64_link_hash_newfunc, 642 sizeof (struct elf_x86_64_link_hash_entry), 643 X86_64_ELF_DATA)) 644 { 645 free (ret); 646 return NULL; 647 } 648 649 ret->sdynbss = NULL; 650 ret->srelbss = NULL; 651 ret->sym_cache.abfd = NULL; 652 ret->tlsdesc_plt = 0; 653 ret->tlsdesc_got = 0; 654 ret->tls_ld_got.refcount = 0; 655 ret->sgotplt_jump_table_size = 0; 656 ret->tls_module_base = NULL; 657 658 if (ABI_64_P (abfd)) 659 { 660 ret->r_info = elf64_r_info; 661 ret->r_sym = elf64_r_sym; 662 ret->pointer_r_type = R_X86_64_64; 663 ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER; 664 ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER; 665 } 666 else 667 { 668 ret->r_info = elf32_r_info; 669 ret->r_sym = elf32_r_sym; 670 ret->pointer_r_type = R_X86_64_32; 671 ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER; 672 ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER; 673 } 674 675 ret->loc_hash_table = htab_try_create (1024, 676 elf_x86_64_local_htab_hash, 677 elf_x86_64_local_htab_eq, 678 NULL); 679 ret->loc_hash_memory = objalloc_create (); 680 if (!ret->loc_hash_table || !ret->loc_hash_memory) 681 { 682 free (ret); 683 return NULL; 684 } 685 686 return &ret->elf.root; 687 } 688 689 /* Destroy an X86-64 ELF linker hash table. */ 690 691 static void 692 elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash) 693 { 694 struct elf_x86_64_link_hash_table *htab 695 = (struct elf_x86_64_link_hash_table *) hash; 696 697 if (htab->loc_hash_table) 698 htab_delete (htab->loc_hash_table); 699 if (htab->loc_hash_memory) 700 objalloc_free ((struct objalloc *) htab->loc_hash_memory); 701 _bfd_generic_link_hash_table_free (hash); 702 } 703 704 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and 705 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our 706 hash table. */ 707 708 static bfd_boolean 709 elf_x86_64_create_dynamic_sections (bfd *dynobj, 710 struct bfd_link_info *info) 711 { 712 struct elf_x86_64_link_hash_table *htab; 713 714 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 715 return FALSE; 716 717 htab = elf_x86_64_hash_table (info); 718 if (htab == NULL) 719 return FALSE; 720 721 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); 722 if (!info->shared) 723 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss"); 724 725 if (!htab->sdynbss 726 || (!info->shared && !htab->srelbss)) 727 abort (); 728 729 return TRUE; 730 } 731 732 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 733 734 static void 735 elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info, 736 struct elf_link_hash_entry *dir, 737 struct elf_link_hash_entry *ind) 738 { 739 struct elf_x86_64_link_hash_entry *edir, *eind; 740 741 edir = (struct elf_x86_64_link_hash_entry *) dir; 742 eind = (struct elf_x86_64_link_hash_entry *) ind; 743 744 if (eind->dyn_relocs != NULL) 745 { 746 if (edir->dyn_relocs != NULL) 747 { 748 struct elf_dyn_relocs **pp; 749 struct elf_dyn_relocs *p; 750 751 /* Add reloc counts against the indirect sym to the direct sym 752 list. Merge any entries against the same section. */ 753 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 754 { 755 struct elf_dyn_relocs *q; 756 757 for (q = edir->dyn_relocs; q != NULL; q = q->next) 758 if (q->sec == p->sec) 759 { 760 q->pc_count += p->pc_count; 761 q->count += p->count; 762 *pp = p->next; 763 break; 764 } 765 if (q == NULL) 766 pp = &p->next; 767 } 768 *pp = edir->dyn_relocs; 769 } 770 771 edir->dyn_relocs = eind->dyn_relocs; 772 eind->dyn_relocs = NULL; 773 } 774 775 if (ind->root.type == bfd_link_hash_indirect 776 && dir->got.refcount <= 0) 777 { 778 edir->tls_type = eind->tls_type; 779 eind->tls_type = GOT_UNKNOWN; 780 } 781 782 if (ELIMINATE_COPY_RELOCS 783 && ind->root.type != bfd_link_hash_indirect 784 && dir->dynamic_adjusted) 785 { 786 /* If called to transfer flags for a weakdef during processing 787 of elf_adjust_dynamic_symbol, don't copy non_got_ref. 788 We clear it ourselves for ELIMINATE_COPY_RELOCS. */ 789 dir->ref_dynamic |= ind->ref_dynamic; 790 dir->ref_regular |= ind->ref_regular; 791 dir->ref_regular_nonweak |= ind->ref_regular_nonweak; 792 dir->needs_plt |= ind->needs_plt; 793 dir->pointer_equality_needed |= ind->pointer_equality_needed; 794 } 795 else 796 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 797 } 798 799 static bfd_boolean 800 elf64_x86_64_elf_object_p (bfd *abfd) 801 { 802 /* Set the right machine number for an x86-64 elf64 file. */ 803 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64); 804 return TRUE; 805 } 806 807 typedef union 808 { 809 unsigned char c[2]; 810 uint16_t i; 811 } 812 x86_64_opcode16; 813 814 typedef union 815 { 816 unsigned char c[4]; 817 uint32_t i; 818 } 819 x86_64_opcode32; 820 821 /* Return TRUE if the TLS access code sequence support transition 822 from R_TYPE. */ 823 824 static bfd_boolean 825 elf_x86_64_check_tls_transition (bfd *abfd, 826 struct bfd_link_info *info, 827 asection *sec, 828 bfd_byte *contents, 829 Elf_Internal_Shdr *symtab_hdr, 830 struct elf_link_hash_entry **sym_hashes, 831 unsigned int r_type, 832 const Elf_Internal_Rela *rel, 833 const Elf_Internal_Rela *relend) 834 { 835 unsigned int val; 836 unsigned long r_symndx; 837 struct elf_link_hash_entry *h; 838 bfd_vma offset; 839 struct elf_x86_64_link_hash_table *htab; 840 841 /* Get the section contents. */ 842 if (contents == NULL) 843 { 844 if (elf_section_data (sec)->this_hdr.contents != NULL) 845 contents = elf_section_data (sec)->this_hdr.contents; 846 else 847 { 848 /* FIXME: How to better handle error condition? */ 849 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 850 return FALSE; 851 852 /* Cache the section contents for elf_link_input_bfd. */ 853 elf_section_data (sec)->this_hdr.contents = contents; 854 } 855 } 856 857 htab = elf_x86_64_hash_table (info); 858 offset = rel->r_offset; 859 switch (r_type) 860 { 861 case R_X86_64_TLSGD: 862 case R_X86_64_TLSLD: 863 if ((rel + 1) >= relend) 864 return FALSE; 865 866 if (r_type == R_X86_64_TLSGD) 867 { 868 /* Check transition from GD access model. For 64bit, only 869 .byte 0x66; leaq foo@tlsgd(%rip), %rdi 870 .word 0x6666; rex64; call __tls_get_addr 871 can transit to different access model. For 32bit, only 872 leaq foo@tlsgd(%rip), %rdi 873 .word 0x6666; rex64; call __tls_get_addr 874 can transit to different access model. */ 875 876 static x86_64_opcode32 call = { { 0x66, 0x66, 0x48, 0xe8 } }; 877 if ((offset + 12) > sec->size 878 || bfd_get_32 (abfd, contents + offset + 4) != call.i) 879 return FALSE; 880 881 if (ABI_64_P (abfd)) 882 { 883 static x86_64_opcode32 leaq = { { 0x66, 0x48, 0x8d, 0x3d } }; 884 if (offset < 4 885 || bfd_get_32 (abfd, contents + offset - 4) != leaq.i) 886 return FALSE; 887 } 888 else 889 { 890 static x86_64_opcode16 lea = { { 0x8d, 0x3d } }; 891 if (offset < 3 892 || bfd_get_8 (abfd, contents + offset - 3) != 0x48 893 || bfd_get_16 (abfd, contents + offset - 2) != lea.i) 894 return FALSE; 895 } 896 } 897 else 898 { 899 /* Check transition from LD access model. Only 900 leaq foo@tlsld(%rip), %rdi; 901 call __tls_get_addr 902 can transit to different access model. */ 903 904 static x86_64_opcode32 ld = { { 0x48, 0x8d, 0x3d, 0xe8 } }; 905 x86_64_opcode32 op; 906 907 if (offset < 3 || (offset + 9) > sec->size) 908 return FALSE; 909 910 op.i = bfd_get_32 (abfd, contents + offset - 3); 911 op.c[3] = bfd_get_8 (abfd, contents + offset + 4); 912 if (op.i != ld.i) 913 return FALSE; 914 } 915 916 r_symndx = htab->r_sym (rel[1].r_info); 917 if (r_symndx < symtab_hdr->sh_info) 918 return FALSE; 919 920 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 921 /* Use strncmp to check __tls_get_addr since __tls_get_addr 922 may be versioned. */ 923 return (h != NULL 924 && h->root.root.string != NULL 925 && (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32 926 || ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32) 927 && (strncmp (h->root.root.string, 928 "__tls_get_addr", 14) == 0)); 929 930 case R_X86_64_GOTTPOFF: 931 /* Check transition from IE access model: 932 mov foo@gottpoff(%rip), %reg 933 add foo@gottpoff(%rip), %reg 934 */ 935 936 /* Check REX prefix first. */ 937 if (offset >= 3 && (offset + 4) <= sec->size) 938 { 939 val = bfd_get_8 (abfd, contents + offset - 3); 940 if (val != 0x48 && val != 0x4c) 941 { 942 /* X32 may have 0x44 REX prefix or no REX prefix. */ 943 if (ABI_64_P (abfd)) 944 return FALSE; 945 } 946 } 947 else 948 { 949 /* X32 may not have any REX prefix. */ 950 if (ABI_64_P (abfd)) 951 return FALSE; 952 if (offset < 2 || (offset + 3) > sec->size) 953 return FALSE; 954 } 955 956 val = bfd_get_8 (abfd, contents + offset - 2); 957 if (val != 0x8b && val != 0x03) 958 return FALSE; 959 960 val = bfd_get_8 (abfd, contents + offset - 1); 961 return (val & 0xc7) == 5; 962 963 case R_X86_64_GOTPC32_TLSDESC: 964 /* Check transition from GDesc access model: 965 leaq x@tlsdesc(%rip), %rax 966 967 Make sure it's a leaq adding rip to a 32-bit offset 968 into any register, although it's probably almost always 969 going to be rax. */ 970 971 if (offset < 3 || (offset + 4) > sec->size) 972 return FALSE; 973 974 val = bfd_get_8 (abfd, contents + offset - 3); 975 if ((val & 0xfb) != 0x48) 976 return FALSE; 977 978 if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) 979 return FALSE; 980 981 val = bfd_get_8 (abfd, contents + offset - 1); 982 return (val & 0xc7) == 0x05; 983 984 case R_X86_64_TLSDESC_CALL: 985 /* Check transition from GDesc access model: 986 call *x@tlsdesc(%rax) 987 */ 988 if (offset + 2 <= sec->size) 989 { 990 /* Make sure that it's a call *x@tlsdesc(%rax). */ 991 static x86_64_opcode16 call = { { 0xff, 0x10 } }; 992 return bfd_get_16 (abfd, contents + offset) == call.i; 993 } 994 995 return FALSE; 996 997 default: 998 abort (); 999 } 1000 } 1001 1002 /* Return TRUE if the TLS access transition is OK or no transition 1003 will be performed. Update R_TYPE if there is a transition. */ 1004 1005 static bfd_boolean 1006 elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd, 1007 asection *sec, bfd_byte *contents, 1008 Elf_Internal_Shdr *symtab_hdr, 1009 struct elf_link_hash_entry **sym_hashes, 1010 unsigned int *r_type, int tls_type, 1011 const Elf_Internal_Rela *rel, 1012 const Elf_Internal_Rela *relend, 1013 struct elf_link_hash_entry *h, 1014 unsigned long r_symndx) 1015 { 1016 unsigned int from_type = *r_type; 1017 unsigned int to_type = from_type; 1018 bfd_boolean check = TRUE; 1019 1020 /* Skip TLS transition for functions. */ 1021 if (h != NULL 1022 && (h->type == STT_FUNC 1023 || h->type == STT_GNU_IFUNC)) 1024 return TRUE; 1025 1026 switch (from_type) 1027 { 1028 case R_X86_64_TLSGD: 1029 case R_X86_64_GOTPC32_TLSDESC: 1030 case R_X86_64_TLSDESC_CALL: 1031 case R_X86_64_GOTTPOFF: 1032 if (info->executable) 1033 { 1034 if (h == NULL) 1035 to_type = R_X86_64_TPOFF32; 1036 else 1037 to_type = R_X86_64_GOTTPOFF; 1038 } 1039 1040 /* When we are called from elf_x86_64_relocate_section, 1041 CONTENTS isn't NULL and there may be additional transitions 1042 based on TLS_TYPE. */ 1043 if (contents != NULL) 1044 { 1045 unsigned int new_to_type = to_type; 1046 1047 if (info->executable 1048 && h != NULL 1049 && h->dynindx == -1 1050 && tls_type == GOT_TLS_IE) 1051 new_to_type = R_X86_64_TPOFF32; 1052 1053 if (to_type == R_X86_64_TLSGD 1054 || to_type == R_X86_64_GOTPC32_TLSDESC 1055 || to_type == R_X86_64_TLSDESC_CALL) 1056 { 1057 if (tls_type == GOT_TLS_IE) 1058 new_to_type = R_X86_64_GOTTPOFF; 1059 } 1060 1061 /* We checked the transition before when we were called from 1062 elf_x86_64_check_relocs. We only want to check the new 1063 transition which hasn't been checked before. */ 1064 check = new_to_type != to_type && from_type == to_type; 1065 to_type = new_to_type; 1066 } 1067 1068 break; 1069 1070 case R_X86_64_TLSLD: 1071 if (info->executable) 1072 to_type = R_X86_64_TPOFF32; 1073 break; 1074 1075 default: 1076 return TRUE; 1077 } 1078 1079 /* Return TRUE if there is no transition. */ 1080 if (from_type == to_type) 1081 return TRUE; 1082 1083 /* Check if the transition can be performed. */ 1084 if (check 1085 && ! elf_x86_64_check_tls_transition (abfd, info, sec, contents, 1086 symtab_hdr, sym_hashes, 1087 from_type, rel, relend)) 1088 { 1089 reloc_howto_type *from, *to; 1090 const char *name; 1091 1092 from = elf_x86_64_rtype_to_howto (abfd, from_type); 1093 to = elf_x86_64_rtype_to_howto (abfd, to_type); 1094 1095 if (h) 1096 name = h->root.root.string; 1097 else 1098 { 1099 struct elf_x86_64_link_hash_table *htab; 1100 1101 htab = elf_x86_64_hash_table (info); 1102 if (htab == NULL) 1103 name = "*unknown*"; 1104 else 1105 { 1106 Elf_Internal_Sym *isym; 1107 1108 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 1109 abfd, r_symndx); 1110 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); 1111 } 1112 } 1113 1114 (*_bfd_error_handler) 1115 (_("%B: TLS transition from %s to %s against `%s' at 0x%lx " 1116 "in section `%A' failed"), 1117 abfd, sec, from->name, to->name, name, 1118 (unsigned long) rel->r_offset); 1119 bfd_set_error (bfd_error_bad_value); 1120 return FALSE; 1121 } 1122 1123 *r_type = to_type; 1124 return TRUE; 1125 } 1126 1127 /* Look through the relocs for a section during the first phase, and 1128 calculate needed space in the global offset table, procedure 1129 linkage table, and dynamic reloc sections. */ 1130 1131 static bfd_boolean 1132 elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info, 1133 asection *sec, 1134 const Elf_Internal_Rela *relocs) 1135 { 1136 struct elf_x86_64_link_hash_table *htab; 1137 Elf_Internal_Shdr *symtab_hdr; 1138 struct elf_link_hash_entry **sym_hashes; 1139 const Elf_Internal_Rela *rel; 1140 const Elf_Internal_Rela *rel_end; 1141 asection *sreloc; 1142 1143 if (info->relocatable) 1144 return TRUE; 1145 1146 BFD_ASSERT (is_x86_64_elf (abfd)); 1147 1148 htab = elf_x86_64_hash_table (info); 1149 if (htab == NULL) 1150 return FALSE; 1151 1152 symtab_hdr = &elf_symtab_hdr (abfd); 1153 sym_hashes = elf_sym_hashes (abfd); 1154 1155 sreloc = NULL; 1156 1157 rel_end = relocs + sec->reloc_count; 1158 for (rel = relocs; rel < rel_end; rel++) 1159 { 1160 unsigned int r_type; 1161 unsigned long r_symndx; 1162 struct elf_link_hash_entry *h; 1163 Elf_Internal_Sym *isym; 1164 const char *name; 1165 1166 r_symndx = htab->r_sym (rel->r_info); 1167 r_type = ELF32_R_TYPE (rel->r_info); 1168 1169 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 1170 { 1171 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), 1172 abfd, r_symndx); 1173 return FALSE; 1174 } 1175 1176 if (r_symndx < symtab_hdr->sh_info) 1177 { 1178 /* A local symbol. */ 1179 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 1180 abfd, r_symndx); 1181 if (isym == NULL) 1182 return FALSE; 1183 1184 /* Check relocation against local STT_GNU_IFUNC symbol. */ 1185 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 1186 { 1187 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, 1188 TRUE); 1189 if (h == NULL) 1190 return FALSE; 1191 1192 /* Fake a STT_GNU_IFUNC symbol. */ 1193 h->type = STT_GNU_IFUNC; 1194 h->def_regular = 1; 1195 h->ref_regular = 1; 1196 h->forced_local = 1; 1197 h->root.type = bfd_link_hash_defined; 1198 } 1199 else 1200 h = NULL; 1201 } 1202 else 1203 { 1204 isym = NULL; 1205 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1206 while (h->root.type == bfd_link_hash_indirect 1207 || h->root.type == bfd_link_hash_warning) 1208 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1209 } 1210 1211 /* Check invalid x32 relocations. */ 1212 if (!ABI_64_P (abfd)) 1213 switch (r_type) 1214 { 1215 default: 1216 break; 1217 1218 case R_X86_64_64: 1219 case R_X86_64_DTPOFF64: 1220 case R_X86_64_TPOFF64: 1221 case R_X86_64_PC64: 1222 case R_X86_64_GOTOFF64: 1223 case R_X86_64_GOT64: 1224 case R_X86_64_GOTPCREL64: 1225 case R_X86_64_GOTPC64: 1226 case R_X86_64_GOTPLT64: 1227 case R_X86_64_PLTOFF64: 1228 { 1229 if (h) 1230 name = h->root.root.string; 1231 else 1232 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, 1233 NULL); 1234 (*_bfd_error_handler) 1235 (_("%B: relocation %s against symbol `%s' isn't " 1236 "supported in x32 mode"), abfd, 1237 x86_64_elf_howto_table[r_type].name, name); 1238 bfd_set_error (bfd_error_bad_value); 1239 return FALSE; 1240 } 1241 break; 1242 } 1243 1244 if (h != NULL) 1245 { 1246 /* Create the ifunc sections for static executables. If we 1247 never see an indirect function symbol nor we are building 1248 a static executable, those sections will be empty and 1249 won't appear in output. */ 1250 switch (r_type) 1251 { 1252 default: 1253 break; 1254 1255 case R_X86_64_32S: 1256 case R_X86_64_32: 1257 case R_X86_64_64: 1258 case R_X86_64_PC32: 1259 case R_X86_64_PC64: 1260 case R_X86_64_PLT32: 1261 case R_X86_64_GOTPCREL: 1262 case R_X86_64_GOTPCREL64: 1263 if (!