xref: /dragonfly/contrib/gdb-7/bfd/linker.c (revision 2020c8fe)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.  (The
227 	callback may in fact indicate that a replacement BFD should be
228 	used, in which case the symbols from that BFD should be added
229 	to the linker hash table instead.)
230 
231 @findex _bfd_generic_link_add_archive_symbols
232 	In most cases the work of looking through the symbols in the
233 	archive should be done by the
234 	<<_bfd_generic_link_add_archive_symbols>> function.  This
235 	function builds a hash table from the archive symbol table and
236 	looks through the list of undefined symbols to see which
237 	elements should be included.
238 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
239 	to call to make the final decision about adding an archive
240 	element to the link and to do the actual work of adding the
241 	symbols to the linker hash table.
242 
243 	The function passed to
244 	<<_bfd_generic_link_add_archive_symbols>> must read the
245 	symbols of the archive element and decide whether the archive
246 	element should be included in the link.  If the element is to
247 	be included, the <<add_archive_element>> linker callback
248 	routine must be called with the element as an argument, and
249 	the element's symbols must be added to the linker hash table
250 	just as though the element had itself been passed to the
251 	<<_bfd_link_add_symbols>> function.  The <<add_archive_element>>
252 	callback has the option to indicate that it would like to
253 	replace the element archive with a substitute BFD, in which
254 	case it is the symbols of that substitute BFD that must be
255 	added to the linker hash table instead.
256 
257 	When the a.out <<_bfd_link_add_symbols>> function receives an
258 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 	passing <<aout_link_check_archive_element>> as the function
260 	argument. <<aout_link_check_archive_element>> calls
261 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
262 	the element (an element is only added if it provides a real,
263 	non-common, definition for a previously undefined or common
264 	symbol) it calls the <<add_archive_element>> callback and then
265 	<<aout_link_check_archive_element>> calls
266 	<<aout_link_add_symbols>> to actually add the symbols to the
267 	linker hash table - possibly those of a substitute BFD, if the
268 	<<add_archive_element>> callback avails itself of that option.
269 
270 	The ECOFF back end is unusual in that it does not normally
271 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 	archives already contain a hash table of symbols.  The ECOFF
273 	back end searches the archive itself to avoid the overhead of
274 	creating a new hash table.
275 
276 INODE
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
278 SUBSECTION
279 	Performing the final link
280 
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 	When all the input files have been processed, the linker calls
284 	the <<_bfd_final_link>> entry point of the output BFD.  This
285 	routine is responsible for producing the final output file,
286 	which has several aspects.  It must relocate the contents of
287 	the input sections and copy the data into the output sections.
288 	It must build an output symbol table including any local
289 	symbols from the input files and the global symbols from the
290 	hash table.  When producing relocatable output, it must
291 	modify the input relocs and write them into the output file.
292 	There may also be object format dependent work to be done.
293 
294 	The linker will also call the <<write_object_contents>> entry
295 	point when the BFD is closed.  The two entry points must work
296 	together in order to produce the correct output file.
297 
298 	The details of how this works are inevitably dependent upon
299 	the specific object file format.  The a.out
300 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
301 
302 @menu
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
306 @end menu
307 
308 INODE
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
310 SUBSUBSECTION
311 	Information provided by the linker
312 
313 	Before the linker calls the <<_bfd_final_link>> entry point,
314 	it sets up some data structures for the function to use.
315 
316 	The <<input_bfds>> field of the <<bfd_link_info>> structure
317 	will point to a list of all the input files included in the
318 	link.  These files are linked through the <<link_next>> field
319 	of the <<bfd>> structure.
320 
321 	Each section in the output file will have a list of
322 	<<link_order>> structures attached to the <<map_head.link_order>>
323 	field (the <<link_order>> structure is defined in
324 	<<bfdlink.h>>).  These structures describe how to create the
325 	contents of the output section in terms of the contents of
326 	various input sections, fill constants, and, eventually, other
327 	types of information.  They also describe relocs that must be
328 	created by the BFD backend, but do not correspond to any input
329 	file; this is used to support -Ur, which builds constructors
330 	while generating a relocatable object file.
331 
332 INODE
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
334 SUBSUBSECTION
335 	Relocating the section contents
336 
337 	The <<_bfd_final_link>> function should look through the
338 	<<link_order>> structures attached to each section of the
339 	output file.  Each <<link_order>> structure should either be
340 	handled specially, or it should be passed to the function
341 	<<_bfd_default_link_order>> which will do the right thing
342 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
343 
344 	For efficiency, a <<link_order>> of type
345 	<<bfd_indirect_link_order>> whose associated section belongs
346 	to a BFD of the same format as the output BFD must be handled
347 	specially.  This type of <<link_order>> describes part of an
348 	output section in terms of a section belonging to one of the
349 	input files.  The <<_bfd_final_link>> function should read the
350 	contents of the section and any associated relocs, apply the
351 	relocs to the section contents, and write out the modified
352 	section contents.  If performing a relocatable link, the
353 	relocs themselves must also be modified and written out.
354 
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 	The functions <<_bfd_relocate_contents>> and
358 	<<_bfd_final_link_relocate>> provide some general support for
359 	performing the actual relocations, notably overflow checking.
360 	Their arguments include information about the symbol the
361 	relocation is against and a <<reloc_howto_type>> argument
362 	which describes the relocation to perform.  These functions
363 	are defined in <<reloc.c>>.
364 
365 	The a.out function which handles reading, relocating, and
366 	writing section contents is <<aout_link_input_section>>.  The
367 	actual relocation is done in <<aout_link_input_section_std>>
368 	and <<aout_link_input_section_ext>>.
369 
370 INODE
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
372 SUBSUBSECTION
373 	Writing the symbol table
374 
375 	The <<_bfd_final_link>> function must gather all the symbols
376 	in the input files and write them out.  It must also write out
377 	all the symbols in the global hash table.  This must be
378 	controlled by the <<strip>> and <<discard>> fields of the
379 	<<bfd_link_info>> structure.
380 
381 	The local symbols of the input files will not have been
382 	entered into the linker hash table.  The <<_bfd_final_link>>
383 	routine must consider each input file and include the symbols
384 	in the output file.  It may be convenient to do this when
385 	looking through the <<link_order>> structures, or it may be
386 	done by stepping through the <<input_bfds>> list.
387 
388 	The <<_bfd_final_link>> routine must also traverse the global
389 	hash table to gather all the externally visible symbols.  It
390 	is possible that most of the externally visible symbols may be
391 	written out when considering the symbols of each input file,
392 	but it is still necessary to traverse the hash table since the
393 	linker script may have defined some symbols that are not in
394 	any of the input files.
395 
396 	The <<strip>> field of the <<bfd_link_info>> structure
397 	controls which symbols are written out.  The possible values
398 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
399 	then the <<keep_hash>> field of the <<bfd_link_info>>
400 	structure is a hash table of symbols to keep; each symbol
401 	should be looked up in this hash table, and only symbols which
402 	are present should be included in the output file.
403 
404 	If the <<strip>> field of the <<bfd_link_info>> structure
405 	permits local symbols to be written out, the <<discard>> field
406 	is used to further controls which local symbols are included
407 	in the output file.  If the value is <<discard_l>>, then all
408 	local symbols which begin with a certain prefix are discarded;
409 	this is controlled by the <<bfd_is_local_label_name>> entry point.
410 
411 	The a.out backend handles symbols by calling
412 	<<aout_link_write_symbols>> on each input BFD and then
413 	traversing the global hash table with the function
414 	<<aout_link_write_other_symbol>>.  It builds a string table
415 	while writing out the symbols, which is written to the output
416 	file at the end of <<NAME(aout,final_link)>>.
417 */
418 
419 static bfd_boolean generic_link_add_object_symbols
420   (bfd *, struct bfd_link_info *, bfd_boolean collect);
421 static bfd_boolean generic_link_add_symbols
422   (bfd *, struct bfd_link_info *, bfd_boolean);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424   (bfd *, struct bfd_link_info *, bfd_boolean *);
425 static bfd_boolean generic_link_check_archive_element_collect
426   (bfd *, struct bfd_link_info *, bfd_boolean *);
427 static bfd_boolean generic_link_check_archive_element
428   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
429 static bfd_boolean generic_link_add_symbol_list
430   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
431    bfd_boolean);
432 static bfd_boolean generic_add_output_symbol
433   (bfd *, size_t *psymalloc, asymbol *);
434 static bfd_boolean default_data_link_order
435   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
436 static bfd_boolean default_indirect_link_order
437   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
438    bfd_boolean);
439 
440 /* The link hash table structure is defined in bfdlink.h.  It provides
441    a base hash table which the backend specific hash tables are built
442    upon.  */
443 
444 /* Routine to create an entry in the link hash table.  */
445 
446 struct bfd_hash_entry *
447 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
448 			struct bfd_hash_table *table,
449 			const char *string)
450 {
451   /* Allocate the structure if it has not already been allocated by a
452      subclass.  */
453   if (entry == NULL)
454     {
455       entry = (struct bfd_hash_entry *)
456           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
457       if (entry == NULL)
458 	return entry;
459     }
460 
461   /* Call the allocation method of the superclass.  */
462   entry = bfd_hash_newfunc (entry, table, string);
463   if (entry)
464     {
465       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
466 
467       /* Initialize the local fields.  */
468       h->type = bfd_link_hash_new;
469       memset (&h->u.undef.next, 0,
470 	      (sizeof (struct bfd_link_hash_entry)
471 	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
472     }
473 
474   return entry;
475 }
476 
477 /* Initialize a link hash table.  The BFD argument is the one
478    responsible for creating this table.  */
479 
480 bfd_boolean
481 _bfd_link_hash_table_init
482   (struct bfd_link_hash_table *table,
483    bfd *abfd ATTRIBUTE_UNUSED,
484    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
485 				      struct bfd_hash_table *,
486 				      const char *),
487    unsigned int entsize)
488 {
489   table->undefs = NULL;
490   table->undefs_tail = NULL;
491   table->type = bfd_link_generic_hash_table;
492 
493   return bfd_hash_table_init (&table->table, newfunc, entsize);
494 }
495 
496 /* Look up a symbol in a link hash table.  If follow is TRUE, we
497    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
498    the real symbol.  */
499 
500 struct bfd_link_hash_entry *
501 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
502 		      const char *string,
503 		      bfd_boolean create,
504 		      bfd_boolean copy,
505 		      bfd_boolean follow)
506 {
507   struct bfd_link_hash_entry *ret;
508 
509   ret = ((struct bfd_link_hash_entry *)
510 	 bfd_hash_lookup (&table->table, string, create, copy));
511 
512   if (follow && ret != NULL)
513     {
514       while (ret->type == bfd_link_hash_indirect
515 	     || ret->type == bfd_link_hash_warning)
516 	ret = ret->u.i.link;
517     }
518 
519   return ret;
520 }
521 
522 /* Look up a symbol in the main linker hash table if the symbol might
523    be wrapped.  This should only be used for references to an
524    undefined symbol, not for definitions of a symbol.  */
525 
526 struct bfd_link_hash_entry *
527 bfd_wrapped_link_hash_lookup (bfd *abfd,
528 			      struct bfd_link_info *info,
529 			      const char *string,
530 			      bfd_boolean create,
531 			      bfd_boolean copy,
532 			      bfd_boolean follow)
533 {
534   bfd_size_type amt;
535 
536   if (info->wrap_hash != NULL)
537     {
538       const char *l;
539       char prefix = '\0';
540 
541       l = string;
