1 /* Object file "section" support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 4 Free Software Foundation, Inc. 5 Written by Cygnus Support. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 /* 25 SECTION 26 Sections 27 28 The raw data contained within a BFD is maintained through the 29 section abstraction. A single BFD may have any number of 30 sections. It keeps hold of them by pointing to the first; 31 each one points to the next in the list. 32 33 Sections are supported in BFD in <<section.c>>. 34 35 @menu 36 @* Section Input:: 37 @* Section Output:: 38 @* typedef asection:: 39 @* section prototypes:: 40 @end menu 41 42 INODE 43 Section Input, Section Output, Sections, Sections 44 SUBSECTION 45 Section input 46 47 When a BFD is opened for reading, the section structures are 48 created and attached to the BFD. 49 50 Each section has a name which describes the section in the 51 outside world---for example, <<a.out>> would contain at least 52 three sections, called <<.text>>, <<.data>> and <<.bss>>. 53 54 Names need not be unique; for example a COFF file may have several 55 sections named <<.data>>. 56 57 Sometimes a BFD will contain more than the ``natural'' number of 58 sections. A back end may attach other sections containing 59 constructor data, or an application may add a section (using 60 <<bfd_make_section>>) to the sections attached to an already open 61 BFD. For example, the linker creates an extra section 62 <<COMMON>> for each input file's BFD to hold information about 63 common storage. 64 65 The raw data is not necessarily read in when 66 the section descriptor is created. Some targets may leave the 67 data in place until a <<bfd_get_section_contents>> call is 68 made. Other back ends may read in all the data at once. For 69 example, an S-record file has to be read once to determine the 70 size of the data. An IEEE-695 file doesn't contain raw data in 71 sections, but data and relocation expressions intermixed, so 72 the data area has to be parsed to get out the data and 73 relocations. 74 75 INODE 76 Section Output, typedef asection, Section Input, Sections 77 78 SUBSECTION 79 Section output 80 81 To write a new object style BFD, the various sections to be 82 written have to be created. They are attached to the BFD in 83 the same way as input sections; data is written to the 84 sections using <<bfd_set_section_contents>>. 85 86 Any program that creates or combines sections (e.g., the assembler 87 and linker) must use the <<asection>> fields <<output_section>> and 88 <<output_offset>> to indicate the file sections to which each 89 section must be written. (If the section is being created from 90 scratch, <<output_section>> should probably point to the section 91 itself and <<output_offset>> should probably be zero.) 92 93 The data to be written comes from input sections attached 94 (via <<output_section>> pointers) to 95 the output sections. The output section structure can be 96 considered a filter for the input section: the output section 97 determines the vma of the output data and the name, but the 98 input section determines the offset into the output section of 99 the data to be written. 100 101 E.g., to create a section "O", starting at 0x100, 0x123 long, 102 containing two subsections, "A" at offset 0x0 (i.e., at vma 103 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 104 structures would look like: 105 106 | section name "A" 107 | output_offset 0x00 108 | size 0x20 109 | output_section -----------> section name "O" 110 | | vma 0x100 111 | section name "B" | size 0x123 112 | output_offset 0x20 | 113 | size 0x103 | 114 | output_section --------| 115 116 SUBSECTION 117 Link orders 118 119 The data within a section is stored in a @dfn{link_order}. 120 These are much like the fixups in <<gas>>. The link_order 121 abstraction allows a section to grow and shrink within itself. 122 123 A link_order knows how big it is, and which is the next 124 link_order and where the raw data for it is; it also points to 125 a list of relocations which apply to it. 126 127 The link_order is used by the linker to perform relaxing on 128 final code. The compiler creates code which is as big as 129 necessary to make it work without relaxing, and the user can 130 select whether to relax. Sometimes relaxing takes a lot of 131 time. The linker runs around the relocations to see if any 132 are attached to data which can be shrunk, if so it does it on 133 a link_order by link_order basis. 134 135 */ 136 137 #include "sysdep.h" 138 #include "bfd.h" 139 #include "libbfd.h" 140 #include "bfdlink.h" 141 142 /* 143 DOCDD 144 INODE 145 typedef asection, section prototypes, Section Output, Sections 146 SUBSECTION 147 typedef asection 148 149 Here is the section structure: 150 151 CODE_FRAGMENT 152 . 153 .typedef struct bfd_section 154 .{ 155 . {* The name of the section; the name isn't a copy, the pointer is 156 . the same as that passed to bfd_make_section. *} 157 . const char *name; 158 . 159 . {* A unique sequence number. *} 160 . int id; 161 . 162 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 163 . int index; 164 . 165 . {* The next section in the list belonging to the BFD, or NULL. *} 166 . struct bfd_section *next; 167 . 168 . {* The previous section in the list belonging to the BFD, or NULL. *} 169 . struct bfd_section *prev; 170 . 171 . {* The field flags contains attributes of the section. Some 172 . flags are read in from the object file, and some are 173 . synthesized from other information. *} 174 . flagword flags; 175 . 176 .#define SEC_NO_FLAGS 0x000 177 . 178 . {* Tells the OS to allocate space for this section when loading. 179 . This is clear for a section containing debug information only. *} 180 .#define SEC_ALLOC 0x001 181 . 182 . {* Tells the OS to load the section from the file when loading. 183 . This is clear for a .bss section. *} 184 .#define SEC_LOAD 0x002 185 . 186 . {* The section contains data still to be relocated, so there is 187 . some relocation information too. *} 188 .