1 /* Object file "section" support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 4 Free Software Foundation, Inc. 5 Written by Cygnus Support. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 /* 25 SECTION 26 Sections 27 28 The raw data contained within a BFD is maintained through the 29 section abstraction. A single BFD may have any number of 30 sections. It keeps hold of them by pointing to the first; 31 each one points to the next in the list. 32 33 Sections are supported in BFD in <<section.c>>. 34 35 @menu 36 @* Section Input:: 37 @* Section Output:: 38 @* typedef asection:: 39 @* section prototypes:: 40 @end menu 41 42 INODE 43 Section Input, Section Output, Sections, Sections 44 SUBSECTION 45 Section input 46 47 When a BFD is opened for reading, the section structures are 48 created and attached to the BFD. 49 50 Each section has a name which describes the section in the 51 outside world---for example, <<a.out>> would contain at least 52 three sections, called <<.text>>, <<.data>> and <<.bss>>. 53 54 Names need not be unique; for example a COFF file may have several 55 sections named <<.data>>. 56 57 Sometimes a BFD will contain more than the ``natural'' number of 58 sections. A back end may attach other sections containing 59 constructor data, or an application may add a section (using 60 <<bfd_make_section>>) to the sections attached to an already open 61 BFD. For example, the linker creates an extra section 62 <<COMMON>> for each input file's BFD to hold information about 63 common storage. 64 65 The raw data is not necessarily read in when 66 the section descriptor is created. Some targets may leave the 67 data in place until a <<bfd_get_section_contents>> call is 68 made. Other back ends may read in all the data at once. For 69 example, an S-record file has to be read once to determine the 70 size of the data. An IEEE-695 file doesn't contain raw data in 71 sections, but data and relocation expressions intermixed, so 72 the data area has to be parsed to get out the data and 73 relocations. 74 75 INODE 76 Section Output, typedef asection, Section Input, Sections 77 78 SUBSECTION 79 Section output 80 81 To write a new object style BFD, the various sections to be 82 written have to be created. They are attached to the BFD in 83 the same way as input sections; data is written to the 84 sections using <<bfd_set_section_contents>>. 85 86 Any program that creates or combines sections (e.g., the assembler 87 and linker) must use the <<asection>> fields <<output_section>> and 88 <<output_offset>> to indicate the file sections to which each 89 section must be written. (If the section is being created from 90 scratch, <<output_section>> should probably point to the section 91 itself and <<output_offset>> should probably be zero.) 92 93 The data to be written comes from input sections attached 94 (via <<output_section>> pointers) to 95 the output sections. The output section structure can be 96 considered a filter for the input section: the output section 97 determines the vma of the output data and the name, but the 98 input section determines the offset into the output section of 99 the data to be written. 100 101 E.g., to create a section "O", starting at 0x100, 0x123 long, 102 containing two subsections, "A" at offset 0x0 (i.e., at vma 103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 104 structures would look like: 105 106 | section name "A" 107 | output_offset 0x00 108 | size 0x20 109 | output_section -----------> section name "O" 110 | | vma 0x100 111 | section name "B" | size 0x123 112 | output_offset 0x20 | 113 | size 0x103 | 114 | output_section --------| 115 116 SUBSECTION 117 Link orders 118 119 The data within a section is stored in a @dfn{link_order}. 120 These are much like the fixups in <<gas>>. The link_order 121 abstraction allows a section to grow and shrink within itself. 122 123 A link_order knows how big it is, and which is the next 124 link_order and where the raw data for it is; it also points to 125 a list of relocations which apply to it. 126 127 The link_order is used by the linker to perform relaxing on 128 final code. The compiler creates code which is as big as 129 necessary to make it work without relaxing, and the user can 130 select whether to relax. Sometimes relaxing takes a lot of 131 time. The linker runs around the relocations to see if any 132 are attached to data which can be shrunk, if so it does it on 133 a link_order by link_order basis. 134 135 */ 136 137 #include "sysdep.h" 138 #include "bfd.h" 139 #include "libbfd.h" 140 #include "bfdlink.h" 141 142 /* 143 DOCDD 144 INODE 145 typedef asection, section prototypes, Section Output, Sections 146 SUBSECTION 147 typedef asection 148 149 Here is the section structure: 150 151 CODE_FRAGMENT 152 . 153 .typedef struct bfd_section 154 .{ 155 . {* The name of the section; the name isn't a copy, the pointer is 156 . the same as that passed to bfd_make_section. *} 157 . const char *name; 158 . 159 . {* A unique sequence number. *} 160 . int id; 161 . 162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 163 . int index; 164 . 165 . {* The next section in the list belonging to the BFD, or NULL. *} 166 . struct bfd_section *next; 167 . 168 . {* The previous section in the list belonging to the BFD, or NULL. *} 169 . struct bfd_section *prev; 170 . 171 . {* The field flags contains attributes of the section. Some 172 . flags are read in from the object file, and some are 173 . synthesized from other information. *} 174 . flagword flags; 175 . 176 .#define SEC_NO_FLAGS 0x000 177 . 178 . {* Tells the OS to allocate space for this section when loading. 179 . This is clear for a section containing debug information only. *} 180 .#define SEC_ALLOC 0x001 181 . 182 . {* Tells the OS to load the section from the file when loading. 183 . This is clear for a .bss section. *} 184 .#define SEC_LOAD 0x002 185 . 186 . {* The section contains data still to be relocated, so there is 187 . some relocation information too. *} 188 .#define SEC_RELOC 0x004 189 . 190 . {* A signal to the OS that the section contains read only data. *} 191 .