xref: /dragonfly/contrib/gdb-7/bfd/linker.c (revision a68e0df0)
1 /* linker.c -- BFD linker routines
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 
7    This file is part of BFD, the Binary File Descriptor library.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22    MA 02110-1301, USA.  */
23 
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "bfdlink.h"
28 #include "genlink.h"
29 
30 /*
31 SECTION
32 	Linker Functions
33 
34 @cindex Linker
35 	The linker uses three special entry points in the BFD target
36 	vector.  It is not necessary to write special routines for
37 	these entry points when creating a new BFD back end, since
38 	generic versions are provided.  However, writing them can
39 	speed up linking and make it use significantly less runtime
40 	memory.
41 
42 	The first routine creates a hash table used by the other
43 	routines.  The second routine adds the symbols from an object
44 	file to the hash table.  The third routine takes all the
45 	object files and links them together to create the output
46 	file.  These routines are designed so that the linker proper
47 	does not need to know anything about the symbols in the object
48 	files that it is linking.  The linker merely arranges the
49 	sections as directed by the linker script and lets BFD handle
50 	the details of symbols and relocs.
51 
52 	The second routine and third routines are passed a pointer to
53 	a <<struct bfd_link_info>> structure (defined in
54 	<<bfdlink.h>>) which holds information relevant to the link,
55 	including the linker hash table (which was created by the
56 	first routine) and a set of callback functions to the linker
57 	proper.
58 
59 	The generic linker routines are in <<linker.c>>, and use the
60 	header file <<genlink.h>>.  As of this writing, the only back
61 	ends which have implemented versions of these routines are
62 	a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>).  The a.out
63 	routines are used as examples throughout this section.
64 
65 @menu
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
69 @end menu
70 
71 INODE
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
73 SUBSECTION
74 	Creating a linker hash table
75 
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 	The linker routines must create a hash table, which must be
79 	derived from <<struct bfd_link_hash_table>> described in
80 	<<bfdlink.c>>.  @xref{Hash Tables}, for information on how to
81 	create a derived hash table.  This entry point is called using
82 	the target vector of the linker output file.
83 
84 	The <<_bfd_link_hash_table_create>> entry point must allocate
85 	and initialize an instance of the desired hash table.  If the
86 	back end does not require any additional information to be
87 	stored with the entries in the hash table, the entry point may
88 	simply create a <<struct bfd_link_hash_table>>.  Most likely,
89 	however, some additional information will be needed.
90 
91 	For example, with each entry in the hash table the a.out
92 	linker keeps the index the symbol has in the final output file
93 	(this index number is used so that when doing a relocatable
94 	link the symbol index used in the output file can be quickly
95 	filled in when copying over a reloc).  The a.out linker code
96 	defines the required structures and functions for a hash table
97 	derived from <<struct bfd_link_hash_table>>.  The a.out linker
98 	hash table is created by the function
99 	<<NAME(aout,link_hash_table_create)>>; it simply allocates
100 	space for the hash table, initializes it, and returns a
101 	pointer to it.
102 
103 	When writing the linker routines for a new back end, you will
104 	generally not know exactly which fields will be required until
105 	you have finished.  You should simply create a new hash table
106 	which defines no additional fields, and then simply add fields
107 	as they become necessary.
108 
109 INODE
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
111 SUBSECTION
112 	Adding symbols to the hash table
113 
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 	The linker proper will call the <<_bfd_link_add_symbols>>
117 	entry point for each object file or archive which is to be
118 	linked (typically these are the files named on the command
119 	line, but some may also come from the linker script).  The
120 	entry point is responsible for examining the file.  For an
121 	object file, BFD must add any relevant symbol information to
122 	the hash table.  For an archive, BFD must determine which
123 	elements of the archive should be used and adding them to the
124 	link.
125 
126 	The a.out version of this entry point is
127 	<<NAME(aout,link_add_symbols)>>.
128 
129 @menu
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
133 @end menu
134 
135 INODE
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
137 SUBSUBSECTION
138 	Differing file formats
139 
140 	Normally all the files involved in a link will be of the same
141 	format, but it is also possible to link together different
142 	format object files, and the back end must support that.  The
143 	<<_bfd_link_add_symbols>> entry point is called via the target
144 	vector of the file to be added.  This has an important
145 	consequence: the function may not assume that the hash table
146 	is the type created by the corresponding
147 	<<_bfd_link_hash_table_create>> vector.  All the
148 	<<_bfd_link_add_symbols>> function can assume about the hash
149 	table is that it is derived from <<struct
150 	bfd_link_hash_table>>.
151 
152 	Sometimes the <<_bfd_link_add_symbols>> function must store
153 	some information in the hash table entry to be used by the
154 	<<_bfd_final_link>> function.  In such a case the output bfd
155 	xvec must be checked to make sure that the hash table was
156 	created by an object file of the same format.
157 
158 	The <<_bfd_final_link>> routine must be prepared to handle a
159 	hash entry without any extra information added by the
160 	<<_bfd_link_add_symbols>> function.  A hash entry without
161 	extra information will also occur when the linker script
162 	directs the linker to create a symbol.  Note that, regardless
163 	of how a hash table entry is added, all the fields will be
164 	initialized to some sort of null value by the hash table entry
165 	initialization function.
166 
167 	See <<ecoff_link_add_externals>> for an example of how to
168 	check the output bfd before saving information (in this
169 	case, the ECOFF external symbol debugging information) in a
170 	hash table entry.
171 
172 INODE
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
174 SUBSUBSECTION
175 	Adding symbols from an object file
176 
177 	When the <<_bfd_link_add_symbols>> routine is passed an object
178 	file, it must add all externally visible symbols in that
179 	object file to the hash table.  The actual work of adding the
180 	symbol to the hash table is normally handled by the function
181 	<<_bfd_generic_link_add_one_symbol>>.  The
182 	<<_bfd_link_add_symbols>> routine is responsible for reading
183 	all the symbols from the object file and passing the correct
184 	information to <<_bfd_generic_link_add_one_symbol>>.
185 
186 	The <<_bfd_link_add_symbols>> routine should not use
187 	<<bfd_canonicalize_symtab>> to read the symbols.  The point of
188 	providing this routine is to avoid the overhead of converting
189 	the symbols into generic <<asymbol>> structures.
190 
191 @findex _bfd_generic_link_add_one_symbol
192 	<<_bfd_generic_link_add_one_symbol>> handles the details of
193 	combining common symbols, warning about multiple definitions,
194 	and so forth.  It takes arguments which describe the symbol to
195 	add, notably symbol flags, a section, and an offset.  The
196 	symbol flags include such things as <<BSF_WEAK>> or
197 	<<BSF_INDIRECT>>.  The section is a section in the object
198 	file, or something like <<bfd_und_section_ptr>> for an undefined
199 	symbol or <<bfd_com_section_ptr>> for a common symbol.
200 
201 	If the <<_bfd_final_link>> routine is also going to need to
202 	read the symbol information, the <<_bfd_link_add_symbols>>
203 	routine should save it somewhere attached to the object file
204 	BFD.  However, the information should only be saved if the
205 	<<keep_memory>> field of the <<info>> argument is TRUE, so
206 	that the <<-no-keep-memory>> linker switch is effective.
207 
208 	The a.out function which adds symbols from an object file is
209 	<<aout_link_add_object_symbols>>, and most of the interesting
210 	work is in <<aout_link_add_symbols>>.  The latter saves
211 	pointers to the hash tables entries created by
212 	<<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 	so that the <<_bfd_final_link>> routine does not have to call
214 	the hash table lookup routine to locate the entry.
215 
216 INODE
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
218 SUBSUBSECTION
219 	Adding symbols from an archive
220 
221 	When the <<_bfd_link_add_symbols>> routine is passed an
222 	archive, it must look through the symbols defined by the
223 	archive and decide which elements of the archive should be
224 	included in the link.  For each such element it must call the
225 	<<add_archive_element>> linker callback, and it must add the
226 	symbols from the object file to the linker hash table.
227 
228 @findex _bfd_generic_link_add_archive_symbols
229 	In most cases the work of looking through the symbols in the
230 	archive should be done by the
231 	<<_bfd_generic_link_add_archive_symbols>> function.  This
232 	function builds a hash table from the archive symbol table and
233 	looks through the list of undefined symbols to see which
234 	elements should be included.
235 	<<_bfd_generic_link_add_archive_symbols>> is passed a function
236 	to call to make the final decision about adding an archive
237 	element to the link and to do the actual work of adding the
238 	symbols to the linker hash table.
239 
240 	The function passed to
241 	<<_bfd_generic_link_add_archive_symbols>> must read the
242 	symbols of the archive element and decide whether the archive
243 	element should be included in the link.  If the element is to
244 	be included, the <<add_archive_element>> linker callback
245 	routine must be called with the element as an argument, and
246 	the elements symbols must be added to the linker hash table
247 	just as though the element had itself been passed to the
248 	<<_bfd_link_add_symbols>> function.
249 
250 	When the a.out <<_bfd_link_add_symbols>> function receives an
251 	archive, it calls <<_bfd_generic_link_add_archive_symbols>>
252 	passing <<aout_link_check_archive_element>> as the function
253 	argument. <<aout_link_check_archive_element>> calls
254 	<<aout_link_check_ar_symbols>>.  If the latter decides to add
255 	the element (an element is only added if it provides a real,
256 	non-common, definition for a previously undefined or common
257 	symbol) it calls the <<add_archive_element>> callback and then
258 	<<aout_link_check_archive_element>> calls
259 	<<aout_link_add_symbols>> to actually add the symbols to the
260 	linker hash table.
261 
262 	The ECOFF back end is unusual in that it does not normally
263 	call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
264 	archives already contain a hash table of symbols.  The ECOFF
265 	back end searches the archive itself to avoid the overhead of
266 	creating a new hash table.
267 
268 INODE
269 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
270 SUBSECTION
271 	Performing the final link
272 
273 @cindex _bfd_link_final_link in target vector
274 @cindex target vector (_bfd_final_link)
275 	When all the input files have been processed, the linker calls
276 	the <<_bfd_final_link>> entry point of the output BFD.  This
277 	routine is responsible for producing the final output file,
278 	which has several aspects.  It must relocate the contents of
279 	the input sections and copy the data into the output sections.
280 	It must build an output symbol table including any local
281 	symbols from the input files and the global symbols from the
282 	hash table.  When producing relocatable output, it must
283 	modify the input relocs and write them into the output file.
284 	There may also be object format dependent work to be done.
285 
286 	The linker will also call the <<write_object_contents>> entry
287 	point when the BFD is closed.  The two entry points must work
288 	together in order to produce the correct output file.
289 
290 	The details of how this works are inevitably dependent upon
291 	the specific object file format.  The a.out
292 	<<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 
294 @menu
295 @* Information provided by the linker::
296 @* Relocating the section contents::
297 @* Writing the symbol table::
298 @end menu
299 
300 INODE
301 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
302 SUBSUBSECTION
303 	Information provided by the linker
304 
305 	Before the linker calls the <<_bfd_final_link>> entry point,
306 	it sets up some data structures for the function to use.
307 
308 	The <<input_bfds>> field of the <<bfd_link_info>> structure
309 	will point to a list of all the input files included in the
310 	link.  These files are linked through the <<link_next>> field
311 	of the <<bfd>> structure.
312 
313 	Each section in the output file will have a list of
314 	<<link_order>> structures attached to the <<map_head.link_order>>
315 	field (the <<link_order>> structure is defined in
316 	<<bfdlink.h>>).  These structures describe how to create the
317 	contents of the output section in terms of the contents of
318 	various input sections, fill constants, and, eventually, other
319 	types of information.  They also describe relocs that must be
320 	created by the BFD backend, but do not correspond to any input
321 	file; this is used to support -Ur, which builds constructors
322 	while generating a relocatable object file.
323 
324 INODE
325 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
326 SUBSUBSECTION
327 	Relocating the section contents
328 
329 	The <<_bfd_final_link>> function should look through the
330 	<<link_order>> structures attached to each section of the
331 	output file.  Each <<link_order>> structure should either be
332 	handled specially, or it should be passed to the function
333 	<<_bfd_default_link_order>> which will do the right thing
334 	(<<_bfd_default_link_order>> is defined in <<linker.c>>).
335 
336 	For efficiency, a <<link_order>> of type
337 	<<bfd_indirect_link_order>> whose associated section belongs
338 	to a BFD of the same format as the output BFD must be handled
339 	specially.  This type of <<link_order>> describes part of an
340 	output section in terms of a section belonging to one of the
341 	input files.  The <<_bfd_final_link>> function should read the
342 	contents of the section and any associated relocs, apply the
343 	relocs to the section contents, and write out the modified
344 	section contents.  If performing a relocatable link, the
345 	relocs themselves must also be modified and written out.
346 
347 @findex _bfd_relocate_contents
348 @findex _bfd_final_link_relocate
349 	The functions <<_bfd_relocate_contents>> and
350 	<<_bfd_final_link_relocate>> provide some general support for
351 	performing the actual relocations, notably overflow checking.
352 	Their arguments include information about the symbol the
353 	relocation is against and a <<reloc_howto_type>> argument
354 	which describes the relocation to perform.  These functions
355 	are defined in <<reloc.c>>.
356 
357 	The a.out function which handles reading, relocating, and
358 	writing section contents is <<aout_link_input_section>>.  The
359 	actual relocation is done in <<aout_link_input_section_std>>
360 	and <<aout_link_input_section_ext>>.
361 
362 INODE
363 Writing the symbol table, , Relocating the section contents, Performing the Final Link
364 SUBSUBSECTION
365 	Writing the symbol table
366 
367 	The <<_bfd_final_link>> function must gather all the symbols
368 	in the input files and write them out.  It must also write out
369 	all the symbols in the global hash table.  This must be
370 	controlled by the <<strip>> and <<discard>> fields of the
371 	<<bfd_link_info>> structure.
372 
373 	The local symbols of the input files will not have been
374 	entered into the linker hash table.  The <<_bfd_final_link>>
375 	routine must consider each input file and include the symbols
376 	in the output file.  It may be convenient to do this when
377 	looking through the <<link_order>> structures, or it may be
378 	done by stepping through the <<input_bfds>> list.
379 
380 	The <<_bfd_final_link>> routine must also traverse the global
381 	hash table to gather all the externally visible symbols.  It
382 	is possible that most of the externally visible symbols may be
383 	written out when considering the symbols of each input file,
384 	but it is still necessary to traverse the hash table since the
385 	linker script may have defined some symbols that are not in
386 	any of the input files.
387 
388 	The <<strip>> field of the <<bfd_link_info>> structure
389 	controls which symbols are written out.  The possible values
390 	are listed in <<bfdlink.h>>.  If the value is <<strip_some>>,
391 	then the <<keep_hash>> field of the <<bfd_link_info>>
392 	structure is a hash table of symbols to keep; each symbol
393 	should be looked up in this hash table, and only symbols which
394 	are present should be included in the output file.