_bfd_elf_create_ifunc_sections (abfd, info)) 1264 return FALSE; 1265 break; 1266 } 1267 1268 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle 1269 it here if it is defined in a non-shared object. */ 1270 if (h->type == STT_GNU_IFUNC 1271 && h->def_regular) 1272 { 1273 /* It is referenced by a non-shared object. */ 1274 h->ref_regular = 1; 1275 h->needs_plt = 1; 1276 1277 /* STT_GNU_IFUNC symbol must go through PLT. */ 1278 h->plt.refcount += 1; 1279 1280 /* STT_GNU_IFUNC needs dynamic sections. */ 1281 if (htab->elf.dynobj == NULL) 1282 htab->elf.dynobj = abfd; 1283 1284 switch (r_type) 1285 { 1286 default: 1287 if (h->root.root.string) 1288 name = h->root.root.string; 1289 else 1290 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, 1291 NULL); 1292 (*_bfd_error_handler) 1293 (_("%B: relocation %s against STT_GNU_IFUNC " 1294 "symbol `%s' isn't handled by %s"), abfd, 1295 x86_64_elf_howto_table[r_type].name, 1296 name, __FUNCTION__); 1297 bfd_set_error (bfd_error_bad_value); 1298 return FALSE; 1299 1300 case R_X86_64_32: 1301 if (ABI_64_P (abfd)) 1302 goto not_pointer; 1303 case R_X86_64_64: 1304 h->non_got_ref = 1; 1305 h->pointer_equality_needed = 1; 1306 if (info->shared) 1307 { 1308 /* We must copy these reloc types into the output 1309 file. Create a reloc section in dynobj and 1310 make room for this reloc. */ 1311 sreloc = _bfd_elf_create_ifunc_dyn_reloc 1312 (abfd, info, sec, sreloc, 1313 &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs); 1314 if (sreloc == NULL) 1315 return FALSE; 1316 } 1317 break; 1318 1319 case R_X86_64_32S: 1320 case R_X86_64_PC32: 1321 case R_X86_64_PC64: 1322 not_pointer: 1323 h->non_got_ref = 1; 1324 if (r_type != R_X86_64_PC32 1325 && r_type != R_X86_64_PC64) 1326 h->pointer_equality_needed = 1; 1327 break; 1328 1329 case R_X86_64_PLT32: 1330 break; 1331 1332 case R_X86_64_GOTPCREL: 1333 case R_X86_64_GOTPCREL64: 1334 h->got.refcount += 1; 1335 if (htab->elf.sgot == NULL 1336 && !_bfd_elf_create_got_section (htab->elf.dynobj, 1337 info)) 1338 return FALSE; 1339 break; 1340 } 1341 1342 continue; 1343 } 1344 } 1345 1346 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL, 1347 symtab_hdr, sym_hashes, 1348 &r_type, GOT_UNKNOWN, 1349 rel, rel_end, h, r_symndx)) 1350 return FALSE; 1351 1352 switch (r_type) 1353 { 1354 case R_X86_64_TLSLD: 1355 htab->tls_ld_got.refcount += 1; 1356 goto create_got; 1357 1358 case R_X86_64_TPOFF32: 1359 if (!info->executable && ABI_64_P (abfd)) 1360 { 1361 if (h) 1362 name = h->root.root.string; 1363 else 1364 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, 1365 NULL); 1366 (*_bfd_error_handler) 1367 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 1368 abfd, 1369 x86_64_elf_howto_table[r_type].name, name); 1370 bfd_set_error (bfd_error_bad_value); 1371 return FALSE; 1372 } 1373 break; 1374 1375 case R_X86_64_GOTTPOFF: 1376 if (!info->executable) 1377 info->flags |= DF_STATIC_TLS; 1378 /* Fall through */ 1379 1380 case R_X86_64_GOT32: 1381 case R_X86_64_GOTPCREL: 1382 case R_X86_64_TLSGD: 1383 case R_X86_64_GOT64: 1384 case R_X86_64_GOTPCREL64: 1385 case R_X86_64_GOTPLT64: 1386 case R_X86_64_GOTPC32_TLSDESC: 1387 case R_X86_64_TLSDESC_CALL: 1388 /* This symbol requires a global offset table entry. */ 1389 { 1390 int tls_type, old_tls_type; 1391 1392 switch (r_type) 1393 { 1394 default: tls_type = GOT_NORMAL; break; 1395 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break; 1396 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break; 1397 case R_X86_64_GOTPC32_TLSDESC: 1398 case R_X86_64_TLSDESC_CALL: 1399 tls_type = GOT_TLS_GDESC; break; 1400 } 1401 1402 if (h != NULL) 1403 { 1404 if (r_type == R_X86_64_GOTPLT64) 1405 { 1406 /* This relocation indicates that we also need 1407 a PLT entry, as this is a function. We don't need 1408 a PLT entry for local symbols. */ 1409 h->needs_plt = 1; 1410 h->plt.refcount += 1; 1411 } 1412 h->got.refcount += 1; 1413 old_tls_type = elf_x86_64_hash_entry (h)->tls_type; 1414 } 1415 else 1416 { 1417 bfd_signed_vma *local_got_refcounts; 1418 1419 /* This is a global offset table entry for a local symbol. */ 1420 local_got_refcounts = elf_local_got_refcounts (abfd); 1421 if (local_got_refcounts == NULL) 1422 { 1423 bfd_size_type size; 1424 1425 size = symtab_hdr->sh_info; 1426 size *= sizeof (bfd_signed_vma) 1427 + sizeof (bfd_vma) + sizeof (char); 1428 local_got_refcounts = ((bfd_signed_vma *) 1429 bfd_zalloc (abfd, size)); 1430 if (local_got_refcounts == NULL) 1431 return FALSE; 1432 elf_local_got_refcounts (abfd) = local_got_refcounts; 1433 elf_x86_64_local_tlsdesc_gotent (abfd) 1434 = (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); 1435 elf_x86_64_local_got_tls_type (abfd) 1436 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); 1437 } 1438 local_got_refcounts[r_symndx] += 1; 1439 old_tls_type 1440 = elf_x86_64_local_got_tls_type (abfd) [r_symndx]; 1441 } 1442 1443 /* If a TLS symbol is accessed using IE at least once, 1444 there is no point to use dynamic model for it. */ 1445 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN 1446 && (! GOT_TLS_GD_ANY_P (old_tls_type) 1447 || tls_type != GOT_TLS_IE)) 1448 { 1449 if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type)) 1450 tls_type = old_tls_type; 1451 else if (GOT_TLS_GD_ANY_P (old_tls_type) 1452 && GOT_TLS_GD_ANY_P (tls_type)) 1453 tls_type |= old_tls_type; 1454 else 1455 { 1456 if (h) 1457 name = h->root.root.string; 1458 else 1459 name = bfd_elf_sym_name (abfd, symtab_hdr, 1460 isym, NULL); 1461 (*_bfd_error_handler) 1462 (_("%B: '%s' accessed both as normal and thread local symbol"), 1463 abfd, name); 1464 return FALSE; 1465 } 1466 } 1467 1468 if (old_tls_type != tls_type) 1469 { 1470 if (h != NULL) 1471 elf_x86_64_hash_entry (h)->tls_type = tls_type; 1472 else 1473 elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type; 1474 } 1475 } 1476 /* Fall through */ 1477 1478 case R_X86_64_GOTOFF64: 1479 case R_X86_64_GOTPC32: 1480 case R_X86_64_GOTPC64: 1481 create_got: 1482 if (htab->elf.sgot == NULL) 1483 { 1484 if (htab->elf.dynobj == NULL) 1485 htab->elf.dynobj = abfd; 1486 if (!_bfd_elf_create_got_section (htab->elf.dynobj, 1487 info)) 1488 return FALSE; 1489 } 1490 break; 1491 1492 case R_X86_64_PLT32: 1493 /* This symbol requires a procedure linkage table entry. We 1494 actually build the entry in adjust_dynamic_symbol, 1495 because this might be a case of linking PIC code which is 1496 never referenced by a dynamic object, in which case we 1497 don't need to generate a procedure linkage table entry 1498 after all. */ 1499 1500 /* If this is a local symbol, we resolve it directly without 1501 creating a procedure linkage table entry. */ 1502 if (h == NULL) 1503 continue; 1504 1505 h->needs_plt = 1; 1506 h->plt.refcount += 1; 1507 break; 1508 1509 case R_X86_64_PLTOFF64: 1510 /* This tries to form the 'address' of a function relative 1511 to GOT. For global symbols we need a PLT entry. */ 1512 if (h != NULL) 1513 { 1514 h->needs_plt = 1; 1515 h->plt.refcount += 1; 1516 } 1517 goto create_got; 1518 1519 case R_X86_64_32: 1520 if (!ABI_64_P (abfd)) 1521 goto pointer; 1522 case R_X86_64_8: 1523 case R_X86_64_16: 1524 case R_X86_64_32S: 1525 /* Let's help debug shared library creation. These relocs 1526 cannot be used in shared libs. Don't error out for 1527 sections we don't care about, such as debug sections or 1528 non-constant sections. */ 1529 if (info->shared 1530 && (sec->flags & SEC_ALLOC) != 0 1531 && (sec->flags & SEC_READONLY) != 0) 1532 { 1533 if (h) 1534 name = h->root.root.string; 1535 else 1536 name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); 1537 (*_bfd_error_handler) 1538 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 1539 abfd, x86_64_elf_howto_table[r_type].name, name); 1540 bfd_set_error (bfd_error_bad_value); 1541 return FALSE; 1542 } 1543 /* Fall through. */ 1544 1545 case R_X86_64_PC8: 1546 case R_X86_64_PC16: 1547 case R_X86_64_PC32: 1548 case R_X86_64_PC64: 1549 case R_X86_64_64: 1550 pointer: 1551 if (h != NULL && info->executable) 1552 { 1553 /* If this reloc is in a read-only section, we might 1554 need a copy reloc. We can't check reliably at this 1555 stage whether the section is read-only, as input 1556 sections have not yet been mapped to output sections. 1557 Tentatively set the flag for now, and correct in 1558 adjust_dynamic_symbol. */ 1559 h->non_got_ref = 1; 1560 1561 /* We may need a .plt entry if the function this reloc 1562 refers to is in a shared lib. */ 1563 h->plt.refcount += 1; 1564 if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64) 1565 h->pointer_equality_needed = 1; 1566 } 1567 1568 /* If we are creating a shared library, and this is a reloc 1569 against a global symbol, or a non PC relative reloc 1570 against a local symbol, then we need to copy the reloc 1571 into the shared library. However, if we are linking with 1572 -Bsymbolic, we do not need to copy a reloc against a 1573 global symbol which is defined in an object we are 1574 including in the link (i.e., DEF_REGULAR is set). At 1575 this point we have not seen all the input files, so it is 1576 possible that DEF_REGULAR is not set now but will be set 1577 later (it is never cleared). In case of a weak definition, 1578 DEF_REGULAR may be cleared later by a strong definition in 1579 a shared library. We account for that possibility below by 1580 storing information in the relocs_copied field of the hash 1581 table entry. A similar situation occurs when creating 1582 shared libraries and symbol visibility changes render the 1583 symbol local. 1584 1585 If on the other hand, we are creating an executable, we 1586 may need to keep relocations for symbols satisfied by a 1587 dynamic library if we manage to avoid copy relocs for the 1588 symbol. */ 1589 if ((info->shared 1590 && (sec->flags & SEC_ALLOC) != 0 1591 && (! IS_X86_64_PCREL_TYPE (r_type) 1592 || (h != NULL 1593 && (! SYMBOLIC_BIND (info, h) 1594 || h->root.type == bfd_link_hash_defweak 1595 || !h->def_regular)))) 1596 || (ELIMINATE_COPY_RELOCS 1597 && !info->shared 1598 && (sec->flags & SEC_ALLOC) != 0 1599 && h != NULL 1600 && (h->root.type == bfd_link_hash_defweak 1601 || !h->def_regular))) 1602 { 1603 struct elf_dyn_relocs *p; 1604 struct elf_dyn_relocs **head; 1605 1606 /* We must copy these reloc types into the output file. 1607 Create a reloc section in dynobj and make room for 1608 this reloc. */ 1609 if (sreloc == NULL) 1610 { 1611 if (htab->elf.dynobj == NULL) 1612 htab->elf.dynobj = abfd; 1613 1614 sreloc = _bfd_elf_make_dynamic_reloc_section 1615 (sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2, 1616 abfd, /*rela?*/ TRUE); 1617 1618 if (sreloc == NULL) 1619 return FALSE; 1620 } 1621 1622 /* If this is a global symbol, we count the number of 1623 relocations we need for this symbol. */ 1624 if (h != NULL) 1625 { 1626 head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs; 1627 } 1628 else 1629 { 1630 /* Track dynamic relocs needed for local syms too. 1631 We really need local syms available to do this 1632 easily. Oh well. */ 1633 asection *s; 1634 void **vpp; 1635 1636 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 1637 abfd, r_symndx); 1638 if (isym == NULL) 1639 return FALSE; 1640 1641 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 1642 if (s == NULL) 1643 s = sec; 1644 1645 /* Beware of type punned pointers vs strict aliasing 1646 rules. */ 1647 vpp = &(elf_section_data (s)->local_dynrel); 1648 head = (struct elf_dyn_relocs **)vpp; 1649 } 1650 1651 p = *head; 1652 if (p == NULL || p->sec != sec) 1653 { 1654 bfd_size_type amt = sizeof *p; 1655 1656 p = ((struct elf_dyn_relocs *) 1657 bfd_alloc (htab->elf.dynobj, amt)); 1658 if (p == NULL) 1659 return FALSE; 1660 p->next = *head; 1661 *head = p; 1662 p->sec = sec; 1663 p->count = 0; 1664 p->pc_count = 0; 1665 } 1666 1667 p->count += 1; 1668 if (IS_X86_64_PCREL_TYPE (r_type)) 1669 p->pc_count += 1; 1670 } 1671 break; 1672 1673 /* This relocation describes the C++ object vtable hierarchy. 