#define SEC_RELOC 0x004 189 . 190 . {* A signal to the OS that the section contains read only data. *} 191 .#define SEC_READONLY 0x008 192 . 193 . {* The section contains code only. *} 194 .#define SEC_CODE 0x010 195 . 196 . {* The section contains data only. *} 197 .#define SEC_DATA 0x020 198 . 199 . {* The section will reside in ROM. *} 200 .#define SEC_ROM 0x040 201 . 202 . {* The section contains constructor information. This section 203 . type is used by the linker to create lists of constructors and 204 . destructors used by <<g++>>. When a back end sees a symbol 205 . which should be used in a constructor list, it creates a new 206 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 207 . the symbol to it, and builds a relocation. To build the lists 208 . of constructors, all the linker has to do is catenate all the 209 . sections called <<__CTOR_LIST__>> and relocate the data 210 . contained within - exactly the operations it would peform on 211 . standard data. *} 212 .#define SEC_CONSTRUCTOR 0x080 213 . 214 . {* The section has contents - a data section could be 215 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 216 . <<SEC_HAS_CONTENTS>> *} 217 .#define SEC_HAS_CONTENTS 0x100 218 . 219 . {* An instruction to the linker to not output the section 220 . even if it has information which would normally be written. *} 221 .#define SEC_NEVER_LOAD 0x200 222 . 223 . {* The section contains thread local data. *} 224 .#define SEC_THREAD_LOCAL 0x400 225 . 226 . {* The section has GOT references. This flag is only for the 227 . linker, and is currently only used by the elf32-hppa back end. 228 . It will be set if global offset table references were detected 229 . in this section, which indicate to the linker that the section 230 . contains PIC code, and must be handled specially when doing a 231 . static link. *} 232 .#define SEC_HAS_GOT_REF 0x800 233 . 234 . {* The section contains common symbols (symbols may be defined 235 . multiple times, the value of a symbol is the amount of 236 . space it requires, and the largest symbol value is the one 237 . used). Most targets have exactly one of these (which we 238 . translate to bfd_com_section_ptr), but ECOFF has two. *} 239 .#define SEC_IS_COMMON 0x1000 240 . 241 . {* The section contains only debugging information. For 242 . example, this is set for ELF .debug and .stab sections. 243 . strip tests this flag to see if a section can be 244 . discarded. *} 245 .#define SEC_DEBUGGING 0x2000 246 . 247 . {* The contents of this section are held in memory pointed to 248 . by the contents field. This is checked by bfd_get_section_contents, 249 . and the data is retrieved from memory if appropriate. *} 250 .#define SEC_IN_MEMORY 0x4000 251 . 252 . {* The contents of this section are to be excluded by the 253 . linker for executable and shared objects unless those 254 . objects are to be further relocated. *} 255 .#define SEC_EXCLUDE 0x8000 256 . 257 . {* The contents of this section are to be sorted based on the sum of 258 . the symbol and addend values specified by the associated relocation 259 . entries. Entries without associated relocation entries will be 260 . appended to the end of the section in an unspecified order. *} 261 .#define SEC_SORT_ENTRIES 0x10000 262 . 263 . {* When linking, duplicate sections of the same name should be 264 . discarded, rather than being combined into a single section as 265 . is usually done. This is similar to how common symbols are 266 . handled. See SEC_LINK_DUPLICATES below. *} 267 .#define SEC_LINK_ONCE 0x20000 268 . 269 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 270 . should handle duplicate sections. *} 271 .#define SEC_LINK_DUPLICATES 0xc0000 272 . 273 . {* This value for SEC_LINK_DUPLICATES means that duplicate 274 . sections with the same name should simply be discarded. *} 275 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 276 . 277 . {* This value for SEC_LINK_DUPLICATES means that the linker 278 . should warn if there are any duplicate sections, although 279 . it should still only link one copy. *} 280 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 281 . 282 . {* This value for SEC_LINK_DUPLICATES means that the linker 283 . should warn if any duplicate sections are a different size. *} 284 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 285 . 286 . {* This value for SEC_LINK_DUPLICATES means that the linker 287 . should warn if any duplicate sections contain different 288 . contents. *} 289 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 290 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 291 . 292 . {* This section was created by the linker as part of dynamic 293 . relocation or other arcane processing. It is skipped when 294 . going through the first-pass output, trusting that someone 295 . else up the line will take care of it later. *} 296 .#define SEC_LINKER_CREATED 0x100000 297 . 298 . {* This section should not be subject to garbage collection. 299 . Also set to inform the linker that this section should not be 300 . listed in the link map as discarded. *} 301 .#define SEC_KEEP 0x200000 302 . 303 . {* This section contains "short" data, and should be placed 304 . "near" the GP. *} 305 .#define SEC_SMALL_DATA 0x400000 306 . 307 . {* Attempt to merge identical entities in the section. 308 . Entity size is given in the entsize field. *} 309 .#define SEC_MERGE 0x800000 310 . 311 . {* If given with SEC_MERGE, entities to merge are zero terminated 312 . strings where entsize specifies character size instead of fixed 313 . size entries. *} 314 .#define SEC_STRINGS 0x1000000 315 . 316 . {* This section contains data about section groups. *} 317 .#define SEC_GROUP 0x2000000 318 . 319 . {* The section is a COFF shared library section. This flag is 320 . only for the linker. If this type of section appears in 321 . the input file, the linker must copy it to the output file 322 . without changing the vma or size. FIXME: Although this 323 . was originally intended to be general, it really is COFF 324 . specific (and the flag was renamed to indicate this). It 325 . might be cleaner to have some more general mechanism to 326 . allow the back end to control what the linker does with 327 . sections. *} 328 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 329 . 