395 
396 	If the <<strip>> field of the <<bfd_link_info>> structure
397 	permits local symbols to be written out, the <<discard>> field
398 	is used to further controls which local symbols are included
399 	in the output file.  If the value is <<discard_l>>, then all
400 	local symbols which begin with a certain prefix are discarded;
401 	this is controlled by the <<bfd_is_local_label_name>> entry point.
402 
403 	The a.out backend handles symbols by calling
404 	<<aout_link_write_symbols>> on each input BFD and then
405 	traversing the global hash table with the function
406 	<<aout_link_write_other_symbol>>.  It builds a string table
407 	while writing out the symbols, which is written to the output
408 	file at the end of <<NAME(aout,final_link)>>.
409 */
410 
411 static bfd_boolean generic_link_add_object_symbols
412   (bfd *, struct bfd_link_info *, bfd_boolean collect);
413 static bfd_boolean generic_link_add_symbols
414   (bfd *, struct bfd_link_info *, bfd_boolean);
415 static bfd_boolean generic_link_check_archive_element_no_collect
416   (bfd *, struct bfd_link_info *, bfd_boolean *);
417 static bfd_boolean generic_link_check_archive_element_collect
418   (bfd *, struct bfd_link_info *, bfd_boolean *);
419 static bfd_boolean generic_link_check_archive_element
420   (bfd *, struct bfd_link_info *, bfd_boolean *, bfd_boolean);
421 static bfd_boolean generic_link_add_symbol_list
422   (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423    bfd_boolean);
424 static bfd_boolean generic_add_output_symbol
425   (bfd *, size_t *psymalloc, asymbol *);
426 static bfd_boolean default_data_link_order
427   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
428 static bfd_boolean default_indirect_link_order
429   (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
430    bfd_boolean);
431 
432 /* The link hash table structure is defined in bfdlink.h.  It provides
433    a base hash table which the backend specific hash tables are built
434    upon.  */
435 
436 /* Routine to create an entry in the link hash table.  */
437 
438 struct bfd_hash_entry *
439 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
440 			struct bfd_hash_table *table,
441 			const char *string)
442 {
443   /* Allocate the structure if it has not already been allocated by a
444      subclass.  */
445   if (entry == NULL)
446     {
447       entry = (struct bfd_hash_entry *)
448           bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
449       if (entry == NULL)
450 	return entry;
451     }
452 
453   /* Call the allocation method of the superclass.  */
454   entry = bfd_hash_newfunc (entry, table, string);
455   if (entry)
456     {
457       struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
458 
459       /* Initialize the local fields.  */
460       h->type = bfd_link_hash_new;
461       memset (&h->u.undef.next, 0,
462 	      (sizeof (struct bfd_link_hash_entry)
463 	       - offsetof (struct bfd_link_hash_entry, u.undef.next)));
464     }
465 
466   return entry;
467 }
468 
469 /* Initialize a link hash table.  The BFD argument is the one
470    responsible for creating this table.  */
471 
472 bfd_boolean
473 _bfd_link_hash_table_init
474   (struct bfd_link_hash_table *table,
475    bfd *abfd ATTRIBUTE_UNUSED,
476    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
477 				      struct bfd_hash_table *,
478 				      const char *),
479    unsigned int entsize)
480 {
481   table->undefs = NULL;
482   table->undefs_tail = NULL;
483   table->type = bfd_link_generic_hash_table;
484 
485   return bfd_hash_table_init (&table->table, newfunc, entsize);
486 }
487 
488 /* Look up a symbol in a link hash table.  If follow is TRUE, we
489    follow bfd_link_hash_indirect and bfd_link_hash_warning links to
490    the real symbol.  */
491 
492 struct bfd_link_hash_entry *
493 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
494 		      const char *string,
495 		      bfd_boolean create,
496 		      bfd_boolean copy,
497 		      bfd_boolean follow)
498 {
499   struct bfd_link_hash_entry *ret;
500 
501   ret = ((struct bfd_link_hash_entry *)
502 	 bfd_hash_lookup (&table->table, string, create, copy));
503 
504   if (follow && ret != NULL)
505     {
506       while (ret->type == bfd_link_hash_indirect
507 	     || ret->type == bfd_link_hash_warning)
508 	ret = ret->u.i.link;
509     }
510 
511   return ret;
512 }
513 
514 /* Look up a symbol in the main linker hash table if the symbol might
515    be wrapped.  This should only be used for references to an
516    undefined symbol, not for definitions of a symbol.  */
517 
518 struct bfd_link_hash_entry *
519 bfd_wrapped_link_hash_lookup (bfd *abfd,
520 			      struct bfd_link_info *info,
521 			      const char *string,
522 			      bfd_boolean create,
523 			      bfd_boolean copy,
524 			      bfd_boolean follow)
525 {
526   bfd_size_type amt;
527 
528   if (info->wrap_hash != NULL)
529     {
530       const char *l;
531       char prefix = '\0';
532 
533       l = string;
534       if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
535 	{
536 	  prefix = *l;
537 	  ++l;
538 	}
539 
540 #undef WRAP
541 #define WRAP "__wrap_"
542 
543       if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
544 	{
545 	  char *n;
546 	  struct bfd_link_hash_entry *h;
547 
548 	  /* This symbol is being wrapped.  We want to replace all
549              references to SYM with references to __wrap_SYM.  */
550 
551 	  amt = strlen (l) + sizeof WRAP + 1;
552 	  n = (char *) bfd_malloc (amt);
553 	  if (n == NULL)
554 	    return NULL;
555 
556 	  n[0] = prefix;
557 	  n[1] = '\0';
558 	  strcat (n, WRAP);
559 	  strcat (n, l);
560 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
561 	  free (n);
562 	  return h;
563 	}
564 
565 #undef WRAP
566 
567 #undef  REAL
568 #define REAL "__real_"
569 
570       if (*l == '_'
571 	  && CONST_STRNEQ (l, REAL)
572 	  && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
573 			      FALSE, FALSE) != NULL)
574 	{
575 	  char *n;
576 	  struct bfd_link_hash_entry *h;
577 
578 	  /* This is a reference to __real_SYM, where SYM is being
579              wrapped.  We want to replace all references to __real_SYM
580              with references to SYM.  */
581 
582 	  amt = strlen (l + sizeof REAL - 1) + 2;
583 	  n = (char *) bfd_malloc (amt);
584 	  if (n == NULL)
585 	    return NULL;
586 
587 	  n[0] = prefix;
588 	  n[1] = '\0';
589 	  strcat (n, l + sizeof REAL - 1);
590 	  h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
591 	  free (n);
592 	  return h;
593 	}
594 
595 #undef REAL
596     }
597 
598   return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
599 }
600 
601 /* Traverse a generic link hash table.  The only reason this is not a
602    macro is to do better type checking.  This code presumes that an
603    argument passed as a struct bfd_hash_entry * may be caught as a
604    struct bfd_link_hash_entry * with no explicit cast required on the
605    call.  */
606 
607 void
608 bfd_link_hash_traverse
609   (struct bfd_link_hash_table *table,
610    bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
611    void *info)
612 {
613   bfd_hash_traverse (&table->table,
614 		     (bfd_boolean (*) (struct bfd_hash_entry *, void *)) func,
615 		     info);
616 }
617 
618 /* Add a symbol to the linker hash table undefs list.  */
619 
620 void
621 bfd_link_add_undef (struct bfd_link_hash_table *table,
622 		    struct bfd_link_hash_entry *h)
623 {
624   BFD_ASSERT (h->u.undef.next == NULL);
625   if (table->undefs_tail != NULL)
626     table->undefs_tail->u.undef.next = h;
627   if (table->undefs == NULL)
628     table->undefs = h;
629   table->undefs_tail = h;
630 }
631 
632 /* The undefs list was designed so that in normal use we don't need to
633    remove entries.  However, if symbols on the list are changed from
634    bfd_link_hash_undefined to either bfd_link_hash_undefweak or
635    bfd_link_hash_new for some reason, then they must be removed from the
636    list.  Failure to do so might result in the linker attempting to add
637    the symbol to the list again at a later stage.  */
638 
639 void
640 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
641 {
642   struct bfd_link_hash_entry **pun;
643 
644   pun = &table->undefs;
645   while (*pun != NULL)
646     {
647       struct bfd_link_hash_entry *h = *pun;
648 
649       if (h->type == bfd_link_hash_new
650 	  || h->type == bfd_link_hash_undefweak)
651 	{
652 	  *pun = h->u.undef.next;
653 	  h->u.undef.next = NULL;
654 	  if (h == table->undefs_tail)
655 	    {
656 	      if (pun == &table->undefs)
657 		table->undefs_tail = NULL;
658 	      else
659 		/* pun points at an u.undef.next field.  Go back to
660 		   the start of the link_hash_entry.  */
661 		table->undefs_tail = (struct bfd_link_hash_entry *)
662 		  ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
663 	      break;
664 	    }
665 	}
666       else
667 	pun = &h->u.undef.next;
668     }
669 }
670 
671 /* Routine to create an entry in a generic link hash table.  */
672 
673 struct bfd_hash_entry *
674 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
675 				struct bfd_hash_table *table,
676 				const char *string)
677 {
678   /* Allocate the structure if it has not already been allocated by a
679      subclass.  */
680   if (entry == NULL)
681     {
682       entry = (struct bfd_hash_entry *)
683 	bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
684       if (entry == NULL)
685 	return entry;
686     }
687 
688   /* Call the allocation method of the superclass.  */
689   entry = _bfd_link_hash_newfunc (entry, table, string);
690   if (entry)
691     {
692       struct generic_link_hash_entry *ret;
693 
694       /* Set local fields.  */
695       ret = (struct generic_link_hash_entry *) entry;
696       ret->written = FALSE;
697       ret->sym = NULL;
698     }
699 
700   return entry;
701 }
702 
703 /* Create a generic link hash table.  */
704 
705 struct bfd_link_hash_table *
706 _bfd_generic_link_hash_table_create (bfd *abfd)
707 {
708   struct generic_link_hash_table *ret;
709   bfd_size_type amt = sizeof (struct generic_link_hash_table);
710 
711   ret = (struct generic_link_hash_table *) bfd_malloc (amt);
712   if (ret == NULL)
713     return NULL;
714   if (! _bfd_link_hash_table_init (&ret->root, abfd,
715 				   _bfd_generic_link_hash_newfunc,
716 				   sizeof (struct generic_link_hash_entry)))
717     {
718       free (ret);
719       return NULL;
720     }
721   return &ret->root;
722 }
723 
724 void
725 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table *hash)
726 {
727   struct generic_link_hash_table *ret
728     = (struct generic_link_hash_table *) hash;
729 
730   bfd_hash_table_free (&ret->root.table);
731   free (ret);
732 }
733 
734 /* Grab the symbols for an object file when doing a generic link.  We
735    store the symbols in the outsymbols field.  We need to keep them
736    around for the entire link to ensure that we only read them once.
737    If we read them multiple times, we might wind up with relocs and
738    the hash table pointing to different instances of the symbol
739    structure.  */
740 
741 bfd_boolean
742 bfd_generic_link_read_symbols (bfd *abfd)
743 {
744   if (bfd_get_outsymbols (abfd) == NULL)
745     {
746       long symsize;
747       long symcount;
748 
749       symsize = bfd_get_symtab_upper_bound (abfd);
750       if (symsize < 0)
751 	return FALSE;
752       bfd_get_outsymbols (abfd) = (struct bfd_symbol **) bfd_alloc (abfd,
753                                                                     symsize);
754       if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
755 	return FALSE;
756       symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
757       if (symcount < 0)
758 	return FALSE;
759       bfd_get_symcount (abfd) = symcount;
760     }
761 
762   return TRUE;
763 }
764 
765 /* Generic function to add symbols to from an object file to the
766    global hash table.  This version does not automatically collect
767    constructors by name.  */
768 
769 bfd_boolean
770 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
771 {
772   return generic_link_add_symbols (abfd, info, FALSE);
773 }
774 
775 /* Generic function to add symbols from an object file to the global
776    hash table.  This version automatically collects constructors by
777    name, as the collect2 program does.  It should be used for any
778    target which does not provide some other mechanism for setting up
779    constructors and destructors; these are approximately those targets
780    for which gcc uses collect2 and do not support stabs.  */
781 
782 bfd_boolean
783 _bfd_generic_link_add_symbols_collect (bfd *abfd, struct bfd_link_info *info)
784 {
785   return generic_link_add_symbols (abfd, info, TRUE);
786 }
787 
788 /* Indicate that we are only retrieving symbol values from this
789    section.  We want the symbols to act as though the values in the
790    file are absolute.  */
791 
792 void
793 _bfd_generic_link_just_syms (asection *sec,
794 			     struct bfd_link_info *info ATTRIBUTE_UNUSED)
795 {
796   sec->output_section = bfd_abs_section_ptr;
797   sec->output_offset = sec->vma;
798 }
799 
800 /* Add symbols from an object file to the global hash table.  */
801 
802 static bfd_boolean
803 generic_link_add_symbols (bfd *abfd,
804 			  struct bfd_link_info *info,
805 			  bfd_boolean collect)
806 {
807   bfd_boolean ret;
808 
809   switch (bfd_get_format (abfd))
810     {
811     case bfd_object:
812       ret = generic_link_add_object_symbols (abfd, info, collect);
813       break;
814     case bfd_archive:
815       ret = (_bfd_generic_link_add_archive_symbols
816 	     (abfd, info,
817 	      (collect
818 	       ? generic_link_check_archive_element_collect
819 	       : generic_link_check_archive_element_no_collect)));
820       break;
821     default:
822       bfd_set_error (bfd_error_wrong_format);
823       ret = FALSE;
824     }
825 
826   return ret;
827 }
828 
829 /* Add symbols from an object file to the global hash table.  */
830 
831 static bfd_boolean
832 generic_link_add_object_symbols (bfd *abfd,
833 				 struct bfd_link_info *info,
834 				 bfd_boolean collect)
835 {
836   bfd_size_type symcount;
837   struct bfd_symbol **outsyms;
838 
839   if (!bfd_generic_link_read_symbols (abfd))
840     return FALSE;
841   symcount = _bfd_generic_link_get_symcount (abfd);
842   outsyms = _bfd_generic_link_get_symbols (abfd);
843   return generic_link_add_symbol_list (abfd, info, symcount, outsyms, collect);
844 }
845 
846 /* We build a hash table of all symbols defined in an archive.  */
847 
848 /* An archive symbol may be defined by multiple archive elements.
