xref: /dragonfly/contrib/gdb-7/gdb/ada-lang.c (revision 2020c8fe)
1 /* Ada language support routines for GDB, the GNU debugger.  Copyright (C)
2 
3    1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4    2009 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 
65 /* Define whether or not the C operator '/' truncates towards zero for
66    differently signed operands (truncation direction is undefined in C).
67    Copied from valarith.c.  */
68 
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72 
73 static struct type *desc_base_type (struct type *);
74 
75 static struct type *desc_bounds_type (struct type *);
76 
77 static struct value *desc_bounds (struct value *);
78 
79 static int fat_pntr_bounds_bitpos (struct type *);
80 
81 static int fat_pntr_bounds_bitsize (struct type *);
82 
83 static struct type *desc_data_target_type (struct type *);
84 
85 static struct value *desc_data (struct value *);
86 
87 static int fat_pntr_data_bitpos (struct type *);
88 
89 static int fat_pntr_data_bitsize (struct type *);
90 
91 static struct value *desc_one_bound (struct value *, int, int);
92 
93 static int desc_bound_bitpos (struct type *, int, int);
94 
95 static int desc_bound_bitsize (struct type *, int, int);
96 
97 static struct type *desc_index_type (struct type *, int);
98 
99 static int desc_arity (struct type *);
100 
101 static int ada_type_match (struct type *, struct type *, int);
102 
103 static int ada_args_match (struct symbol *, struct value **, int);
104 
105 static int full_match (const char *, const char *);
106 
107 static struct value *make_array_descriptor (struct type *, struct value *);
108 
109 static void ada_add_block_symbols (struct obstack *,
110                                    struct block *, const char *,
111                                    domain_enum, struct objfile *, int);
112 
113 static int is_nonfunction (struct ada_symbol_info *, int);
114 
115 static void add_defn_to_vec (struct obstack *, struct symbol *,
116                              struct block *);
117 
118 static int num_defns_collected (struct obstack *);
119 
120 static struct ada_symbol_info *defns_collected (struct obstack *, int);
121 
122 static struct value *resolve_subexp (struct expression **, int *, int,
123                                      struct type *);
124 
125 static void replace_operator_with_call (struct expression **, int, int, int,
126                                         struct symbol *, struct block *);
127 
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129 
130 static char *ada_op_name (enum exp_opcode);
131 
132 static const char *ada_decoded_op_name (enum exp_opcode);
133 
134 static int numeric_type_p (struct type *);
135 
136 static int integer_type_p (struct type *);
137 
138 static int scalar_type_p (struct type *);
139 
140 static int discrete_type_p (struct type *);
141 
142 static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 							    const char **,
144 							    int *,
145 							    const char **);
146 
147 static struct symbol *find_old_style_renaming_symbol (const char *,
148 						      struct block *);
149 
150 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
151                                                 int, int, int *);
152 
153 static struct value *evaluate_subexp_type (struct expression *, int *);
154 
155 static struct type *ada_find_parallel_type_with_name (struct type *,
156                                                       const char *);
157 
158 static int is_dynamic_field (struct type *, int);
159 
160 static struct type *to_fixed_variant_branch_type (struct type *,
161 						  const gdb_byte *,
162                                                   CORE_ADDR, struct value *);
163 
164 static struct type *to_fixed_array_type (struct type *, struct value *, int);
165 
166 static struct type *to_fixed_range_type (struct type *, struct value *);
167 
168 static struct type *to_static_fixed_type (struct type *);
169 static struct type *static_unwrap_type (struct type *type);
170 
171 static struct value *unwrap_value (struct value *);
172 
173 static struct type *constrained_packed_array_type (struct type *, long *);
174 
175 static struct type *decode_constrained_packed_array_type (struct type *);
176 
177 static long decode_packed_array_bitsize (struct type *);
178 
179 static struct value *decode_constrained_packed_array (struct value *);
180 
181 static int ada_is_packed_array_type  (struct type *);
182 
183 static int ada_is_unconstrained_packed_array_type (struct type *);
184 
185 static struct value *value_subscript_packed (struct value *, int,
186                                              struct value **);
187 
188 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
189 
190 static struct value *coerce_unspec_val_to_type (struct value *,
191                                                 struct type *);
192 
193 static struct value *get_var_value (char *, char *);
194 
195 static int lesseq_defined_than (struct symbol *, struct symbol *);
196 
197 static int equiv_types (struct type *, struct type *);
198 
199 static int is_name_suffix (const char *);
200 
201 static int advance_wild_match (const char **, const char *, int);
202 
203 static int wild_match (const char *, const char *);
204 
205 static struct value *ada_coerce_ref (struct value *);
206 
207 static LONGEST pos_atr (struct value *);
208 
209 static struct value *value_pos_atr (struct type *, struct value *);
210 
211 static struct value *value_val_atr (struct type *, struct value *);
212 
213 static struct symbol *standard_lookup (const char *, const struct block *,
214                                        domain_enum);
215 
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217                                               struct type *);
218 
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220                                                 struct type *);
221 
222 static int find_struct_field (char *, struct type *, int,
223                               struct type **, int *, int *, int *, int *);
224 
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226                                                 struct value *);
227 
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229                                  struct value **, int, const char *,
230                                  struct type *);
231 
232 static int ada_is_direct_array_type (struct type *);
233 
234 static void ada_language_arch_info (struct gdbarch *,
235 				    struct language_arch_info *);
236 
237 static void check_size (const struct type *);
238 
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 					     struct type *);
241 
242 static struct value *assign_aggregate (struct value *, struct value *,
243 				       struct expression *,
244 				       int *, enum noside);
245 
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 					   struct expression *,
248 					   int *, LONGEST *, int *,
249 					   int, LONGEST, LONGEST);
250 
251 static void aggregate_assign_positional (struct value *, struct value *,
252 					 struct expression *,
253 					 int *, LONGEST *, int *, int,
254 					 LONGEST, LONGEST);
255 
256 
257 static void aggregate_assign_others (struct value *, struct value *,
258 				     struct expression *,
259 				     int *, LONGEST *, int, LONGEST, LONGEST);
260 
261 
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 
264 
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 					  int *, enum noside);
267 
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 					 int *);
270 
271 
272 
273 /* Maximum-sized dynamic type.  */
274 static unsigned int varsize_limit;
275 
276 /* FIXME: brobecker/2003-09-17: No longer a const because it is
277    returned by a function that does not return a const char *.  */
278 static char *ada_completer_word_break_characters =
279 #ifdef VMS
280   " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281 #else
282   " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
283 #endif
284 
285 /* The name of the symbol to use to get the name of the main subprogram.  */
286 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
287   = "__gnat_ada_main_program_name";
288 
289 /* Limit on the number of warnings to raise per expression evaluation.  */
290 static int warning_limit = 2;
291 
292 /* Number of warning messages issued; reset to 0 by cleanups after
293    expression evaluation.  */
294 static int warnings_issued = 0;
295 
296 static const char *known_runtime_file_name_patterns[] = {
297   ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298 };
299 
300 static const char *known_auxiliary_function_name_patterns[] = {
301   ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302 };
303 
304 /* Space for allocating results of ada_lookup_symbol_list.  */
305 static struct obstack symbol_list_obstack;
306 
307 			/* Inferior-specific data.  */
308 
309 /* Per-inferior data for this module.  */
310 
311 struct ada_inferior_data
312 {
313   /* The ada__tags__type_specific_data type, which is used when decoding
314      tagged types.  With older versions of GNAT, this type was directly
315      accessible through a component ("tsd") in the object tag.  But this
316      is no longer the case, so we cache it for each inferior.  */
317   struct type *tsd_type;
318 };
319 
320 /* Our key to this module's inferior data.  */
321 static const struct inferior_data *ada_inferior_data;
322 
323 /* A cleanup routine for our inferior data.  */
324 static void
325 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326 {
327   struct ada_inferior_data *data;
328 
329   data = inferior_data (inf, ada_inferior_data);
330   if (data != NULL)
331     xfree (data);
332 }
333 
334 /* Return our inferior data for the given inferior (INF).
335 
336    This function always returns a valid pointer to an allocated
337    ada_inferior_data structure.  If INF's inferior data has not
338    been previously set, this functions creates a new one with all
339    fields set to zero, sets INF's inferior to it, and then returns
340    a pointer to that newly allocated ada_inferior_data.  */
341 
342 static struct ada_inferior_data *
343 get_ada_inferior_data (struct inferior *inf)
344 {
345   struct ada_inferior_data *data;
346 
347   data = inferior_data (inf, ada_inferior_data);
348   if (data == NULL)
349     {
350       data = XZALLOC (struct ada_inferior_data);
351       set_inferior_data (inf, ada_inferior_data, data);
352     }
353 
354   return data;
355 }
356 
357 /* Perform all necessary cleanups regarding our module's inferior data
358    that is required after the inferior INF just exited.  */
359 
360 static void
361 ada_inferior_exit (struct inferior *inf)
362 {
363   ada_inferior_data_cleanup (inf, NULL);
364   set_inferior_data (inf, ada_inferior_data, NULL);
365 }
366 
367                         /* Utilities */
368 
369 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
370    all typedef layers have been peeled.  Otherwise, return TYPE.
371 
372    Normally, we really expect a typedef type to only have 1 typedef layer.
373    In other words, we really expect the target type of a typedef type to be
374    a non-typedef type.  This is particularly true for Ada units, because
375    the language does not have a typedef vs not-typedef distinction.
376    In that respect, the Ada compiler has been trying to eliminate as many
377    typedef definitions in the debugging information, since they generally
378    do not bring any extra information (we still use typedef under certain
379    circumstances related mostly to the GNAT encoding).
380 
381    Unfortunately, we have seen situations where the debugging information
382    generated by the compiler leads to such multiple typedef layers.  For
383    instance, consider the following example with stabs:
384 
385      .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386      .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387 
388    This is an error in the debugging information which causes type
389    pck__float_array___XUP to be defined twice, and the second time,
390    it is defined as a typedef of a typedef.
391 
392    This is on the fringe of legality as far as debugging information is
393    concerned, and certainly unexpected.  But it is easy to handle these
394    situations correctly, so we can afford to be lenient in this case.  */
395 
396 static struct type *
397 ada_typedef_target_type (struct type *type)
398 {
399   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
400     type = TYPE_TARGET_TYPE (type);
401   return type;
402 }
403 
404 /* Given DECODED_NAME a string holding a symbol name in its
405    decoded form (ie using the Ada dotted notation), returns
406    its unqualified name.  */
407 
408 static const char *
409 ada_unqualified_name (const char *decoded_name)
410 {
411   const char *result = strrchr (decoded_name, '.');
412 
413   if (result != NULL)
414     result++;                   /* Skip the dot...  */
415   else
416     result = decoded_name;
417 
418   return result;
419 }
420 
421 /* Return a string starting with '<', followed by STR, and '>'.
422    The result is good until the next call.  */
423 
424 static char *
425 add_angle_brackets (const char *str)
426 {
427   static char *result = NULL;
428 
429   xfree (result);
430   result = xstrprintf ("<%s>", str);
431   return result;
432 }
433 
434 static char *
435 ada_get_gdb_completer_word_break_characters (void)
436 {
437   return ada_completer_word_break_characters;
438 }
439 
440 /* Print an array element index using the Ada syntax.  */
441 
442 static void
443 ada_print_array_index (struct value *index_value, struct ui_file *stream,
444                        const struct value_print_options *options)
445 {
446   LA_VALUE_PRINT (index_value, stream, options);
447   fprintf_filtered (stream, " => ");
448 }
449 
450 /* Assuming VECT points to an array of *SIZE objects of size
451    ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
452    updating *SIZE as necessary and returning the (new) array.  */
453 
454 void *
455 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
456 {
457   if (*size < min_size)
458     {
459       *size *= 2;
460       if (*size < min_size)
461         *size = min_size;
462       vect = xrealloc (vect, *size * element_size);
463     }
464   return vect;
465 }
466 
467 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
468    suffix of FIELD_NAME beginning "___".  */
469 
470 static int
471 field_name_match (const char *field_name, const char *target)
472 {
473   int len = strlen (target);
474 
475   return
476     (strncmp (field_name, target, len) == 0
477      && (field_name[len] == '\0'
478          || (strncmp (field_name + len, "___", 3) == 0
479              && strcmp (field_name + strlen (field_name) - 6,
480                         "___XVN") != 0)));
481 }
482 
483 
484 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
485    a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
486    and return its index.  This function also handles fields whose name
487    have ___ suffixes because the compiler sometimes alters their name
488    by adding such a suffix to represent fields with certain constraints.
489    If the field could not be found, return a negative number if
490    MAYBE_MISSING is set.  Otherwise raise an error.  */
491 
492 int
493 ada_get_field_index (const struct type *type, const char *field_name,
494                      int maybe_missing)
495 {
496   int fieldno;
497   struct type *struct_type = check_typedef ((struct type *) type);
498 
499   for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
500     if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
501       return fieldno;
502 
503   if (!maybe_missing)
504     error (_("Unable to find field %s in struct %s.  Aborting"),
505            field_name, TYPE_NAME (struct_type));
506 
507   return -1;
508 }
509 
510 /* The length of the prefix of NAME prior to any "___" suffix.  */
511 
512 int
513 ada_name_prefix_len (const char *name)
514 {
515   if (name == NULL)
516     return 0;
517   else
518     {
519       const char *p = strstr (name, "___");
520 
521       if (p == NULL)
522         return strlen (name);
523       else
524         return p - name;
525     }
526 }
527 
528 /* Return non-zero if SUFFIX is a suffix of STR.
529    Return zero if STR is null.  */
530 
531 static int
532 is_suffix (const char *str, const char *suffix)
533 {
534   int len1, len2;
535 
536   if (str == NULL)
537     return 0;
538   len1 = strlen (str);
539   len2 = strlen (suffix);
540   return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
541 }
542 
543 /* The contents of value VAL, treated as a value of type TYPE.  The
544    result is an lval in memory if VAL is.  */
545 
546 static struct value *
547 coerce_unspec_val_to_type (struct value *val, struct type *type)
548 {
549   type = ada_check_typedef (type);
550   if (value_type (val) == type)
551     return val;
552   else
553     {
554       struct value *result;
555 
556       /* Make sure that the object size is not unreasonable before
557          trying to allocate some memory for it.  */
558       check_size (type);
559 
560       if (value_lazy (val)
561           || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
562 	result = allocate_value_lazy (type);
563       else
564 	{
565 	  result = allocate_value (type);
566 	  memcpy (value_contents_raw (result), value_contents (val),
567 		  TYPE_LENGTH (type));
568 	}
569       set_value_component_location (result, val);
570       set_value_bitsize (result, value_bitsize (val));
571       set_value_bitpos (result, value_bitpos (val));
572       set_value_address (result, value_address (val));
573       return result;
574     }
575 }
576 
577 static const gdb_byte *
578 cond_offset_host (const gdb_byte *valaddr, long offset)
579 {
580   if (valaddr == NULL)
581     return NULL;
582   else
583     return valaddr + offset;
584 }
585 
586 static CORE_ADDR
587 cond_offset_target (CORE_ADDR address, long offset)
588 {
589   if (address == 0)
590     return 0;
591   else
592     return address + offset;
593 }
594 
595 /* Issue a warning (as for the definition of warning in utils.c, but
596    with exactly one argument rather than ...), unless the limit on the
597    number of warnings has passed during the evaluation of the current
598    expression.  */
599 
600 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
601    provided by "complaint".  */
602 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
603 
604 static void
605 lim_warning (const char *format, ...)
606 {
607   va_list args;
608 
609   va_start (args, format);
610   warnings_issued += 1;
611   if (warnings_issued <= warning_limit)
612     vwarning (format, args);
613 
614   va_end (args);
615 }
616 
617 /* Issue an error if the size of an object of type T is unreasonable,
618    i.e. if it would be a bad idea to allocate a value of this type in
619    GDB.  */
620 
621 static void
622 check_size (const struct type *type)
623 {
624   if (TYPE_LENGTH (type) > varsize_limit)
625     error (_("object size is larger than varsize-limit"));
626 }
627 
628 /* Maximum value of a SIZE-byte signed integer type.  */
629 static LONGEST
630 max_of_size (int size)
631 {
632   LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
633 
634   return top_bit | (top_bit - 1);
635 }
636 
637 /* Minimum value of a SIZE-byte signed integer type.  */
638 static LONGEST
639 min_of_size (int size)
640 {
641   return -max_of_size (size) - 1;
642 }
643 
644 /* Maximum value of a SIZE-byte unsigned integer type.  */
645 static ULONGEST
646 umax_of_size (int size)
647 {
648   ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
649 
650   return top_bit | (top_bit - 1);
651 }
652 
653 /* Maximum value of integral type T, as a signed quantity.  */
654 static LONGEST
655 max_of_type (struct type *t)
656 {
657   if (TYPE_UNSIGNED (t))
658     return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659   else
660     return max_of_size (TYPE_LENGTH (t));
661 }
662 
663 /* Minimum value of integral type T, as a signed quantity.  */
664 static LONGEST
665 min_of_type (struct type *t)
666 {
667   if (TYPE_UNSIGNED (t))
668     return 0;
669   else
670     return min_of_size (TYPE_LENGTH (t));
671 }
672 
673 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
674 LONGEST
675 ada_discrete_type_high_bound (struct type *type)
676 {
677   switch (TYPE_CODE (type))
678     {
679     case TYPE_CODE_RANGE:
680       return TYPE_HIGH_BOUND (type);
681     case TYPE_CODE_ENUM:
682       return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
683     case TYPE_CODE_BOOL:
684       return 1;
685     case TYPE_CODE_CHAR:
686     case TYPE_CODE_INT:
687       return max_of_type (type);
688     default:
689       error (_("Unexpected type in ada_discrete_type_high_bound."));
690     }
691 }
692 
693 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
694 LONGEST
695 ada_discrete_type_low_bound (struct type *type)
696 {
697   switch (TYPE_CODE (type))
698     {
699     case TYPE_CODE_RANGE:
700       return TYPE_LOW_BOUND (type);
701     case TYPE_CODE_ENUM:
702       return TYPE_FIELD_BITPOS (type, 0);
703     case TYPE_CODE_BOOL:
704       return 0;
705     case TYPE_CODE_CHAR:
706     case TYPE_CODE_INT:
707       return min_of_type (type);
708     default:
709       error (_("Unexpected type in ada_discrete_type_low_bound."));
710     }
711 }
712 
713 /* The identity on non-range types.  For range types, the underlying
714    non-range scalar type.  */
715 
716 static struct type *
717 base_type (struct type *type)
718 {
719   while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720     {
721       if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722         return type;
723       type = TYPE_TARGET_TYPE (type);
724     }
725   return type;
726 }
727 
728 
729                                 /* Language Selection */
730 
731 /* If the main program is in Ada, return language_ada, otherwise return LANG
732    (the main program is in Ada iif the adainit symbol is found).  */
733 
734 enum language
735 ada_update_initial_language (enum language lang)
736 {
737   if (lookup_minimal_symbol ("adainit", (const char *) NULL,
738                              (struct objfile *) NULL) != NULL)
739     return language_ada;
740 
741   return lang;
742 }
743 
744 /* If the main procedure is written in Ada, then return its name.
745    The result is good until the next call.  Return NULL if the main
746    procedure doesn't appear to be in Ada.  */
747 
748 char *
749 ada_main_name (void)
750 {
751   struct minimal_symbol *msym;
752   static char *main_program_name = NULL;
753 
754   /* For Ada, the name of the main procedure is stored in a specific
755      string constant, generated by the binder.  Look for that symbol,
756      extract its address, and then read that string.  If we didn't find
757      that string, then most probably the main procedure is not written
758      in Ada.  */
759   msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
760 
761   if (msym != NULL)
762     {
763       CORE_ADDR main_program_name_addr;
764       int err_code;
765 
766       main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
767       if (main_program_name_addr == 0)
768         error (_("Invalid address for Ada main program name."));
769 
770       xfree (main_program_name);
771       target_read_string (main_program_name_addr, &main_program_name,
772                           1024, &err_code);
773 
774       if (err_code != 0)
775         return NULL;
776       return main_program_name;
777     }
778 
779   /* The main procedure doesn't seem to be in Ada.  */
780   return NULL;
781 }
782 
783                                 /* Symbols */
784 
785 /* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
786    of NULLs.  */
787 
788 const struct ada_opname_map ada_opname_table[] = {
789   {"Oadd", "\"+\"", BINOP_ADD},
790   {"Osubtract", "\"-\"", BINOP_SUB},
791   {"Omultiply", "\"*\"", BINOP_MUL},
792   {"Odivide", "\"/\"", BINOP_DIV},
793   {"Omod", "\"mod\"", BINOP_MOD},
794   {"Orem", "\"rem\"", BINOP_REM},
795   {"Oexpon", "\"**\"", BINOP_EXP},
796   {"Olt", "\"<\"", BINOP_LESS},
797   {"Ole", "\"<=\"", BINOP_LEQ},
798   {"Ogt", "\">\"", BINOP_GTR},
799   {"Oge", "\">=\"", BINOP_GEQ},
800   {"Oeq", "\"=\"", BINOP_EQUAL},
801   {"One", "\"/=\"", BINOP_NOTEQUAL},
802   {"Oand", "\"and\"", BINOP_BITWISE_AND},
803   {"Oor", "\"or\"", BINOP_BITWISE_IOR},
804   {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
805   {"Oconcat", "\"&\"", BINOP_CONCAT},
806   {"Oabs", "\"abs\"", UNOP_ABS},
807   {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
808   {"Oadd", "\"+\"", UNOP_PLUS},
809   {"Osubtract", "\"-\"", UNOP_NEG},
810   {NULL, NULL}
811 };
812 
813 /* The "encoded" form of DECODED, according to GNAT conventions.
814    The result is valid until the next call to ada_encode.  */
815 
816 char *
817 ada_encode (const char *decoded)
818 {
819   static char *encoding_buffer = NULL;
820   static size_t encoding_buffer_size = 0;
821   const char *p;
822   int k;
823 
824   if (decoded == NULL)
825     return NULL;
826 
827   GROW_VECT (encoding_buffer, encoding_buffer_size,
828              2 * strlen (decoded) + 10);
829 
830   k = 0;
831   for (p = decoded; *p != '\0'; p += 1)
832     {
833       if (*p == '.')
834         {
835           encoding_buffer[k] = encoding_buffer[k + 1] = '_';
836           k += 2;
837         }
838       else if (*p == '"')
839         {
840           const struct ada_opname_map *mapping;
841 
842           for (mapping = ada_opname_table;
843                mapping->encoded != NULL
844                && strncmp (mapping->decoded, p,
845                            strlen (mapping->decoded)) != 0; mapping += 1)
846             ;
847           if (mapping->encoded == NULL)
848             error (_("invalid Ada operator name: %s"), p);
849           strcpy (encoding_buffer + k, mapping->encoded);
850           k += strlen (mapping->encoded);
851           break;
852         }
853       else
854         {
855           encoding_buffer[k] = *p;
856           k += 1;
857         }
858     }
859 
860   encoding_buffer[k] = '\0';
861   return encoding_buffer;
862 }
863 
864 /* Return NAME folded to lower case, or, if surrounded by single
865    quotes, unfolded, but with the quotes stripped away.  Result good
866    to next call.  */
867 
868 char *
869 ada_fold_name (const char *name)
870 {
871   static char *fold_buffer = NULL;
872   static size_t fold_buffer_size = 0;
873 
874   int len = strlen (name);
875   GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
876 
877   if (name[0] == '\'')
878     {
879       strncpy (fold_buffer, name + 1, len - 2);
880       fold_buffer[len - 2] = '\000';
881     }
882   else
883     {
884       int i;
885 
886       for (i = 0; i <= len; i += 1)
887         fold_buffer[i] = tolower (name[i]);
888     }
889 
890   return fold_buffer;
891 }
892 
893 /* Return nonzero if C is either a digit or a lowercase alphabet character.  */
894 
895 static int
896 is_lower_alphanum (const char c)
897 {
898   return (isdigit (c) || (isalpha (c) && islower (c)));
899 }
900 
901 /* Remove either of these suffixes:
902      . .{DIGIT}+
903      . ${DIGIT}+
904      . ___{DIGIT}+
905      . __{DIGIT}+.
906    These are suffixes introduced by the compiler for entities such as
907    nested subprogram for instance, in order to avoid name clashes.
908    They do not serve any purpose for the debugger.  */
909 
910 static void
911 ada_remove_trailing_digits (const char *encoded, int *len)
912 {
913   if (*len > 1 && isdigit (encoded[*len - 1]))
914     {
915       int i = *len - 2;
916 
917       while (i > 0 && isdigit (encoded[i]))
918         i--;
919       if (i >= 0 && encoded[i] == '.')
920         *len = i;
921       else if (i >= 0 && encoded[i] == '$')
922         *len = i;
923       else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924         *len = i - 2;
925       else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
926         *len = i - 1;
927     }
928 }
929 
930 /* Remove the suffix introduced by the compiler for protected object
931    subprograms.  */
932 
933 static void
934 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935 {
936   /* Remove trailing N.  */
937 
938   /* Protected entry subprograms are broken into two
939      separate subprograms: The first one is unprotected, and has
940      a 'N' suffix; the second is the protected version, and has
941      the 'P' suffix.  The second calls the first one after handling
942      the protection.  Since the P subprograms are internally generated,
943      we leave these names undecoded, giving the user a clue that this
944      entity is internal.  */
945 
946   if (*len > 1
947       && encoded[*len - 1] == 'N'
948       && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
949     *len = *len - 1;
950 }
951 
952 /* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
953 
954 static void
955 ada_remove_Xbn_suffix (const char *encoded, int *len)
956 {
957   int i = *len - 1;
958 
959   while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
960     i--;
961 
962   if (encoded[i] != 'X')
963     return;
964 
965   if (i == 0)
966     return;
967 
968   if (isalnum (encoded[i-1]))
969     *len = i;
970 }
971 
972 /* If ENCODED follows the GNAT entity encoding conventions, then return
973    the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
974    replaced by ENCODED.
975 
976    The resulting string is valid until the next call of ada_decode.
977    If the string is unchanged by decoding, the original string pointer
978    is returned.  */
979 
980 const char *
981 ada_decode (const char *encoded)
982 {
983   int i, j;
984   int len0;
985   const char *p;
986   char *decoded;
987   int at_start_name;
988   static char *decoding_buffer = NULL;
989   static size_t decoding_buffer_size = 0;
990 
991   /* The name of the Ada main procedure starts with "_ada_".
992      This prefix is not part of the decoded name, so skip this part
993      if we see this prefix.  */
994   if (strncmp (encoded, "_ada_", 5) == 0)
995     encoded += 5;
996 
997   /* If the name starts with '_', then it is not a properly encoded
998      name, so do not attempt to decode it.  Similarly, if the name
999      starts with '<', the name should not be decoded.  */
1000   if (encoded[0] == '_' || encoded[0] == '<')
1001     goto Suppress;
1002 
1003   len0 = strlen (encoded);
1004 
1005   ada_remove_trailing_digits (encoded, &len0);
1006   ada_remove_po_subprogram_suffix (encoded, &len0);
1007 
1008   /* Remove the ___X.* suffix if present.  Do not forget to verify that
1009      the suffix is located before the current "end" of ENCODED.  We want
1010      to avoid re-matching parts of ENCODED that have previously been
1011      marked as discarded (by decrementing LEN0).  */
1012   p = strstr (encoded, "___");
1013   if (p != NULL && p - encoded < len0 - 3)
1014     {
1015       if (p[3] == 'X')
1016         len0 = p - encoded;
1017       else
1018         goto Suppress;
1019     }
1020 
1021   /* Remove any trailing TKB suffix.  It tells us that this symbol
1022      is for the body of a task, but that information does not actually
1023      appear in the decoded name.  */
1024 
1025   if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1026     len0 -= 3;
1027 
1028   /* Remove any trailing TB suffix.  The TB suffix is slightly different
1029      from the TKB suffix because it is used for non-anonymous task
1030      bodies.  */
1031 
1032   if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1033     len0 -= 2;
1034 
1035   /* Remove trailing "B" suffixes.  */
1036   /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1037 
1038   if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1039     len0 -= 1;
1040 
1041   /* Make decoded big enough for possible expansion by operator name.  */
1042 
1043   GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1044   decoded = decoding_buffer;
1045 
1046   /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1047 
1048   if (len0 > 1 && isdigit (encoded[len0 - 1]))
1049     {
1050       i = len0 - 2;
1051       while ((i >= 0 && isdigit (encoded[i]))
1052              || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053         i -= 1;
1054       if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055         len0 = i - 1;
1056       else if (encoded[i] == '$')
1057         len0 = i;
1058     }
1059 
1060   /* The first few characters that are not alphabetic are not part
1061      of any encoding we use, so we can copy them over verbatim.  */
1062 
1063   for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1064     decoded[j] = encoded[i];
1065 
1066   at_start_name = 1;
1067   while (i < len0)
1068     {
1069       /* Is this a symbol function?  */
1070       if (at_start_name && encoded[i] == 'O')
1071         {
1072           int k;
1073 
1074           for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075             {
1076               int op_len = strlen (ada_opname_table[k].encoded);
1077               if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078                             op_len - 1) == 0)
1079                   && !isalnum (encoded[i + op_len]))
1080                 {
1081                   strcpy (decoded + j, ada_opname_table[k].decoded);
1082                   at_start_name = 0;
1083                   i += op_len;
1084                   j += strlen (ada_opname_table[k].decoded);
1085                   break;
1086                 }
1087             }
1088           if (ada_opname_table[k].encoded != NULL)
1089             continue;
1090         }
1091       at_start_name = 0;
1092 
1093       /* Replace "TK__" with "__", which will eventually be translated
1094          into "." (just below).  */
1095 
1096       if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1097         i += 2;
1098 
1099       /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1100          be translated into "." (just below).  These are internal names
1101          generated for anonymous blocks inside which our symbol is nested.  */
1102 
1103       if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1104           && encoded [i+2] == 'B' && encoded [i+3] == '_'
1105           && isdigit (encoded [i+4]))
1106         {
1107           int k = i + 5;
1108 
1109           while (k < len0 && isdigit (encoded[k]))
1110             k++;  /* Skip any extra digit.  */
1111 
1112           /* Double-check that the "__B_{DIGITS}+" sequence we found
1113              is indeed followed by "__".  */
1114           if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1115             i = k;
1116         }
1117 
1118       /* Remove _E{DIGITS}+[sb] */
1119 
1120       /* Just as for protected object subprograms, there are 2 categories
1121          of subprograms created by the compiler for each entry.  The first
1122          one implements the actual entry code, and has a suffix following
1123          the convention above; the second one implements the barrier and
1124          uses the same convention as above, except that the 'E' is replaced
1125          by a 'B'.
1126 
1127          Just as above, we do not decode the name of barrier functions
1128          to give the user a clue that the code he is debugging has been
1129          internally generated.  */
1130 
1131       if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1132           && isdigit (encoded[i+2]))
1133         {
1134           int k = i + 3;
1135 
1136           while (k < len0 && isdigit (encoded[k]))
1137             k++;
1138 
1139           if (k < len0
1140               && (encoded[k] == 'b' || encoded[k] == 's'))
1141             {
1142               k++;
1143               /* Just as an extra precaution, make sure that if this
1144                  suffix is followed by anything else, it is a '_'.
1145                  Otherwise, we matched this sequence by accident.  */
1146               if (k == len0
1147                   || (k < len0 && encoded[k] == '_'))
1148                 i = k;
1149             }
1150         }
1151 
1152       /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1153          the GNAT front-end in protected object subprograms.  */
1154 
1155       if (i < len0 + 3
1156           && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157         {
1158           /* Backtrack a bit up until we reach either the begining of
1159              the encoded name, or "__".  Make sure that we only find
1160              digits or lowercase characters.  */
1161           const char *ptr = encoded + i - 1;
1162 
1163           while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1164             ptr--;
1165           if (ptr < encoded
1166               || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1167             i++;
1168         }
1169 
1170       if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171         {
1172           /* This is a X[bn]* sequence not separated from the previous
1173              part of the name with a non-alpha-numeric character (in other
1174              words, immediately following an alpha-numeric character), then
1175              verify that it is placed at the end of the encoded name.  If
1176              not, then the encoding is not valid and we should abort the
1177              decoding.  Otherwise, just skip it, it is used in body-nested
1178              package names.  */
1179           do
1180             i += 1;
1181           while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1182           if (i < len0)
1183             goto Suppress;
1184         }
1185       else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1186         {
1187          /* Replace '__' by '.'.  */
1188           decoded[j] = '.';
1189           at_start_name = 1;
1190           i += 2;
1191           j += 1;
1192         }
1193       else
1194         {
1195           /* It's a character part of the decoded name, so just copy it
1196              over.  */
1197           decoded[j] = encoded[i];
1198           i += 1;
1199           j += 1;
1200         }
1201     }
1202   decoded[j] = '\000';
1203 
1204   /* Decoded names should never contain any uppercase character.
1205      Double-check this, and abort the decoding if we find one.  */
1206 
1207   for (i = 0; decoded[i] != '\0'; i += 1)
1208     if (isupper (decoded[i]) || decoded[i] == ' ')
1209       goto Suppress;
1210 
1211   if (strcmp (decoded, encoded) == 0)
1212     return encoded;
1213   else
1214     return decoded;
1215 
1216 Suppress:
1217   GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1218   decoded = decoding_buffer;
1219   if (encoded[0] == '<')
1220     strcpy (decoded, encoded);
1221   else
1222     xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1223   return decoded;
1224 
1225 }
1226 
1227 /* Table for keeping permanent unique copies of decoded names.  Once
1228    allocated, names in this table are never released.  While this is a
1229    storage leak, it should not be significant unless there are massive
1230    changes in the set of decoded names in successive versions of a
1231    symbol table loaded during a single session.  */
1232 static struct htab *decoded_names_store;
1233 
1234 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235    in the language-specific part of GSYMBOL, if it has not been
1236    previously computed.  Tries to save the decoded name in the same
1237    obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238    in any case, the decoded symbol has a lifetime at least that of
1239    GSYMBOL).
1240    The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241    const, but nevertheless modified to a semantically equivalent form
1242    when a decoded name is cached in it.  */
1243 
1244 char *
1245 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1246 {
1247   char **resultp =
1248     (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1249 
1250   if (*resultp == NULL)
1251     {
1252       const char *decoded = ada_decode (gsymbol->name);
1253 
1254       if (gsymbol->obj_section != NULL)
1255         {
1256 	  struct objfile *objf = gsymbol->obj_section->objfile;
1257 
1258 	  *resultp = obsavestring (decoded, strlen (decoded),
1259 				   &objf->objfile_obstack);
1260         }
1261       /* Sometimes, we can't find a corresponding objfile, in which
1262          case, we put the result on the heap.  Since we only decode
1263          when needed, we hope this usually does not cause a
1264          significant memory leak (FIXME).  */
1265       if (*resultp == NULL)
1266         {
1267           char **slot = (char **) htab_find_slot (decoded_names_store,
1268                                                   decoded, INSERT);
1269 
1270           if (*slot == NULL)
1271             *slot = xstrdup (decoded);
1272           *resultp = *slot;
1273         }
1274     }
1275 
1276   return *resultp;
1277 }
1278 
1279 static char *
1280 ada_la_decode (const char *encoded, int options)
1281 {
1282   return xstrdup (ada_decode (encoded));
1283 }
1284 
1285 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1286    suffixes that encode debugging information or leading _ada_ on
1287    SYM_NAME (see is_name_suffix commentary for the debugging
1288    information that is ignored).  If WILD, then NAME need only match a
1289    suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1290    either argument is NULL.  */
1291 
1292 static int
1293 match_name (const char *sym_name, const char *name, int wild)
1294 {
1295   if (sym_name == NULL || name == NULL)
1296     return 0;
1297   else if (wild)
1298     return wild_match (sym_name, name) == 0;
1299   else
1300     {
1301       int len_name = strlen (name);
1302 
1303       return (strncmp (sym_name, name, len_name) == 0
1304               && is_name_suffix (sym_name + len_name))
1305         || (strncmp (sym_name, "_ada_", 5) == 0
1306             && strncmp (sym_name + 5, name, len_name) == 0
1307             && is_name_suffix (sym_name + len_name + 5));
1308     }
1309 }
1310 
1311 
1312                                 /* Arrays */
1313 
1314 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1315    generated by the GNAT compiler to describe the index type used
1316    for each dimension of an array, check whether it follows the latest
1317    known encoding.  If not, fix it up to conform to the latest encoding.
1318    Otherwise, do nothing.  This function also does nothing if
1319    INDEX_DESC_TYPE is NULL.
1320 
1321    The GNAT encoding used to describle the array index type evolved a bit.
1322    Initially, the information would be provided through the name of each
1323    field of the structure type only, while the type of these fields was
1324    described as unspecified and irrelevant.  The debugger was then expected
1325    to perform a global type lookup using the name of that field in order
1326    to get access to the full index type description.  Because these global
1327    lookups can be very expensive, the encoding was later enhanced to make
1328    the global lookup unnecessary by defining the field type as being
1329    the full index type description.
1330 
1331    The purpose of this routine is to allow us to support older versions
1332    of the compiler by detecting the use of the older encoding, and by
1333    fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1334    we essentially replace each field's meaningless type by the associated
1335    index subtype).  */
1336 
1337 void
1338 ada_fixup_array_indexes_type (struct type *index_desc_type)
1339 {
1340   int i;
1341 
1342   if (index_desc_type == NULL)
1343     return;
1344   gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345 
1346   /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1347      to check one field only, no need to check them all).  If not, return
1348      now.
1349 
1350      If our INDEX_DESC_TYPE was generated using the older encoding,
1351      the field type should be a meaningless integer type whose name
1352      is not equal to the field name.  */
1353   if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1354       && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1355                  TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1356     return;
1357 
1358   /* Fixup each field of INDEX_DESC_TYPE.  */
1359   for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360    {
1361      char *name = TYPE_FIELD_NAME (index_desc_type, i);
1362      struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1363 
1364      if (raw_type)
1365        TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1366    }
1367 }
1368 
1369 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1370 
1371 static char *bound_name[] = {
1372   "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1373   "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1374 };
1375 
1376 /* Maximum number of array dimensions we are prepared to handle.  */
1377 
1378 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1379 
1380 
1381 /* The desc_* routines return primitive portions of array descriptors
1382    (fat pointers).  */
1383 
1384 /* The descriptor or array type, if any, indicated by TYPE; removes
1385    level of indirection, if needed.  */
1386 
1387 static struct type *
1388 desc_base_type (struct type *type)
1389 {
1390   if (type == NULL)
1391     return NULL;
1392   type = ada_check_typedef (type);
1393   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1394     type = ada_typedef_target_type (type);
1395 
1396   if (type != NULL
1397       && (TYPE_CODE (type) == TYPE_CODE_PTR
1398           || TYPE_CODE (type) == TYPE_CODE_REF))
1399     return ada_check_typedef (TYPE_TARGET_TYPE (type));
1400   else
1401     return type;
1402 }
1403 
1404 /* True iff TYPE indicates a "thin" array pointer type.  */
1405 
1406 static int
1407 is_thin_pntr (struct type *type)
1408 {
1409   return
1410     is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1411     || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1412 }
1413 
1414 /* The descriptor type for thin pointer type TYPE.  */
1415 
1416 static struct type *
1417 thin_descriptor_type (struct type *type)
1418 {
1419   struct type *base_type = desc_base_type (type);
1420 
1421   if (base_type == NULL)
1422     return NULL;
1423   if (is_suffix (ada_type_name (base_type), "___XVE"))
1424     return base_type;
1425   else
1426     {
1427       struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1428 
1429       if (alt_type == NULL)
1430         return base_type;
1431       else
1432         return alt_type;
1433     }
1434 }
1435 
1436 /* A pointer to the array data for thin-pointer value VAL.  */
1437 
1438 static struct value *
1439 thin_data_pntr (struct value *val)
1440 {
1441   struct type *type = value_type (val);
1442   struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1443 
1444   data_type = lookup_pointer_type (data_type);
1445 
1446   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1447     return value_cast (data_type, value_copy (val));
1448   else
1449     return value_from_longest (data_type, value_address (val));
1450 }
1451 
1452 /* True iff TYPE indicates a "thick" array pointer type.  */
1453 
1454 static int
1455 is_thick_pntr (struct type *type)
1456 {
1457   type = desc_base_type (type);
1458   return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1459           && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1460 }
1461 
1462 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1463    pointer to one, the type of its bounds data; otherwise, NULL.  */
1464 
1465 static struct type *
1466 desc_bounds_type (struct type *type)
1467 {
1468   struct type *r;
1469 
1470   type = desc_base_type (type);
1471 
1472   if (type == NULL)
1473     return NULL;
1474   else if (is_thin_pntr (type))
1475     {
1476       type = thin_descriptor_type (type);
1477       if (type == NULL)
1478         return NULL;
1479       r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480       if (r != NULL)
1481         return ada_check_typedef (r);
1482     }
1483   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484     {
1485       r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486       if (r != NULL)
1487         return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1488     }
1489   return NULL;
1490 }
1491 
1492 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1493    one, a pointer to its bounds data.   Otherwise NULL.  */
1494 
1495 static struct value *
1496 desc_bounds (struct value *arr)
1497 {
1498   struct type *type = ada_check_typedef (value_type (arr));
1499 
1500   if (is_thin_pntr (type))
1501     {
1502       struct type *bounds_type =
1503         desc_bounds_type (thin_descriptor_type (type));
1504       LONGEST addr;
1505 
1506       if (bounds_type == NULL)
1507         error (_("Bad GNAT array descriptor"));
1508 
1509       /* NOTE: The following calculation is not really kosher, but
1510          since desc_type is an XVE-encoded type (and shouldn't be),
1511          the correct calculation is a real pain.  FIXME (and fix GCC).  */
1512       if (TYPE_CODE (type) == TYPE_CODE_PTR)
1513         addr = value_as_long (arr);
1514       else
1515         addr = value_address (arr);
1516 
1517       return
1518         value_from_longest (lookup_pointer_type (bounds_type),
1519                             addr - TYPE_LENGTH (bounds_type));
1520     }
1521 
1522   else if (is_thick_pntr (type))
1523     {
1524       struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1525 					       _("Bad GNAT array descriptor"));
1526       struct type *p_bounds_type = value_type (p_bounds);
1527 
1528       if (p_bounds_type
1529 	  && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530 	{
1531 	  struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532 
1533 	  if (TYPE_STUB (target_type))
1534 	    p_bounds = value_cast (lookup_pointer_type
1535 				   (ada_check_typedef (target_type)),
1536 				   p_bounds);
1537 	}
1538       else
1539 	error (_("Bad GNAT array descriptor"));
1540 
1541       return p_bounds;
1542     }
1543   else
1544     return NULL;
1545 }
1546 
1547 /* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1548    position of the field containing the address of the bounds data.  */
1549 
1550 static int
1551 fat_pntr_bounds_bitpos (struct type *type)
1552 {
1553   return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1554 }
1555 
1556 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1557    size of the field containing the address of the bounds data.  */
1558 
1559 static int
1560 fat_pntr_bounds_bitsize (struct type *type)
1561 {
1562   type = desc_base_type (type);
1563 
1564   if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1565     return TYPE_FIELD_BITSIZE (type, 1);
1566   else
1567     return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1568 }
1569 
1570 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1571    pointer to one, the type of its array data (a array-with-no-bounds type);
1572    otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1573    data.  */
1574 
1575 static struct type *
1576 desc_data_target_type (struct type *type)
1577 {
1578   type = desc_base_type (type);
1579 
1580   /* NOTE: The following is bogus; see comment in desc_bounds.  */
1581   if (is_thin_pntr (type))
1582     return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1583   else if (is_thick_pntr (type))
1584     {
1585       struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1586 
1587       if (data_type
1588 	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1589 	return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1590     }
1591 
1592   return NULL;
1593 }
1594 
1595 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1596    its array data.  */
1597 
1598 static struct value *
1599 desc_data (struct value *arr)
1600 {
1601   struct type *type = value_type (arr);
1602 
1603   if (is_thin_pntr (type))
1604     return thin_data_pntr (arr);
1605   else if (is_thick_pntr (type))
1606     return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1607                              _("Bad GNAT array descriptor"));
1608   else
1609     return NULL;
1610 }
1611 
1612 
1613 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1614    position of the field containing the address of the data.  */
1615 
1616 static int
1617 fat_pntr_data_bitpos (struct type *type)
1618 {
1619   return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1620 }
1621 
1622 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1623    size of the field containing the address of the data.  */
1624 
1625 static int
1626 fat_pntr_data_bitsize (struct type *type)
1627 {
1628   type = desc_base_type (type);
1629 
1630   if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1631     return TYPE_FIELD_BITSIZE (type, 0);
1632   else
1633     return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1634 }
1635 
1636 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1637    the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1638    bound, if WHICH is 1.  The first bound is I=1.  */
1639 
1640 static struct value *
1641 desc_one_bound (struct value *bounds, int i, int which)
1642 {
1643   return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1644                            _("Bad GNAT array descriptor bounds"));
1645 }
1646 
1647 /* If BOUNDS is an array-bounds structure type, return the bit position
1648    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649    bound, if WHICH is 1.  The first bound is I=1.  */
1650 
1651 static int
1652 desc_bound_bitpos (struct type *type, int i, int which)
1653 {
1654   return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1655 }
1656 
1657 /* If BOUNDS is an array-bounds structure type, return the bit field size
1658    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1659    bound, if WHICH is 1.  The first bound is I=1.  */
1660 
1661 static int
1662 desc_bound_bitsize (struct type *type, int i, int which)
1663 {
1664   type = desc_base_type (type);
1665 
1666   if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1667     return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668   else
1669     return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1670 }
1671 
1672 /* If TYPE is the type of an array-bounds structure, the type of its
1673    Ith bound (numbering from 1).  Otherwise, NULL.  */
1674 
1675 static struct type *
1676 desc_index_type (struct type *type, int i)
1677 {
1678   type = desc_base_type (type);
1679 
1680   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1681     return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1682   else
1683     return NULL;
1684 }
1685 
1686 /* The number of index positions in the array-bounds type TYPE.