330 . {* This section contains data which may be shared with other 331 . executables or shared objects. This is for COFF only. *} 332 .#define SEC_COFF_SHARED 0x8000000 333 . 334 . {* When a section with this flag is being linked, then if the size of 335 . the input section is less than a page, it should not cross a page 336 . boundary. If the size of the input section is one page or more, 337 . it should be aligned on a page boundary. This is for TI 338 . TMS320C54X only. *} 339 .#define SEC_TIC54X_BLOCK 0x10000000 340 . 341 . {* Conditionally link this section; do not link if there are no 342 . references found to any symbol in the section. This is for TI 343 . TMS320C54X only. *} 344 .#define SEC_TIC54X_CLINK 0x20000000 345 . 346 . {* Indicate that section has the no read flag set. This happens 347 . when memory read flag isn't set. *} 348 .#define SEC_COFF_NOREAD 0x40000000 349 . 350 . {* End of section flags. *} 351 . 352 . {* Some internal packed boolean fields. *} 353 . 354 . {* See the vma field. *} 355 . unsigned int user_set_vma : 1; 356 . 357 . {* A mark flag used by some of the linker backends. *} 358 . unsigned int linker_mark : 1; 359 . 360 . {* Another mark flag used by some of the linker backends. Set for 361 . output sections that have an input section. *} 362 . unsigned int linker_has_input : 1; 363 . 364 . {* Mark flag used by some linker backends for garbage collection. *} 365 . unsigned int gc_mark : 1; 366 . 367 . {* The following flags are used by the ELF linker. *} 368 . 369 . {* Mark sections which have been allocated to segments. *} 370 . unsigned int segment_mark : 1; 371 . 372 . {* Type of sec_info information. *} 373 . unsigned int sec_info_type:3; 374 .#define ELF_INFO_TYPE_NONE 0 375 .#define ELF_INFO_TYPE_STABS 1 376 .#define ELF_INFO_TYPE_MERGE 2 377 .#define ELF_INFO_TYPE_EH_FRAME 3 378 .#define ELF_INFO_TYPE_JUST_SYMS 4 379 . 380 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 381 . unsigned int use_rela_p:1; 382 . 383 . {* Bits used by various backends. The generic code doesn't touch 384 . these fields. *} 385 . 386 . {* Nonzero if this section has TLS related relocations. *} 387 . unsigned int has_tls_reloc:1; 388 . 389 . {* Nonzero if this section has a call to __tls_get_addr. *} 390 . unsigned int has_tls_get_addr_call:1; 391 . 392 . {* Nonzero if this section has a gp reloc. *} 393 . unsigned int has_gp_reloc:1; 394 . 395 . {* Nonzero if this section needs the relax finalize pass. *} 396 . unsigned int need_finalize_relax:1; 397 . 398 . {* Whether relocations have been processed. *} 399 . unsigned int reloc_done : 1; 400 . 401 . {* End of internal packed boolean fields. *} 402 . 403 . {* The virtual memory address of the section - where it will be 404 . at run time. The symbols are relocated against this. The 405 . user_set_vma flag is maintained by bfd; if it's not set, the 406 . backend can assign addresses (for example, in <<a.out>>, where 407 . the default address for <<.data>> is dependent on the specific 408 . target and various flags). *} 409 . bfd_vma vma; 410 . 411 . {* The load address of the section - where it would be in a 412 . rom image; really only used for writing section header 413 . information. *} 414 . bfd_vma lma; 415 . 416 . {* The size of the section in octets, as it will be output. 417 . Contains a value even if the section has no contents (e.g., the 418 . size of <<.bss>>). *} 419 . bfd_size_type size; 420 . 421 . {* For input sections, the original size on disk of the section, in 422 . octets. This field should be set for any section whose size is 423 . changed by linker relaxation. It is required for sections where 424 . the linker relaxation scheme doesn't cache altered section and 425 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 426 . targets), and thus the original size needs to be kept to read the 427 . section multiple times. For output sections, rawsize holds the 428 . section size calculated on a previous linker relaxation pass. *} 429 . bfd_size_type rawsize; 430 . 431 . {* Relaxation table. *} 432 . struct relax_table *relax; 433 . 434 . {* Count of used relaxation table entries. *} 435 . int relax_count; 436 . 437 . 438 . {* If this section is going to be output, then this value is the 439 . offset in *bytes* into the output section of the first byte in the 440 . input section (byte ==> smallest addressable unit on the 441 . target). In most cases, if this was going to start at the 442 . 100th octet (8-bit quantity) in the output section, this value 443 . would be 100. However, if the target byte size is 16 bits 444 . (bfd_octets_per_byte is "2"), this value would be 50. *} 445 . bfd_vma output_offset; 446 . 447 . {* The output section through which to map on output. *} 448 . struct bfd_section *output_section; 449 . 450 . {* The alignment requirement of the section, as an exponent of 2 - 451 . e.g., 3 aligns to 2^3 (or 8). *} 452 . unsigned int alignment_power; 453 . 454 . {* If an input section, a pointer to a vector of relocation 455 . records for the data in this section. *} 456 . struct reloc_cache_entry *relocation; 457 . 458 . {* If an output section, a pointer to a vector of pointers to 459 . relocation records for the data in this section. *} 460 . struct reloc_cache_entry **orelocation; 461 . 462 . {* The number of relocation records in one of the above. *} 463 . unsigned reloc_count; 464 . 465 . {* Information below is back end specific - and not always used 466 . or updated. *} 467 . 468 . {* File position of section data. *} 469 . file_ptr filepos; 470 . 471 . {* File position of relocation info. *} 472 . file_ptr rel_filepos; 473 . 474 . {* File position of line data. *} 475 . file_ptr line_filepos; 476 . 477 . {* Pointer to data for applications. *} 478 . void *userdata; 479 . 