1674 Reconstruct it for later use during GC. */ 1675 case R_X86_64_GNU_VTINHERIT: 1676 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 1677 return FALSE; 1678 break; 1679 1680 /* This relocation describes which C++ vtable entries are actually 1681 used. Record for later use during GC. */ 1682 case R_X86_64_GNU_VTENTRY: 1683 BFD_ASSERT (h != NULL); 1684 if (h != NULL 1685 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 1686 return FALSE; 1687 break; 1688 1689 default: 1690 break; 1691 } 1692 } 1693 1694 return TRUE; 1695 } 1696 1697 /* Return the section that should be marked against GC for a given 1698 relocation. */ 1699 1700 static asection * 1701 elf_x86_64_gc_mark_hook (asection *sec, 1702 struct bfd_link_info *info, 1703 Elf_Internal_Rela *rel, 1704 struct elf_link_hash_entry *h, 1705 Elf_Internal_Sym *sym) 1706 { 1707 if (h != NULL) 1708 switch (ELF32_R_TYPE (rel->r_info)) 1709 { 1710 case R_X86_64_GNU_VTINHERIT: 1711 case R_X86_64_GNU_VTENTRY: 1712 return NULL; 1713 } 1714 1715 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1716 } 1717 1718 /* Update the got entry reference counts for the section being removed. */ 1719 1720 static bfd_boolean 1721 elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info, 1722 asection *sec, 1723 const Elf_Internal_Rela *relocs) 1724 { 1725 struct elf_x86_64_link_hash_table *htab; 1726 Elf_Internal_Shdr *symtab_hdr; 1727 struct elf_link_hash_entry **sym_hashes; 1728 bfd_signed_vma *local_got_refcounts; 1729 const Elf_Internal_Rela *rel, *relend; 1730 1731 if (info->relocatable) 1732 return TRUE; 1733 1734 htab = elf_x86_64_hash_table (info); 1735 if (htab == NULL) 1736 return FALSE; 1737 1738 elf_section_data (sec)->local_dynrel = NULL; 1739 1740 symtab_hdr = &elf_symtab_hdr (abfd); 1741 sym_hashes = elf_sym_hashes (abfd); 1742 local_got_refcounts = elf_local_got_refcounts (abfd); 1743 1744 htab = elf_x86_64_hash_table (info); 1745 relend = relocs + sec->reloc_count; 1746 for (rel = relocs; rel < relend; rel++) 1747 { 1748 unsigned long r_symndx; 1749 unsigned int r_type; 1750 struct elf_link_hash_entry *h = NULL; 1751 1752 r_symndx = htab->r_sym (rel->r_info); 1753 if (r_symndx >= symtab_hdr->sh_info) 1754 { 1755 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1756 while (h->root.type == bfd_link_hash_indirect 1757 || h->root.type == bfd_link_hash_warning) 1758 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1759 } 1760 else 1761 { 1762 /* A local symbol. */ 1763 Elf_Internal_Sym *isym; 1764 1765 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 1766 abfd, r_symndx); 1767 1768 /* Check relocation against local STT_GNU_IFUNC symbol. */ 1769 if (isym != NULL 1770 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 1771 { 1772 h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE); 1773 if (h == NULL) 1774 abort (); 1775 } 1776 } 1777 1778 if (h) 1779 { 1780 struct elf_x86_64_link_hash_entry *eh; 1781 struct elf_dyn_relocs **pp; 1782 struct elf_dyn_relocs *p; 1783 1784 eh = (struct elf_x86_64_link_hash_entry *) h; 1785 1786 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) 1787 if (p->sec == sec) 1788 { 1789 /* Everything must go for SEC. */ 1790 *pp = p->next; 1791 break; 1792 } 1793 } 1794 1795 r_type = ELF32_R_TYPE (rel->r_info); 1796 if (! elf_x86_64_tls_transition (info, abfd, sec, NULL, 1797 symtab_hdr, sym_hashes, 1798 &r_type, GOT_UNKNOWN, 1799 rel, relend, h, r_symndx)) 1800 return FALSE; 1801 1802 switch (r_type) 1803 { 1804 case R_X86_64_TLSLD: 1805 if (htab->tls_ld_got.refcount > 0) 1806 htab->tls_ld_got.refcount -= 1; 1807 break; 1808 1809 case R_X86_64_TLSGD: 1810 case R_X86_64_GOTPC32_TLSDESC: 1811 case R_X86_64_TLSDESC_CALL: 1812 case R_X86_64_GOTTPOFF: 1813 case R_X86_64_GOT32: 1814 case R_X86_64_GOTPCREL: 1815 case R_X86_64_GOT64: 1816 case R_X86_64_GOTPCREL64: 1817 case R_X86_64_GOTPLT64: 1818 if (h != NULL) 1819 { 1820 if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0) 1821 h->plt.refcount -= 1; 1822 if (h->got.refcount > 0) 1823 h->got.refcount -= 1; 1824 if (h->type == STT_GNU_IFUNC) 1825 { 1826 if (h->plt.refcount > 0) 1827 h->plt.refcount -= 1; 1828 } 1829 } 1830 else if (local_got_refcounts != NULL) 1831 { 1832 if (local_got_refcounts[r_symndx] > 0) 1833 local_got_refcounts[r_symndx] -= 1; 1834 } 1835 break; 1836 1837 case R_X86_64_8: 1838 case R_X86_64_16: 1839 case R_X86_64_32: 1840 case R_X86_64_64: 1841 case R_X86_64_32S: 1842 case R_X86_64_PC8: 1843 case R_X86_64_PC16: 1844 case R_X86_64_PC32: 1845 case R_X86_64_PC64: 1846 if (info->shared 1847 && (h == NULL || h->type != STT_GNU_IFUNC)) 1848 break; 1849 /* Fall thru */ 1850 1851 case R_X86_64_PLT32: 1852 case R_X86_64_PLTOFF64: 1853 if (h != NULL) 1854 { 1855 if (h->plt.refcount > 0) 1856 h->plt.refcount -= 1; 1857 } 1858 break; 1859 1860 default: 1861 break; 1862 } 1863 } 1864 1865 return TRUE; 1866 } 1867 1868 /* Adjust a symbol defined by a dynamic object and referenced by a 1869 regular object. The current definition is in some section of the 1870 dynamic object, but we're not including those sections. We have to 1871 change the definition to something the rest of the link can 1872 understand. */ 1873 1874 static bfd_boolean 1875 elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info, 1876 struct elf_link_hash_entry *h) 1877 { 1878 struct elf_x86_64_link_hash_table *htab; 1879 asection *s; 1880 1881 /* STT_GNU_IFUNC symbol must go through PLT. */ 1882 if (h->type == STT_GNU_IFUNC) 1883 { 1884 if (h->plt.refcount <= 0) 1885 { 1886 h->plt.offset = (bfd_vma) -1; 1887 h->needs_plt = 0; 1888 } 1889 return TRUE; 1890 } 1891 1892 /* If this is a function, put it in the procedure linkage table. We 1893 will fill in the contents of the procedure linkage table later, 1894 when we know the address of the .got section. */ 1895 if (h->type == STT_FUNC 1896 || h->needs_plt) 1897 { 1898 if (h->plt.refcount <= 0 1899 || SYMBOL_CALLS_LOCAL (info, h) 1900 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1901 && h->root.type == bfd_link_hash_undefweak)) 1902 { 1903 /* This case can occur if we saw a PLT32 reloc in an input 1904 file, but the symbol was never referred to by a dynamic 1905 object, or if all references were garbage collected. In 1906 such a case, we don't actually need to build a procedure 1907 linkage table, and we can just do a PC32 reloc instead. */ 1908 h->plt.offset = (bfd_vma) -1; 1909 h->needs_plt = 0; 1910 } 1911 1912 return TRUE; 1913 } 1914 else 1915 /* It's possible that we incorrectly decided a .plt reloc was 1916 needed for an R_X86_64_PC32 reloc to a non-function sym in 1917 check_relocs. We can't decide accurately between function and 1918 non-function syms in check-relocs; Objects loaded later in 1919 the link may change h->type. So fix it now. */ 1920 h->plt.offset = (bfd_vma) -1; 1921 1922 /* If this is a weak symbol, and there is a real definition, the 1923 processor independent code will have arranged for us to see the 1924 real definition first, and we can just use the same value. */ 1925 if (h->u.weakdef != NULL) 1926 { 1927 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 1928 || h->u.weakdef->root.type == bfd_link_hash_defweak); 1929 h->root.u.def.section = h->u.weakdef->root.u.def.section; 1930 h->root.u.def.value = h->u.weakdef->root.u.def.value; 1931 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) 1932 h->non_got_ref = h->u.weakdef->non_got_ref; 1933 return TRUE; 1934 } 1935 1936 /* This is a reference to a symbol defined by a dynamic object which 1937 is not a function. */ 1938 1939 /* If we are creating a shared library, we must presume that the 1940 only references to the symbol are via the global offset table. 1941 For such cases we need not do anything here; the relocations will 1942 be handled correctly by relocate_section. */ 1943 if (info->shared) 1944 return TRUE; 1945 1946 /* If there are no references to this symbol that do not use the 1947 GOT, we don't need to generate a copy reloc. */ 1948 if (!h->non_got_ref) 1949 return TRUE; 1950 1951 /* If -z nocopyreloc was given, we won't generate them either. */ 1952 if (info->nocopyreloc) 1953 { 1954 h->non_got_ref = 0; 1955 return TRUE; 1956 } 1957 1958 if (ELIMINATE_COPY_RELOCS) 1959 { 1960 struct elf_x86_64_link_hash_entry * eh; 1961 struct elf_dyn_relocs *p; 1962 1963 eh = (struct elf_x86_64_link_hash_entry *) h; 1964 for (p = eh->dyn_relocs; p != NULL; p = p->next) 1965 { 1966 s = p->sec->output_section; 1967 if (s != NULL && (s->flags & SEC_READONLY) != 0) 1968 break; 1969 } 1970 1971 /* If we didn't find any dynamic relocs in read-only sections, then 1972 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 1973 if (p == NULL) 1974 { 1975 h->non_got_ref = 0; 1976 return TRUE; 1977 } 1978 } 1979 1980 if (h->size == 0) 1981 { 1982 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), 1983 h->root.root.string); 1984 return TRUE; 1985 } 1986 1987 /* We must allocate the symbol in our .dynbss section, which will 1988 become part of the .bss section of the executable. There will be 1989 an entry for this symbol in the .dynsym section. The dynamic 1990 object will contain position independent code, so all references 1991 from the dynamic object to this symbol will go through the global 1992 offset table. The dynamic linker will use the .dynsym entry to 1993 determine the address it must put in the global offset table, so 1994 both the dynamic object and the regular object will refer to the 1995 same memory location for the variable. */ 1996 1997 htab = elf_x86_64_hash_table (info); 1998 if (htab == NULL) 1999 return FALSE; 2000 2001 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker 2002 to copy the initial value out of the dynamic object and into the 2003 runtime process image. */ 2004 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 2005 { 2006 const struct elf_backend_data *bed; 2007 bed = get_elf_backend_data (info->output_bfd); 2008 htab->srelbss->size += bed->s->sizeof_rela; 2009 h->needs_copy = 1; 2010 } 2011 2012 s = htab->sdynbss; 2013 2014 return _bfd_elf_adjust_dynamic_copy (h, s); 2015 } 2016 2017 /* Allocate space in .plt, .got and associated reloc sections for 2018 dynamic relocs. */ 2019 2020 static bfd_boolean 2021 elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf) 2022 { 2023 struct bfd_link_info *info; 2024 struct elf_x86_64_link_hash_table *htab; 2025 struct elf_x86_64_link_hash_entry *eh; 2026 struct elf_dyn_relocs *p; 2027 const struct elf_backend_data *bed; 2028 2029 if (h->root.type == bfd_link_hash_indirect) 2030 return TRUE; 2031 2032 if (h->root.type == bfd_link_hash_warning) 2033 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2034 eh = (struct elf_x86_64_link_hash_entry *) h; 2035 2036 info = (struct bfd_link_info *) inf; 2037 htab = elf_x86_64_hash_table (info); 2038 if (htab == NULL) 2039 return FALSE; 2040 bed = get_elf_backend_data (info->output_bfd); 2041 2042 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it 2043 here if it is defined and referenced in a non-shared object. */ 2044 if (h->type == STT_GNU_IFUNC 2045 && h->def_regular) 2046 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, 2047 &eh->dyn_relocs, 2048 PLT_ENTRY_SIZE, 2049 GOT_ENTRY_SIZE); 2050 else if (htab->elf.dynamic_sections_created 2051 && h->plt.refcount > 0) 2052 { 2053 /* Make sure this symbol is output as a dynamic symbol. 2054 Undefined weak syms won't yet be marked as dynamic. */ 2055 if (h->dynindx == -1 2056 && !h->forced_local) 2057 { 2058 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 2059 return FALSE; 2060 } 2061 2062 if (info->shared 2063 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 2064 { 2065 asection *s = htab->elf.splt; 2066 2067 /* If this is the first .plt entry, make room for the special 2068 first entry. */ 2069 if (s->size == 0) 2070 s->size += PLT_ENTRY_SIZE; 2071 2072 h->plt.offset = s->size; 2073 2074 /* If this symbol is not defined in a regular file, and we are 2075 not generating a shared library, then set the symbol to this 2076 location in the .plt. This is required to make function 2077 pointers compare as equal between the normal executable and 2078 the shared library. */ 2079 if (! info->shared 2080 && !h->def_regular) 2081 { 2082 h->root.u.def.section = s; 2083 h->root.u.def.value = h->plt.offset; 2084 } 2085 2086 /* Make room for this entry. */ 2087 s->size += PLT_ENTRY_SIZE; 2088 2089 /* We also need to make an entry in the .got.plt section, which 2090 will be placed in the .got section by the linker script. */ 2091 htab->elf.sgotplt->size += GOT_ENTRY_SIZE; 2092 2093 /* We also need to make an entry in the .rela.plt section. */ 2094 htab->elf.srelplt->size += bed->s->sizeof_rela; 2095 htab->elf.srelplt->reloc_count++; 2096 } 2097 else 2098 { 2099 h->plt.offset = (bfd_vma) -1; 2100 h->needs_plt = 0; 2101 } 2102 } 2103 else 2104 { 2105 h->plt.offset = (bfd_vma) -1; 2106 h->needs_plt = 0; 2107 } 2108 2109 eh->tlsdesc_got = (bfd_vma) -1; 2110 2111 /* If R_X86_64_GOTTPOFF symbol is now local to the binary, 2112 make it a R_X86_64_TPOFF32 requiring no GOT entry. */ 2113 if (h->got.refcount > 0 2114 && info->executable 2115 && h->dynindx == -1 2116 && elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE) 2117 { 2118 h->got.offset = (bfd_vma) -1; 2119 } 2120 else if (h->got.refcount > 0) 2121 { 2122 asection *s; 2123 bfd_boolean dyn; 2124 int tls_type = elf_x86_64_hash_entry (h)->tls_type; 2125 2126 /* Make sure this symbol is output as a dynamic symbol. 2127 Undefined weak syms won't yet be marked as dynamic. */ 2128 if (h->dynindx == -1 2129 && !h->forced_local) 2130 { 2131 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 2132 return FALSE; 2133 } 2134 2135 if (GOT_TLS_GDESC_P (tls_type)) 2136 { 2137 eh->tlsdesc_got = htab->elf.sgotplt->size 2138 - elf_x86_64_compute_jump_table_size (htab); 2139 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE; 2140 h->got.offset = (bfd_vma) -2; 2141 } 2142 if (! GOT_TLS_GDESC_P (tls_type) 2143 || GOT_TLS_GD_P (tls_type)) 2144 { 2145 s = htab->elf.sgot; 2146 h->got.offset = s->size; 2147 s->size += GOT_ENTRY_SIZE; 2148 if (GOT_TLS_GD_P (tls_type)) 2149 s->size += GOT_ENTRY_SIZE; 2150 } 2151 dyn = htab->elf.dynamic_sections_created; 2152 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol 2153 and two if global. 2154 R_X86_64_GOTTPOFF needs one dynamic relocation. */ 2155 if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) 2156 || tls_type == GOT_TLS_IE) 2157 htab->elf.srelgot->size += bed->s->sizeof_rela; 2158 else if (GOT_TLS_GD_P (tls_type)) 2159 htab->elf.srelgot->size += 2 * bed->s->sizeof_rela; 2160 else if (! GOT_TLS_GDESC_P (tls_type) 2161 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2162 || h->root.type != bfd_link_hash_undefweak) 2163 && (info->shared 2164 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) 2165 htab->elf.srelgot->size += bed->s->sizeof_rela; 2166 if (GOT_TLS_GDESC_P (tls_type)) 2167 { 2168 htab->elf.srelplt->size += bed->s->sizeof_rela; 2169 htab->tlsdesc_plt = (bfd_vma) -1; 2170 } 2171 } 2172 else 2173 h->got.offset = (bfd_vma) -1; 2174 2175 if (eh->dyn_relocs == NULL) 2176 return TRUE; 2177 2178 /* In the shared -Bsymbolic case, discard space allocated for 2179 dynamic pc-relative relocs against symbols which turn out to be 2180 defined in regular objects. For the normal shared case, discard 2181 space for pc-relative relocs that have become local due to symbol 2182 visibility changes. */ 2183 2184 if (info->shared) 2185 { 2186 /* Relocs that use pc_count are those that appear on a call 2187 insn, or certain REL relocs that can generated via assembly. 2188 We want calls to protected symbols to resolve directly to the 2189 function rather than going via the plt. If people want 2190 function pointer comparisons to work as expected then they 2191 should avoid writing weird assembly. */ 2192 if (SYMBOL_CALLS_LOCAL (info, h)) 2193 { 2194 struct elf_dyn_relocs **pp; 2195 2196 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 2197 { 2198 p->count -= p->pc_count; 2199 p->pc_count = 0; 2200 if (p->count == 0) 2201 *pp = p->next; 2202 else 2203 pp = &p->next; 2204 } 2205 } 2206 2207 /* Also discard relocs on undefined weak syms with non-default 2208 visibility. */ 2209 if (eh->dyn_relocs != NULL 2210 && h->root.type == bfd_link_hash_undefweak) 2211 { 2212 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 2213 eh->dyn_relocs = NULL; 2214 2215 /* Make sure undefined weak symbols are output as a dynamic 2216 symbol in PIEs. */ 2217 else if (h->dynindx == -1 2218 && ! h->forced_local 2219 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 2220 return FALSE; 2221 } 2222 2223 } 2224 else if (ELIMINATE_COPY_RELOCS) 2225 { 2226 /* For the non-shared case, discard space for relocs against 2227 symbols which turn out to need copy relocs or are not 2228 dynamic. */ 2229 2230 if (!h->non_got_ref 2231 && ((h->def_dynamic 2232 && !h->def_regular) 2233 || (htab->elf.dynamic_sections_created 2234 && (h->root.type == bfd_link_hash_undefweak 2235 || h->root.type == bfd_link_hash_undefined)))) 2236 { 2237 /* Make sure this symbol is output as a dynamic symbol. 