1687    Return 0 if TYPE is NULL.  */
1688 
1689 static int
1690 desc_arity (struct type *type)
1691 {
1692   type = desc_base_type (type);
1693 
1694   if (type != NULL)
1695     return TYPE_NFIELDS (type) / 2;
1696   return 0;
1697 }
1698 
1699 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1700    an array descriptor type (representing an unconstrained array
1701    type).  */
1702 
1703 static int
1704 ada_is_direct_array_type (struct type *type)
1705 {
1706   if (type == NULL)
1707     return 0;
1708   type = ada_check_typedef (type);
1709   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1710           || ada_is_array_descriptor_type (type));
1711 }
1712 
1713 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1714  * to one.  */
1715 
1716 static int
1717 ada_is_array_type (struct type *type)
1718 {
1719   while (type != NULL
1720 	 && (TYPE_CODE (type) == TYPE_CODE_PTR
1721 	     || TYPE_CODE (type) == TYPE_CODE_REF))
1722     type = TYPE_TARGET_TYPE (type);
1723   return ada_is_direct_array_type (type);
1724 }
1725 
1726 /* Non-zero iff TYPE is a simple array type or pointer to one.  */
1727 
1728 int
1729 ada_is_simple_array_type (struct type *type)
1730 {
1731   if (type == NULL)
1732     return 0;
1733   type = ada_check_typedef (type);
1734   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1735           || (TYPE_CODE (type) == TYPE_CODE_PTR
1736               && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1737                  == TYPE_CODE_ARRAY));
1738 }
1739 
1740 /* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1741 
1742 int
1743 ada_is_array_descriptor_type (struct type *type)
1744 {
1745   struct type *data_type = desc_data_target_type (type);
1746 
1747   if (type == NULL)
1748     return 0;
1749   type = ada_check_typedef (type);
1750   return (data_type != NULL
1751 	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1752 	  && desc_arity (desc_bounds_type (type)) > 0);
1753 }
1754 
1755 /* Non-zero iff type is a partially mal-formed GNAT array
1756    descriptor.  FIXME: This is to compensate for some problems with
1757    debugging output from GNAT.  Re-examine periodically to see if it
1758    is still needed.  */
1759 
1760 int
1761 ada_is_bogus_array_descriptor (struct type *type)
1762 {
1763   return
1764     type != NULL
1765     && TYPE_CODE (type) == TYPE_CODE_STRUCT
1766     && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1767         || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1768     && !ada_is_array_descriptor_type (type);
1769 }
1770 
1771 
1772 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1773    (fat pointer) returns the type of the array data described---specifically,
1774    a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1775    in from the descriptor; otherwise, they are left unspecified.  If
1776    the ARR denotes a null array descriptor and BOUNDS is non-zero,
1777    returns NULL.  The result is simply the type of ARR if ARR is not
1778    a descriptor.  */
1779 struct type *
1780 ada_type_of_array (struct value *arr, int bounds)
1781 {
1782   if (ada_is_constrained_packed_array_type (value_type (arr)))
1783     return decode_constrained_packed_array_type (value_type (arr));
1784 
1785   if (!ada_is_array_descriptor_type (value_type (arr)))
1786     return value_type (arr);
1787 
1788   if (!bounds)
1789     {
1790       struct type *array_type =
1791 	ada_check_typedef (desc_data_target_type (value_type (arr)));
1792 
1793       if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1794 	TYPE_FIELD_BITSIZE (array_type, 0) =
1795 	  decode_packed_array_bitsize (value_type (arr));
1796 
1797       return array_type;
1798     }
1799   else
1800     {
1801       struct type *elt_type;
1802       int arity;
1803       struct value *descriptor;
1804 
1805       elt_type = ada_array_element_type (value_type (arr), -1);
1806       arity = ada_array_arity (value_type (arr));
1807 
1808       if (elt_type == NULL || arity == 0)
1809         return ada_check_typedef (value_type (arr));
1810 
1811       descriptor = desc_bounds (arr);
1812       if (value_as_long (descriptor) == 0)
1813         return NULL;
1814       while (arity > 0)
1815         {
1816           struct type *range_type = alloc_type_copy (value_type (arr));
1817           struct type *array_type = alloc_type_copy (value_type (arr));
1818           struct value *low = desc_one_bound (descriptor, arity, 0);
1819           struct value *high = desc_one_bound (descriptor, arity, 1);
1820 
1821           arity -= 1;
1822           create_range_type (range_type, value_type (low),
1823                              longest_to_int (value_as_long (low)),
1824                              longest_to_int (value_as_long (high)));
1825           elt_type = create_array_type (array_type, elt_type, range_type);
1826 
1827 	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1828 	    {
1829 	      /* We need to store the element packed bitsize, as well as
1830 	         recompute the array size, because it was previously
1831 		 computed based on the unpacked element size.  */
1832 	      LONGEST lo = value_as_long (low);
1833 	      LONGEST hi = value_as_long (high);
1834 
1835 	      TYPE_FIELD_BITSIZE (elt_type, 0) =
1836 		decode_packed_array_bitsize (value_type (arr));
1837 	      /* If the array has no element, then the size is already
1838 	         zero, and does not need to be recomputed.  */
1839 	      if (lo < hi)
1840 		{
1841 		  int array_bitsize =
1842 		        (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1843 
1844 		  TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1845 		}
1846 	    }
1847         }
1848 
1849       return lookup_pointer_type (elt_type);
1850     }
1851 }
1852 
1853 /* If ARR does not represent an array, returns ARR unchanged.
1854    Otherwise, returns either a standard GDB array with bounds set
1855    appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1856    GDB array.  Returns NULL if ARR is a null fat pointer.  */
1857 
1858 struct value *
1859 ada_coerce_to_simple_array_ptr (struct value *arr)
1860 {
1861   if (ada_is_array_descriptor_type (value_type (arr)))
1862     {
1863       struct type *arrType = ada_type_of_array (arr, 1);
1864 
1865       if (arrType == NULL)
1866         return NULL;
1867       return value_cast (arrType, value_copy (desc_data (arr)));
1868     }
1869   else if (ada_is_constrained_packed_array_type (value_type (arr)))
1870     return decode_constrained_packed_array (arr);
1871   else
1872     return arr;
1873 }
1874 
1875 /* If ARR does not represent an array, returns ARR unchanged.
1876    Otherwise, returns a standard GDB array describing ARR (which may
1877    be ARR itself if it already is in the proper form).  */
1878 
1879 struct value *
1880 ada_coerce_to_simple_array (struct value *arr)
1881 {
1882   if (ada_is_array_descriptor_type (value_type (arr)))
1883     {
1884       struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1885 
1886       if (arrVal == NULL)
1887         error (_("Bounds unavailable for null array pointer."));
1888       check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1889       return value_ind (arrVal);
1890     }
1891   else if (ada_is_constrained_packed_array_type (value_type (arr)))
1892     return decode_constrained_packed_array (arr);
1893   else
1894     return arr;
1895 }
1896 
1897 /* If TYPE represents a GNAT array type, return it translated to an
1898    ordinary GDB array type (possibly with BITSIZE fields indicating
1899    packing).  For other types, is the identity.  */
1900 
1901 struct type *
1902 ada_coerce_to_simple_array_type (struct type *type)
1903 {
1904   if (ada_is_constrained_packed_array_type (type))
1905     return decode_constrained_packed_array_type (type);
1906 
1907   if (ada_is_array_descriptor_type (type))
1908     return ada_check_typedef (desc_data_target_type (type));
1909 
1910   return type;
1911 }
1912 
1913 /* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
1914 
1915 static int
1916 ada_is_packed_array_type  (struct type *type)
1917 {
1918   if (type == NULL)
1919     return 0;
1920   type = desc_base_type (type);
1921   type = ada_check_typedef (type);
1922   return
1923     ada_type_name (type) != NULL
1924     && strstr (ada_type_name (type), "___XP") != NULL;
1925 }
1926 
1927 /* Non-zero iff TYPE represents a standard GNAT constrained
1928    packed-array type.  */
1929 
1930 int
1931 ada_is_constrained_packed_array_type (struct type *type)
1932 {
1933   return ada_is_packed_array_type (type)
1934     && !ada_is_array_descriptor_type (type);
1935 }
1936 
1937 /* Non-zero iff TYPE represents an array descriptor for a
1938    unconstrained packed-array type.  */
1939 
1940 static int
1941 ada_is_unconstrained_packed_array_type (struct type *type)
1942 {
1943   return ada_is_packed_array_type (type)
1944     && ada_is_array_descriptor_type (type);
1945 }
1946 
1947 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948    return the size of its elements in bits.  */
1949 
1950 static long
1951 decode_packed_array_bitsize (struct type *type)
1952 {
1953   char *raw_name;
1954   char *tail;
1955   long bits;
1956 
1957   /* Access to arrays implemented as fat pointers are encoded as a typedef
1958      of the fat pointer type.  We need the name of the fat pointer type
1959      to do the decoding, so strip the typedef layer.  */
1960   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1961     type = ada_typedef_target_type (type);
1962 
1963   raw_name = ada_type_name (ada_check_typedef (type));
1964   if (!raw_name)
1965     raw_name = ada_type_name (desc_base_type (type));
1966 
1967   if (!raw_name)
1968     return 0;
1969 
1970   tail = strstr (raw_name, "___XP");
1971   gdb_assert (tail != NULL);
1972 
1973   if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974     {
1975       lim_warning
1976 	(_("could not understand bit size information on packed array"));
1977       return 0;
1978     }
1979 
1980   return bits;
1981 }
1982 
1983 /* Given that TYPE is a standard GDB array type with all bounds filled
1984    in, and that the element size of its ultimate scalar constituents
1985    (that is, either its elements, or, if it is an array of arrays, its
1986    elements' elements, etc.) is *ELT_BITS, return an identical type,
1987    but with the bit sizes of its elements (and those of any
1988    constituent arrays) recorded in the BITSIZE components of its
1989    TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990    in bits.  */
1991 
1992 static struct type *
1993 constrained_packed_array_type (struct type *type, long *elt_bits)
1994 {
1995   struct type *new_elt_type;
1996   struct type *new_type;
1997   LONGEST low_bound, high_bound;
1998 
1999   type = ada_check_typedef (type);
2000   if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001     return type;
2002 
2003   new_type = alloc_type_copy (type);
2004   new_elt_type =
2005     constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2006 				   elt_bits);
2007   create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
2008   TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2009   TYPE_NAME (new_type) = ada_type_name (type);
2010 
2011   if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
2012                            &low_bound, &high_bound) < 0)
2013     low_bound = high_bound = 0;
2014   if (high_bound < low_bound)
2015     *elt_bits = TYPE_LENGTH (new_type) = 0;
2016   else
2017     {
2018       *elt_bits *= (high_bound - low_bound + 1);
2019       TYPE_LENGTH (new_type) =
2020         (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2021     }
2022 
2023   TYPE_FIXED_INSTANCE (new_type) = 1;
2024   return new_type;
2025 }
2026 
2027 /* The array type encoded by TYPE, where
2028    ada_is_constrained_packed_array_type (TYPE).  */
2029 
2030 static struct type *
2031 decode_constrained_packed_array_type (struct type *type)
2032 {
2033   char *raw_name = ada_type_name (ada_check_typedef (type));
2034   char *name;
2035   char *tail;
2036   struct type *shadow_type;
2037   long bits;
2038 
2039   if (!raw_name)
2040     raw_name = ada_type_name (desc_base_type (type));
2041 
2042   if (!raw_name)
2043     return NULL;
2044 
2045   name = (char *) alloca (strlen (raw_name) + 1);
2046   tail = strstr (raw_name, "___XP");
2047   type = desc_base_type (type);
2048 
2049   memcpy (name, raw_name, tail - raw_name);
2050   name[tail - raw_name] = '\000';
2051 
2052   shadow_type = ada_find_parallel_type_with_name (type, name);
2053 
2054   if (shadow_type == NULL)
2055     {
2056       lim_warning (_("could not find bounds information on packed array"));
2057       return NULL;
2058     }
2059   CHECK_TYPEDEF (shadow_type);
2060 
2061   if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2062     {
2063       lim_warning (_("could not understand bounds "
2064 		     "information on packed array"));
2065       return NULL;
2066     }
2067 
2068   bits = decode_packed_array_bitsize (type);
2069   return constrained_packed_array_type (shadow_type, &bits);
2070 }
2071 
2072 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2073    array, returns a simple array that denotes that array.  Its type is a
2074    standard GDB array type except that the BITSIZEs of the array
2075    target types are set to the number of bits in each element, and the
2076    type length is set appropriately.  */
2077 
2078 static struct value *
2079 decode_constrained_packed_array (struct value *arr)
2080 {
2081   struct type *type;
2082 
2083   arr = ada_coerce_ref (arr);
2084 
2085   /* If our value is a pointer, then dererence it.  Make sure that
2086      this operation does not cause the target type to be fixed, as
2087      this would indirectly cause this array to be decoded.  The rest
2088      of the routine assumes that the array hasn't been decoded yet,
2089      so we use the basic "value_ind" routine to perform the dereferencing,
2090      as opposed to using "ada_value_ind".  */
2091   if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
2092     arr = value_ind (arr);
2093 
2094   type = decode_constrained_packed_array_type (value_type (arr));
2095   if (type == NULL)
2096     {
2097       error (_("can't unpack array"));
2098       return NULL;
2099     }
2100 
2101   if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2102       && ada_is_modular_type (value_type (arr)))
2103     {
2104        /* This is a (right-justified) modular type representing a packed
2105  	 array with no wrapper.  In order to interpret the value through
2106  	 the (left-justified) packed array type we just built, we must
2107  	 first left-justify it.  */
2108       int bit_size, bit_pos;
2109       ULONGEST mod;
2110 
2111       mod = ada_modulus (value_type (arr)) - 1;
2112       bit_size = 0;
2113       while (mod > 0)
2114 	{
2115 	  bit_size += 1;
2116 	  mod >>= 1;
2117 	}
2118       bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2119       arr = ada_value_primitive_packed_val (arr, NULL,
2120 					    bit_pos / HOST_CHAR_BIT,
2121 					    bit_pos % HOST_CHAR_BIT,
2122 					    bit_size,
2123 					    type);
2124     }
2125 
2126   return coerce_unspec_val_to_type (arr, type);
2127 }
2128 
2129 
2130 /* The value of the element of packed array ARR at the ARITY indices
2131    given in IND.   ARR must be a simple array.  */
2132 
2133 static struct value *
2134 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2135 {
2136   int i;
2137   int bits, elt_off, bit_off;
2138   long elt_total_bit_offset;
2139   struct type *elt_type;
2140   struct value *v;
2141 
2142   bits = 0;
2143   elt_total_bit_offset = 0;
2144   elt_type = ada_check_typedef (value_type (arr));
2145   for (i = 0; i < arity; i += 1)
2146     {
2147       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2148           || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2149         error
2150           (_("attempt to do packed indexing of "
2151 	     "something other than a packed array"));
2152       else
2153         {
2154           struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2155           LONGEST lowerbound, upperbound;
2156           LONGEST idx;
2157 
2158           if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2159             {
2160               lim_warning (_("don't know bounds of array"));
2161               lowerbound = upperbound = 0;
2162             }
2163 
2164           idx = pos_atr (ind[i]);
2165           if (idx < lowerbound || idx > upperbound)
2166             lim_warning (_("packed array index %ld out of bounds"),
2167 			 (long) idx);
2168           bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2169           elt_total_bit_offset += (idx - lowerbound) * bits;
2170           elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2171         }
2172     }
2173   elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2174   bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2175 
2176   v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2177                                       bits, elt_type);
2178   return v;
2179 }
2180 
2181 /* Non-zero iff TYPE includes negative integer values.  */
2182 
2183 static int
2184 has_negatives (struct type *type)
2185 {
2186   switch (TYPE_CODE (type))
2187     {
2188     default:
2189       return 0;
2190     case TYPE_CODE_INT:
2191       return !TYPE_UNSIGNED (type);
2192     case TYPE_CODE_RANGE:
2193       return TYPE_LOW_BOUND (type) < 0;
2194     }
2195 }
2196 
2197 
2198 /* Create a new value of type TYPE from the contents of OBJ starting
2199    at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2200    proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2201    assigning through the result will set the field fetched from.
2202    VALADDR is ignored unless OBJ is NULL, in which case,
2203    VALADDR+OFFSET must address the start of storage containing the
2204    packed value.  The value returned  in this case is never an lval.
2205    Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2206 
2207 struct value *
2208 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2209 				long offset, int bit_offset, int bit_size,
2210                                 struct type *type)
2211 {
2212   struct value *v;
2213   int src,                      /* Index into the source area */
2214     targ,                       /* Index into the target area */
2215     srcBitsLeft,                /* Number of source bits left to move */
2216     nsrc, ntarg,                /* Number of source and target bytes */
2217     unusedLS,                   /* Number of bits in next significant
2218                                    byte of source that are unused */
2219     accumSize;                  /* Number of meaningful bits in accum */
2220   unsigned char *bytes;         /* First byte containing data to unpack */
2221   unsigned char *unpacked;
2222   unsigned long accum;          /* Staging area for bits being transferred */
2223   unsigned char sign;
2224   int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2225   /* Transmit bytes from least to most significant; delta is the direction
2226      the indices move.  */
2227   int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2228 
2229   type = ada_check_typedef (type);
2230 
2231   if (obj == NULL)
2232     {
2233       v = allocate_value (type);
2234       bytes = (unsigned char *) (valaddr + offset);
2235     }
2236   else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2237     {
2238       v = value_at (type,
2239                     value_address (obj) + offset);
2240       bytes = (unsigned char *) alloca (len);
2241       read_memory (value_address (v), bytes, len);
2242     }
2243   else
2244     {
2245       v = allocate_value (type);
2246       bytes = (unsigned char *) value_contents (obj) + offset;
2247     }
2248 
2249   if (obj != NULL)
2250     {
2251       CORE_ADDR new_addr;
2252 
2253       set_value_component_location (v, obj);
2254       new_addr = value_address (obj) + offset;
2255       set_value_bitpos (v, bit_offset + value_bitpos (obj));
2256       set_value_bitsize (v, bit_size);
2257       if (value_bitpos (v) >= HOST_CHAR_BIT)
2258         {
2259 	  ++new_addr;
2260           set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2261         }
2262       set_value_address (v, new_addr);
2263     }
2264   else
2265     set_value_bitsize (v, bit_size);
2266   unpacked = (unsigned char *) value_contents (v);
2267 
2268   srcBitsLeft = bit_size;
2269   nsrc = len;
2270   ntarg = TYPE_LENGTH (type);
2271   sign = 0;
2272   if (bit_size == 0)
2273     {
2274       memset (unpacked, 0, TYPE_LENGTH (type));
2275       return v;
2276     }
2277   else if (gdbarch_bits_big_endian (get_type_arch (type)))
2278     {
2279       src = len - 1;
2280       if (has_negatives (type)
2281           && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2282         sign = ~0;
2283 
2284       unusedLS =
2285         (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286         % HOST_CHAR_BIT;
2287 
2288       switch (TYPE_CODE (type))
2289         {
2290         case TYPE_CODE_ARRAY:
2291         case TYPE_CODE_UNION:
2292         case TYPE_CODE_STRUCT:
2293           /* Non-scalar values must be aligned at a byte boundary...  */
2294           accumSize =
2295             (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2296           /* ... And are placed at the beginning (most-significant) bytes
2297              of the target.  */
2298           targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2299           ntarg = targ + 1;
2300           break;
2301         default:
2302           accumSize = 0;
2303           targ = TYPE_LENGTH (type) - 1;
2304           break;
2305         }
2306     }
2307   else
2308     {
2309       int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310 
2311       src = targ = 0;
2312       unusedLS = bit_offset;
2313       accumSize = 0;
2314 
2315       if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2316         sign = ~0;
2317     }
2318 
2319   accum = 0;
2320   while (nsrc > 0)
2321     {
2322       /* Mask for removing bits of the next source byte that are not
2323          part of the value.  */
2324       unsigned int unusedMSMask =
2325         (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2326         1;
2327       /* Sign-extend bits for this byte.  */
2328       unsigned int signMask = sign & ~unusedMSMask;
2329 
2330       accum |=
2331         (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2332       accumSize += HOST_CHAR_BIT - unusedLS;
2333       if (accumSize >= HOST_CHAR_BIT)
2334         {
2335           unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2336           accumSize -= HOST_CHAR_BIT;
2337           accum >>= HOST_CHAR_BIT;
2338           ntarg -= 1;
2339           targ += delta;
2340         }
2341       srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2342       unusedLS = 0;
2343       nsrc -= 1;
2344       src += delta;
2345     }
2346   while (ntarg > 0)
2347     {
2348       accum |= sign << accumSize;
2349       unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2350       accumSize -= HOST_CHAR_BIT;
2351       accum >>= HOST_CHAR_BIT;
2352       ntarg -= 1;
2353       targ += delta;
2354     }
2355 
2356   return v;
2357 }
2358 
2359 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2360    TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2361    not overlap.  */
2362 static void
2363 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2364 	   int src_offset, int n, int bits_big_endian_p)
2365 {
2366   unsigned int accum, mask;
2367   int accum_bits, chunk_size;
2368 
2369   target += targ_offset / HOST_CHAR_BIT;
2370   targ_offset %= HOST_CHAR_BIT;
2371   source += src_offset / HOST_CHAR_BIT;
2372   src_offset %= HOST_CHAR_BIT;
2373   if (bits_big_endian_p)
2374     {
2375       accum = (unsigned char) *source;
2376       source += 1;
2377       accum_bits = HOST_CHAR_BIT - src_offset;
2378 
2379       while (n > 0)
2380         {
2381           int unused_right;
2382 
2383           accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2384           accum_bits += HOST_CHAR_BIT;
2385           source += 1;
2386           chunk_size = HOST_CHAR_BIT - targ_offset;
2387           if (chunk_size > n)
2388             chunk_size = n;
2389           unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2390           mask = ((1 << chunk_size) - 1) << unused_right;
2391           *target =
2392             (*target & ~mask)
2393             | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2394           n -= chunk_size;
2395           accum_bits -= chunk_size;
2396           target += 1;
2397           targ_offset = 0;
2398         }
2399     }
2400   else
2401     {
2402       accum = (unsigned char) *source >> src_offset;
2403       source += 1;
2404       accum_bits = HOST_CHAR_BIT - src_offset;
2405 
2406       while (n > 0)
2407         {
2408           accum = accum + ((unsigned char) *source << accum_bits);
2409           accum_bits += HOST_CHAR_BIT;
2410           source += 1;
2411           chunk_size = HOST_CHAR_BIT - targ_offset;
2412           if (chunk_size > n)
2413             chunk_size = n;
2414           mask = ((1 << chunk_size) - 1) << targ_offset;
2415           *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2416           n -= chunk_size;
2417           accum_bits -= chunk_size;
2418           accum >>= chunk_size;
2419           target += 1;
2420           targ_offset = 0;
2421         }
2422     }
2423 }
2424 
2425 /* Store the contents of FROMVAL into the location of TOVAL.
2426    Return a new value with the location of TOVAL and contents of
2427    FROMVAL.   Handles assignment into packed fields that have
2428    floating-point or non-scalar types.  */
2429 
2430 static struct value *
2431 ada_value_assign (struct value *toval, struct value *fromval)
2432 {
2433   struct type *type = value_type (toval);
2434   int bits = value_bitsize (toval);
2435 
2436   toval = ada_coerce_ref (toval);
2437   fromval = ada_coerce_ref (fromval);
2438 
2439   if (ada_is_direct_array_type (value_type (toval)))
2440     toval = ada_coerce_to_simple_array (toval);
2441   if (ada_is_direct_array_type (value_type (fromval)))
2442     fromval = ada_coerce_to_simple_array (fromval);
2443 
2444   if (!deprecated_value_modifiable (toval))
2445     error (_("Left operand of assignment is not a modifiable lvalue."));
2446 
2447   if (VALUE_LVAL (toval) == lval_memory
2448       && bits > 0
2449       && (TYPE_CODE (type) == TYPE_CODE_FLT
2450           || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2451     {
2452       int len = (value_bitpos (toval)
2453 		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2454       int from_size;
2455       char *buffer = (char *) alloca (len);
2456       struct value *val;
2457       CORE_ADDR to_addr = value_address (toval);
2458 
2459       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2460         fromval = value_cast (type, fromval);
2461 
2462       read_memory (to_addr, buffer, len);
2463       from_size = value_bitsize (fromval);
2464       if (from_size == 0)
2465 	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2466       if (gdbarch_bits_big_endian (get_type_arch (type)))
2467         move_bits (buffer, value_bitpos (toval),
2468 		   value_contents (fromval), from_size - bits, bits, 1);
2469       else
2470         move_bits (buffer, value_bitpos (toval),
2471 		   value_contents (fromval), 0, bits, 0);
2472       write_memory (to_addr, buffer, len);
2473       observer_notify_memory_changed (to_addr, len, buffer);
2474 
2475       val = value_copy (toval);
2476       memcpy (value_contents_raw (val), value_contents (fromval),
2477               TYPE_LENGTH (type));
2478       deprecated_set_value_type (val, type);
2479 
2480       return val;
2481     }
2482 
2483   return value_assign (toval, fromval);
2484 }
2485 
2486 
2487 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2488  * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2489  * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2490  * COMPONENT, and not the inferior's memory.  The current contents
2491  * of COMPONENT are ignored.  */
2492 static void
2493 value_assign_to_component (struct value *container, struct value *component,
2494 			   struct value *val)
2495 {
2496   LONGEST offset_in_container =
2497     (LONGEST)  (value_address (component) - value_address (container));
2498   int bit_offset_in_container =
2499     value_bitpos (component) - value_bitpos (container);
2500   int bits;
2501 
2502   val = value_cast (value_type (component), val);
2503 
2504   if (value_bitsize (component) == 0)
2505     bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2506   else
2507     bits = value_bitsize (component);
2508 
2509   if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2510     move_bits (value_contents_writeable (container) + offset_in_container,
2511 	       value_bitpos (container) + bit_offset_in_container,
2512 	       value_contents (val),
2513 	       TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2514 	       bits, 1);
2515   else
2516     move_bits (value_contents_writeable (container) + offset_in_container,
2517 	       value_bitpos (container) + bit_offset_in_container,
2518 	       value_contents (val), 0, bits, 0);
2519 }
2520 
2521 /* The value of the element of array ARR at the ARITY indices given in IND.
2522    ARR may be either a simple array, GNAT array descriptor, or pointer
2523    thereto.  */
2524 
2525 struct value *
2526 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2527 {
2528   int k;
2529   struct value *elt;
2530   struct type *elt_type;
2531 
2532   elt = ada_coerce_to_simple_array (arr);
2533 
2534   elt_type = ada_check_typedef (value_type (elt));
2535   if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2536       && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2537     return value_subscript_packed (elt, arity, ind);
2538 
2539   for (k = 0; k < arity; k += 1)
2540     {
2541       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2542         error (_("too many subscripts (%d expected)"), k);
2543       elt = value_subscript (elt, pos_atr (ind[k]));
2544     }
2545   return elt;
2546 }
2547 
2548 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2549    value of the element of *ARR at the ARITY indices given in
2550    IND.  Does not read the entire array into memory.  */
2551 
2552 static struct value *
2553 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2554                          struct value **ind)
2555 {
2556   int k;
2557 
2558   for (k = 0; k < arity; k += 1)
2559     {
2560       LONGEST lwb, upb;
2561 
2562       if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2563         error (_("too many subscripts (%d expected)"), k);
2564       arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2565                         value_copy (arr));
2566       get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2567       arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2568       type = TYPE_TARGET_TYPE (type);
2569     }
2570 
2571   return value_ind (arr);
2572 }
2573 
2574 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2575    actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2576    elements starting at index LOW.  The lower bound of this array is LOW, as
2577    per Ada rules.  */
2578 static struct value *
2579 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580                           int low, int high)
2581 {
2582   struct type *type0 = ada_check_typedef (type);
2583   CORE_ADDR base = value_as_address (array_ptr)
2584     + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2585        * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2586   struct type *index_type =
2587     create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2588                        low, high);
2589   struct type *slice_type =
2590     create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2591 
2592   return value_at_lazy (slice_type, base);
2593 }
2594 
2595 
2596 static struct value *
2597 ada_value_slice (struct value *array, int low, int high)
2598 {
2599   struct type *type = ada_check_typedef (value_type (array));
2600   struct type *index_type =
2601     create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2602   struct type *slice_type =
2603     create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2604 
2605   return value_cast (slice_type, value_slice (array, low, high - low + 1));
2606 }
2607 
2608 /* If type is a record type in the form of a standard GNAT array
2609    descriptor, returns the number of dimensions for type.  If arr is a
2610    simple array, returns the number of "array of"s that prefix its
2611    type designation.  Otherwise, returns 0.  */
2612 
2613 int
2614 ada_array_arity (struct type *type)
2615 {
2616   int arity;
2617 
2618   if (type == NULL)
2619     return 0;
2620 
2621   type = desc_base_type (type);
2622 
2623   arity = 0;
2624   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2625     return desc_arity (desc_bounds_type (type));
2626   else
2627     while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2628       {
2629         arity += 1;
2630         type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2631       }
2632 
2633   return arity;
2634 }
2635 
2636 /* If TYPE is a record type in the form of a standard GNAT array
2637    descriptor or a simple array type, returns the element type for
2638    TYPE after indexing by NINDICES indices, or by all indices if
2639    NINDICES is -1.  Otherwise, returns NULL.  */
2640 
2641 struct type *
2642 ada_array_element_type (struct type *type, int nindices)
2643 {
2644   type = desc_base_type (type);
2645 
2646   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2647     {
2648       int k;
2649       struct type *p_array_type;
2650 
2651       p_array_type = desc_data_target_type (type);
2652 
2653       k = ada_array_arity (type);
2654       if (k == 0)
2655         return NULL;
2656 
2657       /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
2658       if (nindices >= 0 && k > nindices)
2659         k = nindices;
2660       while (k > 0 && p_array_type != NULL)
2661         {
2662           p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2663           k -= 1;
2664         }
2665       return p_array_type;
2666     }
2667   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668     {
2669       while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2670         {
2671           type = TYPE_TARGET_TYPE (type);
2672           nindices -= 1;
2673         }
2674       return type;
2675     }
2676 
2677   return NULL;
2678 }
2679 
2680 /* The type of nth index in arrays of given type (n numbering from 1).
2681    Does not examine memory.  Throws an error if N is invalid or TYPE
2682    is not an array type.  NAME is the name of the Ada attribute being
2683    evaluated ('range, 'first, 'last, or 'length); it is used in building
2684    the error message.  */
2685 
2686 static struct type *
2687 ada_index_type (struct type *type, int n, const char *name)
2688 {
2689   struct type *result_type;
2690 
2691   type = desc_base_type (type);
2692 
2693   if (n < 0 || n > ada_array_arity (type))
2694     error (_("invalid dimension number to '%s"), name);
2695 
2696   if (ada_is_simple_array_type (type))
2697     {
2698       int i;
2699 
2700       for (i = 1; i < n; i += 1)
2701         type = TYPE_TARGET_TYPE (type);
2702       result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2703       /* FIXME: The stabs type r(0,0);bound;bound in an array type
2704          has a target type of TYPE_CODE_UNDEF.  We compensate here, but
2705          perhaps stabsread.c would make more sense.  */
2706       if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2707         result_type = NULL;
2708     }
2709   else
2710     {
2711       result_type = desc_index_type (desc_bounds_type (type), n);
2712       if (result_type == NULL)
2713 	error (_("attempt to take bound of something that is not an array"));
2714     }
2715 
2716   return result_type;
2717 }
2718 
2719 /* Given that arr is an array type, returns the lower bound of the
2720    Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2721    WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
2722    array-descriptor type.  It works for other arrays with bounds supplied
2723    by run-time quantities other than discriminants.  */
2724 
2725 static LONGEST
2726 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2727 {
2728   struct type *type, *elt_type, *index_type_desc, *index_type;
2729   int i;
2730 
2731   gdb_assert (which == 0 || which == 1);
2732 
2733   if (ada_is_constrained_packed_array_type (arr_type))
2734     arr_type = decode_constrained_packed_array_type (arr_type);
2735 
2736   if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2737     return (LONGEST) - which;
2738 
2739   if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2740     type = TYPE_TARGET_TYPE (arr_type);
2741   else
2742     type = arr_type;
2743 
2744   elt_type = type;
2745   for (i = n; i > 1; i--)
2746     elt_type = TYPE_TARGET_TYPE (type);
2747 
2748   index_type_desc = ada_find_parallel_type (type, "___XA");
2749   ada_fixup_array_indexes_type (index_type_desc);
2750   if (index_type_desc != NULL)
2751     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2752 				      NULL);
2753   else
2754     index_type = TYPE_INDEX_TYPE (elt_type);
2755 
2756   return
2757     (LONGEST) (which == 0
2758                ? ada_discrete_type_low_bound (index_type)
2759                : ada_discrete_type_high_bound (index_type));
2760 }
2761 
2762 /* Given that arr is an array value, returns the lower bound of the
2763    nth index (numbering from 1) if WHICH is 0, and the upper bound if
2764    WHICH is 1.  This routine will also work for arrays with bounds
2765    supplied by run-time quantities other than discriminants.  */
2766 
2767 static LONGEST
2768 ada_array_bound (struct value *arr, int n, int which)
2769 {
2770   struct type *arr_type = value_type (arr);
2771 
2772   if (ada_is_constrained_packed_array_type (arr_type))
2773     return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2774   else if (ada_is_simple_array_type (arr_type))
2775     return ada_array_bound_from_type (arr_type, n, which);
2776   else
2777     return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2778 }
2779 
2780 /* Given that arr is an array value, returns the length of the
2781    nth index.  This routine will also work for arrays with bounds
2782    supplied by run-time quantities other than discriminants.