849    This linked list is used to hold the elements.  */
850 
851 struct archive_list
852 {
853   struct archive_list *next;
854   unsigned int indx;
855 };
856 
857 /* An entry in an archive hash table.  */
858 
859 struct archive_hash_entry
860 {
861   struct bfd_hash_entry root;
862   /* Where the symbol is defined.  */
863   struct archive_list *defs;
864 };
865 
866 /* An archive hash table itself.  */
867 
868 struct archive_hash_table
869 {
870   struct bfd_hash_table table;
871 };
872 
873 /* Create a new entry for an archive hash table.  */
874 
875 static struct bfd_hash_entry *
876 archive_hash_newfunc (struct bfd_hash_entry *entry,
877 		      struct bfd_hash_table *table,
878 		      const char *string)
879 {
880   struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
881 
882   /* Allocate the structure if it has not already been allocated by a
883      subclass.  */
884   if (ret == NULL)
885     ret = (struct archive_hash_entry *)
886         bfd_hash_allocate (table, sizeof (struct archive_hash_entry));
887   if (ret == NULL)
888     return NULL;
889 
890   /* Call the allocation method of the superclass.  */
891   ret = ((struct archive_hash_entry *)
892 	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
893 
894   if (ret)
895     {
896       /* Initialize the local fields.  */
897       ret->defs = NULL;
898     }
899 
900   return &ret->root;
901 }
902 
903 /* Initialize an archive hash table.  */
904 
905 static bfd_boolean
906 archive_hash_table_init
907   (struct archive_hash_table *table,
908    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
909 				      struct bfd_hash_table *,
910 				      const char *),
911    unsigned int entsize)
912 {
913   return bfd_hash_table_init (&table->table, newfunc, entsize);
914 }
915 
916 /* Look up an entry in an archive hash table.  */
917 
918 #define archive_hash_lookup(t, string, create, copy) \
919   ((struct archive_hash_entry *) \
920    bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
921 
922 /* Allocate space in an archive hash table.  */
923 
924 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
925 
926 /* Free an archive hash table.  */
927 
928 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
929 
930 /* Generic function to add symbols from an archive file to the global
931    hash file.  This function presumes that the archive symbol table
932    has already been read in (this is normally done by the
933    bfd_check_format entry point).  It looks through the undefined and
934    common symbols and searches the archive symbol table for them.  If
935    it finds an entry, it includes the associated object file in the
936    link.
937 
938    The old linker looked through the archive symbol table for
939    undefined symbols.  We do it the other way around, looking through
940    undefined symbols for symbols defined in the archive.  The
941    advantage of the newer scheme is that we only have to look through
942    the list of undefined symbols once, whereas the old method had to
943    re-search the symbol table each time a new object file was added.
944 
945    The CHECKFN argument is used to see if an object file should be
946    included.  CHECKFN should set *PNEEDED to TRUE if the object file
947    should be included, and must also call the bfd_link_info
948    add_archive_element callback function and handle adding the symbols
949    to the global hash table.  CHECKFN should only return FALSE if some
950    sort of error occurs.
951 
952    For some formats, such as a.out, it is possible to look through an
953    object file but not actually include it in the link.  The
954    archive_pass field in a BFD is used to avoid checking the symbols
955    of an object files too many times.  When an object is included in
956    the link, archive_pass is set to -1.  If an object is scanned but
957    not included, archive_pass is set to the pass number.  The pass
958    number is incremented each time a new object file is included.  The
959    pass number is used because when a new object file is included it
960    may create new undefined symbols which cause a previously examined
961    object file to be included.  */
962 
963 bfd_boolean
964 _bfd_generic_link_add_archive_symbols
965   (bfd *abfd,
966    struct bfd_link_info *info,
967    bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *, bfd_boolean *))
968 {
969   carsym *arsyms;
970   carsym *arsym_end;
971   register carsym *arsym;
972   int pass;
973   struct archive_hash_table arsym_hash;
974   unsigned int indx;
975   struct bfd_link_hash_entry **pundef;
976 
977   if (! bfd_has_map (abfd))
978     {
979       /* An empty archive is a special case.  */
980       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
981 	return TRUE;
982       bfd_set_error (bfd_error_no_armap);
983       return FALSE;
984     }
985 
986   arsyms = bfd_ardata (abfd)->symdefs;
987   arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
988 
989   /* In order to quickly determine whether an symbol is defined in
990      this archive, we build a hash table of the symbols.  */
991   if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc,
992 				 sizeof (struct archive_hash_entry)))
993     return FALSE;
994   for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
995     {
996       struct archive_hash_entry *arh;
997       struct archive_list *l, **pp;
998 
999       arh = archive_hash_lookup (&arsym_hash, arsym->name, TRUE, FALSE);
1000       if (arh == NULL)
1001 	goto error_return;
1002       l = ((struct archive_list *)
1003 	   archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
1004       if (l == NULL)
1005 	goto error_return;
1006       l->indx = indx;
1007       for (pp = &arh->defs; *pp != NULL; pp = &(*pp)->next)
1008 	;
1009       *pp = l;
1010       l->next = NULL;
1011     }
1012 
1013   /* The archive_pass field in the archive itself is used to
1014      initialize PASS, sine we may search the same archive multiple
1015      times.  */
1016   pass = abfd->archive_pass + 1;
1017 
1018   /* New undefined symbols are added to the end of the list, so we
1019      only need to look through it once.  */
1020   pundef = &info->hash->undefs;
1021   while (*pundef != NULL)
1022     {
1023       struct bfd_link_hash_entry *h;
1024       struct archive_hash_entry *arh;
1025       struct archive_list *l;
1026 
1027       h = *pundef;
1028 
1029       /* When a symbol is defined, it is not necessarily removed from
1030 	 the list.  */
1031       if (h->type != bfd_link_hash_undefined
1032 	  && h->type != bfd_link_hash_common)
1033 	{
1034 	  /* Remove this entry from the list, for general cleanliness
1035 	     and because we are going to look through the list again
1036 	     if we search any more libraries.  We can't remove the
1037 	     entry if it is the tail, because that would lose any
1038 	     entries we add to the list later on (it would also cause
1039 	     us to lose track of whether the symbol has been
1040 	     referenced).  */
1041 	  if (*pundef != info->hash->undefs_tail)
1042 	    *pundef = (*pundef)->u.undef.next;
1043 	  else
1044 	    pundef = &(*pundef)->u.undef.next;
1045 	  continue;
1046 	}
1047 
1048       /* Look for this symbol in the archive symbol map.  */
1049       arh = archive_hash_lookup (&arsym_hash, h->root.string, FALSE, FALSE);
1050       if (arh == NULL)
1051 	{
1052 	  /* If we haven't found the exact symbol we're looking for,
1053 	     let's look for its import thunk */
1054 	  if (info->pei386_auto_import)
1055 	    {
1056 	      bfd_size_type amt = strlen (h->root.string) + 10;
1057 	      char *buf = (char *) bfd_malloc (amt);
1058 	      if (buf == NULL)
1059 		return FALSE;
1060 
1061 	      sprintf (buf, "__imp_%s", h->root.string);
1062 	      arh = archive_hash_lookup (&arsym_hash, buf, FALSE, FALSE);
1063 	      free(buf);
1064 	    }
1065 	  if (arh == NULL)
1066 	    {
1067 	      pundef = &(*pundef)->u.undef.next;
1068 	      continue;
1069 	    }
1070 	}
1071       /* Look at all the objects which define this symbol.  */
1072       for (l = arh->defs; l != NULL; l = l->next)
1073 	{
1074 	  bfd *element;
1075 	  bfd_boolean needed;
1076 
1077 	  /* If the symbol has gotten defined along the way, quit.  */
1078 	  if (h->type != bfd_link_hash_undefined
1079 	      && h->type != bfd_link_hash_common)
1080 	    break;
1081 
1082 	  element = bfd_get_elt_at_index (abfd, l->indx);
1083 	  if (element == NULL)
1084 	    goto error_return;
1085 
1086 	  /* If we've already included this element, or if we've
1087 	     already checked it on this pass, continue.  */
1088 	  if (element->archive_pass == -1
1089 	      || element->archive_pass == pass)
1090 	    continue;
1091 
1092 	  /* If we can't figure this element out, just ignore it.  */
1093 	  if (! bfd_check_format (element, bfd_object))
1094 	    {
1095 	      element->archive_pass = -1;
1096 	      continue;
1097 	    }
1098 
1099 	  /* CHECKFN will see if this element should be included, and
1100 	     go ahead and include it if appropriate.  */
1101 	  if (! (*checkfn) (element, info, &needed))
1102 	    goto error_return;
1103 
1104 	  if (! needed)
1105 	    element->archive_pass = pass;
1106 	  else
1107 	    {
1108 	      element->archive_pass = -1;
1109 
1110 	      /* Increment the pass count to show that we may need to
1111 		 recheck object files which were already checked.  */
1112 	      ++pass;
1113 	    }
1114 	}
1115 
1116       pundef = &(*pundef)->u.undef.next;
1117     }
1118 
1119   archive_hash_table_free (&arsym_hash);
1120 
1121   /* Save PASS in case we are called again.  */
1122   abfd->archive_pass = pass;
1123 
1124   return TRUE;
1125 
1126  error_return:
1127   archive_hash_table_free (&arsym_hash);
1128   return FALSE;
1129 }
1130 
1131 /* See if we should include an archive element.  This version is used
1132    when we do not want to automatically collect constructors based on
1133    the symbol name, presumably because we have some other mechanism
1134    for finding them.  */
1135 
1136 static bfd_boolean
1137 generic_link_check_archive_element_no_collect (
1138 					       bfd *abfd,
1139 					       struct bfd_link_info *info,
1140 					       bfd_boolean *pneeded)
1141 {
1142   return generic_link_check_archive_element (abfd, info, pneeded, FALSE);
1143 }
1144 
1145 /* See if we should include an archive element.  This version is used
1146    when we want to automatically collect constructors based on the
1147    symbol name, as collect2 does.  */
1148 
1149 static bfd_boolean
1150 generic_link_check_archive_element_collect (bfd *abfd,
1151 					    struct bfd_link_info *info,
1152 					    bfd_boolean *pneeded)
1153 {
1154   return generic_link_check_archive_element (abfd, info, pneeded, TRUE);
1155 }
1156 
1157 /* See if we should include an archive element.  Optionally collect
1158    constructors.  */
1159 
1160 static bfd_boolean
1161 generic_link_check_archive_element (bfd *abfd,
1162 				    struct bfd_link_info *info,
1163 				    bfd_boolean *pneeded,
1164 				    bfd_boolean collect)
1165 {
1166   asymbol **pp, **ppend;
1167 
1168   *pneeded = FALSE;
1169 
1170   if (!bfd_generic_link_read_symbols (abfd))
1171     return FALSE;
1172 
1173   pp = _bfd_generic_link_get_symbols (abfd);
1174   ppend = pp + _bfd_generic_link_get_symcount (abfd);
1175   for (; pp < ppend; pp++)
1176     {
1177       asymbol *p;
1178       struct bfd_link_hash_entry *h;
1179 
1180       p = *pp;
1181 
1182       /* We are only interested in globally visible symbols.  */
1183       if (! bfd_is_com_section (p->section)
1184 	  && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1185 	continue;
1186 
1187       /* We are only interested if we know something about this
1188 	 symbol, and it is undefined or common.  An undefined weak
1189 	 symbol (type bfd_link_hash_undefweak) is not considered to be
1190 	 a reference when pulling files out of an archive.  See the
1191 	 SVR4 ABI, p. 4-27.  */
1192       h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1193 				FALSE, TRUE);
1194       if (h == NULL
1195 	  || (h->type != bfd_link_hash_undefined
1196 	      && h->type != bfd_link_hash_common))
1197 	continue;
1198 
1199       /* P is a symbol we are looking for.  */
1200 
1201       if (! bfd_is_com_section (p->section))
1202 	{
1203 	  bfd_size_type symcount;
1204 	  asymbol **symbols;
1205 
1206 	  /* This object file defines this symbol, so pull it in.  */
1207 	  if (! (*info->callbacks->add_archive_element) (info, abfd,
1208 							 bfd_asymbol_name (p)))
1209 	    return FALSE;
1210 	  symcount = _bfd_generic_link_get_symcount (abfd);
1211 	  symbols = _bfd_generic_link_get_symbols (abfd);
1212 	  if (! generic_link_add_symbol_list (abfd, info, symcount,
1213 					      symbols, collect))
1214 	    return FALSE;
1215 	  *pneeded = TRUE;
1216 	  return TRUE;
1217 	}
1218 
1219       /* P is a common symbol.  */
1220 
1221       if (h->type == bfd_link_hash_undefined)
1222 	{
1223 	  bfd *symbfd;
1224 	  bfd_vma size;
1225 	  unsigned int power;
1226 
1227 	  symbfd = h->u.undef.abfd;
1228 	  if (symbfd == NULL)
1229 	    {
1230 	      /* This symbol was created as undefined from outside
1231 		 BFD.  We assume that we should link in the object
1232 		 file.  This is for the -u option in the linker.  */
1233 	      if (! (*info->callbacks->add_archive_element)
1234 		  (info, abfd, bfd_asymbol_name (p)))
1235 		return FALSE;
1236 	      *pneeded = TRUE;
1237 	      return TRUE;
1238 	    }
1239 
1240 	  /* Turn the symbol into a common symbol but do not link in
1241 	     the object file.  This is how a.out works.  Object
1242 	     formats that require different semantics must implement
1243 	     this function differently.  This symbol is already on the
1244 	     undefs list.  We add the section to a common section
1245 	     attached to symbfd to ensure that it is in a BFD which
1246 	     will be linked in.  */
1247 	  h->type = bfd_link_hash_common;
1248 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1249 	    bfd_hash_allocate (&info->hash->table,
1250 			       sizeof (struct bfd_link_hash_common_entry));
1251 	  if (h->u.c.p == NULL)
1252 	    return FALSE;
1253 
1254 	  size = bfd_asymbol_value (p);
1255 	  h->u.c.size = size;
1256 
1257 	  power = bfd_log2 (size);
1258 	  if (power > 4)
1259 	    power = 4;
1260 	  h->u.c.p->alignment_power = power;
1261 
1262 	  if (p->section == bfd_com_section_ptr)
1263 	    h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1264 	  else
1265 	    h->u.c.p->section = bfd_make_section_old_way (symbfd,
1266 							  p->section->name);
1267 	  h->u.c.p->section->flags = SEC_ALLOC;
1268 	}
1269       else
1270 	{
1271 	  /* Adjust the size of the common symbol if necessary.  This
1272 	     is how a.out works.  Object formats that require
1273 	     different semantics must implement this function
1274 	     differently.  */
1275 	  if (bfd_asymbol_value (p) > h->u.c.size)
1276 	    h->u.c.size = bfd_asymbol_value (p);
1277 	}
1278     }
1279 
1280   /* This archive element is not needed.  */
1281   return TRUE;
1282 }
1283 
1284 /* Add the symbols from an object file to the global hash table.  ABFD
1285    is the object file.  INFO is the linker information.  SYMBOL_COUNT
1286    is the number of symbols.  SYMBOLS is the list of symbols.  COLLECT
1287    is TRUE if constructors should be automatically collected by name
1288    as is done by collect2.  */
1289 
1290 static bfd_boolean
1291 generic_link_add_symbol_list (bfd *abfd,
1292 			      struct bfd_link_info *info,
1293 			      bfd_size_type symbol_count,
1294 			      asymbol **symbols,
1295 			      bfd_boolean collect)
1296 {
1297   asymbol **pp, **ppend;
1298 
1299   pp = symbols;
1300   ppend = symbols + symbol_count;
1301   for (; pp < ppend; pp++)
1302     {
1303       asymbol *p;
1304 
1305       p = *pp;
1306 
1307       if ((p->flags & (BSF_INDIRECT
1308 		       | BSF_WARNING
1309 		       | BSF_GLOBAL
1310 		       | BSF_CONSTRUCTOR
1311 		       | BSF_WEAK)) != 0
1312 	  || bfd_is_und_section (bfd_get_section (p))
1313 	  || bfd_is_com_section (bfd_get_section (p))
1314 	  || bfd_is_ind_section (bfd_get_section (p)))
1315 	{
1316 	  const char *name;
1317 	  const char *string;
1318 	  struct generic_link_hash_entry *h;
1319 	  struct bfd_link_hash_entry *bh;
1320 
1321 	  string = name = bfd_asymbol_name (p);
1322 	  if (((p->flags & BSF_INDIRECT) != 0
1323 	       || bfd_is_ind_section (p->section))
1324 	      && pp + 1 < ppend)
1325 	    {
1326 	      pp++;
1327 	      string = bfd_asymbol_name (*pp);
1328 	    }
1329 	  else if ((p->flags & BSF_WARNING) != 0
1330 		   && pp + 1 < ppend)
1331 	    {
1332 	      /* The name of P is actually the warning string, and the
1333 		 next symbol is the one to warn about.  */
1334 	      pp++;
1335 	      name = bfd_asymbol_name (*pp);
1336 	    }
1337 
1338 	  bh = NULL;
1339 	  if (! (_bfd_generic_link_add_one_symbol
1340 		 (info, abfd, name, p->flags, bfd_get_section (p),
1341 		  p->value, string, FALSE, collect, &bh)))
1342 	    return FALSE;
1343 	  h = (struct generic_link_hash_entry *) bh;
1344 
1345 	  /* If this is a constructor symbol, and the linker didn't do
1346              anything with it, then we want to just pass the symbol
1347              through to the output file.  This will happen when
1348              linking with -r.  */
1349 	  if ((p->flags & BSF_CONSTRUCTOR) != 0
1350 	      && (h == NULL || h->root.type == bfd_link_hash_new))
1351 	    {
1352 	      p->udata.p = NULL;
1353 	      continue;
1354 	    }
1355 
1356 	  /* Save the BFD symbol so that we don't lose any backend
1357 	     specific information that may be attached to it.  We only
1358 	     want this one if it gives more information than the
1359 	     existing one; we don't want to replace a defined symbol
1360 	     with an undefined one.  This routine may be called with a
1361 	     hash table other than the generic hash table, so we only
1362 	     do this if we are certain that the hash table is a
1363 	     generic one.  */
1364 	  if (info->output_bfd->xvec == abfd->xvec)
1365 	    {
1366 	      if (h->sym == NULL
1367 		  || (! bfd_is_und_section (bfd_get_section (p))
1368 		      && (! bfd_is_com_section (bfd_get_section (p))
1369 			  || bfd_is_und_section (bfd_get_section (h->sym)))))
1370 		{
1371 		  h->sym = p;
1372 		  /* BSF_OLD_COMMON is a hack to support COFF reloc
1373 		     reading, and it should go away when the COFF
1374 		     linker is switched to the new version.  */
1375 		  if (bfd_is_com_section (bfd_get_section (p)))
1376 		    p->flags |= BSF_OLD_COMMON;
1377 		}
1378 	    }
1379 
1380 	  /* Store a back pointer from the symbol to the hash
1381 	     table entry for the benefit of relaxation code until
1382 	     it gets rewritten to not use asymbol structures.