542       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
543 	{
544 	  prefix = *l;
545 	  ++l;
546 	}
547 
548 #undef WRAP
549 #define WRAP "__wrap_"
550 
551       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
552 	{
553 	  char *n;
554 	  struct bfd_link_hash_entry *h;
555 
556 	  /* This symbol is being wrapped.  We want to replace all
557              references to SYM with references to __wrap_SYM.  */
558 
559 	  amt = strlen (l) + sizeof WRAP + 1;
560 	  n = (char *) bfd_malloc (amt);
561 	  if (n == NULL)
562 	    return NULL;
563 
564 	  n[0] = prefix;
565 	  n[1] = '\0';
566 	  strcat (n, WRAP);
567 	  strcat (n, l);
568 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
569 	  free (n);
570 	  return h;
571 	}
572 
573 #undef WRAP
574 
575 #undef  REAL
576 #define REAL "__real_"
577 
578       if (*l == '_'
579 	  && CONST_STRNEQ (l, REAL)
580 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
581 			      FALSE, FALSE) != NULL)
582 	{
583 	  char *n;
584 	  struct bfd_link_hash_entry *h;
585 
586 	  /* This is a reference to __real_SYM, where SYM is being
587              wrapped.  We want to replace all references to __real_SYM
588              with references to SYM.  */
589 
590 	  amt = strlen (l + sizeof REAL - 1) + 2;
591 	  n = (char *) bfd_malloc (amt);
592 	  if (n == NULL)
593 	    return NULL;
594 
595 	  n[0] = prefix;
596 	  n[1] = '\0';
597 	  strcat (n, l + sizeof REAL - 1);
598 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
599 	  free (n);
600 	  return h;
601 	}
602 
603 #undef REAL
604     }
605 
606   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
607 }
608 
609 /* Traverse a generic link hash table.  The only reason this is not a
610    macro is to do better type checking.  This code presumes that an
611    argument passed as a struct bfd_hash_entry * may be caught as a
612    struct bfd_link_hash_entry * with no explicit cast required on the
613    call.  */
614 
615 void
616 bfd_link_hash_traverse
617   (struct bfd_link_hash_table *table,
618    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
619    void *info)
620 {
621   bfd_hash_traverse (&table->table,
622 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
623 		     info);
624 }
625 
626 /* Add a symbol to the linker hash table undefs list.  */
627 
628 void
629 bfd_link_add_undef (struct bfd_link_hash_table *table,
630 		    struct bfd_link_hash_entry *h)
631 {
632   BFD_ASSERT (h->u.undef.next == NULL);
633   if (table->undefs_tail != NULL)
634     table->undefs_tail->u.undef.next = h;
635   if (table->undefs == NULL)
636     table->undefs = h;
637   table->undefs_tail = h;
638 }
639 
640 /* The undefs list was designed so that in normal use we don't need to
641    remove entries.  However, if symbols on the list are changed from
642    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
643    bfd_link_hash_new for some reason, then they must be removed from the
644    list.  Failure to do so might result in the linker attempting to add
645    the symbol to the list again at a later stage.  */
646 
647 void
648 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
649 {
650   struct bfd_link_hash_entry **pun;
651 
652   pun = &table->undefs;
653   while (*pun != NULL)
654     {
655       struct bfd_link_hash_entry *h = *pun;
656 
657       if (h->type == bfd_link_hash_new
658 	  || h->type == bfd_link_hash_undefweak)
659 	{
660 	  *pun = h->u.undef.next;
661 	  h->u.undef.next = NULL;
662 	  if (h == table->undefs_tail)
663 	    {
664 	      if (pun == &table->undefs)
665 		table->undefs_tail = NULL;
666 	      else
667 		/* pun points at an u.undef.next field.  Go back to
668 		   the start of the link_hash_entry.  */
669 		table->undefs_tail = (struct bfd_link_hash_entry *)
670 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
671 	      break;
672 	    }
673 	}
674       else
675 	pun = &h->u.undef.next;
676     }
677 }
678 
679 /* Routine to create an entry in a generic link hash table.  */
680 
681 struct bfd_hash_entry *
682 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
683 				struct bfd_hash_table *table,
684 				const char *string)
685 {
686   /* Allocate the structure if it has not already been allocated by a
687      subclass.  */
688   if (entry == NULL)
689     {
690       entry = (struct bfd_hash_entry *)
691 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
692       if (entry == NULL)
693 	return entry;
694     }
695 
696   /* Call the allocation method of the superclass.  */
697   entry = _bfd_link_hash_newfunc (entry, table, string);
698   if (entry)
699     {
700       struct generic_link_hash_entry *ret;
701 
702       /* Set local fields.  */
703       ret = (struct generic_link_hash_entry *) entry;
704       ret->written = FALSE;
705       ret->sym = NULL;
706     }
707 
708   return entry;
709 }
710 
711 /* Create a generic link hash table.  */
712 
713 struct bfd_link_hash_table *
714 _bfd_generic_link_hash_table_create (bfd *abfd)
715 {
716   struct generic_link_hash_table *ret;
717   bfd_size_type amt = sizeof (struct generic_link_hash_table);
718 
719   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
720   if (ret == NULL)
721     return NULL;
722   if (! _bfd_link_hash_table_init (&ret->root, abfd,
723 				   _bfd_generic_link_hash_newfunc,
724 				   sizeof (struct generic_link_hash_entry)))
725     {
726       free (ret);
727       return NULL;
728     }
729   return &ret->root;
730 }
731 
732 void
733 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
734 {
735   struct generic_link_hash_table *ret
736     = (struct generic_link_hash_table *) hash;
737 
738   bfd_hash_table_free (&ret->root.table);
739   free (ret);
740 }
741 
742 /* Grab the symbols for an object file when doing a generic link.  We
743    store the symbols in the outsymbols field.  We need to keep them
744    around for the entire link to ensure that we only read them once.
745    If we read them multiple times, we might wind up with relocs and
746    the hash table pointing to different instances of the symbol
747    structure.  */
748 
749 bfd_boolean
750 bfd_generic_link_read_symbols (bfd *abfd)
751 {
752   if (bfd_get_outsymbols (abfd) == NULL)
753     {
754       long symsize;
755       long symcount;
756 
757       symsize = bfd_get_symtab_upper_bound (abfd);
758       if (symsize < 0)
759 	return FALSE;
760       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
761                                                                     symsize);
762       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
763 	return FALSE;
764       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
765       if (symcount < 0)
766 	return FALSE;
767       bfd_get_symcount (abfd) = symcount;
768     }
769 
770   return TRUE;
771 }
772 
773 /* Generic function to add symbols to from an object file to the
774    global hash table.  This version does not automatically collect
775    constructors by name.  */
776 
777 bfd_boolean
778 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
779 {
780   return generic_link_add_symbols (abfd, info, FALSE);
781 }
782 
783 /* Generic function to add symbols from an object file to the global
784    hash table.  This version automatically collects constructors by
785    name, as the collect2 program does.  It should be used for any
786    target which does not provide some other mechanism for setting up
787    constructors and destructors; these are approximately those targets
788    for which gcc uses collect2 and do not support stabs.  */
789 
790 bfd_boolean
791 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
792 {
793   return generic_link_add_symbols (abfd, info, TRUE);
794 }
795 
796 /* Indicate that we are only retrieving symbol values from this
797    section.  We want the symbols to act as though the values in the
798    file are absolute.  */
799 
800 void
801 _bfd_generic_link_just_syms (asection *sec,
802 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
803 {
804   sec->output_section = bfd_abs_section_ptr;
805   sec->output_offset = sec->vma;
806 }
807 
808 /* Copy the type of a symbol assiciated with a linker hast table entry.
809    Override this so that symbols created in linker scripts get their
810    type from the RHS of the assignment.
811    The default implementation does nothing.  */
812 void
813 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
814     struct bfd_link_hash_entry * hdest ATTRIBUTE_UNUSED,
815     struct bfd_link_hash_entry * hsrc ATTRIBUTE_UNUSED)
816 {
817 }
818 
819 /* Add symbols from an object file to the global hash table.  */
820 
821 static bfd_boolean
822 generic_link_add_symbols (bfd *abfd,
823 			  struct bfd_link_info *info,
824 			  bfd_boolean collect)
825 {
826   bfd_boolean ret;
827 
828   switch (bfd_get_format (abfd))
829     {
830     case bfd_object:
831       ret = generic_link_add_object_symbols (abfd, info, collect);
832       break;
833     case bfd_archive:
834       ret = (_bfd_generic_link_add_archive_symbols
835 	     (abfd, info,
836 	      (collect
837 	       ? generic_link_check_archive_element_collect
838 	       : generic_link_check_archive_element_no_collect)));
839       break;
840     default:
841       bfd_set_error (bfd_error_wrong_format);
842       ret = FALSE;
843     }
844 
845   return ret;
846 }
847 
848 /* Add symbols from an object file to the global hash table.  */
849 
850 static bfd_boolean
851 generic_link_add_object_symbols (bfd *abfd,
852 				 struct bfd_link_info *info,
853 				 bfd_boolean collect)
854 {
855   bfd_size_type symcount;
856   struct bfd_symbol **outsyms;
857 
858   if (!bfd_generic_link_read_symbols (abfd))
859     return FALSE;
860   symcount = _bfd_generic_link_get_symcount (abfd);
861   outsyms = _bfd_generic_link_get_symbols (abfd);
862   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
863 }
864 
865 /* We build a hash table of all symbols defined in an archive.  */
866 
867 /* An archive symbol may be defined by multiple archive elements.
868    This linked list is used to hold the elements.  */
869 
870 struct archive_list
871 {
872   struct archive_list *next;
873   unsigned int indx;
874 };
875 
876 /* An entry in an archive hash table.  */
877 
878 struct archive_hash_entry
879 {
880   struct bfd_hash_entry root;
881   /* Where the symbol is defined.  */
882   struct archive_list *defs;
883 };
884 
885 /* An archive hash table itself.  */
886 
887 struct archive_hash_table
888 {
889   struct bfd_hash_table table;
890 };
891 
892 /* Create a new entry for an archive hash table.  */
893 
894 static struct bfd_hash_entry *
895 archive_hash_newfunc (struct bfd_hash_entry *entry,
896 		      struct bfd_hash_table *table,
897 		      const char *string)
898 {
899   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
900 
901   /* Allocate the structure if it has not already been allocated by a
902      subclass.  */
903   if (ret == NULL)
904     ret = (struct archive_hash_entry *)
905         bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
906   if (ret == NULL)
907     return NULL;
908 
909   /* Call the allocation method of the superclass.  */
910   ret = ((struct archive_hash_entry *)
911 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
912 
913   if (ret)
914     {
915       /* Initialize the local fields.  */
916       ret->defs = NULL;
917     }
918 
919   return &ret->root;
920 }
921 
922 /* Initialize an archive hash table.  */
923 
924 static bfd_boolean
925 archive_hash_table_init
926   (struct archive_hash_table *table,
927    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
928 				      struct bfd_hash_table *,
929 				      const char *),
930    unsigned int entsize)
931 {
932   return bfd_hash_table_init (&table->table, newfunc, entsize);
933 }
934 
935 /* Look up an entry in an archive hash table.  */
936 
937 #define archive_hash_lookup(t, string, create, copy) \
938   ((struct archive_hash_entry *) \
939    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
940 
941 /* Allocate space in an archive hash table.  */
942 
943 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
944 
945 /* Free an archive hash table.  */
946 
947 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
948 
949 /* Generic function to add symbols from an archive file to the global
950    hash file.  This function presumes that the archive symbol table
951    has already been read in (this is normally done by the
952    bfd_check_format entry point).  It looks through the undefined and
953    common symbols and searches the archive symbol table for them.  If
954    it finds an entry, it includes the associated object file in the
955    link.
956 
957    The old linker looked through the archive symbol table for
958    undefined symbols.  We do it the other way around, looking through
959    undefined symbols for symbols defined in the archive.  The
960    advantage of the newer scheme is that we only have to look through
961    the list of undefined symbols once, whereas the old method had to
962    re-search the symbol table each time a new object file was added.
963 
964    The CHECKFN argument is used to see if an object file should be
965    included.  CHECKFN should set *PNEEDED to TRUE if the object file
966    should be included, and must also call the bfd_link_info
967    add_archive_element callback function and handle adding the symbols
968    to the global hash table.  CHECKFN must notice if the callback
969    indicates a substitute BFD, and arrange to add those symbols instead
970    if it does so.  CHECKFN should only return FALSE if some sort of
971    error occurs.