#define SEC_READONLY 0x008 192 . 193 . {* The section contains code only. *} 194 .#define SEC_CODE 0x010 195 . 196 . {* The section contains data only. *} 197 .#define SEC_DATA 0x020 198 . 199 . {* The section will reside in ROM. *} 200 .#define SEC_ROM 0x040 201 . 202 . {* The section contains constructor information. This section 203 . type is used by the linker to create lists of constructors and 204 . destructors used by <<g++>>. When a back end sees a symbol 205 . which should be used in a constructor list, it creates a new 206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 207 . the symbol to it, and builds a relocation. To build the lists 208 . of constructors, all the linker has to do is catenate all the 209 . sections called <<__CTOR_LIST__>> and relocate the data 210 . contained within - exactly the operations it would peform on 211 . standard data. *} 212 .#define SEC_CONSTRUCTOR 0x080 213 . 214 . {* The section has contents - a data section could be 215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 216 . <<SEC_HAS_CONTENTS>> *} 217 .#define SEC_HAS_CONTENTS 0x100 218 . 219 . {* An instruction to the linker to not output the section 220 . even if it has information which would normally be written. *} 221 .#define SEC_NEVER_LOAD 0x200 222 . 223 . {* The section contains thread local data. *} 224 .#define SEC_THREAD_LOCAL 0x400 225 . 226 . {* The section has GOT references. This flag is only for the 227 . linker, and is currently only used by the elf32-hppa back end. 228 . It will be set if global offset table references were detected 229 . in this section, which indicate to the linker that the section 230 . contains PIC code, and must be handled specially when doing a 231 . static link. *} 232 .#define SEC_HAS_GOT_REF 0x800 233 . 234 . {* The section contains common symbols (symbols may be defined 235 . multiple times, the value of a symbol is the amount of 236 . space it requires, and the largest symbol value is the one 237 . used). Most targets have exactly one of these (which we 238 . translate to bfd_com_section_ptr), but ECOFF has two. *} 239 .#define SEC_IS_COMMON 0x1000 240 . 241 . {* The section contains only debugging information. For 242 . example, this is set for ELF .debug and .stab sections. 243 . strip tests this flag to see if a section can be 244 . discarded. *} 245 .#define SEC_DEBUGGING 0x2000 246 . 247 . {* The contents of this section are held in memory pointed to 248 . by the contents field. This is checked by bfd_get_section_contents, 249 . and the data is retrieved from memory if appropriate. *} 250 .#define SEC_IN_MEMORY 0x4000 251 . 252 . {* The contents of this section are to be excluded by the 253 . linker for executable and shared objects unless those 254 . objects are to be further relocated. *} 255 .#define SEC_EXCLUDE 0x8000 256 . 257 . {* The contents of this section are to be sorted based on the sum of 258 . the symbol and addend values specified by the associated relocation 259 . entries. Entries without associated relocation entries will be 260 . appended to the end of the section in an unspecified order. *} 261 .#define SEC_SORT_ENTRIES 0x10000 262 . 263 . {* When linking, duplicate sections of the same name should be 264 . discarded, rather than being combined into a single section as 265 . is usually done. This is similar to how common symbols are 266 . handled. See SEC_LINK_DUPLICATES below. *} 267 .#define SEC_LINK_ONCE 0x20000 268 . 269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 270 . should handle duplicate sections. *} 271 .#define SEC_LINK_DUPLICATES 0xc0000 272 . 273 . {* This value for SEC_LINK_DUPLICATES means that duplicate 274 . sections with the same name should simply be discarded. *} 275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 276 . 277 . {* This value for SEC_LINK_DUPLICATES means that the linker 278 . should warn if there are any duplicate sections, although 279 . it should still only link one copy. *} 280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 281 . 282 . {* This value for SEC_LINK_DUPLICATES means that the linker 283 . should warn if any duplicate sections are a different size. *} 284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 285 . 286 . {* This value for SEC_LINK_DUPLICATES means that the linker 287 . should warn if any duplicate sections contain different 288 . contents. *} 289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 291 . 292 . {* This section was created by the linker as part of dynamic 293 . relocation or other arcane processing. It is skipped when 294 . going through the first-pass output, trusting that someone 295 . else up the line will take care of it later. *} 296 .#define SEC_LINKER_CREATED 0x100000 297 . 298 . {* This section should not be subject to garbage collection. 299 . Also set to inform the linker that this section should not be 300 . listed in the link map as discarded. *} 301 .#define SEC_KEEP 0x200000 302 . 303 . {* This section contains "short" data, and should be placed 304 . "near" the GP. *} 305 .#define SEC_SMALL_DATA 0x400000 306 . 307 . {* Attempt to merge identical entities in the section. 308 . Entity size is given in the entsize field. *} 309 .#define SEC_MERGE 0x800000 310 . 311 . {* If given with SEC_MERGE, entities to merge are zero terminated 312 . strings where entsize specifies character size instead of fixed 313 . size entries. *} 314 .#define SEC_STRINGS 0x1000000 315 . 316 . {* This section contains data about section groups. *} 317 .#define SEC_GROUP 0x2000000 318 . 319 . {* The section is a COFF shared library section. This flag is 320 . only for the linker. If this type of section appears in 321 . the input file, the linker must copy it to the output file 322 . without changing the vma or size. FIXME: Although this 323 . was originally intended to be general, it really is COFF 324 . specific (and the flag was renamed to indicate this). It 325 . might be cleaner to have some more general mechanism to 326 . allow the back end to control what the linker does with 327 . sections. *} 328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 329 . 