2238 Undefined weak syms won't yet be marked as dynamic. */ 2239 if (h->dynindx == -1 2240 && ! h->forced_local 2241 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 2242 return FALSE; 2243 2244 /* If that succeeded, we know we'll be keeping all the 2245 relocs. */ 2246 if (h->dynindx != -1) 2247 goto keep; 2248 } 2249 2250 eh->dyn_relocs = NULL; 2251 2252 keep: ; 2253 } 2254 2255 /* Finally, allocate space. */ 2256 for (p = eh->dyn_relocs; p != NULL; p = p->next) 2257 { 2258 asection * sreloc; 2259 2260 sreloc = elf_section_data (p->sec)->sreloc; 2261 2262 BFD_ASSERT (sreloc != NULL); 2263 2264 sreloc->size += p->count * bed->s->sizeof_rela; 2265 } 2266 2267 return TRUE; 2268 } 2269 2270 /* Allocate space in .plt, .got and associated reloc sections for 2271 local dynamic relocs. */ 2272 2273 static bfd_boolean 2274 elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf) 2275 { 2276 struct elf_link_hash_entry *h 2277 = (struct elf_link_hash_entry *) *slot; 2278 2279 if (h->type != STT_GNU_IFUNC 2280 || !h->def_regular 2281 || !h->ref_regular 2282 || !h->forced_local 2283 || h->root.type != bfd_link_hash_defined) 2284 abort (); 2285 2286 return elf_x86_64_allocate_dynrelocs (h, inf); 2287 } 2288 2289 /* Find any dynamic relocs that apply to read-only sections. */ 2290 2291 static bfd_boolean 2292 elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h, 2293 void * inf) 2294 { 2295 struct elf_x86_64_link_hash_entry *eh; 2296 struct elf_dyn_relocs *p; 2297 2298 if (h->root.type == bfd_link_hash_warning) 2299 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2300 2301 eh = (struct elf_x86_64_link_hash_entry *) h; 2302 for (p = eh->dyn_relocs; p != NULL; p = p->next) 2303 { 2304 asection *s = p->sec->output_section; 2305 2306 if (s != NULL && (s->flags & SEC_READONLY) != 0) 2307 { 2308 struct bfd_link_info *info = (struct bfd_link_info *) inf; 2309 2310 info->flags |= DF_TEXTREL; 2311 2312 /* Not an error, just cut short the traversal. */ 2313 return FALSE; 2314 } 2315 } 2316 return TRUE; 2317 } 2318 2319 /* Set the sizes of the dynamic sections. */ 2320 2321 static bfd_boolean 2322 elf_x86_64_size_dynamic_sections (bfd *output_bfd, 2323 struct bfd_link_info *info) 2324 { 2325 struct elf_x86_64_link_hash_table *htab; 2326 bfd *dynobj; 2327 asection *s; 2328 bfd_boolean relocs; 2329 bfd *ibfd; 2330 const struct elf_backend_data *bed; 2331 2332 htab = elf_x86_64_hash_table (info); 2333 if (htab == NULL) 2334 return FALSE; 2335 bed = get_elf_backend_data (output_bfd); 2336 2337 dynobj = htab->elf.dynobj; 2338 if (dynobj == NULL) 2339 abort (); 2340 2341 if (htab->elf.dynamic_sections_created) 2342 { 2343 /* Set the contents of the .interp section to the interpreter. */ 2344 if (info->executable) 2345 { 2346 s = bfd_get_section_by_name (dynobj, ".interp"); 2347 if (s == NULL) 2348 abort (); 2349 s->size = htab->dynamic_interpreter_size; 2350 s->contents = (unsigned char *) htab->dynamic_interpreter; 2351 } 2352 } 2353 2354 /* Set up .got offsets for local syms, and space for local dynamic 2355 relocs. */ 2356 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2357 { 2358 bfd_signed_vma *local_got; 2359 bfd_signed_vma *end_local_got; 2360 char *local_tls_type; 2361 bfd_vma *local_tlsdesc_gotent; 2362 bfd_size_type locsymcount; 2363 Elf_Internal_Shdr *symtab_hdr; 2364 asection *srel; 2365 2366 if (! is_x86_64_elf (ibfd)) 2367 continue; 2368 2369 for (s = ibfd->sections; s != NULL; s = s->next) 2370 { 2371 struct elf_dyn_relocs *p; 2372 2373 for (p = (struct elf_dyn_relocs *) 2374 (elf_section_data (s)->local_dynrel); 2375 p != NULL; 2376 p = p->next) 2377 { 2378 if (!bfd_is_abs_section (p->sec) 2379 && bfd_is_abs_section (p->sec->output_section)) 2380 { 2381 /* Input section has been discarded, either because 2382 it is a copy of a linkonce section or due to 2383 linker script /DISCARD/, so we'll be discarding 2384 the relocs too. */ 2385 } 2386 else if (p->count != 0) 2387 { 2388 srel = elf_section_data (p->sec)->sreloc; 2389 srel->size += p->count * bed->s->sizeof_rela; 2390 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 2391 info->flags |= DF_TEXTREL; 2392 } 2393 } 2394 } 2395 2396 local_got = elf_local_got_refcounts (ibfd); 2397 if (!local_got) 2398 continue; 2399 2400 symtab_hdr = &elf_symtab_hdr (ibfd); 2401 locsymcount = symtab_hdr->sh_info; 2402 end_local_got = local_got + locsymcount; 2403 local_tls_type = elf_x86_64_local_got_tls_type (ibfd); 2404 local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd); 2405 s = htab->elf.sgot; 2406 srel = htab->elf.srelgot; 2407 for (; local_got < end_local_got; 2408 ++local_got, ++local_tls_type, ++local_tlsdesc_gotent) 2409 { 2410 *local_tlsdesc_gotent = (bfd_vma) -1; 2411 if (*local_got > 0) 2412 { 2413 if (GOT_TLS_GDESC_P (*local_tls_type)) 2414 { 2415 *local_tlsdesc_gotent = htab->elf.sgotplt->size 2416 - elf_x86_64_compute_jump_table_size (htab); 2417 htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE; 2418 *local_got = (bfd_vma) -2; 2419 } 2420 if (! GOT_TLS_GDESC_P (*local_tls_type) 2421 || GOT_TLS_GD_P (*local_tls_type)) 2422 { 2423 *local_got = s->size; 2424 s->size += GOT_ENTRY_SIZE; 2425 if (GOT_TLS_GD_P (*local_tls_type)) 2426 s->size += GOT_ENTRY_SIZE; 2427 } 2428 if (info->shared 2429 || GOT_TLS_GD_ANY_P (*local_tls_type) 2430 || *local_tls_type == GOT_TLS_IE) 2431 { 2432 if (GOT_TLS_GDESC_P (*local_tls_type)) 2433 { 2434 htab->elf.srelplt->size 2435 += bed->s->sizeof_rela; 2436 htab->tlsdesc_plt = (bfd_vma) -1; 2437 } 2438 if (! GOT_TLS_GDESC_P (*local_tls_type) 2439 || GOT_TLS_GD_P (*local_tls_type)) 2440 srel->size += bed->s->sizeof_rela; 2441 } 2442 } 2443 else 2444 *local_got = (bfd_vma) -1; 2445 } 2446 } 2447 2448 if (htab->tls_ld_got.refcount > 0) 2449 { 2450 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD 2451 relocs. */ 2452 htab->tls_ld_got.offset = htab->elf.sgot->size; 2453 htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE; 2454 htab->elf.srelgot->size += bed->s->sizeof_rela; 2455 } 2456 else 2457 htab->tls_ld_got.offset = -1; 2458 2459 /* Allocate global sym .plt and .got entries, and space for global 2460 sym dynamic relocs. */ 2461 elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs, 2462 info); 2463 2464 /* Allocate .plt and .got entries, and space for local symbols. */ 2465 htab_traverse (htab->loc_hash_table, 2466 elf_x86_64_allocate_local_dynrelocs, 2467 info); 2468 2469 /* For every jump slot reserved in the sgotplt, reloc_count is 2470 incremented. However, when we reserve space for TLS descriptors, 2471 it's not incremented, so in order to compute the space reserved 2472 for them, it suffices to multiply the reloc count by the jump 2473 slot size. */ 2474 if (htab->elf.srelplt) 2475 htab->sgotplt_jump_table_size 2476 = elf_x86_64_compute_jump_table_size (htab); 2477 2478 if (htab->tlsdesc_plt) 2479 { 2480 /* If we're not using lazy TLS relocations, don't generate the 2481 PLT and GOT entries they require. */ 2482 if ((info->flags & DF_BIND_NOW)) 2483 htab->tlsdesc_plt = 0; 2484 else 2485 { 2486 htab->tlsdesc_got = htab->elf.sgot->size; 2487 htab->elf.sgot->size += GOT_ENTRY_SIZE; 2488 /* Reserve room for the initial entry. 2489 FIXME: we could probably do away with it in this case. */ 2490 if (htab->elf.splt->size == 0) 2491 htab->elf.splt->size += PLT_ENTRY_SIZE; 2492 htab->tlsdesc_plt = htab->elf.splt->size; 2493 htab->elf.splt->size += PLT_ENTRY_SIZE; 2494 } 2495 } 2496 2497 if (htab->elf.sgotplt) 2498 { 2499 struct elf_link_hash_entry *got; 2500 got = elf_link_hash_lookup (elf_hash_table (info), 2501 "_GLOBAL_OFFSET_TABLE_", 2502 FALSE, FALSE, FALSE); 2503 2504 /* Don't allocate .got.plt section if there are no GOT nor PLT 2505 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ 2506 if ((got == NULL 2507 || !got->ref_regular_nonweak) 2508 && (htab->elf.sgotplt->size 2509 == get_elf_backend_data (output_bfd)->got_header_size) 2510 && (htab->elf.splt == NULL 2511 || htab->elf.splt->size == 0) 2512 && (htab->elf.sgot == NULL 2513 || htab->elf.sgot->size == 0) 2514 && (htab->elf.iplt == NULL 2515 || htab->elf.iplt->size == 0) 2516 && (htab->elf.igotplt == NULL 2517 || htab->elf.igotplt->size == 0)) 2518 htab->elf.sgotplt->size = 0; 2519 } 2520 2521 /* We now have determined the sizes of the various dynamic sections. 2522 Allocate memory for them. */ 2523 relocs = FALSE; 2524 for (s = dynobj->sections; s != NULL; s = s->next) 2525 { 2526 if ((s->flags & SEC_LINKER_CREATED) == 0) 2527 continue; 2528 2529 if (s == htab->elf.splt 2530 || s == htab->elf.sgot 2531 || s == htab->elf.sgotplt 2532 || s == htab->elf.iplt 2533 || s == htab->elf.igotplt 2534 || s == htab->sdynbss) 2535 { 2536 /* Strip this section if we don't need it; see the 2537 comment below. */ 2538 } 2539 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) 2540 { 2541 if (s->size != 0 && s != htab->elf.srelplt) 2542 relocs = TRUE; 2543 2544 /* We use the reloc_count field as a counter if we need 2545 to copy relocs into the output file. */ 2546 if (s != htab->elf.srelplt) 2547 s->reloc_count = 0; 2548 } 2549 else 2550 { 2551 /* It's not one of our sections, so don't allocate space. */ 2552 continue; 2553 } 2554 2555 if (s->size == 0) 2556 { 2557 /* If we don't need this section, strip it from the 2558 output file. This is mostly to handle .rela.bss and 2559 .rela.plt. We must create both sections in 2560 create_dynamic_sections, because they must be created 2561 before the linker maps input sections to output 2562 sections. The linker does that before 2563 adjust_dynamic_symbol is called, and it is that 2564 function which decides whether anything needs to go 2565 into these sections. */ 2566 2567 s->flags |= SEC_EXCLUDE; 2568 continue; 2569 } 2570 2571 if ((s->flags & SEC_HAS_CONTENTS) == 0) 2572 continue; 2573 2574 /* Allocate memory for the section contents. We use bfd_zalloc 2575 here in case unused entries are not reclaimed before the 2576 section's contents are written out. This should not happen, 2577 but this way if it does, we get a R_X86_64_NONE reloc instead 2578 of garbage. */ 2579 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 2580 if (s->contents == NULL) 2581 return FALSE; 2582 } 2583 2584 if (htab->elf.dynamic_sections_created) 2585 { 2586 /* Add some entries to the .dynamic section. We fill in the 2587 values later, in elf_x86_64_finish_dynamic_sections, but we 2588 must add the entries now so that we get the correct size for 2589 the .dynamic section. The DT_DEBUG entry is filled in by the 2590 dynamic linker and used by the debugger. */ 2591 #define add_dynamic_entry(TAG, VAL) \ 2592 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 2593 2594 if (info->executable) 2595 { 2596 if (!add_dynamic_entry (DT_DEBUG, 0)) 2597 return FALSE; 2598 } 2599 2600 if (htab->elf.splt->size != 0) 2601 { 2602 if (!add_dynamic_entry (DT_PLTGOT, 0) 2603 || !add_dynamic_entry (DT_PLTRELSZ, 0) 2604 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 2605 || !add_dynamic_entry (DT_JMPREL, 0)) 2606 return FALSE; 2607 2608 if (htab->tlsdesc_plt 2609 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) 2610 || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) 2611 return FALSE; 2612 } 2613 2614 if (relocs) 2615 { 2616 if (!add_dynamic_entry (DT_RELA, 0) 2617 || !add_dynamic_entry (DT_RELASZ, 0) 2618 || !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela)) 2619 return FALSE; 2620 2621 /* If any dynamic relocs apply to a read-only section, 2622 then we need a DT_TEXTREL entry. */ 2623 if ((info->flags & DF_TEXTREL) == 0) 2624 elf_link_hash_traverse (&htab->elf, 2625 elf_x86_64_readonly_dynrelocs, 2626 info); 2627 2628 if ((info->flags & DF_TEXTREL) != 0) 2629 { 2630 if (!add_dynamic_entry (DT_TEXTREL, 0)) 2631 return FALSE; 2632 } 2633 } 2634 } 2635 #undef add_dynamic_entry 2636 2637 return TRUE; 2638 } 2639 2640 static bfd_boolean 2641 elf_x86_64_always_size_sections (bfd *output_bfd, 2642 struct bfd_link_info *info) 2643 { 2644 asection *tls_sec = elf_hash_table (info)->tls_sec; 2645 2646 if (tls_sec) 2647 { 2648 struct elf_link_hash_entry *tlsbase; 2649 2650 tlsbase = elf_link_hash_lookup (elf_hash_table (info), 2651 "_TLS_MODULE_BASE_", 2652 FALSE, FALSE, FALSE); 2653 2654 if (tlsbase && tlsbase->type == STT_TLS) 2655 { 2656 struct elf_x86_64_link_hash_table *htab; 2657 struct bfd_link_hash_entry *bh = NULL; 2658 const struct elf_backend_data *bed 2659 = get_elf_backend_data (output_bfd); 2660 2661 htab = elf_x86_64_hash_table (info); 2662 if (htab == NULL) 2663 return FALSE; 2664 2665 if (!(_bfd_generic_link_add_one_symbol 2666 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 2667 tls_sec, 0, NULL, FALSE, 2668 bed->collect, &bh))) 2669 return FALSE; 2670 2671 htab->tls_module_base = bh; 2672 2673 tlsbase = (struct elf_link_hash_entry *)bh; 2674 tlsbase->def_regular = 1; 2675 tlsbase->other = STV_HIDDEN; 2676 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 2677 } 2678 } 2679 2680 return TRUE; 2681 } 2682 2683 /* _TLS_MODULE_BASE_ needs to be treated especially when linking 2684 executables. Rather than setting it to the beginning of the TLS 2685 section, we have to set it to the end. This function may be called 2686 multiple times, it is idempotent. */ 2687 2688 static void 2689 elf_x86_64_set_tls_module_base (struct bfd_link_info *info) 2690 { 2691 struct elf_x86_64_link_hash_table *htab; 2692 struct bfd_link_hash_entry *base; 2693 2694 if (!info->executable) 2695 return; 2696 2697 htab = elf_x86_64_hash_table (info); 2698 if (htab == NULL) 2699 return; 2700 2701 base = htab->tls_module_base; 2702 if (base == NULL) 2703 return; 2704 2705 base->u.def.value = htab->elf.tls_size; 2706 } 2707 2708 /* Return the base VMA address which should be subtracted from real addresses 2709 when resolving @dtpoff relocation. 