972 
973    For some formats, such as a.out, it is possible to look through an
974    object file but not actually include it in the link.  The
975    archive_pass field in a BFD is used to avoid checking the symbols
976    of an object files too many times.  When an object is included in
977    the link, archive_pass is set to -1.  If an object is scanned but
978    not included, archive_pass is set to the pass number.  The pass
979    number is incremented each time a new object file is included.  The
980    pass number is used because when a new object file is included it
981    may create new undefined symbols which cause a previously examined
982    object file to be included.  */
983 
984 bfd_boolean
985 _bfd_generic_link_add_archive_symbols
986   (bfd *abfd,
987    struct bfd_link_info *info,
988    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
989 {
990   carsym *arsyms;
991   carsym *arsym_end;
992   register carsym *arsym;
993   int pass;
994   struct archive_hash_table arsym_hash;
995   unsigned int indx;
996   struct bfd_link_hash_entry **pundef;
997 
998   if (! bfd_has_map (abfd))
999     {
1000       /* An empty archive is a special case.  */
1001       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
1002 	return TRUE;
1003       bfd_set_error (bfd_error_no_armap);
1004       return FALSE;
1005     }
1006 
1007   arsyms = bfd_ardata (abfd)->symdefs;
1008   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
1009 
1010   /* In order to quickly determine whether an symbol is defined in
1011      this archive, we build a hash table of the symbols.  */
1012   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
1013 				 sizeof (struct archive_hash_entry)))
1014     return FALSE;
1015   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
1016     {
1017       struct archive_hash_entry *arh;
1018       struct archive_list *l, **pp;
1019 
1020       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1021       if (arh == NULL)
1022 	goto error_return;
1023       l = ((struct archive_list *)
1024 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1025       if (l == NULL)
1026 	goto error_return;
1027       l->indx = indx;
1028       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1029 	;
1030       *pp = l;
1031       l->next = NULL;
1032     }
1033 
1034   /* The archive_pass field in the archive itself is used to
1035      initialize PASS, sine we may search the same archive multiple
1036      times.  */
1037   pass = abfd->archive_pass + 1;
1038 
1039   /* New undefined symbols are added to the end of the list, so we
1040      only need to look through it once.  */
1041   pundef = &info->hash->undefs;
1042   while (*pundef != NULL)
1043     {
1044       struct bfd_link_hash_entry *h;
1045       struct archive_hash_entry *arh;
1046       struct archive_list *l;
1047 
1048       h = *pundef;
1049 
1050       /* When a symbol is defined, it is not necessarily removed from
1051 	 the list.  */
1052       if (h->type != bfd_link_hash_undefined
1053 	  && h->type != bfd_link_hash_common)
1054 	{
1055 	  /* Remove this entry from the list, for general cleanliness
1056 	     and because we are going to look through the list again
1057 	     if we search any more libraries.  We can't remove the
1058 	     entry if it is the tail, because that would lose any
1059 	     entries we add to the list later on (it would also cause
1060 	     us to lose track of whether the symbol has been
1061 	     referenced).  */
1062 	  if (*pundef != info->hash->undefs_tail)
1063 	    *pundef = (*pundef)->u.undef.next;
1064 	  else
1065 	    pundef = &(*pundef)->u.undef.next;
1066 	  continue;
1067 	}
1068 
1069       /* Look for this symbol in the archive symbol map.  */
1070       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1071       if (arh == NULL)
1072 	{
1073 	  /* If we haven't found the exact symbol we're looking for,
1074 	     let's look for its import thunk */
1075 	  if (info->pei386_auto_import)
1076 	    {
1077 	      bfd_size_type amt = strlen (h->root.string) + 10;
1078 	      char *buf = (char *) bfd_malloc (amt);
1079 	      if (buf == NULL)
1080 		return FALSE;
1081 
1082 	      sprintf (buf, "__imp_%s", h->root.string);
1083 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1084 	      free(buf);
1085 	    }
1086 	  if (arh == NULL)
1087 	    {
1088 	      pundef = &(*pundef)->u.undef.next;
1089 	      continue;
1090 	    }
1091 	}
1092       /* Look at all the objects which define this symbol.  */
1093       for (l = arh->defs; l != NULL; l = l->next)
1094 	{
1095 	  bfd *element;
1096 	  bfd_boolean needed;
1097 
1098 	  /* If the symbol has gotten defined along the way, quit.  */
1099 	  if (h->type != bfd_link_hash_undefined
1100 	      && h->type != bfd_link_hash_common)
1101 	    break;
1102 
1103 	  element = bfd_get_elt_at_index (abfd, l->indx);
1104 	  if (element == NULL)
1105 	    goto error_return;
1106 
1107 	  /* If we've already included this element, or if we've
1108 	     already checked it on this pass, continue.  */
1109 	  if (element->archive_pass == -1
1110 	      || element->archive_pass == pass)
1111 	    continue;
1112 
1113 	  /* If we can't figure this element out, just ignore it.  */
1114 	  if (! bfd_check_format (element, bfd_object))
1115 	    {
1116 	      element->archive_pass = -1;
1117 	      continue;
1118 	    }
1119 
1120 	  /* CHECKFN will see if this element should be included, and
1121 	     go ahead and include it if appropriate.  */
1122 	  if (! (*checkfn) (element, info, &needed))
1123 	    goto error_return;
1124 
1125 	  if (! needed)
1126 	    element->archive_pass = pass;
1127 	  else
1128 	    {
1129 	      element->archive_pass = -1;
1130 
1131 	      /* Increment the pass count to show that we may need to
1132 		 recheck object files which were already checked.  */
1133 	      ++pass;
1134 	    }
1135 	}
1136 
1137       pundef = &(*pundef)->u.undef.next;
1138     }
1139 
1140   archive_hash_table_free (&arsym_hash);
1141 
1142   /* Save PASS in case we are called again.  */
1143   abfd->archive_pass = pass;
1144 
1145   return TRUE;
1146 
1147  error_return:
1148   archive_hash_table_free (&arsym_hash);
1149   return FALSE;
1150 }
1151 
1152 /* See if we should include an archive element.  This version is used
1153    when we do not want to automatically collect constructors based on
1154    the symbol name, presumably because we have some other mechanism
1155    for finding them.  */
1156 
1157 static bfd_boolean
1158 generic_link_check_archive_element_no_collect (
1159 					       bfd *abfd,
1160 					       struct bfd_link_info *info,
1161 					       bfd_boolean *pneeded)
1162 {
1163   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1164 }
1165 
1166 /* See if we should include an archive element.  This version is used
1167    when we want to automatically collect constructors based on the
1168    symbol name, as collect2 does.  */
1169 
1170 static bfd_boolean
1171 generic_link_check_archive_element_collect (bfd *abfd,
1172 					    struct bfd_link_info *info,
1173 					    bfd_boolean *pneeded)
1174 {
1175   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1176 }
1177 
1178 /* See if we should include an archive element.  Optionally collect
1179    constructors.  */
1180 
1181 static bfd_boolean
1182 generic_link_check_archive_element (bfd *abfd,
1183 				    struct bfd_link_info *info,
1184 				    bfd_boolean *pneeded,
1185 				    bfd_boolean collect)
1186 {
1187   asymbol **pp, **ppend;
1188 
1189   *pneeded = FALSE;
1190 
1191   if (!bfd_generic_link_read_symbols (abfd))
1192     return FALSE;
1193 
1194   pp = _bfd_generic_link_get_symbols (abfd);
1195   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1196   for (; pp < ppend; pp++)
1197     {
1198       asymbol *p;
1199       struct bfd_link_hash_entry *h;
1200 
1201       p = *pp;
1202 
1203       /* We are only interested in globally visible symbols.  */
1204       if (! bfd_is_com_section (p->section)
1205 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1206 	continue;
1207 
1208       /* We are only interested if we know something about this
1209 	 symbol, and it is undefined or common.  An undefined weak
1210 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1211 	 a reference when pulling files out of an archive.  See the
1212 	 SVR4 ABI, p. 4-27.  */
1213       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1214 				FALSE, TRUE);
1215       if (h == NULL
1216 	  || (h->type != bfd_link_hash_undefined
1217 	      && h->type != bfd_link_hash_common))
1218 	continue;
1219 
1220       /* P is a symbol we are looking for.  */
1221 
1222       if (! bfd_is_com_section (p->section))
1223 	{
1224 	  bfd_size_type symcount;
1225 	  asymbol **symbols;
1226 	  bfd *oldbfd = abfd;
1227 
1228 	  /* This object file defines this symbol, so pull it in.  */
1229 	  if (!(*info->callbacks
1230 		->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1231 					&abfd))
1232 	    return FALSE;
1233 	  /* Potentially, the add_archive_element hook may have set a
1234 	     substitute BFD for us.  */
1235 	  if (abfd != oldbfd
1236 	      && !bfd_generic_link_read_symbols (abfd))
1237 	    return FALSE;
1238 	  symcount = _bfd_generic_link_get_symcount (abfd);
1239 	  symbols = _bfd_generic_link_get_symbols (abfd);
1240 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1241 					      symbols, collect))
1242 	    return FALSE;
1243 	  *pneeded = TRUE;
1244 	  return TRUE;
1245 	}
1246 
1247       /* P is a common symbol.  */
1248 
1249       if (h->type == bfd_link_hash_undefined)
1250 	{
1251 	  bfd *symbfd;
1252 	  bfd_vma size;
1253 	  unsigned int power;
1254 
1255 	  symbfd = h->u.undef.abfd;
1256 	  if (symbfd == NULL)
1257 	    {
1258 	      /* This symbol was created as undefined from outside
1259 		 BFD.  We assume that we should link in the object
1260 		 file.  This is for the -u option in the linker.  */
1261 	      if (!(*info->callbacks
1262 		    ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1263 					    &abfd))
1264 		return FALSE;
1265 	      /* Potentially, the add_archive_element hook may have set a
1266 		 substitute BFD for us.  But no symbols are going to get
1267 		 registered by anything we're returning to from here.  */
1268 	      *pneeded = TRUE;
1269 	      return TRUE;
1270 	    }
1271 
1272 	  /* Turn the symbol into a common symbol but do not link in
1273 	     the object file.  This is how a.out works.  Object
1274 	     formats that require different semantics must implement
1275 	     this function differently.  This symbol is already on the
1276 	     undefs list.  We add the section to a common section
1277 	     attached to symbfd to ensure that it is in a BFD which
1278 	     will be linked in.  */
1279 	  h->type = bfd_link_hash_common;
1280 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1281 	    bfd_hash_allocate (&info->hash->table,
1282 			       sizeof (struct bfd_link_hash_common_entry));
1283 	  if (h->u.c.p == NULL)
1284 	    return FALSE;
1285 
1286 	  size = bfd_asymbol_value (p);
1287 	  h->u.c.size = size;
1288 
1289 	  power = bfd_log2 (size);
1290 	  if (power > 4)
1291 	    power = 4;
1292 	  h->u.c.p->alignment_power = power;
1293 
1294 	  if (p->section == bfd_com_section_ptr)
1295 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1296 	  else
1297 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1298 							  p->section->name);
1299 	  h->u.c.p->section->flags = SEC_ALLOC;
1300 	}
1301       else
1302 	{
1303 	  /* Adjust the size of the common symbol if necessary.  This
1304 	     is how a.out works.  Object formats that require
1305 	     different semantics must implement this function
1306 	     differently.  */
1307 	  if (bfd_asymbol_value (p) > h->u.c.size)
1308 	    h->u.c.size = bfd_asymbol_value (p);
1309 	}
1310     }
1311 
1312   /* This archive element is not needed.  */
1313   return TRUE;
1314 }
1315 
1316 /* Add the symbols from an object file to the global hash table.  ABFD
1317    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1318    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1319    is TRUE if constructors should be automatically collected by name
1320    as is done by collect2.  */
1321 
1322 static bfd_boolean
1323 generic_link_add_symbol_list (bfd *abfd,
1324 			      struct bfd_link_info *info,
1325 			      bfd_size_type symbol_count,
1326 			      asymbol **symbols,
1327 			      bfd_boolean collect)
1328 {
1329   asymbol **pp, **ppend;
1330 
1331   pp = symbols;
1332   ppend = symbols + symbol_count;
1333   for (; pp < ppend; pp++)
1334     {
1335       asymbol *p;
1336 
1337       p = *pp;
1338 
1339       if ((p->flags & (BSF_INDIRECT
1340 		       | BSF_WARNING
1341 		       | BSF_GLOBAL
1342 		       | BSF_CONSTRUCTOR
1343 		       | BSF_WEAK)) != 0
1344 	  || bfd_is_und_section (bfd_get_section (p))
1345 	  || bfd_is_com_section (bfd_get_section (p))
1346 	  || bfd_is_ind_section (bfd_get_section (p)))
1347 	{
1348 	  const char *name;
1349 	  const char *string;
1350 	  struct generic_link_hash_entry *h;
1351 	  struct bfd_link_hash_entry *bh;
1352 
1353 	  string = name = bfd_asymbol_name (p);
1354 	  if (((p->flags & BSF_INDIRECT) != 0
1355 	       || bfd_is_ind_section (p->section))
1356 	      && pp + 1 < ppend)
1357 	    {
1358 	      pp++;
1359 	      string = bfd_asymbol_name (*pp);
1360 	    }
1361 	  else if ((p->flags & BSF_WARNING) != 0
1362 		   && pp + 1 < ppend)
1363 	    {
1364 	      /* The name of P is actually the warning string, and the
1365 		 next symbol is the one to warn about.  */
1366 	      pp++;
1367 	      name = bfd_asymbol_name (*pp);
1368 	    }
1369 
1370 	  bh = NULL;
1371 	  if (! (_bfd_generic_link_add_one_symbol
1372 		 (info, abfd, name, p->flags, bfd_get_section (p),
1373 		  p->value, string, FALSE, collect, &bh)))
1374 	    return FALSE;
1375 	  h = (struct generic_link_hash_entry *) bh;
1376 
1377 	  /* If this is a constructor symbol, and the linker didn't do
1378              anything with it, then we want to just pass the symbol
1379              through to the output file.  This will happen when
1380              linking with -r.  */
1381 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1382 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1383 	    {
1384 	      p->udata.p = NULL;
1385 	      continue;
1386 	    }
1387 
1388 	  /* Save the BFD symbol so that we don't lose any backend
1389 	     specific information that may be attached to it.  We only
1390 	     want this one if it gives more information than the
1391 	     existing one; we don't want to replace a defined symbol
1392 	     with an undefined one.  This routine may be called with a
1393 	     hash table other than the generic hash table, so we only
1394 	     do this if we are certain that the hash table is a
1395 	     generic one.  */
1396 	  if (info->output_bfd->xvec == abfd->xvec)
1397 	    {
1398 	      if (h->sym == NULL
1399 		  || (! bfd_is_und_section (bfd_get_section (p))
1400 		      && (! bfd_is_com_section (bfd_get_section (p))
1401 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1402 		{
1403 		  h->sym = p;
1404 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1405 		     reading, and it should go away when the COFF
1406 		     linker is switched to the new version.  */
1407 		  if (bfd_is_com_section (bfd_get_section (p)))
1408 		    p->flags |= BSF_OLD_COMMON;
1409 		}
1410 	    }
1411 
1412 	  /* Store a back pointer from the symbol to the hash
1413 	     table entry for the benefit of relaxation code until
1414 	     it gets rewritten to not use asymbol structures.