2783    Does not work for arrays indexed by enumeration types with representation
2784    clauses at the moment.  */
2785 
2786 static LONGEST
2787 ada_array_length (struct value *arr, int n)
2788 {
2789   struct type *arr_type = ada_check_typedef (value_type (arr));
2790 
2791   if (ada_is_constrained_packed_array_type (arr_type))
2792     return ada_array_length (decode_constrained_packed_array (arr), n);
2793 
2794   if (ada_is_simple_array_type (arr_type))
2795     return (ada_array_bound_from_type (arr_type, n, 1)
2796 	    - ada_array_bound_from_type (arr_type, n, 0) + 1);
2797   else
2798     return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2799 	    - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2800 }
2801 
2802 /* An empty array whose type is that of ARR_TYPE (an array type),
2803    with bounds LOW to LOW-1.  */
2804 
2805 static struct value *
2806 empty_array (struct type *arr_type, int low)
2807 {
2808   struct type *arr_type0 = ada_check_typedef (arr_type);
2809   struct type *index_type =
2810     create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2811                        low, low - 1);
2812   struct type *elt_type = ada_array_element_type (arr_type0, 1);
2813 
2814   return allocate_value (create_array_type (NULL, elt_type, index_type));
2815 }
2816 
2817 
2818                                 /* Name resolution */
2819 
2820 /* The "decoded" name for the user-definable Ada operator corresponding
2821    to OP.  */
2822 
2823 static const char *
2824 ada_decoded_op_name (enum exp_opcode op)
2825 {
2826   int i;
2827 
2828   for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2829     {
2830       if (ada_opname_table[i].op == op)
2831         return ada_opname_table[i].decoded;
2832     }
2833   error (_("Could not find operator name for opcode"));
2834 }
2835 
2836 
2837 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2838    references (marked by OP_VAR_VALUE nodes in which the symbol has an
2839    undefined namespace) and converts operators that are
2840    user-defined into appropriate function calls.  If CONTEXT_TYPE is
2841    non-null, it provides a preferred result type [at the moment, only
2842    type void has any effect---causing procedures to be preferred over
2843    functions in calls].  A null CONTEXT_TYPE indicates that a non-void
2844    return type is preferred.  May change (expand) *EXP.  */
2845 
2846 static void
2847 resolve (struct expression **expp, int void_context_p)
2848 {
2849   struct type *context_type = NULL;
2850   int pc = 0;
2851 
2852   if (void_context_p)
2853     context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2854 
2855   resolve_subexp (expp, &pc, 1, context_type);
2856 }
2857 
2858 /* Resolve the operator of the subexpression beginning at
2859    position *POS of *EXPP.  "Resolving" consists of replacing
2860    the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2861    with their resolutions, replacing built-in operators with
2862    function calls to user-defined operators, where appropriate, and,
2863    when DEPROCEDURE_P is non-zero, converting function-valued variables
2864    into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
2865    are as in ada_resolve, above.  */
2866 
2867 static struct value *
2868 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2869                 struct type *context_type)
2870 {
2871   int pc = *pos;
2872   int i;
2873   struct expression *exp;       /* Convenience: == *expp.  */
2874   enum exp_opcode op = (*expp)->elts[pc].opcode;
2875   struct value **argvec;        /* Vector of operand types (alloca'ed).  */
2876   int nargs;                    /* Number of operands.  */
2877   int oplen;
2878 
2879   argvec = NULL;
2880   nargs = 0;
2881   exp = *expp;
2882 
2883   /* Pass one: resolve operands, saving their types and updating *pos,
2884      if needed.  */
2885   switch (op)
2886     {
2887     case OP_FUNCALL:
2888       if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2889           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890         *pos += 7;
2891       else
2892         {
2893           *pos += 3;
2894           resolve_subexp (expp, pos, 0, NULL);
2895         }
2896       nargs = longest_to_int (exp->elts[pc + 1].longconst);
2897       break;
2898 
2899     case UNOP_ADDR:
2900       *pos += 1;
2901       resolve_subexp (expp, pos, 0, NULL);
2902       break;
2903 
2904     case UNOP_QUAL:
2905       *pos += 3;
2906       resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2907       break;
2908 
2909     case OP_ATR_MODULUS:
2910     case OP_ATR_SIZE:
2911     case OP_ATR_TAG:
2912     case OP_ATR_FIRST:
2913     case OP_ATR_LAST:
2914     case OP_ATR_LENGTH:
2915     case OP_ATR_POS:
2916     case OP_ATR_VAL:
2917     case OP_ATR_MIN:
2918     case OP_ATR_MAX:
2919     case TERNOP_IN_RANGE:
2920     case BINOP_IN_BOUNDS:
2921     case UNOP_IN_RANGE:
2922     case OP_AGGREGATE:
2923     case OP_OTHERS:
2924     case OP_CHOICES:
2925     case OP_POSITIONAL:
2926     case OP_DISCRETE_RANGE:
2927     case OP_NAME:
2928       ada_forward_operator_length (exp, pc, &oplen, &nargs);
2929       *pos += oplen;
2930       break;
2931 
2932     case BINOP_ASSIGN:
2933       {
2934         struct value *arg1;
2935 
2936         *pos += 1;
2937         arg1 = resolve_subexp (expp, pos, 0, NULL);
2938         if (arg1 == NULL)
2939           resolve_subexp (expp, pos, 1, NULL);
2940         else
2941           resolve_subexp (expp, pos, 1, value_type (arg1));
2942         break;
2943       }
2944 
2945     case UNOP_CAST:
2946       *pos += 3;
2947       nargs = 1;
2948       break;
2949 
2950     case BINOP_ADD:
2951     case BINOP_SUB:
2952     case BINOP_MUL:
2953     case BINOP_DIV:
2954     case BINOP_REM:
2955     case BINOP_MOD:
2956     case BINOP_EXP:
2957     case BINOP_CONCAT:
2958     case BINOP_LOGICAL_AND:
2959     case BINOP_LOGICAL_OR:
2960     case BINOP_BITWISE_AND:
2961     case BINOP_BITWISE_IOR:
2962     case BINOP_BITWISE_XOR:
2963 
2964     case BINOP_EQUAL:
2965     case BINOP_NOTEQUAL:
2966     case BINOP_LESS:
2967     case BINOP_GTR:
2968     case BINOP_LEQ:
2969     case BINOP_GEQ:
2970 
2971     case BINOP_REPEAT:
2972     case BINOP_SUBSCRIPT:
2973     case BINOP_COMMA:
2974       *pos += 1;
2975       nargs = 2;
2976       break;
2977 
2978     case UNOP_NEG:
2979     case UNOP_PLUS:
2980     case UNOP_LOGICAL_NOT:
2981     case UNOP_ABS:
2982     case UNOP_IND:
2983       *pos += 1;
2984       nargs = 1;
2985       break;
2986 
2987     case OP_LONG:
2988     case OP_DOUBLE:
2989     case OP_VAR_VALUE:
2990       *pos += 4;
2991       break;
2992 
2993     case OP_TYPE:
2994     case OP_BOOL:
2995     case OP_LAST:
2996     case OP_INTERNALVAR:
2997       *pos += 3;
2998       break;
2999 
3000     case UNOP_MEMVAL:
3001       *pos += 3;
3002       nargs = 1;
3003       break;
3004 
3005     case OP_REGISTER:
3006       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007       break;
3008 
3009     case STRUCTOP_STRUCT:
3010       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3011       nargs = 1;
3012       break;
3013 
3014     case TERNOP_SLICE:
3015       *pos += 1;
3016       nargs = 3;
3017       break;
3018 
3019     case OP_STRING:
3020       break;
3021 
3022     default:
3023       error (_("Unexpected operator during name resolution"));
3024     }
3025 
3026   argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3027   for (i = 0; i < nargs; i += 1)
3028     argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3029   argvec[i] = NULL;
3030   exp = *expp;
3031 
3032   /* Pass two: perform any resolution on principal operator.  */
3033   switch (op)
3034     {
3035     default:
3036       break;
3037 
3038     case OP_VAR_VALUE:
3039       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3040         {
3041           struct ada_symbol_info *candidates;
3042           int n_candidates;
3043 
3044           n_candidates =
3045             ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3046                                     (exp->elts[pc + 2].symbol),
3047                                     exp->elts[pc + 1].block, VAR_DOMAIN,
3048                                     &candidates);
3049 
3050           if (n_candidates > 1)
3051             {
3052               /* Types tend to get re-introduced locally, so if there
3053                  are any local symbols that are not types, first filter
3054                  out all types.  */
3055               int j;
3056               for (j = 0; j < n_candidates; j += 1)
3057                 switch (SYMBOL_CLASS (candidates[j].sym))
3058                   {
3059                   case LOC_REGISTER:
3060                   case LOC_ARG:
3061                   case LOC_REF_ARG:
3062                   case LOC_REGPARM_ADDR:
3063                   case LOC_LOCAL:
3064                   case LOC_COMPUTED:
3065                     goto FoundNonType;
3066                   default:
3067                     break;
3068                   }
3069             FoundNonType:
3070               if (j < n_candidates)
3071                 {
3072                   j = 0;
3073                   while (j < n_candidates)
3074                     {
3075                       if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3076                         {
3077                           candidates[j] = candidates[n_candidates - 1];
3078                           n_candidates -= 1;
3079                         }
3080                       else
3081                         j += 1;
3082                     }
3083                 }
3084             }
3085 
3086           if (n_candidates == 0)
3087             error (_("No definition found for %s"),
3088                    SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3089           else if (n_candidates == 1)
3090             i = 0;
3091           else if (deprocedure_p
3092                    && !is_nonfunction (candidates, n_candidates))
3093             {
3094               i = ada_resolve_function
3095                 (candidates, n_candidates, NULL, 0,
3096                  SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3097                  context_type);
3098               if (i < 0)
3099                 error (_("Could not find a match for %s"),
3100                        SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101             }
3102           else
3103             {
3104               printf_filtered (_("Multiple matches for %s\n"),
3105                                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106               user_select_syms (candidates, n_candidates, 1);
3107               i = 0;
3108             }
3109 
3110           exp->elts[pc + 1].block = candidates[i].block;
3111           exp->elts[pc + 2].symbol = candidates[i].sym;
3112           if (innermost_block == NULL
3113               || contained_in (candidates[i].block, innermost_block))
3114             innermost_block = candidates[i].block;
3115         }
3116 
3117       if (deprocedure_p
3118           && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3119               == TYPE_CODE_FUNC))
3120         {
3121           replace_operator_with_call (expp, pc, 0, 0,
3122                                       exp->elts[pc + 2].symbol,
3123                                       exp->elts[pc + 1].block);
3124           exp = *expp;
3125         }
3126       break;
3127 
3128     case OP_FUNCALL:
3129       {
3130         if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3131             && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3132           {
3133             struct ada_symbol_info *candidates;
3134             int n_candidates;
3135 
3136             n_candidates =
3137               ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3138                                       (exp->elts[pc + 5].symbol),
3139                                       exp->elts[pc + 4].block, VAR_DOMAIN,
3140                                       &candidates);
3141             if (n_candidates == 1)
3142               i = 0;
3143             else
3144               {
3145                 i = ada_resolve_function
3146                   (candidates, n_candidates,
3147                    argvec, nargs,
3148                    SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3149                    context_type);
3150                 if (i < 0)
3151                   error (_("Could not find a match for %s"),
3152                          SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3153               }
3154 
3155             exp->elts[pc + 4].block = candidates[i].block;
3156             exp->elts[pc + 5].symbol = candidates[i].sym;
3157             if (innermost_block == NULL
3158                 || contained_in (candidates[i].block, innermost_block))
3159               innermost_block = candidates[i].block;
3160           }
3161       }
3162       break;
3163     case BINOP_ADD:
3164     case BINOP_SUB:
3165     case BINOP_MUL:
3166     case BINOP_DIV:
3167     case BINOP_REM:
3168     case BINOP_MOD:
3169     case BINOP_CONCAT:
3170     case BINOP_BITWISE_AND:
3171     case BINOP_BITWISE_IOR:
3172     case BINOP_BITWISE_XOR:
3173     case BINOP_EQUAL:
3174     case BINOP_NOTEQUAL:
3175     case BINOP_LESS:
3176     case BINOP_GTR:
3177     case BINOP_LEQ:
3178     case BINOP_GEQ:
3179     case BINOP_EXP:
3180     case UNOP_NEG:
3181     case UNOP_PLUS:
3182     case UNOP_LOGICAL_NOT:
3183     case UNOP_ABS:
3184       if (possible_user_operator_p (op, argvec))
3185         {
3186           struct ada_symbol_info *candidates;
3187           int n_candidates;
3188 
3189           n_candidates =
3190             ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3191                                     (struct block *) NULL, VAR_DOMAIN,
3192                                     &candidates);
3193           i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3194                                     ada_decoded_op_name (op), NULL);
3195           if (i < 0)
3196             break;
3197 
3198           replace_operator_with_call (expp, pc, nargs, 1,
3199                                       candidates[i].sym, candidates[i].block);
3200           exp = *expp;
3201         }
3202       break;
3203 
3204     case OP_TYPE:
3205     case OP_REGISTER:
3206       return NULL;
3207     }
3208 
3209   *pos = pc;
3210   return evaluate_subexp_type (exp, pos);
3211 }
3212 
3213 /* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3214    MAY_DEREF is non-zero, the formal may be a pointer and the actual
3215    a non-pointer.  */
3216 /* The term "match" here is rather loose.  The match is heuristic and
3217    liberal.  */
3218 
3219 static int
3220 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3221 {
3222   ftype = ada_check_typedef (ftype);
3223   atype = ada_check_typedef (atype);
3224 
3225   if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3226     ftype = TYPE_TARGET_TYPE (ftype);
3227   if (TYPE_CODE (atype) == TYPE_CODE_REF)
3228     atype = TYPE_TARGET_TYPE (atype);
3229 
3230   switch (TYPE_CODE (ftype))
3231     {
3232     default:
3233       return TYPE_CODE (ftype) == TYPE_CODE (atype);
3234     case TYPE_CODE_PTR:
3235       if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3236         return ada_type_match (TYPE_TARGET_TYPE (ftype),
3237                                TYPE_TARGET_TYPE (atype), 0);
3238       else
3239         return (may_deref
3240                 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3241     case TYPE_CODE_INT:
3242     case TYPE_CODE_ENUM:
3243     case TYPE_CODE_RANGE:
3244       switch (TYPE_CODE (atype))
3245         {
3246         case TYPE_CODE_INT:
3247         case TYPE_CODE_ENUM:
3248         case TYPE_CODE_RANGE:
3249           return 1;
3250         default:
3251           return 0;
3252         }
3253 
3254     case TYPE_CODE_ARRAY:
3255       return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3256               || ada_is_array_descriptor_type (atype));
3257 
3258     case TYPE_CODE_STRUCT:
3259       if (ada_is_array_descriptor_type (ftype))
3260         return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261                 || ada_is_array_descriptor_type (atype));
3262       else
3263         return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3264                 && !ada_is_array_descriptor_type (atype));
3265 
3266     case TYPE_CODE_UNION:
3267     case TYPE_CODE_FLT:
3268       return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3269     }
3270 }
3271 
3272 /* Return non-zero if the formals of FUNC "sufficiently match" the
3273    vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3274    may also be an enumeral, in which case it is treated as a 0-
3275    argument function.  */
3276 
3277 static int
3278 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3279 {
3280   int i;
3281   struct type *func_type = SYMBOL_TYPE (func);
3282 
3283   if (SYMBOL_CLASS (func) == LOC_CONST
3284       && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3285     return (n_actuals == 0);
3286   else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3287     return 0;
3288 
3289   if (TYPE_NFIELDS (func_type) != n_actuals)
3290     return 0;
3291 
3292   for (i = 0; i < n_actuals; i += 1)
3293     {
3294       if (actuals[i] == NULL)
3295         return 0;
3296       else
3297         {
3298           struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3299 								   i));
3300           struct type *atype = ada_check_typedef (value_type (actuals[i]));
3301 
3302           if (!ada_type_match (ftype, atype, 1))
3303             return 0;
3304         }
3305     }
3306   return 1;
3307 }
3308 
3309 /* False iff function type FUNC_TYPE definitely does not produce a value
3310    compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3311    FUNC_TYPE is not a valid function type with a non-null return type
3312    or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3313 
3314 static int
3315 return_match (struct type *func_type, struct type *context_type)
3316 {
3317   struct type *return_type;
3318 
3319   if (func_type == NULL)
3320     return 1;
3321 
3322   if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3323     return_type = base_type (TYPE_TARGET_TYPE (func_type));
3324   else
3325     return_type = base_type (func_type);
3326   if (return_type == NULL)
3327     return 1;
3328 
3329   context_type = base_type (context_type);
3330 
3331   if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3332     return context_type == NULL || return_type == context_type;
3333   else if (context_type == NULL)
3334     return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3335   else
3336     return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3337 }
3338 
3339 
3340 /* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3341    function (if any) that matches the types of the NARGS arguments in
3342    ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3343    that returns that type, then eliminate matches that don't.  If
3344    CONTEXT_TYPE is void and there is at least one match that does not
3345    return void, eliminate all matches that do.
3346 
3347    Asks the user if there is more than one match remaining.  Returns -1
3348    if there is no such symbol or none is selected.  NAME is used
3349    solely for messages.  May re-arrange and modify SYMS in
3350    the process; the index returned is for the modified vector.  */
3351 
3352 static int
3353 ada_resolve_function (struct ada_symbol_info syms[],
3354                       int nsyms, struct value **args, int nargs,
3355                       const char *name, struct type *context_type)
3356 {
3357   int fallback;
3358   int k;
3359   int m;                        /* Number of hits */
3360 
3361   m = 0;
3362   /* In the first pass of the loop, we only accept functions matching
3363      context_type.  If none are found, we add a second pass of the loop
3364      where every function is accepted.  */
3365   for (fallback = 0; m == 0 && fallback < 2; fallback++)
3366     {
3367       for (k = 0; k < nsyms; k += 1)
3368         {
3369           struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3370 
3371           if (ada_args_match (syms[k].sym, args, nargs)
3372               && (fallback || return_match (type, context_type)))
3373             {
3374               syms[m] = syms[k];
3375               m += 1;
3376             }
3377         }
3378     }
3379 
3380   if (m == 0)
3381     return -1;
3382   else if (m > 1)
3383     {
3384       printf_filtered (_("Multiple matches for %s\n"), name);
3385       user_select_syms (syms, m, 1);
3386       return 0;
3387     }
3388   return 0;
3389 }
3390 
3391 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3392    in a listing of choices during disambiguation (see sort_choices, below).
3393    The idea is that overloadings of a subprogram name from the
3394    same package should sort in their source order.  We settle for ordering
3395    such symbols by their trailing number (__N  or $N).  */
3396 
3397 static int
3398 encoded_ordered_before (char *N0, char *N1)
3399 {
3400   if (N1 == NULL)
3401     return 0;
3402   else if (N0 == NULL)
3403     return 1;
3404   else
3405     {
3406       int k0, k1;
3407 
3408       for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3409         ;
3410       for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3411         ;
3412       if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3413           && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414         {
3415           int n0, n1;
3416 
3417           n0 = k0;
3418           while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3419             n0 -= 1;
3420           n1 = k1;
3421           while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3422             n1 -= 1;
3423           if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3424             return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3425         }
3426       return (strcmp (N0, N1) < 0);
3427     }
3428 }
3429 
3430 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3431    encoded names.  */
3432 
3433 static void
3434 sort_choices (struct ada_symbol_info syms[], int nsyms)
3435 {
3436   int i;
3437 
3438   for (i = 1; i < nsyms; i += 1)
3439     {
3440       struct ada_symbol_info sym = syms[i];
3441       int j;
3442 
3443       for (j = i - 1; j >= 0; j -= 1)
3444         {
3445           if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3446                                       SYMBOL_LINKAGE_NAME (sym.sym)))
3447             break;
3448           syms[j + 1] = syms[j];
3449         }
3450       syms[j + 1] = sym;
3451     }
3452 }
3453 
3454 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3455    by asking the user (if necessary), returning the number selected,
3456    and setting the first elements of SYMS items.  Error if no symbols
3457    selected.  */
3458 
3459 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3460    to be re-integrated one of these days.  */
3461 
3462 int
3463 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3464 {
3465   int i;
3466   int *chosen = (int *) alloca (sizeof (int) * nsyms);
3467   int n_chosen;
3468   int first_choice = (max_results == 1) ? 1 : 2;
3469   const char *select_mode = multiple_symbols_select_mode ();
3470 
3471   if (max_results < 1)
3472     error (_("Request to select 0 symbols!"));
3473   if (nsyms <= 1)
3474     return nsyms;
3475 
3476   if (select_mode == multiple_symbols_cancel)
3477     error (_("\
3478 canceled because the command is ambiguous\n\
3479 See set/show multiple-symbol."));
3480 
3481   /* If select_mode is "all", then return all possible symbols.
3482      Only do that if more than one symbol can be selected, of course.
3483      Otherwise, display the menu as usual.  */
3484   if (select_mode == multiple_symbols_all && max_results > 1)
3485     return nsyms;
3486 
3487   printf_unfiltered (_("[0] cancel\n"));
3488   if (max_results > 1)
3489     printf_unfiltered (_("[1] all\n"));
3490 
3491   sort_choices (syms, nsyms);
3492 
3493   for (i = 0; i < nsyms; i += 1)
3494     {
3495       if (syms[i].sym == NULL)
3496         continue;
3497 
3498       if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3499         {
3500           struct symtab_and_line sal =
3501             find_function_start_sal (syms[i].sym, 1);
3502 
3503 	  if (sal.symtab == NULL)
3504 	    printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3505 			       i + first_choice,
3506 			       SYMBOL_PRINT_NAME (syms[i].sym),
3507 			       sal.line);
3508 	  else
3509 	    printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3510 			       SYMBOL_PRINT_NAME (syms[i].sym),
3511 			       sal.symtab->filename, sal.line);
3512           continue;
3513         }
3514       else
3515         {
3516           int is_enumeral =
3517             (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3518              && SYMBOL_TYPE (syms[i].sym) != NULL
3519              && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3520           struct symtab *symtab = syms[i].sym->symtab;
3521 
3522           if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3523             printf_unfiltered (_("[%d] %s at %s:%d\n"),
3524                                i + first_choice,
3525                                SYMBOL_PRINT_NAME (syms[i].sym),
3526                                symtab->filename, SYMBOL_LINE (syms[i].sym));
3527           else if (is_enumeral
3528                    && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3529             {
3530               printf_unfiltered (("[%d] "), i + first_choice);
3531               ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3532                               gdb_stdout, -1, 0);
3533               printf_unfiltered (_("'(%s) (enumeral)\n"),
3534                                  SYMBOL_PRINT_NAME (syms[i].sym));
3535             }
3536           else if (symtab != NULL)
3537             printf_unfiltered (is_enumeral
3538                                ? _("[%d] %s in %s (enumeral)\n")
3539                                : _("[%d] %s at %s:?\n"),
3540                                i + first_choice,
3541                                SYMBOL_PRINT_NAME (syms[i].sym),
3542                                symtab->filename);
3543           else
3544             printf_unfiltered (is_enumeral
3545                                ? _("[%d] %s (enumeral)\n")
3546                                : _("[%d] %s at ?\n"),
3547                                i + first_choice,
3548                                SYMBOL_PRINT_NAME (syms[i].sym));
3549         }
3550     }
3551 
3552   n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3553                              "overload-choice");
3554 
3555   for (i = 0; i < n_chosen; i += 1)
3556     syms[i] = syms[chosen[i]];
3557 
3558   return n_chosen;
3559 }
3560 
3561 /* Read and validate a set of numeric choices from the user in the
3562    range 0 .. N_CHOICES-1.  Place the results in increasing
3563    order in CHOICES[0 .. N-1], and return N.
3564 
3565    The user types choices as a sequence of numbers on one line
3566    separated by blanks, encoding them as follows:
3567 
3568      + A choice of 0 means to cancel the selection, throwing an error.
3569      + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3570      + The user chooses k by typing k+IS_ALL_CHOICE+1.
3571 
3572    The user is not allowed to choose more than MAX_RESULTS values.
3573 
3574    ANNOTATION_SUFFIX, if present, is used to annotate the input
3575    prompts (for use with the -f switch).  */
3576 
3577 int
3578 get_selections (int *choices, int n_choices, int max_results,
3579                 int is_all_choice, char *annotation_suffix)
3580 {
3581   char *args;
3582   char *prompt;
3583   int n_chosen;
3584   int first_choice = is_all_choice ? 2 : 1;
3585 
3586   prompt = getenv ("PS2");
3587   if (prompt == NULL)
3588     prompt = "> ";
3589 
3590   args = command_line_input (prompt, 0, annotation_suffix);
3591 
3592   if (args == NULL)
3593     error_no_arg (_("one or more choice numbers"));
3594 
3595   n_chosen = 0;
3596 
3597   /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3598      order, as given in args.  Choices are validated.  */
3599   while (1)
3600     {
3601       char *args2;
3602       int choice, j;
3603 
3604       while (isspace (*args))
3605         args += 1;
3606       if (*args == '\0' && n_chosen == 0)
3607         error_no_arg (_("one or more choice numbers"));
3608       else if (*args == '\0')
3609         break;
3610 
3611       choice = strtol (args, &args2, 10);
3612       if (args == args2 || choice < 0
3613           || choice > n_choices + first_choice - 1)
3614         error (_("Argument must be choice number"));
3615       args = args2;
3616 
3617       if (choice == 0)
3618         error (_("cancelled"));
3619 
3620       if (choice < first_choice)
3621         {
3622           n_chosen = n_choices;
3623           for (j = 0; j < n_choices; j += 1)
3624             choices[j] = j;
3625           break;
3626         }
3627       choice -= first_choice;
3628 
3629       for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3630         {
3631         }
3632 
3633       if (j < 0 || choice != choices[j])
3634         {
3635           int k;
3636 
3637           for (k = n_chosen - 1; k > j; k -= 1)
3638             choices[k + 1] = choices[k];
3639           choices[j + 1] = choice;
3640           n_chosen += 1;
3641         }
3642     }
3643 
3644   if (n_chosen > max_results)
3645     error (_("Select no more than %d of the above"), max_results);
3646 
3647   return n_chosen;
3648 }
3649 
3650 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3651    on the function identified by SYM and BLOCK, and taking NARGS
3652    arguments.  Update *EXPP as needed to hold more space.  */
3653 
3654 static void
3655 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3656                             int oplen, struct symbol *sym,
3657                             struct block *block)
3658 {
3659   /* A new expression, with 6 more elements (3 for funcall, 4 for function
3660      symbol, -oplen for operator being replaced).  */
3661   struct expression *newexp = (struct expression *)
3662     xzalloc (sizeof (struct expression)
3663              + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3664   struct expression *exp = *expp;
3665 
3666   newexp->nelts = exp->nelts + 7 - oplen;
3667   newexp->language_defn = exp->language_defn;
3668   newexp->gdbarch = exp->gdbarch;
3669   memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3670   memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3671           EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3672 
3673   newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3674   newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3675 
3676   newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3677   newexp->elts[pc + 4].block = block;
3678   newexp->elts[pc + 5].symbol = sym;
3679 
3680   *expp = newexp;
3681   xfree (exp);
3682 }
3683 
3684 /* Type-class predicates */
3685 
3686 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3687    or FLOAT).  */
3688 
3689 static int
3690 numeric_type_p (struct type *type)
3691 {
3692   if (type == NULL)
3693     return 0;
3694   else
3695     {
3696       switch (TYPE_CODE (type))
3697         {
3698         case TYPE_CODE_INT:
3699         case TYPE_CODE_FLT:
3700           return 1;
3701         case TYPE_CODE_RANGE:
3702           return (type == TYPE_TARGET_TYPE (type)
3703                   || numeric_type_p (TYPE_TARGET_TYPE (type)));
3704         default:
3705           return 0;
3706         }
3707     }
3708 }
3709 
3710 /* True iff TYPE is integral (an INT or RANGE of INTs).  */
3711 
3712 static int
3713 integer_type_p (struct type *type)
3714 {
3715   if (type == NULL)
3716     return 0;
3717   else
3718     {
3719       switch (TYPE_CODE (type))
3720         {
3721         case TYPE_CODE_INT:
3722           return 1;
3723         case TYPE_CODE_RANGE:
3724           return (type == TYPE_TARGET_TYPE (type)
3725                   || integer_type_p (TYPE_TARGET_TYPE (type)));
3726         default:
3727           return 0;
3728         }
3729     }
3730 }
3731 
3732 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
3733 
3734 static int
3735 scalar_type_p (struct type *type)
3736 {
3737   if (type == NULL)
3738     return 0;
3739   else
3740     {
3741       switch (TYPE_CODE (type))
3742         {
3743         case TYPE_CODE_INT:
3744         case TYPE_CODE_RANGE:
3745         case TYPE_CODE_ENUM:
3746         case TYPE_CODE_FLT:
3747           return 1;
3748         default:
3749           return 0;
3750         }
3751     }
3752 }
3753 
3754 /* True iff TYPE is discrete (INT, RANGE, ENUM).  */
3755 
3756 static int
3757 discrete_type_p (struct type *type)
3758 {
3759   if (type == NULL)
3760     return 0;
3761   else
3762     {
3763       switch (TYPE_CODE (type))
3764         {
3765         case TYPE_CODE_INT:
3766         case TYPE_CODE_RANGE:
3767         case TYPE_CODE_ENUM:
3768         case TYPE_CODE_BOOL:
3769           return 1;
3770         default:
3771           return 0;
3772         }
3773     }
3774 }
3775 
3776 /* Returns non-zero if OP with operands in the vector ARGS could be
3777    a user-defined function.  Errs on the side of pre-defined operators
3778    (i.e., result 0).  */
3779 
3780 static int
3781 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3782 {
3783   struct type *type0 =
3784     (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3785   struct type *type1 =
3786     (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3787 
3788   if (type0 == NULL)
3789     return 0;
3790 
3791   switch (op)
3792     {
3793     default:
3794       return 0;
3795 
3796     case BINOP_ADD:
3797     case BINOP_SUB:
3798     case BINOP_MUL:
3799     case BINOP_DIV:
3800       return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3801 
3802     case BINOP_REM:
3803     case BINOP_MOD:
3804     case BINOP_BITWISE_AND:
3805     case BINOP_BITWISE_IOR:
3806     case BINOP_BITWISE_XOR:
3807       return (!(integer_type_p (type0) && integer_type_p (type1)));
3808 
3809     case BINOP_EQUAL:
3810     case BINOP_NOTEQUAL:
3811     case BINOP_LESS:
3812     case BINOP_GTR:
3813     case BINOP_LEQ:
3814     case BINOP_GEQ:
3815       return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3816 
3817     case BINOP_CONCAT:
3818       return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3819 
3820     case BINOP_EXP:
3821       return (!(numeric_type_p (type0) && integer_type_p (type1)));
3822 
3823     case UNOP_NEG:
3824     case UNOP_PLUS:
3825     case UNOP_LOGICAL_NOT:
3826     case UNOP_ABS:
3827       return (!numeric_type_p (type0));
3828 
3829     }
3830 }
3831 
3832                                 /* Renaming */
3833 
3834 /* NOTES:
3835 
3836    1. In the following, we assume that a renaming type's name may
3837       have an ___XD suffix.  It would be nice if this went away at some
3838       point.
3839    2. We handle both the (old) purely type-based representation of
3840       renamings and the (new) variable-based encoding.  At some point,
3841       it is devoutly to be hoped that the former goes away
3842       (FIXME: hilfinger-2007-07-09).
3843    3. Subprogram renamings are not implemented, although the XRS
3844       suffix is recognized (FIXME: hilfinger-2007-07-09).  */
3845 
3846 /* If SYM encodes a renaming,
3847 
3848        <renaming> renames <renamed entity>,
3849 
3850    sets *LEN to the length of the renamed entity's name,
3851    *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3852    the string describing the subcomponent selected from the renamed
3853    entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3854    (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3855    are undefined).  Otherwise, returns a value indicating the category
3856    of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3857    (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3858    subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
3859    strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3860    deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3861    may be NULL, in which case they are not assigned.
3862 
3863    [Currently, however, GCC does not generate subprogram renamings.]  */
3864 
3865 enum ada_renaming_category
3866 ada_parse_renaming (struct symbol *sym,
3867 		    const char **renamed_entity, int *len,
3868 		    const char **renaming_expr)
3869 {
3870   enum ada_renaming_category kind;
3871   const char *info;
3872   const char *suffix;
3873 
3874   if (sym == NULL)
3875     return ADA_NOT_RENAMING;
3876   switch (SYMBOL_CLASS (sym))
3877     {
3878     default:
3879       return ADA_NOT_RENAMING;
3880     case LOC_TYPEDEF:
3881       return parse_old_style_renaming (SYMBOL_TYPE (sym),
3882 				       renamed_entity, len, renaming_expr);
3883     case LOC_LOCAL:
3884     case LOC_STATIC:
3885     case LOC_COMPUTED:
3886     case LOC_OPTIMIZED_OUT:
3887       info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3888       if (info == NULL)
3889 	return ADA_NOT_RENAMING;
3890       switch (info[5])
3891 	{
3892 	case '_':
3893 	  kind = ADA_OBJECT_RENAMING;
3894 	  info += 6;
3895 	  break;
3896 	case 'E':
3897 	  kind = ADA_EXCEPTION_RENAMING;
3898 	  info += 7;
3899 	  break;
3900 	case 'P':
3901 	  kind = ADA_PACKAGE_RENAMING;
3902 	  info += 7;
3903 	  break;
3904 	case 'S':
3905 	  kind = ADA_SUBPROGRAM_RENAMING;
3906 	  info += 7;
3907 	  break;
3908 	default:
3909 	  return ADA_NOT_RENAMING;
3910 	}
3911     }
3912 
3913   if (renamed_entity != NULL)
3914     *renamed_entity = info;
3915   suffix = strstr (info, "___XE");
3916   if (suffix == NULL || suffix == info)
3917     return ADA_NOT_RENAMING;
3918   if (len != NULL)
3919     *len = strlen (info) - strlen (suffix);
3920   suffix += 5;
3921   if (renaming_expr != NULL)
3922     *renaming_expr = suffix;
3923   return kind;
3924 }
3925 
3926 /* Assuming TYPE encodes a renaming according to the old encoding in
3927    exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3928    *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
3929    ADA_NOT_RENAMING otherwise.  */
3930 static enum ada_renaming_category
3931 parse_old_style_renaming (struct type *type,
3932 			  const char **renamed_entity, int *len,
3933 			  const char **renaming_expr)
3934 {
3935   enum ada_renaming_category kind;
3936   const char *name;
3937   const char *info;
3938   const char *suffix;
3939 
3940   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3941       || TYPE_NFIELDS (type) != 1)
3942     return ADA_NOT_RENAMING;
3943 
3944   name = type_name_no_tag (type);
3945   if (name == NULL)
3946     return ADA_NOT_RENAMING;
3947 
3948   name = strstr (name, "___XR");
3949   if (name == NULL)
3950     return ADA_NOT_RENAMING;
3951   switch (name[5])
3952     {
3953     case '\0':
3954     case '_':
3955       kind = ADA_OBJECT_RENAMING;
3956       break;
3957     case 'E':
3958       kind = ADA_EXCEPTION_RENAMING;
3959       break;
3960     case 'P':
3961       kind = ADA_PACKAGE_RENAMING;
3962       break;
3963     case 'S':
3964       kind = ADA_SUBPROGRAM_RENAMING;
3965       break;
3966     default:
3967       return ADA_NOT_RENAMING;
3968     }
3969 
3970   info = TYPE_FIELD_NAME (type, 0);
3971   if (info == NULL)
3972     return ADA_NOT_RENAMING;
3973   if (renamed_entity != NULL)
3974     *renamed_entity = info;
3975   suffix = strstr (info, "___XE");
3976   if (renaming_expr != NULL)
3977     *renaming_expr = suffix + 5;
3978   if (suffix == NULL || suffix == info)
3979     return ADA_NOT_RENAMING;
3980   if (len != NULL)
3981     *len = suffix - info;
3982   return kind;
3983 }
3984 
3985 
3986 
3987                                 /* Evaluation: Function Calls */
3988 
3989 /* Return an lvalue containing the value VAL.  This is the identity on
3990    lvalues, and otherwise has the side-effect of allocating memory
3991    in the inferior where a copy of the value contents is copied.  */
3992 
3993 static struct value *
3994 ensure_lval (struct value *val)
3995 {
3996   if (VALUE_LVAL (val) == not_lval
3997       || VALUE_LVAL (val) == lval_internalvar)
3998     {
3999       int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4000       const CORE_ADDR addr =
4001         value_as_long (value_allocate_space_in_inferior (len));
4002 
4003       set_value_address (val, addr);
4004       VALUE_LVAL (val) = lval_memory;
4005       write_memory (addr, value_contents (val), len);
4006     }
4007 
4008   return val;
4009 }
4010 
4011 /* Return the value ACTUAL, converted to be an appropriate value for a
4012    formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4013    allocating any necessary descriptors (fat pointers), or copies of
4014    values not residing in memory, updating it as needed.  */
4015 
4016 struct value *
4017 ada_convert_actual (struct value *actual, struct type *formal_type0)
4018 {
4019   struct type *actual_type = ada_check_typedef (value_type (actual));
4020   struct type *formal_type = ada_check_typedef (formal_type0);
4021   struct type *formal_target =
4022     TYPE_CODE (formal_type) == TYPE_CODE_PTR
4023     ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4024   struct type *actual_target =
4025     TYPE_CODE (actual_type) == TYPE_CODE_PTR
4026     ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4027 
4028   if (ada_is_array_descriptor_type (formal_target)
4029       && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4030     return make_array_descriptor (formal_type, actual);
4031   else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4032 	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4033     {
4034       struct value *result;
4035 
4036       if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4037           && ada_is_array_descriptor_type (actual_target))
4038 	result = desc_data (actual);
4039       else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4040         {
4041           if (VALUE_LVAL (actual) != lval_memory)
4042             {
4043               struct value *val;
4044 
4045               actual_type = ada_check_typedef (value_type (actual));
4046               val = allocate_value (actual_type);
4047               memcpy ((char *) value_contents_raw (val),
4048                       (char *) value_contents (actual),
4049                       TYPE_LENGTH (actual_type));
4050               actual = ensure_lval (val);
4051             }
4052           result = value_addr (actual);
4053         }
4054       else
4055 	return actual;
4056       return value_cast_pointers (formal_type, result);
4057     }
4058   else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4059     return ada_value_ind (actual);
4060 
4061   return actual;
4062 }
4063 
4064 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4065    type TYPE.  This is usually an inefficient no-op except on some targets
4066    (such as AVR) where the representation of a pointer and an address
4067    differs.  */
4068 
4069 static CORE_ADDR
4070 value_pointer (struct value *value, struct type *type)
4071 {
4072   struct gdbarch *gdbarch = get_type_arch (type);
4073   unsigned len = TYPE_LENGTH (type);
4074   gdb_byte *buf = alloca (len);
4075   CORE_ADDR addr;
4076 
4077   addr = value_address (value);
4078   gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4079   addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4080   return addr;
4081 }
4082 
4083 
4084 /* Push a descriptor of type TYPE for array value ARR on the stack at
4085    *SP, updating *SP to reflect the new descriptor.  Return either
4086    an lvalue representing the new descriptor, or (if TYPE is a pointer-
4087    to-descriptor type rather than a descriptor type), a struct value *
4088    representing a pointer to this descriptor.  */
4089 
4090 static struct value *
4091 make_array_descriptor (struct type *type, struct value *arr)
4092 {
4093   struct type *bounds_type = desc_bounds_type (type);
4094   struct type *desc_type = desc_base_type (type);
4095   struct value *descriptor = allocate_value (desc_type);
4096   struct value *bounds = allocate_value (bounds_type);
4097   int i;
4098 
4099   for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4100        i > 0; i -= 1)
4101     {
4102       modify_field (value_type (bounds), value_contents_writeable (bounds),
4103 		    ada_array_bound (arr, i, 0),
4104 		    desc_bound_bitpos (bounds_type, i, 0),
4105 		    desc_bound_bitsize (bounds_type, i, 0));
4106       modify_field (value_type (bounds), value_contents_writeable (bounds),
4107 		    ada_array_bound (arr, i, 1),
4108 		    desc_bound_bitpos (bounds_type, i, 1),
4109 		    desc_bound_bitsize (bounds_type, i, 1));
4110     }
4111 
4112   bounds = ensure_lval (bounds);
4113 
4114   modify_field (value_type (descriptor),
4115 		value_contents_writeable (descriptor),
4116 		value_pointer (ensure_lval (arr),
4117 			       TYPE_FIELD_TYPE (desc_type, 0)),
4118 		fat_pntr_data_bitpos (desc_type),
4119 		fat_pntr_data_bitsize (desc_type));
4120 
4121   modify_field (value_type (descriptor),
4122 		value_contents_writeable (descriptor),
4123 		value_pointer (bounds,
4124 			       TYPE_FIELD_TYPE (desc_type, 1)),
4125 		fat_pntr_bounds_bitpos (desc_type),
4126 		fat_pntr_bounds_bitsize (desc_type));
4127 
4128   descriptor = ensure_lval (descriptor);
4129 
4130   if (TYPE_CODE (type) == TYPE_CODE_PTR)
4131     return value_addr (descriptor);
4132   else
4133     return descriptor;
4134 }
4135 
4136 /* Dummy definitions for an experimental caching module that is not
4137  * used in the public sources.  */
4138 
4139 static int
4140 lookup_cached_symbol (const char *name, domain_enum namespace,
4141                       struct symbol **sym, struct block **block)
4142 {
4143   return 0;
4144 }
4145 
4146 static void
4147 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4148               struct block *block)
4149 {
4150 }
4151 
4152                                 /* Symbol Lookup */
4153 
4154 /* Return the result of a standard (literal, C-like) lookup of NAME in
4155    given DOMAIN, visible from lexical block BLOCK.  */
4156 
4157 static struct symbol *
4158 standard_lookup (const char *name, const struct block *block,
4159                  domain_enum domain)
4160 {
4161   struct symbol *sym;
4162 
4163   if (lookup_cached_symbol (name, domain, &sym, NULL))
4164     return sym;
4165   sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4166   cache_symbol (name, domain, sym, block_found);
4167   return sym;
4168 }
4169 
4170 
4171 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4172    in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions,
4173    since they contend in overloading in the same way.  */
4174 static int
4175 is_nonfunction (struct ada_symbol_info syms[], int n)
4176 {
4177   int i;
4178 
4179   for (i = 0; i < n; i += 1)
4180     if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4181         && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4182             || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4183       return 1;
4184 
4185   return 0;
4186 }
4187 
4188 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4189    struct types.  Otherwise, they may not.  */
4190 
4191 static int
4192 equiv_types (struct type *type0, struct type *type1)
4193 {
4194   if (type0 == type1)
4195     return 1;
4196   if (type0 == NULL || type1 == NULL
4197       || TYPE_CODE (type0) != TYPE_CODE (type1))
4198     return 0;
4199   if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4200        || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4201       && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4202       && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4203     return 1;
4204 
4205   return 0;
4206 }
4207 
4208 /* True iff SYM0 represents the same entity as SYM1, or one that is
4209    no more defined than that of SYM1.  */
4210 
4211 static int
4212 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4213 {
4214   if (sym0 == sym1)
4215     return 1;
4216   if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4217       || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4218     return 0;
4219 
4220   switch (SYMBOL_CLASS (sym0))
4221     {
4222     case LOC_UNDEF:
4223       return 1;
4224     case LOC_TYPEDEF:
4225       {
4226         struct type *type0 = SYMBOL_TYPE (sym0);
4227         struct type *type1 = SYMBOL_TYPE (sym1);
4228         char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4229         char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4230         int len0 = strlen (name0);
4231 
4232         return
4233           TYPE_CODE (type0) == TYPE_CODE (type1)
4234           && (equiv_types (type0, type1)
4235               || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4236                   && strncmp (name1 + len0, "___XV", 5) == 0));
4237       }
4238     case LOC_CONST:
4239       return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4240         && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4241     default:
4242       return 0;
4243     }
4244 }
4245 
4246 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4247    records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4248 
4249 static void
4250 add_defn_to_vec (struct obstack *obstackp,
4251                  struct symbol *sym,
4252                  struct block *block)
4253 {
4254   int i;
4255   struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4256 
4257   /* Do not try to complete stub types, as the debugger is probably
4258      already scanning all symbols matching a certain name at the
4259      time when this function is called.  Trying to replace the stub
4260      type by its associated full type will cause us to restart a scan
4261      which may lead to an infinite recursion.  Instead, the client
4262      collecting the matching symbols will end up collecting several
4263      matches, with at least one of them complete.  It can then filter
4264      out the stub ones if needed.  */
4265 
4266   for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4267     {
4268       if (lesseq_defined_than (sym, prevDefns[i].sym))
4269         return;
4270       else if (lesseq_defined_than (prevDefns[i].sym, sym))
4271         {
4272           prevDefns[i].sym = sym;
4273           prevDefns[i].block = block;
4274           return;
4275         }
4276     }
4277 
4278   {
4279     struct ada_symbol_info info;
4280 
4281     info.sym = sym;
4282     info.block = block;
4283     obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4284   }
4285 }
4286 
4287 /* Number of ada_symbol_info structures currently collected in
4288    current vector in *OBSTACKP.  */
4289 
4290 static int
4291 num_defns_collected (struct obstack *obstackp)
4292 {
4293   return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4294 }
4295 
4296 /* Vector of ada_symbol_info structures currently collected in current
4297    vector in *OBSTACKP.  If FINISH, close off the vector and return
4298    its final address.  */
4299 
4300 static struct ada_symbol_info *
4301 defns_collected (struct obstack *obstackp, int finish)
4302 {
4303   if (finish)
4304     return obstack_finish (obstackp);
4305   else
4306     return (struct ada_symbol_info *) obstack_base (obstackp);
4307 }
4308 
4309 /* Return a minimal symbol matching NAME according to Ada decoding
4310    rules.  Returns NULL if there is no such minimal symbol.  Names
4311    prefixed with "standard__" are handled specially: "standard__" is
4312    first stripped off, and only static and global symbols are searched.  */
4313 
4314 struct minimal_symbol *
4315 ada_lookup_simple_minsym (const char *name)
4316 {
4317   struct objfile *objfile;
4318   struct minimal_symbol *msymbol;
4319   int wild_match;
4320 
4321   if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4322     {
4323       name += sizeof ("standard__") - 1;
4324       wild_match = 0;
4325     }
4326   else
4327     wild_match = (strstr (name, "__") == NULL);
4328 
4329   ALL_MSYMBOLS (objfile, msymbol)
4330   {
4331     if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4332         && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4333       return msymbol;
4334   }
4335 
4336   return NULL;
4337 }
4338 
4339 /* For all subprograms that statically enclose the subprogram of the
4340    selected frame, add symbols matching identifier NAME in DOMAIN
4341    and their blocks to the list of data in OBSTACKP, as for
4342    ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
4343    wildcard prefix.  */
4344 
4345 static void
4346 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4347                                   const char *name, domain_enum namespace,
4348                                   int wild_match)
4349 {
4350 }
4351 
4352 /* True if TYPE is definitely an artificial type supplied to a symbol
4353    for which no debugging information was given in the symbol file.  */
4354 
4355 static int
4356 is_nondebugging_type (struct type *type)
4357 {
4358   char *name = ada_type_name (type);
4359 
4360   return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361 }
4362 
4363 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364    duplicate other symbols in the list (The only case I know of where
4365    this happens is when object files containing stabs-in-ecoff are
4366    linked with files containing ordinary ecoff debugging symbols (or no
4367    debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
4368    Returns the number of items in the modified list.  */
4369 
4370 static int
4371 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372 {
4373   int i, j;
4374 
4375   i = 0;
4376   while (i < nsyms)
4377     {
4378       int remove = 0;
4379 
4380       /* If two symbols have the same name and one of them is a stub type,
4381          the get rid of the stub.  */
4382 
4383       if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4384           && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4385         {
4386           for (j = 0; j < nsyms; j++)
4387             {
4388               if (j != i
4389                   && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4390                   && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4391                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4392                              SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4393                 remove = 1;
4394             }
4395         }
4396 
4397       /* Two symbols with the same name, same class and same address
4398          should be identical.  */
4399 
4400       else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4401           && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4402           && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4403         {
4404           for (j = 0; j < nsyms; j += 1)
4405             {
4406               if (i != j
4407                   && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4408                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4409                              SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4410                   && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4411                   && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4412                   == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4413                 remove = 1;
4414             }
4415         }
4416 
4417       if (remove)
4418         {
4419           for (j = i + 1; j < nsyms; j += 1)
4420             syms[j - 1] = syms[j];
4421           nsyms -= 1;
4422         }
4423 
4424       i += 1;
4425     }
4426   return nsyms;
4427 }
4428 
4429 /* Given a type that corresponds to a renaming entity, use the type name
4430    to extract the scope (package name or function name, fully qualified,
4431    and following the GNAT encoding convention) where this renaming has been
4432    defined.  The string returned needs to be deallocated after use.  */
4433 
4434 static char *
4435 xget_renaming_scope (struct type *renaming_type)
4436 {
4437   /* The renaming types adhere to the following convention:
4438      <scope>__<rename>___<XR extension>.