2710 This is PT_TLS segment p_vaddr. */ 2711 2712 static bfd_vma 2713 elf_x86_64_dtpoff_base (struct bfd_link_info *info) 2714 { 2715 /* If tls_sec is NULL, we should have signalled an error already. */ 2716 if (elf_hash_table (info)->tls_sec == NULL) 2717 return 0; 2718 return elf_hash_table (info)->tls_sec->vma; 2719 } 2720 2721 /* Return the relocation value for @tpoff relocation 2722 if STT_TLS virtual address is ADDRESS. */ 2723 2724 static bfd_vma 2725 elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address) 2726 { 2727 struct elf_link_hash_table *htab = elf_hash_table (info); 2728 const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd); 2729 bfd_vma static_tls_size; 2730 2731 /* If tls_segment is NULL, we should have signalled an error already. */ 2732 if (htab->tls_sec == NULL) 2733 return 0; 2734 2735 /* Consider special static TLS alignment requirements. */ 2736 static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment); 2737 return address - static_tls_size - htab->tls_sec->vma; 2738 } 2739 2740 /* Is the instruction before OFFSET in CONTENTS a 32bit relative 2741 branch? */ 2742 2743 static bfd_boolean 2744 is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset) 2745 { 2746 /* Opcode Instruction 2747 0xe8 call 2748 0xe9 jump 2749 0x0f 0x8x conditional jump */ 2750 return ((offset > 0 2751 && (contents [offset - 1] == 0xe8 2752 || contents [offset - 1] == 0xe9)) 2753 || (offset > 1 2754 && contents [offset - 2] == 0x0f 2755 && (contents [offset - 1] & 0xf0) == 0x80)); 2756 } 2757 2758 /* Relocate an x86_64 ELF section. */ 2759 2760 static bfd_boolean 2761 elf_x86_64_relocate_section (bfd *output_bfd, 2762 struct bfd_link_info *info, 2763 bfd *input_bfd, 2764 asection *input_section, 2765 bfd_byte *contents, 2766 Elf_Internal_Rela *relocs, 2767 Elf_Internal_Sym *local_syms, 2768 asection **local_sections) 2769 { 2770 struct elf_x86_64_link_hash_table *htab; 2771 Elf_Internal_Shdr *symtab_hdr; 2772 struct elf_link_hash_entry **sym_hashes; 2773 bfd_vma *local_got_offsets; 2774 bfd_vma *local_tlsdesc_gotents; 2775 Elf_Internal_Rela *rel; 2776 Elf_Internal_Rela *relend; 2777 2778 BFD_ASSERT (is_x86_64_elf (input_bfd)); 2779 2780 htab = elf_x86_64_hash_table (info); 2781 if (htab == NULL) 2782 return FALSE; 2783 symtab_hdr = &elf_symtab_hdr (input_bfd); 2784 sym_hashes = elf_sym_hashes (input_bfd); 2785 local_got_offsets = elf_local_got_offsets (input_bfd); 2786 local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd); 2787 2788 elf_x86_64_set_tls_module_base (info); 2789 2790 rel = relocs; 2791 relend = relocs + input_section->reloc_count; 2792 for (; rel < relend; rel++) 2793 { 2794 unsigned int r_type; 2795 reloc_howto_type *howto; 2796 unsigned long r_symndx; 2797 struct elf_link_hash_entry *h; 2798 Elf_Internal_Sym *sym; 2799 asection *sec; 2800 bfd_vma off, offplt; 2801 bfd_vma relocation; 2802 bfd_boolean unresolved_reloc; 2803 bfd_reloc_status_type r; 2804 int tls_type; 2805 asection *base_got; 2806 2807 r_type = ELF32_R_TYPE (rel->r_info); 2808 if (r_type == (int) R_X86_64_GNU_VTINHERIT 2809 || r_type == (int) R_X86_64_GNU_VTENTRY) 2810 continue; 2811 2812 if (r_type >= R_X86_64_max) 2813 { 2814 bfd_set_error (bfd_error_bad_value); 2815 return FALSE; 2816 } 2817 2818 howto = x86_64_elf_howto_table + r_type; 2819 r_symndx = htab->r_sym (rel->r_info); 2820 h = NULL; 2821 sym = NULL; 2822 sec = NULL; 2823 unresolved_reloc = FALSE; 2824 if (r_symndx < symtab_hdr->sh_info) 2825 { 2826 sym = local_syms + r_symndx; 2827 sec = local_sections[r_symndx]; 2828 2829 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, 2830 &sec, rel); 2831 2832 /* Relocate against local STT_GNU_IFUNC symbol. */ 2833 if (!info->relocatable 2834 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) 2835 { 2836 h = elf_x86_64_get_local_sym_hash (htab, input_bfd, 2837 rel, FALSE); 2838 if (h == NULL) 2839 abort (); 2840 2841 /* Set STT_GNU_IFUNC symbol value. */ 2842 h->root.u.def.value = sym->st_value; 2843 h->root.u.def.section = sec; 2844 } 2845 } 2846 else 2847 { 2848 bfd_boolean warned ATTRIBUTE_UNUSED; 2849 2850 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 2851 r_symndx, symtab_hdr, sym_hashes, 2852 h, sec, relocation, 2853 unresolved_reloc, warned); 2854 } 2855 2856 if (sec != NULL && elf_discarded_section (sec)) 2857 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 2858 rel, relend, howto, contents); 2859 2860 if (info->relocatable) 2861 continue; 2862 2863 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle 2864 it here if it is defined in a non-shared object. */ 2865 if (h != NULL 2866 && h->type == STT_GNU_IFUNC 2867 && h->def_regular) 2868 { 2869 asection *plt; 2870 bfd_vma plt_index; 2871 const char *name; 2872 2873 if ((input_section->flags & SEC_ALLOC) == 0 2874 || h->plt.offset == (bfd_vma) -1) 2875 abort (); 2876 2877 /* STT_GNU_IFUNC symbol must go through PLT. */ 2878 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; 2879 relocation = (plt->output_section->vma 2880 + plt->output_offset + h->plt.offset); 2881 2882 switch (r_type) 2883 { 2884 default: 2885 if (h->root.root.string) 2886 name = h->root.root.string; 2887 else 2888 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 2889 NULL); 2890 (*_bfd_error_handler) 2891 (_("%B: relocation %s against STT_GNU_IFUNC " 2892 "symbol `%s' isn't handled by %s"), input_bfd, 2893 x86_64_elf_howto_table[r_type].name, 2894 name, __FUNCTION__); 2895 bfd_set_error (bfd_error_bad_value); 2896 return FALSE; 2897 2898 case R_X86_64_32S: 2899 if (info->shared) 2900 abort (); 2901 goto do_relocation; 2902 2903 case R_X86_64_32: 2904 if (ABI_64_P (output_bfd)) 2905 goto do_relocation; 2906 /* FALLTHROUGH */ 2907 case R_X86_64_64: 2908 if (rel->r_addend != 0) 2909 { 2910 if (h->root.root.string) 2911 name = h->root.root.string; 2912 else 2913 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 2914 sym, NULL); 2915 (*_bfd_error_handler) 2916 (_("%B: relocation %s against STT_GNU_IFUNC " 2917 "symbol `%s' has non-zero addend: %d"), 2918 input_bfd, x86_64_elf_howto_table[r_type].name, 2919 name, rel->r_addend); 2920 bfd_set_error (bfd_error_bad_value); 2921 return FALSE; 2922 } 2923 2924 /* Generate dynamic relcoation only when there is a 2925 non-GOF reference in a shared object. */ 2926 if (info->shared && h->non_got_ref) 2927 { 2928 Elf_Internal_Rela outrel; 2929 asection *sreloc; 2930 2931 /* Need a dynamic relocation to get the real function 2932 address. */ 2933 outrel.r_offset = _bfd_elf_section_offset (output_bfd, 2934 info, 2935 input_section, 2936 rel->r_offset); 2937 if (outrel.r_offset == (bfd_vma) -1 2938 || outrel.r_offset == (bfd_vma) -2) 2939 abort (); 2940 2941 outrel.r_offset += (input_section->output_section->vma 2942 + input_section->output_offset); 2943 2944 if (h->dynindx == -1 2945 || h->forced_local 2946 || info->executable) 2947 { 2948 /* This symbol is resolved locally. */ 2949 outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE); 2950 outrel.r_addend = (h->root.u.def.value 2951 + h->root.u.def.section->output_section->vma 2952 + h->root.u.def.section->output_offset); 2953 } 2954 else 2955 { 2956 outrel.r_info = htab->r_info (h->dynindx, r_type); 2957 outrel.r_addend = 0; 2958 } 2959 2960 sreloc = htab->elf.irelifunc; 2961 elf_append_rela (output_bfd, sreloc, &outrel); 2962 2963 /* If this reloc is against an external symbol, we 2964 do not want to fiddle with the addend. Otherwise, 2965 we need to include the symbol value so that it 2966 becomes an addend for the dynamic reloc. For an 2967 internal symbol, we have updated addend. */ 2968 continue; 2969 } 2970 /* FALLTHROUGH */ 2971 case R_X86_64_PC32: 2972 case R_X86_64_PC64: 2973 case R_X86_64_PLT32: 2974 goto do_relocation; 2975 2976 case R_X86_64_GOTPCREL: 2977 case R_X86_64_GOTPCREL64: 2978 base_got = htab->elf.sgot; 2979 off = h->got.offset; 2980 2981 if (base_got == NULL) 2982 abort (); 2983 2984 if (off == (bfd_vma) -1) 2985 { 2986 /* We can't use h->got.offset here to save state, or 2987 even just remember the offset, as finish_dynamic_symbol 2988 would use that as offset into .got. */ 2989 2990 if (htab->elf.splt != NULL) 2991 { 2992 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; 2993 off = (plt_index + 3) * GOT_ENTRY_SIZE; 2994 base_got = htab->elf.sgotplt; 2995 } 2996 else 2997 { 2998 plt_index = h->plt.offset / PLT_ENTRY_SIZE; 2999 off = plt_index * GOT_ENTRY_SIZE; 3000 base_got = htab->elf.igotplt; 3001 } 3002 3003 if (h->dynindx == -1 3004 || h->forced_local 3005 || info->symbolic) 3006 { 3007 /* This references the local defitionion. We must 3008 initialize this entry in the global offset table. 3009 Since the offset must always be a multiple of 8, 3010 we use the least significant bit to record 3011 whether we have initialized it already. 3012 3013 When doing a dynamic link, we create a .rela.got 3014 relocation entry to initialize the value. This 3015 is done in the finish_dynamic_symbol routine. */ 3016 if ((off & 1) != 0) 3017 off &= ~1; 3018 else 3019 { 3020 bfd_put_64 (output_bfd, relocation, 3021 base_got->contents + off); 3022 /* Note that this is harmless for the GOTPLT64 3023 case, as -1 | 1 still is -1. */ 3024 h->got.offset |= 1; 3025 } 3026 } 3027 } 3028 3029 relocation = (base_got->output_section->vma 3030 + base_got->output_offset + off); 3031 3032 goto do_relocation; 3033 } 3034 } 3035 3036 /* When generating a shared object, the relocations handled here are 3037 copied into the output file to be resolved at run time. */ 3038 switch (r_type) 3039 { 3040 case R_X86_64_GOT32: 3041 case R_X86_64_GOT64: 3042 /* Relocation is to the entry for this symbol in the global 3043 offset table. */ 3044 case R_X86_64_GOTPCREL: 3045 case R_X86_64_GOTPCREL64: 3046 /* Use global offset table entry as symbol value. */ 3047 case R_X86_64_GOTPLT64: 3048 /* This is the same as GOT64 for relocation purposes, but 3049 indicates the existence of a PLT entry. The difficulty is, 3050 that we must calculate the GOT slot offset from the PLT 3051 offset, if this symbol got a PLT entry (it was global). 3052 Additionally if it's computed from the PLT entry, then that 3053 GOT offset is relative to .got.plt, not to .got. */ 3054 base_got = htab->elf.sgot; 3055 3056 if (htab->elf.sgot == NULL) 3057 abort (); 3058 3059 if (h != NULL) 3060 { 3061 bfd_boolean dyn; 3062 3063 off = h->got.offset; 3064 if (h->needs_plt 3065 && h->plt.offset != (bfd_vma)-1 3066 && off == (bfd_vma)-1) 3067 { 3068 /* We can't use h->got.offset here to save 3069 state, or even just remember the offset, as 3070 finish_dynamic_symbol would use that as offset into 3071 .got. */ 3072 bfd_vma plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; 3073 off = (plt_index + 3) * GOT_ENTRY_SIZE; 3074 base_got = htab->elf.sgotplt; 3075 } 3076 3077 dyn = htab->elf.dynamic_sections_created; 3078 3079 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 3080 || (info->shared 3081 && SYMBOL_REFERENCES_LOCAL (info, h)) 3082 || (ELF_ST_VISIBILITY (h->other) 3083 && h->root.type == bfd_link_hash_undefweak)) 3084 { 3085 /* This is actually a static link, or it is a -Bsymbolic 3086 link and the symbol is defined locally, or the symbol 3087 was forced to be local because of a version file. We 3088 must initialize this entry in the global offset table. 3089 Since the offset must always be a multiple of 8, we 3090 use the least significant bit to record whether we 3091 have initialized it already. 3092 3093 When doing a dynamic link, we create a .rela.got 3094 relocation entry to initialize the value. This is 3095 done in the finish_dynamic_symbol routine. */ 3096 if ((off & 1) != 0) 3097 off &= ~1; 3098 else 3099 { 3100 bfd_put_64 (output_bfd, relocation, 3101 base_got->contents + off); 3102 /* Note that this is harmless for the GOTPLT64 case, 3103 as -1 | 1 still is -1. */ 3104 h->got.offset |= 1; 3105 } 3106 } 3107 else 3108 unresolved_reloc = FALSE; 3109 } 3110 else 3111 { 3112 if (local_got_offsets == NULL) 3113 abort (); 3114 3115 off = local_got_offsets[r_symndx]; 3116 3117 /* The offset must always be a multiple of 8. We use 3118 the least significant bit to record whether we have 3119 already generated the necessary reloc. */ 3120 if ((off & 1) != 0) 3121 off &= ~1; 3122 else 3123 { 3124 bfd_put_64 (output_bfd, relocation, 3125 base_got->contents + off); 3126 3127 if (info->shared) 3128 { 3129 asection *s; 3130 Elf_Internal_Rela outrel; 3131 3132 /* We need to generate a R_X86_64_RELATIVE reloc 3133 for the dynamic linker. */ 3134 s = htab->elf.srelgot; 3135 if (s == NULL) 3136 abort (); 3137 3138 outrel.r_offset = (base_got->output_section->vma 3139 + base_got->output_offset 3140 + off); 3141 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE); 3142 outrel.r_addend = relocation; 3143 elf_append_rela (output_bfd, s, &outrel); 3144 } 3145 3146 local_got_offsets[r_symndx] |= 1; 3147 } 3148 } 3149 3150 if (off >= (bfd_vma) -2) 3151 abort (); 3152 3153 relocation = base_got->output_section->vma 3154 + base_got->output_offset + off; 3155 if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64) 3156 relocation -= htab->elf.sgotplt->output_section->vma 3157 - htab->elf.sgotplt->output_offset; 3158 3159 break; 3160 3161 case R_X86_64_GOTOFF64: 3162 /* Relocation is relative to the start of the global offset 3163 table. */ 3164 3165 /* Check to make sure it isn't a protected function symbol 3166 for shared library since it may not be local when used 3167 as function address. */ 3168 if (info->shared 3169 && h 3170 && h->def_regular 3171 && h->type == STT_FUNC 3172 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 3173 { 3174 (*_bfd_error_handler) 3175 (_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"), 3176 input_bfd, h->root.root.string); 3177 bfd_set_error (bfd_error_bad_value); 3178 return FALSE; 3179 } 3180 3181 /* Note that sgot is not involved in this 3182 calculation. We always want the start of .got.plt. If we 3183 defined _GLOBAL_OFFSET_TABLE_ in a different way, as is 3184 permitted by the ABI, we might have to change this 3185 calculation. */ 3186 relocation -= htab->elf.sgotplt->output_section->vma 3187 + htab->elf.sgotplt->output_offset; 3188 break; 3189 3190 case R_X86_64_GOTPC32: 3191 case R_X86_64_GOTPC64: 3192 /* Use global offset table as symbol value. */ 3193 relocation = htab->elf.sgotplt->output_section->vma 3194 + htab->elf.sgotplt->output_offset; 3195 unresolved_reloc = FALSE; 3196 break; 3197 3198 case R_X86_64_PLTOFF64: 3199 /* Relocation is PLT entry relative to GOT. For local 3200 symbols it's the symbol itself relative to GOT. */ 3201 if (h != NULL 3202 /* See PLT32 handling. */ 3203 && h->plt.offset != (bfd_vma) -1 3204 && htab->elf.splt != NULL) 3205 { 3206 relocation = (htab->elf.splt->output_section->vma 3207 + htab->elf.splt->output_offset 3208 + h->plt.offset); 3209 unresolved_reloc = FALSE; 3210 } 3211 3212 relocation -= htab->elf.sgotplt->output_section->vma 3213 + htab->elf.sgotplt->output_offset; 3214 break; 3215 3216 case R_X86_64_PLT32: 3217 /* Relocation is to the entry for this symbol in the 3218 procedure linkage table. */ 3219 3220 /* Resolve a PLT32 reloc against a local symbol directly, 3221 without using the procedure linkage table. */ 3222 if (h == NULL) 3223 break; 3224 3225 if (h->plt.offset == (bfd_vma) -1 3226 || htab->elf.splt == NULL) 3227 { 3228 /* We didn't make a PLT entry for this symbol. This 3229 happens when statically linking PIC code, or when 3230 using -Bsymbolic. */ 3231 break; 3232 } 3233 3234 relocation = (htab->elf.splt->output_section->vma 3235 + htab->elf.splt->output_offset 3236 + h->plt.offset); 3237 unresolved_reloc = FALSE; 3238 break; 3239 3240 case R_X86_64_PC8: 3241 case R_X86_64_PC16: 3242 case R_X86_64_PC32: 3243 if (info->shared 3244 && ABI_64_P (output_bfd) 3245 && (input_section->flags & SEC_ALLOC) != 0 3246 && (input_section->flags & SEC_READONLY) != 0 3247 && h != NULL) 3248 { 3249 bfd_boolean fail = FALSE; 3250 bfd_boolean branch 3251 = (r_type == R_X86_64_PC32 3252 && is_32bit_relative_branch (contents, rel->r_offset)); 3253 3254 if (SYMBOL_REFERENCES_LOCAL (info, h)) 3255 { 3256 /* Symbol is referenced locally. Make sure it is 3257 defined locally or for a branch. */ 3258 fail = !h->def_regular && !branch; 3259 } 3260 else 3261 { 3262 /* Symbol isn't referenced locally. We only allow 3263 branch to symbol with non-default visibility. */ 3264 fail = (!branch 3265 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT); 3266 } 3267 3268 if (fail) 3269 { 3270 const char *fmt; 3271 const char *v; 3272 const char *pic = ""; 3273 3274 switch (ELF_ST_VISIBILITY (h->other)) 3275 { 3276 case STV_HIDDEN: 3277 v = _("hidden symbol"); 3278 break; 3279 case STV_INTERNAL: 3280 v = _("internal symbol"); 3281 break; 3282 case STV_PROTECTED: 3283 v = _("protected symbol"); 3284 break; 3285 default: 3286 v = _("symbol"); 3287 pic = _("; recompile with -fPIC"); 3288 break; 3289 } 3290 3291 if (h->def_regular) 3292 fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s"); 3293 else 3294 fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s"); 3295 3296 (*_bfd_error_handler) (fmt, input_bfd, 3297 x86_64_elf_howto_table[r_type].name, 3298 v, h->root.root.string, pic); 3299 bfd_set_error (bfd_error_bad_value); 3300 return FALSE; 3301 } 3302 } 3303 /* Fall through. */ 3304 3305 case R_X86_64_8: 3306 case R_X86_64_16: 3307 case R_X86_64_32: 3308 case R_X86_64_PC64: 3309 case R_X86_64_64: 3310 /* FIXME: The ABI says the linker should make sure the value is 3311 the same when it's zeroextended to 64 bit. */ 3312 3313 if ((input_section->flags & SEC_ALLOC) == 0) 3314 break; 3315 3316 if ((info->shared 3317 && (h == NULL 3318 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3319 || h->root.type != bfd_link_hash_undefweak) 3320 && (! IS_X86_64_PCREL_TYPE (r_type) 3321 || ! SYMBOL_CALLS_LOCAL (info, h))) 3322 || (ELIMINATE_COPY_RELOCS 3323 && !info->shared 3324 && h != NULL 3325 && h->dynindx != -1 3326 && !h->non_got_ref 3327 && ((h->def_dynamic 3328 && !h->def_regular) 3329 || h->root.type == bfd_link_hash_undefweak 3330 || h->root.type == bfd_link_hash_undefined))) 3331 { 3332 Elf_Internal_Rela outrel; 3333 bfd_boolean skip, relocate; 3334 asection *sreloc; 3335 3336 /* When generating a shared object, these relocations 3337 are copied into the output file to be resolved at run 3338 time. */ 3339 skip = FALSE; 3340 relocate = FALSE; 3341 3342 outrel.r_offset = 3343 _bfd_elf_section_offset (output_bfd, info, input_section, 3344 rel->r_offset); 3345 if (outrel.r_offset == (bfd_vma) -1) 3346 skip = TRUE; 3347 else if (outrel.r_offset == (bfd_vma) -2) 3348 skip = TRUE, relocate = TRUE; 3349 3350 outrel.r_offset += (input_section->output_section->vma 3351 + input_section->output_offset); 3352 3353 if (skip) 3354 memset (&outrel, 0, sizeof outrel); 3355 3356 /* h->dynindx may be -1 if this symbol was marked to 3357 become local. */ 3358 else if (h != NULL 3359 && h->dynindx != -1 3360 && (IS_X86_64_PCREL_TYPE (r_type) 3361 || ! info->shared 3362 || ! SYMBOLIC_BIND (info, h) 3363 || ! h->def_regular)) 3364 { 3365 outrel.r_info = htab->r_info (h->dynindx, r_type); 3366 outrel.r_addend = rel->r_addend; 3367 } 3368 else 3369 { 3370 /* This symbol is local, or marked to become local. */ 3371 if (r_type == htab->pointer_r_type) 3372 { 3373 relocate = TRUE; 3374 outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE); 3375 outrel.r_addend = relocation + rel->r_addend; 3376 } 3377 else 3378 { 3379 long sindx; 3380 3381 if (bfd_is_abs_section (sec)) 3382 sindx = 0; 3383 else if (sec == NULL || sec->owner == NULL) 3384 { 3385 bfd_set_error (bfd_error_bad_value); 3386 return FALSE; 3387 } 3388 else 3389 { 3390 asection *osec; 3391 3392 /* We are turning this relocation into one 3393 against a section symbol. It would be 3394 proper to subtract the symbol's value, 3395 osec->vma, from the emitted reloc addend, 3396 but ld.so expects buggy relocs. */ 3397 osec = sec->output_section; 3398 sindx = elf_section_data (osec)->dynindx; 3399 if (sindx == 0) 3400 { 3401 asection *oi = htab->elf.text_index_section; 3402 sindx = elf_section_data (oi)->dynindx; 3403 } 3404 BFD_ASSERT (sindx != 0); 3405 } 3406 3407 outrel.r_info = htab->r_info (sindx, r_type); 3408 outrel.r_addend = relocation + rel->r_addend; 3409 } 3410 } 3411 3412 sreloc = elf_section_data (input_section)->sreloc; 3413 3414 BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL); 3415 3416 elf_append_rela (output_bfd, sreloc, &outrel); 3417 3418 /* If this reloc is against an external symbol, we do 3419 not want to fiddle with the addend. Otherwise, we 3420 need to include the symbol value so that it becomes 3421 an addend for the dynamic reloc. */ 3422 if (! relocate) 3423 continue; 3424 } 3425 3426 break; 3427 3428 case R_X86_64_TLSGD: 3429 case R_X86_64_GOTPC32_TLSDESC: 3430 case R_X86_64_TLSDESC_CALL: 3431 case R_X86_64_GOTTPOFF: 3432 tls_type = GOT_UNKNOWN; 3433 if (h == NULL && local_got_offsets) 3434 tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx]; 3435 else if (h != NULL) 3436 tls_type = elf_x86_64_hash_entry (h)->tls_type; 3437 3438 if (! elf_x86_64_tls_transition (info, input_bfd, 3439 input_section, contents, 3440 symtab_hdr, sym_hashes, 3441 &r_type, tls_type, rel, 3442 relend, h, r_symndx)) 3443 return FALSE; 3444 3445 if (r_type == R_X86_64_TPOFF32) 3446 { 3447 bfd_vma roff = rel->r_offset; 3448 3449 BFD_ASSERT (! unresolved_reloc); 3450 3451 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD) 3452 { 3453 /* GD->LE transition. For 64bit, change 3454 .byte 0x66; leaq foo@tlsgd(%rip), %rdi 3455 .word 0x6666; rex64; call __tls_get_addr 3456 into: 3457 movq %fs:0, %rax 3458 leaq foo@tpoff(%rax), %rax 3459 For 32bit, change 3460 leaq foo@tlsgd(%rip), %rdi 3461 .word 0x6666; rex64; call __tls_get_addr 3462 into: 3463 movl %fs:0, %eax 3464 leaq foo@tpoff(%rax), %rax */ 3465 if (ABI_64_P (output_bfd)) 3466 memcpy (contents + roff - 4, 3467 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0", 3468 16); 3469 else 3470 memcpy (contents + roff - 3, 3471 "\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0", 3472 15); 3473 bfd_put_32 (output_bfd, 3474 elf_x86_64_tpoff (info, relocation), 3475 contents + roff + 8); 3476 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */ 3477 rel++; 3478 continue; 3479 } 3480 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC) 3481 { 3482 /* GDesc -> LE transition. 3483 It's originally something like: 3484 leaq x@tlsdesc(%rip), %rax 3485 3486 Change it to: 3487 movl $x@tpoff, %rax. */ 3488 3489 unsigned int val, type; 3490 3491 type = bfd_get_8 (input_bfd, contents + roff - 3); 3492 val = bfd_get_8 (input_bfd, contents + roff - 1); 3493 bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1), 3494 contents + roff - 3); 3495 bfd_put_8 (output_bfd, 0xc7, contents + roff - 2); 3496 bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7), 3497 contents + roff - 1); 3498 bfd_put_32 (output_bfd, 3499 elf_x86_64_tpoff (info, relocation), 3500 contents + roff); 3501 continue; 3502 } 3503 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL) 3504 { 3505 /* GDesc -> LE transition. 3506 It's originally: 3507 call *(%rax) 3508 Turn it into: 3509 xchg %ax,%ax. */ 3510 bfd_put_8 (output_bfd, 0x66, contents + roff); 3511 bfd_put_8 (output_bfd, 0x90, contents + roff + 1); 3512 continue; 3513 } 3514 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF) 3515 { 3516 /* IE->LE transition: 3517 Originally it can be one of: 3518 movq foo@gottpoff(%rip), %reg 3519 addq foo@gottpoff(%rip), %reg 3520 We change it into: 3521 movq $foo, %reg 3522 leaq foo(%reg), %reg 3523 addq $foo, %reg. */ 3524 3525 unsigned int val, type, reg; 3526 3527 val = bfd_get_8 (input_bfd, contents + roff - 3); 3528 type = bfd_get_8 (input_bfd, contents + roff - 2); 3529 reg = bfd_get_8 (input_bfd, contents + roff - 1); 3530 reg >>= 3; 3531 if (type == 0x8b) 3532 { 3533 /* movq */ 3534 if (val == 0x4c) 3535 bfd_put_8 (output_bfd, 0x49, 3536 contents + roff - 3); 3537 else if (!ABI_64_P (output_bfd) && val == 0x44) 3538 bfd_put_8 (output_bfd, 0x41, 3539 contents + roff - 3); 3540 bfd_put_8 (output_bfd, 0xc7, 3541 contents + roff - 2); 3542 bfd_put_8 (output_bfd, 0xc0 | reg, 3543 contents + roff - 1); 3544 } 3545 else if (reg == 4) 3546 { 3547 /* addq -> addq - addressing with %rsp/%r12 is 3548 special */ 3549 if (val == 0x4c) 3550 bfd_put_8 (output_bfd, 0x49, 3551 contents + roff - 3); 3552 else if (!ABI_64_P (output_bfd) && val == 0x44) 3553 bfd_put_8 (output_bfd, 0x41, 3554 contents + roff - 3); 3555 bfd_put_8 (output_bfd, 0x81, 3556 contents + roff - 2); 3557 bfd_put_8 (output_bfd, 0xc0 | reg, 3558 contents + roff - 1); 3559 } 3560 else 3561 { 3562 /* addq -> leaq */ 3563 if (val == 0x4c) 3564 bfd_put_8 (output_bfd, 0x4d, 3565 contents + roff - 3); 3566 else if (!ABI_64_P (output_bfd) && val == 0x44) 3567 bfd_put_8 (output_bfd, 0x45, 3568 contents + roff - 3); 3569 bfd_put_8 (output_bfd, 0x8d, 3570 contents + roff - 2); 3571 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3), 3572 contents + roff - 1); 3573 } 3574 bfd_put_32 (output_bfd, 3575 elf_x86_64_tpoff (info, relocation), 3576 contents + roff); 3577 continue; 3578 } 3579 else 3580 BFD_ASSERT (FALSE); 3581 } 3582 3583 if (htab->elf.sgot == NULL) 3584 abort (); 3585 3586 if (h != NULL) 3587 { 3588 off = h->got.offset; 3589 offplt = elf_x86_64_hash_entry (h)->tlsdesc_got; 3590 } 3591 else 3592 { 3593 if (local_got_offsets == NULL) 3594 abort (); 3595 3596 off = local_got_offsets[r_symndx]; 3597 offplt = local_tlsdesc_gotents[r_symndx]; 3598 } 3599 3600 if ((off & 1) != 0) 3601 off &= ~1; 3602 else 3603 { 3604 Elf_Internal_Rela outrel; 3605 int dr_type, indx; 3606 asection *sreloc; 3607 3608 if (htab->elf.srelgot == NULL) 3609 abort (); 3610 3611 indx = h && h->dynindx != -1 ? h->dynindx : 0; 3612 3613 if (GOT_TLS_GDESC_P (tls_type)) 3614 { 3615 outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC); 3616 BFD_ASSERT (htab->sgotplt_jump_table_size + offplt 3617 + 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size); 3618 outrel.r_offset = (htab->elf.sgotplt->output_section->vma 3619 + htab->elf.sgotplt->output_offset 3620 + offplt 3621 + htab->sgotplt_jump_table_size); 3622 sreloc = htab->elf.srelplt; 3623 if (indx == 0) 3624 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info); 3625 else 3626 outrel.r_addend = 0; 3627 elf_append_rela (output_bfd, sreloc, &outrel); 3628 } 3629 3630 sreloc = htab->elf.srelgot; 3631 3632 outrel.r_offset = (htab->elf.sgot->output_section->vma 3633 + htab->elf.sgot->output_offset + off); 3634 3635 if (GOT_TLS_GD_P (tls_type)) 3636 dr_type = R_X86_64_DTPMOD64; 3637 else if (GOT_TLS_GDESC_P (tls_type)) 3638 goto dr_done; 3639 else 3640 dr_type = R_X86_64_TPOFF64; 3641 3642 bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off); 3643 outrel.r_addend = 0; 3644 if ((dr_type == R_X86_64_TPOFF64 3645 || dr_type == R_X86_64_TLSDESC) && indx == 0) 3646 outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info); 3647 outrel.r_info = htab->r_info (indx, dr_type); 3648 3649 elf_append_rela (output_bfd, sreloc, &outrel); 3650 3651 if (GOT_TLS_GD_P (tls_type)) 3652 { 3653 if (indx == 0) 3654 { 3655 BFD_ASSERT (! unresolved_reloc); 3656 bfd_put_64 (output_bfd, 3657 relocation - elf_x86_64_dtpoff_base (info), 3658 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE); 3659 } 3660 else 3661 { 3662 bfd_put_64 (output_bfd, 0, 3663 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE); 3664 outrel.r_info = htab->r_info (indx, 3665 R_X86_64_DTPOFF64); 3666 outrel.r_offset += GOT_ENTRY_SIZE; 3667 elf_append_rela (output_bfd, sreloc, 3668 &outrel); 3669 } 3670 } 3671 3672 dr_done: 3673 if (h != NULL) 3674 h->got.offset |= 1; 3675 else 3676 local_got_offsets[r_symndx] |= 1; 3677 } 3678 3679 if (off >= (bfd_vma) -2 3680 && ! GOT_TLS_GDESC_P (tls_type)) 3681 abort (); 3682 if (r_type == ELF32_R_TYPE (rel->r_info)) 3683 { 3684 if (r_type == R_X86_64_GOTPC32_TLSDESC 3685 || r_type == R_X86_64_TLSDESC_CALL) 3686 relocation = htab->elf.sgotplt->output_section->vma 3687 + htab->elf.sgotplt->output_offset 3688 + offplt + htab->sgotplt_jump_table_size; 3689 else 3690 relocation = htab->elf.sgot->output_section->vma 3691 + htab->elf.sgot->output_offset + off; 3692 unresolved_reloc = FALSE; 3693 } 3694 else 3695 { 3696 bfd_vma roff = rel->r_offset; 3697 3698 if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD) 3699 { 3700 /* GD->IE transition. For 64bit, change 3701 .byte 0x66; leaq foo@tlsgd(%rip), %rdi 3702 .word 0x6666; rex64; call __tls_get_addr@plt 3703 into: 3704 movq %fs:0, %rax 3705 addq foo@gottpoff(%rip), %rax 3706 For 32bit, change 3707 leaq foo@tlsgd(%rip), %rdi 3708 .word 0x6666; rex64; call __tls_get_addr@plt 3709 into: 3710 movl %fs:0, %eax 3711 addq foo@gottpoff(%rip), %rax */ 3712 if (ABI_64_P (output_bfd)) 3713 memcpy (contents + roff - 4, 3714 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0", 3715 16); 3716 else 3717 memcpy (contents + roff - 3, 3718 "\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0", 3719 15); 3720 3721 relocation = (htab->elf.sgot->output_section->vma 3722 + htab->elf.sgot->output_offset + off 3723 - roff 3724 - input_section->output_section->vma 3725 - input_section->output_offset 3726 - 12); 3727 bfd_put_32 (output_bfd, relocation, 3728 contents + roff + 8); 3729 /* Skip R_X86_64_PLT32. */ 3730 rel++; 3731 continue; 3732 } 3733 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC) 3734 { 3735 /* GDesc -> IE transition. 3736 It's originally something like: 3737 leaq x@tlsdesc(%rip), %rax 3738 3739 Change it to: 3740 movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */ 3741 3742 /* Now modify the instruction as appropriate. To 3743 turn a leaq into a movq in the form we use it, it 3744 suffices to change the second byte from 0x8d to 3745 0x8b. */ 3746 bfd_put_8 (output_bfd, 0x8b, contents + roff - 2); 3747 3748 bfd_put_32 (output_bfd, 3749 htab->elf.sgot->output_section->vma 3750 + htab->elf.sgot->output_offset + off 3751 - rel->r_offset 3752 - input_section->output_section->vma 3753 - input_section->output_offset 3754 - 4, 3755 contents + roff); 3756 continue; 3757 } 3758 else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL) 3759 { 3760 /* GDesc -> IE transition. 3761 It's originally: 3762 call *(%rax) 3763 3764 Change it to: 3765 xchg %ax, %ax. */ 3766 3767 bfd_put_8 (output_bfd, 0x66, contents + roff); 3768 bfd_put_8 (output_bfd, 0x90, contents + roff + 1); 3769 continue; 3770 } 3771 else 3772 BFD_ASSERT (FALSE); 3773 } 3774 break; 3775 3776 case R_X86_64_TLSLD: 3777 if (! elf_x86_64_tls_transition (info, input_bfd, 3778 input_section, contents, 3779 symtab_hdr, sym_hashes, 3780 &r_type, GOT_UNKNOWN, 3781 rel, relend, h, r_symndx)) 3782 return FALSE; 3783 3784 if (r_type != R_X86_64_TLSLD) 3785 { 3786 /* LD->LE transition: 3787 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr. 3788 For 64bit, we change it into: 3789 .word 0x6666; .byte 0x66; movq %fs:0, %rax. 3790 For 32bit, we change it into: 3791 nopl 0x0(%rax); movl %fs:0, %eax. */ 3792 3793 BFD_ASSERT (r_type == R_X86_64_TPOFF32); 3794 if (ABI_64_P (output_bfd)) 3795 memcpy (contents + rel->r_offset - 3, 3796 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12); 3797 else 3798 memcpy (contents + rel->r_offset - 3, 3799 "\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12); 3800 /* Skip R_X86_64_PC32/R_X86_64_PLT32. */ 3801 rel++; 3802 continue; 3803 } 3804 3805 if (htab->elf.sgot == NULL) 3806 abort (); 3807 3808 off = htab->tls_ld_got.offset; 3809 if (off & 1) 3810 off &= ~1; 3811 else 3812 { 3813 Elf_Internal_Rela outrel; 3814 3815 if (htab->elf.srelgot == NULL) 3816 abort (); 3817 3818 outrel.r_offset = (htab->elf.sgot->output_section->vma 3819 + htab->elf.sgot->output_offset + off); 3820 3821 bfd_put_64 (output_bfd, 0, 3822 htab->elf.sgot->contents + off); 3823 bfd_put_64 (output_bfd, 0, 3824 htab->elf.sgot->contents + off + GOT_ENTRY_SIZE); 3825 outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64); 3826 outrel.r_addend = 0; 3827 elf_append_rela (output_bfd, htab->elf.srelgot, 3828 &outrel); 3829 htab->tls_ld_got.offset |= 1; 3830 } 3831 relocation = htab->elf.sgot->output_section->vma 3832 + htab->elf.sgot->output_offset + off; 3833 unresolved_reloc = FALSE; 3834 break; 3835 3836 case R_X86_64_DTPOFF32: 3837 if (!info->executable|| (input_section->flags & SEC_CODE) == 0) 3838 relocation -= elf_x86_64_dtpoff_base (info); 3839 else 3840 relocation = elf_x86_64_tpoff (info, relocation); 3841 break; 3842 3843 case R_X86_64_TPOFF32: 3844 BFD_ASSERT (info->executable); 3845 relocation = elf_x86_64_tpoff (info, relocation); 3846 break; 3847 3848 default: 3849 break; 3850 } 3851 3852 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 3853 because such sections are not SEC_ALLOC and thus ld.so will 3854 not process them. */ 3855 if (unresolved_reloc 3856 && !