1415 	     Setting this is also used to check whether these
1416 	     symbols were set up by the generic linker.  */
1417 	  p->udata.p = h;
1418 	}
1419     }
1420 
1421   return TRUE;
1422 }
1423 
1424 /* We use a state table to deal with adding symbols from an object
1425    file.  The first index into the state table describes the symbol
1426    from the object file.  The second index into the state table is the
1427    type of the symbol in the hash table.  */
1428 
1429 /* The symbol from the object file is turned into one of these row
1430    values.  */
1431 
1432 enum link_row
1433 {
1434   UNDEF_ROW,		/* Undefined.  */
1435   UNDEFW_ROW,		/* Weak undefined.  */
1436   DEF_ROW,		/* Defined.  */
1437   DEFW_ROW,		/* Weak defined.  */
1438   COMMON_ROW,		/* Common.  */
1439   INDR_ROW,		/* Indirect.  */
1440   WARN_ROW,		/* Warning.  */
1441   SET_ROW		/* Member of set.  */
1442 };
1443 
1444 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1445 #undef FAIL
1446 
1447 /* The actions to take in the state table.  */
1448 
1449 enum link_action
1450 {
1451   FAIL,		/* Abort.  */
1452   UND,		/* Mark symbol undefined.  */
1453   WEAK,		/* Mark symbol weak undefined.  */
1454   DEF,		/* Mark symbol defined.  */
1455   DEFW,		/* Mark symbol weak defined.  */
1456   COM,		/* Mark symbol common.  */
1457   REF,		/* Mark defined symbol referenced.  */
1458   CREF,		/* Possibly warn about common reference to defined symbol.  */
1459   CDEF,		/* Define existing common symbol.  */
1460   NOACT,	/* No action.  */
1461   BIG,		/* Mark symbol common using largest size.  */
1462   MDEF,		/* Multiple definition error.  */
1463   MIND,		/* Multiple indirect symbols.  */
1464   IND,		/* Make indirect symbol.  */
1465   CIND,		/* Make indirect symbol from existing common symbol.  */
1466   SET,		/* Add value to set.  */
1467   MWARN,	/* Make warning symbol.  */
1468   WARN,		/* Issue warning.  */
1469   CWARN,	/* Warn if referenced, else MWARN.  */
1470   CYCLE,	/* Repeat with symbol pointed to.  */
1471   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1472   WARNC		/* Issue warning and then CYCLE.  */
1473 };
1474 
1475 /* The state table itself.  The first index is a link_row and the
1476    second index is a bfd_link_hash_type.  */
1477 
1478 static const enum link_action link_action[8][8] =
1479 {
1480   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1481   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1482   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1483   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1484   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1485   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1486   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1487   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1488   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1489 };
1490 
1491 /* Most of the entries in the LINK_ACTION table are straightforward,
1492    but a few are somewhat subtle.
1493 
1494    A reference to an indirect symbol (UNDEF_ROW/indr or
1495    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1496    symbol and to the symbol the indirect symbol points to.
1497 
1498    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1499    causes the warning to be issued.
1500 
1501    A common definition of an indirect symbol (COMMON_ROW/indr) is
1502    treated as a multiple definition error.  Likewise for an indirect
1503    definition of a common symbol (INDR_ROW/com).
1504 
1505    An indirect definition of a warning (INDR_ROW/warn) does not cause
1506    the warning to be issued.
1507 
1508    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1509    warning is created for the symbol the indirect symbol points to.
1510 
1511    Adding an entry to a set does not count as a reference to a set,
1512    and no warning is issued (SET_ROW/warn).  */
1513 
1514 /* Return the BFD in which a hash entry has been defined, if known.  */
1515 
1516 static bfd *
1517 hash_entry_bfd (struct bfd_link_hash_entry *h)
1518 {
1519   while (h->type == bfd_link_hash_warning)
1520     h = h->u.i.link;
1521   switch (h->type)
1522     {
1523     default:
1524       return NULL;
1525     case bfd_link_hash_undefined:
1526     case bfd_link_hash_undefweak:
1527       return h->u.undef.abfd;
1528     case bfd_link_hash_defined:
1529     case bfd_link_hash_defweak:
1530       return h->u.def.section->owner;
1531     case bfd_link_hash_common:
1532       return h->u.c.p->section->owner;
1533     }
1534   /*NOTREACHED*/
1535 }
1536 
1537 /* Add a symbol to the global hash table.
1538    ABFD is the BFD the symbol comes from.
1539    NAME is the name of the symbol.
1540    FLAGS is the BSF_* bits associated with the symbol.
1541    SECTION is the section in which the symbol is defined; this may be
1542      bfd_und_section_ptr or bfd_com_section_ptr.
1543    VALUE is the value of the symbol, relative to the section.
1544    STRING is used for either an indirect symbol, in which case it is
1545      the name of the symbol to indirect to, or a warning symbol, in
1546      which case it is the warning string.
1547    COPY is TRUE if NAME or STRING must be copied into locally
1548      allocated memory if they need to be saved.
1549    COLLECT is TRUE if we should automatically collect gcc constructor
1550      or destructor names as collect2 does.
1551    HASHP, if not NULL, is a place to store the created hash table
1552      entry; if *HASHP is not NULL, the caller has already looked up
1553      the hash table entry, and stored it in *HASHP.  */
1554 
1555 bfd_boolean
1556 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1557 				  bfd *abfd,
1558 				  const char *name,
1559 				  flagword flags,
1560 				  asection *section,
1561 				  bfd_vma value,
1562 				  const char *string,
1563 				  bfd_boolean copy,
1564 				  bfd_boolean collect,
1565 				  struct bfd_link_hash_entry **hashp)
1566 {
1567   enum link_row row;
1568   struct bfd_link_hash_entry *h;
1569   bfd_boolean cycle;
1570 
1571   if (bfd_is_ind_section (section)
1572       || (flags & BSF_INDIRECT) != 0)
1573     row = INDR_ROW;
1574   else if ((flags & BSF_WARNING) != 0)
1575     row = WARN_ROW;
1576   else if ((flags & BSF_CONSTRUCTOR) != 0)
1577     row = SET_ROW;
1578   else if (bfd_is_und_section (section))
1579     {
1580       if ((flags & BSF_WEAK) != 0)
1581 	row = UNDEFW_ROW;
1582       else
1583 	row = UNDEF_ROW;
1584     }
1585   else if ((flags & BSF_WEAK) != 0)
1586     row = DEFW_ROW;
1587   else if (bfd_is_com_section (section))
1588     row = COMMON_ROW;
1589   else
1590     row = DEF_ROW;
1591 
1592   if (hashp != NULL && *hashp != NULL)
1593     h = *hashp;
1594   else
1595     {
1596       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1597 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1598       else
1599 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1600       if (h == NULL)
1601 	{
1602 	  if (hashp != NULL)
1603 	    *hashp = NULL;
1604 	  return FALSE;
1605 	}
1606     }
1607 
1608   if (info->notice_all
1609       || (info->notice_hash != NULL
1610 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1611     {
1612       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1613 					value))
1614 	return FALSE;
1615     }
1616 
1617   if (hashp != NULL)
1618     *hashp = h;
1619 
1620   do
1621     {
1622       enum link_action action;
1623 
1624       cycle = FALSE;
1625       action = link_action[(int) row][(int) h->type];
1626       switch (action)
1627 	{
1628 	case FAIL:
1629 	  abort ();
1630 
1631 	case NOACT:
1632 	  /* Do nothing.  */
1633 	  break;
1634 
1635 	case UND:
1636 	  /* Make a new undefined symbol.  */
1637 	  h->type = bfd_link_hash_undefined;
1638 	  h->u.undef.abfd = abfd;
1639 	  bfd_link_add_undef (info->hash, h);
1640 	  break;
1641 
1642 	case WEAK:
1643 	  /* Make a new weak undefined symbol.  */
1644 	  h->type = bfd_link_hash_undefweak;
1645 	  h->u.undef.abfd = abfd;
1646 	  h->u.undef.weak = abfd;
1647 	  break;
1648 
1649 	case CDEF:
1650 	  /* We have found a definition for a symbol which was
1651 	     previously common.  */
1652 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1653 	  if (! ((*info->callbacks->multiple_common)
1654 		 (info, h->root.string,
1655 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1656 		  abfd, bfd_link_hash_defined, 0)))
1657 	    return FALSE;
1658 	  /* Fall through.  */
1659 	case DEF:
1660 	case DEFW:
1661 	  {
1662 	    enum bfd_link_hash_type oldtype;
1663 
1664 	    /* Define a symbol.  */
1665 	    oldtype = h->type;
1666 	    if (action == DEFW)
1667 	      h->type = bfd_link_hash_defweak;
1668 	    else
1669 	      h->type = bfd_link_hash_defined;
1670 	    h->u.def.section = section;
1671 	    h->u.def.value = value;
1672 
1673 	    /* If we have been asked to, we act like collect2 and
1674 	       identify all functions that might be global
1675 	       constructors and destructors and pass them up in a
1676 	       callback.  We only do this for certain object file
1677 	       types, since many object file types can handle this
1678 	       automatically.  */
1679 	    if (collect && name[0] == '_')
1680 	      {
1681 		const char *s;
1682 
1683 		/* A constructor or destructor name starts like this:
1684 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1685 		   the second are the same character (we accept any
1686 		   character there, in case a new object file format
1687 		   comes along with even worse naming restrictions).  */
1688 
1689 #define CONS_PREFIX "GLOBAL_"
1690 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1691 
1692 		s = name + 1;
1693 		while (*s == '_')
1694 		  ++s;
1695 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1696 		  {
1697 		    char c;
1698 
1699 		    c = s[CONS_PREFIX_LEN + 1];
1700 		    if ((c == 'I' || c == 'D')
1701 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1702 		      {
1703 			/* If this is a definition of a symbol which
1704                            was previously weakly defined, we are in
1705                            trouble.  We have already added a
1706                            constructor entry for the weak defined
1707                            symbol, and now we are trying to add one
1708                            for the new symbol.  Fortunately, this case
1709                            should never arise in practice.  */
1710 			if (oldtype == bfd_link_hash_defweak)
1711 			  abort ();
1712 
1713 			if (! ((*info->callbacks->constructor)
1714 			       (info, c == 'I',
1715 				h->root.string, abfd, section, value)))
1716 			  return FALSE;
1717 		      }
1718 		  }
1719 	      }
1720 	  }
1721 
1722 	  break;
1723 
1724 	case COM:
1725 	  /* We have found a common definition for a symbol.  */
1726 	  if (h->type == bfd_link_hash_new)
1727 	    bfd_link_add_undef (info->hash, h);
1728 	  h->type = bfd_link_hash_common;
1729 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1730 	    bfd_hash_allocate (&info->hash->table,
1731 			       sizeof (struct bfd_link_hash_common_entry));
1732 	  if (h->u.c.p == NULL)
1733 	    return FALSE;
1734 
1735 	  h->u.c.size = value;
1736 
1737 	  /* Select a default alignment based on the size.  This may
1738              be overridden by the caller.  */
1739 	  {
1740 	    unsigned int power;
1741 
1742 	    power = bfd_log2 (value);
1743 	    if (power > 4)
1744 	      power = 4;
1745 	    h->u.c.p->alignment_power = power;
1746 	  }
1747 
1748 	  /* The section of a common symbol is only used if the common
1749              symbol is actually allocated.  It basically provides a
1750              hook for the linker script to decide which output section
1751              the common symbols should be put in.  In most cases, the
1752              section of a common symbol will be bfd_com_section_ptr,
1753              the code here will choose a common symbol section named
1754              "COMMON", and the linker script will contain *(COMMON) in
1755              the appropriate place.  A few targets use separate common
1756              sections for small symbols, and they require special
1757              handling.  */
1758 	  if (section == bfd_com_section_ptr)
1759 	    {
1760 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1761 	      h->u.c.p->section->flags = SEC_ALLOC;
1762 	    }
1763 	  else if (section->owner != abfd)
1764 	    {
1765 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1766 							    section->name);
1767 	      h->u.c.p->section->flags = SEC_ALLOC;
1768 	    }
1769 	  else
1770 	    h->u.c.p->section = section;
1771 	  break;
1772 