330 . {* This input section should be copied to output in reverse order 331 . as an array of pointers. This is for ELF linker internal use 332 . only. *} 333 .#define SEC_ELF_REVERSE_COPY 0x4000000 334 . 335 . {* This section contains data which may be shared with other 336 . executables or shared objects. This is for COFF only. *} 337 .#define SEC_COFF_SHARED 0x8000000 338 . 339 . {* When a section with this flag is being linked, then if the size of 340 . the input section is less than a page, it should not cross a page 341 . boundary. If the size of the input section is one page or more, 342 . it should be aligned on a page boundary. This is for TI 343 . TMS320C54X only. *} 344 .#define SEC_TIC54X_BLOCK 0x10000000 345 . 346 . {* Conditionally link this section; do not link if there are no 347 . references found to any symbol in the section. This is for TI 348 . TMS320C54X only. *} 349 .#define SEC_TIC54X_CLINK 0x20000000 350 . 351 . {* Indicate that section has the no read flag set. This happens 352 . when memory read flag isn't set. *} 353 .#define SEC_COFF_NOREAD 0x40000000 354 . 355 . {* End of section flags. *} 356 . 357 . {* Some internal packed boolean fields. *} 358 . 359 . {* See the vma field. *} 360 . unsigned int user_set_vma : 1; 361 . 362 . {* A mark flag used by some of the linker backends. *} 363 . unsigned int linker_mark : 1; 364 . 365 . {* Another mark flag used by some of the linker backends. Set for 366 . output sections that have an input section. *} 367 . unsigned int linker_has_input : 1; 368 . 369 . {* Mark flag used by some linker backends for garbage collection. *} 370 . unsigned int gc_mark : 1; 371 . 372 . {* Section compression status. *} 373 . unsigned int compress_status : 2; 374 .#define COMPRESS_SECTION_NONE 0 375 .#define COMPRESS_SECTION_DONE 1 376 .#define DECOMPRESS_SECTION_SIZED 2 377 . 378 . {* The following flags are used by the ELF linker. *} 379 . 380 . {* Mark sections which have been allocated to segments. *} 381 . unsigned int segment_mark : 1; 382 . 383 . {* Type of sec_info information. *} 384 . unsigned int sec_info_type:3; 385 .#define ELF_INFO_TYPE_NONE 0 386 .#define ELF_INFO_TYPE_STABS 1 387 .#define ELF_INFO_TYPE_MERGE 2 388 .#define ELF_INFO_TYPE_EH_FRAME 3 389 .#define ELF_INFO_TYPE_JUST_SYMS 4 390 . 391 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 392 . unsigned int use_rela_p:1; 393 . 394 . {* Bits used by various backends. The generic code doesn't touch 395 . these fields. *} 396 . 397 . unsigned int sec_flg0:1; 398 . unsigned int sec_flg1:1; 399 . unsigned int sec_flg2:1; 400 . unsigned int sec_flg3:1; 401 . unsigned int sec_flg4:1; 402 . unsigned int sec_flg5:1; 403 . 404 . {* End of internal packed boolean fields. *} 405 . 406 . {* The virtual memory address of the section - where it will be 407 . at run time. The symbols are relocated against this. The 408 . user_set_vma flag is maintained by bfd; if it's not set, the 409 . backend can assign addresses (for example, in <<a.out>>, where 410 . the default address for <<.data>> is dependent on the specific 411 . target and various flags). *} 412 . bfd_vma vma; 413 . 414 . {* The load address of the section - where it would be in a 415 . rom image; really only used for writing section header 416 . information. *} 417 . bfd_vma lma; 418 . 419 . {* The size of the section in octets, as it will be output. 420 . Contains a value even if the section has no contents (e.g., the 421 . size of <<.bss>>). *} 422 . bfd_size_type size; 423 . 424 . {* For input sections, the original size on disk of the section, in 425 . octets. This field should be set for any section whose size is 426 . changed by linker relaxation. It is required for sections where 427 . the linker relaxation scheme doesn't cache altered section and 428 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 429 . targets), and thus the original size needs to be kept to read the 430 . section multiple times. For output sections, rawsize holds the 431 . section size calculated on a previous linker relaxation pass. *} 432 . bfd_size_type rawsize; 433 . 434 . {* The compressed size of the section in octets. *} 435 . bfd_size_type compressed_size; 436 . 437 . {* Relaxation table. *} 438 . struct relax_table *relax; 439 . 440 . {* Count of used relaxation table entries. *} 441 . int relax_count; 442 . 443 . 444 . {* If this section is going to be output, then this value is the 445 . offset in *bytes* into the output section of the first byte in the 446 . input section (byte ==> smallest addressable unit on the 447 . target). In most cases, if this was going to start at the 448 . 100th octet (8-bit quantity) in the output section, this value 449 . would be 100. However, if the target byte size is 16 bits 450 . (bfd_octets_per_byte is "2"), this value would be 50. *} 451 . bfd_vma output_offset; 452 . 453 . {* The output section through which to map on output. *} 454 . struct bfd_section *output_section; 455 . 456 . {* The alignment requirement of the section, as an exponent of 2 - 457 . e.g., 3 aligns to 2^3 (or 8). *} 458 . unsigned int alignment_power; 459 . 460 . {* If an input section, a pointer to a vector of relocation 461 . records for the data in this section. *} 462 . struct reloc_cache_entry *relocation; 463 . 464 . {* If an output section, a pointer to a vector of pointers to 465 . relocation records for the data in this section. *} 466 . struct reloc_cache_entry **orelocation; 467 . 468 . {* The number of relocation records in one of the above. *} 469 . unsigned reloc_count; 470 . 471 . {* Information below is back end specific - and not always used 472 . or updated. *} 473 . 474 . {* File position of section data. *} 475 . file_ptr filepos; 476 . 477 . {* File position of relocation info. *} 478 . file_ptr rel_filepos; 479 . 480 . {* File position of line data. *} 481 . file_ptr line_filepos; 482 . 483 . {* Pointer to data for applications. *} 484 . void *userdata; 485 . 486 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 487 . contents. *} 488 . unsigned char *contents; 489 . 