480 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 481 . contents. *} 482 . unsigned char *contents; 483 . 484 . {* Attached line number information. *} 485 . alent *lineno; 486 . 487 . {* Number of line number records. *} 488 . unsigned int lineno_count; 489 . 490 . {* Entity size for merging purposes. *} 491 . unsigned int entsize; 492 . 493 . {* Points to the kept section if this section is a link-once section, 494 . and is discarded. *} 495 . struct bfd_section *kept_section; 496 . 497 . {* When a section is being output, this value changes as more 498 . linenumbers are written out. *} 499 . file_ptr moving_line_filepos; 500 . 501 . {* What the section number is in the target world. *} 502 . int target_index; 503 . 504 . void *used_by_bfd; 505 . 506 . {* If this is a constructor section then here is a list of the 507 . relocations created to relocate items within it. *} 508 . struct relent_chain *constructor_chain; 509 . 510 . {* The BFD which owns the section. *} 511 . bfd *owner; 512 . 513 . {* A symbol which points at this section only. *} 514 . struct bfd_symbol *symbol; 515 . struct bfd_symbol **symbol_ptr_ptr; 516 . 517 . {* Early in the link process, map_head and map_tail are used to build 518 . a list of input sections attached to an output section. Later, 519 . output sections use these fields for a list of bfd_link_order 520 . structs. *} 521 . union { 522 . struct bfd_link_order *link_order; 523 . struct bfd_section *s; 524 . } map_head, map_tail; 525 .} asection; 526 . 527 .{* Relax table contains information about instructions which can 528 . be removed by relaxation -- replacing a long address with a 529 . short address. *} 530 .struct relax_table { 531 . {* Address where bytes may be deleted. *} 532 . bfd_vma addr; 533 . 534 . {* Number of bytes to be deleted. *} 535 . int size; 536 .}; 537 . 538 .{* These sections are global, and are managed by BFD. The application 539 . and target back end are not permitted to change the values in 540 . these sections. New code should use the section_ptr macros rather 541 . than referring directly to the const sections. The const sections 542 . may eventually vanish. *} 543 .#define BFD_ABS_SECTION_NAME "*ABS*" 544 .#define BFD_UND_SECTION_NAME "*UND*" 545 .#define BFD_COM_SECTION_NAME "*COM*" 546 .#define BFD_IND_SECTION_NAME "*IND*" 547 . 548 .{* The absolute section. *} 549 .extern asection bfd_abs_section; 550 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section) 551 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 552 .{* Pointer to the undefined section. *} 553 .extern asection bfd_und_section; 554 .#define bfd_und_section_ptr ((asection *) &bfd_und_section) 555 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 556 .{* Pointer to the common section. *} 557 .extern asection bfd_com_section; 558 .#define bfd_com_section_ptr ((asection *) &bfd_com_section) 559 .{* Pointer to the indirect section. *} 560 .extern asection bfd_ind_section; 561 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section) 562 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 563 . 564 .#define bfd_is_const_section(SEC) \ 565 . ( ((SEC) == bfd_abs_section_ptr) \ 566 . || ((SEC) == bfd_und_section_ptr) \ 567 . || ((SEC) == bfd_com_section_ptr) \ 568 . || ((SEC) == bfd_ind_section_ptr)) 569 . 570 .{* Macros to handle insertion and deletion of a bfd's sections. These 571 . only handle the list pointers, ie. do not adjust section_count, 572 . target_index etc. *} 573 .#define bfd_section_list_remove(ABFD, S) \ 574 . do \ 575 . { \ 576 . asection *_s = S; \ 577 . asection *_next = _s->next; \ 578 . asection *_prev = _s->prev; \ 579 . if (_prev) \ 580 . _prev->next = _next; \ 581 . else \ 582 . (ABFD)->sections = _next; \ 583 . if (_next) \ 584 . _next->prev = _prev; \ 585 . else \ 586 . (ABFD)->section_last = _prev; \ 587 . } \ 588 . while (0) 589 .#define bfd_section_list_append(ABFD, S) \ 590 . do \ 591 . { \ 592 . asection *_s = S; \ 593 . bfd *_abfd = ABFD; \ 594 . _s->next = NULL; \ 595 . if (_abfd->section_last) \ 596 . { \ 597 . _s->prev = _abfd->section_last; \ 598 . _abfd->section_last->next = _s; \ 599 . } \ 600 . else \ 601 . { \ 602 . _s->prev = NULL; \ 603 . _abfd->sections = _s; \ 604 . } \ 605 . _abfd->section_last = _s; \ 606 . } \ 607 . while (0) 608 .#define bfd_section_list_prepend(ABFD, S) \ 609 . do \ 610 . { \ 611 . asection *_s = S; \ 612 . bfd *_abfd = ABFD; \ 613 . _s->prev = NULL; \ 614 . if (_abfd->sections) \ 615 . { \ 616 . _s->next = _abfd->sections; \ 617 . _abfd->sections->prev = _s; \ 618 . } \ 619 . else \ 620 . { \ 621 . _s->next = NULL; \ 622 . _abfd->section_last = _s; \ 623 . } \ 624 . _abfd->sections = _s; \ 625 . } \ 626 . while (0) 627 .#define bfd_section_list_insert_after(ABFD, A, S) \ 628 . do \ 629 . { \ 630 . asection *_a = A; \ 631 . asection *_s = S; \ 632 . asection *_next = _a->next; \ 633 . _s->next = _next; \ 634 . _s->prev = _a; \ 635 . _a->next = _s; \ 636 . if (_next) \ 637 . _next->prev = _s; \ 638 . else \ 639 . (ABFD)->section_last = _s; \ 640 . } \ 641 . while (0) 642 .#define bfd_section_list_insert_before(ABFD, B, S) \ 643 . do \ 644 . { \ 645 . asection *_b = B; \ 646 . asection *_s = S; \ 647 . asection *_prev = _b->prev; \ 648 . _s->prev = _prev; \ 649 . _s->next = _b; \ 650 . _b->prev = _s; \ 651 . if (_prev) \ 652 . _prev->next = _s; \ 653 . else \ 654 . (ABFD)->sections = _s; \ 655 . } \ 656 . while (0) 657 .#define bfd_section_removed_from_list(ABFD, S) \ 658 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 659 . 660 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 661 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 662 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 663 . \ 664 . {* linker_mark, linker_has_input, gc_mark, *} \ 665 . 0, 0, 1, \ 666 . \ 667 . {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, *} \ 668 . 0, 0, 0, 0, \ 669 . \ 670 . {* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax, *} \ 671 . 0, 0, 0, \ 672 . \ 673 . {* reloc_done, vma, lma, size, rawsize, relax, relax_count, *} \ 674 . 