1773 	case REF:
1774 	  /* A reference to a defined symbol.  */
1775 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1776 	    h->u.undef.next = h;
1777 	  break;
1778 
1779 	case BIG:
1780 	  /* We have found a common definition for a symbol which
1781 	     already had a common definition.  Use the maximum of the
1782 	     two sizes, and use the section required by the larger symbol.  */
1783 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1784 	  if (! ((*info->callbacks->multiple_common)
1785 		 (info, h->root.string,
1786 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1787 		  abfd, bfd_link_hash_common, value)))
1788 	    return FALSE;
1789 	  if (value > h->u.c.size)
1790 	    {
1791 	      unsigned int power;
1792 
1793 	      h->u.c.size = value;
1794 
1795 	      /* Select a default alignment based on the size.  This may
1796 		 be overridden by the caller.  */
1797 	      power = bfd_log2 (value);
1798 	      if (power > 4)
1799 		power = 4;
1800 	      h->u.c.p->alignment_power = power;
1801 
1802 	      /* Some systems have special treatment for small commons,
1803 		 hence we want to select the section used by the larger
1804 		 symbol.  This makes sure the symbol does not go in a
1805 		 small common section if it is now too large.  */
1806 	      if (section == bfd_com_section_ptr)
1807 		{
1808 		  h->u.c.p->section
1809 		    = bfd_make_section_old_way (abfd, "COMMON");
1810 		  h->u.c.p->section->flags = SEC_ALLOC;
1811 		}
1812 	      else if (section->owner != abfd)
1813 		{
1814 		  h->u.c.p->section
1815 		    = bfd_make_section_old_way (abfd, section->name);
1816 		  h->u.c.p->section->flags = SEC_ALLOC;
1817 		}
1818 	      else
1819 		h->u.c.p->section = section;
1820 	    }
1821 	  break;
1822 
1823 	case CREF:
1824 	  {
1825 	    bfd *obfd;
1826 
1827 	    /* We have found a common definition for a symbol which
1828 	       was already defined.  FIXME: It would nice if we could
1829 	       report the BFD which defined an indirect symbol, but we
1830 	       don't have anywhere to store the information.  */
1831 	    if (h->type == bfd_link_hash_defined
1832 		|| h->type == bfd_link_hash_defweak)
1833 	      obfd = h->u.def.section->owner;
1834 	    else
1835 	      obfd = NULL;
1836 	    if (! ((*info->callbacks->multiple_common)
1837 		   (info, h->root.string, obfd, h->type, 0,
1838 		    abfd, bfd_link_hash_common, value)))
1839 	      return FALSE;
1840 	  }
1841 	  break;
1842 
1843 	case MIND:
1844 	  /* Multiple indirect symbols.  This is OK if they both point
1845 	     to the same symbol.  */
1846 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1847 	    break;
1848 	  /* Fall through.  */
1849 	case MDEF:
1850 	  /* Handle a multiple definition.  */
1851 	  if (!info->allow_multiple_definition)
1852 	    {
1853 	      asection *msec = NULL;
1854 	      bfd_vma mval = 0;
1855 
1856 	      switch (h->type)
1857 		{
1858 		case bfd_link_hash_defined:
1859 		  msec = h->u.def.section;
1860 		  mval = h->u.def.value;
1861 		  break;
1862 	        case bfd_link_hash_indirect:
1863 		  msec = bfd_ind_section_ptr;
1864 		  mval = 0;
1865 		  break;
1866 		default:
1867 		  abort ();
1868 		}
1869 
1870 	      /* Ignore a redefinition of an absolute symbol to the
1871 		 same value; it's harmless.  */
1872 	      if (h->type == bfd_link_hash_defined
1873 		  && bfd_is_abs_section (msec)
1874 		  && bfd_is_abs_section (section)
1875 		  && value == mval)
1876 		break;
1877 
1878 	      if (! ((*info->callbacks->multiple_definition)
1879 		     (info, h->root.string, msec->owner, msec, mval,
1880 		      abfd, section, value)))
1881 		return FALSE;
1882 	    }
1883 	  break;
1884 
1885 	case CIND:
1886 	  /* Create an indirect symbol from an existing common symbol.  */
1887 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1888 	  if (! ((*info->callbacks->multiple_common)
1889 		 (info, h->root.string,
1890 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1891 		  abfd, bfd_link_hash_indirect, 0)))
1892 	    return FALSE;
1893 	  /* Fall through.  */
1894 	case IND:
1895 	  /* Create an indirect symbol.  */
1896 	  {
1897 	    struct bfd_link_hash_entry *inh;
1898 
1899 	    /* STRING is the name of the symbol we want to indirect
1900 	       to.  */
1901 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1902 						copy, FALSE);
1903 	    if (inh == NULL)
1904 	      return FALSE;
1905 	    if (inh->type == bfd_link_hash_indirect
1906 		&& inh->u.i.link == h)
1907 	      {
1908 		(*_bfd_error_handler)
1909 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1910 		   abfd, name, string);
1911 		bfd_set_error (bfd_error_invalid_operation);
1912 		return FALSE;
1913 	      }
1914 	    if (inh->type == bfd_link_hash_new)
1915 	      {
1916 		inh->type = bfd_link_hash_undefined;
1917 		inh->u.undef.abfd = abfd;
1918 		bfd_link_add_undef (info->hash, inh);
1919 	      }
1920 
1921 	    /* If the indirect symbol has been referenced, we need to
1922 	       push the reference down to the symbol we are
1923 	       referencing.  */
1924 	    if (h->type != bfd_link_hash_new)
1925 	      {
1926 		row = UNDEF_ROW;
1927 		cycle = TRUE;
1928 	      }
1929 
1930 	    h->type = bfd_link_hash_indirect;
1931 	    h->u.i.link = inh;
1932 	  }
1933 	  break;
1934 
1935 	case SET:
1936 	  /* Add an entry to a set.  */
1937 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1938 						abfd, section, value))
1939 	    return FALSE;
1940 	  break;
1941 
1942 	case WARNC:
1943 	  /* Issue a warning and cycle.  */
1944 	  if (h->u.i.warning != NULL)
1945 	    {
1946 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1947 						 h->root.string, abfd,
1948 						 NULL, 0))
1949 		return FALSE;
1950 	      /* Only issue a warning once.  */
1951 	      h->u.i.warning = NULL;
1952 	    }
1953 	  /* Fall through.  */
1954 	case CYCLE:
1955 	  /* Try again with the referenced symbol.  */
1956 	  h = h->u.i.link;
1957 	  cycle = TRUE;
1958 	  break;
1959 
1960 	case REFC:
1961 	  /* A reference to an indirect symbol.  */
1962 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1963 	    h->u.undef.next = h;
1964 	  h = h->u.i.link;
1965 	  cycle = TRUE;
1966 	  break;
1967 
1968 	case WARN:
1969 	  /* Issue a warning.  */
1970 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1971 					     hash_entry_bfd (h), NULL, 0))
1972 	    return FALSE;
1973 	  break;
1974 
1975 	case CWARN:
1976 	  /* Warn if this symbol has been referenced already,
1977 	     otherwise add a warning.  A symbol has been referenced if
1978 	     the u.undef.next field is not NULL, or it is the tail of the
1979 	     undefined symbol list.  The REF case above helps to
1980 	     ensure this.  */
1981 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1982 	    {
1983 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1984 						 hash_entry_bfd (h), NULL, 0))
1985 		return FALSE;
1986 	      break;
1987 	    }
1988 	  /* Fall through.  */
1989 	case MWARN:
1990 	  /* Make a warning symbol.  */
1991 	  {
1992 	    struct bfd_link_hash_entry *sub;
1993 
1994 	    /* STRING is the warning to give.  */
1995 	    sub = ((struct bfd_link_hash_entry *)
1996 		   ((*info->hash->table.newfunc)
1997 		    (NULL, &info->hash->table, h->root.string)));
1998 	    if (sub == NULL)
1999 	      return FALSE;
2000 	    *sub = *h;
2001 	    sub->type = bfd_link_hash_warning;
2002 	    sub->u.i.link = h;
2003 	    if (! copy)
2004 	      sub->u.i.warning = string;
2005 	    else
2006 	      {
2007 		char *w;
2008 		size_t len = strlen (string) + 1;
2009 
2010 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
2011 		if (w == NULL)
2012 		  return FALSE;
2013 		memcpy (w, string, len);
2014 		sub->u.i.warning = w;
2015 	      }
2016 
2017 	    bfd_hash_replace (&info->hash->table,
2018 			      (struct bfd_hash_entry *) h,
2019 			      (struct bfd_hash_entry *) sub);
2020 	    if (hashp != NULL)
2021 	      *hashp = sub;
2022 	  }
2023 	  break;
2024 	}
2025     }
2026   while (cycle);
2027 
2028   return TRUE;
2029 }
2030 
2031 /* Generic final link routine.  */
2032 
2033 bfd_boolean
2034 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2035 {
2036   bfd *sub;
2037   asection *o;
2038   struct bfd_link_order *p;
2039   size_t outsymalloc;
2040   struct generic_write_global_symbol_info wginfo;
2041 
2042   bfd_get_outsymbols (abfd) = NULL;
2043   bfd_get_symcount (abfd) = 0;
2044   outsymalloc = 0;
2045 
2046   /* Mark all sections which will be included in the output file.  */
2047   for (o = abfd->sections; o != NULL; o = o->next)
2048     for (p = o->map_head.link_order; p != NULL; p = p->next)
2049       if (p->type == bfd_indirect_link_order)
2050 	p->u.indirect.section->linker_mark = TRUE;
2051 
2052   /* Build the output symbol table.  */
2053   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2054     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2055       return FALSE;
2056 
2057   /* Accumulate the global symbols.  */
2058   wginfo.info = info;
2059   wginfo.output_bfd = abfd;
2060   wginfo.psymalloc = &outsymalloc;
2061   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2062 				   _bfd_generic_link_write_global_symbol,
2063 				   &wginfo);
2064 
2065   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2066      shouldn't really need one, since we have SYMCOUNT, but some old
2067      code still expects one.  */
2068   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2069     return FALSE;
2070 
2071   if (info->relocatable)
2072     {
2073       /* Allocate space for the output relocs for each section.  */
2074       for (o = abfd->sections; o != NULL; o = o->next)
2075 	{
2076 	  o->reloc_count = 0;
2077 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2078 	    {
2079 	      if (p->type == bfd_section_reloc_link_order
2080 		  || p->type == bfd_symbol_reloc_link_order)
2081 		++o->reloc_count;
2082 	      else if (p->type == bfd_indirect_link_order)
2083 		{
2084 		  asection *input_section;
2085 		  bfd *input_bfd;
2086 		  long relsize;
2087 		  arelent **relocs;
2088 		  asymbol **symbols;
2089 		  long reloc_count;
2090 
2091 		  input_section = p->u.indirect.section;
2092 		  input_bfd = input_section->owner;
2093 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2094 						       input_section);
2095 		  if (relsize < 0)
2096 		    return FALSE;
2097 		  relocs = (arelent **) bfd_malloc (relsize);
2098 		  if (!relocs && relsize != 0)
2099 		    return FALSE;
2100 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2101 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2102 							input_section,
2103 							relocs,
2104 							symbols);
2105 		  free (relocs);
2106 		  if (reloc_count < 0)
2107 		    return FALSE;
2108 		  BFD_ASSERT ((unsigned long) reloc_count
2109 			      == input_section->reloc_count);
2110 		  o->reloc_count += reloc_count;
2111 		}
2112 	    }
2113 	  if (o->reloc_count > 0)
2114 	    {
2115 	      bfd_size_type amt;
2116 
2117 	      amt = o->reloc_count;
2118 	      amt *= sizeof (arelent *);
2119 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2120 	      if (!o->orelocation)
2121 		return FALSE;
2122 	      o->flags |= SEC_RELOC;
2123 	      /* Reset the count so that it can be used as an index
2124 		 when putting in the output relocs.  */
2125 	      o->reloc_count = 0;
2126 	    }
2127 	}
2128     }
2129 
2130   /* Handle all the link order information for the sections.  */
2131   for (o = abfd->sections; o != NULL; o = o->next)
2132     {
2133       for (p = o->map_head.link_order; p != NULL; p = p->next)
2134 	{
2135 	  switch (p->type)
2136 	    {
2137 	    case bfd_section_reloc_link_order:
2138 	    case bfd_symbol_reloc_link_order:
2139 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2140 		return FALSE;
2141 	      break;
2142 	    case bfd_indirect_link_order:
2143 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2144 		return FALSE;
2145 	      break;
2146 	    default:
2147 	      if (! _bfd_default_link_order (abfd, info, o, p))
2148 		return FALSE;
2149 	      break;
2150 	    }
2151 	}
2152     }
2153 
2154   return TRUE;
2155 }
2156 
2157 /* Add an output symbol to the output BFD.  */
2158 
2159 static bfd_boolean
2160 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2161 {
2162   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2163     {
2164       asymbol **newsyms;
2165       bfd_size_type amt;
2166 
2167       if (*psymalloc == 0)
2168 	*psymalloc = 124;
2169       else
2170 	*psymalloc *= 2;
2171       amt = *psymalloc;
2172       amt *= sizeof (asymbol *);
2173       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2174       if (newsyms == NULL)