490 . {* Attached line number information. *} 491 . alent *lineno; 492 . 493 . {* Number of line number records. *} 494 . unsigned int lineno_count; 495 . 496 . {* Entity size for merging purposes. *} 497 . unsigned int entsize; 498 . 499 . {* Points to the kept section if this section is a link-once section, 500 . and is discarded. *} 501 . struct bfd_section *kept_section; 502 . 503 . {* When a section is being output, this value changes as more 504 . linenumbers are written out. *} 505 . file_ptr moving_line_filepos; 506 . 507 . {* What the section number is in the target world. *} 508 . int target_index; 509 . 510 . void *used_by_bfd; 511 . 512 . {* If this is a constructor section then here is a list of the 513 . relocations created to relocate items within it. *} 514 . struct relent_chain *constructor_chain; 515 . 516 . {* The BFD which owns the section. *} 517 . bfd *owner; 518 . 519 . {* INPUT_SECTION_FLAGS if specified in the linker script. *} 520 . struct flag_info *section_flag_info; 521 . 522 . {* A symbol which points at this section only. *} 523 . struct bfd_symbol *symbol; 524 . struct bfd_symbol **symbol_ptr_ptr; 525 . 526 . {* Early in the link process, map_head and map_tail are used to build 527 . a list of input sections attached to an output section. Later, 528 . output sections use these fields for a list of bfd_link_order 529 . structs. *} 530 . union { 531 . struct bfd_link_order *link_order; 532 . struct bfd_section *s; 533 . } map_head, map_tail; 534 .} asection; 535 . 536 .{* Relax table contains information about instructions which can 537 . be removed by relaxation -- replacing a long address with a 538 . short address. *} 539 .struct relax_table { 540 . {* Address where bytes may be deleted. *} 541 . bfd_vma addr; 542 . 543 . {* Number of bytes to be deleted. *} 544 . int size; 545 .}; 546 . 547 .{* These sections are global, and are managed by BFD. The application 548 . and target back end are not permitted to change the values in 549 . these sections. New code should use the section_ptr macros rather 550 . than referring directly to the const sections. The const sections 551 . may eventually vanish. *} 552 .#define BFD_ABS_SECTION_NAME "*ABS*" 553 .#define BFD_UND_SECTION_NAME "*UND*" 554 .#define BFD_COM_SECTION_NAME "*COM*" 555 .#define BFD_IND_SECTION_NAME "*IND*" 556 . 557 .{* The absolute section. *} 558 .extern asection bfd_abs_section; 559 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section) 560 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 561 .{* Pointer to the undefined section. *} 562 .extern asection bfd_und_section; 563 .#define bfd_und_section_ptr ((asection *) &bfd_und_section) 564 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 565 .{* Pointer to the common section. *} 566 .extern asection bfd_com_section; 567 .#define bfd_com_section_ptr ((asection *) &bfd_com_section) 568 .{* Pointer to the indirect section. *} 569 .extern asection bfd_ind_section; 570 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section) 571 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 572 . 573 .#define bfd_is_const_section(SEC) \ 574 . ( ((SEC) == bfd_abs_section_ptr) \ 575 . || ((SEC) == bfd_und_section_ptr) \ 576 . || ((SEC) == bfd_com_section_ptr) \ 577 . || ((SEC) == bfd_ind_section_ptr)) 578 . 579 .{* Macros to handle insertion and deletion of a bfd's sections. These 580 . only handle the list pointers, ie. do not adjust section_count, 581 . target_index etc. *} 582 .#define bfd_section_list_remove(ABFD, S) \ 583 . do \ 584 . { \ 585 . asection *_s = S; \ 586 . asection *_next = _s->next; \ 587 . asection *_prev = _s->prev; \ 588 . if (_prev) \ 589 . _prev->next = _next; \ 590 . else \ 591 . (ABFD)->sections = _next; \ 592 . if (_next) \ 593 . _next->prev = _prev; \ 594 . else \ 595 . (ABFD)->section_last = _prev; \ 596 . } \ 597 . while (0) 598 .#define bfd_section_list_append(ABFD, S) \ 599 . do \ 600 . { \ 601 . asection *_s = S; \ 602 . bfd *_abfd = ABFD; \ 603 . _s->next = NULL; \ 604 . if (_abfd->section_last) \ 605 . { \ 606 . _s->prev = _abfd->section_last; \ 607 . _abfd->section_last->next = _s; \ 608 . } \ 609 . else \ 610 . { \ 611 . _s->prev = NULL; \ 612 . _abfd->sections = _s; \ 613 . } \ 614 . _abfd->section_last = _s; \ 615 . } \ 616 . while (0) 617 .#define bfd_section_list_prepend(ABFD, S) \ 618 . do \ 619 . { \ 620 . asection *_s = S; \ 621 . bfd *_abfd = ABFD; \ 622 . _s->prev = NULL; \ 623 . if (_abfd->sections) \ 624 . { \ 625 . _s->next = _abfd->sections; \ 626 . _abfd->sections->prev = _s; \ 627 . } \ 628 . else \ 629 . { \ 630 . _s->next = NULL; \ 631 . _abfd->section_last = _s; \ 632 . } \ 633 . _abfd->sections = _s; \ 634 . } \ 635 . while (0) 636 .#define bfd_section_list_insert_after(ABFD, A, S) \ 637 . do \ 638 . { \ 639 . asection *_a = A; \ 640 . asection *_s = S; \ 641 . asection *_next = _a->next; \ 642 . _s->next = _next; \ 643 . _s->prev = _a; \ 644 . _a->next = _s; \ 645 . if (_next) \ 646 . _next->prev = _s; \ 647 . else \ 648 . (ABFD)->section_last = _s; \ 649 . } \ 650 . while (0) 651 .#define bfd_section_list_insert_before(ABFD, B, S) \ 652 . do \ 653 . { \ 654 . asection *_b = B; \ 655 . asection *_s = S; \ 656 . asection *_prev = _b->prev; \ 657 . _s->prev = _prev; \ 658 . _s->next = _b; \ 659 . _b->prev = _s; \ 660 . if (_prev) \ 661 . _prev->next = _s; \ 662 . else \ 663 . (ABFD)->sections = _s; \ 664 . } \ 665 . while (0) 666 .#define bfd_section_removed_from_list(ABFD, S) \ 667 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 668 . 669 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 670 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 671 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 672 . \ 673 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 674 . 0, 0, 1, 0, \ 675 . \ 676 . {* segment_mark, sec_info_type, use_rela_p, *} \ 677 . 0, 0, 0, \ 678 . \ 679 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 680 . 0, 0, 0, 0, 0, 0, \ 681 . \ 682 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 683 . 0, 0, 0, 0, 0, 0, 0, \ 684 . \ 685 . {* output_offset, output_section, alignment_power, *} \ 686 . 