0, 0, 0, 0, 0, 0, 0, \ 675 . \ 676 . {* output_offset, output_section, alignment_power, *} \ 677 . 0, (struct bfd_section *) &SEC, 0, \ 678 . \ 679 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 680 . NULL, NULL, 0, 0, 0, \ 681 . \ 682 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 683 . 0, NULL, NULL, NULL, 0, \ 684 . \ 685 . {* entsize, kept_section, moving_line_filepos, *} \ 686 . 0, NULL, 0, \ 687 . \ 688 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 689 . 0, NULL, NULL, NULL, \ 690 . \ 691 . {* symbol, symbol_ptr_ptr, *} \ 692 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 693 . \ 694 . {* map_head, map_tail *} \ 695 . { NULL }, { NULL } \ 696 . } 697 . 698 */ 699 700 /* We use a macro to initialize the static asymbol structures because 701 traditional C does not permit us to initialize a union member while 702 gcc warns if we don't initialize it. */ 703 /* the_bfd, name, value, attr, section [, udata] */ 704 #ifdef __STDC__ 705 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 706 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }} 707 #else 708 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 709 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION } 710 #endif 711 712 /* These symbols are global, not specific to any BFD. Therefore, anything 713 that tries to change them is broken, and should be repaired. */ 714 715 static const asymbol global_syms[] = 716 { 717 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section), 718 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section), 719 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section), 720 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section) 721 }; 722 723 #define STD_SECTION(SEC, FLAGS, NAME, IDX) \ 724 asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX], \ 725 NAME, IDX) 726 727 STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0); 728 STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1); 729 STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2); 730 STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3); 731 #undef STD_SECTION 732 733 /* Initialize an entry in the section hash table. */ 734 735 struct bfd_hash_entry * 736 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 737 struct bfd_hash_table *table, 738 const char *string) 739 { 740 /* Allocate the structure if it has not already been allocated by a 741 subclass. */ 742 if (entry == NULL) 743 { 744 entry = (struct bfd_hash_entry *) 745 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 746 if (entry == NULL) 747 return entry; 748 } 749 750 /* Call the allocation method of the superclass. */ 751 entry = bfd_hash_newfunc (entry, table, string); 752 if (entry != NULL) 753 memset (&((struct section_hash_entry *) entry)->section, 0, 754 sizeof (asection)); 755 756 return entry; 757 } 758 759 #define section_hash_lookup(table, string, create, copy) \ 760 ((struct section_hash_entry *) \ 761 bfd_hash_lookup ((table), (string), (create), (copy))) 762 763 /* Create a symbol whose only job is to point to this section. This 764 is useful for things like relocs which are relative to the base 765 of a section. */ 766 767 bfd_boolean 768 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 769 { 770 newsect->symbol = bfd_make_empty_symbol (abfd); 771 if (newsect->symbol == NULL) 772 return FALSE; 773 774 newsect->symbol->name = newsect->name; 775 newsect->symbol->value = 0; 776 newsect->symbol->section = newsect; 777 newsect->symbol->flags = BSF_SECTION_SYM; 778 779 newsect->symbol_ptr_ptr = &newsect->symbol; 780 return TRUE; 781 } 782 783 /* Initializes a new section. NEWSECT->NAME is already set. */ 784 785 static asection * 786 bfd_section_init (bfd *abfd, asection *newsect) 787 { 788 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 789 790 newsect->id = section_id; 791 newsect->index = abfd->section_count; 792 newsect->owner = abfd; 793 794 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 795 return NULL; 796 797 section_id++; 798 abfd->section_count++; 799 bfd_section_list_append (abfd, newsect); 800 return newsect; 801 } 802 803 /* 804 DOCDD 805 INODE 806 section prototypes, , typedef asection, Sections 807 SUBSECTION 808 Section prototypes 809 810 These are the functions exported by the section handling part of BFD. 811 */ 812 813 /* 814 FUNCTION 815 bfd_section_list_clear 816 817 SYNOPSIS 818 void bfd_section_list_clear (bfd *); 819 820 DESCRIPTION 821 Clears the section list, and also resets the section count and 822 hash table entries. 823 */ 824 825 void 826 bfd_section_list_clear (bfd *abfd) 827 { 828 abfd->sections = NULL; 829 abfd->section_last = NULL; 830 abfd->section_count = 0; 831 memset (abfd->section_htab.table, 0, 832 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 833 } 834 835 /* 836 FUNCTION 837 bfd_get_section_by_name 838 839 SYNOPSIS 840 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 841 842 DESCRIPTION 843 Run through @var{abfd} and return the one of the 844 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>. 845 @xref{Sections}, for more information. 846 847 This should only be used in special cases; the normal way to process 848 all sections of a given name is to use <<bfd_map_over_sections>> and 849 <<strcmp>> on the name (or better yet, base it on the section flags 850 or something else) for each section. 851 */ 852 853 asection * 854 bfd_get_section_by_name (bfd *abfd, const char *name) 855 { 856 struct section_hash_entry *sh; 857 858 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 859 if (sh != NULL) 860 return &sh->section; 861 862 return NULL; 863 } 864 865 /* 866 FUNCTION 867 bfd_get_section_by_name_if 868 869 SYNOPSIS 870 asection *bfd_get_section_by_name_if 871 (bfd *abfd, 872 const char *name, 873 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 874 void *obj); 875 876 DESCRIPTION 877 Call the provided function @var{func} for each section 878 attached to the BFD @var{abfd} whose name matches @var{name}, 879 passing @var{obj} as an argument. The function will be called 880 as if by 881 882 | func (abfd, the_section, obj); 883 884 It returns the first section for which @var{func} returns true, 885 otherwise <<NULL>>. 