2175 	return FALSE;
2176       bfd_get_outsymbols (output_bfd) = newsyms;
2177     }
2178 
2179   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2180   if (sym != NULL)
2181     ++ bfd_get_symcount (output_bfd);
2182 
2183   return TRUE;
2184 }
2185 
2186 /* Handle the symbols for an input BFD.  */
2187 
2188 bfd_boolean
2189 _bfd_generic_link_output_symbols (bfd *output_bfd,
2190 				  bfd *input_bfd,
2191 				  struct bfd_link_info *info,
2192 				  size_t *psymalloc)
2193 {
2194   asymbol **sym_ptr;
2195   asymbol **sym_end;
2196 
2197   if (!bfd_generic_link_read_symbols (input_bfd))
2198     return FALSE;
2199 
2200   /* Create a filename symbol if we are supposed to.  */
2201   if (info->create_object_symbols_section != NULL)
2202     {
2203       asection *sec;
2204 
2205       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2206 	{
2207 	  if (sec->output_section == info->create_object_symbols_section)
2208 	    {
2209 	      asymbol *newsym;
2210 
2211 	      newsym = bfd_make_empty_symbol (input_bfd);
2212 	      if (!newsym)
2213 		return FALSE;
2214 	      newsym->name = input_bfd->filename;
2215 	      newsym->value = 0;
2216 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2217 	      newsym->section = sec;
2218 
2219 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2220 					       newsym))
2221 		return FALSE;
2222 
2223 	      break;
2224 	    }
2225 	}
2226     }
2227 
2228   /* Adjust the values of the globally visible symbols, and write out
2229      local symbols.  */
2230   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2231   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2232   for (; sym_ptr < sym_end; sym_ptr++)
2233     {
2234       asymbol *sym;
2235       struct generic_link_hash_entry *h;
2236       bfd_boolean output;
2237 
2238       h = NULL;
2239       sym = *sym_ptr;
2240       if ((sym->flags & (BSF_INDIRECT
2241 			 | BSF_WARNING
2242 			 | BSF_GLOBAL
2243 			 | BSF_CONSTRUCTOR
2244 			 | BSF_WEAK)) != 0
2245 	  || bfd_is_und_section (bfd_get_section (sym))
2246 	  || bfd_is_com_section (bfd_get_section (sym))
2247 	  || bfd_is_ind_section (bfd_get_section (sym)))
2248 	{
2249 	  if (sym->udata.p != NULL)
2250 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2251 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2252 	    {
2253 	      /* This case normally means that the main linker code
2254                  deliberately ignored this constructor symbol.  We
2255                  should just pass it through.  This will screw up if
2256                  the constructor symbol is from a different,
2257                  non-generic, object file format, but the case will
2258                  only arise when linking with -r, which will probably
2259                  fail anyhow, since there will be no way to represent
2260                  the relocs in the output format being used.  */
2261 	      h = NULL;
2262 	    }
2263 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2264 	    h = ((struct generic_link_hash_entry *)
2265 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2266 					       bfd_asymbol_name (sym),
2267 					       FALSE, FALSE, TRUE));
2268 	  else
2269 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2270 					       bfd_asymbol_name (sym),
2271 					       FALSE, FALSE, TRUE);
2272 
2273 	  if (h != NULL)
2274 	    {
2275 	      /* Force all references to this symbol to point to
2276 		 the same area in memory.  It is possible that
2277 		 this routine will be called with a hash table
2278 		 other than a generic hash table, so we double
2279 		 check that.  */
2280 	      if (info->output_bfd->xvec == input_bfd->xvec)
2281 		{
2282 		  if (h->sym != NULL)
2283 		    *sym_ptr = sym = h->sym;
2284 		}
2285 
2286 	      switch (h->root.type)
2287 		{
2288 		default:
2289 		case bfd_link_hash_new:
2290 		  abort ();
2291 		case bfd_link_hash_undefined:
2292 		  break;
2293 		case bfd_link_hash_undefweak:
2294 		  sym->flags |= BSF_WEAK;
2295 		  break;
2296 		case bfd_link_hash_indirect:
2297 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2298 		  /* fall through */
2299 		case bfd_link_hash_defined:
2300 		  sym->flags |= BSF_GLOBAL;
2301 		  sym->flags &=~ BSF_CONSTRUCTOR;
2302 		  sym->value = h->root.u.def.value;
2303 		  sym->section = h->root.u.def.section;
2304 		  break;
2305 		case bfd_link_hash_defweak:
2306 		  sym->flags |= BSF_WEAK;
2307 		  sym->flags &=~ BSF_CONSTRUCTOR;
2308 		  sym->value = h->root.u.def.value;
2309 		  sym->section = h->root.u.def.section;
2310 		  break;
2311 		case bfd_link_hash_common:
2312 		  sym->value = h->root.u.c.size;
2313 		  sym->flags |= BSF_GLOBAL;
2314 		  if (! bfd_is_com_section (sym->section))
2315 		    {
2316 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2317 		      sym->section = bfd_com_section_ptr;
2318 		    }
2319 		  /* We do not set the section of the symbol to
2320 		     h->root.u.c.p->section.  That value was saved so
2321 		     that we would know where to allocate the symbol
2322 		     if it was defined.  In this case the type is
2323 		     still bfd_link_hash_common, so we did not define
2324 		     it, so we do not want to use that section.  */
2325 		  break;
2326 		}
2327 	    }
2328 	}
2329 
2330       /* This switch is straight from the old code in
2331 	 write_file_locals in ldsym.c.  */
2332       if (info->strip == strip_all
2333 	  || (info->strip == strip_some
2334 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2335 				  FALSE, FALSE) == NULL))
2336 	output = FALSE;
2337       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2338 	{
2339 	  /* If this symbol is marked as occurring now, rather
2340 	     than at the end, output it now.  This is used for
2341 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2342 	     better way.  */
2343 	  if (bfd_asymbol_bfd (sym) == input_bfd
2344 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2345 	    output = TRUE;
2346 	  else
2347 	    output = FALSE;
2348 	}
2349       else if (bfd_is_ind_section (sym->section))
2350 	output = FALSE;
2351       else if ((sym->flags & BSF_DEBUGGING) != 0)
2352 	{
2353 	  if (info->strip == strip_none)
2354 	    output = TRUE;
2355 	  else
2356 	    output = FALSE;
2357 	}
2358       else if (bfd_is_und_section (sym->section)
2359 	       || bfd_is_com_section (sym->section))
2360 	output = FALSE;
2361       else if ((sym->flags & BSF_LOCAL) != 0)
2362 	{
2363 	  if ((sym->flags & BSF_WARNING) != 0)
2364 	    output = FALSE;
2365 	  else
2366 	    {
2367 	      switch (info->discard)
2368 		{
2369 		default:
2370 		case discard_all:
2371 		  output = FALSE;
2372 		  break;
2373 		case discard_sec_merge:
2374 		  output = TRUE;
2375 		  if (info->relocatable
2376 		      || ! (sym->section->flags & SEC_MERGE))
2377 		    break;
2378 		  /* FALLTHROUGH */
2379 		case discard_l:
2380 		  if (bfd_is_local_label (input_bfd, sym))
2381 		    output = FALSE;
2382 		  else
2383 		    output = TRUE;
2384 		  break;
2385 		case discard_none:
2386 		  output = TRUE;
2387 		  break;
2388 		}
2389 	    }
2390 	}
2391       else if ((sym->flags & BSF_CONSTRUCTOR))
2392 	{
2393 	  if (info->strip != strip_all)
2394 	    output = TRUE;
2395 	  else
2396 	    output = FALSE;
2397 	}
2398       else
2399 	abort ();
2400 
2401       /* If this symbol is in a section which is not being included
2402 	 in the output file, then we don't want to output the
2403 	 symbol.  */
2404       if (!bfd_is_abs_section (sym->section)
2405 	  && bfd_section_removed_from_list (output_bfd,
2406 					    sym->section->output_section))
2407 	output = FALSE;
2408 
2409       if (output)
2410 	{
2411 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2412 	    return FALSE;
2413 	  if (h != NULL)
2414 	    h->written = TRUE;
2415 	}
2416     }
2417 
2418   return TRUE;
2419 }
2420 
2421 /* Set the section and value of a generic BFD symbol based on a linker
2422    hash table entry.  */
2423 
2424 static void
2425 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2426 {
2427   switch (h->type)
2428     {
2429     default:
2430       abort ();
2431       break;
2432     case bfd_link_hash_new:
2433       /* This can happen when a constructor symbol is seen but we are
2434          not building constructors.  */
2435       if (sym->section != NULL)
2436 	{
2437 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2438 	}
2439       else
2440 	{
2441 	  sym->flags |= BSF_CONSTRUCTOR;
2442 	  sym->section = bfd_abs_section_ptr;
2443 	  sym->value = 0;
2444 	}
2445       break;
2446     case bfd_link_hash_undefined:
2447       sym->section = bfd_und_section_ptr;
2448       sym->value = 0;
2449       break;
2450     case bfd_link_hash_undefweak:
2451       sym->section = bfd_und_section_ptr;
2452       sym->value = 0;
2453       sym->flags |= BSF_WEAK;
2454       break;
2455     case bfd_link_hash_defined:
2456       sym->section = h->u.def.section;
2457       sym->value = h->u.def.value;
2458       break;
2459     case bfd_link_hash_defweak:
2460       sym->flags |= BSF_WEAK;
2461       sym->section = h->u.def.section;
2462       sym->value = h->u.def.value;
2463       break;
2464     case bfd_link_hash_common:
2465       sym->value = h->u.c.size;
2466       if (sym->section == NULL)
2467 	sym->section = bfd_com_section_ptr;
2468       else if (! bfd_is_com_section (sym->section))
2469 	{
2470 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2471 	  sym->section = bfd_com_section_ptr;
2472 	}
2473       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2474       break;
2475     case bfd_link_hash_indirect:
2476     case bfd_link_hash_warning:
2477       /* FIXME: What should we do here?  */
2478       break;
2479     }
2480 }
2481 
2482 /* Write out a global symbol, if it hasn't already been written out.
2483    This is called for each symbol in the hash table.  */
2484 
2485 bfd_boolean
2486 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2487 				       void *data)
2488 {
2489   struct generic_write_global_symbol_info *wginfo =
2490       (struct generic_write_global_symbol_info *) data;
2491   asymbol *sym;
2492 
2493   if (h->root.type == bfd_link_hash_warning)
2494     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2495 
2496   if (h->written)
2497     return TRUE;
2498 
2499   h->written = TRUE;
2500 
2501   if (wginfo->info->strip == strip_all
2502       || (wginfo->info->strip == strip_some
2503 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2504 			      FALSE, FALSE) == NULL))
2505     return TRUE;
2506 
2507   if (h->sym != NULL)
2508     sym = h->sym;
2509   else
2510     {
2511       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2512       if (!sym)
2513 	return FALSE;
2514       sym->name = h->root.root.string;
2515       sym->flags = 0;
2516     }
2517 
2518   set_symbol_from_hash (sym, &h->root);
2519 
2520   sym->flags |= BSF_GLOBAL;
2521 
2522   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2523 				   sym))
2524     {
2525       /* FIXME: No way to return failure.  */
2526       abort ();
2527     }
2528 
2529   return TRUE;
2530 }
2531 
2532 /* Create a relocation.  */
2533 
2534 bfd_boolean
2535 _bfd_generic_reloc_link_order (bfd *abfd,
2536 			       struct bfd_link_info *info,
2537 			       asection *sec,
2538 			       struct bfd_link_order *link_order)
2539 {
2540   arelent *r;
2541 
2542   if (! info->relocatable)
2543     abort ();
2544   if (sec->orelocation == NULL)
2545     abort ();
2546 
2547   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2548   if (r == NULL)
2549     return FALSE;
2550 
2551   r->address = link_order->offset;
2552   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2553   if (r->howto == 0)
2554     {
2555       bfd_set_error (bfd_error_bad_value);
2556       return FALSE;
2557     }
2558 
2559   /* Get the symbol to use for the relocation.  */
2560   if (link_order->type == bfd_section_reloc_link_order)
2561     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2562   else
2563     {
2564       struct generic_link_hash_entry *h;
2565 
2566       h = ((struct generic_link_hash_entry *)
2567 	   bfd_wrapped_link_hash_lookup (abfd, info,
2568 					 link_order->u.reloc.p->u.name,
2569 					 FALSE, FALSE, TRUE));
2570       if (h == NULL
2571 	  || ! h->written)
2572 	{
2573 	  if (! ((*info->callbacks->unattached_reloc)
2574 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2575 	    return FALSE;
2576 	  bfd_set_error (bfd_error_bad_value);
2577 	  return FALSE;
2578 	}
2579       r->sym_ptr_ptr = &h->sym;
2580     }
2581 
2582   /* If this is an inplace reloc, write the addend to the object file.