0, (struct bfd_section *) &SEC, 0, \ 687 . \ 688 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 689 . NULL, NULL, 0, 0, 0, \ 690 . \ 691 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 692 . 0, NULL, NULL, NULL, 0, \ 693 . \ 694 . {* entsize, kept_section, moving_line_filepos, *} \ 695 . 0, NULL, 0, \ 696 . \ 697 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 698 . 0, NULL, NULL, NULL, \ 699 . \ 700 . {* flag_info, *} \ 701 . NULL, \ 702 . \ 703 . {* symbol, symbol_ptr_ptr, *} \ 704 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 705 . \ 706 . {* map_head, map_tail *} \ 707 . { NULL }, { NULL } \ 708 . } 709 . 710 */ 711 712 /* We use a macro to initialize the static asymbol structures because 713 traditional C does not permit us to initialize a union member while 714 gcc warns if we don't initialize it. */ 715 /* the_bfd, name, value, attr, section [, udata] */ 716 #ifdef __STDC__ 717 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 718 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }} 719 #else 720 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 721 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION } 722 #endif 723 724 /* These symbols are global, not specific to any BFD. Therefore, anything 725 that tries to change them is broken, and should be repaired. */ 726 727 static const asymbol global_syms[] = 728 { 729 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section), 730 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section), 731 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section), 732 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section) 733 }; 734 735 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \ 736 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \ 737 NAME, IDX) 738 739 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0); 740 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1); 741 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2); 742 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3); 743 #undef STD_SECTION 744 745 /* Initialize an entry in the section hash table. */ 746 747 struct bfd_hash_entry * 748 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 749 struct bfd_hash_table *table, 750 const char *string) 751 { 752 /* Allocate the structure if it has not already been allocated by a 753 subclass. */ 754 if (entry == NULL) 755 { 756 entry = (struct bfd_hash_entry *) 757 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 758 if (entry == NULL) 759 return entry; 760 } 761 762 /* Call the allocation method of the superclass. */ 763 entry = bfd_hash_newfunc (entry, table, string); 764 if (entry != NULL) 765 memset (&((struct section_hash_entry *) entry)->section, 0, 766 sizeof (asection)); 767 768 return entry; 769 } 770 771 #define section_hash_lookup(table, string, create, copy) \ 772 ((struct section_hash_entry *) \ 773 bfd_hash_lookup ((table), (string), (create), (copy))) 774 775 /* Create a symbol whose only job is to point to this section. This 776 is useful for things like relocs which are relative to the base 777 of a section. */ 778 779 bfd_boolean 780 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 781 { 782 newsect->symbol = bfd_make_empty_symbol (abfd); 783 if (newsect->symbol == NULL) 784 return FALSE; 785 786 newsect->symbol->name = newsect->name; 787 newsect->symbol->value = 0; 788 newsect->symbol->section = newsect; 789 newsect->symbol->flags = BSF_SECTION_SYM; 790 791 newsect->symbol_ptr_ptr = &newsect->symbol; 792 return TRUE; 793 } 794 795 /* Initializes a new section. NEWSECT->NAME is already set. */ 796 797 static asection * 798 bfd_section_init (bfd *abfd, asection *newsect) 799 { 800 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 801 802 newsect->id = section_id; 803 newsect->index = abfd->section_count; 804 newsect->owner = abfd; 805 806 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 807 return NULL; 808 809 section_id++; 810 abfd->section_count++; 811 bfd_section_list_append (abfd, newsect); 812 return newsect; 813 } 814 815 /* 816 DOCDD 817 INODE 818 section prototypes, , typedef asection, Sections 819 SUBSECTION 820 Section prototypes 821 822 These are the functions exported by the section handling part of BFD. 823 */ 824 825 /* 826 FUNCTION 827 bfd_section_list_clear 828 829 SYNOPSIS 830 void bfd_section_list_clear (bfd *); 831 832 DESCRIPTION 833 Clears the section list, and also resets the section count and 834 hash table entries. 835 */ 836 837 void 838 bfd_section_list_clear (bfd *abfd) 839 { 840 abfd->sections = NULL; 841 abfd->section_last = NULL; 842 abfd->section_count = 0; 843 memset (abfd->section_htab.table, 0, 844 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 845 } 846 847 /* 848 FUNCTION 849 bfd_get_section_by_name 850 851 SYNOPSIS 852 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 853 854 DESCRIPTION 855 Run through @var{abfd} and return the one of the 856 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>. 857 @xref{Sections}, for more information. 858 859 This should only be used in special cases; the normal way to process 860 all sections of a given name is to use <<bfd_map_over_sections>> and 861 <<strcmp>> on the name (or better yet, base it on the section flags 862 or something else) for each section. 863 */ 864 865 asection * 866 bfd_get_section_by_name (bfd *abfd, const char *name) 867 { 868 struct section_hash_entry *sh; 869 870 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 871 if (sh != NULL) 872 return &sh->section; 873 874 return NULL; 875 } 876 877 /* 878 FUNCTION 879 bfd_get_section_by_name_if 880 881 SYNOPSIS 882 asection *bfd_get_section_by_name_if 883 (bfd *abfd, 884 const char *name, 885 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 886 void *obj); 887 888 DESCRIPTION 889 Call the provided function @var{func} for each section 890 attached to the BFD @var{abfd} whose name matches @var{name}, 891 passing @var{obj} as an argument. The function will be called 892 as if by 893 894 | func (abfd, the_section, obj); 895 896 It returns the first section for which @var{func} returns true, 897 otherwise <<NULL>>. 