4439      So, to extract the scope, we search for the "___XR" extension,
4440      and then backtrack until we find the first "__".  */
4441 
4442   const char *name = type_name_no_tag (renaming_type);
4443   char *suffix = strstr (name, "___XR");
4444   char *last;
4445   int scope_len;
4446   char *scope;
4447 
4448   /* Now, backtrack a bit until we find the first "__".  Start looking
4449      at suffix - 3, as the <rename> part is at least one character long.  */
4450 
4451   for (last = suffix - 3; last > name; last--)
4452     if (last[0] == '_' && last[1] == '_')
4453       break;
4454 
4455   /* Make a copy of scope and return it.  */
4456 
4457   scope_len = last - name;
4458   scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4459 
4460   strncpy (scope, name, scope_len);
4461   scope[scope_len] = '\0';
4462 
4463   return scope;
4464 }
4465 
4466 /* Return nonzero if NAME corresponds to a package name.  */
4467 
4468 static int
4469 is_package_name (const char *name)
4470 {
4471   /* Here, We take advantage of the fact that no symbols are generated
4472      for packages, while symbols are generated for each function.
4473      So the condition for NAME represent a package becomes equivalent
4474      to NAME not existing in our list of symbols.  There is only one
4475      small complication with library-level functions (see below).  */
4476 
4477   char *fun_name;
4478 
4479   /* If it is a function that has not been defined at library level,
4480      then we should be able to look it up in the symbols.  */
4481   if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4482     return 0;
4483 
4484   /* Library-level function names start with "_ada_".  See if function
4485      "_ada_" followed by NAME can be found.  */
4486 
4487   /* Do a quick check that NAME does not contain "__", since library-level
4488      functions names cannot contain "__" in them.  */
4489   if (strstr (name, "__") != NULL)
4490     return 0;
4491 
4492   fun_name = xstrprintf ("_ada_%s", name);
4493 
4494   return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4495 }
4496 
4497 /* Return nonzero if SYM corresponds to a renaming entity that is
4498    not visible from FUNCTION_NAME.  */
4499 
4500 static int
4501 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4502 {
4503   char *scope;
4504 
4505   if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4506     return 0;
4507 
4508   scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4509 
4510   make_cleanup (xfree, scope);
4511 
4512   /* If the rename has been defined in a package, then it is visible.  */
4513   if (is_package_name (scope))
4514     return 0;
4515 
4516   /* Check that the rename is in the current function scope by checking
4517      that its name starts with SCOPE.  */
4518 
4519   /* If the function name starts with "_ada_", it means that it is
4520      a library-level function.  Strip this prefix before doing the
4521      comparison, as the encoding for the renaming does not contain
4522      this prefix.  */
4523   if (strncmp (function_name, "_ada_", 5) == 0)
4524     function_name += 5;
4525 
4526   return (strncmp (function_name, scope, strlen (scope)) != 0);
4527 }
4528 
4529 /* Remove entries from SYMS that corresponds to a renaming entity that
4530    is not visible from the function associated with CURRENT_BLOCK or
4531    that is superfluous due to the presence of more specific renaming
4532    information.  Places surviving symbols in the initial entries of
4533    SYMS and returns the number of surviving symbols.
4534 
4535    Rationale:
4536    First, in cases where an object renaming is implemented as a
4537    reference variable, GNAT may produce both the actual reference
4538    variable and the renaming encoding.  In this case, we discard the
4539    latter.
4540 
4541    Second, GNAT emits a type following a specified encoding for each renaming
4542    entity.  Unfortunately, STABS currently does not support the definition
4543    of types that are local to a given lexical block, so all renamings types
4544    are emitted at library level.  As a consequence, if an application
4545    contains two renaming entities using the same name, and a user tries to
4546    print the value of one of these entities, the result of the ada symbol
4547    lookup will also contain the wrong renaming type.
4548 
4549    This function partially covers for this limitation by attempting to
4550    remove from the SYMS list renaming symbols that should be visible
4551    from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
4552    method with the current information available.  The implementation
4553    below has a couple of limitations (FIXME: brobecker-2003-05-12):
4554 
4555       - When the user tries to print a rename in a function while there
4556         is another rename entity defined in a package:  Normally, the
4557         rename in the function has precedence over the rename in the
4558         package, so the latter should be removed from the list.  This is
4559         currently not the case.
4560 
4561       - This function will incorrectly remove valid renames if
4562         the CURRENT_BLOCK corresponds to a function which symbol name
4563         has been changed by an "Export" pragma.  As a consequence,
4564         the user will be unable to print such rename entities.  */
4565 
4566 static int
4567 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4568 			     int nsyms, const struct block *current_block)
4569 {
4570   struct symbol *current_function;
4571   char *current_function_name;
4572   int i;
4573   int is_new_style_renaming;
4574 
4575   /* If there is both a renaming foo___XR... encoded as a variable and
4576      a simple variable foo in the same block, discard the latter.
4577      First, zero out such symbols, then compress.  */
4578   is_new_style_renaming = 0;
4579   for (i = 0; i < nsyms; i += 1)
4580     {
4581       struct symbol *sym = syms[i].sym;
4582       struct block *block = syms[i].block;
4583       const char *name;
4584       const char *suffix;
4585 
4586       if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4587 	continue;
4588       name = SYMBOL_LINKAGE_NAME (sym);
4589       suffix = strstr (name, "___XR");
4590 
4591       if (suffix != NULL)
4592 	{
4593 	  int name_len = suffix - name;
4594 	  int j;
4595 
4596 	  is_new_style_renaming = 1;
4597 	  for (j = 0; j < nsyms; j += 1)
4598 	    if (i != j && syms[j].sym != NULL
4599 		&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4600 			    name_len) == 0
4601 		&& block == syms[j].block)
4602 	      syms[j].sym = NULL;
4603 	}
4604     }
4605   if (is_new_style_renaming)
4606     {
4607       int j, k;
4608 
4609       for (j = k = 0; j < nsyms; j += 1)
4610 	if (syms[j].sym != NULL)
4611 	    {
4612 	      syms[k] = syms[j];
4613 	      k += 1;
4614 	    }
4615       return k;
4616     }
4617 
4618   /* Extract the function name associated to CURRENT_BLOCK.
4619      Abort if unable to do so.  */
4620 
4621   if (current_block == NULL)
4622     return nsyms;
4623 
4624   current_function = block_linkage_function (current_block);
4625   if (current_function == NULL)
4626     return nsyms;
4627 
4628   current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4629   if (current_function_name == NULL)
4630     return nsyms;
4631 
4632   /* Check each of the symbols, and remove it from the list if it is
4633      a type corresponding to a renaming that is out of the scope of
4634      the current block.  */
4635 
4636   i = 0;
4637   while (i < nsyms)
4638     {
4639       if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4640           == ADA_OBJECT_RENAMING
4641           && old_renaming_is_invisible (syms[i].sym, current_function_name))
4642         {
4643           int j;
4644 
4645           for (j = i + 1; j < nsyms; j += 1)
4646             syms[j - 1] = syms[j];
4647           nsyms -= 1;
4648         }
4649       else
4650         i += 1;
4651     }
4652 
4653   return nsyms;
4654 }
4655 
4656 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4657    whose name and domain match NAME and DOMAIN respectively.
4658    If no match was found, then extend the search to "enclosing"
4659    routines (in other words, if we're inside a nested function,
4660    search the symbols defined inside the enclosing functions).
4661 
4662    Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
4663 
4664 static void
4665 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4666                        struct block *block, domain_enum domain,
4667                        int wild_match)
4668 {
4669   int block_depth = 0;
4670 
4671   while (block != NULL)
4672     {
4673       block_depth += 1;
4674       ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4675 
4676       /* If we found a non-function match, assume that's the one.  */
4677       if (is_nonfunction (defns_collected (obstackp, 0),
4678                           num_defns_collected (obstackp)))
4679         return;
4680 
4681       block = BLOCK_SUPERBLOCK (block);
4682     }
4683 
4684   /* If no luck so far, try to find NAME as a local symbol in some lexically
4685      enclosing subprogram.  */
4686   if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4687     add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4688 }
4689 
4690 /* An object of this type is used as the user_data argument when
4691    calling the map_matching_symbols method.  */
4692 
4693 struct match_data
4694 {
4695   struct objfile *objfile;
4696   struct obstack *obstackp;
4697   struct symbol *arg_sym;
4698   int found_sym;
4699 };
4700 
4701 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4702    to a list of symbols.  DATA0 is a pointer to a struct match_data *
4703    containing the obstack that collects the symbol list, the file that SYM
4704    must come from, a flag indicating whether a non-argument symbol has
4705    been found in the current block, and the last argument symbol
4706    passed in SYM within the current block (if any).  When SYM is null,
4707    marking the end of a block, the argument symbol is added if no
4708    other has been found.  */
4709 
4710 static int
4711 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4712 {
4713   struct match_data *data = (struct match_data *) data0;
4714 
4715   if (sym == NULL)
4716     {
4717       if (!data->found_sym && data->arg_sym != NULL)
4718 	add_defn_to_vec (data->obstackp,
4719 			 fixup_symbol_section (data->arg_sym, data->objfile),
4720 			 block);
4721       data->found_sym = 0;
4722       data->arg_sym = NULL;
4723     }
4724   else
4725     {
4726       if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4727 	return 0;
4728       else if (SYMBOL_IS_ARGUMENT (sym))
4729 	data->arg_sym = sym;
4730       else
4731 	{
4732 	  data->found_sym = 1;
4733 	  add_defn_to_vec (data->obstackp,
4734 			   fixup_symbol_section (sym, data->objfile),
4735 			   block);
4736 	}
4737     }
4738   return 0;
4739 }
4740 
4741 /* Compare STRING1 to STRING2, with results as for strcmp.
4742    Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4743    implies compare_names (STRING1, STRING2) (they may differ as to
4744    what symbols compare equal).  */
4745 
4746 static int
4747 compare_names (const char *string1, const char *string2)
4748 {
4749   while (*string1 != '\0' && *string2 != '\0')
4750     {
4751       if (isspace (*string1) || isspace (*string2))
4752 	return strcmp_iw_ordered (string1, string2);
4753       if (*string1 != *string2)
4754 	break;
4755       string1 += 1;
4756       string2 += 1;
4757     }
4758   switch (*string1)
4759     {
4760     case '(':
4761       return strcmp_iw_ordered (string1, string2);
4762     case '_':
4763       if (*string2 == '\0')
4764 	{
4765 	  if (is_name_suffix (string1))
4766 	    return 0;
4767 	  else
4768 	    return -1;
4769 	}
4770       /* FALLTHROUGH */
4771     default:
4772       if (*string2 == '(')
4773 	return strcmp_iw_ordered (string1, string2);
4774       else
4775 	return *string1 - *string2;
4776     }
4777 }
4778 
4779 /* Add to OBSTACKP all non-local symbols whose name and domain match
4780    NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
4781    symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
4782 
4783 static void
4784 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4785 		      domain_enum domain, int global,
4786 		      int is_wild_match)
4787 {
4788   struct objfile *objfile;
4789   struct match_data data;
4790 
4791   data.obstackp = obstackp;
4792   data.arg_sym = NULL;
4793 
4794   ALL_OBJFILES (objfile)
4795     {
4796       data.objfile = objfile;
4797 
4798       if (is_wild_match)
4799 	objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800 					       aux_add_nonlocal_symbols, &data,
4801 					       wild_match, NULL);
4802       else
4803 	objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4804 					       aux_add_nonlocal_symbols, &data,
4805 					       full_match, compare_names);
4806     }
4807 
4808   if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4809     {
4810       ALL_OBJFILES (objfile)
4811         {
4812 	  char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4813 	  strcpy (name1, "_ada_");
4814 	  strcpy (name1 + sizeof ("_ada_") - 1, name);
4815 	  data.objfile = objfile;
4816 	  objfile->sf->qf->map_matching_symbols (name1, domain,
4817 						 objfile, global,
4818 						 aux_add_nonlocal_symbols,
4819 						 &data,
4820 						 full_match, compare_names);
4821 	}
4822     }
4823 }
4824 
4825 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4826    scope and in global scopes, returning the number of matches.  Sets
4827    *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4828    indicating the symbols found and the blocks and symbol tables (if
4829    any) in which they were found.  This vector are transient---good only to
4830    the next call of ada_lookup_symbol_list.  Any non-function/non-enumeral
4831    symbol match within the nest of blocks whose innermost member is BLOCK0,
4832    is the one match returned (no other matches in that or
4833      enclosing blocks is returned).  If there are any matches in or
4834    surrounding BLOCK0, then these alone are returned.  Otherwise, the
4835    search extends to global and file-scope (static) symbol tables.
4836    Names prefixed with "standard__" are handled specially: "standard__"
4837    is first stripped off, and only static and global symbols are searched.  */
4838 
4839 int
4840 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4841                         domain_enum namespace,
4842                         struct ada_symbol_info **results)
4843 {
4844   struct symbol *sym;
4845   struct block *block;
4846   const char *name;
4847   int wild_match;
4848   int cacheIfUnique;
4849   int ndefns;
4850 
4851   obstack_free (&symbol_list_obstack, NULL);
4852   obstack_init (&symbol_list_obstack);
4853 
4854   cacheIfUnique = 0;
4855 
4856   /* Search specified block and its superiors.  */
4857 
4858   wild_match = (strstr (name0, "__") == NULL);
4859   name = name0;
4860   block = (struct block *) block0;      /* FIXME: No cast ought to be
4861                                            needed, but adding const will
4862                                            have a cascade effect.  */
4863 
4864   /* Special case: If the user specifies a symbol name inside package
4865      Standard, do a non-wild matching of the symbol name without
4866      the "standard__" prefix.  This was primarily introduced in order
4867      to allow the user to specifically access the standard exceptions
4868      using, for instance, Standard.Constraint_Error when Constraint_Error
4869      is ambiguous (due to the user defining its own Constraint_Error
4870      entity inside its program).  */
4871   if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4872     {
4873       wild_match = 0;
4874       block = NULL;
4875       name = name0 + sizeof ("standard__") - 1;
4876     }
4877 
4878   /* Check the non-global symbols.  If we have ANY match, then we're done.  */
4879 
4880   ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4881                          wild_match);
4882   if (num_defns_collected (&symbol_list_obstack) > 0)
4883     goto done;
4884 
4885   /* No non-global symbols found.  Check our cache to see if we have
4886      already performed this search before.  If we have, then return
4887      the same result.  */
4888 
4889   cacheIfUnique = 1;
4890   if (lookup_cached_symbol (name0, namespace, &sym, &block))
4891     {
4892       if (sym != NULL)
4893         add_defn_to_vec (&symbol_list_obstack, sym, block);
4894       goto done;
4895     }
4896 
4897   /* Search symbols from all global blocks.  */
4898 
4899   add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4900 			wild_match);
4901 
4902   /* Now add symbols from all per-file blocks if we've gotten no hits
4903      (not strictly correct, but perhaps better than an error).  */
4904 
4905   if (num_defns_collected (&symbol_list_obstack) == 0)
4906     add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4907 			  wild_match);
4908 
4909 done:
4910   ndefns = num_defns_collected (&symbol_list_obstack);
4911   *results = defns_collected (&symbol_list_obstack, 1);
4912 
4913   ndefns = remove_extra_symbols (*results, ndefns);
4914 
4915   if (ndefns == 0)
4916     cache_symbol (name0, namespace, NULL, NULL);
4917 
4918   if (ndefns == 1 && cacheIfUnique)
4919     cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4920 
4921   ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4922 
4923   return ndefns;
4924 }
4925 
4926 struct symbol *
4927 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4928 			   domain_enum namespace, struct block **block_found)
4929 {
4930   struct ada_symbol_info *candidates;
4931   int n_candidates;
4932 
4933   n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4934 
4935   if (n_candidates == 0)
4936     return NULL;
4937 
4938   if (block_found != NULL)
4939     *block_found = candidates[0].block;
4940 
4941   return fixup_symbol_section (candidates[0].sym, NULL);
4942 }
4943 
4944 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4945    scope and in global scopes, or NULL if none.  NAME is folded and
4946    encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
4947    choosing the first symbol if there are multiple choices.
4948    *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4949    table in which the symbol was found (in both cases, these
4950    assignments occur only if the pointers are non-null).  */
4951 struct symbol *
4952 ada_lookup_symbol (const char *name, const struct block *block0,
4953                    domain_enum namespace, int *is_a_field_of_this)
4954 {
4955   if (is_a_field_of_this != NULL)
4956     *is_a_field_of_this = 0;
4957 
4958   return
4959     ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4960 			       block0, namespace, NULL);
4961 }
4962 
4963 static struct symbol *
4964 ada_lookup_symbol_nonlocal (const char *name,
4965                             const struct block *block,
4966                             const domain_enum domain)
4967 {
4968   return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4969 }
4970 
4971 
4972 /* True iff STR is a possible encoded suffix of a normal Ada name
4973    that is to be ignored for matching purposes.  Suffixes of parallel
4974    names (e.g., XVE) are not included here.  Currently, the possible suffixes
4975    are given by any of the regular expressions:
4976 
4977    [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
4978    ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
4979    _E[0-9]+[bs]$    [protected object entry suffixes]
4980    (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4981 
4982    Also, any leading "__[0-9]+" sequence is skipped before the suffix
4983    match is performed.  This sequence is used to differentiate homonyms,
4984    is an optional part of a valid name suffix.  */
4985 
4986 static int
4987 is_name_suffix (const char *str)
4988 {
4989   int k;
4990   const char *matching;
4991   const int len = strlen (str);
4992 
4993   /* Skip optional leading __[0-9]+.  */
4994 
4995   if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4996     {
4997       str += 3;
4998       while (isdigit (str[0]))
4999         str += 1;
5000     }
5001 
5002   /* [.$][0-9]+ */
5003 
5004   if (str[0] == '.' || str[0] == '$')
5005     {
5006       matching = str + 1;
5007       while (isdigit (matching[0]))
5008         matching += 1;
5009       if (matching[0] == '\0')
5010         return 1;
5011     }
5012 
5013   /* ___[0-9]+ */
5014 
5015   if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5016     {
5017       matching = str + 3;
5018       while (isdigit (matching[0]))
5019         matching += 1;
5020       if (matching[0] == '\0')
5021         return 1;
5022     }
5023 
5024 #if 0
5025   /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5026      with a N at the end.  Unfortunately, the compiler uses the same
5027      convention for other internal types it creates.  So treating
5028      all entity names that end with an "N" as a name suffix causes
5029      some regressions.  For instance, consider the case of an enumerated
5030      type.  To support the 'Image attribute, it creates an array whose
5031      name ends with N.
5032      Having a single character like this as a suffix carrying some
5033      information is a bit risky.  Perhaps we should change the encoding
5034      to be something like "_N" instead.  In the meantime, do not do
5035      the following check.  */
5036   /* Protected Object Subprograms */
5037   if (len == 1 && str [0] == 'N')
5038     return 1;
5039 #endif
5040 
5041   /* _E[0-9]+[bs]$ */
5042   if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5043     {
5044       matching = str + 3;
5045       while (isdigit (matching[0]))
5046         matching += 1;
5047       if ((matching[0] == 'b' || matching[0] == 's')
5048           && matching [1] == '\0')
5049         return 1;
5050     }
5051 
5052   /* ??? We should not modify STR directly, as we are doing below.  This
5053      is fine in this case, but may become problematic later if we find
5054      that this alternative did not work, and want to try matching
5055      another one from the begining of STR.  Since we modified it, we
5056      won't be able to find the begining of the string anymore!  */
5057   if (str[0] == 'X')
5058     {
5059       str += 1;
5060       while (str[0] != '_' && str[0] != '\0')
5061         {
5062           if (str[0] != 'n' && str[0] != 'b')
5063             return 0;
5064           str += 1;
5065         }
5066     }
5067 
5068   if (str[0] == '\000')
5069     return 1;
5070 
5071   if (str[0] == '_')
5072     {
5073       if (str[1] != '_' || str[2] == '\000')
5074         return 0;
5075       if (str[2] == '_')
5076         {
5077           if (strcmp (str + 3, "JM") == 0)
5078             return 1;
5079           /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5080              the LJM suffix in favor of the JM one.  But we will
5081              still accept LJM as a valid suffix for a reasonable
5082              amount of time, just to allow ourselves to debug programs
5083              compiled using an older version of GNAT.  */
5084           if (strcmp (str + 3, "LJM") == 0)
5085             return 1;
5086           if (str[3] != 'X')
5087             return 0;
5088           if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5089               || str[4] == 'U' || str[4] == 'P')
5090             return 1;
5091           if (str[4] == 'R' && str[5] != 'T')
5092             return 1;
5093           return 0;
5094         }
5095       if (!isdigit (str[2]))
5096         return 0;
5097       for (k = 3; str[k] != '\0'; k += 1)
5098         if (!isdigit (str[k]) && str[k] != '_')
5099           return 0;
5100       return 1;
5101     }
5102   if (str[0] == '$' && isdigit (str[1]))
5103     {
5104       for (k = 2; str[k] != '\0'; k += 1)
5105         if (!isdigit (str[k]) && str[k] != '_')
5106           return 0;
5107       return 1;
5108     }
5109   return 0;
5110 }
5111 
5112 /* Return non-zero if the string starting at NAME and ending before
5113    NAME_END contains no capital letters.  */
5114 
5115 static int
5116 is_valid_name_for_wild_match (const char *name0)
5117 {
5118   const char *decoded_name = ada_decode (name0);
5119   int i;
5120 
5121   /* If the decoded name starts with an angle bracket, it means that
5122      NAME0 does not follow the GNAT encoding format.  It should then
5123      not be allowed as a possible wild match.  */
5124   if (decoded_name[0] == '<')
5125     return 0;
5126 
5127   for (i=0; decoded_name[i] != '\0'; i++)
5128     if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129       return 0;
5130 
5131   return 1;
5132 }
5133 
5134 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5135    that could start a simple name.  Assumes that *NAMEP points into
5136    the string beginning at NAME0.  */
5137 
5138 static int
5139 advance_wild_match (const char **namep, const char *name0, int target0)
5140 {
5141   const char *name = *namep;
5142 
5143   while (1)
5144     {
5145       int t0, t1;
5146 
5147       t0 = *name;
5148       if (t0 == '_')
5149 	{
5150 	  t1 = name[1];
5151 	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5152 	    {
5153 	      name += 1;
5154 	      if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5155 		break;
5156 	      else
5157 		name += 1;
5158 	    }
5159 	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5160 				 || name[2] == target0))
5161 	    {
5162 	      name += 2;
5163 	      break;
5164 	    }
5165 	  else
5166 	    return 0;
5167 	}
5168       else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5169 	name += 1;
5170       else
5171 	return 0;
5172     }
5173 
5174   *namep = name;
5175   return 1;
5176 }
5177 
5178 /* Return 0 iff NAME encodes a name of the form prefix.PATN.  Ignores any
5179    informational suffixes of NAME (i.e., for which is_name_suffix is
5180    true).  Assumes that PATN is a lower-cased Ada simple name.  */
5181 
5182 static int
5183 wild_match (const char *name, const char *patn)
5184 {
5185   const char *p, *n;
5186   const char *name0 = name;
5187 
5188   while (1)
5189     {
5190       const char *match = name;
5191 
5192       if (*name == *patn)
5193 	{
5194 	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5195 	    if (*p != *name)
5196 	      break;
5197 	  if (*p == '\0' && is_name_suffix (name))
5198 	    return match != name0 && !is_valid_name_for_wild_match (name0);
5199 
5200 	  if (name[-1] == '_')
5201 	    name -= 1;
5202 	}
5203       if (!advance_wild_match (&name, name0, *patn))
5204 	return 1;
5205     }
5206 }
5207 
5208 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5209    informational suffix.  */
5210 
5211 static int
5212 full_match (const char *sym_name, const char *search_name)
5213 {
5214   return !match_name (sym_name, search_name, 0);
5215 }
5216 
5217 
5218 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5219    vector *defn_symbols, updating the list of symbols in OBSTACKP
5220    (if necessary).  If WILD, treat as NAME with a wildcard prefix.
5221    OBJFILE is the section containing BLOCK.
5222    SYMTAB is recorded with each symbol added.  */
5223 
5224 static void
5225 ada_add_block_symbols (struct obstack *obstackp,
5226                        struct block *block, const char *name,
5227                        domain_enum domain, struct objfile *objfile,
5228                        int wild)
5229 {
5230   struct dict_iterator iter;
5231   int name_len = strlen (name);
5232   /* A matching argument symbol, if any.  */
5233   struct symbol *arg_sym;
5234   /* Set true when we find a matching non-argument symbol.  */
5235   int found_sym;
5236   struct symbol *sym;
5237 
5238   arg_sym = NULL;
5239   found_sym = 0;
5240   if (wild)
5241     {
5242       for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5243 					wild_match, &iter);
5244 	   sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5245       {
5246         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5247                                    SYMBOL_DOMAIN (sym), domain)
5248             && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5249           {
5250 	    if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5251 	      continue;
5252 	    else if (SYMBOL_IS_ARGUMENT (sym))
5253 	      arg_sym = sym;
5254 	    else
5255 	      {
5256                 found_sym = 1;
5257                 add_defn_to_vec (obstackp,
5258                                  fixup_symbol_section (sym, objfile),
5259                                  block);
5260               }
5261           }
5262       }
5263     }
5264   else
5265     {
5266      for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5267 				       full_match, &iter);
5268 	   sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5269       {
5270         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5271                                    SYMBOL_DOMAIN (sym), domain))
5272           {
5273 	    if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5274 	      {
5275 		if (SYMBOL_IS_ARGUMENT (sym))
5276 		  arg_sym = sym;
5277 		else
5278 		  {
5279 		    found_sym = 1;
5280 		    add_defn_to_vec (obstackp,
5281 				     fixup_symbol_section (sym, objfile),
5282 				     block);
5283 		  }
5284 	      }
5285           }
5286       }
5287     }
5288 
5289   if (!found_sym && arg_sym != NULL)
5290     {
5291       add_defn_to_vec (obstackp,
5292                        fixup_symbol_section (arg_sym, objfile),
5293                        block);
5294     }
5295 
5296   if (!wild)
5297     {
5298       arg_sym = NULL;
5299       found_sym = 0;
5300 
5301       ALL_BLOCK_SYMBOLS (block, iter, sym)
5302       {
5303         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5304                                    SYMBOL_DOMAIN (sym), domain))
5305           {
5306             int cmp;
5307 
5308             cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5309             if (cmp == 0)
5310               {
5311                 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5312                 if (cmp == 0)
5313                   cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5314                                  name_len);
5315               }
5316 
5317             if (cmp == 0
5318                 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5319               {
5320 		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5321 		  {
5322 		    if (SYMBOL_IS_ARGUMENT (sym))
5323 		      arg_sym = sym;
5324 		    else
5325 		      {
5326 			found_sym = 1;
5327 			add_defn_to_vec (obstackp,
5328 					 fixup_symbol_section (sym, objfile),
5329 					 block);
5330 		      }
5331 		  }
5332               }
5333           }
5334       }
5335 
5336       /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337          They aren't parameters, right?  */
5338       if (!found_sym && arg_sym != NULL)
5339         {
5340           add_defn_to_vec (obstackp,
5341                            fixup_symbol_section (arg_sym, objfile),
5342                            block);
5343         }
5344     }
5345 }
5346 
5347 
5348                                 /* Symbol Completion */
5349 
5350 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351    name in a form that's appropriate for the completion.  The result
5352    does not need to be deallocated, but is only good until the next call.
5353 
5354    TEXT_LEN is equal to the length of TEXT.
5355    Perform a wild match if WILD_MATCH is set.
5356    ENCODED should be set if TEXT represents the start of a symbol name
5357    in its encoded form.  */
5358 
5359 static const char *
5360 symbol_completion_match (const char *sym_name,
5361                          const char *text, int text_len,
5362                          int wild_match, int encoded)
5363 {
5364   const int verbatim_match = (text[0] == '<');
5365   int match = 0;
5366 
5367   if (verbatim_match)
5368     {
5369       /* Strip the leading angle bracket.  */
5370       text = text + 1;
5371       text_len--;
5372     }
5373 
5374   /* First, test against the fully qualified name of the symbol.  */
5375 
5376   if (strncmp (sym_name, text, text_len) == 0)
5377     match = 1;
5378 
5379   if (match && !encoded)
5380     {
5381       /* One needed check before declaring a positive match is to verify
5382          that iff we are doing a verbatim match, the decoded version
5383          of the symbol name starts with '<'.  Otherwise, this symbol name
5384          is not a suitable completion.  */
5385       const char *sym_name_copy = sym_name;
5386       int has_angle_bracket;
5387 
5388       sym_name = ada_decode (sym_name);
5389       has_angle_bracket = (sym_name[0] == '<');
5390       match = (has_angle_bracket == verbatim_match);
5391       sym_name = sym_name_copy;
5392     }
5393 
5394   if (match && !verbatim_match)
5395     {
5396       /* When doing non-verbatim match, another check that needs to
5397          be done is to verify that the potentially matching symbol name
5398          does not include capital letters, because the ada-mode would
5399          not be able to understand these symbol names without the
5400          angle bracket notation.  */
5401       const char *tmp;
5402 
5403       for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5404       if (*tmp != '\0')
5405         match = 0;
5406     }
5407 
5408   /* Second: Try wild matching...  */
5409 
5410   if (!match && wild_match)
5411     {
5412       /* Since we are doing wild matching, this means that TEXT
5413          may represent an unqualified symbol name.  We therefore must
5414          also compare TEXT against the unqualified name of the symbol.  */
5415       sym_name = ada_unqualified_name (ada_decode (sym_name));
5416 
5417       if (strncmp (sym_name, text, text_len) == 0)
5418         match = 1;
5419     }
5420 
5421   /* Finally: If we found a mach, prepare the result to return.  */
5422 
5423   if (!match)
5424     return NULL;
5425 
5426   if (verbatim_match)
5427     sym_name = add_angle_brackets (sym_name);
5428 
5429   if (!encoded)
5430     sym_name = ada_decode (sym_name);
5431 
5432   return sym_name;
5433 }
5434 
5435 DEF_VEC_P (char_ptr);
5436 
5437 /* A companion function to ada_make_symbol_completion_list().
5438    Check if SYM_NAME represents a symbol which name would be suitable
5439    to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5440    it is appended at the end of the given string vector SV.
5441 
5442    ORIG_TEXT is the string original string from the user command
5443    that needs to be completed.  WORD is the entire command on which
5444    completion should be performed.  These two parameters are used to
5445    determine which part of the symbol name should be added to the
5446    completion vector.
5447    if WILD_MATCH is set, then wild matching is performed.
5448    ENCODED should be set if TEXT represents a symbol name in its
5449    encoded formed (in which case the completion should also be
5450    encoded).  */
5451 
5452 static void
5453 symbol_completion_add (VEC(char_ptr) **sv,
5454                        const char *sym_name,
5455                        const char *text, int text_len,
5456                        const char *orig_text, const char *word,
5457                        int wild_match, int encoded)
5458 {
5459   const char *match = symbol_completion_match (sym_name, text, text_len,
5460                                                wild_match, encoded);
5461   char *completion;
5462 
5463   if (match == NULL)
5464     return;
5465 
5466   /* We found a match, so add the appropriate completion to the given
5467      string vector.  */
5468 
5469   if (word == orig_text)
5470     {
5471       completion = xmalloc (strlen (match) + 5);
5472       strcpy (completion, match);
5473     }
5474   else if (word > orig_text)
5475     {
5476       /* Return some portion of sym_name.  */
5477       completion = xmalloc (strlen (match) + 5);
5478       strcpy (completion, match + (word - orig_text));
5479     }
5480   else
5481     {
5482       /* Return some of ORIG_TEXT plus sym_name.  */
5483       completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5484       strncpy (completion, word, orig_text - word);
5485       completion[orig_text - word] = '\0';
5486       strcat (completion, match);
5487     }
5488 
5489   VEC_safe_push (char_ptr, *sv, completion);
5490 }
5491 
5492 /* An object of this type is passed as the user_data argument to the
5493    expand_partial_symbol_names method.  */
5494 struct add_partial_datum
5495 {
5496   VEC(char_ptr) **completions;
5497   char *text;
5498   int text_len;
5499   char *text0;
5500   char *word;
5501   int wild_match;
5502   int encoded;
5503 };
5504 
5505 /* A callback for expand_partial_symbol_names.  */
5506 static int
5507 ada_expand_partial_symbol_name (const char *name, void *user_data)
5508 {
5509   struct add_partial_datum *data = user_data;
5510 
5511   return symbol_completion_match (name, data->text, data->text_len,
5512                                   data->wild_match, data->encoded) != NULL;
5513 }
5514 
5515 /* Return a list of possible symbol names completing TEXT0.  The list
5516    is NULL terminated.  WORD is the entire command on which completion
5517    is made.  */
5518 
5519 static char **
5520 ada_make_symbol_completion_list (char *text0, char *word)
5521 {
5522   char *text;
5523   int text_len;
5524   int wild_match;
5525   int encoded;
5526   VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5527   struct symbol *sym;
5528   struct symtab *s;
5529   struct minimal_symbol *msymbol;
5530   struct objfile *objfile;
5531   struct block *b, *surrounding_static_block = 0;
5532   int i;
5533   struct dict_iterator iter;
5534 
5535   if (text0[0] == '<')
5536     {
5537       text = xstrdup (text0);
5538       make_cleanup (xfree, text);
5539       text_len = strlen (text);
5540       wild_match = 0;
5541       encoded = 1;
5542     }
5543   else
5544     {
5545       text = xstrdup (ada_encode (text0));
5546       make_cleanup (xfree, text);
5547       text_len = strlen (text);
5548       for (i = 0; i < text_len; i++)
5549         text[i] = tolower (text[i]);
5550 
5551       encoded = (strstr (text0, "__") != NULL);
5552       /* If the name contains a ".", then the user is entering a fully
5553          qualified entity name, and the match must not be done in wild
5554          mode.  Similarly, if the user wants to complete what looks like
5555          an encoded name, the match must not be done in wild mode.  */
5556       wild_match = (strchr (text0, '.') == NULL && !encoded);
5557     }
5558 
5559   /* First, look at the partial symtab symbols.  */
5560   {
5561     struct add_partial_datum data;
5562 
5563     data.completions = &completions;
5564     data.text = text;
5565     data.text_len = text_len;
5566     data.text0 = text0;
5567     data.word = word;
5568     data.wild_match = wild_match;
5569     data.encoded = encoded;
5570     expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5571   }
5572 
5573   /* At this point scan through the misc symbol vectors and add each
5574      symbol you find to the list.  Eventually we want to ignore
5575      anything that isn't a text symbol (everything else will be
5576      handled by the psymtab code above).  */
5577 
5578   ALL_MSYMBOLS (objfile, msymbol)
5579   {
5580     QUIT;
5581     symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5582                            text, text_len, text0, word, wild_match, encoded);
5583   }
5584 
5585   /* Search upwards from currently selected frame (so that we can
5586      complete on local vars.  */
5587 
5588   for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5589     {
5590       if (!BLOCK_SUPERBLOCK (b))
5591         surrounding_static_block = b;   /* For elmin of dups */
5592 
5593       ALL_BLOCK_SYMBOLS (b, iter, sym)
5594       {
5595         symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5596                                text, text_len, text0, word,
5597                                wild_match, encoded);
5598       }
5599     }
5600 
5601   /* Go through the symtabs and check the externs and statics for
5602      symbols which match.  */
5603 
5604   ALL_SYMTABS (objfile, s)
5605   {
5606     QUIT;
5607     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5608     ALL_BLOCK_SYMBOLS (b, iter, sym)
5609     {
5610       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5611                              text, text_len, text0, word,
5612                              wild_match, encoded);
5613     }
5614   }
5615 
5616   ALL_SYMTABS (objfile, s)
5617   {
5618     QUIT;
5619     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5620     /* Don't do this block twice.  */
5621     if (b == surrounding_static_block)
5622       continue;
5623     ALL_BLOCK_SYMBOLS (b, iter, sym)
5624     {
5625       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5626                              text, text_len, text0, word,
5627                              wild_match, encoded);
5628     }
5629   }
5630 
5631   /* Append the closing NULL entry.  */
5632   VEC_safe_push (char_ptr, completions, NULL);
5633 
5634   /* Make a copy of the COMPLETIONS VEC before we free it, and then
5635      return the copy.  It's unfortunate that we have to make a copy
5636      of an array that we're about to destroy, but there is nothing much
5637      we can do about it.  Fortunately, it's typically not a very large
5638      array.  */
5639   {
5640     const size_t completions_size =
5641       VEC_length (char_ptr, completions) * sizeof (char *);
5642     char **result = xmalloc (completions_size);
5643 
5644     memcpy (result, VEC_address (char_ptr, completions), completions_size);
5645 
5646     VEC_free (char_ptr, completions);
5647     return result;
5648   }
5649 }
5650 
5651                                 /* Field Access */
5652 
5653 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5654    for tagged types.  */
5655 
5656 static int
5657 ada_is_dispatch_table_ptr_type (struct type *type)
5658 {
5659   char *name;
5660 
5661   if (TYPE_CODE (type) != TYPE_CODE_PTR)
5662     return 0;
5663 
5664   name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5665   if (name == NULL)
5666     return 0;
5667 
5668   return (strcmp (name, "ada__tags__dispatch_table") == 0);
5669 }
5670 
5671 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5672    to be invisible to users.  */
5673 
5674 int
5675 ada_is_ignored_field (struct type *type, int field_num)
5676 {
5677   if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5678     return 1;
5679 
5680   /* Check the name of that field.  */
5681   {
5682     const char *name = TYPE_FIELD_NAME (type, field_num);
5683 
5684     /* Anonymous field names should not be printed.