2583      Otherwise, store it in the reloc addend.  */
2584   if (! r->howto->partial_inplace)
2585     r->addend = link_order->u.reloc.p->addend;
2586   else
2587     {
2588       bfd_size_type size;
2589       bfd_reloc_status_type rstat;
2590       bfd_byte *buf;
2591       bfd_boolean ok;
2592       file_ptr loc;
2593 
2594       size = bfd_get_reloc_size (r->howto);
2595       buf = (bfd_byte *) bfd_zmalloc (size);
2596       if (buf == NULL)
2597 	return FALSE;
2598       rstat = _bfd_relocate_contents (r->howto, abfd,
2599 				      (bfd_vma) link_order->u.reloc.p->addend,
2600 				      buf);
2601       switch (rstat)
2602 	{
2603 	case bfd_reloc_ok:
2604 	  break;
2605 	default:
2606 	case bfd_reloc_outofrange:
2607 	  abort ();
2608 	case bfd_reloc_overflow:
2609 	  if (! ((*info->callbacks->reloc_overflow)
2610 		 (info, NULL,
2611 		  (link_order->type == bfd_section_reloc_link_order
2612 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2613 		   : link_order->u.reloc.p->u.name),
2614 		  r->howto->name, link_order->u.reloc.p->addend,
2615 		  NULL, NULL, 0)))
2616 	    {
2617 	      free (buf);
2618 	      return FALSE;
2619 	    }
2620 	  break;
2621 	}
2622       loc = link_order->offset * bfd_octets_per_byte (abfd);
2623       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2624       free (buf);
2625       if (! ok)
2626 	return FALSE;
2627 
2628       r->addend = 0;
2629     }
2630 
2631   sec->orelocation[sec->reloc_count] = r;
2632   ++sec->reloc_count;
2633 
2634   return TRUE;
2635 }
2636 
2637 /* Allocate a new link_order for a section.  */
2638 
2639 struct bfd_link_order *
2640 bfd_new_link_order (bfd *abfd, asection *section)
2641 {
2642   bfd_size_type amt = sizeof (struct bfd_link_order);
2643   struct bfd_link_order *new_lo;
2644 
2645   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2646   if (!new_lo)
2647     return NULL;
2648 
2649   new_lo->type = bfd_undefined_link_order;
2650 
2651   if (section->map_tail.link_order != NULL)
2652     section->map_tail.link_order->next = new_lo;
2653   else
2654     section->map_head.link_order = new_lo;
2655   section->map_tail.link_order = new_lo;
2656 
2657   return new_lo;
2658 }
2659 
2660 /* Default link order processing routine.  Note that we can not handle
2661    the reloc_link_order types here, since they depend upon the details
2662    of how the particular backends generates relocs.  */
2663 
2664 bfd_boolean
2665 _bfd_default_link_order (bfd *abfd,
2666 			 struct bfd_link_info *info,
2667 			 asection *sec,
2668 			 struct bfd_link_order *link_order)
2669 {
2670   switch (link_order->type)
2671     {
2672     case bfd_undefined_link_order:
2673     case bfd_section_reloc_link_order:
2674     case bfd_symbol_reloc_link_order:
2675     default:
2676       abort ();
2677     case bfd_indirect_link_order:
2678       return default_indirect_link_order (abfd, info, sec, link_order,
2679 					  FALSE);
2680     case bfd_data_link_order:
2681       return default_data_link_order (abfd, info, sec, link_order);
2682     }
2683 }
2684 
2685 /* Default routine to handle a bfd_data_link_order.  */
2686 
2687 static bfd_boolean
2688 default_data_link_order (bfd *abfd,
2689 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2690 			 asection *sec,
2691 			 struct bfd_link_order *link_order)
2692 {
2693   bfd_size_type size;
2694   size_t fill_size;
2695   bfd_byte *fill;
2696   file_ptr loc;
2697   bfd_boolean result;
2698 
2699   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2700 
2701   size = link_order->size;
2702   if (size == 0)
2703     return TRUE;
2704 
2705   fill = link_order->u.data.contents;
2706   fill_size = link_order->u.data.size;
2707   if (fill_size != 0 && fill_size < size)
2708     {
2709       bfd_byte *p;
2710       fill = (bfd_byte *) bfd_malloc (size);
2711       if (fill == NULL)
2712 	return FALSE;
2713       p = fill;
2714       if (fill_size == 1)
2715 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2716       else
2717 	{
2718 	  do
2719 	    {
2720 	      memcpy (p, link_order->u.data.contents, fill_size);
2721 	      p += fill_size;
2722 	      size -= fill_size;
2723 	    }
2724 	  while (size >= fill_size);
2725 	  if (size != 0)
2726 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2727 	  size = link_order->size;
2728 	}
2729     }
2730 
2731   loc = link_order->offset * bfd_octets_per_byte (abfd);
2732   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2733 
2734   if (fill != link_order->u.data.contents)
2735     free (fill);
2736   return result;
2737 }
2738 
2739 /* Default routine to handle a bfd_indirect_link_order.  */
2740 
2741 static bfd_boolean
2742 default_indirect_link_order (bfd *output_bfd,
2743 			     struct bfd_link_info *info,
2744 			     asection *output_section,
2745 			     struct bfd_link_order *link_order,
2746 			     bfd_boolean generic_linker)
2747 {
2748   asection *input_section;
2749   bfd *input_bfd;
2750   bfd_byte *contents = NULL;
2751   bfd_byte *new_contents;
2752   bfd_size_type sec_size;
2753   file_ptr loc;
2754 
2755   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2756 
2757   input_section = link_order->u.indirect.section;
2758   input_bfd = input_section->owner;
2759   if (input_section->size == 0)
2760     return TRUE;
2761 
2762   BFD_ASSERT (input_section->output_section == output_section);
2763   BFD_ASSERT (input_section->output_offset == link_order->offset);
2764   BFD_ASSERT (input_section->size == link_order->size);
2765 
2766   if (info->relocatable
2767       && input_section->reloc_count > 0
2768       && output_section->orelocation == NULL)
2769     {
2770       /* Space has not been allocated for the output relocations.
2771 	 This can happen when we are called by a specific backend
2772 	 because somebody is attempting to link together different
2773 	 types of object files.  Handling this case correctly is
2774 	 difficult, and sometimes impossible.  */
2775       (*_bfd_error_handler)
2776 	(_("Attempt to do relocatable link with %s input and %s output"),
2777 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2778       bfd_set_error (bfd_error_wrong_format);
2779       return FALSE;
2780     }
2781 
2782   if (! generic_linker)
2783     {
2784       asymbol **sympp;
2785       asymbol **symppend;
2786 
2787       /* Get the canonical symbols.  The generic linker will always
2788 	 have retrieved them by this point, but we are being called by
2789 	 a specific linker, presumably because we are linking
2790 	 different types of object files together.  */
2791       if (!bfd_generic_link_read_symbols (input_bfd))
2792 	return FALSE;
2793 
2794       /* Since we have been called by a specific linker, rather than
2795 	 the generic linker, the values of the symbols will not be
2796 	 right.  They will be the values as seen in the input file,
2797 	 not the values of the final link.  We need to fix them up
2798 	 before we can relocate the section.  */
2799       sympp = _bfd_generic_link_get_symbols (input_bfd);
2800       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2801       for (; sympp < symppend; sympp++)
2802 	{
2803 	  asymbol *sym;
2804 	  struct bfd_link_hash_entry *h;
2805 
2806 	  sym = *sympp;
2807 
2808 	  if ((sym->flags & (BSF_INDIRECT
2809 			     | BSF_WARNING
2810 			     | BSF_GLOBAL
2811 			     | BSF_CONSTRUCTOR
2812 			     | BSF_WEAK)) != 0
2813 	      || bfd_is_und_section (bfd_get_section (sym))
2814 	      || bfd_is_com_section (bfd_get_section (sym))
2815 	      || bfd_is_ind_section (bfd_get_section (sym)))
2816 	    {
2817 	      /* sym->udata may have been set by
2818 		 generic_link_add_symbol_list.  */
2819 	      if (sym->udata.p != NULL)
2820 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2821 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2822 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2823 						  bfd_asymbol_name (sym),
2824 						  FALSE, FALSE, TRUE);
2825 	      else
2826 		h = bfd_link_hash_lookup (info->hash,
2827 					  bfd_asymbol_name (sym),
2828 					  FALSE, FALSE, TRUE);
2829 	      if (h != NULL)
2830 		set_symbol_from_hash (sym, h);
2831 	    }
2832 	}
2833     }
2834 
2835   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2836       && input_section->size != 0)
2837     {
2838       /* Group section contents are set by bfd_elf_set_group_contents.  */
2839       if (!output_bfd->output_has_begun)
2840 	{
2841 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2842 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2843 	    goto error_return;
2844 	}
2845       new_contents = output_section->contents;
2846       BFD_ASSERT (new_contents != NULL);
2847       BFD_ASSERT (input_section->output_offset == 0);
2848     }
2849   else
2850     {
2851       /* Get and relocate the section contents.  */
2852       sec_size = (input_section->rawsize > input_section->size
2853 		  ? input_section->rawsize
2854 		  : input_section->size);
2855       contents = (bfd_byte *) bfd_malloc (sec_size);
2856       if (contents == NULL && sec_size != 0)
2857 	goto error_return;
2858       new_contents = (bfd_get_relocated_section_contents
2859 		      (output_bfd, info, link_order, contents,
2860 		       info->relocatable,
2861 		       _bfd_generic_link_get_symbols (input_bfd)));
2862       if (!new_contents)
2863 	goto error_return;
2864     }
2865 
2866   /* Output the section contents.  */
2867   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2868   if (! bfd_set_section_contents (output_bfd, output_section,
2869 				  new_contents, loc, input_section->size))
2870     goto error_return;
2871 
2872   if (contents != NULL)
2873     free (contents);
2874   return TRUE;
2875 
2876  error_return:
2877   if (contents != NULL)
2878     free (contents);
2879   return FALSE;
2880 }
2881 
2882 /* A little routine to count the number of relocs in a link_order
2883    list.  */
2884 
2885 unsigned int
2886 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2887 {
2888   register unsigned int c;
2889   register struct bfd_link_order *l;
2890 
2891   c = 0;
2892   for (l = link_order; l != NULL; l = l->next)
2893     {
2894       if (l->type == bfd_section_reloc_link_order
2895 	  || l->type == bfd_symbol_reloc_link_order)
2896 	++c;
2897     }
2898 
2899   return c;
2900 }
2901 
2902 /*
2903 FUNCTION
2904 	bfd_link_split_section
2905 
2906 SYNOPSIS
2907         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2908 
2909 DESCRIPTION
2910 	Return nonzero if @var{sec} should be split during a
2911 	reloceatable or final link.
2912 
2913 .#define bfd_link_split_section(abfd, sec) \
2914 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2915 .
2916 
2917 */
2918 
2919 bfd_boolean
2920 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2921 				 asection *sec ATTRIBUTE_UNUSED)
2922 {
2923   return FALSE;
2924 }
2925 
2926 /*
2927 FUNCTION
2928 	bfd_section_already_linked
2929 
2930 SYNOPSIS
2931         void bfd_section_already_linked (bfd *abfd, asection *sec,
2932 					 struct bfd_link_info *info);
2933 
2934 DESCRIPTION
2935 	Check if @var{sec} has been already linked during a reloceatable
2936 	or final link.
2937 
2938 .#define bfd_section_already_linked(abfd, sec, info) \
2939 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2940 .