((input_section->flags & SEC_DEBUGGING) != 0 3857 && h->def_dynamic)) 3858 (*_bfd_error_handler) 3859 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 3860 input_bfd, 3861 input_section, 3862 (long) rel->r_offset, 3863 howto->name, 3864 h->root.root.string); 3865 3866 do_relocation: 3867 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 3868 contents, rel->r_offset, 3869 relocation, rel->r_addend); 3870 3871 if (r != bfd_reloc_ok) 3872 { 3873 const char *name; 3874 3875 if (h != NULL) 3876 name = h->root.root.string; 3877 else 3878 { 3879 name = bfd_elf_string_from_elf_section (input_bfd, 3880 symtab_hdr->sh_link, 3881 sym->st_name); 3882 if (name == NULL) 3883 return FALSE; 3884 if (*name == '\0') 3885 name = bfd_section_name (input_bfd, sec); 3886 } 3887 3888 if (r == bfd_reloc_overflow) 3889 { 3890 if (! ((*info->callbacks->reloc_overflow) 3891 (info, (h ? &h->root : NULL), name, howto->name, 3892 (bfd_vma) 0, input_bfd, input_section, 3893 rel->r_offset))) 3894 return FALSE; 3895 } 3896 else 3897 { 3898 (*_bfd_error_handler) 3899 (_("%B(%A+0x%lx): reloc against `%s': error %d"), 3900 input_bfd, input_section, 3901 (long) rel->r_offset, name, (int) r); 3902 return FALSE; 3903 } 3904 } 3905 } 3906 3907 return TRUE; 3908 } 3909 3910 /* Finish up dynamic symbol handling. We set the contents of various 3911 dynamic sections here. */ 3912 3913 static bfd_boolean 3914 elf_x86_64_finish_dynamic_symbol (bfd *output_bfd, 3915 struct bfd_link_info *info, 3916 struct elf_link_hash_entry *h, 3917 Elf_Internal_Sym *sym) 3918 { 3919 struct elf_x86_64_link_hash_table *htab; 3920 3921 htab = elf_x86_64_hash_table (info); 3922 if (htab == NULL) 3923 return FALSE; 3924 3925 if (h->plt.offset != (bfd_vma) -1) 3926 { 3927 bfd_vma plt_index; 3928 bfd_vma got_offset; 3929 Elf_Internal_Rela rela; 3930 bfd_byte *loc; 3931 asection *plt, *gotplt, *relplt; 3932 const struct elf_backend_data *bed; 3933 3934 /* When building a static executable, use .iplt, .igot.plt and 3935 .rela.iplt sections for STT_GNU_IFUNC symbols. */ 3936 if (htab->elf.splt != NULL) 3937 { 3938 plt = htab->elf.splt; 3939 gotplt = htab->elf.sgotplt; 3940 relplt = htab->elf.srelplt; 3941 } 3942 else 3943 { 3944 plt = htab->elf.iplt; 3945 gotplt = htab->elf.igotplt; 3946 relplt = htab->elf.irelplt; 3947 } 3948 3949 /* This symbol has an entry in the procedure linkage table. Set 3950 it up. */ 3951 if ((h->dynindx == -1 3952 && !((h->forced_local || info->executable) 3953 && h->def_regular 3954 && h->type == STT_GNU_IFUNC)) 3955 || plt == NULL 3956 || gotplt == NULL 3957 || relplt == NULL) 3958 abort (); 3959 3960 /* Get the index in the procedure linkage table which 3961 corresponds to this symbol. This is the index of this symbol 3962 in all the symbols for which we are making plt entries. The 3963 first entry in the procedure linkage table is reserved. 3964 3965 Get the offset into the .got table of the entry that 3966 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE 3967 bytes. The first three are reserved for the dynamic linker. 3968 3969 For static executables, we don't reserve anything. */ 3970 3971 if (plt == htab->elf.splt) 3972 { 3973 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; 3974 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; 3975 } 3976 else 3977 { 3978 plt_index = h->plt.offset / PLT_ENTRY_SIZE; 3979 got_offset = plt_index * GOT_ENTRY_SIZE; 3980 } 3981 3982 /* Fill in the entry in the procedure linkage table. */ 3983 memcpy (plt->contents + h->plt.offset, elf_x86_64_plt_entry, 3984 PLT_ENTRY_SIZE); 3985 3986 /* Insert the relocation positions of the plt section. The magic 3987 numbers at the end of the statements are the positions of the 3988 relocations in the plt section. */ 3989 /* Put offset for jmp *name@GOTPCREL(%rip), since the 3990 instruction uses 6 bytes, subtract this value. */ 3991 bfd_put_32 (output_bfd, 3992 (gotplt->output_section->vma 3993 + gotplt->output_offset 3994 + got_offset 3995 - plt->output_section->vma 3996 - plt->output_offset 3997 - h->plt.offset 3998 - 6), 3999 plt->contents + h->plt.offset + 2); 4000 4001 /* Don't fill PLT entry for static executables. */ 4002 if (plt == htab->elf.splt) 4003 { 4004 /* Put relocation index. */ 4005 bfd_put_32 (output_bfd, plt_index, 4006 plt->contents + h->plt.offset + 7); 4007 /* Put offset for jmp .PLT0. */ 4008 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE), 4009 plt->contents + h->plt.offset + 12); 4010 } 4011 4012 /* Fill in the entry in the global offset table, initially this 4013 points to the pushq instruction in the PLT which is at offset 6. */ 4014 bfd_put_64 (output_bfd, (plt->output_section->vma 4015 + plt->output_offset 4016 + h->plt.offset + 6), 4017 gotplt->contents + got_offset); 4018 4019 /* Fill in the entry in the .rela.plt section. */ 4020 rela.r_offset = (gotplt->output_section->vma 4021 + gotplt->output_offset 4022 + got_offset); 4023 if (h->dynindx == -1 4024 || ((info->executable 4025 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 4026 && h->def_regular 4027 && h->type == STT_GNU_IFUNC)) 4028 { 4029 /* If an STT_GNU_IFUNC symbol is locally defined, generate 4030 R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */ 4031 rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE); 4032 rela.r_addend = (h->root.u.def.value 4033 + h->root.u.def.section->output_section->vma 4034 + h->root.u.def.section->output_offset); 4035 } 4036 else 4037 { 4038 rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT); 4039 rela.r_addend = 0; 4040 } 4041 4042 bed = get_elf_backend_data (output_bfd); 4043 loc = relplt->contents + plt_index * bed->s->sizeof_rela; 4044 bed->s->swap_reloca_out (output_bfd, &rela, loc); 4045 4046 if (!h->def_regular) 4047 { 4048 /* Mark the symbol as undefined, rather than as defined in 4049 the .plt section. Leave the value if there were any 4050 relocations where pointer equality matters (this is a clue 4051 for the dynamic linker, to make function pointer 4052 comparisons work between an application and shared 4053 library), otherwise set it to zero. If a function is only 4054 called from a binary, there is no need to slow down 4055 shared libraries because of that. */ 4056 sym->st_shndx = SHN_UNDEF; 4057 if (!h->pointer_equality_needed) 4058 sym->st_value = 0; 4059 } 4060 } 4061 4062 if (h->got.offset != (bfd_vma) -1 4063 && ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type) 4064 && elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE) 4065 { 4066 Elf_Internal_Rela rela; 4067 4068 /* This symbol has an entry in the global offset table. Set it 4069 up. */ 4070 if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL) 4071 abort (); 4072 4073 rela.r_offset = (htab->elf.sgot->output_section->vma 4074 + htab->elf.sgot->output_offset 4075 + (h->got.offset &~ (bfd_vma) 1)); 4076 4077 /* If this is a static link, or it is a -Bsymbolic link and the 4078 symbol is defined locally or was forced to be local because 4079 of a version file, we just want to emit a RELATIVE reloc. 4080 The entry in the global offset table will already have been 4081 initialized in the relocate_section function. */ 4082 if (h->def_regular 4083 && h->type == STT_GNU_IFUNC) 4084 { 4085 if (info->shared) 4086 { 4087 /* Generate R_X86_64_GLOB_DAT. */ 4088 goto do_glob_dat; 4089 } 4090 else 4091 { 4092 asection *plt; 4093 4094 if (!h->pointer_equality_needed) 4095 abort (); 4096 4097 /* For non-shared object, we can't use .got.plt, which 4098 contains the real function addres if we need pointer 4099 equality. We load the GOT entry with the PLT entry. */ 4100 plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt; 4101 bfd_put_64 (output_bfd, (plt->output_section->vma 4102 + plt->output_offset 4103 + h->plt.offset), 4104 htab->elf.sgot->contents + h->got.offset); 4105 return TRUE; 4106 } 4107 } 4108 else if (info->shared 4109 && SYMBOL_REFERENCES_LOCAL (info, h)) 4110 { 4111 if (!h->def_regular) 4112 return FALSE; 4113 BFD_ASSERT((h->got.offset & 1) != 0); 4114 rela.r_info = htab->r_info (0, R_X86_64_RELATIVE); 4115 rela.r_addend = (h->root.u.def.value 4116 + h->root.u.def.section->output_section->vma 4117 + h->root.u.def.section->output_offset); 4118 } 4119 else 4120 { 4121 BFD_ASSERT((h->got.offset & 1) == 0); 4122 do_glob_dat: 4123 bfd_put_64 (output_bfd, (bfd_vma) 0, 4124 htab->elf.sgot->contents + h->got.offset); 4125 rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT); 4126 rela.r_addend = 0; 4127 } 4128 4129 elf_append_rela (output_bfd, htab->elf.srelgot, &rela); 4130 } 4131 4132 if (h->needs_copy) 4133 { 4134 Elf_Internal_Rela rela; 4135 4136 /* This symbol needs a copy reloc. Set it up. */ 4137 4138 if (h->dynindx == -1 4139 || (h->root.type != bfd_link_hash_defined 4140 && h->root.type != bfd_link_hash_defweak) 4141 || htab->srelbss == NULL) 4142 abort (); 4143 4144 rela.r_offset = (h->root.u.def.value 4145 + h->root.u.def.section->output_section->vma 4146 + h->root.u.def.section->output_offset); 4147 rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY); 4148 rela.r_addend = 0; 4149 elf_append_rela (output_bfd, htab->srelbss, &rela); 4150 } 4151 4152 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may 4153 be NULL for local symbols. */ 4154 if (sym != NULL 4155 && (strcmp (h->root.root.string, "_DYNAMIC") == 0 4156 || h == htab->elf.hgot)) 4157 sym->st_shndx = SHN_ABS; 4158 4159 return TRUE; 4160 } 4161 4162 /* Finish up local dynamic symbol handling. We set the contents of 4163 various dynamic sections here. */ 4164 4165 static bfd_boolean 4166 elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf) 4167 { 4168 struct elf_link_hash_entry *h 4169 = (struct elf_link_hash_entry *) *slot; 4170 struct bfd_link_info *info 4171 = (struct bfd_link_info *) inf; 4172 4173 return elf_x86_64_finish_dynamic_symbol (info->output_bfd, 4174 info, h, NULL); 4175 } 4176 4177 /* Used to decide how to sort relocs in an optimal manner for the 4178 dynamic linker, before writing them out. */ 4179 4180 static enum elf_reloc_type_class 4181 elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela) 4182 { 4183 switch ((int) ELF32_R_TYPE (rela->r_info)) 4184 { 4185 case R_X86_64_RELATIVE: 4186 return reloc_class_relative; 4187 case R_X86_64_JUMP_SLOT: 4188 return reloc_class_plt; 4189 case R_X86_64_COPY: 4190 return reloc_class_copy; 4191 default: 4192 return reloc_class_normal; 4193 } 4194 } 4195 4196 /* Finish up the dynamic sections. */ 4197 4198 static bfd_boolean 4199 elf_x86_64_finish_dynamic_sections (bfd *output_bfd, 4200 struct bfd_link_info *info) 4201 { 4202 struct elf_x86_64_link_hash_table *htab; 4203 bfd *dynobj; 4204 asection *sdyn; 4205 4206 htab = elf_x86_64_hash_table (info); 4207 if (htab == NULL) 4208 return FALSE; 4209 4210 dynobj = htab->elf.dynobj; 4211 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 4212 4213 if (htab->elf.dynamic_sections_created) 4214 { 4215 bfd_byte *dyncon, *dynconend; 4216 const struct elf_backend_data *bed; 4217 bfd_size_type sizeof_dyn; 4218 4219 if (sdyn == NULL || htab->elf.sgot == NULL) 4220 abort (); 4221 4222 bed = get_elf_backend_data (dynobj); 4223 sizeof_dyn = bed->s->sizeof_dyn; 4224 dyncon = sdyn->contents; 4225 dynconend = sdyn->contents + sdyn->size; 4226 for (; dyncon < dynconend; dyncon += sizeof_dyn) 4227 { 4228 Elf_Internal_Dyn dyn; 4229 asection *s; 4230 4231 (*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn); 4232 4233 switch (dyn.d_tag) 4234 { 4235 default: 4236 continue; 4237 4238 case DT_PLTGOT: 4239 s = htab->elf.sgotplt; 4240 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 4241 break; 4242 4243 case DT_JMPREL: 4244 dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma; 4245 break; 4246 4247 case DT_PLTRELSZ: 4248 s = htab->elf.srelplt->output_section; 4249 dyn.d_un.d_val = s->size; 4250 break; 4251 4252 case DT_RELASZ: 4253 /* The procedure linkage table relocs (DT_JMPREL) should 4254 not be included in the overall relocs (DT_RELA). 4255 Therefore, we override the DT_RELASZ entry here to 4256 make it not include the JMPREL relocs. Since the 4257 linker script arranges for .rela.plt to follow all 4258 other relocation sections, we don't have to worry 4259 about changing the DT_RELA entry. */ 4260 if (htab->elf.srelplt != NULL) 4261 { 4262 s = htab->elf.srelplt->output_section; 4263 dyn.d_un.d_val -= s->size; 4264 } 4265 break; 4266 4267 case DT_TLSDESC_PLT: 4268 s = htab->elf.splt; 4269 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 4270 + htab->tlsdesc_plt; 4271 break; 4272 4273 case DT_TLSDESC_GOT: 4274 s = htab->elf.sgot; 4275 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 4276 + htab->tlsdesc_got; 4277 break; 4278 } 4279 4280 (*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon); 4281 } 4282 4283 /* Fill in the special first entry in the procedure linkage table. */ 4284 if (htab->elf.splt && htab->elf.splt->size > 0) 4285 { 4286 /* Fill in the first entry in the procedure linkage table. */ 4287 memcpy (htab->elf.splt->contents, elf_x86_64_plt0_entry, 4288 PLT_ENTRY_SIZE); 4289 /* Add offset for pushq GOT+8(%rip), since the instruction 4290 uses 6 bytes subtract this value. */ 4291 bfd_put_32 (output_bfd, 4292 (htab->elf.sgotplt->output_section->vma 4293 + htab->elf.sgotplt->output_offset 4294 + 8 4295 - htab->elf.splt->output_section->vma 4296 - htab->elf.splt->output_offset 4297 - 6), 4298 htab->elf.splt->contents + 2); 4299 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to 4300 the end of the instruction. */ 4301 bfd_put_32 (output_bfd, 4302 (htab->elf.sgotplt->output_section->vma 4303 + htab->elf.sgotplt->output_offset 4304 + 16 4305 - htab->elf.splt->output_section->vma 4306 - htab->elf.splt->output_offset 4307 - 12), 4308 htab->elf.splt->contents + 8); 4309 4310 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize = 4311 PLT_ENTRY_SIZE; 4312 4313 if (htab->tlsdesc_plt) 4314 { 4315 bfd_put_64 (output_bfd, (bfd_vma) 0, 4316 htab->elf.sgot->contents + htab->tlsdesc_got); 4317 4318 memcpy (htab->elf.splt->contents + htab->tlsdesc_plt, 4319 elf_x86_64_plt0_entry, 4320 PLT_ENTRY_SIZE); 4321 4322 /* Add offset for pushq GOT+8(%rip), since the 4323 instruction uses 6 bytes subtract this value. */ 4324 bfd_put_32 (output_bfd, 4325 (htab->elf.sgotplt->output_section->vma 4326 + htab->elf.sgotplt->output_offset 4327 + 8 4328 - htab->elf.splt->output_section->vma 4329 - htab->elf.splt->output_offset 4330 - htab->tlsdesc_plt 4331 - 6), 4332 htab->elf.splt->contents + htab->tlsdesc_plt + 2); 4333 /* Add offset for jmp *GOT+TDG(%rip), where TGD stands for 4334 htab->tlsdesc_got. The 12 is the offset to the end of 4335 the instruction. */ 4336 bfd_put_32 (output_bfd, 4337 (htab->elf.sgot->output_section->vma 4338 + htab->elf.sgot->output_offset 4339 + htab->tlsdesc_got 4340 - htab->elf.splt->output_section->vma 4341 - htab->elf.splt->output_offset 4342 - htab->tlsdesc_plt 4343 - 12), 4344 htab->elf.splt->contents + htab->tlsdesc_plt + 8); 4345 } 4346 } 4347 } 4348 4349 if (htab->elf.sgotplt) 4350 { 4351 if (bfd_is_abs_section (htab->elf.sgotplt->output_section)) 4352 { 4353 (*_bfd_error_handler) 4354 (_("discarded output section: `%A'"), htab->elf.sgotplt); 4355 return FALSE; 4356 } 4357 4358 /* Fill in the first three entries in the global offset table. */ 4359 if (htab->elf.sgotplt->size > 0) 4360 { 4361 /* Set the first entry in the global offset table to the address of 4362 the dynamic