5685        brobecker/2007-02-20: I don't think this can actually happen
5686        but we don't want to print the value of annonymous fields anyway.  */
5687     if (name == NULL)
5688       return 1;
5689 
5690     /* A field named "_parent" is internally generated by GNAT for
5691        tagged types, and should not be printed either.  */
5692     if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5693       return 1;
5694   }
5695 
5696   /* If this is the dispatch table of a tagged type, then ignore.  */
5697   if (ada_is_tagged_type (type, 1)
5698       && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5699     return 1;
5700 
5701   /* Not a special field, so it should not be ignored.  */
5702   return 0;
5703 }
5704 
5705 /* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
5706    pointer or reference type whose ultimate target has a tag field.  */
5707 
5708 int
5709 ada_is_tagged_type (struct type *type, int refok)
5710 {
5711   return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5712 }
5713 
5714 /* True iff TYPE represents the type of X'Tag */
5715 
5716 int
5717 ada_is_tag_type (struct type *type)
5718 {
5719   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5720     return 0;
5721   else
5722     {
5723       const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5724 
5725       return (name != NULL
5726               && strcmp (name, "ada__tags__dispatch_table") == 0);
5727     }
5728 }
5729 
5730 /* The type of the tag on VAL.  */
5731 
5732 struct type *
5733 ada_tag_type (struct value *val)
5734 {
5735   return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5736 }
5737 
5738 /* The value of the tag on VAL.  */
5739 
5740 struct value *
5741 ada_value_tag (struct value *val)
5742 {
5743   return ada_value_struct_elt (val, "_tag", 0);
5744 }
5745 
5746 /* The value of the tag on the object of type TYPE whose contents are
5747    saved at VALADDR, if it is non-null, or is at memory address
5748    ADDRESS.  */
5749 
5750 static struct value *
5751 value_tag_from_contents_and_address (struct type *type,
5752 				     const gdb_byte *valaddr,
5753                                      CORE_ADDR address)
5754 {
5755   int tag_byte_offset;
5756   struct type *tag_type;
5757 
5758   if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5759                          NULL, NULL, NULL))
5760     {
5761       const gdb_byte *valaddr1 = ((valaddr == NULL)
5762 				  ? NULL
5763 				  : valaddr + tag_byte_offset);
5764       CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5765 
5766       return value_from_contents_and_address (tag_type, valaddr1, address1);
5767     }
5768   return NULL;
5769 }
5770 
5771 static struct type *
5772 type_from_tag (struct value *tag)
5773 {
5774   const char *type_name = ada_tag_name (tag);
5775 
5776   if (type_name != NULL)
5777     return ada_find_any_type (ada_encode (type_name));
5778   return NULL;
5779 }
5780 
5781 struct tag_args
5782 {
5783   struct value *tag;
5784   char *name;
5785 };
5786 
5787 
5788 static int ada_tag_name_1 (void *);
5789 static int ada_tag_name_2 (struct tag_args *);
5790 
5791 /* Wrapper function used by ada_tag_name.  Given a struct tag_args*
5792    value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5793    The value stored in ARGS->name is valid until the next call to
5794    ada_tag_name_1.  */
5795 
5796 static int
5797 ada_tag_name_1 (void *args0)
5798 {
5799   struct tag_args *args = (struct tag_args *) args0;
5800   static char name[1024];
5801   char *p;
5802   struct value *val;
5803 
5804   args->name = NULL;
5805   val = ada_value_struct_elt (args->tag, "tsd", 1);
5806   if (val == NULL)
5807     return ada_tag_name_2 (args);
5808   val = ada_value_struct_elt (val, "expanded_name", 1);
5809   if (val == NULL)
5810     return 0;
5811   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5812   for (p = name; *p != '\0'; p += 1)
5813     if (isalpha (*p))
5814       *p = tolower (*p);
5815   args->name = name;
5816   return 0;
5817 }
5818 
5819 /* Return the "ada__tags__type_specific_data" type.  */
5820 
5821 static struct type *
5822 ada_get_tsd_type (struct inferior *inf)
5823 {
5824   struct ada_inferior_data *data = get_ada_inferior_data (inf);
5825 
5826   if (data->tsd_type == 0)
5827     data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5828   return data->tsd_type;
5829 }
5830 
5831 /* Utility function for ada_tag_name_1 that tries the second
5832    representation for the dispatch table (in which there is no
5833    explicit 'tsd' field in the referent of the tag pointer, and instead
5834    the tsd pointer is stored just before the dispatch table.  */
5835 
5836 static int
5837 ada_tag_name_2 (struct tag_args *args)
5838 {
5839   struct type *info_type;
5840   static char name[1024];
5841   char *p;
5842   struct value *val, *valp;
5843 
5844   args->name = NULL;
5845   info_type = ada_get_tsd_type (current_inferior());
5846   if (info_type == NULL)
5847     return 0;
5848   info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5849   valp = value_cast (info_type, args->tag);
5850   if (valp == NULL)
5851     return 0;
5852   val = value_ind (value_ptradd (valp, -1));
5853   if (val == NULL)
5854     return 0;
5855   val = ada_value_struct_elt (val, "expanded_name", 1);
5856   if (val == NULL)
5857     return 0;
5858   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5859   for (p = name; *p != '\0'; p += 1)
5860     if (isalpha (*p))
5861       *p = tolower (*p);
5862   args->name = name;
5863   return 0;
5864 }
5865 
5866 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5867    a C string.  */
5868 
5869 const char *
5870 ada_tag_name (struct value *tag)
5871 {
5872   struct tag_args args;
5873 
5874   if (!ada_is_tag_type (value_type (tag)))
5875     return NULL;
5876   args.tag = tag;
5877   args.name = NULL;
5878   catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5879   return args.name;
5880 }
5881 
5882 /* The parent type of TYPE, or NULL if none.  */
5883 
5884 struct type *
5885 ada_parent_type (struct type *type)
5886 {
5887   int i;
5888 
5889   type = ada_check_typedef (type);
5890 
5891   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5892     return NULL;
5893 
5894   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5895     if (ada_is_parent_field (type, i))
5896       {
5897         struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5898 
5899         /* If the _parent field is a pointer, then dereference it.  */
5900         if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5901           parent_type = TYPE_TARGET_TYPE (parent_type);
5902         /* If there is a parallel XVS type, get the actual base type.  */
5903         parent_type = ada_get_base_type (parent_type);
5904 
5905         return ada_check_typedef (parent_type);
5906       }
5907 
5908   return NULL;
5909 }
5910 
5911 /* True iff field number FIELD_NUM of structure type TYPE contains the
5912    parent-type (inherited) fields of a derived type.  Assumes TYPE is
5913    a structure type with at least FIELD_NUM+1 fields.  */
5914 
5915 int
5916 ada_is_parent_field (struct type *type, int field_num)
5917 {
5918   const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5919 
5920   return (name != NULL
5921           && (strncmp (name, "PARENT", 6) == 0
5922               || strncmp (name, "_parent", 7) == 0));
5923 }
5924 
5925 /* True iff field number FIELD_NUM of structure type TYPE is a
5926    transparent wrapper field (which should be silently traversed when doing
5927    field selection and flattened when printing).  Assumes TYPE is a
5928    structure type with at least FIELD_NUM+1 fields.  Such fields are always
5929    structures.  */
5930 
5931 int
5932 ada_is_wrapper_field (struct type *type, int field_num)
5933 {
5934   const char *name = TYPE_FIELD_NAME (type, field_num);
5935 
5936   return (name != NULL
5937           && (strncmp (name, "PARENT", 6) == 0
5938               || strcmp (name, "REP") == 0
5939               || strncmp (name, "_parent", 7) == 0
5940               || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5941 }
5942 
5943 /* True iff field number FIELD_NUM of structure or union type TYPE
5944    is a variant wrapper.  Assumes TYPE is a structure type with at least
5945    FIELD_NUM+1 fields.  */
5946 
5947 int
5948 ada_is_variant_part (struct type *type, int field_num)
5949 {
5950   struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5951 
5952   return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5953           || (is_dynamic_field (type, field_num)
5954               && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5955 		  == TYPE_CODE_UNION)));
5956 }
5957 
5958 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5959    whose discriminants are contained in the record type OUTER_TYPE,
5960    returns the type of the controlling discriminant for the variant.
5961    May return NULL if the type could not be found.  */
5962 
5963 struct type *
5964 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5965 {
5966   char *name = ada_variant_discrim_name (var_type);
5967 
5968   return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5969 }
5970 
5971 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5972    valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5973    represents a 'when others' clause; otherwise 0.  */
5974 
5975 int
5976 ada_is_others_clause (struct type *type, int field_num)
5977 {
5978   const char *name = TYPE_FIELD_NAME (type, field_num);
5979 
5980   return (name != NULL && name[0] == 'O');
5981 }
5982 
5983 /* Assuming that TYPE0 is the type of the variant part of a record,
5984    returns the name of the discriminant controlling the variant.
5985    The value is valid until the next call to ada_variant_discrim_name.  */
5986 
5987 char *
5988 ada_variant_discrim_name (struct type *type0)
5989 {
5990   static char *result = NULL;
5991   static size_t result_len = 0;
5992   struct type *type;
5993   const char *name;
5994   const char *discrim_end;
5995   const char *discrim_start;
5996 
5997   if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5998     type = TYPE_TARGET_TYPE (type0);
5999   else
6000     type = type0;
6001 
6002   name = ada_type_name (type);
6003 
6004   if (name == NULL || name[0] == '\000')
6005     return "";
6006 
6007   for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6008        discrim_end -= 1)
6009     {
6010       if (strncmp (discrim_end, "___XVN", 6) == 0)
6011         break;
6012     }
6013   if (discrim_end == name)
6014     return "";
6015 
6016   for (discrim_start = discrim_end; discrim_start != name + 3;
6017        discrim_start -= 1)
6018     {
6019       if (discrim_start == name + 1)
6020         return "";
6021       if ((discrim_start > name + 3
6022            && strncmp (discrim_start - 3, "___", 3) == 0)
6023           || discrim_start[-1] == '.')
6024         break;
6025     }
6026 
6027   GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6028   strncpy (result, discrim_start, discrim_end - discrim_start);
6029   result[discrim_end - discrim_start] = '\0';
6030   return result;
6031 }
6032 
6033 /* Scan STR for a subtype-encoded number, beginning at position K.
6034    Put the position of the character just past the number scanned in
6035    *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
6036    Return 1 if there was a valid number at the given position, and 0
6037    otherwise.  A "subtype-encoded" number consists of the absolute value
6038    in decimal, followed by the letter 'm' to indicate a negative number.
6039    Assumes 0m does not occur.  */
6040 
6041 int
6042 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6043 {
6044   ULONGEST RU;
6045 
6046   if (!isdigit (str[k]))
6047     return 0;
6048 
6049   /* Do it the hard way so as not to make any assumption about
6050      the relationship of unsigned long (%lu scan format code) and
6051      LONGEST.  */
6052   RU = 0;
6053   while (isdigit (str[k]))
6054     {
6055       RU = RU * 10 + (str[k] - '0');
6056       k += 1;
6057     }
6058 
6059   if (str[k] == 'm')
6060     {
6061       if (R != NULL)
6062         *R = (-(LONGEST) (RU - 1)) - 1;
6063       k += 1;
6064     }
6065   else if (R != NULL)
6066     *R = (LONGEST) RU;
6067 
6068   /* NOTE on the above: Technically, C does not say what the results of
6069      - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6070      number representable as a LONGEST (although either would probably work
6071      in most implementations).  When RU>0, the locution in the then branch
6072      above is always equivalent to the negative of RU.  */
6073 
6074   if (new_k != NULL)
6075     *new_k = k;
6076   return 1;
6077 }
6078 
6079 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6080    and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6081    in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
6082 
6083 int
6084 ada_in_variant (LONGEST val, struct type *type, int field_num)
6085 {
6086   const char *name = TYPE_FIELD_NAME (type, field_num);
6087   int p;
6088 
6089   p = 0;
6090   while (1)
6091     {
6092       switch (name[p])
6093         {
6094         case '\0':
6095           return 0;
6096         case 'S':
6097           {
6098             LONGEST W;
6099 
6100             if (!ada_scan_number (name, p + 1, &W, &p))
6101               return 0;
6102             if (val == W)
6103               return 1;
6104             break;
6105           }
6106         case 'R':
6107           {
6108             LONGEST L, U;
6109 
6110             if (!ada_scan_number (name, p + 1, &L, &p)
6111                 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6112               return 0;
6113             if (val >= L && val <= U)
6114               return 1;
6115             break;
6116           }
6117         case 'O':
6118           return 1;
6119         default:
6120           return 0;
6121         }
6122     }
6123 }
6124 
6125 /* FIXME: Lots of redundancy below.  Try to consolidate.  */
6126 
6127 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6128    ARG_TYPE, extract and return the value of one of its (non-static)
6129    fields.  FIELDNO says which field.   Differs from value_primitive_field
6130    only in that it can handle packed values of arbitrary type.  */
6131 
6132 static struct value *
6133 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6134                            struct type *arg_type)
6135 {
6136   struct type *type;
6137 
6138   arg_type = ada_check_typedef (arg_type);
6139   type = TYPE_FIELD_TYPE (arg_type, fieldno);
6140 
6141   /* Handle packed fields.  */
6142 
6143   if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6144     {
6145       int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6146       int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6147 
6148       return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6149                                              offset + bit_pos / 8,
6150                                              bit_pos % 8, bit_size, type);
6151     }
6152   else
6153     return value_primitive_field (arg1, offset, fieldno, arg_type);
6154 }
6155 
6156 /* Find field with name NAME in object of type TYPE.  If found,
6157    set the following for each argument that is non-null:
6158     - *FIELD_TYPE_P to the field's type;
6159     - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6160       an object of that type;
6161     - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6162     - *BIT_SIZE_P to its size in bits if the field is packed, and
6163       0 otherwise;
6164    If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6165    fields up to but not including the desired field, or by the total
6166    number of fields if not found.   A NULL value of NAME never
6167    matches; the function just counts visible fields in this case.
6168 
6169    Returns 1 if found, 0 otherwise.  */
6170 
6171 static int
6172 find_struct_field (char *name, struct type *type, int offset,
6173                    struct type **field_type_p,
6174                    int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6175 		   int *index_p)
6176 {
6177   int i;
6178 
6179   type = ada_check_typedef (type);
6180 
6181   if (field_type_p != NULL)
6182     *field_type_p = NULL;
6183   if (byte_offset_p != NULL)
6184     *byte_offset_p = 0;
6185   if (bit_offset_p != NULL)
6186     *bit_offset_p = 0;
6187   if (bit_size_p != NULL)
6188     *bit_size_p = 0;
6189 
6190   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6191     {
6192       int bit_pos = TYPE_FIELD_BITPOS (type, i);
6193       int fld_offset = offset + bit_pos / 8;
6194       char *t_field_name = TYPE_FIELD_NAME (type, i);
6195 
6196       if (t_field_name == NULL)
6197         continue;
6198 
6199       else if (name != NULL && field_name_match (t_field_name, name))
6200         {
6201           int bit_size = TYPE_FIELD_BITSIZE (type, i);
6202 
6203 	  if (field_type_p != NULL)
6204 	    *field_type_p = TYPE_FIELD_TYPE (type, i);
6205 	  if (byte_offset_p != NULL)
6206 	    *byte_offset_p = fld_offset;
6207 	  if (bit_offset_p != NULL)
6208 	    *bit_offset_p = bit_pos % 8;
6209 	  if (bit_size_p != NULL)
6210 	    *bit_size_p = bit_size;
6211           return 1;
6212         }
6213       else if (ada_is_wrapper_field (type, i))
6214         {
6215 	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6216 				 field_type_p, byte_offset_p, bit_offset_p,
6217 				 bit_size_p, index_p))
6218             return 1;
6219         }
6220       else if (ada_is_variant_part (type, i))
6221         {
6222 	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of
6223 	     fixed type?? */
6224           int j;
6225           struct type *field_type
6226 	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6227 
6228           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6229             {
6230               if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6231                                      fld_offset
6232                                      + TYPE_FIELD_BITPOS (field_type, j) / 8,
6233                                      field_type_p, byte_offset_p,
6234                                      bit_offset_p, bit_size_p, index_p))
6235                 return 1;
6236             }
6237         }
6238       else if (index_p != NULL)
6239 	*index_p += 1;
6240     }
6241   return 0;
6242 }
6243 
6244 /* Number of user-visible fields in record type TYPE.  */
6245 
6246 static int
6247 num_visible_fields (struct type *type)
6248 {
6249   int n;
6250 
6251   n = 0;
6252   find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6253   return n;
6254 }
6255 
6256 /* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
6257    and search in it assuming it has (class) type TYPE.
6258    If found, return value, else return NULL.
6259 
6260    Searches recursively through wrapper fields (e.g., '_parent').  */
6261 
6262 static struct value *
6263 ada_search_struct_field (char *name, struct value *arg, int offset,
6264                          struct type *type)
6265 {
6266   int i;
6267 
6268   type = ada_check_typedef (type);
6269   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6270     {
6271       char *t_field_name = TYPE_FIELD_NAME (type, i);
6272 
6273       if (t_field_name == NULL)
6274         continue;
6275 
6276       else if (field_name_match (t_field_name, name))
6277         return ada_value_primitive_field (arg, offset, i, type);
6278 
6279       else if (ada_is_wrapper_field (type, i))
6280         {
6281           struct value *v =     /* Do not let indent join lines here.  */
6282             ada_search_struct_field (name, arg,
6283                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6284                                      TYPE_FIELD_TYPE (type, i));
6285 
6286           if (v != NULL)
6287             return v;
6288         }
6289 
6290       else if (ada_is_variant_part (type, i))
6291         {
6292 	  /* PNH: Do we ever get here?  See find_struct_field.  */
6293           int j;
6294           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6295 									i));
6296           int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6297 
6298           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6299             {
6300               struct value *v = ada_search_struct_field /* Force line
6301 							   break.  */
6302                 (name, arg,
6303                  var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6304                  TYPE_FIELD_TYPE (field_type, j));
6305 
6306               if (v != NULL)
6307                 return v;
6308             }
6309         }
6310     }
6311   return NULL;
6312 }
6313 
6314 static struct value *ada_index_struct_field_1 (int *, struct value *,
6315 					       int, struct type *);
6316 
6317 
6318 /* Return field #INDEX in ARG, where the index is that returned by
6319  * find_struct_field through its INDEX_P argument.  Adjust the address
6320  * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6321  * If found, return value, else return NULL.  */
6322 
6323 static struct value *
6324 ada_index_struct_field (int index, struct value *arg, int offset,
6325 			struct type *type)
6326 {
6327   return ada_index_struct_field_1 (&index, arg, offset, type);
6328 }
6329 
6330 
6331 /* Auxiliary function for ada_index_struct_field.  Like
6332  * ada_index_struct_field, but takes index from *INDEX_P and modifies
6333  * *INDEX_P.  */
6334 
6335 static struct value *
6336 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6337 			  struct type *type)
6338 {
6339   int i;
6340   type = ada_check_typedef (type);
6341 
6342   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6343     {
6344       if (TYPE_FIELD_NAME (type, i) == NULL)
6345         continue;
6346       else if (ada_is_wrapper_field (type, i))
6347         {
6348           struct value *v =     /* Do not let indent join lines here.  */
6349             ada_index_struct_field_1 (index_p, arg,
6350 				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6351 				      TYPE_FIELD_TYPE (type, i));
6352 
6353           if (v != NULL)
6354             return v;
6355         }
6356 
6357       else if (ada_is_variant_part (type, i))
6358         {
6359 	  /* PNH: Do we ever get here?  See ada_search_struct_field,
6360 	     find_struct_field.  */
6361 	  error (_("Cannot assign this kind of variant record"));
6362         }
6363       else if (*index_p == 0)
6364         return ada_value_primitive_field (arg, offset, i, type);
6365       else
6366 	*index_p -= 1;
6367     }
6368   return NULL;
6369 }
6370 
6371 /* Given ARG, a value of type (pointer or reference to a)*
6372    structure/union, extract the component named NAME from the ultimate
6373    target structure/union and return it as a value with its
6374    appropriate type.
6375 
6376    The routine searches for NAME among all members of the structure itself
6377    and (recursively) among all members of any wrapper members
6378    (e.g., '_parent').
6379 
6380    If NO_ERR, then simply return NULL in case of error, rather than
6381    calling error.  */
6382 
6383 struct value *
6384 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6385 {
6386   struct type *t, *t1;
6387   struct value *v;
6388 
6389   v = NULL;
6390   t1 = t = ada_check_typedef (value_type (arg));
6391   if (TYPE_CODE (t) == TYPE_CODE_REF)
6392     {
6393       t1 = TYPE_TARGET_TYPE (t);
6394       if (t1 == NULL)
6395 	goto BadValue;
6396       t1 = ada_check_typedef (t1);
6397       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6398         {
6399           arg = coerce_ref (arg);
6400           t = t1;
6401         }
6402     }
6403 
6404   while (TYPE_CODE (t) == TYPE_CODE_PTR)
6405     {
6406       t1 = TYPE_TARGET_TYPE (t);
6407       if (t1 == NULL)
6408 	goto BadValue;
6409       t1 = ada_check_typedef (t1);
6410       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6411         {
6412           arg = value_ind (arg);
6413           t = t1;
6414         }
6415       else
6416         break;
6417     }
6418 
6419   if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6420     goto BadValue;
6421 
6422   if (t1 == t)
6423     v = ada_search_struct_field (name, arg, 0, t);
6424   else
6425     {
6426       int bit_offset, bit_size, byte_offset;
6427       struct type *field_type;
6428       CORE_ADDR address;
6429 
6430       if (TYPE_CODE (t) == TYPE_CODE_PTR)
6431         address = value_as_address (arg);
6432       else
6433         address = unpack_pointer (t, value_contents (arg));
6434 
6435       t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6436       if (find_struct_field (name, t1, 0,
6437                              &field_type, &byte_offset, &bit_offset,
6438                              &bit_size, NULL))
6439         {
6440           if (bit_size != 0)
6441             {
6442               if (TYPE_CODE (t) == TYPE_CODE_REF)
6443                 arg = ada_coerce_ref (arg);
6444               else
6445                 arg = ada_value_ind (arg);
6446               v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6447                                                   bit_offset, bit_size,
6448                                                   field_type);
6449             }
6450           else
6451             v = value_at_lazy (field_type, address + byte_offset);
6452         }
6453     }
6454 
6455   if (v != NULL || no_err)
6456     return v;
6457   else
6458     error (_("There is no member named %s."), name);
6459 
6460  BadValue:
6461   if (no_err)
6462     return NULL;
6463   else
6464     error (_("Attempt to extract a component of "
6465 	     "a value that is not a record."));
6466 }
6467 
6468 /* Given a type TYPE, look up the type of the component of type named NAME.
6469    If DISPP is non-null, add its byte displacement from the beginning of a
6470    structure (pointed to by a value) of type TYPE to *DISPP (does not
6471    work for packed fields).
6472 
6473    Matches any field whose name has NAME as a prefix, possibly
6474    followed by "___".
6475 
6476    TYPE can be either a struct or union.  If REFOK, TYPE may also
6477    be a (pointer or reference)+ to a struct or union, and the
6478    ultimate target type will be searched.
6479 
6480    Looks recursively into variant clauses and parent types.
6481 
6482    If NOERR is nonzero, return NULL if NAME is not suitably defined or
6483    TYPE is not a type of the right kind.  */
6484 
6485 static struct type *
6486 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6487                             int noerr, int *dispp)
6488 {
6489   int i;
6490 
6491   if (name == NULL)
6492     goto BadName;
6493 
6494   if (refok && type != NULL)
6495     while (1)
6496       {
6497         type = ada_check_typedef (type);
6498         if (TYPE_CODE (type) != TYPE_CODE_PTR
6499             && TYPE_CODE (type) != TYPE_CODE_REF)
6500           break;
6501         type = TYPE_TARGET_TYPE (type);
6502       }
6503 
6504   if (type == NULL
6505       || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6506           && TYPE_CODE (type) != TYPE_CODE_UNION))
6507     {
6508       if (noerr)
6509         return NULL;
6510       else
6511         {
6512           target_terminal_ours ();
6513           gdb_flush (gdb_stdout);
6514 	  if (type == NULL)
6515 	    error (_("Type (null) is not a structure or union type"));
6516 	  else
6517 	    {
6518 	      /* XXX: type_sprint */
6519 	      fprintf_unfiltered (gdb_stderr, _("Type "));
6520 	      type_print (type, "", gdb_stderr, -1);
6521 	      error (_(" is not a structure or union type"));
6522 	    }
6523         }
6524     }
6525 
6526   type = to_static_fixed_type (type);
6527 
6528   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6529     {
6530       char *t_field_name = TYPE_FIELD_NAME (type, i);
6531       struct type *t;
6532       int disp;
6533 
6534       if (t_field_name == NULL)
6535         continue;
6536 
6537       else if (field_name_match (t_field_name, name))
6538         {
6539           if (dispp != NULL)
6540             *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6541           return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6542         }
6543 
6544       else if (ada_is_wrapper_field (type, i))
6545         {
6546           disp = 0;
6547           t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6548                                           0, 1, &disp);
6549           if (t != NULL)
6550             {
6551               if (dispp != NULL)
6552                 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6553               return t;
6554             }
6555         }
6556 
6557       else if (ada_is_variant_part (type, i))
6558         {
6559           int j;
6560           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6561 									i));
6562 
6563           for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6564             {
6565 	      /* FIXME pnh 2008/01/26: We check for a field that is
6566 	         NOT wrapped in a struct, since the compiler sometimes
6567 		 generates these for unchecked variant types.  Revisit
6568 	         if the compiler changes this practice.  */
6569 	      char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6570               disp = 0;
6571 	      if (v_field_name != NULL
6572 		  && field_name_match (v_field_name, name))
6573 		t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6574 	      else
6575 		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6576 								 j),
6577 						name, 0, 1, &disp);
6578 
6579               if (t != NULL)
6580                 {
6581                   if (dispp != NULL)
6582                     *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6583                   return t;
6584                 }
6585             }
6586         }
6587 
6588     }
6589 
6590 BadName:
6591   if (!noerr)
6592     {
6593       target_terminal_ours ();
6594       gdb_flush (gdb_stdout);
6595       if (name == NULL)
6596         {
6597 	  /* XXX: type_sprint */
6598 	  fprintf_unfiltered (gdb_stderr, _("Type "));
6599 	  type_print (type, "", gdb_stderr, -1);
6600 	  error (_(" has no component named <null>"));
6601 	}
6602       else
6603 	{
6604 	  /* XXX: type_sprint */
6605 	  fprintf_unfiltered (gdb_stderr, _("Type "));
6606 	  type_print (type, "", gdb_stderr, -1);
6607 	  error (_(" has no component named %s"), name);
6608 	}
6609     }
6610 
6611   return NULL;
6612 }
6613 
6614 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6615    within a value of type OUTER_TYPE, return true iff VAR_TYPE
6616    represents an unchecked union (that is, the variant part of a
6617    record that is named in an Unchecked_Union pragma).  */
6618 
6619 static int
6620 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6621 {
6622   char *discrim_name = ada_variant_discrim_name (var_type);
6623 
6624   return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6625 	  == NULL);
6626 }
6627 
6628 
6629 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6630    within a value of type OUTER_TYPE that is stored in GDB at
6631    OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6632    numbering from 0) is applicable.  Returns -1 if none are.  */
6633 
6634 int
6635 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6636                            const gdb_byte *outer_valaddr)
6637 {
6638   int others_clause;
6639   int i;
6640   char *discrim_name = ada_variant_discrim_name (var_type);
6641   struct value *outer;
6642   struct value *discrim;
6643   LONGEST discrim_val;
6644 
6645   outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6646   discrim = ada_value_struct_elt (outer, discrim_name, 1);
6647   if (discrim == NULL)
6648     return -1;
6649   discrim_val = value_as_long (discrim);
6650 
6651   others_clause = -1;
6652   for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6653     {
6654       if (ada_is_others_clause (var_type, i))
6655         others_clause = i;
6656       else if (ada_in_variant (discrim_val, var_type, i))
6657         return i;
6658     }
6659 
6660   return others_clause;
6661 }
6662 
6663 
6664 
6665                                 /* Dynamic-Sized Records */
6666 
6667 /* Strategy: The type ostensibly attached to a value with dynamic size
6668    (i.e., a size that is not statically recorded in the debugging
6669    data) does not accurately reflect the size or layout of the value.
6670    Our strategy is to convert these values to values with accurate,
6671    conventional types that are constructed on the fly.  */
6672 
6673 /* There is a subtle and tricky problem here.  In general, we cannot
6674    determine the size of dynamic records without its data.  However,
6675    the 'struct value' data structure, which GDB uses to represent
6676    quantities in the inferior process (the target), requires the size
6677    of the type at the time of its allocation in order to reserve space
6678    for GDB's internal copy of the data.  That's why the
6679    'to_fixed_xxx_type' routines take (target) addresses as parameters,
6680    rather than struct value*s.
6681 
6682    However, GDB's internal history variables ($1, $2, etc.) are
6683    struct value*s containing internal copies of the data that are not, in
6684    general, the same as the data at their corresponding addresses in
6685    the target.  Fortunately, the types we give to these values are all
6686    conventional, fixed-size types (as per the strategy described
6687    above), so that we don't usually have to perform the
6688    'to_fixed_xxx_type' conversions to look at their values.
6689    Unfortunately, there is one exception: if one of the internal
6690    history variables is an array whose elements are unconstrained
6691    records, then we will need to create distinct fixed types for each
6692    element selected.  */
6693 
6694 /* The upshot of all of this is that many routines take a (type, host
6695    address, target address) triple as arguments to represent a value.
6696    The host address, if non-null, is supposed to contain an internal
6697    copy of the relevant data; otherwise, the program is to consult the
6698    target at the target address.  */
6699 
6700 /* Assuming that VAL0 represents a pointer value, the result of
6701    dereferencing it.  Differs from value_ind in its treatment of
6702    dynamic-sized types.  */
6703 
6704 struct value *
6705 ada_value_ind (struct value *val0)
6706 {
6707   struct value *val = unwrap_value (value_ind (val0));
6708 
6709   return ada_to_fixed_value (val);
6710 }
6711 
6712 /* The value resulting from dereferencing any "reference to"
6713    qualifiers on VAL0.  */
6714 
6715 static struct value *
6716 ada_coerce_ref (struct value *val0)
6717 {
6718   if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6719     {
6720       struct value *val = val0;
6721 
6722       val = coerce_ref (val);
6723       val = unwrap_value (val);
6724       return ada_to_fixed_value (val);
6725     }
6726   else
6727     return val0;
6728 }
6729 
6730 /* Return OFF rounded upward if necessary to a multiple of
6731    ALIGNMENT (a power of 2).  */
6732 
6733 static unsigned int
6734 align_value (unsigned int off, unsigned int alignment)
6735 {
6736   return (off + alignment - 1) & ~(alignment - 1);
6737 }
6738 
6739 /* Return the bit alignment required for field #F of template type TYPE.  */
6740 
6741 static unsigned int
6742 field_alignment (struct type *type, int f)
6743 {
6744   const char *name = TYPE_FIELD_NAME (type, f);
6745   int len;
6746   int align_offset;
6747 
6748   /* The field name should never be null, unless the debugging information
6749      is somehow malformed.  In this case, we assume the field does not
6750      require any alignment.  */
6751   if (name == NULL)
6752     return 1;
6753 
6754   len = strlen (name);
6755 
6756   if (!isdigit (name[len - 1]))
6757     return 1;
6758 
6759   if (isdigit (name[len - 2]))
6760     align_offset = len - 2;
6761   else
6762     align_offset = len - 1;
6763 
6764   if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6765     return TARGET_CHAR_BIT;
6766 
6767   return atoi (name + align_offset) * TARGET_CHAR_BIT;
6768 }
6769 
6770 /* Find a symbol named NAME.  Ignores ambiguity.  */
6771 
6772 struct symbol *
6773 ada_find_any_symbol (const char *name)
6774 {
6775   struct symbol *sym;
6776 
6777   sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6778   if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6779     return sym;
6780 
6781   sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6782   return sym;
6783 }
6784 
6785 /* Find a type named NAME.  Ignores ambiguity.  This routine will look
6786    solely for types defined by debug info, it will not search the GDB
6787    primitive types.  */
6788 
6789 struct type *
6790 ada_find_any_type (const char *name)
6791 {
6792   struct symbol *sym = ada_find_any_symbol (name);
6793 
6794   if (sym != NULL)
6795     return SYMBOL_TYPE (sym);
6796 
6797   return NULL;
6798 }
6799 
6800 /* Given NAME and an associated BLOCK, search all symbols for
6801    NAME suffixed with  "___XR", which is the ``renaming'' symbol
6802    associated to NAME.  Return this symbol if found, return
6803    NULL otherwise.  */
6804 
6805 struct symbol *
6806 ada_find_renaming_symbol (const char *name, struct block *block)
6807 {
6808   struct symbol *sym;
6809 
6810   sym = find_old_style_renaming_symbol (name, block);
6811 
6812   if (sym != NULL)
6813     return sym;
6814 
6815   /* Not right yet.  FIXME pnh 7/20/2007.  */
6816   sym = ada_find_any_symbol (name);
6817   if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6818     return sym;
6819   else
6820     return NULL;
6821 }
6822 
6823 static struct symbol *
6824 find_old_style_renaming_symbol (const char *name, struct block *block)
6825 {
6826   const struct symbol *function_sym = block_linkage_function (block);
6827   char *rename;
6828 
6829   if (function_sym != NULL)
6830     {
6831       /* If the symbol is defined inside a function, NAME is not fully
6832          qualified.  This means we need to prepend the function name
6833          as well as adding the ``___XR'' suffix to build the name of
6834          the associated renaming symbol.  */
6835       char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6836       /* Function names sometimes contain suffixes used
6837          for instance to qualify nested subprograms.  When building
6838          the XR type name, we need to make sure that this suffix is
6839          not included.  So do not include any suffix in the function
6840          name length below.  */
6841       int function_name_len = ada_name_prefix_len (function_name);
6842       const int rename_len = function_name_len + 2      /*  "__" */
6843         + strlen (name) + 6 /* "___XR\0" */ ;
6844 
6845       /* Strip the suffix if necessary.  */
6846       ada_remove_trailing_digits (function_name, &function_name_len);
6847       ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6848       ada_remove_Xbn_suffix (function_name, &function_name_len);
6849 
6850       /* Library-level functions are a special case, as GNAT adds
6851          a ``_ada_'' prefix to the function name to avoid namespace
6852          pollution.  However, the renaming symbols themselves do not
6853          have this prefix, so we need to skip this prefix if present.  */
6854       if (function_name_len > 5 /* "_ada_" */
6855           && strstr (function_name, "_ada_") == function_name)
6856         {
6857 	  function_name += 5;
6858 	  function_name_len -= 5;
6859         }
6860 
6861       rename = (char *) alloca (rename_len * sizeof (char));
6862       strncpy (rename, function_name, function_name_len);
6863       xsnprintf (rename + function_name_len, rename_len - function_name_len,
6864 		 "__%s___XR", name);
6865     }
6866   else
6867     {
6868       const int rename_len = strlen (name) + 6;
6869 
6870       rename = (char *) alloca (rename_len * sizeof (char));
6871       xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6872     }
6873 
6874   return ada_find_any_symbol (rename);
6875 }
6876 
6877 /* Because of GNAT encoding conventions, several GDB symbols may match a
6878    given type name.  If the type denoted by TYPE0 is to be preferred to
6879    that of TYPE1 for purposes of type printing, return non-zero;
6880    otherwise return 0.  */
6881 
6882 int
6883 ada_prefer_type (struct type *type0, struct type *type1)
6884 {
6885   if (type1 == NULL)
6886     return 1;
6887   else if (type0 == NULL)
6888     return 0;
6889   else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6890     return 1;
6891   else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6892     return 0;
6893   else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6894     return 1;
6895   else if (ada_is_constrained_packed_array_type (type0))
6896     return 1;
6897   else if (ada_is_array_descriptor_type (type0)
6898            && !ada_is_array_descriptor_type (type1))
6899     return 1;
6900   else
6901     {
6902       const char *type0_name = type_name_no_tag (type0);
6903       const char *type1_name = type_name_no_tag (type1);
6904 
6905       if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6906 	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6907 	return 1;
6908     }
6909   return 0;
6910 }
6911 
6912 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6913    null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
6914 
6915 char *
6916 ada_type_name (struct type *type)
6917 {
6918   if (type == NULL)
6919     return NULL;
6920   else if (TYPE_NAME (type) != NULL)
6921     return TYPE_NAME (type);
6922   else
6923     return TYPE_TAG_NAME (type);
6924 }
6925 
6926 /* Search the list of "descriptive" types associated to TYPE for a type
6927    whose name is NAME.  */
6928 
6929 static struct type *
6930 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6931 {
6932   struct type *result;
6933 
6934   /* If there no descriptive-type info, then there is no parallel type
6935      to be found.  */
6936   if (!HAVE_GNAT_AUX_INFO (type))
6937     return NULL;
6938 
6939   result = TYPE_DESCRIPTIVE_TYPE (type);
6940   while (result != NULL)
6941     {
6942       char *result_name = ada_type_name (result);
6943 
6944       if (result_name == NULL)
6945         {
6946           warning (_("unexpected null name on descriptive type"));
6947           return NULL;
6948         }
6949 
6950       /* If the names match, stop.  */
6951       if (strcmp (result_name, name) == 0)
6952 	break;
6953 
6954       /* Otherwise, look at the next item on the list, if any.  */
6955       if (HAVE_GNAT_AUX_INFO (result))
6956 	result = TYPE_DESCRIPTIVE_TYPE (result);
6957       else
6958 	result = NULL;
6959     }
6960 
6961   /* If we didn't find a match, see whether this is a packed array.  With
6962      older compilers, the descriptive type information is either absent or
6963      irrelevant when it comes to packed arrays so the above lookup fails.
6964      Fall back to using a parallel lookup by name in this case.  */
6965   if (result == NULL && ada_is_constrained_packed_array_type (type))
6966     return ada_find_any_type (name);
6967 
6968   return result;
6969 }
6970 
6971 /* Find a parallel type to TYPE with the specified NAME, using the
6972    descriptive type taken from the debugging information, if available,
6973    and otherwise using the (slower) name-based method.  */
6974 
6975 static struct type *
6976 ada_find_parallel_type_with_name (struct type *type, const char *name)
6977 {
6978   struct type *result = NULL;
6979 
6980   if (HAVE_GNAT_AUX_INFO (type))
6981     result = find_parallel_type_by_descriptive_type (type, name);
6982   else
6983     result = ada_find_any_type (name);
6984 
6985   return result;
6986 }
6987 
6988 /* Same as above, but specify the name of the parallel type by appending
6989    SUFFIX to the name of TYPE.  */
6990 
6991 struct type *
6992 ada_find_parallel_type (struct type *type, const char *suffix)
6993 {
6994   char *name, *typename = ada_type_name (type);
6995   int len;
6996 
6997   if (typename == NULL)
6998     return NULL;
6999 
7000   len = strlen (typename);
7001 
7002   name = (char *) alloca (len + strlen (suffix) + 1);
7003 
7004   strcpy (name, typename);
7005   strcpy (name + len, suffix);
7006 
7007   return ada_find_parallel_type_with_name (type, name);
7008 }
7009 
7010 /* If TYPE is a variable-size record type, return the corresponding template
7011    type describing its fields.  Otherwise, return NULL.  */
7012 
7013 static struct type *
7014 dynamic_template_type (struct type *type)
7015 {
7016   type = ada_check_typedef (type);
7017 
7018   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7019       || ada_type_name (type) == NULL)
7020     return NULL;
7021   else
7022     {
7023       int len = strlen (ada_type_name (type));
7024 
7025       if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7026         return type;
7027       else
7028         return ada_find_parallel_type (type, "___XVE");
7029     }
7030 }
7031 
7032 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7033    non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
7034 
7035 static int
7036 is_dynamic_field (struct type *templ_type, int field_num)
7037 {
7038   const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7039 
7040   return name != NULL
7041     && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7042     && strstr (name, "___XVL") != NULL;
7043 }
7044 
7045 /* The index of the variant field of TYPE, or -1 if TYPE does not
7046    represent a variant record type.  */
7047 
7048 static int
7049 variant_field_index (struct type *type)
7050 {
7051   int f;
7052 
7053   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7054     return -1;
7055 
7056   for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7057     {
7058       if (ada_is_variant_part (type, f))
7059         return f;
7060     }
7061   return -1;
7062 }
7063 
7064 /* A record type with no fields.  */
7065 
7066 static struct type *
7067 empty_record (struct type *template)
7068 {
7069   struct type *type = alloc_type_copy (template);
7070 
7071   TYPE_CODE (type) = TYPE_CODE_STRUCT;
7072   TYPE_NFIELDS (type) = 0;
7073   TYPE_FIELDS (type) = NULL;
7074   INIT_CPLUS_SPECIFIC (type);
7075   TYPE_NAME (type) = "<empty>";
7076   TYPE_TAG_NAME (type) = NULL;
7077   TYPE_LENGTH (type) = 0;
7078   return type;
7079 }
7080 
7081 /* An ordinary record type (with fixed-length fields) that describes
7082    the value of type TYPE at VALADDR or ADDRESS (see comments at
7083    the beginning of this section) VAL according to GNAT conventions.
7084    DVAL0 should describe the (portion of a) record that contains any
7085    necessary discriminants.  It should be NULL if value_type (VAL) is
7086    an outer-level type (i.e., as opposed to a branch of a variant.)  A
7087    variant field (unless unchecked) is replaced by a particular branch
7088    of the variant.
7089 
7090    If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7091    length are not statically known are discarded.  As a consequence,
7092    VALADDR, ADDRESS and DVAL0 are ignored.
7093 
7094    NOTE: Limitations: For now, we assume that dynamic fields and
7095    variants occupy whole numbers of bytes.  However, they need not be
7096    byte-aligned.  */
7097 
7098 struct type *
7099 ada_template_to_fixed_record_type_1 (struct type *type,
7100 				     const gdb_byte *valaddr,
7101                                      CORE_ADDR address, struct value *dval0,
7102                                      int keep_dynamic_fields)
7103 {
7104   struct value *mark = value_mark ();
7105   struct value *dval;
7106   struct type *rtype;
7107   int nfields, bit_len;
7108   int variant_field;
7109   long off;
7110   int fld_bit_len;
7111   int f;
7112 
7113   /* Compute the number of fields in this record type that are going
7114      to be processed: unless keep_dynamic_fields, this includes only
7115      fields whose position and length are static will be processed.  */
7116   if (keep_dynamic_fields)
7117     nfields = TYPE_NFIELDS (type);
7118   else
7119     {
7120       nfields = 0;
7121       while (nfields < TYPE_NFIELDS (type)
7122              && !ada_is_variant_part (type, nfields)
7123              && !is_dynamic_field (type, nfields))
7124         nfields++;
7125     }
7126 
7127   rtype = alloc_type_copy (type);
7128   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7129   INIT_CPLUS_SPECIFIC (rtype);
7130   TYPE_NFIELDS (rtype) = nfields;
7131   TYPE_FIELDS (rtype) = (struct field *)
7132     TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7133   memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7134   TYPE_NAME (rtype) = ada_type_name (type);
7135   TYPE_TAG_NAME (rtype) = NULL;
7136   TYPE_FIXED_INSTANCE (rtype) = 1;
7137 
7138   off = 0;
7139   bit_len = 0;
7140   variant_field = -1;
7141 
7142   for (f = 0; f < nfields; f += 1)
7143     {
7144       off = align_value (off, field_alignment (type, f))
7145 	+ TYPE_FIELD_BITPOS (type, f);
7146       TYPE_FIELD_BITPOS (rtype, f) = off;
7147       TYPE_FIELD_BITSIZE (rtype, f) = 0;
7148 
7149       if (ada_is_variant_part (type, f))
7150         {
7151           variant_field = f;
7152           fld_bit_len = 0;
7153         }
7154       else if (is_dynamic_field (type, f))
7155         {
7156 	  const gdb_byte *field_valaddr = valaddr;
7157 	  CORE_ADDR field_address = address;
7158 	  struct type *field_type =
7159 	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7160 
7161           if (dval0 == NULL)
7162 	    {
7163 	      /* rtype's length is computed based on the run-time
7164 		 value of discriminants.  If the discriminants are not
7165 		 initialized, the type size may be completely bogus and
7166 		 GDB may fail to allocate a value for it.  So check the
7167 		 size first before creating the value.  */
7168 	      check_size (rtype);
7169 	      dval = value_from_contents_and_address (rtype, valaddr, address);
7170 	    }
7171           else
7172             dval = dval0;
7173 
7174 	  /* If the type referenced by this field is an aligner type, we need
7175 	     to unwrap that aligner type, because its size might not be set.