2941 
2942 */
2943 
2944 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2945    once into the output.  This routine checks each section, and
2946    arrange to discard it if a section of the same name has already
2947    been linked.  This code assumes that all relevant sections have the
2948    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2949    section name.  bfd_section_already_linked is called via
2950    bfd_map_over_sections.  */
2951 
2952 /* The hash table.  */
2953 
2954 static struct bfd_hash_table _bfd_section_already_linked_table;
2955 
2956 /* Support routines for the hash table used by section_already_linked,
2957    initialize the table, traverse, lookup, fill in an entry and remove
2958    the table.  */
2959 
2960 void
2961 bfd_section_already_linked_table_traverse
2962   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2963 			void *), void *info)
2964 {
2965   bfd_hash_traverse (&_bfd_section_already_linked_table,
2966 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2967 				       void *)) func,
2968 		     info);
2969 }
2970 
2971 struct bfd_section_already_linked_hash_entry *
2972 bfd_section_already_linked_table_lookup (const char *name)
2973 {
2974   return ((struct bfd_section_already_linked_hash_entry *)
2975 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2976 			   TRUE, FALSE));
2977 }
2978 
2979 bfd_boolean
2980 bfd_section_already_linked_table_insert
2981   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2982    asection *sec)
2983 {
2984   struct bfd_section_already_linked *l;
2985 
2986   /* Allocate the memory from the same obstack as the hash table is
2987      kept in.  */
2988   l = (struct bfd_section_already_linked *)
2989       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2990   if (l == NULL)
2991     return FALSE;
2992   l->sec = sec;
2993   l->next = already_linked_list->entry;
2994   already_linked_list->entry = l;
2995   return TRUE;
2996 }
2997 
2998 static struct bfd_hash_entry *
2999 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
3000 			struct bfd_hash_table *table,
3001 			const char *string ATTRIBUTE_UNUSED)
3002 {
3003   struct bfd_section_already_linked_hash_entry *ret =
3004     (struct bfd_section_already_linked_hash_entry *)
3005       bfd_hash_allocate (table, sizeof *ret);
3006 
3007   if (ret == NULL)
3008     return NULL;
3009 
3010   ret->entry = NULL;
3011 
3012   return &ret->root;
3013 }
3014 
3015 bfd_boolean
3016 bfd_section_already_linked_table_init (void)
3017 {
3018   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
3019 				already_linked_newfunc,
3020 				sizeof (struct bfd_section_already_linked_hash_entry),
3021 				42);
3022 }
3023 
3024 void
3025 bfd_section_already_linked_table_free (void)
3026 {
3027   bfd_hash_table_free (&_bfd_section_already_linked_table);
3028 }
3029 
3030 /* This is used on non-ELF inputs.  */
3031 
3032 void
3033 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
3034 				     struct bfd_link_info *info)
3035 {
3036   flagword flags;
3037   const char *name;
3038   struct bfd_section_already_linked *l;
3039   struct bfd_section_already_linked_hash_entry *already_linked_list;
3040 
3041   flags = sec->flags;
3042   if ((flags & SEC_LINK_ONCE) == 0)
3043     return;
3044 
3045   /* FIXME: When doing a relocatable link, we may have trouble
3046      copying relocations in other sections that refer to local symbols
3047      in the section being discarded.  Those relocations will have to
3048      be converted somehow; as of this writing I'm not sure that any of
3049      the backends handle that correctly.
3050 
3051      It is tempting to instead not discard link once sections when
3052      doing a relocatable link (technically, they should be discarded
3053      whenever we are building constructors).  However, that fails,
3054      because the linker winds up combining all the link once sections
3055      into a single large link once section, which defeats the purpose
3056      of having link once sections in the first place.  */
3057 
3058   name = bfd_get_section_name (abfd, sec);
3059 
3060   already_linked_list = bfd_section_already_linked_table_lookup (name);
3061 
3062   for (l = already_linked_list->entry; l != NULL; l = l->next)
3063     {
3064       bfd_boolean skip = FALSE;
3065       struct coff_comdat_info *s_comdat
3066 	= bfd_coff_get_comdat_section (abfd, sec);
3067       struct coff_comdat_info *l_comdat
3068 	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3069 
3070       /* We may have 3 different sections on the list: group section,
3071 	 comdat section and linkonce section. SEC may be a linkonce or
3072 	 comdat section. We always ignore group section. For non-COFF
3073 	 inputs, we also ignore comdat section.
3074 
3075 	 FIXME: Is that safe to match a linkonce section with a comdat
3076 	 section for COFF inputs?  */
3077       if ((l->sec->flags & SEC_GROUP) != 0)
3078 	skip = TRUE;
3079       else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3080 	{
3081 	  if (s_comdat != NULL
3082 	      && l_comdat != NULL
3083 	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3084 	    skip = TRUE;
3085 	}
3086       else if (l_comdat != NULL)
3087 	skip = TRUE;
3088 
3089       if (!skip)
3090 	{
3091 	  /* The section has already been linked.  See if we should
3092              issue a warning.  */
3093 	  switch (flags & SEC_LINK_DUPLICATES)
3094 	    {
3095 	    default:
3096 	      abort ();
3097 
3098 	    case SEC_LINK_DUPLICATES_DISCARD:
3099 	      break;
3100 
3101 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3102 	      (*_bfd_error_handler)
3103 		(_("%B: warning: ignoring duplicate section `%A'\n"),
3104 		 abfd, sec);
3105 	      break;
3106 
3107 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3108 	      /* FIXME: We should really dig out the contents of both
3109                  sections and memcmp them.  The COFF/PE spec says that
3110                  the Microsoft linker does not implement this
3111                  correctly, so I'm not going to bother doing it
3112                  either.  */
3113 	      /* Fall through.  */
3114 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3115 	      if (sec->size != l->sec->size)
3116 		(*_bfd_error_handler)
3117 		  (_("%B: warning: duplicate section `%A' has different size\n"),
3118 		   abfd, sec);
3119 	      break;
3120 	    }
3121 
3122 	  /* Set the output_section field so that lang_add_section
3123 	     does not create a lang_input_section structure for this
3124 	     section.  Since there might be a symbol in the section
3125 	     being discarded, we must retain a pointer to the section
3126 	     which we are really going to use.  */
3127 	  sec->output_section = bfd_abs_section_ptr;
3128 	  sec->kept_section = l->sec;
3129 
3130 	  return;
3131 	}
3132     }
3133 
3134   /* This is the first section with this name.  Record it.  */
3135   if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3136     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3137 }
3138 
3139 /* Convert symbols in excluded output sections to use a kept section.  */
3140 
3141 static bfd_boolean
3142 fix_syms (struct bfd_link_hash_entry *h, void *data)
3143 {
3144   bfd *obfd = (bfd *) data;
3145 
3146   if (h->type == bfd_link_hash_warning)
3147     h = h->u.i.link;
3148 
3149   if (h->type == bfd_link_hash_defined
3150       || h->type == bfd_link_hash_defweak)
3151     {
3152       asection *s = h->u.def.section;
3153       if (s != NULL
3154 	  && s->output_section != NULL
3155 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3156 	  && bfd_section_removed_from_list (obfd, s->output_section))
3157 	{
3158 	  asection *op, *op1;
3159 
3160 	  h->u.def.value += s->output_offset + s->output_section->vma;
3161 
3162 	  /* Find preceding kept section.  */
3163 	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3164 	    if ((op1->flags & SEC_EXCLUDE) == 0
3165 		&& !bfd_section_removed_from_list (obfd, op1))
3166 	      break;
3167 
3168 	  /* Find following kept section.  Start at prev->next because
3169 	     other sections may have been added after S was removed.  */
3170 	  if (s->output_section->prev != NULL)
3171 	    op = s->output_section->prev->next;
3172 	  else
3173 	    op = s->output_section->owner->sections;
3174 	  for (; op != NULL; op = op->next)
3175 	    if ((op->flags & SEC_EXCLUDE) == 0
3176 		&& !bfd_section_removed_from_list (obfd, op))
3177 	      break;
3178 
3179 	  /* Choose better of two sections, based on flags.  The idea
3180 	     is to choose a section that will be in the same segment
3181 	     as S would have been if it was kept.  */
3182 	  if (op1 == NULL)
3183 	    {
3184 	      if (op == NULL)
3185 		op = bfd_abs_section_ptr;
3186 	    }
3187 	  else if (op == NULL)
3188 	    op = op1;
3189 	  else if (((op1->flags ^ op->flags)
3190 		    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3191 	    {
3192 	      if (((op->flags ^ s->flags)
3193 		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3194 		  /* We prefer to choose a loaded section.  Section S
3195 		     doesn't have SEC_LOAD set (it being excluded, that
3196 		     part of the flag processing didn't happen) so we
3197 		     can't compare that flag to those of OP and OP1.  */
3198 		  || ((op1->flags & SEC_LOAD) != 0
3199 		      && (op->flags & SEC_LOAD) == 0))
3200 		op = op1;
3201 	    }
3202 	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3203 	    {
3204 	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3205 		op = op1;
3206 	    }
3207 	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3208 	    {
3209 	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3210 		op = op1;
3211 	    }
3212 	  else
3213 	    {
3214 	      /* Flags we care about are the same.  Prefer the following
3215 		 section if that will result in a positive valued sym.  */
3216 	      if (h->u.def.value < op->vma)
3217 		op = op1;
3218 	    }
3219 
3220 	  h->u.def.value -= op->vma;
3221 	  h->u.def.section = op;
3222 	}
3223     }
3224 
3225   return TRUE;
3226 }
3227 
3228 void
3229 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3230 {
3231   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3232 }
3233 
3234 /*
3235 FUNCTION
3236 	bfd_generic_define_common_symbol
3237 
3238 SYNOPSIS
3239 	bfd_boolean bfd_generic_define_common_symbol
3240 	  (bfd *output_bfd, struct bfd_link_info *info,
3241 	   struct bfd_link_hash_entry *h);
3242 
3243 DESCRIPTION
3244 	Convert common symbol @var{h} into a defined symbol.
3245 	Return TRUE on success and FALSE on failure.
3246 
3247 .#define bfd_define_common_symbol(output_bfd, info, h) \
3248 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3249 .
3250 */
3251 
3252 bfd_boolean
3253 bfd_generic_define_common_symbol (bfd *output_bfd,
3254 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3255 				  struct bfd_link_hash_entry *h)
3256 {
3257   unsigned int power_of_two;
3258   bfd_vma alignment, size;
3259   asection *section;
3260 
3261   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3262 
3263   size = h->u.c.size;
3264   power_of_two = h->u.c.p->alignment_power;
3265   section = h->u.c.p->section;
3266 
3267   /* Increase the size of the section to align the common symbol.
3268      The alignment must be a power of two.  */
3269   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3270   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3271   section->size += alignment - 1;
3272   section->size &= -alignment;
3273 
3274   /* Adjust the section's overall alignment if necessary.  */
3275   if (power_of_two > section->alignment_power)
3276     section->alignment_power = power_of_two;
3277 
3278   /* Change the symbol from common to defined.  */
3279   h->type = bfd_link_hash_defined;
3280   h->u.def.section = section;
3281   h->u.def.value = section->size;
3282 
3283   /* Increase the size of the section.  */
3284   section->size += size;
3285 
3286   /* Make sure the section is allocated in memory, and make sure that
3287      it is no longer a common section.  */
3288   section->flags |= SEC_ALLOC;
3289   section->flags &= ~SEC_IS_COMMON;
3290   return TRUE;
3291 }
3292 
3293 /*
3294 FUNCTION
3295 	bfd_find_version_for_sym
3296 
3297 SYNOPSIS
3298 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3299 	  (struct bfd_elf_version_tree *verdefs,
3300 	   const char *sym_name, bfd_boolean *hide);
3301 
3302 DESCRIPTION
3303 	Search an elf version script tree for symbol versioning
3304 	info and export / don't-export status for a given symbol.
3305 	Return non-NULL on success and NULL on failure; also sets
3306 	the output @samp{hide} boolean parameter.
3307 
3308 */
3309 
3310 struct bfd_elf_version_tree *
3311 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3312 			  const char *sym_name,
3313 			  bfd_boolean *hide)
3314 {
3315   struct bfd_elf_version_tree *t;
3316   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3317   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3318 
3319   local_ver = NULL;
3320   global_ver = NULL;
3321   star_local_ver = NULL;
3322   star_global_ver = NULL;
3323   exist_ver = NULL;
3324   for (t = verdefs; t != NULL; t = t->next)
3325     {
3326       if (t->globals.list != NULL)
3327 	{
3328 	  struct bfd_elf_version_expr *d = NULL;
3329 
3330 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3331 	    {
3332 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3333 		global_ver = t;
3334 	      else
3335 		star_global_ver = t;
3336 	      if (d->symver)
3337 		exist_ver = t;
3338 	      d->script = 1;
3339 	      /* If the match is a wildcard pattern, keep looking for
3340 		 a more explicit, perhaps even local, match.  */
3341 	      if (d->literal)
3342 		break;
3343 	    }
3344 
3345 	  if (d != NULL)
3346 	    break;
3347 	}
3348 
3349       if (t->locals.list != NULL)
3350 	{
3351 	  struct bfd_elf_version_expr *d = NULL;
3352 
3353 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3354 	    {
3355 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3356 		local_ver = t;
3357 	      else
3358 		star_local_ver = t;
3359 	      /* If the match is a wildcard pattern, keep looking for
3360 		 a more explicit, perhaps even global, match.  */
3361 	      if (d->literal)
3362 		{
3363 		  /* An exact match overrides a global wildcard.  */
3364 		  global_ver = NULL;
3365 		  star_global_ver = NULL;
3366 		  break;
3367 		}
3368 	    }
3369 
3370 	  if (d != NULL)
3371 	    break;
3372 	}
3373     }
3374 
3375   if (global_ver == NULL && local_ver == NULL)
3376     global_ver = star_global_ver;
3377 
3378   if (global_ver != NULL)
3379     {
3380       /* If we already have a versioned symbol that matches the
3381 	 node for this symbol, then we don't want to create a
3382 	 duplicate from the unversioned symbol.  Instead hide the
3383 	 unversioned symbol.  */
3384       *hide = exist_ver == global_ver;
3385       return global_ver;
3386     }
3387 
3388   if (local_ver == NULL)
3389     local_ver = star_local_ver;
3390 
3391   if (local_ver != NULL)
3392     {
3393       *hide = TRUE;
3394       return local_ver;
3395     }
3396 
3397   return NULL;
3398 }
3399