886 887 */ 888 889 asection * 890 bfd_get_section_by_name_if (bfd *abfd, const char *name, 891 bfd_boolean (*operation) (bfd *, 892 asection *, 893 void *), 894 void *user_storage) 895 { 896 struct section_hash_entry *sh; 897 unsigned long hash; 898 899 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 900 if (sh == NULL) 901 return NULL; 902 903 hash = sh->root.hash; 904 do 905 { 906 if ((*operation) (abfd, &sh->section, user_storage)) 907 return &sh->section; 908 sh = (struct section_hash_entry *) sh->root.next; 909 } 910 while (sh != NULL && sh->root.hash == hash 911 && strcmp (sh->root.string, name) == 0); 912 913 return NULL; 914 } 915 916 /* 917 FUNCTION 918 bfd_get_unique_section_name 919 920 SYNOPSIS 921 char *bfd_get_unique_section_name 922 (bfd *abfd, const char *templat, int *count); 923 924 DESCRIPTION 925 Invent a section name that is unique in @var{abfd} by tacking 926 a dot and a digit suffix onto the original @var{templat}. If 927 @var{count} is non-NULL, then it specifies the first number 928 tried as a suffix to generate a unique name. The value 929 pointed to by @var{count} will be incremented in this case. 930 */ 931 932 char * 933 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 934 { 935 int num; 936 unsigned int len; 937 char *sname; 938 939 len = strlen (templat); 940 sname = (char *) bfd_malloc (len + 8); 941 if (sname == NULL) 942 return NULL; 943 memcpy (sname, templat, len); 944 num = 1; 945 if (count != NULL) 946 num = *count; 947 948 do 949 { 950 /* If we have a million sections, something is badly wrong. */ 951 if (num > 999999) 952 abort (); 953 sprintf (sname + len, ".%d", num++); 954 } 955 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 956 957 if (count != NULL) 958 *count = num; 959 return sname; 960 } 961 962 /* 963 FUNCTION 964 bfd_make_section_old_way 965 966 SYNOPSIS 967 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 968 969 DESCRIPTION 970 Create a new empty section called @var{name} 971 and attach it to the end of the chain of sections for the 972 BFD @var{abfd}. An attempt to create a section with a name which 973 is already in use returns its pointer without changing the 974 section chain. 975 976 It has the funny name since this is the way it used to be 977 before it was rewritten.... 978 979 Possible errors are: 980 o <<bfd_error_invalid_operation>> - 981 If output has already started for this BFD. 982 o <<bfd_error_no_memory>> - 983 If memory allocation fails. 984 985 */ 986 987 asection * 988 bfd_make_section_old_way (bfd *abfd, const char *name) 989 { 990 asection *newsect; 991 992 if (abfd->output_has_begun) 993 { 994 bfd_set_error (bfd_error_invalid_operation); 995 return NULL; 996 } 997 998 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 999 newsect = bfd_abs_section_ptr; 1000 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1001 newsect = bfd_com_section_ptr; 1002 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1003 newsect = bfd_und_section_ptr; 1004 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1005 newsect = bfd_ind_section_ptr; 1006 else 1007 { 1008 struct section_hash_entry *sh; 1009 1010 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1011 if (sh == NULL) 1012 return NULL; 1013 1014 newsect = &sh->section; 1015 if (newsect->name != NULL) 1016 { 1017 /* Section already exists. */ 1018 return newsect; 1019 } 1020 1021 newsect->name = name; 1022 return bfd_section_init (abfd, newsect); 1023 } 1024 1025 /* Call new_section_hook when "creating" the standard abs, com, und 1026 and ind sections to tack on format specific section data. 1027 Also, create a proper section symbol. */ 1028 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1029 return NULL; 1030 return newsect; 1031 } 1032 1033 /* 1034 FUNCTION 1035 bfd_make_section_anyway_with_flags 1036 1037 SYNOPSIS 1038 asection *bfd_make_section_anyway_with_flags 1039 (bfd *abfd, const char *name, flagword flags); 1040 1041 DESCRIPTION 1042 Create a new empty section called @var{name} and attach it to the end of 1043 the chain of sections for @var{abfd}. Create a new section even if there 1044 is already a section with that name. Also set the attributes of the 1045 new section to the value @var{flags}. 1046 1047 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1048 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1049 o <<bfd_error_no_memory>> - If memory allocation fails. 1050 */ 1051 1052 sec_ptr 1053 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1054 flagword flags) 1055 { 1056 struct section_hash_entry *sh; 1057 asection *newsect; 1058 1059 if (abfd->output_has_begun) 1060 { 1061 bfd_set_error (bfd_error_invalid_operation); 1062 return NULL; 1063 } 1064 1065 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1066 if (sh == NULL) 1067 return NULL; 1068 1069 newsect = &sh->section; 1070 if (newsect->name != NULL) 1071 { 1072 /* We are making a section of the same name. Put it in the 1073 section hash table. Even though we can't find it directly by a 1074 hash lookup, we'll be able to find the section by traversing 1075 sh->root.next quicker than looking at all the bfd sections. */ 1076 struct section_hash_entry *new_sh; 1077 new_sh = (struct section_hash_entry *) 1078 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1079 if (new_sh == NULL) 1080 return NULL; 1081 1082 new_sh->root = sh->root; 1083 sh->root.next = &new_sh->root; 1084 newsect = &new_sh->section; 1085 } 1086 1087 newsect->flags = flags; 1088 newsect->name = name; 1089 return bfd_section_init (abfd, newsect); 1090 } 1091 1092 /* 1093 FUNCTION 1094 bfd_make_section_anyway 1095 1096 SYNOPSIS 1097 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1098 1099 DESCRIPTION 1100 Create a new empty section called @var{name} and attach it to the end of 1101 the chain of sections for @var{abfd}. Create a new section even if there 1102 is already a section with that name. 1103 1104 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1105 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1106 o <<bfd_error_no_memory>> - If memory allocation fails. 