7176 	     Keeping the aligner type would cause us to compute the wrong
7177 	     size for this field, impacting the offset of the all the fields
7178 	     that follow this one.  */
7179 	  if (ada_is_aligner_type (field_type))
7180 	    {
7181 	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7182 
7183 	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
7184 	      field_address = cond_offset_target (field_address, field_offset);
7185 	      field_type = ada_aligned_type (field_type);
7186 	    }
7187 
7188 	  field_valaddr = cond_offset_host (field_valaddr,
7189 					    off / TARGET_CHAR_BIT);
7190 	  field_address = cond_offset_target (field_address,
7191 					      off / TARGET_CHAR_BIT);
7192 
7193 	  /* Get the fixed type of the field.  Note that, in this case,
7194 	     we do not want to get the real type out of the tag: if
7195 	     the current field is the parent part of a tagged record,
7196 	     we will get the tag of the object.  Clearly wrong: the real
7197 	     type of the parent is not the real type of the child.  We
7198 	     would end up in an infinite loop.	*/
7199 	  field_type = ada_get_base_type (field_type);
7200 	  field_type = ada_to_fixed_type (field_type, field_valaddr,
7201 					  field_address, dval, 0);
7202 	  /* If the field size is already larger than the maximum
7203 	     object size, then the record itself will necessarily
7204 	     be larger than the maximum object size.  We need to make
7205 	     this check now, because the size might be so ridiculously
7206 	     large (due to an uninitialized variable in the inferior)
7207 	     that it would cause an overflow when adding it to the
7208 	     record size.  */
7209 	  check_size (field_type);
7210 
7211 	  TYPE_FIELD_TYPE (rtype, f) = field_type;
7212           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7213 	  /* The multiplication can potentially overflow.  But because
7214 	     the field length has been size-checked just above, and
7215 	     assuming that the maximum size is a reasonable value,
7216 	     an overflow should not happen in practice.  So rather than
7217 	     adding overflow recovery code to this already complex code,
7218 	     we just assume that it's not going to happen.  */
7219           fld_bit_len =
7220             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7221         }
7222       else
7223         {
7224           struct type *field_type = TYPE_FIELD_TYPE (type, f);
7225 
7226 	  /* If our field is a typedef type (most likely a typedef of
7227 	     a fat pointer, encoding an array access), then we need to
7228 	     look at its target type to determine its characteristics.
7229 	     In particular, we would miscompute the field size if we took
7230 	     the size of the typedef (zero), instead of the size of
7231 	     the target type.  */
7232 	  if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7233 	    field_type = ada_typedef_target_type (field_type);
7234 
7235           TYPE_FIELD_TYPE (rtype, f) = field_type;
7236           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7237           if (TYPE_FIELD_BITSIZE (type, f) > 0)
7238             fld_bit_len =
7239               TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7240           else
7241             fld_bit_len =
7242               TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7243         }
7244       if (off + fld_bit_len > bit_len)
7245         bit_len = off + fld_bit_len;
7246       off += fld_bit_len;
7247       TYPE_LENGTH (rtype) =
7248         align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7249     }
7250 
7251   /* We handle the variant part, if any, at the end because of certain
7252      odd cases in which it is re-ordered so as NOT to be the last field of
7253      the record.  This can happen in the presence of representation
7254      clauses.  */
7255   if (variant_field >= 0)
7256     {
7257       struct type *branch_type;
7258 
7259       off = TYPE_FIELD_BITPOS (rtype, variant_field);
7260 
7261       if (dval0 == NULL)
7262         dval = value_from_contents_and_address (rtype, valaddr, address);
7263       else
7264         dval = dval0;
7265 
7266       branch_type =
7267         to_fixed_variant_branch_type
7268         (TYPE_FIELD_TYPE (type, variant_field),
7269          cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7270          cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7271       if (branch_type == NULL)
7272         {
7273           for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7274             TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7275           TYPE_NFIELDS (rtype) -= 1;
7276         }
7277       else
7278         {
7279           TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7280           TYPE_FIELD_NAME (rtype, variant_field) = "S";
7281           fld_bit_len =
7282             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7283             TARGET_CHAR_BIT;
7284           if (off + fld_bit_len > bit_len)
7285             bit_len = off + fld_bit_len;
7286           TYPE_LENGTH (rtype) =
7287             align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7288         }
7289     }
7290 
7291   /* According to exp_dbug.ads, the size of TYPE for variable-size records
7292      should contain the alignment of that record, which should be a strictly
7293      positive value.  If null or negative, then something is wrong, most
7294      probably in the debug info.  In that case, we don't round up the size
7295      of the resulting type.  If this record is not part of another structure,
7296      the current RTYPE length might be good enough for our purposes.  */
7297   if (TYPE_LENGTH (type) <= 0)
7298     {
7299       if (TYPE_NAME (rtype))
7300 	warning (_("Invalid type size for `%s' detected: %d."),
7301 		 TYPE_NAME (rtype), TYPE_LENGTH (type));
7302       else
7303 	warning (_("Invalid type size for <unnamed> detected: %d."),
7304 		 TYPE_LENGTH (type));
7305     }
7306   else
7307     {
7308       TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7309                                          TYPE_LENGTH (type));
7310     }
7311 
7312   value_free_to_mark (mark);
7313   if (TYPE_LENGTH (rtype) > varsize_limit)
7314     error (_("record type with dynamic size is larger than varsize-limit"));
7315   return rtype;
7316 }
7317 
7318 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7319    of 1.  */
7320 
7321 static struct type *
7322 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7323                                CORE_ADDR address, struct value *dval0)
7324 {
7325   return ada_template_to_fixed_record_type_1 (type, valaddr,
7326                                               address, dval0, 1);
7327 }
7328 
7329 /* An ordinary record type in which ___XVL-convention fields and
7330    ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7331    static approximations, containing all possible fields.  Uses
7332    no runtime values.  Useless for use in values, but that's OK,
7333    since the results are used only for type determinations.   Works on both
7334    structs and unions.  Representation note: to save space, we memorize
7335    the result of this function in the TYPE_TARGET_TYPE of the
7336    template type.  */
7337 
7338 static struct type *
7339 template_to_static_fixed_type (struct type *type0)
7340 {
7341   struct type *type;
7342   int nfields;
7343   int f;
7344 
7345   if (TYPE_TARGET_TYPE (type0) != NULL)
7346     return TYPE_TARGET_TYPE (type0);
7347 
7348   nfields = TYPE_NFIELDS (type0);
7349   type = type0;
7350 
7351   for (f = 0; f < nfields; f += 1)
7352     {
7353       struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7354       struct type *new_type;
7355 
7356       if (is_dynamic_field (type0, f))
7357         new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7358       else
7359         new_type = static_unwrap_type (field_type);
7360       if (type == type0 && new_type != field_type)
7361         {
7362           TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7363           TYPE_CODE (type) = TYPE_CODE (type0);
7364           INIT_CPLUS_SPECIFIC (type);
7365           TYPE_NFIELDS (type) = nfields;
7366           TYPE_FIELDS (type) = (struct field *)
7367             TYPE_ALLOC (type, nfields * sizeof (struct field));
7368           memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7369                   sizeof (struct field) * nfields);
7370           TYPE_NAME (type) = ada_type_name (type0);
7371           TYPE_TAG_NAME (type) = NULL;
7372 	  TYPE_FIXED_INSTANCE (type) = 1;
7373           TYPE_LENGTH (type) = 0;
7374         }
7375       TYPE_FIELD_TYPE (type, f) = new_type;
7376       TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7377     }
7378   return type;
7379 }
7380 
7381 /* Given an object of type TYPE whose contents are at VALADDR and
7382    whose address in memory is ADDRESS, returns a revision of TYPE,
7383    which should be a non-dynamic-sized record, in which the variant
7384    part, if any, is replaced with the appropriate branch.  Looks
7385    for discriminant values in DVAL0, which can be NULL if the record
7386    contains the necessary discriminant values.  */
7387 
7388 static struct type *
7389 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7390                                    CORE_ADDR address, struct value *dval0)
7391 {
7392   struct value *mark = value_mark ();
7393   struct value *dval;
7394   struct type *rtype;
7395   struct type *branch_type;
7396   int nfields = TYPE_NFIELDS (type);
7397   int variant_field = variant_field_index (type);
7398 
7399   if (variant_field == -1)
7400     return type;
7401 
7402   if (dval0 == NULL)
7403     dval = value_from_contents_and_address (type, valaddr, address);
7404   else
7405     dval = dval0;
7406 
7407   rtype = alloc_type_copy (type);
7408   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7409   INIT_CPLUS_SPECIFIC (rtype);
7410   TYPE_NFIELDS (rtype) = nfields;
7411   TYPE_FIELDS (rtype) =
7412     (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7413   memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7414           sizeof (struct field) * nfields);
7415   TYPE_NAME (rtype) = ada_type_name (type);
7416   TYPE_TAG_NAME (rtype) = NULL;
7417   TYPE_FIXED_INSTANCE (rtype) = 1;
7418   TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7419 
7420   branch_type = to_fixed_variant_branch_type
7421     (TYPE_FIELD_TYPE (type, variant_field),
7422      cond_offset_host (valaddr,
7423                        TYPE_FIELD_BITPOS (type, variant_field)
7424                        / TARGET_CHAR_BIT),
7425      cond_offset_target (address,
7426                          TYPE_FIELD_BITPOS (type, variant_field)
7427                          / TARGET_CHAR_BIT), dval);
7428   if (branch_type == NULL)
7429     {
7430       int f;
7431 
7432       for (f = variant_field + 1; f < nfields; f += 1)
7433         TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7434       TYPE_NFIELDS (rtype) -= 1;
7435     }
7436   else
7437     {
7438       TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7439       TYPE_FIELD_NAME (rtype, variant_field) = "S";
7440       TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7441       TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7442     }
7443   TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7444 
7445   value_free_to_mark (mark);
7446   return rtype;
7447 }
7448 
7449 /* An ordinary record type (with fixed-length fields) that describes
7450    the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7451    beginning of this section].   Any necessary discriminants' values
7452    should be in DVAL, a record value; it may be NULL if the object
7453    at ADDR itself contains any necessary discriminant values.
7454    Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7455    values from the record are needed.  Except in the case that DVAL,
7456    VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7457    unchecked) is replaced by a particular branch of the variant.
7458 
7459    NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7460    is questionable and may be removed.  It can arise during the
7461    processing of an unconstrained-array-of-record type where all the
7462    variant branches have exactly the same size.  This is because in
7463    such cases, the compiler does not bother to use the XVS convention
7464    when encoding the record.  I am currently dubious of this
7465    shortcut and suspect the compiler should be altered.  FIXME.  */
7466 
7467 static struct type *
7468 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7469                       CORE_ADDR address, struct value *dval)
7470 {
7471   struct type *templ_type;
7472 
7473   if (TYPE_FIXED_INSTANCE (type0))
7474     return type0;
7475 
7476   templ_type = dynamic_template_type (type0);
7477 
7478   if (templ_type != NULL)
7479     return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7480   else if (variant_field_index (type0) >= 0)
7481     {
7482       if (dval == NULL && valaddr == NULL && address == 0)
7483         return type0;
7484       return to_record_with_fixed_variant_part (type0, valaddr, address,
7485                                                 dval);
7486     }
7487   else
7488     {
7489       TYPE_FIXED_INSTANCE (type0) = 1;
7490       return type0;
7491     }
7492 
7493 }
7494 
7495 /* An ordinary record type (with fixed-length fields) that describes
7496    the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7497    union type.  Any necessary discriminants' values should be in DVAL,
7498    a record value.  That is, this routine selects the appropriate
7499    branch of the union at ADDR according to the discriminant value
7500    indicated in the union's type name.  Returns VAR_TYPE0 itself if
7501    it represents a variant subject to a pragma Unchecked_Union.  */
7502 
7503 static struct type *
7504 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7505                               CORE_ADDR address, struct value *dval)
7506 {
7507   int which;
7508   struct type *templ_type;
7509   struct type *var_type;
7510 
7511   if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7512     var_type = TYPE_TARGET_TYPE (var_type0);
7513   else
7514     var_type = var_type0;
7515 
7516   templ_type = ada_find_parallel_type (var_type, "___XVU");
7517 
7518   if (templ_type != NULL)
7519     var_type = templ_type;
7520 
7521   if (is_unchecked_variant (var_type, value_type (dval)))
7522       return var_type0;
7523   which =
7524     ada_which_variant_applies (var_type,
7525                                value_type (dval), value_contents (dval));
7526 
7527   if (which < 0)
7528     return empty_record (var_type);
7529   else if (is_dynamic_field (var_type, which))
7530     return to_fixed_record_type
7531       (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7532        valaddr, address, dval);
7533   else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7534     return
7535       to_fixed_record_type
7536       (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7537   else
7538     return TYPE_FIELD_TYPE (var_type, which);
7539 }
7540 
7541 /* Assuming that TYPE0 is an array type describing the type of a value
7542    at ADDR, and that DVAL describes a record containing any
7543    discriminants used in TYPE0, returns a type for the value that
7544    contains no dynamic components (that is, no components whose sizes
7545    are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
7546    true, gives an error message if the resulting type's size is over
7547    varsize_limit.  */
7548 
7549 static struct type *
7550 to_fixed_array_type (struct type *type0, struct value *dval,
7551                      int ignore_too_big)
7552 {
7553   struct type *index_type_desc;
7554   struct type *result;
7555   int constrained_packed_array_p;
7556 
7557   type0 = ada_check_typedef (type0);
7558   if (TYPE_FIXED_INSTANCE (type0))
7559     return type0;
7560 
7561   constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7562   if (constrained_packed_array_p)
7563     type0 = decode_constrained_packed_array_type (type0);
7564 
7565   index_type_desc = ada_find_parallel_type (type0, "___XA");
7566   ada_fixup_array_indexes_type (index_type_desc);
7567   if (index_type_desc == NULL)
7568     {
7569       struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7570 
7571       /* NOTE: elt_type---the fixed version of elt_type0---should never
7572          depend on the contents of the array in properly constructed
7573          debugging data.  */
7574       /* Create a fixed version of the array element type.
7575          We're not providing the address of an element here,
7576          and thus the actual object value cannot be inspected to do
7577          the conversion.  This should not be a problem, since arrays of
7578          unconstrained objects are not allowed.  In particular, all
7579          the elements of an array of a tagged type should all be of
7580          the same type specified in the debugging info.  No need to
7581          consult the object tag.  */
7582       struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7583 
7584       /* Make sure we always create a new array type when dealing with
7585 	 packed array types, since we're going to fix-up the array
7586 	 type length and element bitsize a little further down.  */
7587       if (elt_type0 == elt_type && !constrained_packed_array_p)
7588         result = type0;
7589       else
7590         result = create_array_type (alloc_type_copy (type0),
7591                                     elt_type, TYPE_INDEX_TYPE (type0));
7592     }
7593   else
7594     {
7595       int i;
7596       struct type *elt_type0;
7597 
7598       elt_type0 = type0;
7599       for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7600         elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7601 
7602       /* NOTE: result---the fixed version of elt_type0---should never
7603          depend on the contents of the array in properly constructed
7604          debugging data.  */
7605       /* Create a fixed version of the array element type.
7606          We're not providing the address of an element here,
7607          and thus the actual object value cannot be inspected to do
7608          the conversion.  This should not be a problem, since arrays of
7609          unconstrained objects are not allowed.  In particular, all
7610          the elements of an array of a tagged type should all be of
7611          the same type specified in the debugging info.  No need to
7612          consult the object tag.  */
7613       result =
7614         ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7615 
7616       elt_type0 = type0;
7617       for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7618         {
7619           struct type *range_type =
7620             to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7621 
7622           result = create_array_type (alloc_type_copy (elt_type0),
7623                                       result, range_type);
7624 	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7625         }
7626       if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7627         error (_("array type with dynamic size is larger than varsize-limit"));
7628     }
7629 
7630   if (constrained_packed_array_p)
7631     {
7632       /* So far, the resulting type has been created as if the original
7633 	 type was a regular (non-packed) array type.  As a result, the
7634 	 bitsize of the array elements needs to be set again, and the array
7635 	 length needs to be recomputed based on that bitsize.  */
7636       int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7637       int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7638 
7639       TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7640       TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7641       if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7642         TYPE_LENGTH (result)++;
7643     }
7644 
7645   TYPE_FIXED_INSTANCE (result) = 1;
7646   return result;
7647 }
7648 
7649 
7650 /* A standard type (containing no dynamically sized components)
7651    corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7652    DVAL describes a record containing any discriminants used in TYPE0,
7653    and may be NULL if there are none, or if the object of type TYPE at
7654    ADDRESS or in VALADDR contains these discriminants.
7655 
7656    If CHECK_TAG is not null, in the case of tagged types, this function
7657    attempts to locate the object's tag and use it to compute the actual
7658    type.  However, when ADDRESS is null, we cannot use it to determine the
7659    location of the tag, and therefore compute the tagged type's actual type.
7660    So we return the tagged type without consulting the tag.  */
7661 
7662 static struct type *
7663 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7664                    CORE_ADDR address, struct value *dval, int check_tag)
7665 {
7666   type = ada_check_typedef (type);
7667   switch (TYPE_CODE (type))
7668     {
7669     default:
7670       return type;
7671     case TYPE_CODE_STRUCT:
7672       {
7673         struct type *static_type = to_static_fixed_type (type);
7674         struct type *fixed_record_type =
7675           to_fixed_record_type (type, valaddr, address, NULL);
7676 
7677         /* If STATIC_TYPE is a tagged type and we know the object's address,
7678            then we can determine its tag, and compute the object's actual
7679            type from there.  Note that we have to use the fixed record
7680            type (the parent part of the record may have dynamic fields
7681            and the way the location of _tag is expressed may depend on
7682            them).  */
7683 
7684         if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7685           {
7686             struct type *real_type =
7687               type_from_tag (value_tag_from_contents_and_address
7688                              (fixed_record_type,
7689                               valaddr,
7690                               address));
7691 
7692             if (real_type != NULL)
7693               return to_fixed_record_type (real_type, valaddr, address, NULL);
7694           }
7695 
7696         /* Check to see if there is a parallel ___XVZ variable.
7697            If there is, then it provides the actual size of our type.  */
7698         else if (ada_type_name (fixed_record_type) != NULL)
7699           {
7700             char *name = ada_type_name (fixed_record_type);
7701             char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7702             int xvz_found = 0;
7703             LONGEST size;
7704 
7705             xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7706             size = get_int_var_value (xvz_name, &xvz_found);
7707             if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7708               {
7709                 fixed_record_type = copy_type (fixed_record_type);
7710                 TYPE_LENGTH (fixed_record_type) = size;
7711 
7712                 /* The FIXED_RECORD_TYPE may have be a stub.  We have
7713                    observed this when the debugging info is STABS, and
7714                    apparently it is something that is hard to fix.
7715 
7716                    In practice, we don't need the actual type definition
7717                    at all, because the presence of the XVZ variable allows us
7718                    to assume that there must be a XVS type as well, which we
7719                    should be able to use later, when we need the actual type
7720                    definition.
7721 
7722                    In the meantime, pretend that the "fixed" type we are
7723                    returning is NOT a stub, because this can cause trouble
7724                    when using this type to create new types targeting it.
7725                    Indeed, the associated creation routines often check
7726                    whether the target type is a stub and will try to replace
7727                    it, thus using a type with the wrong size.  This, in turn,
7728                    might cause the new type to have the wrong size too.
7729                    Consider the case of an array, for instance, where the size
7730                    of the array is computed from the number of elements in
7731                    our array multiplied by the size of its element.  */
7732                 TYPE_STUB (fixed_record_type) = 0;
7733               }
7734           }
7735         return fixed_record_type;
7736       }
7737     case TYPE_CODE_ARRAY:
7738       return to_fixed_array_type (type, dval, 1);
7739     case TYPE_CODE_UNION:
7740       if (dval == NULL)
7741         return type;
7742       else
7743         return to_fixed_variant_branch_type (type, valaddr, address, dval);
7744     }
7745 }
7746 
7747 /* The same as ada_to_fixed_type_1, except that it preserves the type
7748    if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7749 
7750    The typedef layer needs be preserved in order to differentiate between
7751    arrays and array pointers when both types are implemented using the same
7752    fat pointer.  In the array pointer case, the pointer is encoded as
7753    a typedef of the pointer type.  For instance, considering:
7754 
7755 	  type String_Access is access String;
7756 	  S1 : String_Access := null;
7757 
7758    To the debugger, S1 is defined as a typedef of type String.  But
7759    to the user, it is a pointer.  So if the user tries to print S1,
7760    we should not dereference the array, but print the array address
7761    instead.
7762 
7763    If we didn't preserve the typedef layer, we would lose the fact that
7764    the type is to be presented as a pointer (needs de-reference before
7765    being printed).  And we would also use the source-level type name.  */
7766 
7767 struct type *
7768 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7769                    CORE_ADDR address, struct value *dval, int check_tag)
7770 
7771 {
7772   struct type *fixed_type =
7773     ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7774 
7775   /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7776       then preserve the typedef layer.
7777 
7778       Implementation note: We can only check the main-type portion of
7779       the TYPE and FIXED_TYPE, because eliminating the typedef layer
7780       from TYPE now returns a type that has the same instance flags
7781       as TYPE.  For instance, if TYPE is a "typedef const", and its
7782       target type is a "struct", then the typedef elimination will return
7783       a "const" version of the target type.  See check_typedef for more
7784       details about how the typedef layer elimination is done.
7785 
7786       brobecker/2010-11-19: It seems to me that the only case where it is
7787       useful to preserve the typedef layer is when dealing with fat pointers.
7788       Perhaps, we could add a check for that and preserve the typedef layer
7789       only in that situation.  But this seems unecessary so far, probably
7790       because we call check_typedef/ada_check_typedef pretty much everywhere.
7791       */
7792   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7793       && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
7794 	  == TYPE_MAIN_TYPE (fixed_type)))
7795     return type;
7796 
7797   return fixed_type;
7798 }
7799 
7800 /* A standard (static-sized) type corresponding as well as possible to
7801    TYPE0, but based on no runtime data.  */
7802 
7803 static struct type *
7804 to_static_fixed_type (struct type *type0)
7805 {
7806   struct type *type;
7807 
7808   if (type0 == NULL)
7809     return NULL;
7810 
7811   if (TYPE_FIXED_INSTANCE (type0))
7812     return type0;
7813 
7814   type0 = ada_check_typedef (type0);
7815 
7816   switch (TYPE_CODE (type0))
7817     {
7818     default:
7819       return type0;
7820     case TYPE_CODE_STRUCT:
7821       type = dynamic_template_type (type0);
7822       if (type != NULL)
7823         return template_to_static_fixed_type (type);
7824       else
7825         return template_to_static_fixed_type (type0);
7826     case TYPE_CODE_UNION:
7827       type = ada_find_parallel_type (type0, "___XVU");
7828       if (type != NULL)
7829         return template_to_static_fixed_type (type);
7830       else
7831         return template_to_static_fixed_type (type0);
7832     }
7833 }
7834 
7835 /* A static approximation of TYPE with all type wrappers removed.  */
7836 
7837 static struct type *
7838 static_unwrap_type (struct type *type)
7839 {
7840   if (ada_is_aligner_type (type))
7841     {
7842       struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7843       if (ada_type_name (type1) == NULL)
7844         TYPE_NAME (type1) = ada_type_name (type);
7845 
7846       return static_unwrap_type (type1);
7847     }
7848   else
7849     {
7850       struct type *raw_real_type = ada_get_base_type (type);
7851 
7852       if (raw_real_type == type)
7853         return type;
7854       else
7855         return to_static_fixed_type (raw_real_type);
7856     }
7857 }
7858 
7859 /* In some cases, incomplete and private types require
7860    cross-references that are not resolved as records (for example,
7861       type Foo;
7862       type FooP is access Foo;
7863       V: FooP;
7864       type Foo is array ...;
7865    ).  In these cases, since there is no mechanism for producing
7866    cross-references to such types, we instead substitute for FooP a
7867    stub enumeration type that is nowhere resolved, and whose tag is
7868    the name of the actual type.  Call these types "non-record stubs".  */
7869 
7870 /* A type equivalent to TYPE that is not a non-record stub, if one
7871    exists, otherwise TYPE.  */
7872 
7873 struct type *
7874 ada_check_typedef (struct type *type)
7875 {
7876   if (type == NULL)
7877     return NULL;
7878 
7879   /* If our type is a typedef type of a fat pointer, then we're done.
7880      We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7881      what allows us to distinguish between fat pointers that represent
7882      array types, and fat pointers that represent array access types
7883      (in both cases, the compiler implements them as fat pointers).  */
7884   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7885       && is_thick_pntr (ada_typedef_target_type (type)))
7886     return type;
7887 
7888   CHECK_TYPEDEF (type);
7889   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7890       || !TYPE_STUB (type)
7891       || TYPE_TAG_NAME (type) == NULL)
7892     return type;
7893   else
7894     {
7895       char *name = TYPE_TAG_NAME (type);
7896       struct type *type1 = ada_find_any_type (name);
7897 
7898       if (type1 == NULL)
7899         return type;
7900 
7901       /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7902 	 stubs pointing to arrays, as we don't create symbols for array
7903 	 types, only for the typedef-to-array types).  If that's the case,
7904 	 strip the typedef layer.  */
7905       if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7906 	type1 = ada_check_typedef (type1);
7907 
7908       return type1;
7909     }
7910 }
7911 
7912 /* A value representing the data at VALADDR/ADDRESS as described by
7913    type TYPE0, but with a standard (static-sized) type that correctly
7914    describes it.  If VAL0 is not NULL and TYPE0 already is a standard
7915    type, then return VAL0 [this feature is simply to avoid redundant
7916    creation of struct values].  */
7917 
7918 static struct value *
7919 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7920                            struct value *val0)
7921 {
7922   struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7923 
7924   if (type == type0 && val0 != NULL)
7925     return val0;
7926   else
7927     return value_from_contents_and_address (type, 0, address);
7928 }
7929 
7930 /* A value representing VAL, but with a standard (static-sized) type
7931    that correctly describes it.  Does not necessarily create a new
7932    value.  */
7933 
7934 struct value *
7935 ada_to_fixed_value (struct value *val)
7936 {
7937   return ada_to_fixed_value_create (value_type (val),
7938                                     value_address (val),
7939                                     val);
7940 }
7941 
7942 
7943 /* Attributes */
7944 
7945 /* Table mapping attribute numbers to names.
7946    NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
7947 
7948 static const char *attribute_names[] = {
7949   "<?>",
7950 
7951   "first",
7952   "last",
7953   "length",
7954   "image",
7955   "max",
7956   "min",
7957   "modulus",
7958   "pos",
7959   "size",
7960   "tag",
7961   "val",
7962   0
7963 };
7964 
7965 const char *
7966 ada_attribute_name (enum exp_opcode n)
7967 {
7968   if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7969     return attribute_names[n - OP_ATR_FIRST + 1];
7970   else
7971     return attribute_names[0];
7972 }
7973 
7974 /* Evaluate the 'POS attribute applied to ARG.  */
7975 
7976 static LONGEST
7977 pos_atr (struct value *arg)
7978 {
7979   struct value *val = coerce_ref (arg);
7980   struct type *type = value_type (val);
7981 
7982   if (!discrete_type_p (type))
7983     error (_("'POS only defined on discrete types"));
7984 
7985   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7986     {
7987       int i;
7988       LONGEST v = value_as_long (val);
7989 
7990       for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7991         {
7992           if (v == TYPE_FIELD_BITPOS (type, i))
7993             return i;
7994         }
7995       error (_("enumeration value is invalid: can't find 'POS"));
7996     }
7997   else
7998     return value_as_long (val);
7999 }
8000 
8001 static struct value *
8002 value_pos_atr (struct type *type, struct value *arg)
8003 {
8004   return value_from_longest (type, pos_atr (arg));
8005 }
8006 
8007 /* Evaluate the TYPE'VAL attribute applied to ARG.  */
8008 
8009 static struct value *
8010 value_val_atr (struct type *type, struct value *arg)
8011 {
8012   if (!discrete_type_p (type))
8013     error (_("'VAL only defined on discrete types"));
8014   if (!integer_type_p (value_type (arg)))
8015     error (_("'VAL requires integral argument"));
8016 
8017   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8018     {
8019       long pos = value_as_long (arg);
8020 
8021       if (pos < 0 || pos >= TYPE_NFIELDS (type))
8022         error (_("argument to 'VAL out of range"));
8023       return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8024     }
8025   else
8026     return value_from_longest (type, value_as_long (arg));
8027 }
8028 
8029 
8030                                 /* Evaluation */
8031 
8032 /* True if TYPE appears to be an Ada character type.
8033    [At the moment, this is true only for Character and Wide_Character;
8034    It is a heuristic test that could stand improvement].  */
8035 
8036 int
8037 ada_is_character_type (struct type *type)
8038 {
8039   const char *name;
8040 
8041   /* If the type code says it's a character, then assume it really is,
8042      and don't check any further.  */
8043   if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8044     return 1;
8045 
8046   /* Otherwise, assume it's a character type iff it is a discrete type
8047      with a known character type name.  */
8048   name = ada_type_name (type);
8049   return (name != NULL
8050           && (TYPE_CODE (type) == TYPE_CODE_INT
8051               || TYPE_CODE (type) == TYPE_CODE_RANGE)
8052           && (strcmp (name, "character") == 0
8053               || strcmp (name, "wide_character") == 0
8054               || strcmp (name, "wide_wide_character") == 0
8055               || strcmp (name, "unsigned char") == 0));
8056 }
8057 
8058 /* True if TYPE appears to be an Ada string type.  */
8059 
8060 int
8061 ada_is_string_type (struct type *type)
8062 {
8063   type = ada_check_typedef (type);
8064   if (type != NULL
8065       && TYPE_CODE (type) != TYPE_CODE_PTR
8066       && (ada_is_simple_array_type (type)
8067           || ada_is_array_descriptor_type (type))
8068       && ada_array_arity (type) == 1)
8069     {
8070       struct type *elttype = ada_array_element_type (type, 1);
8071 
8072       return ada_is_character_type (elttype);
8073     }
8074   else
8075     return 0;
8076 }
8077 
8078 /* The compiler sometimes provides a parallel XVS type for a given
8079    PAD type.  Normally, it is safe to follow the PAD type directly,
8080    but older versions of the compiler have a bug that causes the offset
8081    of its "F" field to be wrong.  Following that field in that case
8082    would lead to incorrect results, but this can be worked around
8083    by ignoring the PAD type and using the associated XVS type instead.
8084 
8085    Set to True if the debugger should trust the contents of PAD types.
8086    Otherwise, ignore the PAD type if there is a parallel XVS type.  */
8087 static int trust_pad_over_xvs = 1;
8088 
8089 /* True if TYPE is a struct type introduced by the compiler to force the
8090    alignment of a value.  Such types have a single field with a
8091    distinctive name.  */
8092 
8093 int
8094 ada_is_aligner_type (struct type *type)
8095 {
8096   type = ada_check_typedef (type);
8097 
8098   if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8099     return 0;
8100 
8101   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8102           && TYPE_NFIELDS (type) == 1
8103           && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8104 }
8105 
8106 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8107    the parallel type.  */
8108 
8109 struct type *
8110 ada_get_base_type (struct type *raw_type)
8111 {
8112   struct type *real_type_namer;
8113   struct type *raw_real_type;
8114 
8115   if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8116     return raw_type;
8117 
8118   if (ada_is_aligner_type (raw_type))
8119     /* The encoding specifies that we should always use the aligner type.
8120        So, even if this aligner type has an associated XVS type, we should
8121        simply ignore it.
8122 
8123        According to the compiler gurus, an XVS type parallel to an aligner
8124        type may exist because of a stabs limitation.  In stabs, aligner
8125        types are empty because the field has a variable-sized type, and
8126        thus cannot actually be used as an aligner type.  As a result,
8127        we need the associated parallel XVS type to decode the type.
8128        Since the policy in the compiler is to not change the internal
8129        representation based on the debugging info format, we sometimes
8130        end up having a redundant XVS type parallel to the aligner type.  */
8131     return raw_type;
8132 
8133   real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8134   if (real_type_namer == NULL
8135       || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8136       || TYPE_NFIELDS (real_type_namer) != 1)
8137     return raw_type;
8138 
8139   if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8140     {
8141       /* This is an older encoding form where the base type needs to be
8142 	 looked up by name.  We prefer the newer enconding because it is
8143 	 more efficient.  */
8144       raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8145       if (raw_real_type == NULL)
8146 	return raw_type;
8147       else
8148 	return raw_real_type;
8149     }
8150 
8151   /* The field in our XVS type is a reference to the base type.  */
8152   return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8153 }
8154 
8155 /* The type of value designated by TYPE, with all aligners removed.  */
8156 
8157 struct type *
8158 ada_aligned_type (struct type *type)
8159 {
8160   if (ada_is_aligner_type (type))
8161     return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8162   else
8163     return ada_get_base_type (type);
8164 }
8165 
8166 
8167 /* The address of the aligned value in an object at address VALADDR
8168    having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
8169 
8170 const gdb_byte *
8171 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8172 {
8173   if (ada_is_aligner_type (type))
8174     return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8175                                    valaddr +
8176                                    TYPE_FIELD_BITPOS (type,
8177                                                       0) / TARGET_CHAR_BIT);
8178   else
8179     return valaddr;
8180 }
8181 
8182 
8183 
8184 /* The printed representation of an enumeration literal with encoded
8185    name NAME.  The value is good to the next call of ada_enum_name.  */
8186 const char *
8187 ada_enum_name (const char *name)
8188 {
8189   static char *result;
8190   static size_t result_len = 0;
8191   char *tmp;
8192 
8193   /* First, unqualify the enumeration name:
8194      1. Search for the last '.' character.  If we find one, then skip
8195      all the preceeding characters, the unqualified name starts
8196      right after that dot.