1383 	     Setting this is also used to check whether these
1384 	     symbols were set up by the generic linker.  */
1385 	  p->udata.p = h;
1386 	}
1387     }
1388 
1389   return TRUE;
1390 }
1391 
1392 /* We use a state table to deal with adding symbols from an object
1393    file.  The first index into the state table describes the symbol
1394    from the object file.  The second index into the state table is the
1395    type of the symbol in the hash table.  */
1396 
1397 /* The symbol from the object file is turned into one of these row
1398    values.  */
1399 
1400 enum link_row
1401 {
1402   UNDEF_ROW,		/* Undefined.  */
1403   UNDEFW_ROW,		/* Weak undefined.  */
1404   DEF_ROW,		/* Defined.  */
1405   DEFW_ROW,		/* Weak defined.  */
1406   COMMON_ROW,		/* Common.  */
1407   INDR_ROW,		/* Indirect.  */
1408   WARN_ROW,		/* Warning.  */
1409   SET_ROW		/* Member of set.  */
1410 };
1411 
1412 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1413 #undef FAIL
1414 
1415 /* The actions to take in the state table.  */
1416 
1417 enum link_action
1418 {
1419   FAIL,		/* Abort.  */
1420   UND,		/* Mark symbol undefined.  */
1421   WEAK,		/* Mark symbol weak undefined.  */
1422   DEF,		/* Mark symbol defined.  */
1423   DEFW,		/* Mark symbol weak defined.  */
1424   COM,		/* Mark symbol common.  */
1425   REF,		/* Mark defined symbol referenced.  */
1426   CREF,		/* Possibly warn about common reference to defined symbol.  */
1427   CDEF,		/* Define existing common symbol.  */
1428   NOACT,	/* No action.  */
1429   BIG,		/* Mark symbol common using largest size.  */
1430   MDEF,		/* Multiple definition error.  */
1431   MIND,		/* Multiple indirect symbols.  */
1432   IND,		/* Make indirect symbol.  */
1433   CIND,		/* Make indirect symbol from existing common symbol.  */
1434   SET,		/* Add value to set.  */
1435   MWARN,	/* Make warning symbol.  */
1436   WARN,		/* Issue warning.  */
1437   CWARN,	/* Warn if referenced, else MWARN.  */
1438   CYCLE,	/* Repeat with symbol pointed to.  */
1439   REFC,		/* Mark indirect symbol referenced and then CYCLE.  */
1440   WARNC		/* Issue warning and then CYCLE.  */
1441 };
1442 
1443 /* The state table itself.  The first index is a link_row and the
1444    second index is a bfd_link_hash_type.  */
1445 
1446 static const enum link_action link_action[8][8] =
1447 {
1448   /* current\prev    new    undef  undefw def    defw   com    indr   warn  */
1449   /* UNDEF_ROW 	*/  {UND,   NOACT, UND,   REF,   REF,   NOACT, REFC,  WARNC },
1450   /* UNDEFW_ROW	*/  {WEAK,  NOACT, NOACT, REF,   REF,   NOACT, REFC,  WARNC },
1451   /* DEF_ROW 	*/  {DEF,   DEF,   DEF,   MDEF,  DEF,   CDEF,  MDEF,  CYCLE },
1452   /* DEFW_ROW 	*/  {DEFW,  DEFW,  DEFW,  NOACT, NOACT, NOACT, NOACT, CYCLE },
1453   /* COMMON_ROW	*/  {COM,   COM,   COM,   CREF,  COM,   BIG,   REFC,  WARNC },
1454   /* INDR_ROW	*/  {IND,   IND,   IND,   MDEF,  IND,   CIND,  MIND,  CYCLE },
1455   /* WARN_ROW   */  {MWARN, WARN,  WARN,  CWARN, CWARN, WARN,  CWARN, NOACT },
1456   /* SET_ROW	*/  {SET,   SET,   SET,   SET,   SET,   SET,   CYCLE, CYCLE }
1457 };
1458 
1459 /* Most of the entries in the LINK_ACTION table are straightforward,
1460    but a few are somewhat subtle.
1461 
1462    A reference to an indirect symbol (UNDEF_ROW/indr or
1463    UNDEFW_ROW/indr) is counted as a reference both to the indirect
1464    symbol and to the symbol the indirect symbol points to.
1465 
1466    A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1467    causes the warning to be issued.
1468 
1469    A common definition of an indirect symbol (COMMON_ROW/indr) is
1470    treated as a multiple definition error.  Likewise for an indirect
1471    definition of a common symbol (INDR_ROW/com).
1472 
1473    An indirect definition of a warning (INDR_ROW/warn) does not cause
1474    the warning to be issued.
1475 
1476    If a warning is created for an indirect symbol (WARN_ROW/indr) no
1477    warning is created for the symbol the indirect symbol points to.
1478 
1479    Adding an entry to a set does not count as a reference to a set,
1480    and no warning is issued (SET_ROW/warn).  */
1481 
1482 /* Return the BFD in which a hash entry has been defined, if known.  */
1483 
1484 static bfd *
1485 hash_entry_bfd (struct bfd_link_hash_entry *h)
1486 {
1487   while (h->type == bfd_link_hash_warning)
1488     h = h->u.i.link;
1489   switch (h->type)
1490     {
1491     default:
1492       return NULL;
1493     case bfd_link_hash_undefined:
1494     case bfd_link_hash_undefweak:
1495       return h->u.undef.abfd;
1496     case bfd_link_hash_defined:
1497     case bfd_link_hash_defweak:
1498       return h->u.def.section->owner;
1499     case bfd_link_hash_common:
1500       return h->u.c.p->section->owner;
1501     }
1502   /*NOTREACHED*/
1503 }
1504 
1505 /* Add a symbol to the global hash table.
1506    ABFD is the BFD the symbol comes from.
1507    NAME is the name of the symbol.
1508    FLAGS is the BSF_* bits associated with the symbol.
1509    SECTION is the section in which the symbol is defined; this may be
1510      bfd_und_section_ptr or bfd_com_section_ptr.
1511    VALUE is the value of the symbol, relative to the section.
1512    STRING is used for either an indirect symbol, in which case it is
1513      the name of the symbol to indirect to, or a warning symbol, in
1514      which case it is the warning string.
1515    COPY is TRUE if NAME or STRING must be copied into locally
1516      allocated memory if they need to be saved.
1517    COLLECT is TRUE if we should automatically collect gcc constructor
1518      or destructor names as collect2 does.