898 899 */ 900 901 asection * 902 bfd_get_section_by_name_if (bfd *abfd, const char *name, 903 bfd_boolean (*operation) (bfd *, 904 asection *, 905 void *), 906 void *user_storage) 907 { 908 struct section_hash_entry *sh; 909 unsigned long hash; 910 911 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 912 if (sh == NULL) 913 return NULL; 914 915 hash = sh->root.hash; 916 do 917 { 918 if ((*operation) (abfd, &sh->section, user_storage)) 919 return &sh->section; 920 sh = (struct section_hash_entry *) sh->root.next; 921 } 922 while (sh != NULL && sh->root.hash == hash 923 && strcmp (sh->root.string, name) == 0); 924 925 return NULL; 926 } 927 928 /* 929 FUNCTION 930 bfd_get_unique_section_name 931 932 SYNOPSIS 933 char *bfd_get_unique_section_name 934 (bfd *abfd, const char *templat, int *count); 935 936 DESCRIPTION 937 Invent a section name that is unique in @var{abfd} by tacking 938 a dot and a digit suffix onto the original @var{templat}. If 939 @var{count} is non-NULL, then it specifies the first number 940 tried as a suffix to generate a unique name. The value 941 pointed to by @var{count} will be incremented in this case. 942 */ 943 944 char * 945 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 946 { 947 int num; 948 unsigned int len; 949 char *sname; 950 951 len = strlen (templat); 952 sname = (char *) bfd_malloc (len + 8); 953 if (sname == NULL) 954 return NULL; 955 memcpy (sname, templat, len); 956 num = 1; 957 if (count != NULL) 958 num = *count; 959 960 do 961 { 962 /* If we have a million sections, something is badly wrong. */ 963 if (num > 999999) 964 abort (); 965 sprintf (sname + len, ".%d", num++); 966 } 967 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 968 969 if (count != NULL) 970 *count = num; 971 return sname; 972 } 973 974 /* 975 FUNCTION 976 bfd_make_section_old_way 977 978 SYNOPSIS 979 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 980 981 DESCRIPTION 982 Create a new empty section called @var{name} 983 and attach it to the end of the chain of sections for the 984 BFD @var{abfd}. An attempt to create a section with a name which 985 is already in use returns its pointer without changing the 986 section chain. 987 988 It has the funny name since this is the way it used to be 989 before it was rewritten.... 990 991 Possible errors are: 992 o <<bfd_error_invalid_operation>> - 993 If output has already started for this BFD. 994 o <<bfd_error_no_memory>> - 995 If memory allocation fails. 996 997 */ 998 999 asection * 1000 bfd_make_section_old_way (bfd *abfd, const char *name) 1001 { 1002 asection *newsect; 1003 1004 if (abfd->output_has_begun) 1005 { 1006 bfd_set_error (bfd_error_invalid_operation); 1007 return NULL; 1008 } 1009 1010 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1011 newsect = bfd_abs_section_ptr; 1012 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1013 newsect = bfd_com_section_ptr; 1014 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1015 newsect = bfd_und_section_ptr; 1016 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1017 newsect = bfd_ind_section_ptr; 1018 else 1019 { 1020 struct section_hash_entry *sh; 1021 1022 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1023 if (sh == NULL) 1024 return NULL; 1025 1026 newsect = &sh->section; 1027 if (newsect->name != NULL) 1028 { 1029 /* Section already exists. */ 1030 return newsect; 1031 } 1032 1033 newsect->name = name; 1034 return bfd_section_init (abfd, newsect); 1035 } 1036 1037 /* Call new_section_hook when "creating" the standard abs, com, und 1038 and ind sections to tack on format specific section data. 1039 Also, create a proper section symbol. */ 1040 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1041 return NULL; 1042 return newsect; 1043 } 1044 1045 /* 1046 FUNCTION 1047 bfd_make_section_anyway_with_flags 1048 1049 SYNOPSIS 1050 asection *bfd_make_section_anyway_with_flags 1051 (bfd *abfd, const char *name, flagword flags); 1052 1053 DESCRIPTION 1054 Create a new empty section called @var{name} and attach it to the end of 1055 the chain of sections for @var{abfd}. Create a new section even if there 1056 is already a section with that name. Also set the attributes of the 1057 new section to the value @var{flags}. 1058 1059 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1060 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1061 o <<bfd_error_no_memory>> - If memory allocation fails. 1062 */ 1063 1064 sec_ptr 1065 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1066 flagword flags) 1067 { 1068 struct section_hash_entry *sh; 1069 asection *newsect; 1070 1071 if (abfd->output_has_begun) 1072 { 1073 bfd_set_error (bfd_error_invalid_operation); 1074 return NULL; 1075 } 1076 1077 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1078 if (sh == NULL) 1079 return NULL; 1080 1081 newsect = &sh->section; 1082 if (newsect->name != NULL) 1083 { 1084 /* We are making a section of the same name. Put it in the 1085 section hash table. Even though we can't find it directly by a 1086 hash lookup, we'll be able to find the section by traversing 1087 sh->root.next quicker than looking at all the bfd sections. */ 1088 struct section_hash_entry *new_sh; 1089 new_sh = (struct section_hash_entry *) 1090 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1091 if (new_sh == NULL) 1092 return NULL; 1093 1094 new_sh->root = sh->root; 1095 sh->root.next = &new_sh->root; 1096 newsect = &new_sh->section; 1097 } 1098 1099 newsect->flags = flags; 1100 newsect->name = name; 1101 return bfd_section_init (abfd, newsect); 1102 } 1103 1104 /* 1105 FUNCTION 1106 bfd_make_section_anyway 1107 1108 SYNOPSIS 1109 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1110 1111 DESCRIPTION 1112 Create a new empty section called @var{name} and attach it to the end of 1113 the chain of sections for @var{abfd}. Create a new section even if there 1114 is already a section with that name. 1115 1116 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1117 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1118 o <<bfd_error_no_memory>> - If memory allocation fails. 