8197      2. Otherwise, we may be debugging on a target where the compiler
8198      translates dots into "__".  Search forward for double underscores,
8199      but stop searching when we hit an overloading suffix, which is
8200      of the form "__" followed by digits.  */
8201 
8202   tmp = strrchr (name, '.');
8203   if (tmp != NULL)
8204     name = tmp + 1;
8205   else
8206     {
8207       while ((tmp = strstr (name, "__")) != NULL)
8208         {
8209           if (isdigit (tmp[2]))
8210             break;
8211           else
8212             name = tmp + 2;
8213         }
8214     }
8215 
8216   if (name[0] == 'Q')
8217     {
8218       int v;
8219 
8220       if (name[1] == 'U' || name[1] == 'W')
8221         {
8222           if (sscanf (name + 2, "%x", &v) != 1)
8223             return name;
8224         }
8225       else
8226         return name;
8227 
8228       GROW_VECT (result, result_len, 16);
8229       if (isascii (v) && isprint (v))
8230         xsnprintf (result, result_len, "'%c'", v);
8231       else if (name[1] == 'U')
8232         xsnprintf (result, result_len, "[\"%02x\"]", v);
8233       else
8234         xsnprintf (result, result_len, "[\"%04x\"]", v);
8235 
8236       return result;
8237     }
8238   else
8239     {
8240       tmp = strstr (name, "__");
8241       if (tmp == NULL)
8242 	tmp = strstr (name, "$");
8243       if (tmp != NULL)
8244         {
8245           GROW_VECT (result, result_len, tmp - name + 1);
8246           strncpy (result, name, tmp - name);
8247           result[tmp - name] = '\0';
8248           return result;
8249         }
8250 
8251       return name;
8252     }
8253 }
8254 
8255 /* Evaluate the subexpression of EXP starting at *POS as for
8256    evaluate_type, updating *POS to point just past the evaluated
8257    expression.  */
8258 
8259 static struct value *
8260 evaluate_subexp_type (struct expression *exp, int *pos)
8261 {
8262   return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8263 }
8264 
8265 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8266    value it wraps.  */
8267 
8268 static struct value *
8269 unwrap_value (struct value *val)
8270 {
8271   struct type *type = ada_check_typedef (value_type (val));
8272 
8273   if (ada_is_aligner_type (type))
8274     {
8275       struct value *v = ada_value_struct_elt (val, "F", 0);
8276       struct type *val_type = ada_check_typedef (value_type (v));
8277 
8278       if (ada_type_name (val_type) == NULL)
8279         TYPE_NAME (val_type) = ada_type_name (type);
8280 
8281       return unwrap_value (v);
8282     }
8283   else
8284     {
8285       struct type *raw_real_type =
8286         ada_check_typedef (ada_get_base_type (type));
8287 
8288       /* If there is no parallel XVS or XVE type, then the value is
8289 	 already unwrapped.  Return it without further modification.  */
8290       if ((type == raw_real_type)
8291 	  && ada_find_parallel_type (type, "___XVE") == NULL)
8292 	return val;
8293 
8294       return
8295         coerce_unspec_val_to_type
8296         (val, ada_to_fixed_type (raw_real_type, 0,
8297                                  value_address (val),
8298                                  NULL, 1));
8299     }
8300 }
8301 
8302 static struct value *
8303 cast_to_fixed (struct type *type, struct value *arg)
8304 {
8305   LONGEST val;
8306 
8307   if (type == value_type (arg))
8308     return arg;
8309   else if (ada_is_fixed_point_type (value_type (arg)))
8310     val = ada_float_to_fixed (type,
8311                               ada_fixed_to_float (value_type (arg),
8312                                                   value_as_long (arg)));
8313   else
8314     {
8315       DOUBLEST argd = value_as_double (arg);
8316 
8317       val = ada_float_to_fixed (type, argd);
8318     }
8319 
8320   return value_from_longest (type, val);
8321 }
8322 
8323 static struct value *
8324 cast_from_fixed (struct type *type, struct value *arg)
8325 {
8326   DOUBLEST val = ada_fixed_to_float (value_type (arg),
8327                                      value_as_long (arg));
8328 
8329   return value_from_double (type, val);
8330 }
8331 
8332 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8333    return the converted value.  */
8334 
8335 static struct value *
8336 coerce_for_assign (struct type *type, struct value *val)
8337 {
8338   struct type *type2 = value_type (val);
8339 
8340   if (type == type2)
8341     return val;
8342 
8343   type2 = ada_check_typedef (type2);
8344   type = ada_check_typedef (type);
8345 
8346   if (TYPE_CODE (type2) == TYPE_CODE_PTR
8347       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8348     {
8349       val = ada_value_ind (val);
8350       type2 = value_type (val);
8351     }
8352 
8353   if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8354       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8355     {
8356       if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8357           || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8358           != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8359         error (_("Incompatible types in assignment"));
8360       deprecated_set_value_type (val, type);
8361     }
8362   return val;
8363 }
8364 
8365 static struct value *
8366 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8367 {
8368   struct value *val;
8369   struct type *type1, *type2;
8370   LONGEST v, v1, v2;
8371 
8372   arg1 = coerce_ref (arg1);
8373   arg2 = coerce_ref (arg2);
8374   type1 = base_type (ada_check_typedef (value_type (arg1)));
8375   type2 = base_type (ada_check_typedef (value_type (arg2)));
8376 
8377   if (TYPE_CODE (type1) != TYPE_CODE_INT
8378       || TYPE_CODE (type2) != TYPE_CODE_INT)
8379     return value_binop (arg1, arg2, op);
8380 
8381   switch (op)
8382     {
8383     case BINOP_MOD:
8384     case BINOP_DIV:
8385     case BINOP_REM:
8386       break;
8387     default:
8388       return value_binop (arg1, arg2, op);
8389     }
8390 
8391   v2 = value_as_long (arg2);
8392   if (v2 == 0)
8393     error (_("second operand of %s must not be zero."), op_string (op));
8394 
8395   if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8396     return value_binop (arg1, arg2, op);
8397 
8398   v1 = value_as_long (arg1);
8399   switch (op)
8400     {
8401     case BINOP_DIV:
8402       v = v1 / v2;
8403       if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8404         v += v > 0 ? -1 : 1;
8405       break;
8406     case BINOP_REM:
8407       v = v1 % v2;
8408       if (v * v1 < 0)
8409         v -= v2;
8410       break;
8411     default:
8412       /* Should not reach this point.  */
8413       v = 0;
8414     }
8415 
8416   val = allocate_value (type1);
8417   store_unsigned_integer (value_contents_raw (val),
8418                           TYPE_LENGTH (value_type (val)),
8419 			  gdbarch_byte_order (get_type_arch (type1)), v);
8420   return val;
8421 }
8422 
8423 static int
8424 ada_value_equal (struct value *arg1, struct value *arg2)
8425 {
8426   if (ada_is_direct_array_type (value_type (arg1))
8427       || ada_is_direct_array_type (value_type (arg2)))
8428     {
8429       /* Automatically dereference any array reference before
8430          we attempt to perform the comparison.  */
8431       arg1 = ada_coerce_ref (arg1);
8432       arg2 = ada_coerce_ref (arg2);
8433 
8434       arg1 = ada_coerce_to_simple_array (arg1);
8435       arg2 = ada_coerce_to_simple_array (arg2);
8436       if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8437           || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8438         error (_("Attempt to compare array with non-array"));
8439       /* FIXME: The following works only for types whose
8440          representations use all bits (no padding or undefined bits)
8441          and do not have user-defined equality.  */
8442       return
8443         TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8444         && memcmp (value_contents (arg1), value_contents (arg2),
8445                    TYPE_LENGTH (value_type (arg1))) == 0;
8446     }
8447   return value_equal (arg1, arg2);
8448 }
8449 
8450 /* Total number of component associations in the aggregate starting at
8451    index PC in EXP.  Assumes that index PC is the start of an
8452    OP_AGGREGATE.  */
8453 
8454 static int
8455 num_component_specs (struct expression *exp, int pc)
8456 {
8457   int n, m, i;
8458 
8459   m = exp->elts[pc + 1].longconst;
8460   pc += 3;
8461   n = 0;
8462   for (i = 0; i < m; i += 1)
8463     {
8464       switch (exp->elts[pc].opcode)
8465 	{
8466 	default:
8467 	  n += 1;
8468 	  break;
8469 	case OP_CHOICES:
8470 	  n += exp->elts[pc + 1].longconst;
8471 	  break;
8472 	}
8473       ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8474     }
8475   return n;
8476 }
8477 
8478 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8479    component of LHS (a simple array or a record), updating *POS past
8480    the expression, assuming that LHS is contained in CONTAINER.  Does
8481    not modify the inferior's memory, nor does it modify LHS (unless
8482    LHS == CONTAINER).  */
8483 
8484 static void
8485 assign_component (struct value *container, struct value *lhs, LONGEST index,
8486 		  struct expression *exp, int *pos)
8487 {
8488   struct value *mark = value_mark ();
8489   struct value *elt;
8490 
8491   if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8492     {
8493       struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8494       struct value *index_val = value_from_longest (index_type, index);
8495 
8496       elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8497     }
8498   else
8499     {
8500       elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8501       elt = ada_to_fixed_value (unwrap_value (elt));
8502     }
8503 
8504   if (exp->elts[*pos].opcode == OP_AGGREGATE)
8505     assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8506   else
8507     value_assign_to_component (container, elt,
8508 			       ada_evaluate_subexp (NULL, exp, pos,
8509 						    EVAL_NORMAL));
8510 
8511   value_free_to_mark (mark);
8512 }
8513 
8514 /* Assuming that LHS represents an lvalue having a record or array
8515    type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8516    of that aggregate's value to LHS, advancing *POS past the
8517    aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
8518    lvalue containing LHS (possibly LHS itself).  Does not modify
8519    the inferior's memory, nor does it modify the contents of
8520    LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
8521 
8522 static struct value *
8523 assign_aggregate (struct value *container,
8524 		  struct value *lhs, struct expression *exp,
8525 		  int *pos, enum noside noside)
8526 {
8527   struct type *lhs_type;
8528   int n = exp->elts[*pos+1].longconst;
8529   LONGEST low_index, high_index;
8530   int num_specs;
8531   LONGEST *indices;
8532   int max_indices, num_indices;
8533   int is_array_aggregate;
8534   int i;
8535 
8536   *pos += 3;
8537   if (noside != EVAL_NORMAL)
8538     {
8539       int i;
8540 
8541       for (i = 0; i < n; i += 1)
8542 	ada_evaluate_subexp (NULL, exp, pos, noside);
8543       return container;
8544     }
8545 
8546   container = ada_coerce_ref (container);
8547   if (ada_is_direct_array_type (value_type (container)))
8548     container = ada_coerce_to_simple_array (container);
8549   lhs = ada_coerce_ref (lhs);
8550   if (!deprecated_value_modifiable (lhs))
8551     error (_("Left operand of assignment is not a modifiable lvalue."));
8552 
8553   lhs_type = value_type (lhs);
8554   if (ada_is_direct_array_type (lhs_type))
8555     {
8556       lhs = ada_coerce_to_simple_array (lhs);
8557       lhs_type = value_type (lhs);
8558       low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8559       high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8560       is_array_aggregate = 1;
8561     }
8562   else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8563     {
8564       low_index = 0;
8565       high_index = num_visible_fields (lhs_type) - 1;
8566       is_array_aggregate = 0;
8567     }
8568   else
8569     error (_("Left-hand side must be array or record."));
8570 
8571   num_specs = num_component_specs (exp, *pos - 3);
8572   max_indices = 4 * num_specs + 4;
8573   indices = alloca (max_indices * sizeof (indices[0]));
8574   indices[0] = indices[1] = low_index - 1;
8575   indices[2] = indices[3] = high_index + 1;
8576   num_indices = 4;
8577 
8578   for (i = 0; i < n; i += 1)
8579     {
8580       switch (exp->elts[*pos].opcode)
8581 	{
8582 	case OP_CHOICES:
8583 	  aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8584 					 &num_indices, max_indices,
8585 					 low_index, high_index);
8586 	  break;
8587 	case OP_POSITIONAL:
8588 	  aggregate_assign_positional (container, lhs, exp, pos, indices,
8589 				       &num_indices, max_indices,
8590 				       low_index, high_index);
8591 	  break;
8592 	case OP_OTHERS:
8593 	  if (i != n-1)
8594 	    error (_("Misplaced 'others' clause"));
8595 	  aggregate_assign_others (container, lhs, exp, pos, indices,
8596 				   num_indices, low_index, high_index);
8597 	  break;
8598 	default:
8599 	  error (_("Internal error: bad aggregate clause"));
8600 	}
8601     }
8602 
8603   return container;
8604 }
8605 
8606 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8607    construct at *POS, updating *POS past the construct, given that
8608    the positions are relative to lower bound LOW, where HIGH is the
8609    upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
8610    updating *NUM_INDICES as needed.  CONTAINER is as for
8611    assign_aggregate.  */
8612 static void
8613 aggregate_assign_positional (struct value *container,
8614 			     struct value *lhs, struct expression *exp,
8615 			     int *pos, LONGEST *indices, int *num_indices,
8616 			     int max_indices, LONGEST low, LONGEST high)
8617 {
8618   LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8619 
8620   if (ind - 1 == high)
8621     warning (_("Extra components in aggregate ignored."));
8622   if (ind <= high)
8623     {
8624       add_component_interval (ind, ind, indices, num_indices, max_indices);
8625       *pos += 3;
8626       assign_component (container, lhs, ind, exp, pos);
8627     }
8628   else
8629     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8630 }
8631 
8632 /* Assign into the components of LHS indexed by the OP_CHOICES
8633    construct at *POS, updating *POS past the construct, given that
8634    the allowable indices are LOW..HIGH.  Record the indices assigned
8635    to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8636    needed.  CONTAINER is as for assign_aggregate.  */
8637 static void
8638 aggregate_assign_from_choices (struct value *container,
8639 			       struct value *lhs, struct expression *exp,
8640 			       int *pos, LONGEST *indices, int *num_indices,
8641 			       int max_indices, LONGEST low, LONGEST high)
8642 {
8643   int j;
8644   int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8645   int choice_pos, expr_pc;
8646   int is_array = ada_is_direct_array_type (value_type (lhs));
8647 
8648   choice_pos = *pos += 3;
8649 
8650   for (j = 0; j < n_choices; j += 1)
8651     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8652   expr_pc = *pos;
8653   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8654 
8655   for (j = 0; j < n_choices; j += 1)
8656     {
8657       LONGEST lower, upper;
8658       enum exp_opcode op = exp->elts[choice_pos].opcode;
8659 
8660       if (op == OP_DISCRETE_RANGE)
8661 	{
8662 	  choice_pos += 1;
8663 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8664 						      EVAL_NORMAL));
8665 	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8666 						      EVAL_NORMAL));
8667 	}
8668       else if (is_array)
8669 	{
8670 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8671 						      EVAL_NORMAL));
8672 	  upper = lower;
8673 	}
8674       else
8675 	{
8676 	  int ind;
8677 	  char *name;
8678 
8679 	  switch (op)
8680 	    {
8681 	    case OP_NAME:
8682 	      name = &exp->elts[choice_pos + 2].string;
8683 	      break;
8684 	    case OP_VAR_VALUE:
8685 	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8686 	      break;
8687 	    default:
8688 	      error (_("Invalid record component association."));
8689 	    }
8690 	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8691 	  ind = 0;
8692 	  if (! find_struct_field (name, value_type (lhs), 0,
8693 				   NULL, NULL, NULL, NULL, &ind))
8694 	    error (_("Unknown component name: %s."), name);
8695 	  lower = upper = ind;
8696 	}
8697 
8698       if (lower <= upper && (lower < low || upper > high))
8699 	error (_("Index in component association out of bounds."));
8700 
8701       add_component_interval (lower, upper, indices, num_indices,
8702 			      max_indices);
8703       while (lower <= upper)
8704 	{
8705 	  int pos1;
8706 
8707 	  pos1 = expr_pc;
8708 	  assign_component (container, lhs, lower, exp, &pos1);
8709 	  lower += 1;
8710 	}
8711     }
8712 }
8713 
8714 /* Assign the value of the expression in the OP_OTHERS construct in
8715    EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8716    have not been previously assigned.  The index intervals already assigned
8717    are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the
8718    OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
8719 static void
8720 aggregate_assign_others (struct value *container,
8721 			 struct value *lhs, struct expression *exp,
8722 			 int *pos, LONGEST *indices, int num_indices,
8723 			 LONGEST low, LONGEST high)
8724 {
8725   int i;
8726   int expr_pc = *pos + 1;
8727 
8728   for (i = 0; i < num_indices - 2; i += 2)
8729     {
8730       LONGEST ind;
8731 
8732       for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8733 	{
8734 	  int localpos;
8735 
8736 	  localpos = expr_pc;
8737 	  assign_component (container, lhs, ind, exp, &localpos);
8738 	}
8739     }
8740   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8741 }
8742 
8743 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8744    [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8745    modifying *SIZE as needed.  It is an error if *SIZE exceeds
8746    MAX_SIZE.  The resulting intervals do not overlap.  */
8747 static void
8748 add_component_interval (LONGEST low, LONGEST high,
8749 			LONGEST* indices, int *size, int max_size)
8750 {
8751   int i, j;
8752 
8753   for (i = 0; i < *size; i += 2) {
8754     if (high >= indices[i] && low <= indices[i + 1])
8755       {
8756 	int kh;
8757 
8758 	for (kh = i + 2; kh < *size; kh += 2)
8759 	  if (high < indices[kh])
8760 	    break;
8761 	if (low < indices[i])
8762 	  indices[i] = low;
8763 	indices[i + 1] = indices[kh - 1];
8764 	if (high > indices[i + 1])
8765 	  indices[i + 1] = high;
8766 	memcpy (indices + i + 2, indices + kh, *size - kh);
8767 	*size -= kh - i - 2;
8768 	return;
8769       }
8770     else if (high < indices[i])
8771       break;
8772   }
8773 
8774   if (*size == max_size)
8775     error (_("Internal error: miscounted aggregate components."));
8776   *size += 2;
8777   for (j = *size-1; j >= i+2; j -= 1)
8778     indices[j] = indices[j - 2];
8779   indices[i] = low;
8780   indices[i + 1] = high;
8781 }
8782 
8783 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8784    is different.  */
8785 
8786 static struct value *
8787 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8788 {
8789   if (type == ada_check_typedef (value_type (arg2)))
8790     return arg2;
8791 
8792   if (ada_is_fixed_point_type (type))
8793     return (cast_to_fixed (type, arg2));
8794 
8795   if (ada_is_fixed_point_type (value_type (arg2)))
8796     return cast_from_fixed (type, arg2);
8797 
8798   return value_cast (type, arg2);
8799 }
8800 
8801 /*  Evaluating Ada expressions, and printing their result.
8802     ------------------------------------------------------
8803 
8804     1. Introduction:
8805     ----------------
8806 
8807     We usually evaluate an Ada expression in order to print its value.
8808     We also evaluate an expression in order to print its type, which
8809     happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8810     but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
8811     EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8812     the evaluation compared to the EVAL_NORMAL, but is otherwise very
8813     similar.
8814 
8815     Evaluating expressions is a little more complicated for Ada entities
8816     than it is for entities in languages such as C.  The main reason for
8817     this is that Ada provides types whose definition might be dynamic.
8818     One example of such types is variant records.  Or another example
8819     would be an array whose bounds can only be known at run time.
8820 
8821     The following description is a general guide as to what should be
8822     done (and what should NOT be done) in order to evaluate an expression
8823     involving such types, and when.  This does not cover how the semantic
8824     information is encoded by GNAT as this is covered separatly.  For the
8825     document used as the reference for the GNAT encoding, see exp_dbug.ads
8826     in the GNAT sources.
8827 
8828     Ideally, we should embed each part of this description next to its
8829     associated code.  Unfortunately, the amount of code is so vast right
8830     now that it's hard to see whether the code handling a particular
8831     situation might be duplicated or not.  One day, when the code is
8832     cleaned up, this guide might become redundant with the comments
8833     inserted in the code, and we might want to remove it.
8834 
8835     2. ``Fixing'' an Entity, the Simple Case:
8836     -----------------------------------------
8837 
8838     When evaluating Ada expressions, the tricky issue is that they may
8839     reference entities whose type contents and size are not statically
8840     known.  Consider for instance a variant record:
8841 
8842        type Rec (Empty : Boolean := True) is record
8843           case Empty is
8844              when True => null;
8845              when False => Value : Integer;
8846           end case;
8847        end record;
8848        Yes : Rec := (Empty => False, Value => 1);
8849        No  : Rec := (empty => True);
8850 
8851     The size and contents of that record depends on the value of the
8852     descriminant (Rec.Empty).  At this point, neither the debugging
8853     information nor the associated type structure in GDB are able to
8854     express such dynamic types.  So what the debugger does is to create
8855     "fixed" versions of the type that applies to the specific object.
8856     We also informally refer to this opperation as "fixing" an object,
8857     which means creating its associated fixed type.
8858 
8859     Example: when printing the value of variable "Yes" above, its fixed
8860     type would look like this:
8861 
8862        type Rec is record
8863           Empty : Boolean;
8864           Value : Integer;
8865        end record;
8866 
8867     On the other hand, if we printed the value of "No", its fixed type
8868     would become:
8869 
8870        type Rec is record
8871           Empty : Boolean;
8872        end record;
8873 
8874     Things become a little more complicated when trying to fix an entity
8875     with a dynamic type that directly contains another dynamic type,
8876     such as an array of variant records, for instance.  There are
8877     two possible cases: Arrays, and records.
8878 
8879     3. ``Fixing'' Arrays:
8880     ---------------------
8881 
8882     The type structure in GDB describes an array in terms of its bounds,
8883     and the type of its elements.  By design, all elements in the array
8884     have the same type and we cannot represent an array of variant elements
8885     using the current type structure in GDB.  When fixing an array,
8886     we cannot fix the array element, as we would potentially need one
8887     fixed type per element of the array.  As a result, the best we can do
8888     when fixing an array is to produce an array whose bounds and size
8889     are correct (allowing us to read it from memory), but without having
8890     touched its element type.  Fixing each element will be done later,
8891     when (if) necessary.
8892 
8893     Arrays are a little simpler to handle than records, because the same
8894     amount of memory is allocated for each element of the array, even if
8895     the amount of space actually used by each element differs from element
8896     to element.  Consider for instance the following array of type Rec:
8897 
8898        type Rec_Array is array (1 .. 2) of Rec;
8899 
8900     The actual amount of memory occupied by each element might be different
8901     from element to element, depending on the value of their discriminant.
8902     But the amount of space reserved for each element in the array remains
8903     fixed regardless.  So we simply need to compute that size using
8904     the debugging information available, from which we can then determine
8905     the array size (we multiply the number of elements of the array by
8906     the size of each element).
8907 
8908     The simplest case is when we have an array of a constrained element
8909     type. For instance, consider the following type declarations:
8910 
8911         type Bounded_String (Max_Size : Integer) is
8912            Length : Integer;
8913            Buffer : String (1 .. Max_Size);
8914         end record;
8915         type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8916 
8917     In this case, the compiler describes the array as an array of
8918     variable-size elements (identified by its XVS suffix) for which
8919     the size can be read in the parallel XVZ variable.
8920 
8921     In the case of an array of an unconstrained element type, the compiler
8922     wraps the array element inside a private PAD type.  This type should not
8923     be shown to the user, and must be "unwrap"'ed before printing.  Note
8924     that we also use the adjective "aligner" in our code to designate
8925     these wrapper types.
8926 
8927     In some cases, the size allocated for each element is statically
8928     known.  In that case, the PAD type already has the correct size,
8929     and the array element should remain unfixed.
8930 
8931     But there are cases when this size is not statically known.
8932     For instance, assuming that "Five" is an integer variable:
8933 
8934         type Dynamic is array (1 .. Five) of Integer;
8935         type Wrapper (Has_Length : Boolean := False) is record
8936            Data : Dynamic;
8937            case Has_Length is
8938               when True => Length : Integer;
8939               when False => null;
8940            end case;
8941         end record;
8942         type Wrapper_Array is array (1 .. 2) of Wrapper;
8943 
8944         Hello : Wrapper_Array := (others => (Has_Length => True,
8945                                              Data => (others => 17),
8946                                              Length => 1));
8947 
8948 
8949     The debugging info would describe variable Hello as being an
8950     array of a PAD type.  The size of that PAD type is not statically
8951     known, but can be determined using a parallel XVZ variable.
8952     In that case, a copy of the PAD type with the correct size should
8953     be used for the fixed array.
8954 
8955     3. ``Fixing'' record type objects:
8956     ----------------------------------
8957 
8958     Things are slightly different from arrays in the case of dynamic
8959     record types.  In this case, in order to compute the associated
8960     fixed type, we need to determine the size and offset of each of
8961     its components.  This, in turn, requires us to compute the fixed
8962     type of each of these components.
8963 
8964     Consider for instance the example:
8965 
8966         type Bounded_String (Max_Size : Natural) is record
8967            Str : String (1 .. Max_Size);
8968            Length : Natural;
8969         end record;
8970         My_String : Bounded_String (Max_Size => 10);
8971 
8972     In that case, the position of field "Length" depends on the size
8973     of field Str, which itself depends on the value of the Max_Size
8974     discriminant.  In order to fix the type of variable My_String,
8975     we need to fix the type of field Str.  Therefore, fixing a variant
8976     record requires us to fix each of its components.
8977 
8978     However, if a component does not have a dynamic size, the component
8979     should not be fixed.  In particular, fields that use a PAD type
8980     should not fixed.  Here is an example where this might happen
8981     (assuming type Rec above):
8982 
8983        type Container (Big : Boolean) is record
8984           First : Rec;
8985           After : Integer;
8986           case Big is
8987              when True => Another : Integer;
8988              when False => null;
8989           end case;
8990        end record;
8991        My_Container : Container := (Big => False,
8992                                     First => (Empty => True),
8993                                     After => 42);
8994 
8995     In that example, the compiler creates a PAD type for component First,
8996     whose size is constant, and then positions the component After just
8997     right after it.  The offset of component After is therefore constant
8998     in this case.
8999 
9000     The debugger computes the position of each field based on an algorithm
9001     that uses, among other things, the actual position and size of the field
9002     preceding it.  Let's now imagine that the user is trying to print
9003     the value of My_Container.  If the type fixing was recursive, we would
9004     end up computing the offset of field After based on the size of the
9005     fixed version of field First.  And since in our example First has
9006     only one actual field, the size of the fixed type is actually smaller
9007     than the amount of space allocated to that field, and thus we would
9008     compute the wrong offset of field After.
9009 
9010     To make things more complicated, we need to watch out for dynamic
9011     components of variant records (identified by the ___XVL suffix in
9012     the component name).  Even if the target type is a PAD type, the size
9013     of that type might not be statically known.  So the PAD type needs
9014     to be unwrapped and the resulting type needs to be fixed.  Otherwise,
9015     we might end up with the wrong size for our component.  This can be
9016     observed with the following type declarations:
9017 
9018         type Octal is new Integer range 0 .. 7;
9019         type Octal_Array is array (Positive range <>) of Octal;
9020         pragma Pack (Octal_Array);
9021 
9022         type Octal_Buffer (Size : Positive) is record
9023            Buffer : Octal_Array (1 .. Size);
9024            Length : Integer;
9025         end record;
9026 
9027     In that case, Buffer is a PAD type whose size is unset and needs
9028     to be computed by fixing the unwrapped type.
9029 
9030     4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9031     ----------------------------------------------------------
9032 
9033     Lastly, when should the sub-elements of an entity that remained unfixed
9034     thus far, be actually fixed?
9035 
9036     The answer is: Only when referencing that element.  For instance
9037     when selecting one component of a record, this specific component
9038     should be fixed at that point in time.  Or when printing the value
9039     of a record, each component should be fixed before its value gets
9040     printed.  Similarly for arrays, the element of the array should be
9041     fixed when printing each element of the array, or when extracting
9042     one element out of that array.  On the other hand, fixing should
9043     not be performed on the elements when taking a slice of an array!
9044 
9045     Note that one of the side-effects of miscomputing the offset and
9046     size of each field is that we end up also miscomputing the size
9047     of the containing type.  This can have adverse results when computing
9048     the value of an entity.  GDB fetches the value of an entity based
9049     on the size of its type, and thus a wrong size causes GDB to fetch
9050     the wrong amount of memory.  In the case where the computed size is
9051     too small, GDB fetches too little data to print the value of our
9052     entiry.  Results in this case as unpredicatble, as we usually read
9053     past the buffer containing the data =:-o.  */
9054 
9055 /* Implement the evaluate_exp routine in the exp_descriptor structure
9056    for the Ada language.  */
9057 
9058 static struct value *
9059 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9060                      int *pos, enum noside noside)
9061 {
9062   enum exp_opcode op;
9063   int tem;
9064   int pc;
9065   struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9066   struct type *type;
9067   int nargs, oplen;
9068   struct value **argvec;
9069 
9070   pc = *pos;
9071   *pos += 1;
9072   op = exp->elts[pc].opcode;
9073 
9074   switch (op)
9075     {
9076     default:
9077       *pos -= 1;
9078       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9079       arg1 = unwrap_value (arg1);
9080 
9081       /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9082          then we need to perform the conversion manually, because
9083          evaluate_subexp_standard doesn't do it.  This conversion is
9084          necessary in Ada because the different kinds of float/fixed
9085          types in Ada have different representations.
9086 
9087          Similarly, we need to perform the conversion from OP_LONG
9088          ourselves.  */
9089       if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9090         arg1 = ada_value_cast (expect_type, arg1, noside);
9091 
9092       return arg1;
9093 
9094     case OP_STRING:
9095       {
9096         struct value *result;
9097 
9098         *pos -= 1;
9099         result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9100         /* The result type will have code OP_STRING, bashed there from
9101            OP_ARRAY.  Bash it back.  */
9102         if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9103           TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9104         return result;
9105       }
9106 
9107     case UNOP_CAST:
9108       (*pos) += 2;
9109       type = exp->elts[pc + 1].type;
9110       arg1 = evaluate_subexp (type, exp, pos, noside);
9111       if (noside == EVAL_SKIP)
9112         goto nosideret;
9113       arg1 = ada_value_cast (type, arg1, noside);
9114       return arg1;
9115 
9116     case UNOP_QUAL:
9117       (*pos) += 2;
9118       type = exp->elts[pc + 1].type;
9119       return ada_evaluate_subexp (type, exp, pos, noside);
9120 
9121     case BINOP_ASSIGN:
9122       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9123       if (exp->elts[*pos].opcode == OP_AGGREGATE)
9124 	{
9125 	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9126 	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9127 	    return arg1;
9128 	  return ada_value_assign (arg1, arg1);
9129 	}
9130       /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9131          except if the lhs of our assignment is a convenience variable.
9132          In the case of assigning to a convenience variable, the lhs
9133          should be exactly the result of the evaluation of the rhs.  */
9134       type = value_type (arg1);
9135       if (VALUE_LVAL (arg1) == lval_internalvar)
9136          type = NULL;
9137       arg2 = evaluate_subexp (type, exp, pos, noside);
9138       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9139         return arg1;
9140       if (ada_is_fixed_point_type (value_type (arg1)))
9141         arg2 = cast_to_fixed (value_type (arg1), arg2);
9142       else if (ada_is_fixed_point_type (value_type (arg2)))
9143         error
9144           (_("Fixed-point values must be assigned to fixed-point variables"));
9145       else
9146         arg2 = coerce_for_assign (value_type (arg1), arg2);
9147       return ada_value_assign (arg1, arg2);
9148 
9149     case BINOP_ADD:
9150       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9151       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9152       if (noside == EVAL_SKIP)
9153         goto nosideret;
9154       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9155         return (value_from_longest
9156                  (value_type (arg1),
9157                   value_as_long (arg1) + value_as_long (arg2)));
9158       if ((ada_is_fixed_point_type (value_type (arg1))
9159            || ada_is_fixed_point_type (value_type (arg2)))
9160           && value_type (arg1) != value_type (arg2))
9161         error (_("Operands of fixed-point addition must have the same type"));
9162       /* Do the addition, and cast the result to the type of the first
9163          argument.  We cannot cast the result to a reference type, so if
9164          ARG1 is a reference type, find its underlying type.  */
9165       type = value_type (arg1);
9166       while (TYPE_CODE (type) == TYPE_CODE_REF)
9167         type = TYPE_TARGET_TYPE (type);
9168       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9169       return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9170 
9171     case BINOP_SUB:
9172       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9173       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9174       if (noside == EVAL_SKIP)
9175         goto nosideret;
9176       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9177         return (value_from_longest
9178                  (value_type (arg1),
9179                   value_as_long (arg1) - value_as_long (arg2)));
9180       if ((ada_is_fixed_point_type (value_type (arg1))
9181            || ada_is_fixed_point_type (value_type (arg2)))
9182           && value_type (arg1) != value_type (arg2))
9183         error (_("Operands of fixed-point subtraction "
9184 		 "must have the same type"));
9185       /* Do the substraction, and cast the result to the type of the first
9186          argument.  We cannot cast the result to a reference type, so if
9187          ARG1 is a reference type, find its underlying type.  */
9188       type = value_type (arg1);
9189       while (TYPE_CODE (type) == TYPE_CODE_REF)
9190         type = TYPE_TARGET_TYPE (type);
9191       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9192       return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9193 
9194     case BINOP_MUL:
9195     case BINOP_DIV:
9196     case BINOP_REM:
9197     case BINOP_MOD:
9198       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9199       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200       if (noside == EVAL_SKIP)
9201         goto nosideret;
9202       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9203         {
9204           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9205           return value_zero (value_type (arg1), not_lval);
9206         }
9207       else
9208         {
9209           type = builtin_type (exp->gdbarch)->builtin_double;
9210           if (ada_is_fixed_point_type (value_type (arg1)))
9211             arg1 = cast_from_fixed (type, arg1);
9212           if (ada_is_fixed_point_type (value_type (arg2)))
9213             arg2 = cast_from_fixed (type, arg2);
9214           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9215           return ada_value_binop (arg1, arg2, op);
9216         }
9217 
9218     case BINOP_EQUAL:
9219     case BINOP_NOTEQUAL:
9220       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9221       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9222       if (noside == EVAL_SKIP)
9223         goto nosideret;
9224       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9225         tem = 0;
9226       else
9227 	{
9228 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9229 	  tem = ada_value_equal (arg1, arg2);
9230 	}
9231       if (op == BINOP_NOTEQUAL)
9232         tem = !tem;
9233       type = language_bool_type (exp->language_defn, exp->gdbarch);
9234       return value_from_longest (type, (LONGEST) tem);
9235 
9236     case UNOP_NEG:
9237       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9238       if (noside == EVAL_SKIP)
9239         goto nosideret;
9240       else if (ada_is_fixed_point_type (value_type (arg1)))
9241         return value_cast (value_type (arg1), value_neg (arg1));
9242       else
9243 	{
9244 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9245 	  return value_neg (arg1);
9246 	}
9247 
9248     case BINOP_LOGICAL_AND:
9249     case BINOP_LOGICAL_OR:
9250     case UNOP_LOGICAL_NOT:
9251       {
9252         struct value *val;
9253 
9254         *pos -= 1;
9255         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9256 	type = language_bool_type (exp->language_defn, exp->gdbarch);
9257         return value_cast (type, val);
9258       }
9259 
9260     case BINOP_BITWISE_AND:
9261     case BINOP_BITWISE_IOR:
9262     case BINOP_BITWISE_XOR:
9263       {
9264         struct value *val;
9265 
9266         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9267         *pos = pc;
9268         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9269 
9270         return value_cast (value_type (arg1), val);
9271       }
9272 
9273     case OP_VAR_VALUE:
9274       *pos -= 1;
9275 
9276       if (noside == EVAL_SKIP)
9277         {
9278           *pos += 4;
9279           goto nosideret;
9280         }
9281       else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9282         /* Only encountered when an unresolved symbol occurs in a
9283            context other than a function call, in which case, it is
9284            invalid.  */
9285         error (_("Unexpected unresolved symbol, %s, during evaluation"),
9286                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9287       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9288         {
9289           type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9290           /* Check to see if this is a tagged type.  We also need to handle
9291              the case where the type is a reference to a tagged type, but
9292              we have to be careful to exclude pointers to tagged types.
9293              The latter should be shown as usual (as a pointer), whereas
9294              a reference should mostly be transparent to the user.  */
9295           if (ada_is_tagged_type (type, 0)
9296               || (TYPE_CODE(type) == TYPE_CODE_REF
9297                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9298           {
9299             /* Tagged types are a little special in the fact that the real
9300                type is dynamic and can only be determined by inspecting the
9301                object's tag.  This means that we need to get the object's
9302                value first (EVAL_NORMAL) and then extract the actual object
9303                type from its tag.
9304 
9305                Note that we cannot skip the final step where we extract
9306                the object type from its tag, because the EVAL_NORMAL phase
9307                results in dynamic components being resolved into fixed ones.
9308                This can cause problems when trying to print the type
9309                description of tagged types whose parent has a dynamic size:
9310                We use the type name of the "_parent" component in order
9311                to print the name of the ancestor type in the type description.
9312                If that component had a dynamic size, the resolution into
9313                a fixed type would result in the loss of that type name,
9314                thus preventing us from printing the name of the ancestor
9315                type in the type description.  */
9316             struct type *actual_type;
9317 
9318             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9319             actual_type = type_from_tag (ada_value_tag (arg1));
9320             if (actual_type == NULL)
9321               /* If, for some reason, we were unable to determine
9322                  the actual type from the tag, then use the static
9323                  approximation that we just computed as a fallback.
9324                  This can happen if the debugging information is
9325                  incomplete, for instance.  */
9326               actual_type = type;
9327 
9328             return value_zero (actual_type, not_lval);
9329           }
9330 
9331           *pos += 4;
9332           return value_zero
9333             (to_static_fixed_type
9334              (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9335              not_lval);
9336         }
9337       else
9338         {
9339           arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9340           arg1 = unwrap_value (arg1);
9341           return ada_to_fixed_value (arg1);
9342         }
9343 
9344     case OP_FUNCALL:
9345       (*pos) += 2;
9346 
9347       /* Allocate arg vector, including space for the function to be
9348          called in argvec[0] and a terminating NULL.  */
9349       nargs = longest_to_int (exp->elts[pc + 1].longconst);
9350       argvec =
9351         (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9352 
9353       if (exp->elts[*pos].opcode == OP_VAR_VALUE
9354           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9355         error (_("Unexpected unresolved symbol, %s, during evaluation"),
9356                SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9357       else
9358         {
9359           for (tem = 0; tem <= nargs; tem += 1)
9360             argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9361           argvec[tem] = 0;
9362 
9363           if (noside == EVAL_SKIP)
9364             goto nosideret;
9365         }
9366 
9367       if (ada_is_constrained_packed_array_type
9368 	  (desc_base_type (value_type (argvec[0]))))
9369         argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9370       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9371                && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9372         /* This is a packed array that has already been fixed, and
9373 	   therefore already coerced to a simple array.  Nothing further
9374 	   to do.  */
9375         ;
9376       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9377                || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9378                    && VALUE_LVAL (argvec[0]) == lval_memory))
9379         argvec[0] = value_addr (argvec[0]);
9380 
9381       type = ada_check_typedef (value_type (argvec[0]));
9382 
9383       /* Ada allows us to implicitly dereference arrays when subscripting
9384          them.  So, if this is an typedef (encoding use for array access
9385 	 types encoded as fat pointers), strip it now.  */
9386       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9387 	type = ada_typedef_target_type (type);
9388 
9389       if (TYPE_CODE (type) == TYPE_CODE_PTR)
9390         {
9391           switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9392             {
9393             case TYPE_CODE_FUNC:
9394               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9395               break;
9396             case TYPE_CODE_ARRAY:
9397               break;
9398             case TYPE_CODE_STRUCT:
9399               if (noside != EVAL_AVOID_SIDE_EFFECTS)
9400                 argvec[0] = ada_value_ind (argvec[0]);
9401               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9402               break;
9403             default:
9404               error (_("cannot subscript or call something of type `%s'"),
9405                      ada_type_name (value_type (argvec[0])));
9406               break;
9407             }
9408         }
9409 
9410       switch (TYPE_CODE (type))
9411         {
9412         case TYPE_CODE_FUNC:
9413           if (noside == EVAL_AVOID_SIDE_EFFECTS)
9414             return allocate_value (TYPE_TARGET_TYPE (type));
9415           return call_function_by_hand (argvec[0], nargs, argvec + 1);
9416         case TYPE_CODE_STRUCT:
9417           {
9418             int arity;
9419 
9420             arity = ada_array_arity (type);
9421             type = ada_array_element_type (type, nargs);
9422             if (type == NULL)
9423               error (_("cannot subscript or call a record"));
9424             if (arity != nargs)
9425               error (_("wrong number of subscripts; expecting %d"), arity);
9426             if (noside == EVAL_AVOID_SIDE_EFFECTS)
9427               return value_zero (ada_aligned_type (type), lval_memory);
9428             return
9429               unwrap_value (ada_value_subscript
9430                             (argvec[0], nargs, argvec + 1));
9431           }
9432         case TYPE_CODE_ARRAY:
9433           if (noside == EVAL_AVOID_SIDE_EFFECTS)
9434             {
9435               type = ada_array_element_type (type, nargs);
9436               if (type == NULL)
9437                 error (_("element type of array unknown"));
9438               else
9439                 return value_zero (ada_aligned_type (type), lval_memory);
9440             }
9441           return
9442             unwrap_value (ada_value_subscript
9443                           (ada_coerce_to_simple_array (argvec[0]),
9444                            nargs, argvec + 1));
9445         case TYPE_CODE_PTR:     /* Pointer to array */
9446           type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9447           if (noside == EVAL_AVOID_SIDE_EFFECTS)
9448             {
9449               type = ada_array_element_type (type, nargs);
9450               if (type == NULL)
9451                 error (_("element type of array unknown"));
9452               else
9453                 return value_zero (ada_aligned_type (type), lval_memory);
9454             }
9455           return
9456             unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9457                                                    nargs, argvec + 1));
9458 
9459         default:
9460           error (_("Attempt to index or call something other than an "
9461 		   "array or function"));
9462         }
9463 
9464     case TERNOP_SLICE:
9465       {
9466         struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467         struct value *low_bound_val =
9468           evaluate_subexp (NULL_TYPE, exp, pos, noside);
9469         struct value *high_bound_val =
9470           evaluate_subexp (NULL_TYPE, exp, pos, noside);
9471         LONGEST low_bound;
9472         LONGEST high_bound;
9473 
9474         low_bound_val = coerce_ref (low_bound_val);
9475         high_bound_val = coerce_ref (high_bound_val);
9476         low_bound = pos_atr (low_bound_val);
9477         high_bound = pos_atr (high_bound_val);
9478 
9479         if (noside == EVAL_SKIP)
9480           goto nosideret;
9481 
9482         /* If this is a reference to an aligner type, then remove all
9483            the aligners.  */
9484         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9485             && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9486           TYPE_TARGET_TYPE (value_type (array)) =
9487             ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9488 
9489         if (ada_is_constrained_packed_array_type (value_type (array)))
9490           error (_("cannot slice a packed array"));
9491 
9492         /* If this is a reference to an array or an array lvalue,
9493            convert to a pointer.  */
9494         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9495             || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9496                 && VALUE_LVAL (array) == lval_memory))
9497           array = value_addr (array);
9498 
9499         if (noside == EVAL_AVOID_SIDE_EFFECTS
9500             && ada_is_array_descriptor_type (ada_check_typedef
9501                                              (value_type (array))))
9502           return empty_array (ada_type_of_array (array, 0), low_bound);
9503 
9504         array = ada_coerce_to_simple_array_ptr (array);
9505 
9506         /* If we have more than one level of pointer indirection,
9507            dereference the value until we get only one level.  */
9508         while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9509                && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9510                      == TYPE_CODE_PTR))
9511           array = value_ind (array);
9512 
9513         /* Make sure we really do have an array type before going further,
9514            to avoid a SEGV when trying to get the index type or the target
9515            type later down the road if the debug info generated by
9516            the compiler is incorrect or incomplete.  */
9517         if (!ada_is_simple_array_type (value_type (array)))
9518           error (_("cannot take slice of non-array"));
9519 
9520         if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9521           {
9522             if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9523               return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9524                                   low_bound);
9525             else
9526               {
9527                 struct type *arr_type0 =
9528                   to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9529                                        NULL, 1);
9530 
9531                 return ada_value_slice_from_ptr (array, arr_type0,
9532                                                  longest_to_int (low_bound),
9533                                                  longest_to_int (high_bound));
9534               }
9535           }
9536         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9537           return array;
9538         else if (high_bound < low_bound)
9539           return empty_array (value_type (array), low_bound);
9540         else
9541           return ada_value_slice (array, longest_to_int (low_bound),
9542 				  longest_to_int (high_bound));
9543       }
9544 
9545     case UNOP_IN_RANGE:
9546       (*pos) += 2;
9547       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9548       type = check_typedef (exp->elts[pc + 1].type);
9549 
9550       if (noside == EVAL_SKIP)
9551         goto nosideret;
9552 
9553       switch (TYPE_CODE (type))
9554         {
9555         default:
9556           lim_warning (_("Membership test incompletely implemented; "
9557 			 "always returns true"));
9558 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
9559 	  return value_from_longest (type, (LONGEST) 1);
9560 
9561         case TYPE_CODE_RANGE:
9562 	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9563 	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9564 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9565 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9566 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
9567 	  return
9568 	    value_from_longest (type,
9569                                 (value_less (arg1, arg3)
9570                                  || value_equal (arg1, arg3))
9571                                 && (value_less (arg2, arg1)
9572                                     || value_equal (arg2, arg1)));
9573         }
9574 
9575     case BINOP_IN_BOUNDS:
9576       (*pos) += 2;
9577       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9579 
9580       if (noside == EVAL_SKIP)
9581         goto nosideret;
9582 
9583       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9584 	{
9585 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
9586 	  return value_zero (type, not_lval);
9587 	}
9588 
9589       tem = longest_to_int (exp->elts[pc + 1].longconst);
9590 
9591       type = ada_index_type (value_type (arg2), tem, "range");
9592       if (!type)
9593 	type = value_type (arg1);
9594 
9595       arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9596       arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9597 
9598       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9599       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9600       type = language_bool_type (exp->language_defn, exp->gdbarch);
9601       return
9602         value_from_longest (type,
9603                             (value_less (arg1, arg3)
9604                              || value_equal (arg1, arg3))
9605                             && (value_less (arg2, arg1)
9606                                 || value_equal (arg2, arg1)));
9607 
9608     case TERNOP_IN_RANGE:
9609       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9610       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611       arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612 
9613       if (noside == EVAL_SKIP)
9614         goto nosideret;
9615 
9616       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9617       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9618       type = language_bool_type (exp->language_defn, exp->gdbarch);
9619       return
9620         value_from_longest (type,
9621                             (value_less (arg1, arg3)
9622                              || value_equal (arg1, arg3))
9623                             && (value_less (arg2, arg1)
9624                                 || value_equal (arg2, arg1)));
9625 
9626     case OP_ATR_FIRST:
9627     case OP_ATR_LAST:
9628     case OP_ATR_LENGTH:
9629       {
9630         struct type *type_arg;
9631 
9632         if (exp->elts[*pos].opcode == OP_TYPE)
9633           {
9634             evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9635             arg1 = NULL;
9636             type_arg = check_typedef (exp->elts[pc + 2].type);
9637           }
9638         else
9639           {
9640             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9641             type_arg = NULL;
9642           }
9643 
9644         if (exp->elts[*pos].opcode != OP_LONG)
9645           error (_("Invalid operand to '%s"), ada_attribute_name (op));
9646         tem = longest_to_int (exp->elts[*pos + 2].longconst);
9647         *pos += 4;
9648 
9649         if (noside == EVAL_SKIP)
9650           goto nosideret;
9651 
9652         if (type_arg == NULL)
9653           {
9654             arg1 = ada_coerce_ref (arg1);
9655 
9656             if (ada_is_constrained_packed_array_type (value_type (arg1)))
9657               arg1 = ada_coerce_to_simple_array (arg1);
9658 
9659             type = ada_index_type (value_type (arg1), tem,
9660 				   ada_attribute_name (op));
9661             if (type == NULL)
9662 	      type = builtin_type (exp->gdbarch)->builtin_int;
9663 
9664             if (noside == EVAL_AVOID_SIDE_EFFECTS)
9665               return allocate_value (type);
9666 
9667             switch (op)
9668               {
9669               default:          /* Should never happen.  */
9670                 error (_("unexpected attribute encountered"));
9671               case OP_ATR_FIRST:
9672                 return value_from_longest
9673 			(type, ada_array_bound (arg1, tem, 0));
9674               case OP_ATR_LAST:
9675                 return value_from_longest
9676 			(type, ada_array_bound (arg1, tem, 1));
9677               case OP_ATR_LENGTH:
9678                 return value_from_longest
9679 			(type, ada_array_length (arg1, tem));
9680               }
9681           }
9682         else if (discrete_type_p (type_arg))
9683           {
9684             struct type *range_type;
9685             char *name = ada_type_name (type_arg);
9686 
9687             range_type = NULL;
9688             if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9689               range_type = to_fixed_range_type (type_arg, NULL);
9690             if (range_type == NULL)
9691               range_type = type_arg;
9692             switch (op)
9693               {
9694               default:
9695                 error (_("unexpected attribute encountered"));
9696               case OP_ATR_FIRST:
9697 		return value_from_longest
9698 		  (range_type, ada_discrete_type_low_bound (range_type));
9699               case OP_ATR_LAST:
9700                 return value_from_longest
9701 		  (range_type, ada_discrete_type_high_bound (range_type));
9702               case OP_ATR_LENGTH:
9703                 error (_("the 'length attribute applies only to array types"));
9704               }
9705           }
9706         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9707           error (_("unimplemented type attribute"));
9708         else
9709           {
9710             LONGEST low, high;
9711 
9712             if (ada_is_constrained_packed_array_type (type_arg))
9713               type_arg = decode_constrained_packed_array_type (type_arg);
9714 
9715             type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9716             if (type == NULL)
9717 	      type = builtin_type (exp->gdbarch)->builtin_int;
9718 
9719             if (noside == EVAL_AVOID_SIDE_EFFECTS)
9720               return allocate_value (type);
9721 
9722             switch (op)
9723               {
9724               default:
9725                 error (_("unexpected attribute encountered"));
9726               case OP_ATR_FIRST:
9727                 low = ada_array_bound_from_type (type_arg, tem, 0);
9728                 return value_from_longest (type, low);
9729               case OP_ATR_LAST:
9730                 high = ada_array_bound_from_type (type_arg, tem, 1);
9731                 return value_from_longest (type, high);
9732               case OP_ATR_LENGTH:
9733                 low = ada_array_bound_from_type (type_arg, tem, 0);
9734                 high = ada_array_bound_from_type (type_arg, tem, 1);
9735                 return value_from_longest (type, high - low + 1);
9736               }
9737           }
9738       }
9739 
9740     case OP_ATR_TAG:
9741       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9742       if (noside == EVAL_SKIP)
9743         goto nosideret;
9744 
9745       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9746         return value_zero (ada_tag_type (arg1), not_lval);
9747 
9748       return ada_value_tag (arg1);
9749 
9750     case OP_ATR_MIN:
9751     case OP_ATR_MAX:
9752       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9753       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9754       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755       if (noside == EVAL_SKIP)
9756         goto nosideret;
9757       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9758         return value_zero (value_type (arg1), not_lval);
9759       else
9760 	{
9761 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9762 	  return value_binop (arg1, arg2,
9763 			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9764 	}
9765 
9766     case OP_ATR_MODULUS:
9767       {
9768         struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9769 
9770         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9771         if (noside == EVAL_SKIP)
9772           goto nosideret;
9773 
9774         if (!ada_is_modular_type (type_arg))
9775           error (_("'modulus must be applied to modular type"));
9776 
9777         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9778                                    ada_modulus (type_arg));
9779       }
9780 
9781 
9782     case OP_ATR_POS:
9783       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9784       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9785       if (noside == EVAL_SKIP)
9786         goto nosideret;
9787       type = builtin_type (exp->gdbarch)->builtin_int;
9788       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9789 	return value_zero (type, not_lval);
9790       else
9791 	return value_pos_atr (type, arg1);
9792 
9793     case OP_ATR_SIZE:
9794       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9795       type = value_type (arg1);
9796 
9797       /* If the argument is a reference, then dereference its type, since
9798          the user is really asking for the size of the actual object,
9799          not the size of the pointer.  */
9800       if (TYPE_CODE (type) == TYPE_CODE_REF)
9801         type = TYPE_TARGET_TYPE (type);
9802 
9803       if (noside == EVAL_SKIP)
9804         goto nosideret;
9805       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9806         return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9807       else
9808         return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9809                                    TARGET_CHAR_BIT * TYPE_LENGTH (type));
9810 
9811     case OP_ATR_VAL:
9812       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9813       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9814       type = exp->elts[pc + 2].type;
9815       if (noside == EVAL_SKIP)
9816         goto nosideret;
9817       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9818         return value_zero (type, not_lval);
9819       else
9820         return value_val_atr (type, arg1);
9821 
9822     case BINOP_EXP:
9823       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9824       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825       if (noside == EVAL_SKIP)
9826         goto nosideret;
9827       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9828         return value_zero (value_type (arg1), not_lval);
9829       else
9830 	{
9831 	  /* For integer exponentiation operations,
9832 	     only promote the first argument.  */
9833 	  if (is_integral_type (value_type (arg2)))
9834 	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9835 	  else
9836 	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837 
9838 	  return value_binop (arg1, arg2, op);
9839 	}
9840 
9841     case UNOP_PLUS:
9842       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9843       if (noside == EVAL_SKIP)
9844         goto nosideret;
9845       else
9846         return arg1;
9847 
9848     case UNOP_ABS:
9849       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9850       if (noside == EVAL_SKIP)
9851         goto nosideret;
9852       unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9853       if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9854         return value_neg (arg1);
9855       else
9856         return arg1;
9857 
9858     case UNOP_IND:
9859       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9860       if (noside == EVAL_SKIP)
9861         goto nosideret;
9862       type = ada_check_typedef (value_type (arg1));
9863       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9864         {
9865           if (ada_is_array_descriptor_type (type))
9866             /* GDB allows dereferencing GNAT array descriptors.  */
9867             {
9868               struct type *arrType = ada_type_of_array (arg1, 0);
9869 
9870               if (arrType == NULL)
9871                 error (_("Attempt to dereference null array pointer."));
9872               return value_at_lazy (arrType, 0);
9873             }
9874           else if (TYPE_CODE (type) == TYPE_CODE_PTR
9875                    || TYPE_CODE (type) == TYPE_CODE_REF
9876                    /* In C you can dereference an array to get the 1st elt.  */
9877                    || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9878             {
9879               type = to_static_fixed_type
9880                 (ada_aligned_type
9881                  (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9882               check_size (type);
9883               return value_zero (type, lval_memory);
9884             }
9885           else if (TYPE_CODE (type) == TYPE_CODE_INT)
9886 	    {
9887 	      /* GDB allows dereferencing an int.  */
9888 	      if (expect_type == NULL)
9889 		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9890 				   lval_memory);
9891 	      else
9892 		{
9893 		  expect_type =
9894 		    to_static_fixed_type (ada_aligned_type (expect_type));
9895 		  return value_zero (expect_type, lval_memory);
9896 		}
9897 	    }
9898           else
9899             error (_("Attempt to take contents of a non-pointer value."));
9900         }
9901       arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
9902       type = ada_check_typedef (value_type (arg1));
9903 
9904       if (TYPE_CODE (type) == TYPE_CODE_INT)
9905           /* GDB allows dereferencing an int.  If we were given
9906              the expect_type, then use that as the target type.