1107 */ 1108 1109 sec_ptr 1110 bfd_make_section_anyway (bfd *abfd, const char *name) 1111 { 1112 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1113 } 1114 1115 /* 1116 FUNCTION 1117 bfd_make_section_with_flags 1118 1119 SYNOPSIS 1120 asection *bfd_make_section_with_flags 1121 (bfd *, const char *name, flagword flags); 1122 1123 DESCRIPTION 1124 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1125 bfd_set_error ()) without changing the section chain if there is already a 1126 section named @var{name}. Also set the attributes of the new section to 1127 the value @var{flags}. If there is an error, return <<NULL>> and set 1128 <<bfd_error>>. 1129 */ 1130 1131 asection * 1132 bfd_make_section_with_flags (bfd *abfd, const char *name, 1133 flagword flags) 1134 { 1135 struct section_hash_entry *sh; 1136 asection *newsect; 1137 1138 if (abfd->output_has_begun) 1139 { 1140 bfd_set_error (bfd_error_invalid_operation); 1141 return NULL; 1142 } 1143 1144 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1145 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1146 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1147 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1148 return NULL; 1149 1150 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1151 if (sh == NULL) 1152 return NULL; 1153 1154 newsect = &sh->section; 1155 if (newsect->name != NULL) 1156 { 1157 /* Section already exists. */ 1158 return NULL; 1159 } 1160 1161 newsect->name = name; 1162 newsect->flags = flags; 1163 return bfd_section_init (abfd, newsect); 1164 } 1165 1166 /* 1167 FUNCTION 1168 bfd_make_section 1169 1170 SYNOPSIS 1171 asection *bfd_make_section (bfd *, const char *name); 1172 1173 DESCRIPTION 1174 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1175 bfd_set_error ()) without changing the section chain if there is already a 1176 section named @var{name}. If there is an error, return <<NULL>> and set 1177 <<bfd_error>>. 1178 */ 1179 1180 asection * 1181 bfd_make_section (bfd *abfd, const char *name) 1182 { 1183 return bfd_make_section_with_flags (abfd, name, 0); 1184 } 1185 1186 /* 1187 FUNCTION 1188 bfd_set_section_flags 1189 1190 SYNOPSIS 1191 bfd_boolean bfd_set_section_flags 1192 (bfd *abfd, asection *sec, flagword flags); 1193 1194 DESCRIPTION 1195 Set the attributes of the section @var{sec} in the BFD 1196 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1197 <<FALSE>> on error. Possible error returns are: 1198 1199 o <<bfd_error_invalid_operation>> - 1200 The section cannot have one or more of the attributes 1201 requested. For example, a .bss section in <<a.out>> may not 1202 have the <<SEC_HAS_CONTENTS>> field set. 1203 1204 */ 1205 1206 bfd_boolean 1207 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1208 sec_ptr section, 1209 flagword flags) 1210 { 1211 section->flags = flags; 1212 return TRUE; 1213 } 1214 1215 /* 1216 FUNCTION 1217 bfd_map_over_sections 1218 1219 SYNOPSIS 1220 void bfd_map_over_sections 1221 (bfd *abfd, 1222 void (*func) (bfd *abfd, asection *sect, void *obj), 1223 void *obj); 1224 1225 DESCRIPTION 1226 Call the provided function @var{func} for each section 1227 attached to the BFD @var{abfd}, passing @var{obj} as an 1228 argument. The function will be called as if by 1229 1230 | func (abfd, the_section, obj); 1231 1232 This is the preferred method for iterating over sections; an 1233 alternative would be to use a loop: 1234 1235 | section *p; 1236 | for (p = abfd->sections; p != NULL; p = p->next) 1237 | func (abfd, p, ...) 1238 1239 */ 1240 1241 void 1242 bfd_map_over_sections (bfd *abfd, 1243 void (*operation) (bfd *, asection *, void *), 1244 void *user_storage) 1245 { 1246 asection *sect; 1247 unsigned int i = 0; 1248 1249 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1250 (*operation) (abfd, sect, user_storage); 1251 1252 if (i != abfd->section_count) /* Debugging */ 1253 abort (); 1254 } 1255 1256 /* 1257 FUNCTION 1258 bfd_sections_find_if 1259 1260 SYNOPSIS 1261 asection *bfd_sections_find_if 1262 (bfd *abfd, 1263 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1264 void *obj); 1265 1266 DESCRIPTION 1267 Call the provided function @var{operation} for each section 1268 attached to the BFD @var{abfd}, passing @var{obj} as an 1269 argument. The function will be called as if by 1270 1271 | operation (abfd, the_section, obj); 1272 1273 It returns the first section for which @var{operation} returns true. 1274 1275 */ 1276 1277 asection * 1278 bfd_sections_find_if (bfd *abfd, 1279 bfd_boolean (*operation) (bfd *, asection *, void *), 1280 void *user_storage) 1281 { 1282 asection *sect; 1283 1284 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1285 if ((*operation) (abfd, sect, user_storage)) 1286 break; 1287 1288 return sect; 1289 } 1290 1291 /* 1292 FUNCTION 1293 bfd_set_section_size 1294 1295 SYNOPSIS 1296 bfd_boolean bfd_set_section_size 1297 (bfd *abfd, asection *sec, bfd_size_type val); 1298 1299 DESCRIPTION 1300 Set @var{sec} to the size @var{val}. If the operation is 1301 ok, then <<TRUE>> is returned, else <<FALSE>>. 1302 1303 Possible error returns: 1304 o <<bfd_error_invalid_operation>> - 1305 Writing has started to the BFD, so setting the size is invalid. 1306 1307 */ 1308 1309 bfd_boolean 1310 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1311 { 1312 /* Once you've started writing to any section you cannot create or change 1313 the size of any others. */ 1314 1315 if (abfd->output_has_begun) 1316 { 1317 bfd_set_error (bfd_error_invalid_operation); 1318 return FALSE; 1319 } 1320 1321 ptr->size = val; 1322 return TRUE; 1323 } 1324 1325 /* 1326 FUNCTION 1327 bfd_set_section_contents 1328 1329 SYNOPSIS 1330 bfd_boolean bfd_set_section_contents 1331 (bfd *abfd, asection *section, const void *data, 1332 file_ptr offset, bfd_size_type count); 1333 1334 DESCRIPTION 1335 Sets the contents of the section @var{section} in BFD 1336 @var{abfd} to the data starting in memory at @var{data}. The 1337 data is written to the output section starting at offset 1338 @var{offset} for @var{count} octets. 