1119 */ 1120 1121 sec_ptr 1122 bfd_make_section_anyway (bfd *abfd, const char *name) 1123 { 1124 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1125 } 1126 1127 /* 1128 FUNCTION 1129 bfd_make_section_with_flags 1130 1131 SYNOPSIS 1132 asection *bfd_make_section_with_flags 1133 (bfd *, const char *name, flagword flags); 1134 1135 DESCRIPTION 1136 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1137 bfd_set_error ()) without changing the section chain if there is already a 1138 section named @var{name}. Also set the attributes of the new section to 1139 the value @var{flags}. If there is an error, return <<NULL>> and set 1140 <<bfd_error>>. 1141 */ 1142 1143 asection * 1144 bfd_make_section_with_flags (bfd *abfd, const char *name, 1145 flagword flags) 1146 { 1147 struct section_hash_entry *sh; 1148 asection *newsect; 1149 1150 if (abfd->output_has_begun) 1151 { 1152 bfd_set_error (bfd_error_invalid_operation); 1153 return NULL; 1154 } 1155 1156 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1157 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1158 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1159 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1160 return NULL; 1161 1162 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1163 if (sh == NULL) 1164 return NULL; 1165 1166 newsect = &sh->section; 1167 if (newsect->name != NULL) 1168 { 1169 /* Section already exists. */ 1170 return NULL; 1171 } 1172 1173 newsect->name = name; 1174 newsect->flags = flags; 1175 return bfd_section_init (abfd, newsect); 1176 } 1177 1178 /* 1179 FUNCTION 1180 bfd_make_section 1181 1182 SYNOPSIS 1183 asection *bfd_make_section (bfd *, const char *name); 1184 1185 DESCRIPTION 1186 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1187 bfd_set_error ()) without changing the section chain if there is already a 1188 section named @var{name}. If there is an error, return <<NULL>> and set 1189 <<bfd_error>>. 1190 */ 1191 1192 asection * 1193 bfd_make_section (bfd *abfd, const char *name) 1194 { 1195 return bfd_make_section_with_flags (abfd, name, 0); 1196 } 1197 1198 /* 1199 FUNCTION 1200 bfd_set_section_flags 1201 1202 SYNOPSIS 1203 bfd_boolean bfd_set_section_flags 1204 (bfd *abfd, asection *sec, flagword flags); 1205 1206 DESCRIPTION 1207 Set the attributes of the section @var{sec} in the BFD 1208 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1209 <<FALSE>> on error. Possible error returns are: 1210 1211 o <<bfd_error_invalid_operation>> - 1212 The section cannot have one or more of the attributes 1213 requested. For example, a .bss section in <<a.out>> may not 1214 have the <<SEC_HAS_CONTENTS>> field set. 1215 1216 */ 1217 1218 bfd_boolean 1219 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1220 sec_ptr section, 1221 flagword flags) 1222 { 1223 section->flags = flags; 1224 return TRUE; 1225 } 1226 1227 /* 1228 FUNCTION 1229 bfd_rename_section 1230 1231 SYNOPSIS 1232 void bfd_rename_section 1233 (bfd *abfd, asection *sec, const char *newname); 1234 1235 DESCRIPTION 1236 Rename section @var{sec} in @var{abfd} to @var{newname}. 1237 */ 1238 1239 void 1240 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1241 { 1242 struct section_hash_entry *sh; 1243 1244 sh = (struct section_hash_entry *) 1245 ((char *) sec - offsetof (struct section_hash_entry, section)); 1246 sh->section.name = newname; 1247 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1248 } 1249 1250 /* 1251 FUNCTION 1252 bfd_map_over_sections 1253 1254 SYNOPSIS 1255 void bfd_map_over_sections 1256 (bfd *abfd, 1257 void (*func) (bfd *abfd, asection *sect, void *obj), 1258 void *obj); 1259 1260 DESCRIPTION 1261 Call the provided function @var{func} for each section 1262 attached to the BFD @var{abfd}, passing @var{obj} as an 1263 argument. The function will be called as if by 1264 1265 | func (abfd, the_section, obj); 1266 1267 This is the preferred method for iterating over sections; an 1268 alternative would be to use a loop: 1269 1270 | section *p; 1271 | for (p = abfd->sections; p != NULL; p = p->next) 1272 | func (abfd, p, ...) 1273 1274 */ 1275 1276 void 1277 bfd_map_over_sections (bfd *abfd, 1278 void (*operation) (bfd *, asection *, void *), 1279 void *user_storage) 1280 { 1281 asection *sect; 1282 unsigned int i = 0; 1283 1284 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1285 (*operation) (abfd, sect, user_storage); 1286 1287 if (i != abfd->section_count) /* Debugging */ 1288 abort (); 1289 } 1290 1291 /* 1292 FUNCTION 1293 bfd_sections_find_if 1294 1295 SYNOPSIS 1296 asection *bfd_sections_find_if 1297 (bfd *abfd, 1298 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1299 void *obj); 1300 1301 DESCRIPTION 1302 Call the provided function @var{operation} for each section 1303 attached to the BFD @var{abfd}, passing @var{obj} as an 1304 argument. The function will be called as if by 1305 1306 | operation (abfd, the_section, obj); 1307 1308 It returns the first section for which @var{operation} returns true. 1309 1310 */ 1311 1312 asection * 1313 bfd_sections_find_if (bfd *abfd, 1314 bfd_boolean (*operation) (bfd *, asection *, void *), 1315 void *user_storage) 1316 { 1317 asection *sect; 1318 1319 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1320 if ((*operation) (abfd, sect, user_storage)) 1321 break; 1322 1323 return sect; 1324 } 1325 1326 /* 1327 FUNCTION 1328 bfd_set_section_size 1329 1330 SYNOPSIS 1331 bfd_boolean bfd_set_section_size 1332 (bfd *abfd, asection *sec, bfd_size_type val); 1333 1334 DESCRIPTION 1335 Set @var{sec} to the size @var{val}. If the operation is 1336 ok, then <<TRUE>> is returned, else <<FALSE>>. 1337 1338 Possible error returns: 1339 o <<bfd_error_invalid_operation>> - 1340 Writing has started to the BFD, so setting the size is invalid. 