1519    HASHP, if not NULL, is a place to store the created hash table
1520      entry; if *HASHP is not NULL, the caller has already looked up
1521      the hash table entry, and stored it in *HASHP.  */
1522 
1523 bfd_boolean
1524 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1525 				  bfd *abfd,
1526 				  const char *name,
1527 				  flagword flags,
1528 				  asection *section,
1529 				  bfd_vma value,
1530 				  const char *string,
1531 				  bfd_boolean copy,
1532 				  bfd_boolean collect,
1533 				  struct bfd_link_hash_entry **hashp)
1534 {
1535   enum link_row row;
1536   struct bfd_link_hash_entry *h;
1537   bfd_boolean cycle;
1538 
1539   if (bfd_is_ind_section (section)
1540       || (flags & BSF_INDIRECT) != 0)
1541     row = INDR_ROW;
1542   else if ((flags & BSF_WARNING) != 0)
1543     row = WARN_ROW;
1544   else if ((flags & BSF_CONSTRUCTOR) != 0)
1545     row = SET_ROW;
1546   else if (bfd_is_und_section (section))
1547     {
1548       if ((flags & BSF_WEAK) != 0)
1549 	row = UNDEFW_ROW;
1550       else
1551 	row = UNDEF_ROW;
1552     }
1553   else if ((flags & BSF_WEAK) != 0)
1554     row = DEFW_ROW;
1555   else if (bfd_is_com_section (section))
1556     row = COMMON_ROW;
1557   else
1558     row = DEF_ROW;
1559 
1560   if (hashp != NULL && *hashp != NULL)
1561     h = *hashp;
1562   else
1563     {
1564       if (row == UNDEF_ROW || row == UNDEFW_ROW)
1565 	h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1566       else
1567 	h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1568       if (h == NULL)
1569 	{
1570 	  if (hashp != NULL)
1571 	    *hashp = NULL;
1572 	  return FALSE;
1573 	}
1574     }
1575 
1576   if (info->notice_all
1577       || (info->notice_hash != NULL
1578 	  && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1579     {
1580       if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1581 					value))
1582 	return FALSE;
1583     }
1584 
1585   if (hashp != NULL)
1586     *hashp = h;
1587 
1588   do
1589     {
1590       enum link_action action;
1591 
1592       cycle = FALSE;
1593       action = link_action[(int) row][(int) h->type];
1594       switch (action)
1595 	{
1596 	case FAIL:
1597 	  abort ();
1598 
1599 	case NOACT:
1600 	  /* Do nothing.  */
1601 	  break;
1602 
1603 	case UND:
1604 	  /* Make a new undefined symbol.  */
1605 	  h->type = bfd_link_hash_undefined;
1606 	  h->u.undef.abfd = abfd;
1607 	  bfd_link_add_undef (info->hash, h);
1608 	  break;
1609 
1610 	case WEAK:
1611 	  /* Make a new weak undefined symbol.  */
1612 	  h->type = bfd_link_hash_undefweak;
1613 	  h->u.undef.abfd = abfd;
1614 	  h->u.undef.weak = abfd;
1615 	  break;
1616 
1617 	case CDEF:
1618 	  /* We have found a definition for a symbol which was
1619 	     previously common.  */
1620 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1621 	  if (! ((*info->callbacks->multiple_common)
1622 		 (info, h->root.string,
1623 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1624 		  abfd, bfd_link_hash_defined, 0)))
1625 	    return FALSE;
1626 	  /* Fall through.  */
1627 	case DEF:
1628 	case DEFW:
1629 	  {
1630 	    enum bfd_link_hash_type oldtype;
1631 
1632 	    /* Define a symbol.  */
1633 	    oldtype = h->type;
1634 	    if (action == DEFW)
1635 	      h->type = bfd_link_hash_defweak;
1636 	    else
1637 	      h->type = bfd_link_hash_defined;
1638 	    h->u.def.section = section;
1639 	    h->u.def.value = value;
1640 
1641 	    /* If we have been asked to, we act like collect2 and
1642 	       identify all functions that might be global
1643 	       constructors and destructors and pass them up in a
1644 	       callback.  We only do this for certain object file
1645 	       types, since many object file types can handle this
1646 	       automatically.  */
1647 	    if (collect && name[0] == '_')
1648 	      {
1649 		const char *s;
1650 
1651 		/* A constructor or destructor name starts like this:
1652 		   _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1653 		   the second are the same character (we accept any
1654 		   character there, in case a new object file format
1655 		   comes along with even worse naming restrictions).  */
1656 
1657 #define CONS_PREFIX "GLOBAL_"
1658 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1659 
1660 		s = name + 1;
1661 		while (*s == '_')
1662 		  ++s;
1663 		if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1664 		  {
1665 		    char c;
1666 
1667 		    c = s[CONS_PREFIX_LEN + 1];
1668 		    if ((c == 'I' || c == 'D')
1669 			&& s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1670 		      {
1671 			/* If this is a definition of a symbol which
1672                            was previously weakly defined, we are in
1673                            trouble.  We have already added a
1674                            constructor entry for the weak defined
1675                            symbol, and now we are trying to add one
1676                            for the new symbol.  Fortunately, this case
1677                            should never arise in practice.  */
1678 			if (oldtype == bfd_link_hash_defweak)
1679 			  abort ();
1680 
1681 			if (! ((*info->callbacks->constructor)
1682 			       (info, c == 'I',
1683 				h->root.string, abfd, section, value)))
1684 			  return FALSE;
1685 		      }
1686 		  }
1687 	      }
1688 	  }
1689 
1690 	  break;
1691 
1692 	case COM:
1693 	  /* We have found a common definition for a symbol.  */
1694 	  if (h->type == bfd_link_hash_new)
1695 	    bfd_link_add_undef (info->hash, h);
1696 	  h->type = bfd_link_hash_common;
1697 	  h->u.c.p = (struct bfd_link_hash_common_entry *)
1698 	    bfd_hash_allocate (&info->hash->table,
1699 			       sizeof (struct bfd_link_hash_common_entry));
1700 	  if (h->u.c.p == NULL)
1701 	    return FALSE;
1702 
1703 	  h->u.c.size = value;
1704 
1705 	  /* Select a default alignment based on the size.  This may
1706              be overridden by the caller.  */
1707 	  {
1708 	    unsigned int power;
1709 
1710 	    power = bfd_log2 (value);
1711 	    if (power > 4)
1712 	      power = 4;
1713 	    h->u.c.p->alignment_power = power;
1714 	  }
1715 
1716 	  /* The section of a common symbol is only used if the common
1717              symbol is actually allocated.  It basically provides a
1718              hook for the linker script to decide which output section
1719              the common symbols should be put in.  In most cases, the
1720              section of a common symbol will be bfd_com_section_ptr,
1721              the code here will choose a common symbol section named
1722              "COMMON", and the linker script will contain *(COMMON) in
1723              the appropriate place.  A few targets use separate common
1724              sections for small symbols, and they require special
1725              handling.  */
1726 	  if (section == bfd_com_section_ptr)
1727 	    {
1728 	      h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1729 	      h->u.c.p->section->flags = SEC_ALLOC;
1730 	    }
1731 	  else if (section->owner != abfd)
1732 	    {
1733 	      h->u.c.p->section = bfd_make_section_old_way (abfd,
1734 							    section->name);
1735 	      h->u.c.p->section->flags = SEC_ALLOC;
1736 	    }
1737 	  else
1738 	    h->u.c.p->section = section;
1739 	  break;
1740 
1741 	case REF:
1742 	  /* A reference to a defined symbol.  */
1743 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1744 	    h->u.undef.next = h;
1745 	  break;
1746 
1747 	case BIG:
1748 	  /* We have found a common definition for a symbol which
1749 	     already had a common definition.  Use the maximum of the
1750 	     two sizes, and use the section required by the larger symbol.  */
1751 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1752 	  if (! ((*info->callbacks->multiple_common)
1753 		 (info, h->root.string,
1754 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1755 		  abfd, bfd_link_hash_common, value)))
1756 	    return FALSE;
1757 	  if (value > h->u.c.size)
1758 	    {
1759 	      unsigned int power;
1760 
1761 	      h->u.c.size = value;
1762 
1763 	      /* Select a default alignment based on the size.  This may
1764 		 be overridden by the caller.  */
1765 	      power = bfd_log2 (value);
1766 	      if (power > 4)
1767 		power = 4;
1768 	      h->u.c.p->alignment_power = power;
1769 
1770 	      /* Some systems have special treatment for small commons,
1771 		 hence we want to select the section used by the larger
1772 		 symbol.  This makes sure the symbol does not go in a
1773 		 small common section if it is now too large.  */
1774 	      if (section == bfd_com_section_ptr)
1775 		{
1776 		  h->u.c.p->section
1777 		    = bfd_make_section_old_way (abfd, "COMMON");
1778 		  h->u.c.p->section->flags = SEC_ALLOC;
1779 		}
1780 	      else if (section->owner != abfd)
1781 		{
1782 		  h->u.c.p->section
1783 		    = bfd_make_section_old_way (abfd, section->name);
1784 		  h->u.c.p->section->flags = SEC_ALLOC;
1785 		}
1786 	      else
1787 		h->u.c.p->section = section;
1788 	    }
1789 	  break;
1790 
1791 	case CREF:
1792 	  {
1793 	    bfd *obfd;
1794 
1795 	    /* We have found a common definition for a symbol which
1796 	       was already defined.  FIXME: It would nice if we could
1797 	       report the BFD which defined an indirect symbol, but we
1798 	       don't have anywhere to store the information.  */
1799 	    if (h->type == bfd_link_hash_defined
1800 		|| h->type == bfd_link_hash_defweak)
1801 	      obfd = h->u.def.section->owner;
1802 	    else
1803 	      obfd = NULL;
1804 	    if (! ((*info->callbacks->multiple_common)
1805 		   (info, h->root.string, obfd, h->type, 0,
1806 		    abfd, bfd_link_hash_common, value)))
1807 	      return FALSE;
1808 	  }
1809 	  break;
1810 
1811 	case MIND:
1812 	  /* Multiple indirect symbols.  This is OK if they both point
1813 	     to the same symbol.  */
1814 	  if (strcmp (h->u.i.link->root.string, string) == 0)
1815 	    break;
1816 	  /* Fall through.  */
1817 	case MDEF:
1818 	  /* Handle a multiple definition.  */
1819 	  if (!info->allow_multiple_definition)
1820 	    {
1821 	      asection *msec = NULL;
1822 	      bfd_vma mval = 0;
1823 
1824 	      switch (h->type)
1825 		{
1826 		case bfd_link_hash_defined:
1827 		  msec = h->u.def.section;
1828 		  mval = h->u.def.value;
1829 		  break;
1830 	        case bfd_link_hash_indirect:
1831 		  msec = bfd_ind_section_ptr;
1832 		  mval = 0;
1833 		  break;
1834 		default:
1835 		  abort ();
1836 		}
1837 
1838 	      /* Ignore a redefinition of an absolute symbol to the
1839 		 same value; it's harmless.  */
1840 	      if (h->type == bfd_link_hash_defined
1841 		  && bfd_is_abs_section (msec)
1842 		  && bfd_is_abs_section (section)
1843 		  && value == mval)
1844 		break;
1845 
1846 	      if (! ((*info->callbacks->multiple_definition)
1847 		     (info, h->root.string, msec->owner, msec, mval,
1848 		      abfd, section, value)))
1849 		return FALSE;
1850 	    }
1851 	  break;
1852 
1853 	case CIND:
1854 	  /* Create an indirect symbol from an existing common symbol.  */
1855 	  BFD_ASSERT (h->type == bfd_link_hash_common);
1856 	  if (! ((*info->callbacks->multiple_common)
1857 		 (info, h->root.string,
1858 		  h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1859 		  abfd, bfd_link_hash_indirect, 0)))
1860 	    return FALSE;
1861 	  /* Fall through.  */
1862 	case IND:
1863 	  /* Create an indirect symbol.  */
1864 	  {
1865 	    struct bfd_link_hash_entry *inh;
1866 
1867 	    /* STRING is the name of the symbol we want to indirect
1868 	       to.  */
1869 	    inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1870 						copy, FALSE);
1871 	    if (inh == NULL)
1872 	      return FALSE;
1873 	    if (inh->type == bfd_link_hash_indirect
1874 		&& inh->u.i.link == h)
1875 	      {
1876 		(*_bfd_error_handler)
1877 		  (_("%B: indirect symbol `%s' to `%s' is a loop"),
1878 		   abfd, name, string);
1879 		bfd_set_error (bfd_error_invalid_operation);
1880 		return FALSE;
1881 	      }
1882 	    if (inh->type == bfd_link_hash_new)
1883 	      {
1884 		inh->type = bfd_link_hash_undefined;
1885 		inh->u.undef.abfd = abfd;
1886 		bfd_link_add_undef (info->hash, inh);
1887 	      }
1888 
1889 	    /* If the indirect symbol has been referenced, we need to
1890 	       push the reference down to the symbol we are
1891 	       referencing.  */
1892 	    if (h->type != bfd_link_hash_new)
1893 	      {
1894 		row = UNDEF_ROW;
1895 		cycle = TRUE;
1896 	      }
1897 
1898 	    h->type = bfd_link_hash_indirect;
1899 	    h->u.i.link = inh;
1900 	  }
1901 	  break;
1902 
1903 	case SET:
1904 	  /* Add an entry to a set.  */
1905 	  if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1906 						abfd, section, value))
1907 	    return FALSE;
1908 	  break;
1909 
1910 	case WARNC:
1911 	  /* Issue a warning and cycle.  */
1912 	  if (h->u.i.warning != NULL)
1913 	    {
1914 	      if (! (*info->callbacks->warning) (info, h->u.i.warning,
1915 						 h->root.string, abfd,
1916 						 NULL, 0))
1917 		return FALSE;
1918 	      /* Only issue a warning once.  */
1919 	      h->u.i.warning = NULL;
1920 	    }
1921 	  /* Fall through.  */
1922 	case CYCLE:
1923 	  /* Try again with the referenced symbol.  */
1924 	  h = h->u.i.link;
1925 	  cycle = TRUE;
1926 	  break;
1927 
1928 	case REFC:
1929 	  /* A reference to an indirect symbol.  */
1930 	  if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1931 	    h->u.undef.next = h;
1932 	  h = h->u.i.link;
1933 	  cycle = TRUE;
1934 	  break;
1935 
1936 	case WARN:
1937 	  /* Issue a warning.  */
1938 	  if (! (*info->callbacks->warning) (info, string, h->root.string,
1939 					     hash_entry_bfd (h), NULL, 0))
1940 	    return FALSE;
1941 	  break;
1942 
1943 	case CWARN:
1944 	  /* Warn if this symbol has been referenced already,
1945 	     otherwise add a warning.  A symbol has been referenced if
1946 	     the u.undef.next field is not NULL, or it is the tail of the
1947 	     undefined symbol list.  The REF case above helps to
1948 	     ensure this.  */
1949 	  if (h->u.undef.next != NULL || info->hash->undefs_tail == h)
1950 	    {
1951 	      if (! (*info->callbacks->warning) (info, string, h->root.string,
1952 						 hash_entry_bfd (h), NULL, 0))
1953 		return FALSE;
1954 	      break;
1955 	    }
1956 	  /* Fall through.  */
1957 	case MWARN:
1958 	  /* Make a warning symbol.  */
1959 	  {
1960 	    struct bfd_link_hash_entry *sub;
1961 
1962 	    /* STRING is the warning to give.  */
1963 	    sub = ((struct bfd_link_hash_entry *)
1964 		   ((*info->hash->table.newfunc)
1965 		    (NULL, &info->hash->table, h->root.string)));
1966 	    if (sub == NULL)
1967 	      return FALSE;
1968 	    *sub = *h;
1969 	    sub->type = bfd_link_hash_warning;
1970 	    sub->u.i.link = h;
1971 	    if (! copy)
1972 	      sub->u.i.warning = string;
1973 	    else
1974 	      {
1975 		char *w;
1976 		size_t len = strlen (string) + 1;
1977 
1978 		w = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 		if (w == NULL)