1339 1340 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1341 returns are: 1342 o <<bfd_error_no_contents>> - 1343 The output section does not have the <<SEC_HAS_CONTENTS>> 1344 attribute, so nothing can be written to it. 1345 o and some more too 1346 1347 This routine is front end to the back end function 1348 <<_bfd_set_section_contents>>. 1349 1350 */ 1351 1352 bfd_boolean 1353 bfd_set_section_contents (bfd *abfd, 1354 sec_ptr section, 1355 const void *location, 1356 file_ptr offset, 1357 bfd_size_type count) 1358 { 1359 bfd_size_type sz; 1360 1361 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1362 { 1363 bfd_set_error (bfd_error_no_contents); 1364 return FALSE; 1365 } 1366 1367 sz = section->size; 1368 if ((bfd_size_type) offset > sz 1369 || count > sz 1370 || offset + count > sz 1371 || count != (size_t) count) 1372 { 1373 bfd_set_error (bfd_error_bad_value); 1374 return FALSE; 1375 } 1376 1377 if (!bfd_write_p (abfd)) 1378 { 1379 bfd_set_error (bfd_error_invalid_operation); 1380 return FALSE; 1381 } 1382 1383 /* Record a copy of the data in memory if desired. */ 1384 if (section->contents 1385 && location != section->contents + offset) 1386 memcpy (section->contents + offset, location, (size_t) count); 1387 1388 if (BFD_SEND (abfd, _bfd_set_section_contents, 1389 (abfd, section, location, offset, count))) 1390 { 1391 abfd->output_has_begun = TRUE; 1392 return TRUE; 1393 } 1394 1395 return FALSE; 1396 } 1397 1398 /* 1399 FUNCTION 1400 bfd_get_section_contents 1401 1402 SYNOPSIS 1403 bfd_boolean bfd_get_section_contents 1404 (bfd *abfd, asection *section, void *location, file_ptr offset, 1405 bfd_size_type count); 1406 1407 DESCRIPTION 1408 Read data from @var{section} in BFD @var{abfd} 1409 into memory starting at @var{location}. The data is read at an 1410 offset of @var{offset} from the start of the input section, 1411 and is read for @var{count} bytes. 1412 1413 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1414 flag set are requested or if the section does not have the 1415 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1416 with zeroes. If no errors occur, <<TRUE>> is returned, else 1417 <<FALSE>>. 1418 1419 */ 1420 bfd_boolean 1421 bfd_get_section_contents (bfd *abfd, 1422 sec_ptr section, 1423 void *location, 1424 file_ptr offset, 1425 bfd_size_type count) 1426 { 1427 bfd_size_type sz; 1428 1429 if (section->flags & SEC_CONSTRUCTOR) 1430 { 1431 memset (location, 0, (size_t) count); 1432 return TRUE; 1433 } 1434 1435 sz = section->rawsize ? section->rawsize : section->size; 1436 if ((bfd_size_type) offset > sz 1437 || count > sz 1438 || offset + count > sz 1439 || count != (size_t) count) 1440 { 1441 bfd_set_error (bfd_error_bad_value); 1442 return FALSE; 1443 } 1444 1445 if (count == 0) 1446 /* Don't bother. */ 1447 return TRUE; 1448 1449 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1450 { 1451 memset (location, 0, (size_t) count); 1452 return TRUE; 1453 } 1454 1455 if ((section->flags & SEC_IN_MEMORY) != 0) 1456 { 1457 if (section->contents == NULL) 1458 { 1459 /* This can happen because of errors earlier on in the linking process. 1460 We do not want to seg-fault here, so clear the flag and return an 1461 error code. */ 1462 section->flags &= ~ SEC_IN_MEMORY; 1463 bfd_set_error (bfd_error_invalid_operation); 1464 return FALSE; 1465 } 1466 1467 memcpy (location, section->contents + offset, (size_t) count); 1468 return TRUE; 1469 } 1470 1471 return BFD_SEND (abfd, _bfd_get_section_contents, 1472 (abfd, section, location, offset, count)); 1473 } 1474 1475 /* 1476 FUNCTION 1477 bfd_malloc_and_get_section 1478 1479 SYNOPSIS 1480 bfd_boolean bfd_malloc_and_get_section 1481 (bfd *abfd, asection *section, bfd_byte **buf); 1482 1483 DESCRIPTION 1484 Read all data from @var{section} in BFD @var{abfd} 1485 into a buffer, *@var{buf}, malloc'd by this function. 1486 */ 1487 1488 bfd_boolean 1489 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1490 { 1491 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size; 1492 bfd_byte *p = NULL; 1493 1494 *buf = p; 1495 if (sz == 0) 1496 return TRUE; 1497 1498 p = (bfd_byte *) 1499 bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size); 1500 if (p == NULL) 1501 return FALSE; 1502 *buf = p; 1503 1504 return bfd_get_section_contents (abfd, sec, p, 0, sz); 1505 } 1506 /* 1507 FUNCTION 1508 bfd_copy_private_section_data 1509 1510 SYNOPSIS 1511 bfd_boolean bfd_copy_private_section_data 1512 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1513 1514 DESCRIPTION 1515 Copy private section information from @var{isec} in the BFD 1516 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1517 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1518 returns are: 1519 1520 o <<bfd_error_no_memory>> - 1521 Not enough memory exists to create private data for @var{osec}. 1522 1523 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1524 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1525 . (ibfd, isection, obfd, osection)) 1526 */ 1527 1528 /* 1529 FUNCTION 1530 bfd_generic_is_group_section 1531 1532 SYNOPSIS 1533 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1534 1535 DESCRIPTION 1536 Returns TRUE if @var{sec} is a member of a group. 1537 */ 1538 1539 bfd_boolean 1540 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1541 const asection *sec ATTRIBUTE_UNUSED) 1542 { 1543 return FALSE; 1544 } 1545 1546 /* 1547 FUNCTION 1548 bfd_generic_discard_group 1549 1550 SYNOPSIS 1551 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1552 1553 DESCRIPTION 1554 Remove all members of @var{group} from the output. 1555 */ 1556 1557 bfd_boolean 1558 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1559 asection *group ATTRIBUTE_UNUSED) 1560 { 1561 return TRUE; 1562 } 1563