section. */ 4363 if (sdyn == NULL) 4364 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents); 4365 else 4366 bfd_put_64 (output_bfd, 4367 sdyn->output_section->vma + sdyn->output_offset, 4368 htab->elf.sgotplt->contents); 4369 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ 4370 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); 4371 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2); 4372 } 4373 4374 elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize = 4375 GOT_ENTRY_SIZE; 4376 } 4377 4378 if (htab->elf.sgot && htab->elf.sgot->size > 0) 4379 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize 4380 = GOT_ENTRY_SIZE; 4381 4382 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ 4383 htab_traverse (htab->loc_hash_table, 4384 elf_x86_64_finish_local_dynamic_symbol, 4385 info); 4386 4387 return TRUE; 4388 } 4389 4390 /* Return address for Ith PLT stub in section PLT, for relocation REL 4391 or (bfd_vma) -1 if it should not be included. */ 4392 4393 static bfd_vma 4394 elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt, 4395 const arelent *rel ATTRIBUTE_UNUSED) 4396 { 4397 return plt->vma + (i + 1) * PLT_ENTRY_SIZE; 4398 } 4399 4400 /* Handle an x86-64 specific section when reading an object file. This 4401 is called when elfcode.h finds a section with an unknown type. */ 4402 4403 static bfd_boolean 4404 elf_x86_64_section_from_shdr (bfd *abfd, 4405 Elf_Internal_Shdr *hdr, 4406 const char *name, 4407 int shindex) 4408 { 4409 if (hdr->sh_type != SHT_X86_64_UNWIND) 4410 return FALSE; 4411 4412 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 4413 return FALSE; 4414 4415 return TRUE; 4416 } 4417 4418 /* Hook called by the linker routine which adds symbols from an object 4419 file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead 4420 of .bss. */ 4421 4422 static bfd_boolean 4423 elf_x86_64_add_symbol_hook (bfd *abfd, 4424 struct bfd_link_info *info, 4425 Elf_Internal_Sym *sym, 4426 const char **namep ATTRIBUTE_UNUSED, 4427 flagword *flagsp ATTRIBUTE_UNUSED, 4428 asection **secp, 4429 bfd_vma *valp) 4430 { 4431 asection *lcomm; 4432 4433 switch (sym->st_shndx) 4434 { 4435 case SHN_X86_64_LCOMMON: 4436 lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON"); 4437 if (lcomm == NULL) 4438 { 4439 lcomm = bfd_make_section_with_flags (abfd, 4440 "LARGE_COMMON", 4441 (SEC_ALLOC 4442 | SEC_IS_COMMON 4443 | SEC_LINKER_CREATED)); 4444 if (lcomm == NULL) 4445 return FALSE; 4446 elf_section_flags (lcomm) |= SHF_X86_64_LARGE; 4447 } 4448 *secp = lcomm; 4449 *valp = sym->st_size; 4450 return TRUE; 4451 } 4452 4453 if ((abfd->flags & DYNAMIC) == 0 4454 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) 4455 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE; 4456 4457 return TRUE; 4458 } 4459 4460 4461 /* Given a BFD section, try to locate the corresponding ELF section 4462 index. */ 4463 4464 static bfd_boolean 4465 elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 4466 asection *sec, int *index_return) 4467 { 4468 if (sec == &_bfd_elf_large_com_section) 4469 { 4470 *index_return = SHN_X86_64_LCOMMON; 4471 return TRUE; 4472 } 4473 return FALSE; 4474 } 4475 4476 /* Process a symbol. */ 4477 4478 static void 4479 elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, 4480 asymbol *asym) 4481 { 4482 elf_symbol_type *elfsym = (elf_symbol_type *) asym; 4483 4484 switch (elfsym->internal_elf_sym.st_shndx) 4485 { 4486 case SHN_X86_64_LCOMMON: 4487 asym->section = &_bfd_elf_large_com_section; 4488 asym->value = elfsym->internal_elf_sym.st_size; 4489 /* Common symbol doesn't set BSF_GLOBAL. */ 4490 asym->flags &= ~BSF_GLOBAL; 4491 break; 4492 } 4493 } 4494 4495 static bfd_boolean 4496 elf_x86_64_common_definition (Elf_Internal_Sym *sym) 4497 { 4498 return (sym->st_shndx == SHN_COMMON 4499 || sym->st_shndx == SHN_X86_64_LCOMMON); 4500 } 4501 4502 static unsigned int 4503 elf_x86_64_common_section_index (asection *sec) 4504 { 4505 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0) 4506 return SHN_COMMON; 4507 else 4508 return SHN_X86_64_LCOMMON; 4509 } 4510 4511 static asection * 4512 elf_x86_64_common_section (asection *sec) 4513 { 4514 if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0) 4515 return bfd_com_section_ptr; 4516 else 4517 return &_bfd_elf_large_com_section; 4518 } 4519 4520 static bfd_boolean 4521 elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, 4522 struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED, 4523 struct elf_link_hash_entry *h, 4524 Elf_Internal_Sym *sym, 4525 asection **psec, 4526 bfd_vma *pvalue ATTRIBUTE_UNUSED, 4527 unsigned int *pold_alignment ATTRIBUTE_UNUSED, 4528 bfd_boolean *skip ATTRIBUTE_UNUSED, 4529 bfd_boolean *override ATTRIBUTE_UNUSED, 4530 bfd_boolean *type_change_ok ATTRIBUTE_UNUSED, 4531 bfd_boolean *size_change_ok ATTRIBUTE_UNUSED, 4532 bfd_boolean *newdef ATTRIBUTE_UNUSED, 4533 bfd_boolean *newdyn, 4534 bfd_boolean *newdyncommon ATTRIBUTE_UNUSED, 4535 bfd_boolean *newweak ATTRIBUTE_UNUSED, 4536 bfd *abfd ATTRIBUTE_UNUSED, 4537 asection **sec, 4538 bfd_boolean *olddef ATTRIBUTE_UNUSED, 4539 bfd_boolean *olddyn, 4540 bfd_boolean *olddyncommon ATTRIBUTE_UNUSED, 4541 bfd_boolean *oldweak ATTRIBUTE_UNUSED, 4542 bfd *oldbfd, 4543 asection **oldsec) 4544 { 4545 /* A normal common symbol and a large common symbol result in a 4546 normal common symbol. We turn the large common symbol into a 4547 normal one. */ 4548 if (!*olddyn 4549 && h->root.type == bfd_link_hash_common 4550 && !*newdyn 4551 && bfd_is_com_section (*sec) 4552 && *oldsec != *sec) 4553 { 4554 if (sym->st_shndx == SHN_COMMON 4555 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0) 4556 { 4557 h->root.u.c.p->section 4558 = bfd_make_section_old_way (oldbfd, "COMMON"); 4559 h->root.u.c.p->section->flags = SEC_ALLOC; 4560 } 4561 else if (sym->st_shndx == SHN_X86_64_LCOMMON 4562 && (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0) 4563 *psec = *sec = bfd_com_section_ptr; 4564 } 4565 4566 return TRUE; 4567 } 4568 4569 static int 4570 elf_x86_64_additional_program_headers (bfd *abfd, 4571 struct bfd_link_info *info ATTRIBUTE_UNUSED) 4572 { 4573 asection *s; 4574 int count = 0; 4575 4576 /* Check to see if we need a large readonly segment. */ 4577 s = bfd_get_section_by_name (abfd, ".lrodata"); 4578 if (s && (s->flags & SEC_LOAD)) 4579 count++; 4580 4581 /* Check to see if we need a large data segment. Since .lbss sections 4582 is placed right after the .bss section, there should be no need for 4583 a large data segment just because of .lbss. */ 4584 s = bfd_get_section_by_name (abfd, ".ldata"); 4585 if (s && (s->flags & SEC_LOAD)) 4586 count++; 4587 4588 return count; 4589 } 4590 4591 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ 4592 4593 static bfd_boolean 4594 elf_x86_64_hash_symbol (struct elf_link_hash_entry *h) 4595 { 4596 if (h->plt.offset != (bfd_vma) -1 4597 && !h->def_regular 4598 && !h->pointer_equality_needed) 4599 return FALSE; 4600 4601 return _bfd_elf_hash_symbol (h); 4602 } 4603 4604 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */ 4605 4606 static bfd_boolean 4607 elf_x86_64_relocs_compatible (const bfd_target *input, 4608 const bfd_target *output) 4609 { 4610 return ((xvec_get_elf_backend_data (input)->s->elfclass 4611 == xvec_get_elf_backend_data (output)->s->elfclass) 4612 && _bfd_elf_relocs_compatible (input, output)); 4613 } 4614 4615 static const struct bfd_elf_special_section 4616 elf_x86_64_special_sections[]= 4617 { 4618 { STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, 4619 { STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE}, 4620 { STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE}, 4621 { STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, 4622 { STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE}, 4623 { STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE}, 4624 { NULL, 0, 0, 0, 0 } 4625 }; 4626 4627 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec 4628 #define TARGET_LITTLE_NAME "elf64-x86-64" 4629 #define ELF_ARCH bfd_arch_i386 4630 #define ELF_TARGET_ID X86_64_ELF_DATA 4631 #define ELF_MACHINE_CODE EM_X86_64 4632 #define ELF_MAXPAGESIZE 0x200000 4633 #define ELF_MINPAGESIZE 0x1000 4634 #define ELF_COMMONPAGESIZE 0x1000 4635 4636 #define elf_backend_can_gc_sections 1 4637 #define elf_backend_can_refcount 1 4638 #define elf_backend_want_got_plt 1 4639 #define elf_backend_plt_readonly 1 4640 #define elf_backend_want_plt_sym 0 4641 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3) 4642 #define elf_backend_rela_normal 1 4643 4644 #define elf_info_to_howto elf_x86_64_info_to_howto 4645 4646 #define bfd_elf64_bfd_link_hash_table_create \ 4647 elf_x86_64_link_hash_table_create 4648 #define bfd_elf64_bfd_link_hash_table_free \ 4649 elf_x86_64_link_hash_table_free 4650 #define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup 4651 #define bfd_elf64_bfd_reloc_name_lookup \ 4652 elf_x86_64_reloc_name_lookup 4653 4654 #define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol 4655 #define elf_backend_relocs_compatible elf_x86_64_relocs_compatible 4656 #define elf_backend_check_relocs elf_x86_64_check_relocs 4657 #define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol 4658 #define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections 4659 #define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections 4660 #define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol 4661 #define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook 4662 #define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook 4663 #define elf_backend_grok_prstatus elf_x86_64_grok_prstatus 4664 #define elf_backend_grok_psinfo elf_x86_64_grok_psinfo 4665 #define elf_backend_reloc_type_class elf_x86_64_reloc_type_class 4666 #define elf_backend_relocate_section elf_x86_64_relocate_section 4667 #define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections 4668 #define elf_backend_always_size_sections elf_x86_64_always_size_sections 4669 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4670 #define elf_backend_plt_sym_val elf_x86_64_plt_sym_val 4671 #define elf_backend_object_p elf64_x86_64_elf_object_p 4672 #define bfd_elf64_mkobject elf_x86_64_mkobject 4673 4674 #define elf_backend_section_from_shdr \ 4675 elf_x86_64_section_from_shdr 4676 4677 #define elf_backend_section_from_bfd_section \ 4678 elf_x86_64_elf_section_from_bfd_section 4679 #define elf_backend_add_symbol_hook \ 4680 elf_x86_64_add_symbol_hook 4681 #define elf_backend_symbol_processing \ 4682 elf_x86_64_symbol_processing 4683 #define elf_backend_common_section_index \ 4684 elf_x86_64_common_section_index 4685 #define elf_backend_common_section \ 4686 elf_x86_64_common_section 4687 #define elf_backend_common_definition \ 4688 elf_x86_64_common_definition 4689 #define elf_backend_merge_symbol \ 4690 elf_x86_64_merge_symbol 4691 #define elf_backend_special_sections \ 4692 elf_x86_64_special_sections 4693 #define elf_backend_additional_program_headers \ 4694 elf_x86_64_additional_program_headers 4695 #define elf_backend_hash_symbol \ 4696 elf_x86_64_hash_symbol 4697 4698 #undef elf_backend_post_process_headers 4699 #define elf_backend_post_process_headers _bfd_elf_set_osabi 4700 4701 #include "elf64-target.h" 4702 4703 /* FreeBSD support. */ 4704 4705 #undef TARGET_LITTLE_SYM 4706 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec 4707 #undef TARGET_LITTLE_NAME 4708 #define TARGET_LITTLE_NAME "elf64-x86-64-freebsd" 4709 4710 #undef ELF_OSABI 4711 #define ELF_OSABI ELFOSABI_FREEBSD 4712 4713 #undef elf64_bed 4714 #define elf64_bed elf64_x86_64_fbsd_bed 4715 4716 #include "elf64-target.h" 4717 4718 /* Solaris 2 support. */ 4719 4720 #undef TARGET_LITTLE_SYM 4721 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec 4722 #undef TARGET_LITTLE_NAME 4723 #define TARGET_LITTLE_NAME "elf64-x86-64-sol2" 4724 4725 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE 4726 objects won't be recognized. */ 4727 #undef ELF_OSABI 4728 4729 #undef elf64_bed 4730 #define elf64_bed elf64_x86_64_sol2_bed 4731 4732 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte 4733 boundary. */ 4734 #undef elf_backend_static_tls_alignment 4735 #define elf_backend_static_tls_alignment 16 4736 4737 /* The Solaris 2 ABI requires a plt symbol on all platforms. 4738 4739 Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output 4740 File, p.63. */ 4741 #undef elf_backend_want_plt_sym 4742 #define elf_backend_want_plt_sym 1 4743 4744 #include "elf64-target.h" 4745 4746 /* Intel L1OM support. */ 4747 4748 static bfd_boolean 4749 elf64_l1om_elf_object_p (bfd *abfd) 4750 { 4751 /* Set the right machine number for an L1OM elf64 file. */ 4752 bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om); 4753 return TRUE; 4754 } 4755 4756 #undef TARGET_LITTLE_SYM 4757 #define TARGET_LITTLE_SYM bfd_elf64_l1om_vec 4758 #undef TARGET_LITTLE_NAME 4759 #define TARGET_LITTLE_NAME "elf64-l1om" 4760 #undef ELF_ARCH 4761 #define ELF_ARCH bfd_arch_l1om 4762 4763 #undef ELF_MACHINE_CODE 4764 #define ELF_MACHINE_CODE EM_L1OM 4765 4766 #undef ELF_OSABI 4767 4768 #undef elf64_bed 4769 #define elf64_bed elf64_l1om_bed 4770 4771 #undef elf_backend_object_p 4772 #define elf_backend_object_p elf64_l1om_elf_object_p 4773 4774 #undef elf_backend_post_process_headers 4775 #undef elf_backend_static_tls_alignment 4776 4777 #undef elf_backend_want_plt_sym 4778 #define elf_backend_want_plt_sym 0 4779 4780 #include "elf64-target.h" 4781 4782 /* FreeBSD L1OM support. */ 4783 4784 #undef TARGET_LITTLE_SYM 4785 #define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec 4786 #undef TARGET_LITTLE_NAME 4787 #define TARGET_LITTLE_NAME "elf64-l1om-freebsd" 4788 4789 #undef ELF_OSABI 4790 #define ELF_OSABI ELFOSABI_FREEBSD 4791 4792 #undef elf64_bed 4793 #define elf64_bed elf64_l1om_fbsd_bed 4794 4795 #undef elf_backend_post_process_headers 4796 #define elf_backend_post_process_headers _bfd_elf_set_osabi 4797 4798 #include "elf64-target.h" 4799 4800 /* 32bit x86-64 support. */ 4801 4802 static bfd_boolean 4803 elf32_x86_64_elf_object_p (bfd *abfd) 4804 { 4805 /* Set the right machine number for an x86-64 elf32 file. */ 4806 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32); 4807 return TRUE; 4808 } 4809 4810 #undef TARGET_LITTLE_SYM 4811 #define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec 4812 #undef TARGET_LITTLE_NAME 4813 #define TARGET_LITTLE_NAME "elf32-x86-64" 4814 4815 #undef ELF_ARCH 4816 #define ELF_ARCH bfd_arch_i386 4817 4818 #undef ELF_MACHINE_CODE 4819 #define ELF_MACHINE_CODE EM_X86_64 4820 4821 #define bfd_elf32_bfd_link_hash_table_create \ 4822 elf_x86_64_link_hash_table_create 4823 #define bfd_elf32_bfd_link_hash_table_free \ 4824 elf_x86_64_link_hash_table_free 4825 #define bfd_elf32_bfd_reloc_type_lookup \ 4826 elf_x86_64_reloc_type_lookup 4827 #define bfd_elf32_bfd_reloc_name_lookup \ 4828 elf_x86_64_reloc_name_lookup 4829 #define bfd_elf32_mkobject \ 4830 elf_x86_64_mkobject 4831 4832 #undef ELF_OSABI 4833 4834 #undef elf_backend_post_process_headers 4835 4836 #undef elf_backend_object_p 4837 #define elf_backend_object_p \ 4838 elf32_x86_64_elf_object_p 4839 4840 #undef elf_backend_bfd_from_remote_memory 4841 #define elf_backend_bfd_from_remote_memory \ 4842 _bfd_elf32_bfd_from_remote_memory 4843 4844 #undef elf_backend_size_info 4845 #define elf_backend_size_info \ 4846 _bfd_elf32_size_info 4847 4848 #include "elf32-target.h" 4849