1980 		  return FALSE;
1981 		memcpy (w, string, len);
1982 		sub->u.i.warning = w;
1983 	      }
1984 
1985 	    bfd_hash_replace (&info->hash->table,
1986 			      (struct bfd_hash_entry *) h,
1987 			      (struct bfd_hash_entry *) sub);
1988 	    if (hashp != NULL)
1989 	      *hashp = sub;
1990 	  }
1991 	  break;
1992 	}
1993     }
1994   while (cycle);
1995 
1996   return TRUE;
1997 }
1998 
1999 /* Generic final link routine.  */
2000 
2001 bfd_boolean
2002 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
2003 {
2004   bfd *sub;
2005   asection *o;
2006   struct bfd_link_order *p;
2007   size_t outsymalloc;
2008   struct generic_write_global_symbol_info wginfo;
2009 
2010   bfd_get_outsymbols (abfd) = NULL;
2011   bfd_get_symcount (abfd) = 0;
2012   outsymalloc = 0;
2013 
2014   /* Mark all sections which will be included in the output file.  */
2015   for (o = abfd->sections; o != NULL; o = o->next)
2016     for (p = o->map_head.link_order; p != NULL; p = p->next)
2017       if (p->type == bfd_indirect_link_order)
2018 	p->u.indirect.section->linker_mark = TRUE;
2019 
2020   /* Build the output symbol table.  */
2021   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
2022     if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
2023       return FALSE;
2024 
2025   /* Accumulate the global symbols.  */
2026   wginfo.info = info;
2027   wginfo.output_bfd = abfd;
2028   wginfo.psymalloc = &outsymalloc;
2029   _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
2030 				   _bfd_generic_link_write_global_symbol,
2031 				   &wginfo);
2032 
2033   /* Make sure we have a trailing NULL pointer on OUTSYMBOLS.  We
2034      shouldn't really need one, since we have SYMCOUNT, but some old
2035      code still expects one.  */
2036   if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
2037     return FALSE;
2038 
2039   if (info->relocatable)
2040     {
2041       /* Allocate space for the output relocs for each section.  */
2042       for (o = abfd->sections; o != NULL; o = o->next)
2043 	{
2044 	  o->reloc_count = 0;
2045 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
2046 	    {
2047 	      if (p->type == bfd_section_reloc_link_order
2048 		  || p->type == bfd_symbol_reloc_link_order)
2049 		++o->reloc_count;
2050 	      else if (p->type == bfd_indirect_link_order)
2051 		{
2052 		  asection *input_section;
2053 		  bfd *input_bfd;
2054 		  long relsize;
2055 		  arelent **relocs;
2056 		  asymbol **symbols;
2057 		  long reloc_count;
2058 
2059 		  input_section = p->u.indirect.section;
2060 		  input_bfd = input_section->owner;
2061 		  relsize = bfd_get_reloc_upper_bound (input_bfd,
2062 						       input_section);
2063 		  if (relsize < 0)
2064 		    return FALSE;
2065 		  relocs = (arelent **) bfd_malloc (relsize);
2066 		  if (!relocs && relsize != 0)
2067 		    return FALSE;
2068 		  symbols = _bfd_generic_link_get_symbols (input_bfd);
2069 		  reloc_count = bfd_canonicalize_reloc (input_bfd,
2070 							input_section,
2071 							relocs,
2072 							symbols);
2073 		  free (relocs);
2074 		  if (reloc_count < 0)
2075 		    return FALSE;
2076 		  BFD_ASSERT ((unsigned long) reloc_count
2077 			      == input_section->reloc_count);
2078 		  o->reloc_count += reloc_count;
2079 		}
2080 	    }
2081 	  if (o->reloc_count > 0)
2082 	    {
2083 	      bfd_size_type amt;
2084 
2085 	      amt = o->reloc_count;
2086 	      amt *= sizeof (arelent *);
2087 	      o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
2088 	      if (!o->orelocation)
2089 		return FALSE;
2090 	      o->flags |= SEC_RELOC;
2091 	      /* Reset the count so that it can be used as an index
2092 		 when putting in the output relocs.  */
2093 	      o->reloc_count = 0;
2094 	    }
2095 	}
2096     }
2097 
2098   /* Handle all the link order information for the sections.  */
2099   for (o = abfd->sections; o != NULL; o = o->next)
2100     {
2101       for (p = o->map_head.link_order; p != NULL; p = p->next)
2102 	{
2103 	  switch (p->type)
2104 	    {
2105 	    case bfd_section_reloc_link_order:
2106 	    case bfd_symbol_reloc_link_order:
2107 	      if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2108 		return FALSE;
2109 	      break;
2110 	    case bfd_indirect_link_order:
2111 	      if (! default_indirect_link_order (abfd, info, o, p, TRUE))
2112 		return FALSE;
2113 	      break;
2114 	    default:
2115 	      if (! _bfd_default_link_order (abfd, info, o, p))
2116 		return FALSE;
2117 	      break;
2118 	    }
2119 	}
2120     }
2121 
2122   return TRUE;
2123 }
2124 
2125 /* Add an output symbol to the output BFD.  */
2126 
2127 static bfd_boolean
2128 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
2129 {
2130   if (bfd_get_symcount (output_bfd) >= *psymalloc)
2131     {
2132       asymbol **newsyms;
2133       bfd_size_type amt;
2134 
2135       if (*psymalloc == 0)
2136 	*psymalloc = 124;
2137       else
2138 	*psymalloc *= 2;
2139       amt = *psymalloc;
2140       amt *= sizeof (asymbol *);
2141       newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
2142       if (newsyms == NULL)
2143 	return FALSE;
2144       bfd_get_outsymbols (output_bfd) = newsyms;
2145     }
2146 
2147   bfd_get_outsymbols (output_bfd) [bfd_get_symcount (output_bfd)] = sym;
2148   if (sym != NULL)
2149     ++ bfd_get_symcount (output_bfd);
2150 
2151   return TRUE;
2152 }
2153 
2154 /* Handle the symbols for an input BFD.  */
2155 
2156 bfd_boolean
2157 _bfd_generic_link_output_symbols (bfd *output_bfd,
2158 				  bfd *input_bfd,
2159 				  struct bfd_link_info *info,
2160 				  size_t *psymalloc)
2161 {
2162   asymbol **sym_ptr;
2163   asymbol **sym_end;
2164 
2165   if (!bfd_generic_link_read_symbols (input_bfd))
2166     return FALSE;
2167 
2168   /* Create a filename symbol if we are supposed to.  */
2169   if (info->create_object_symbols_section != NULL)
2170     {
2171       asection *sec;
2172 
2173       for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2174 	{
2175 	  if (sec->output_section == info->create_object_symbols_section)
2176 	    {
2177 	      asymbol *newsym;
2178 
2179 	      newsym = bfd_make_empty_symbol (input_bfd);
2180 	      if (!newsym)
2181 		return FALSE;
2182 	      newsym->name = input_bfd->filename;
2183 	      newsym->value = 0;
2184 	      newsym->flags = BSF_LOCAL | BSF_FILE;
2185 	      newsym->section = sec;
2186 
2187 	      if (! generic_add_output_symbol (output_bfd, psymalloc,
2188 					       newsym))
2189 		return FALSE;
2190 
2191 	      break;
2192 	    }
2193 	}
2194     }
2195 
2196   /* Adjust the values of the globally visible symbols, and write out
2197      local symbols.  */
2198   sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2199   sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2200   for (; sym_ptr < sym_end; sym_ptr++)
2201     {
2202       asymbol *sym;
2203       struct generic_link_hash_entry *h;
2204       bfd_boolean output;
2205 
2206       h = NULL;
2207       sym = *sym_ptr;
2208       if ((sym->flags & (BSF_INDIRECT
2209 			 | BSF_WARNING
2210 			 | BSF_GLOBAL
2211 			 | BSF_CONSTRUCTOR
2212 			 | BSF_WEAK)) != 0
2213 	  || bfd_is_und_section (bfd_get_section (sym))
2214 	  || bfd_is_com_section (bfd_get_section (sym))
2215 	  || bfd_is_ind_section (bfd_get_section (sym)))
2216 	{
2217 	  if (sym->udata.p != NULL)
2218 	    h = (struct generic_link_hash_entry *) sym->udata.p;
2219 	  else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2220 	    {
2221 	      /* This case normally means that the main linker code
2222                  deliberately ignored this constructor symbol.  We
2223                  should just pass it through.  This will screw up if
2224                  the constructor symbol is from a different,
2225                  non-generic, object file format, but the case will
2226                  only arise when linking with -r, which will probably
2227                  fail anyhow, since there will be no way to represent
2228                  the relocs in the output format being used.  */
2229 	      h = NULL;
2230 	    }
2231 	  else if (bfd_is_und_section (bfd_get_section (sym)))
2232 	    h = ((struct generic_link_hash_entry *)
2233 		 bfd_wrapped_link_hash_lookup (output_bfd, info,
2234 					       bfd_asymbol_name (sym),
2235 					       FALSE, FALSE, TRUE));
2236 	  else
2237 	    h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2238 					       bfd_asymbol_name (sym),
2239 					       FALSE, FALSE, TRUE);
2240 
2241 	  if (h != NULL)
2242 	    {
2243 	      /* Force all references to this symbol to point to
2244 		 the same area in memory.  It is possible that
2245 		 this routine will be called with a hash table
2246 		 other than a generic hash table, so we double
2247 		 check that.  */
2248 	      if (info->output_bfd->xvec == input_bfd->xvec)
2249 		{
2250 		  if (h->sym != NULL)
2251 		    *sym_ptr = sym = h->sym;
2252 		}
2253 
2254 	      switch (h->root.type)
2255 		{
2256 		default:
2257 		case bfd_link_hash_new:
2258 		  abort ();
2259 		case bfd_link_hash_undefined:
2260 		  break;
2261 		case bfd_link_hash_undefweak:
2262 		  sym->flags |= BSF_WEAK;
2263 		  break;
2264 		case bfd_link_hash_indirect:
2265 		  h = (struct generic_link_hash_entry *) h->root.u.i.link;
2266 		  /* fall through */
2267 		case bfd_link_hash_defined:
2268 		  sym->flags |= BSF_GLOBAL;
2269 		  sym->flags &=~ BSF_CONSTRUCTOR;
2270 		  sym->value = h->root.u.def.value;
2271 		  sym->section = h->root.u.def.section;
2272 		  break;
2273 		case bfd_link_hash_defweak:
2274 		  sym->flags |= BSF_WEAK;
2275 		  sym->flags &=~ BSF_CONSTRUCTOR;
2276 		  sym->value = h->root.u.def.value;
2277 		  sym->section = h->root.u.def.section;
2278 		  break;
2279 		case bfd_link_hash_common:
2280 		  sym->value = h->root.u.c.size;
2281 		  sym->flags |= BSF_GLOBAL;
2282 		  if (! bfd_is_com_section (sym->section))
2283 		    {
2284 		      BFD_ASSERT (bfd_is_und_section (sym->section));
2285 		      sym->section = bfd_com_section_ptr;
2286 		    }
2287 		  /* We do not set the section of the symbol to
2288 		     h->root.u.c.p->section.  That value was saved so
2289 		     that we would know where to allocate the symbol
2290 		     if it was defined.  In this case the type is
2291 		     still bfd_link_hash_common, so we did not define
2292 		     it, so we do not want to use that section.  */
2293 		  break;
2294 		}
2295 	    }
2296 	}
2297 
2298       /* This switch is straight from the old code in
2299 	 write_file_locals in ldsym.c.  */
2300       if (info->strip == strip_all
2301 	  || (info->strip == strip_some
2302 	      && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2303 				  FALSE, FALSE) == NULL))
2304 	output = FALSE;
2305       else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2306 	{
2307 	  /* If this symbol is marked as occurring now, rather
2308 	     than at the end, output it now.  This is used for
2309 	     COFF C_EXT FCN symbols.  FIXME: There must be a
2310 	     better way.  */
2311 	  if (bfd_asymbol_bfd (sym) == input_bfd
2312 	      && (sym->flags & BSF_NOT_AT_END) != 0)
2313 	    output = TRUE;
2314 	  else
2315 	    output = FALSE;
2316 	}
2317       else if (bfd_is_ind_section (sym->section))
2318 	output = FALSE;
2319       else if ((sym->flags & BSF_DEBUGGING) != 0)
2320 	{
2321 	  if (info->strip == strip_none)
2322 	    output = TRUE;
2323 	  else
2324 	    output = FALSE;
2325 	}
2326       else if (bfd_is_und_section (sym->section)
2327 	       || bfd_is_com_section (sym->section))
2328 	output = FALSE;
2329       else if ((sym->flags & BSF_LOCAL) != 0)
2330 	{
2331 	  if ((sym->flags & BSF_WARNING) != 0)
2332 	    output = FALSE;
2333 	  else
2334 	    {
2335 	      switch (info->discard)
2336 		{
2337 		default:
2338 		case discard_all:
2339 		  output = FALSE;
2340 		  break;
2341 		case discard_sec_merge:
2342 		  output = TRUE;
2343 		  if (info->relocatable
2344 		      || ! (sym->section->flags & SEC_MERGE))
2345 		    break;
2346 		  /* FALLTHROUGH */
2347 		case discard_l:
2348 		  if (bfd_is_local_label (input_bfd, sym))
2349 		    output = FALSE;
2350 		  else
2351 		    output = TRUE;
2352 		  break;
2353 		case discard_none:
2354 		  output = TRUE;
2355 		  break;
2356 		}
2357 	    }
2358 	}
2359       else if ((sym->flags & BSF_CONSTRUCTOR))
2360 	{
2361 	  if (info->strip != strip_all)
2362 	    output = TRUE;
2363 	  else
2364 	    output = FALSE;
2365 	}
2366       else
2367 	abort ();
2368 
2369       /* If this symbol is in a section which is not being included
2370 	 in the output file, then we don't want to output the
2371 	 symbol.  */
2372       if (!bfd_is_abs_section (sym->section)
2373 	  && bfd_section_removed_from_list (output_bfd,
2374 					    sym->section->output_section))
2375 	output = FALSE;
2376 
2377       if (output)
2378 	{
2379 	  if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2380 	    return FALSE;
2381 	  if (h != NULL)
2382 	    h->written = TRUE;
2383 	}
2384     }
2385 
2386   return TRUE;
2387 }
2388 
2389 /* Set the section and value of a generic BFD symbol based on a linker
2390    hash table entry.  */
2391 
2392 static void
2393 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2394 {
2395   switch (h->type)
2396     {
2397     default:
2398       abort ();
2399       break;
2400     case bfd_link_hash_new:
2401       /* This can happen when a constructor symbol is seen but we are
2402          not building constructors.  */
2403       if (sym->section != NULL)
2404 	{
2405 	  BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2406 	}
2407       else
2408 	{
2409 	  sym->flags |= BSF_CONSTRUCTOR;
2410 	  sym->section = bfd_abs_section_ptr;
2411 	  sym->value = 0;
2412 	}
2413       break;
2414     case bfd_link_hash_undefined:
2415       sym->section = bfd_und_section_ptr;
2416       sym->value = 0;
2417       break;
2418     case bfd_link_hash_undefweak:
2419       sym->section = bfd_und_section_ptr;
2420       sym->value = 0;
2421       sym->flags |= BSF_WEAK;
2422       break;
2423     case bfd_link_hash_defined:
2424       sym->section = h->u.def.section;
2425       sym->value = h->u.def.value;
2426       break;
2427     case bfd_link_hash_defweak:
2428       sym->flags |= BSF_WEAK;
2429       sym->section = h->u.def.section;
2430       sym->value = h->u.def.value;
2431       break;
2432     case bfd_link_hash_common:
2433       sym->value = h->u.c.size;
2434       if (sym->section == NULL)
2435 	sym->section = bfd_com_section_ptr;
2436       else if (! bfd_is_com_section (sym->section))
2437 	{
2438 	  BFD_ASSERT (bfd_is_und_section (sym->section));
2439 	  sym->section = bfd_com_section_ptr;
2440 	}
2441       /* Do not set the section; see _bfd_generic_link_output_symbols.  */
2442       break;
2443     case bfd_link_hash_indirect:
2444     case bfd_link_hash_warning:
2445       /* FIXME: What should we do here?  */
2446       break;
2447     }
2448 }
2449 
2450 /* Write out a global symbol, if it hasn't already been written out.