1341 1342 */ 1343 1344 bfd_boolean 1345 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1346 { 1347 /* Once you've started writing to any section you cannot create or change 1348 the size of any others. */ 1349 1350 if (abfd->output_has_begun) 1351 { 1352 bfd_set_error (bfd_error_invalid_operation); 1353 return FALSE; 1354 } 1355 1356 ptr->size = val; 1357 return TRUE; 1358 } 1359 1360 /* 1361 FUNCTION 1362 bfd_set_section_contents 1363 1364 SYNOPSIS 1365 bfd_boolean bfd_set_section_contents 1366 (bfd *abfd, asection *section, const void *data, 1367 file_ptr offset, bfd_size_type count); 1368 1369 DESCRIPTION 1370 Sets the contents of the section @var{section} in BFD 1371 @var{abfd} to the data starting in memory at @var{data}. The 1372 data is written to the output section starting at offset 1373 @var{offset} for @var{count} octets. 1374 1375 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1376 returns are: 1377 o <<bfd_error_no_contents>> - 1378 The output section does not have the <<SEC_HAS_CONTENTS>> 1379 attribute, so nothing can be written to it. 1380 o and some more too 1381 1382 This routine is front end to the back end function 1383 <<_bfd_set_section_contents>>. 1384 1385 */ 1386 1387 bfd_boolean 1388 bfd_set_section_contents (bfd *abfd, 1389 sec_ptr section, 1390 const void *location, 1391 file_ptr offset, 1392 bfd_size_type count) 1393 { 1394 bfd_size_type sz; 1395 1396 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1397 { 1398 bfd_set_error (bfd_error_no_contents); 1399 return FALSE; 1400 } 1401 1402 sz = section->size; 1403 if ((bfd_size_type) offset > sz 1404 || count > sz 1405 || offset + count > sz 1406 || count != (size_t) count) 1407 { 1408 bfd_set_error (bfd_error_bad_value); 1409 return FALSE; 1410 } 1411 1412 if (!bfd_write_p (abfd)) 1413 { 1414 bfd_set_error (bfd_error_invalid_operation); 1415 return FALSE; 1416 } 1417 1418 /* Record a copy of the data in memory if desired. */ 1419 if (section->contents 1420 && location != section->contents + offset) 1421 memcpy (section->contents + offset, location, (size_t) count); 1422 1423 if (BFD_SEND (abfd, _bfd_set_section_contents, 1424 (abfd, section, location, offset, count))) 1425 { 1426 abfd->output_has_begun = TRUE; 1427 return TRUE; 1428 } 1429 1430 return FALSE; 1431 } 1432 1433 /* 1434 FUNCTION 1435 bfd_get_section_contents 1436 1437 SYNOPSIS 1438 bfd_boolean bfd_get_section_contents 1439 (bfd *abfd, asection *section, void *location, file_ptr offset, 1440 bfd_size_type count); 1441 1442 DESCRIPTION 1443 Read data from @var{section} in BFD @var{abfd} 1444 into memory starting at @var{location}. The data is read at an 1445 offset of @var{offset} from the start of the input section, 1446 and is read for @var{count} bytes. 1447 1448 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1449 flag set are requested or if the section does not have the 1450 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1451 with zeroes. If no errors occur, <<TRUE>> is returned, else 1452 <<FALSE>>. 1453 1454 */ 1455 bfd_boolean 1456 bfd_get_section_contents (bfd *abfd, 1457 sec_ptr section, 1458 void *location, 1459 file_ptr offset, 1460 bfd_size_type count) 1461 { 1462 bfd_size_type sz; 1463 1464 if (section->flags & SEC_CONSTRUCTOR) 1465 { 1466 memset (location, 0, (size_t) count); 1467 return TRUE; 1468 } 1469 1470 if (abfd->direction != write_direction && section->rawsize != 0) 1471 sz = section->rawsize; 1472 else 1473 sz = section->size; 1474 if ((bfd_size_type) offset > sz 1475 || count > sz 1476 || offset + count > sz 1477 || count != (size_t) count) 1478 { 1479 bfd_set_error (bfd_error_bad_value); 1480 return FALSE; 1481 } 1482 1483 if (count == 0) 1484 /* Don't bother. */ 1485 return TRUE; 1486 1487 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1488 { 1489 memset (location, 0, (size_t) count); 1490 return TRUE; 1491 } 1492 1493 if ((section->flags & SEC_IN_MEMORY) != 0) 1494 { 1495 if (section->contents == NULL) 1496 { 1497 /* This can happen because of errors earlier on in the linking process. 1498 We do not want to seg-fault here, so clear the flag and return an 1499 error code. */ 1500 section->flags &= ~ SEC_IN_MEMORY; 1501 bfd_set_error (bfd_error_invalid_operation); 1502 return FALSE; 1503 } 1504 1505 memcpy (location, section->contents + offset, (size_t) count); 1506 return TRUE; 1507 } 1508 1509 return BFD_SEND (abfd, _bfd_get_section_contents, 1510 (abfd, section, location, offset, count)); 1511 } 1512 1513 /* 1514 FUNCTION 1515 bfd_malloc_and_get_section 1516 1517 SYNOPSIS 1518 bfd_boolean bfd_malloc_and_get_section 1519 (bfd *abfd, asection *section, bfd_byte **buf); 1520 1521 DESCRIPTION 1522 Read all data from @var{section} in BFD @var{abfd} 1523 into a buffer, *@var{buf}, malloc'd by this function. 1524 */ 1525 1526 bfd_boolean 1527 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1528 { 1529 *buf = NULL; 1530 return bfd_get_full_section_contents (abfd, sec, buf); 1531 } 1532 /* 1533 FUNCTION 1534 bfd_copy_private_section_data 1535 1536 SYNOPSIS 1537 bfd_boolean bfd_copy_private_section_data 1538 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1539 1540 DESCRIPTION 1541 Copy private section information from @var{isec} in the BFD 1542 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1543 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1544 returns are: 1545 1546 o <<bfd_error_no_memory>> - 1547 Not enough memory exists to create private data for @var{osec}. 1548 1549 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1550 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1551 . (ibfd, isection, obfd, osection)) 1552 */ 1553 1554 /* 1555 FUNCTION 1556 bfd_generic_is_group_section 1557 1558 SYNOPSIS 1559 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1560 1561 DESCRIPTION 1562 Returns TRUE if @var{sec} is a member of a group. 1563 */ 1564 1565 bfd_boolean 1566 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1567 const asection *sec ATTRIBUTE_UNUSED) 1568 { 1569 return FALSE; 1570 } 1571 1572 /* 1573 FUNCTION 1574 bfd_generic_discard_group 1575 1576 SYNOPSIS 1577 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1578 1579 DESCRIPTION 1580 Remove all members of @var{group} from the output. 1581 */ 1582 1583 bfd_boolean 1584 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1585 asection *group ATTRIBUTE_UNUSED) 1586 { 1587 return TRUE; 1588 } 1589