2451    This is called for each symbol in the hash table.  */
2452 
2453 bfd_boolean
2454 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2455 				       void *data)
2456 {
2457   struct generic_write_global_symbol_info *wginfo =
2458       (struct generic_write_global_symbol_info *) data;
2459   asymbol *sym;
2460 
2461   if (h->root.type == bfd_link_hash_warning)
2462     h = (struct generic_link_hash_entry *) h->root.u.i.link;
2463 
2464   if (h->written)
2465     return TRUE;
2466 
2467   h->written = TRUE;
2468 
2469   if (wginfo->info->strip == strip_all
2470       || (wginfo->info->strip == strip_some
2471 	  && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2472 			      FALSE, FALSE) == NULL))
2473     return TRUE;
2474 
2475   if (h->sym != NULL)
2476     sym = h->sym;
2477   else
2478     {
2479       sym = bfd_make_empty_symbol (wginfo->output_bfd);
2480       if (!sym)
2481 	return FALSE;
2482       sym->name = h->root.root.string;
2483       sym->flags = 0;
2484     }
2485 
2486   set_symbol_from_hash (sym, &h->root);
2487 
2488   sym->flags |= BSF_GLOBAL;
2489 
2490   if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2491 				   sym))
2492     {
2493       /* FIXME: No way to return failure.  */
2494       abort ();
2495     }
2496 
2497   return TRUE;
2498 }
2499 
2500 /* Create a relocation.  */
2501 
2502 bfd_boolean
2503 _bfd_generic_reloc_link_order (bfd *abfd,
2504 			       struct bfd_link_info *info,
2505 			       asection *sec,
2506 			       struct bfd_link_order *link_order)
2507 {
2508   arelent *r;
2509 
2510   if (! info->relocatable)
2511     abort ();
2512   if (sec->orelocation == NULL)
2513     abort ();
2514 
2515   r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2516   if (r == NULL)
2517     return FALSE;
2518 
2519   r->address = link_order->offset;
2520   r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2521   if (r->howto == 0)
2522     {
2523       bfd_set_error (bfd_error_bad_value);
2524       return FALSE;
2525     }
2526 
2527   /* Get the symbol to use for the relocation.  */
2528   if (link_order->type == bfd_section_reloc_link_order)
2529     r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2530   else
2531     {
2532       struct generic_link_hash_entry *h;
2533 
2534       h = ((struct generic_link_hash_entry *)
2535 	   bfd_wrapped_link_hash_lookup (abfd, info,
2536 					 link_order->u.reloc.p->u.name,
2537 					 FALSE, FALSE, TRUE));
2538       if (h == NULL
2539 	  || ! h->written)
2540 	{
2541 	  if (! ((*info->callbacks->unattached_reloc)
2542 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
2543 	    return FALSE;
2544 	  bfd_set_error (bfd_error_bad_value);
2545 	  return FALSE;
2546 	}
2547       r->sym_ptr_ptr = &h->sym;
2548     }
2549 
2550   /* If this is an inplace reloc, write the addend to the object file.
2551      Otherwise, store it in the reloc addend.  */
2552   if (! r->howto->partial_inplace)
2553     r->addend = link_order->u.reloc.p->addend;
2554   else
2555     {
2556       bfd_size_type size;
2557       bfd_reloc_status_type rstat;
2558       bfd_byte *buf;
2559       bfd_boolean ok;
2560       file_ptr loc;
2561 
2562       size = bfd_get_reloc_size (r->howto);
2563       buf = (bfd_byte *) bfd_zmalloc (size);
2564       if (buf == NULL)
2565 	return FALSE;
2566       rstat = _bfd_relocate_contents (r->howto, abfd,
2567 				      (bfd_vma) link_order->u.reloc.p->addend,
2568 				      buf);
2569       switch (rstat)
2570 	{
2571 	case bfd_reloc_ok:
2572 	  break;
2573 	default:
2574 	case bfd_reloc_outofrange:
2575 	  abort ();
2576 	case bfd_reloc_overflow:
2577 	  if (! ((*info->callbacks->reloc_overflow)
2578 		 (info, NULL,
2579 		  (link_order->type == bfd_section_reloc_link_order
2580 		   ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2581 		   : link_order->u.reloc.p->u.name),
2582 		  r->howto->name, link_order->u.reloc.p->addend,
2583 		  NULL, NULL, 0)))
2584 	    {
2585 	      free (buf);
2586 	      return FALSE;
2587 	    }
2588 	  break;
2589 	}
2590       loc = link_order->offset * bfd_octets_per_byte (abfd);
2591       ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2592       free (buf);
2593       if (! ok)
2594 	return FALSE;
2595 
2596       r->addend = 0;
2597     }
2598 
2599   sec->orelocation[sec->reloc_count] = r;
2600   ++sec->reloc_count;
2601 
2602   return TRUE;
2603 }
2604 
2605 /* Allocate a new link_order for a section.  */
2606 
2607 struct bfd_link_order *
2608 bfd_new_link_order (bfd *abfd, asection *section)
2609 {
2610   bfd_size_type amt = sizeof (struct bfd_link_order);
2611   struct bfd_link_order *new_lo;
2612 
2613   new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2614   if (!new_lo)
2615     return NULL;
2616 
2617   new_lo->type = bfd_undefined_link_order;
2618 
2619   if (section->map_tail.link_order != NULL)
2620     section->map_tail.link_order->next = new_lo;
2621   else
2622     section->map_head.link_order = new_lo;
2623   section->map_tail.link_order = new_lo;
2624 
2625   return new_lo;
2626 }
2627 
2628 /* Default link order processing routine.  Note that we can not handle
2629    the reloc_link_order types here, since they depend upon the details
2630    of how the particular backends generates relocs.  */
2631 
2632 bfd_boolean
2633 _bfd_default_link_order (bfd *abfd,
2634 			 struct bfd_link_info *info,
2635 			 asection *sec,
2636 			 struct bfd_link_order *link_order)
2637 {
2638   switch (link_order->type)
2639     {
2640     case bfd_undefined_link_order:
2641     case bfd_section_reloc_link_order:
2642     case bfd_symbol_reloc_link_order:
2643     default:
2644       abort ();
2645     case bfd_indirect_link_order:
2646       return default_indirect_link_order (abfd, info, sec, link_order,
2647 					  FALSE);
2648     case bfd_data_link_order:
2649       return default_data_link_order (abfd, info, sec, link_order);
2650     }
2651 }
2652 
2653 /* Default routine to handle a bfd_data_link_order.  */
2654 
2655 static bfd_boolean
2656 default_data_link_order (bfd *abfd,
2657 			 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2658 			 asection *sec,
2659 			 struct bfd_link_order *link_order)
2660 {
2661   bfd_size_type size;
2662   size_t fill_size;
2663   bfd_byte *fill;
2664   file_ptr loc;
2665   bfd_boolean result;
2666 
2667   BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2668 
2669   size = link_order->size;
2670   if (size == 0)
2671     return TRUE;
2672 
2673   fill = link_order->u.data.contents;
2674   fill_size = link_order->u.data.size;
2675   if (fill_size != 0 && fill_size < size)
2676     {
2677       bfd_byte *p;
2678       fill = (bfd_byte *) bfd_malloc (size);
2679       if (fill == NULL)
2680 	return FALSE;
2681       p = fill;
2682       if (fill_size == 1)
2683 	memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2684       else
2685 	{
2686 	  do
2687 	    {
2688 	      memcpy (p, link_order->u.data.contents, fill_size);
2689 	      p += fill_size;
2690 	      size -= fill_size;
2691 	    }
2692 	  while (size >= fill_size);
2693 	  if (size != 0)
2694 	    memcpy (p, link_order->u.data.contents, (size_t) size);
2695 	  size = link_order->size;
2696 	}
2697     }
2698 
2699   loc = link_order->offset * bfd_octets_per_byte (abfd);
2700   result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2701 
2702   if (fill != link_order->u.data.contents)
2703     free (fill);
2704   return result;
2705 }
2706 
2707 /* Default routine to handle a bfd_indirect_link_order.  */
2708 
2709 static bfd_boolean
2710 default_indirect_link_order (bfd *output_bfd,
2711 			     struct bfd_link_info *info,
2712 			     asection *output_section,
2713 			     struct bfd_link_order *link_order,
2714 			     bfd_boolean generic_linker)
2715 {
2716   asection *input_section;
2717   bfd *input_bfd;
2718   bfd_byte *contents = NULL;
2719   bfd_byte *new_contents;
2720   bfd_size_type sec_size;
2721   file_ptr loc;
2722 
2723   BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2724 
2725   input_section = link_order->u.indirect.section;
2726   input_bfd = input_section->owner;
2727   if (input_section->size == 0)
2728     return TRUE;
2729 
2730   BFD_ASSERT (input_section->output_section == output_section);
2731   BFD_ASSERT (input_section->output_offset == link_order->offset);
2732   BFD_ASSERT (input_section->size == link_order->size);
2733 
2734   if (info->relocatable
2735       && input_section->reloc_count > 0
2736       && output_section->orelocation == NULL)
2737     {
2738       /* Space has not been allocated for the output relocations.
2739 	 This can happen when we are called by a specific backend
2740 	 because somebody is attempting to link together different
2741 	 types of object files.  Handling this case correctly is
2742 	 difficult, and sometimes impossible.  */
2743       (*_bfd_error_handler)
2744 	(_("Attempt to do relocatable link with %s input and %s output"),
2745 	 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2746       bfd_set_error (bfd_error_wrong_format);
2747       return FALSE;
2748     }
2749 
2750   if (! generic_linker)
2751     {
2752       asymbol **sympp;
2753       asymbol **symppend;
2754 
2755       /* Get the canonical symbols.  The generic linker will always
2756 	 have retrieved them by this point, but we are being called by
2757 	 a specific linker, presumably because we are linking
2758 	 different types of object files together.  */
2759       if (!bfd_generic_link_read_symbols (input_bfd))
2760 	return FALSE;
2761 
2762       /* Since we have been called by a specific linker, rather than
2763 	 the generic linker, the values of the symbols will not be
2764 	 right.  They will be the values as seen in the input file,
2765 	 not the values of the final link.  We need to fix them up
2766 	 before we can relocate the section.  */
2767       sympp = _bfd_generic_link_get_symbols (input_bfd);
2768       symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2769       for (; sympp < symppend; sympp++)
2770 	{
2771 	  asymbol *sym;
2772 	  struct bfd_link_hash_entry *h;
2773 
2774 	  sym = *sympp;
2775 
2776 	  if ((sym->flags & (BSF_INDIRECT
2777 			     | BSF_WARNING
2778 			     | BSF_GLOBAL
2779 			     | BSF_CONSTRUCTOR
2780 			     | BSF_WEAK)) != 0
2781 	      || bfd_is_und_section (bfd_get_section (sym))
2782 	      || bfd_is_com_section (bfd_get_section (sym))
2783 	      || bfd_is_ind_section (bfd_get_section (sym)))
2784 	    {
2785 	      /* sym->udata may have been set by
2786 		 generic_link_add_symbol_list.  */
2787 	      if (sym->udata.p != NULL)
2788 		h = (struct bfd_link_hash_entry *) sym->udata.p;
2789 	      else if (bfd_is_und_section (bfd_get_section (sym)))
2790 		h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2791 						  bfd_asymbol_name (sym),
2792 						  FALSE, FALSE, TRUE);
2793 	      else
2794 		h = bfd_link_hash_lookup (info->hash,
2795 					  bfd_asymbol_name (sym),
2796 					  FALSE, FALSE, TRUE);
2797 	      if (h != NULL)
2798 		set_symbol_from_hash (sym, h);
2799 	    }
2800 	}
2801     }
2802 
2803   if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2804       && input_section->size != 0)
2805     {
2806       /* Group section contents are set by bfd_elf_set_group_contents.  */
2807       if (!output_bfd->output_has_begun)
2808 	{
2809 	  /* FIXME: This hack ensures bfd_elf_set_group_contents is called.  */
2810 	  if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2811 	    goto error_return;
2812 	}
2813       new_contents = output_section->contents;
2814       BFD_ASSERT (new_contents != NULL);
2815       BFD_ASSERT (input_section->output_offset == 0);
2816     }
2817   else
2818     {
2819       /* Get and relocate the section contents.  */
2820       sec_size = (input_section->rawsize > input_section->size
2821 		  ? input_section->rawsize
2822 		  : input_section->size);
2823       contents = (bfd_byte *) bfd_malloc (sec_size);
2824       if (contents == NULL && sec_size != 0)
2825 	goto error_return;
2826       new_contents = (bfd_get_relocated_section_contents
2827 		      (output_bfd, info, link_order, contents,
2828 		       info->relocatable,
2829 		       _bfd_generic_link_get_symbols (input_bfd)));
2830       if (!new_contents)
2831 	goto error_return;
2832     }
2833 
2834   /* Output the section contents.  */
2835   loc = input_section->output_offset * bfd_octets_per_byte (output_bfd);
2836   if (! bfd_set_section_contents (output_bfd, output_section,
2837 				  new_contents, loc, input_section->size))
2838     goto error_return;
2839 
2840   if (contents != NULL)
2841     free (contents);
2842   return TRUE;
2843 
2844  error_return:
2845   if (contents != NULL)
2846     free (contents);
2847   return FALSE;
2848 }
2849 
2850 /* A little routine to count the number of relocs in a link_order
2851    list.  */
2852 
2853 unsigned int
2854 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2855 {
2856   register unsigned int c;
2857   register struct bfd_link_order *l;
2858 
2859   c = 0;
2860   for (l = link_order; l != NULL; l = l->next)
2861     {
2862       if (l->type == bfd_section_reloc_link_order
2863 	  || l->type == bfd_symbol_reloc_link_order)
2864 	++c;
2865     }
2866 
2867   return c;
2868 }
2869 
2870 /*
2871 FUNCTION
2872 	bfd_link_split_section
2873 
2874 SYNOPSIS
2875         bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2876 
2877 DESCRIPTION
2878 	Return nonzero if @var{sec} should be split during a
2879 	reloceatable or final link.
2880 
2881 .#define bfd_link_split_section(abfd, sec) \
2882 .       BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2883 .
2884 
2885 */
2886 
2887 bfd_boolean
2888 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2889 				 asection *sec ATTRIBUTE_UNUSED)
2890 {
2891   return FALSE;
2892 }
2893 
2894 /*
2895 FUNCTION
2896 	bfd_section_already_linked
2897 
2898 SYNOPSIS
2899         void bfd_section_already_linked (bfd *abfd, asection *sec,
2900 					 struct bfd_link_info *info);
2901 
2902 DESCRIPTION
2903 	Check if @var{sec} has been already linked during a reloceatable
2904 	or final link.
2905 
2906 .#define bfd_section_already_linked(abfd, sec, info) \
2907 .       BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2908 .
2909 
2910 */
2911 
2912 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2913    once into the output.  This routine checks each section, and
2914    arrange to discard it if a section of the same name has already
2915    been linked.  This code assumes that all relevant sections have the
2916    SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2917    section name.  bfd_section_already_linked is called via
2918    bfd_map_over_sections.  */
2919 
2920 /* The hash table.  */
2921 
2922 static struct bfd_hash_table _bfd_section_already_linked_table;
2923 
2924 /* Support routines for the hash table used by section_already_linked,
2925    initialize the table, traverse, lookup, fill in an entry and remove
2926    the table.  */
2927 
2928 void
2929 bfd_section_already_linked_table_traverse
2930   (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2931 			void *), void *info)
2932 {
2933   bfd_hash_traverse (&_bfd_section_already_linked_table,
2934 		     (bfd_boolean (*) (struct bfd_hash_entry *,
2935 				       void *)) func,
2936 		     info);
2937 }
2938 
2939 struct bfd_section_already_linked_hash_entry *
2940 bfd_section_already_linked_table_lookup (const char *name)
2941 {
2942   return ((struct bfd_section_already_linked_hash_entry *)
2943 	  bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2944 			   TRUE, FALSE));
2945 }
2946 
2947 bfd_boolean
2948 bfd_section_already_linked_table_insert
2949   (struct bfd_section_already_linked_hash_entry *already_linked_list,
2950    asection *sec)
2951 {
2952   struct bfd_section_already_linked *l;
2953 
2954   /* Allocate the memory from the same obstack as the hash table is
2955      kept in.  */
2956   l = (struct bfd_section_already_linked *)
2957       bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2958   if (l == NULL)
2959     return FALSE;
2960   l->sec = sec;
2961   l->next = already_linked_list->entry;
2962   already_linked_list->entry = l;
2963   return TRUE;
2964 }
2965 
2966 static struct bfd_hash_entry *
2967 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2968 			struct bfd_hash_table *table,
2969 			const char *string ATTRIBUTE_UNUSED)
2970 {
2971   struct bfd_section_already_linked_hash_entry *ret =
2972     (struct bfd_section_already_linked_hash_entry *)
2973       bfd_hash_allocate (table, sizeof *ret);
2974 
2975   if (ret == NULL)
2976     return NULL;
2977 
2978   ret->entry = NULL;
2979 
2980   return &ret->root;
2981 }
2982 
2983 bfd_boolean
2984 bfd_section_already_linked_table_init (void)
2985 {
2986   return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2987 				already_linked_newfunc,
2988 				sizeof (struct bfd_section_already_linked_hash_entry),
2989 				42);
2990 }
2991 
2992 void
2993 bfd_section_already_linked_table_free (void)
2994 {
2995   bfd_hash_table_free (&_bfd_section_already_linked_table);
2996 }
2997 
2998 /* This is used on non-ELF inputs.  */
2999 
3000 void
3001 _bfd_generic_section_already_linked (bfd *abfd, asection *sec,
3002 				     struct bfd_link_info *info)
3003 {
3004   flagword flags;
3005   const char *name;
3006   struct bfd_section_already_linked *l;
3007   struct bfd_section_already_linked_hash_entry *already_linked_list;
3008 
3009   flags = sec->flags;
3010   if ((flags & SEC_LINK_ONCE) == 0)
3011     return;
3012 
3013   /* FIXME: When doing a relocatable link, we may have trouble
3014      copying relocations in other sections that refer to local symbols
3015      in the section being discarded.  Those relocations will have to
3016      be converted somehow; as of this writing I'm not sure that any of
3017      the backends handle that correctly.
3018 
3019      It is tempting to instead not discard link once sections when
3020      doing a relocatable link (technically, they should be discarded
3021      whenever we are building constructors).  However, that fails,
3022      because the linker winds up combining all the link once sections
3023      into a single large link once section, which defeats the purpose
3024      of having link once sections in the first place.  */
3025 
3026   name = bfd_get_section_name (abfd, sec);
3027 
3028   already_linked_list = bfd_section_already_linked_table_lookup (name);
3029 
3030   for (l = already_linked_list->entry; l != NULL; l = l->next)
3031     {
3032       bfd_boolean skip = FALSE;
3033       struct coff_comdat_info *s_comdat
3034 	= bfd_coff_get_comdat_section (abfd, sec);
3035       struct coff_comdat_info *l_comdat
3036 	= bfd_coff_get_comdat_section (l->sec->owner, l->sec);
3037 
3038       /* We may have 3 different sections on the list: group section,
3039 	 comdat section and linkonce section. SEC may be a linkonce or
3040 	 comdat section. We always ignore group section. For non-COFF
3041 	 inputs, we also ignore comdat section.
3042 
3043 	 FIXME: Is that safe to match a linkonce section with a comdat
3044 	 section for COFF inputs?  */
3045       if ((l->sec->flags & SEC_GROUP) != 0)
3046 	skip = TRUE;
3047       else if (bfd_get_flavour (abfd) == bfd_target_coff_flavour)
3048 	{
3049 	  if (s_comdat != NULL
3050 	      && l_comdat != NULL
3051 	      && strcmp (s_comdat->name, l_comdat->name) != 0)
3052 	    skip = TRUE;
3053 	}
3054       else if (l_comdat != NULL)
3055 	skip = TRUE;
3056 
3057       if (!skip)
3058 	{
3059 	  /* The section has already been linked.  See if we should
3060              issue a warning.  */
3061 	  switch (flags & SEC_LINK_DUPLICATES)
3062 	    {
3063 	    default:
3064 	      abort ();
3065 
3066 	    case SEC_LINK_DUPLICATES_DISCARD:
3067 	      break;
3068 
3069 	    case SEC_LINK_DUPLICATES_ONE_ONLY:
3070 	      (*_bfd_error_handler)
3071 		(_("%B: warning: ignoring duplicate section `%A'\n"),
3072 		 abfd, sec);
3073 	      break;
3074 
3075 	    case SEC_LINK_DUPLICATES_SAME_CONTENTS:
3076 	      /* FIXME: We should really dig out the contents of both
3077                  sections and memcmp them.  The COFF/PE spec says that
3078                  the Microsoft linker does not implement this
3079                  correctly, so I'm not going to bother doing it
3080                  either.  */
3081 	      /* Fall through.  */
3082 	    case SEC_LINK_DUPLICATES_SAME_SIZE:
3083 	      if (sec->size != l->sec->size)
3084 		(*_bfd_error_handler)
3085 		  (_("%B: warning: duplicate section `%A' has different size\n"),
3086 		   abfd, sec);
3087 	      break;
3088 	    }
3089 
3090 	  /* Set the output_section field so that lang_add_section
3091 	     does not create a lang_input_section structure for this
3092 	     section.  Since there might be a symbol in the section
3093 	     being discarded, we must retain a pointer to the section
3094 	     which we are really going to use.  */
3095 	  sec->output_section = bfd_abs_section_ptr;
3096 	  sec->kept_section = l->sec;
3097 
3098 	  return;
3099 	}
3100     }
3101 
3102   /* This is the first section with this name.  Record it.  */
3103   if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
3104     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
3105 }
3106 
3107 /* Convert symbols in excluded output sections to use a kept section.  */
3108 
3109 static bfd_boolean
3110 fix_syms (struct bfd_link_hash_entry *h, void *data)
3111 {
3112   bfd *obfd = (bfd *) data;
3113 
3114   if (h->type == bfd_link_hash_warning)
3115     h = h->u.i.link;
3116 
3117   if (h->type == bfd_link_hash_defined
3118       || h->type == bfd_link_hash_defweak)
3119     {
3120       asection *s = h->u.def.section;
3121       if (s != NULL
3122 	  && s->output_section != NULL
3123 	  && (s->output_section->flags & SEC_EXCLUDE) != 0
3124 	  && bfd_section_removed_from_list (obfd, s->output_section))
3125 	{
3126 	  asection *op, *op1;
3127 
3128 	  h->u.def.value += s->output_offset + s->output_section->vma;
3129 
3130 	  /* Find preceding kept section.  */
3131 	  for (op1 = s->output_section->prev; op1 != NULL; op1 = op1->prev)
3132 	    if ((op1->flags & SEC_EXCLUDE) == 0
3133 		&& !bfd_section_removed_from_list (obfd, op1))
3134 	      break;
3135 
3136 	  /* Find following kept section.  Start at prev->next because
3137 	     other sections may have been added after S was removed.  */
3138 	  if (s->output_section->prev != NULL)
3139 	    op = s->output_section->prev->next;
3140 	  else
3141 	    op = s->output_section->owner->sections;
3142 	  for (; op != NULL; op = op->next)
3143 	    if ((op->flags & SEC_EXCLUDE) == 0
3144 		&& !bfd_section_removed_from_list (obfd, op))
3145 	      break;
3146 
3147 	  /* Choose better of two sections, based on flags.  The idea
3148 	     is to choose a section that will be in the same segment
3149 	     as S would have been if it was kept.  */
3150 	  if (op1 == NULL)
3151 	    {
3152 	      if (op == NULL)
3153 		op = bfd_abs_section_ptr;
3154 	    }
3155 	  else if (op == NULL)
3156 	    op = op1;
3157 	  else if (((op1->flags ^ op->flags)
3158 		    & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3159 	    {
3160 	      if (((op->flags ^ s->flags)
3161 		   & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3162 		  /* We prefer to choose a loaded section.  Section S
3163 		     doesn't have SEC_LOAD set (it being excluded, that
3164 		     part of the flag processing didn't happen) so we
3165 		     can't compare that flag to those of OP and OP1.  */
3166 		  || ((op1->flags & SEC_LOAD) != 0
3167 		      && (op->flags & SEC_LOAD) == 0))
3168 		op = op1;
3169 	    }
3170 	  else if (((op1->flags ^ op->flags) & SEC_READONLY) != 0)
3171 	    {
3172 	      if (((op->flags ^ s->flags) & SEC_READONLY) != 0)
3173 		op = op1;
3174 	    }
3175 	  else if (((op1->flags ^ op->flags) & SEC_CODE) != 0)
3176 	    {
3177 	      if (((op->flags ^ s->flags) & SEC_CODE) != 0)
3178 		op = op1;
3179 	    }
3180 	  else
3181 	    {
3182 	      /* Flags we care about are the same.  Prefer the following
3183 		 section if that will result in a positive valued sym.  */
3184 	      if (h->u.def.value < op->vma)
3185 		op = op1;
3186 	    }
3187 
3188 	  h->u.def.value -= op->vma;
3189 	  h->u.def.section = op;
3190 	}
3191     }
3192 
3193   return TRUE;
3194 }
3195 
3196 void
3197 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3198 {
3199   bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3200 }
3201 
3202 /*
3203 FUNCTION
3204 	bfd_generic_define_common_symbol
3205 
3206 SYNOPSIS
3207 	bfd_boolean bfd_generic_define_common_symbol
3208 	  (bfd *output_bfd, struct bfd_link_info *info,
3209 	   struct bfd_link_hash_entry *h);
3210 
3211 DESCRIPTION
3212 	Convert common symbol @var{h} into a defined symbol.
3213 	Return TRUE on success and FALSE on failure.
3214 
3215 .#define bfd_define_common_symbol(output_bfd, info, h) \
3216 .       BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3217 .
3218 */
3219 
3220 bfd_boolean
3221 bfd_generic_define_common_symbol (bfd *output_bfd,
3222 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3223 				  struct bfd_link_hash_entry *h)
3224 {
3225   unsigned int power_of_two;
3226   bfd_vma alignment, size;
3227   asection *section;
3228 
3229   BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3230 
3231   size = h->u.c.size;
3232   power_of_two = h->u.c.p->alignment_power;
3233   section = h->u.c.p->section;
3234 
3235   /* Increase the size of the section to align the common symbol.
3236      The alignment must be a power of two.  */
3237   alignment = bfd_octets_per_byte (output_bfd) << power_of_two;
3238   BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3239   section->size += alignment - 1;
3240   section->size &= -alignment;
3241 
3242   /* Adjust the section's overall alignment if necessary.  */
3243   if (power_of_two > section->alignment_power)
3244     section->alignment_power = power_of_two;
3245 
3246   /* Change the symbol from common to defined.  */
3247   h->type = bfd_link_hash_defined;
3248   h->u.def.section = section;
3249   h->u.def.value = section->size;
3250 
3251   /* Increase the size of the section.  */
3252   section->size += size;
3253 
3254   /* Make sure the section is allocated in memory, and make sure that
3255      it is no longer a common section.  */
3256   section->flags |= SEC_ALLOC;
3257   section->flags &= ~SEC_IS_COMMON;
3258   return TRUE;
3259 }
3260 
3261 /*
3262 FUNCTION
3263 	bfd_find_version_for_sym
3264 
3265 SYNOPSIS
3266 	struct bfd_elf_version_tree * bfd_find_version_for_sym
3267 	  (struct bfd_elf_version_tree *verdefs,
3268 	   const char *sym_name, bfd_boolean *hide);
3269 
3270 DESCRIPTION
3271 	Search an elf version script tree for symbol versioning
3272 	info and export / don't-export status for a given symbol.
3273 	Return non-NULL on success and NULL on failure; also sets
3274 	the output @samp{hide} boolean parameter.
3275 
3276 */
3277 
3278 struct bfd_elf_version_tree *
3279 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3280 			  const char *sym_name,
3281 			  bfd_boolean *hide)
3282 {
3283   struct bfd_elf_version_tree *t;
3284   struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3285   struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3286 
3287   local_ver = NULL;
3288   global_ver = NULL;
3289   star_local_ver = NULL;
3290   star_global_ver = NULL;
3291   exist_ver = NULL;
3292   for (t = verdefs; t != NULL; t = t->next)
3293     {
3294       if (t->globals.list != NULL)
3295 	{
3296 	  struct bfd_elf_version_expr *d = NULL;
3297 
3298 	  while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3299 	    {
3300 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3301 		global_ver = t;
3302 	      else
3303 		star_global_ver = t;
3304 	      if (d->symver)
3305 		exist_ver = t;
3306 	      d->script = 1;
3307 	      /* If the match is a wildcard pattern, keep looking for
3308 		 a more explicit, perhaps even local, match.  */
3309 	      if (d->literal)
3310 		break;
3311 	    }
3312 
3313 	  if (d != NULL)
3314 	    break;
3315 	}
3316 
3317       if (t->locals.list != NULL)
3318 	{
3319 	  struct bfd_elf_version_expr *d = NULL;
3320 
3321 	  while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3322 	    {
3323 	      if (d->literal || strcmp (d->pattern, "*") != 0)
3324 		local_ver = t;
3325 	      else
3326 		star_local_ver = t;
3327 	      /* If the match is a wildcard pattern, keep looking for
3328 		 a more explicit, perhaps even global, match.  */
3329 	      if (d->literal)
3330 		{
3331 		  /* An exact match overrides a global wildcard.  */
3332 		  global_ver = NULL;
3333 		  star_global_ver = NULL;
3334 		  break;
3335 		}
3336 	    }
3337 
3338 	  if (d != NULL)
3339 	    break;
3340 	}
3341     }
3342 
3343   if (global_ver == NULL && local_ver == NULL)
3344     global_ver = star_global_ver;
3345 
3346   if (global_ver != NULL)
3347     {
3348       /* If we already have a versioned symbol that matches the
3349 	 node for this symbol, then we don't want to create a
3350 	 duplicate from the unversioned symbol.  Instead hide the
3351 	 unversioned symbol.  */
3352       *hide = exist_ver == global_ver;
3353       return global_ver;
3354     }
3355 
3356   if (local_ver == NULL)
3357     local_ver = star_local_ver;
3358 
3359   if (local_ver != NULL)
3360     {
3361       *hide = TRUE;
3362       return local_ver;
3363     }
3364 
3365   return NULL;
3366 }
3367