9907              Otherwise, assume that the target type is an int.  */
9908         {
9909           if (expect_type != NULL)
9910 	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9911 					      arg1));
9912 	  else
9913 	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9914 				  (CORE_ADDR) value_as_address (arg1));
9915         }
9916 
9917       if (ada_is_array_descriptor_type (type))
9918         /* GDB allows dereferencing GNAT array descriptors.  */
9919         return ada_coerce_to_simple_array (arg1);
9920       else
9921         return ada_value_ind (arg1);
9922 
9923     case STRUCTOP_STRUCT:
9924       tem = longest_to_int (exp->elts[pc + 1].longconst);
9925       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9926       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9927       if (noside == EVAL_SKIP)
9928         goto nosideret;
9929       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9930         {
9931           struct type *type1 = value_type (arg1);
9932 
9933           if (ada_is_tagged_type (type1, 1))
9934             {
9935               type = ada_lookup_struct_elt_type (type1,
9936                                                  &exp->elts[pc + 2].string,
9937                                                  1, 1, NULL);
9938               if (type == NULL)
9939                 /* In this case, we assume that the field COULD exist
9940                    in some extension of the type.  Return an object of
9941                    "type" void, which will match any formal
9942                    (see ada_type_match).  */
9943                 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9944 				   lval_memory);
9945             }
9946           else
9947             type =
9948               ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9949                                           0, NULL);
9950 
9951           return value_zero (ada_aligned_type (type), lval_memory);
9952         }
9953       else
9954         arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9955         arg1 = unwrap_value (arg1);
9956         return ada_to_fixed_value (arg1);
9957 
9958     case OP_TYPE:
9959       /* The value is not supposed to be used.  This is here to make it
9960          easier to accommodate expressions that contain types.  */
9961       (*pos) += 2;
9962       if (noside == EVAL_SKIP)
9963         goto nosideret;
9964       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9965         return allocate_value (exp->elts[pc + 1].type);
9966       else
9967         error (_("Attempt to use a type name as an expression"));
9968 
9969     case OP_AGGREGATE:
9970     case OP_CHOICES:
9971     case OP_OTHERS:
9972     case OP_DISCRETE_RANGE:
9973     case OP_POSITIONAL:
9974     case OP_NAME:
9975       if (noside == EVAL_NORMAL)
9976 	switch (op)
9977 	  {
9978 	  case OP_NAME:
9979 	    error (_("Undefined name, ambiguous name, or renaming used in "
9980 		     "component association: %s."), &exp->elts[pc+2].string);
9981 	  case OP_AGGREGATE:
9982 	    error (_("Aggregates only allowed on the right of an assignment"));
9983 	  default:
9984 	    internal_error (__FILE__, __LINE__,
9985 			    _("aggregate apparently mangled"));
9986 	  }
9987 
9988       ada_forward_operator_length (exp, pc, &oplen, &nargs);
9989       *pos += oplen - 1;
9990       for (tem = 0; tem < nargs; tem += 1)
9991 	ada_evaluate_subexp (NULL, exp, pos, noside);
9992       goto nosideret;
9993     }
9994 
9995 nosideret:
9996   return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9997 }
9998 
9999 
10000                                 /* Fixed point */
10001 
10002 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10003    type name that encodes the 'small and 'delta information.
10004    Otherwise, return NULL.  */
10005 
10006 static const char *
10007 fixed_type_info (struct type *type)
10008 {
10009   const char *name = ada_type_name (type);
10010   enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10011 
10012   if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10013     {
10014       const char *tail = strstr (name, "___XF_");
10015 
10016       if (tail == NULL)
10017         return NULL;
10018       else
10019         return tail + 5;
10020     }
10021   else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10022     return fixed_type_info (TYPE_TARGET_TYPE (type));
10023   else
10024     return NULL;
10025 }
10026 
10027 /* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
10028 
10029 int
10030 ada_is_fixed_point_type (struct type *type)
10031 {
10032   return fixed_type_info (type) != NULL;
10033 }
10034 
10035 /* Return non-zero iff TYPE represents a System.Address type.  */
10036 
10037 int
10038 ada_is_system_address_type (struct type *type)
10039 {
10040   return (TYPE_NAME (type)
10041           && strcmp (TYPE_NAME (type), "system__address") == 0);
10042 }
10043 
10044 /* Assuming that TYPE is the representation of an Ada fixed-point
10045    type, return its delta, or -1 if the type is malformed and the
10046    delta cannot be determined.  */
10047 
10048 DOUBLEST
10049 ada_delta (struct type *type)
10050 {
10051   const char *encoding = fixed_type_info (type);
10052   DOUBLEST num, den;
10053 
10054   /* Strictly speaking, num and den are encoded as integer.  However,
10055      they may not fit into a long, and they will have to be converted
10056      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10057   if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10058 	      &num, &den) < 2)
10059     return -1.0;
10060   else
10061     return num / den;
10062 }
10063 
10064 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10065    factor ('SMALL value) associated with the type.  */
10066 
10067 static DOUBLEST
10068 scaling_factor (struct type *type)
10069 {
10070   const char *encoding = fixed_type_info (type);
10071   DOUBLEST num0, den0, num1, den1;
10072   int n;
10073 
10074   /* Strictly speaking, num's and den's are encoded as integer.  However,
10075      they may not fit into a long, and they will have to be converted
10076      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10077   n = sscanf (encoding,
10078 	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10079 	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10080 	      &num0, &den0, &num1, &den1);
10081 
10082   if (n < 2)
10083     return 1.0;
10084   else if (n == 4)
10085     return num1 / den1;
10086   else
10087     return num0 / den0;
10088 }
10089 
10090 
10091 /* Assuming that X is the representation of a value of fixed-point
10092    type TYPE, return its floating-point equivalent.  */
10093 
10094 DOUBLEST
10095 ada_fixed_to_float (struct type *type, LONGEST x)
10096 {
10097   return (DOUBLEST) x *scaling_factor (type);
10098 }
10099 
10100 /* The representation of a fixed-point value of type TYPE
10101    corresponding to the value X.  */
10102 
10103 LONGEST
10104 ada_float_to_fixed (struct type *type, DOUBLEST x)
10105 {
10106   return (LONGEST) (x / scaling_factor (type) + 0.5);
10107 }
10108 
10109 
10110 
10111                                 /* Range types */
10112 
10113 /* Scan STR beginning at position K for a discriminant name, and
10114    return the value of that discriminant field of DVAL in *PX.  If
10115    PNEW_K is not null, put the position of the character beyond the
10116    name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
10117    not alter *PX and *PNEW_K if unsuccessful.  */
10118 
10119 static int
10120 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10121                     int *pnew_k)
10122 {
10123   static char *bound_buffer = NULL;
10124   static size_t bound_buffer_len = 0;
10125   char *bound;
10126   char *pend;
10127   struct value *bound_val;
10128 
10129   if (dval == NULL || str == NULL || str[k] == '\0')
10130     return 0;
10131 
10132   pend = strstr (str + k, "__");
10133   if (pend == NULL)
10134     {
10135       bound = str + k;
10136       k += strlen (bound);
10137     }
10138   else
10139     {
10140       GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10141       bound = bound_buffer;
10142       strncpy (bound_buffer, str + k, pend - (str + k));
10143       bound[pend - (str + k)] = '\0';
10144       k = pend - str;
10145     }
10146 
10147   bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10148   if (bound_val == NULL)
10149     return 0;
10150 
10151   *px = value_as_long (bound_val);
10152   if (pnew_k != NULL)
10153     *pnew_k = k;
10154   return 1;
10155 }
10156 
10157 /* Value of variable named NAME in the current environment.  If
10158    no such variable found, then if ERR_MSG is null, returns 0, and
10159    otherwise causes an error with message ERR_MSG.  */
10160 
10161 static struct value *
10162 get_var_value (char *name, char *err_msg)
10163 {
10164   struct ada_symbol_info *syms;
10165   int nsyms;
10166 
10167   nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10168                                   &syms);
10169 
10170   if (nsyms != 1)
10171     {
10172       if (err_msg == NULL)
10173         return 0;
10174       else
10175         error (("%s"), err_msg);
10176     }
10177 
10178   return value_of_variable (syms[0].sym, syms[0].block);
10179 }
10180 
10181 /* Value of integer variable named NAME in the current environment.  If
10182    no such variable found, returns 0, and sets *FLAG to 0.  If
10183    successful, sets *FLAG to 1.  */
10184 
10185 LONGEST
10186 get_int_var_value (char *name, int *flag)
10187 {
10188   struct value *var_val = get_var_value (name, 0);
10189 
10190   if (var_val == 0)
10191     {
10192       if (flag != NULL)
10193         *flag = 0;
10194       return 0;
10195     }
10196   else
10197     {
10198       if (flag != NULL)
10199         *flag = 1;
10200       return value_as_long (var_val);
10201     }
10202 }
10203 
10204 
10205 /* Return a range type whose base type is that of the range type named
10206    NAME in the current environment, and whose bounds are calculated
10207    from NAME according to the GNAT range encoding conventions.
10208    Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
10209    corresponding range type from debug information; fall back to using it
10210    if symbol lookup fails.  If a new type must be created, allocate it
10211    like ORIG_TYPE was.  The bounds information, in general, is encoded
10212    in NAME, the base type given in the named range type.  */
10213 
10214 static struct type *
10215 to_fixed_range_type (struct type *raw_type, struct value *dval)
10216 {
10217   char *name;
10218   struct type *base_type;
10219   char *subtype_info;
10220 
10221   gdb_assert (raw_type != NULL);
10222   gdb_assert (TYPE_NAME (raw_type) != NULL);
10223 
10224   if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10225     base_type = TYPE_TARGET_TYPE (raw_type);
10226   else
10227     base_type = raw_type;
10228 
10229   name = TYPE_NAME (raw_type);
10230   subtype_info = strstr (name, "___XD");
10231   if (subtype_info == NULL)
10232     {
10233       LONGEST L = ada_discrete_type_low_bound (raw_type);
10234       LONGEST U = ada_discrete_type_high_bound (raw_type);
10235 
10236       if (L < INT_MIN || U > INT_MAX)
10237 	return raw_type;
10238       else
10239 	return create_range_type (alloc_type_copy (raw_type), raw_type,
10240 				  ada_discrete_type_low_bound (raw_type),
10241 				  ada_discrete_type_high_bound (raw_type));
10242     }
10243   else
10244     {
10245       static char *name_buf = NULL;
10246       static size_t name_len = 0;
10247       int prefix_len = subtype_info - name;
10248       LONGEST L, U;
10249       struct type *type;
10250       char *bounds_str;
10251       int n;
10252 
10253       GROW_VECT (name_buf, name_len, prefix_len + 5);
10254       strncpy (name_buf, name, prefix_len);
10255       name_buf[prefix_len] = '\0';
10256 
10257       subtype_info += 5;
10258       bounds_str = strchr (subtype_info, '_');
10259       n = 1;
10260 
10261       if (*subtype_info == 'L')
10262         {
10263           if (!ada_scan_number (bounds_str, n, &L, &n)
10264               && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10265             return raw_type;
10266           if (bounds_str[n] == '_')
10267             n += 2;
10268           else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
10269             n += 1;
10270           subtype_info += 1;
10271         }
10272       else
10273         {
10274           int ok;
10275 
10276           strcpy (name_buf + prefix_len, "___L");
10277           L = get_int_var_value (name_buf, &ok);
10278           if (!ok)
10279             {
10280               lim_warning (_("Unknown lower bound, using 1."));
10281               L = 1;
10282             }
10283         }
10284 
10285       if (*subtype_info == 'U')
10286         {
10287           if (!ada_scan_number (bounds_str, n, &U, &n)
10288               && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10289             return raw_type;
10290         }
10291       else
10292         {
10293           int ok;
10294 
10295           strcpy (name_buf + prefix_len, "___U");
10296           U = get_int_var_value (name_buf, &ok);
10297           if (!ok)
10298             {
10299               lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10300               U = L;
10301             }
10302         }
10303 
10304       type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10305       TYPE_NAME (type) = name;
10306       return type;
10307     }
10308 }
10309 
10310 /* True iff NAME is the name of a range type.  */
10311 
10312 int
10313 ada_is_range_type_name (const char *name)
10314 {
10315   return (name != NULL && strstr (name, "___XD"));
10316 }
10317 
10318 
10319                                 /* Modular types */
10320 
10321 /* True iff TYPE is an Ada modular type.  */
10322 
10323 int
10324 ada_is_modular_type (struct type *type)
10325 {
10326   struct type *subranged_type = base_type (type);
10327 
10328   return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10329           && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10330           && TYPE_UNSIGNED (subranged_type));
10331 }
10332 
10333 /* Try to determine the lower and upper bounds of the given modular type
10334    using the type name only.  Return non-zero and set L and U as the lower
10335    and upper bounds (respectively) if successful.  */
10336 
10337 int
10338 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10339 {
10340   char *name = ada_type_name (type);
10341   char *suffix;
10342   int k;
10343   LONGEST U;
10344 
10345   if (name == NULL)
10346     return 0;
10347 
10348   /* Discrete type bounds are encoded using an __XD suffix.  In our case,
10349      we are looking for static bounds, which means an __XDLU suffix.
10350      Moreover, we know that the lower bound of modular types is always
10351      zero, so the actual suffix should start with "__XDLU_0__", and
10352      then be followed by the upper bound value.  */
10353   suffix = strstr (name, "__XDLU_0__");
10354   if (suffix == NULL)
10355     return 0;
10356   k = 10;
10357   if (!ada_scan_number (suffix, k, &U, NULL))
10358     return 0;
10359 
10360   *modulus = (ULONGEST) U + 1;
10361   return 1;
10362 }
10363 
10364 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
10365 
10366 ULONGEST
10367 ada_modulus (struct type *type)
10368 {
10369   return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10370 }
10371 
10372 
10373 /* Ada exception catchpoint support:
10374    ---------------------------------
10375 
10376    We support 3 kinds of exception catchpoints:
10377      . catchpoints on Ada exceptions
10378      . catchpoints on unhandled Ada exceptions
10379      . catchpoints on failed assertions
10380 
10381    Exceptions raised during failed assertions, or unhandled exceptions
10382    could perfectly be caught with the general catchpoint on Ada exceptions.
10383    However, we can easily differentiate these two special cases, and having
10384    the option to distinguish these two cases from the rest can be useful
10385    to zero-in on certain situations.
10386 
10387    Exception catchpoints are a specialized form of breakpoint,
10388    since they rely on inserting breakpoints inside known routines
10389    of the GNAT runtime.  The implementation therefore uses a standard
10390    breakpoint structure of the BP_BREAKPOINT type, but with its own set
10391    of breakpoint_ops.
10392 
10393    Support in the runtime for exception catchpoints have been changed
10394    a few times already, and these changes affect the implementation
10395    of these catchpoints.  In order to be able to support several
10396    variants of the runtime, we use a sniffer that will determine
10397    the runtime variant used by the program being debugged.
10398 
10399    At this time, we do not support the use of conditions on Ada exception
10400    catchpoints.  The COND and COND_STRING fields are therefore set
10401    to NULL (most of the time, see below).
10402 
10403    Conditions where EXP_STRING, COND, and COND_STRING are used:
10404 
10405      When a user specifies the name of a specific exception in the case
10406      of catchpoints on Ada exceptions, we store the name of that exception
10407      in the EXP_STRING.  We then translate this request into an actual
10408      condition stored in COND_STRING, and then parse it into an expression
10409      stored in COND.  */
10410 
10411 /* The different types of catchpoints that we introduced for catching
10412    Ada exceptions.  */
10413 
10414 enum exception_catchpoint_kind
10415 {
10416   ex_catch_exception,
10417   ex_catch_exception_unhandled,
10418   ex_catch_assert
10419 };
10420 
10421 /* Ada's standard exceptions.  */
10422 
10423 static char *standard_exc[] = {
10424   "constraint_error",
10425   "program_error",
10426   "storage_error",
10427   "tasking_error"
10428 };
10429 
10430 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10431 
10432 /* A structure that describes how to support exception catchpoints
10433    for a given executable.  */
10434 
10435 struct exception_support_info
10436 {
10437    /* The name of the symbol to break on in order to insert
10438       a catchpoint on exceptions.  */
10439    const char *catch_exception_sym;
10440 
10441    /* The name of the symbol to break on in order to insert
10442       a catchpoint on unhandled exceptions.  */
10443    const char *catch_exception_unhandled_sym;
10444 
10445    /* The name of the symbol to break on in order to insert
10446       a catchpoint on failed assertions.  */
10447    const char *catch_assert_sym;
10448 
10449    /* Assuming that the inferior just triggered an unhandled exception
10450       catchpoint, this function is responsible for returning the address
10451       in inferior memory where the name of that exception is stored.
10452       Return zero if the address could not be computed.  */
10453    ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10454 };
10455 
10456 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10457 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10458 
10459 /* The following exception support info structure describes how to
10460    implement exception catchpoints with the latest version of the
10461    Ada runtime (as of 2007-03-06).  */
10462 
10463 static const struct exception_support_info default_exception_support_info =
10464 {
10465   "__gnat_debug_raise_exception", /* catch_exception_sym */
10466   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10467   "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10468   ada_unhandled_exception_name_addr
10469 };
10470 
10471 /* The following exception support info structure describes how to
10472    implement exception catchpoints with a slightly older version
10473    of the Ada runtime.  */
10474 
10475 static const struct exception_support_info exception_support_info_fallback =
10476 {
10477   "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10478   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10479   "system__assertions__raise_assert_failure",  /* catch_assert_sym */
10480   ada_unhandled_exception_name_addr_from_raise
10481 };
10482 
10483 /* For each executable, we sniff which exception info structure to use
10484    and cache it in the following global variable.  */
10485 
10486 static const struct exception_support_info *exception_info = NULL;
10487 
10488 /* Inspect the Ada runtime and determine which exception info structure
10489    should be used to provide support for exception catchpoints.
10490 
10491    This function will always set exception_info, or raise an error.  */
10492 
10493 static void
10494 ada_exception_support_info_sniffer (void)
10495 {
10496   struct symbol *sym;
10497 
10498   /* If the exception info is already known, then no need to recompute it.  */
10499   if (exception_info != NULL)
10500     return;
10501 
10502   /* Check the latest (default) exception support info.  */
10503   sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10504                          NULL, VAR_DOMAIN);
10505   if (sym != NULL)
10506     {
10507       exception_info = &default_exception_support_info;
10508       return;
10509     }
10510 
10511   /* Try our fallback exception suport info.  */
10512   sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10513                          NULL, VAR_DOMAIN);
10514   if (sym != NULL)
10515     {
10516       exception_info = &exception_support_info_fallback;
10517       return;
10518     }
10519 
10520   /* Sometimes, it is normal for us to not be able to find the routine
10521      we are looking for.  This happens when the program is linked with
10522      the shared version of the GNAT runtime, and the program has not been
10523      started yet.  Inform the user of these two possible causes if
10524      applicable.  */
10525 
10526   if (ada_update_initial_language (language_unknown) != language_ada)
10527     error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
10528 
10529   /* If the symbol does not exist, then check that the program is
10530      already started, to make sure that shared libraries have been
10531      loaded.  If it is not started, this may mean that the symbol is
10532      in a shared library.  */
10533 
10534   if (ptid_get_pid (inferior_ptid) == 0)
10535     error (_("Unable to insert catchpoint. Try to start the program first."));
10536 
10537   /* At this point, we know that we are debugging an Ada program and
10538      that the inferior has been started, but we still are not able to
10539      find the run-time symbols.  That can mean that we are in
10540      configurable run time mode, or that a-except as been optimized
10541      out by the linker...  In any case, at this point it is not worth
10542      supporting this feature.  */
10543 
10544   error (_("Cannot insert catchpoints in this configuration."));
10545 }
10546 
10547 /* An observer of "executable_changed" events.
10548    Its role is to clear certain cached values that need to be recomputed
10549    each time a new executable is loaded by GDB.  */
10550 
10551 static void
10552 ada_executable_changed_observer (void)
10553 {
10554   /* If the executable changed, then it is possible that the Ada runtime
10555      is different.  So we need to invalidate the exception support info
10556      cache.  */
10557   exception_info = NULL;
10558 }
10559 
10560 /* True iff FRAME is very likely to be that of a function that is
10561    part of the runtime system.  This is all very heuristic, but is
10562    intended to be used as advice as to what frames are uninteresting
10563    to most users.  */
10564 
10565 static int
10566 is_known_support_routine (struct frame_info *frame)
10567 {
10568   struct symtab_and_line sal;
10569   char *func_name;
10570   enum language func_lang;
10571   int i;
10572 
10573   /* If this code does not have any debugging information (no symtab),
10574      This cannot be any user code.  */
10575 
10576   find_frame_sal (frame, &sal);
10577   if (sal.symtab == NULL)
10578     return 1;
10579 
10580   /* If there is a symtab, but the associated source file cannot be
10581      located, then assume this is not user code:  Selecting a frame
10582      for which we cannot display the code would not be very helpful
10583      for the user.  This should also take care of case such as VxWorks
10584      where the kernel has some debugging info provided for a few units.  */
10585 
10586   if (symtab_to_fullname (sal.symtab) == NULL)
10587     return 1;
10588 
10589   /* Check the unit filename againt the Ada runtime file naming.
10590      We also check the name of the objfile against the name of some
10591      known system libraries that sometimes come with debugging info
10592      too.  */
10593 
10594   for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10595     {
10596       re_comp (known_runtime_file_name_patterns[i]);
10597       if (re_exec (sal.symtab->filename))
10598         return 1;
10599       if (sal.symtab->objfile != NULL
10600           && re_exec (sal.symtab->objfile->name))
10601         return 1;
10602     }
10603 
10604   /* Check whether the function is a GNAT-generated entity.  */
10605 
10606   find_frame_funname (frame, &func_name, &func_lang, NULL);
10607   if (func_name == NULL)
10608     return 1;
10609 
10610   for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10611     {
10612       re_comp (known_auxiliary_function_name_patterns[i]);
10613       if (re_exec (func_name))
10614         return 1;
10615     }
10616 
10617   return 0;
10618 }
10619 
10620 /* Find the first frame that contains debugging information and that is not
10621    part of the Ada run-time, starting from FI and moving upward.  */
10622 
10623 void
10624 ada_find_printable_frame (struct frame_info *fi)
10625 {
10626   for (; fi != NULL; fi = get_prev_frame (fi))
10627     {
10628       if (!is_known_support_routine (fi))
10629         {
10630           select_frame (fi);
10631           break;
10632         }
10633     }
10634 
10635 }
10636 
10637 /* Assuming that the inferior just triggered an unhandled exception
10638    catchpoint, return the address in inferior memory where the name
10639    of the exception is stored.
10640 
10641    Return zero if the address could not be computed.  */
10642 
10643 static CORE_ADDR
10644 ada_unhandled_exception_name_addr (void)
10645 {
10646   return parse_and_eval_address ("e.full_name");
10647 }
10648 
10649 /* Same as ada_unhandled_exception_name_addr, except that this function
10650    should be used when the inferior uses an older version of the runtime,
10651    where the exception name needs to be extracted from a specific frame
10652    several frames up in the callstack.  */
10653 
10654 static CORE_ADDR
10655 ada_unhandled_exception_name_addr_from_raise (void)
10656 {
10657   int frame_level;
10658   struct frame_info *fi;
10659 
10660   /* To determine the name of this exception, we need to select
10661      the frame corresponding to RAISE_SYM_NAME.  This frame is
10662      at least 3 levels up, so we simply skip the first 3 frames
10663      without checking the name of their associated function.  */
10664   fi = get_current_frame ();
10665   for (frame_level = 0; frame_level < 3; frame_level += 1)
10666     if (fi != NULL)
10667       fi = get_prev_frame (fi);
10668 
10669   while (fi != NULL)
10670     {
10671       char *func_name;
10672       enum language func_lang;
10673 
10674       find_frame_funname (fi, &func_name, &func_lang, NULL);
10675       if (func_name != NULL
10676           && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10677         break; /* We found the frame we were looking for...  */
10678       fi = get_prev_frame (fi);
10679     }
10680 
10681   if (fi == NULL)
10682     return 0;
10683 
10684   select_frame (fi);
10685   return parse_and_eval_address ("id.full_name");
10686 }
10687 
10688 /* Assuming the inferior just triggered an Ada exception catchpoint
10689    (of any type), return the address in inferior memory where the name
10690    of the exception is stored, if applicable.
10691 
10692    Return zero if the address could not be computed, or if not relevant.  */
10693 
10694 static CORE_ADDR
10695 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10696                            struct breakpoint *b)
10697 {
10698   switch (ex)
10699     {
10700       case ex_catch_exception:
10701         return (parse_and_eval_address ("e.full_name"));
10702         break;
10703 
10704       case ex_catch_exception_unhandled:
10705         return exception_info->unhandled_exception_name_addr ();
10706         break;
10707 
10708       case ex_catch_assert:
10709         return 0;  /* Exception name is not relevant in this case.  */
10710         break;
10711 
10712       default:
10713         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10714         break;
10715     }
10716 
10717   return 0; /* Should never be reached.  */
10718 }
10719 
10720 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10721    any error that ada_exception_name_addr_1 might cause to be thrown.
10722    When an error is intercepted, a warning with the error message is printed,
10723    and zero is returned.  */
10724 
10725 static CORE_ADDR
10726 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10727                          struct breakpoint *b)
10728 {
10729   struct gdb_exception e;
10730   CORE_ADDR result = 0;
10731 
10732   TRY_CATCH (e, RETURN_MASK_ERROR)
10733     {
10734       result = ada_exception_name_addr_1 (ex, b);
10735     }
10736 
10737   if (e.reason < 0)
10738     {
10739       warning (_("failed to get exception name: %s"), e.message);
10740       return 0;
10741     }
10742 
10743   return result;
10744 }
10745 
10746 /* Implement the PRINT_IT method in the breakpoint_ops structure
10747    for all exception catchpoint kinds.  */
10748 
10749 static enum print_stop_action
10750 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10751 {
10752   annotate_catchpoint (b->number);
10753 
10754   if (ui_out_is_mi_like_p (uiout))
10755     {
10756       ui_out_field_string (uiout, "reason",
10757 			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10758       ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10759     }
10760 
10761   ui_out_text (uiout, "\nCatchpoint ");
10762   ui_out_field_int (uiout, "bkptno", b->number);
10763   ui_out_text (uiout, ", ");
10764 
10765   switch (ex)
10766     {
10767       case ex_catch_exception:
10768       case ex_catch_exception_unhandled:
10769 	{
10770 	  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10771 	  char exception_name[256];
10772 
10773 	  if (addr != 0)
10774 	    {
10775 	      read_memory (addr, exception_name, sizeof (exception_name) - 1);
10776 	      exception_name [sizeof (exception_name) - 1] = '\0';
10777 	    }
10778 	  else
10779 	    {
10780 	      /* For some reason, we were unable to read the exception
10781 		 name.  This could happen if the Runtime was compiled
10782 		 without debugging info, for instance.  In that case,
10783 		 just replace the exception name by the generic string
10784 		 "exception" - it will read as "an exception" in the
10785 		 notification we are about to print.  */
10786 	      sprintf (exception_name, "exception");
10787 	    }
10788 	  /* In the case of unhandled exception breakpoints, we print
10789 	     the exception name as "unhandled EXCEPTION_NAME", to make
10790 	     it clearer to the user which kind of catchpoint just got
10791 	     hit.  We used ui_out_text to make sure that this extra
10792 	     info does not pollute the exception name in the MI case.  */
10793 	  if (ex == ex_catch_exception_unhandled)
10794 	    ui_out_text (uiout, "unhandled ");
10795 	  ui_out_field_string (uiout, "exception-name", exception_name);
10796 	}
10797 	break;
10798       case ex_catch_assert:
10799 	/* In this case, the name of the exception is not really
10800 	   important.  Just print "failed assertion" to make it clearer
10801 	   that his program just hit an assertion-failure catchpoint.
10802 	   We used ui_out_text because this info does not belong in
10803 	   the MI output.  */
10804 	ui_out_text (uiout, "failed assertion");
10805 	break;
10806     }
10807   ui_out_text (uiout, " at ");
10808   ada_find_printable_frame (get_current_frame ());
10809 
10810   return PRINT_SRC_AND_LOC;
10811 }
10812 
10813 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10814    for all exception catchpoint kinds.  */
10815 
10816 static void
10817 print_one_exception (enum exception_catchpoint_kind ex,
10818                      struct breakpoint *b, struct bp_location **last_loc)
10819 {
10820   struct value_print_options opts;
10821 
10822   get_user_print_options (&opts);
10823   if (opts.addressprint)
10824     {
10825       annotate_field (4);
10826       ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10827     }
10828 
10829   annotate_field (5);
10830   *last_loc = b->loc;
10831   switch (ex)
10832     {
10833       case ex_catch_exception:
10834         if (b->exp_string != NULL)
10835           {
10836             char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10837 
10838             ui_out_field_string (uiout, "what", msg);
10839             xfree (msg);
10840           }
10841         else
10842           ui_out_field_string (uiout, "what", "all Ada exceptions");
10843 
10844         break;
10845 
10846       case ex_catch_exception_unhandled:
10847         ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10848         break;
10849 
10850       case ex_catch_assert:
10851         ui_out_field_string (uiout, "what", "failed Ada assertions");
10852         break;
10853 
10854       default:
10855         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10856         break;
10857     }
10858 }
10859 
10860 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10861    for all exception catchpoint kinds.  */
10862 
10863 static void
10864 print_mention_exception (enum exception_catchpoint_kind ex,
10865                          struct breakpoint *b)
10866 {
10867   switch (ex)
10868     {
10869       case ex_catch_exception:
10870         if (b->exp_string != NULL)
10871           printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10872                            b->number, b->exp_string);
10873         else
10874           printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10875 
10876         break;
10877 
10878       case ex_catch_exception_unhandled:
10879         printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10880                          b->number);
10881         break;
10882 
10883       case ex_catch_assert:
10884         printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10885         break;
10886 
10887       default:
10888         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10889         break;
10890     }
10891 }
10892 
10893 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10894    for all exception catchpoint kinds.  */
10895 
10896 static void
10897 print_recreate_exception (enum exception_catchpoint_kind ex,
10898 			  struct breakpoint *b, struct ui_file *fp)
10899 {
10900   switch (ex)
10901     {
10902       case ex_catch_exception:
10903 	fprintf_filtered (fp, "catch exception");
10904 	if (b->exp_string != NULL)
10905 	  fprintf_filtered (fp, " %s", b->exp_string);
10906 	break;
10907 
10908       case ex_catch_exception_unhandled:
10909 	fprintf_filtered (fp, "catch exception unhandled");
10910 	break;
10911 
10912       case ex_catch_assert:
10913 	fprintf_filtered (fp, "catch assert");
10914 	break;
10915 
10916       default:
10917 	internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10918     }
10919 }
10920 
10921 /* Virtual table for "catch exception" breakpoints.  */
10922 
10923 static enum print_stop_action
10924 print_it_catch_exception (struct breakpoint *b)
10925 {
10926   return print_it_exception (ex_catch_exception, b);
10927 }
10928 
10929 static void
10930 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10931 {
10932   print_one_exception (ex_catch_exception, b, last_loc);
10933 }
10934 
10935 static void
10936 print_mention_catch_exception (struct breakpoint *b)
10937 {
10938   print_mention_exception (ex_catch_exception, b);
10939 }
10940 
10941 static void
10942 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10943 {
10944   print_recreate_exception (ex_catch_exception, b, fp);
10945 }
10946 
10947 static struct breakpoint_ops catch_exception_breakpoint_ops =
10948 {
10949   NULL, /* insert */
10950   NULL, /* remove */
10951   NULL, /* breakpoint_hit */
10952   NULL, /* resources_needed */
10953   print_it_catch_exception,
10954   print_one_catch_exception,
10955   NULL, /* print_one_detail */
10956   print_mention_catch_exception,
10957   print_recreate_catch_exception
10958 };
10959 
10960 /* Virtual table for "catch exception unhandled" breakpoints.  */
10961 
10962 static enum print_stop_action
10963 print_it_catch_exception_unhandled (struct breakpoint *b)
10964 {
10965   return print_it_exception (ex_catch_exception_unhandled, b);
10966 }
10967 
10968 static void
10969 print_one_catch_exception_unhandled (struct breakpoint *b,
10970 				     struct bp_location **last_loc)
10971 {
10972   print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10973 }
10974 
10975 static void
10976 print_mention_catch_exception_unhandled (struct breakpoint *b)
10977 {
10978   print_mention_exception (ex_catch_exception_unhandled, b);
10979 }
10980 
10981 static void
10982 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10983 					  struct ui_file *fp)
10984 {
10985   print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10986 }
10987 
10988 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10989   NULL, /* insert */
10990   NULL, /* remove */
10991   NULL, /* breakpoint_hit */
10992   NULL, /* resources_needed */
10993   print_it_catch_exception_unhandled,
10994   print_one_catch_exception_unhandled,
10995   NULL, /* print_one_detail */
10996   print_mention_catch_exception_unhandled,
10997   print_recreate_catch_exception_unhandled
10998 };
10999 
11000 /* Virtual table for "catch assert" breakpoints.  */
11001 
11002 static enum print_stop_action
11003 print_it_catch_assert (struct breakpoint *b)
11004 {
11005   return print_it_exception (ex_catch_assert, b);
11006 }
11007 
11008 static void
11009 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11010 {
11011   print_one_exception (ex_catch_assert, b, last_loc);
11012 }
11013 
11014 static void
11015 print_mention_catch_assert (struct breakpoint *b)
11016 {
11017   print_mention_exception (ex_catch_assert, b);
11018 }
11019 
11020 static void
11021 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11022 {
11023   print_recreate_exception (ex_catch_assert, b, fp);
11024 }
11025 
11026 static struct breakpoint_ops catch_assert_breakpoint_ops = {
11027   NULL, /* insert */
11028   NULL, /* remove */
11029   NULL, /* breakpoint_hit */
11030   NULL, /* resources_needed */
11031   print_it_catch_assert,
11032   print_one_catch_assert,
11033   NULL, /* print_one_detail */
11034   print_mention_catch_assert,
11035   print_recreate_catch_assert
11036 };
11037 
11038 /* Return non-zero if B is an Ada exception catchpoint.  */
11039 
11040 int
11041 ada_exception_catchpoint_p (struct breakpoint *b)
11042 {
11043   return (b->ops == &catch_exception_breakpoint_ops
11044           || b->ops == &catch_exception_unhandled_breakpoint_ops
11045           || b->ops == &catch_assert_breakpoint_ops);
11046 }
11047 
11048 /* Return a newly allocated copy of the first space-separated token
11049    in ARGSP, and then adjust ARGSP to point immediately after that
11050    token.
11051 
11052    Return NULL if ARGPS does not contain any more tokens.  */
11053 
11054 static char *
11055 ada_get_next_arg (char **argsp)
11056 {
11057   char *args = *argsp;
11058   char *end;
11059   char *result;
11060 
11061   /* Skip any leading white space.  */
11062 
11063   while (isspace (*args))
11064     args++;
11065 
11066   if (args[0] == '\0')
11067     return NULL; /* No more arguments.  */
11068 
11069   /* Find the end of the current argument.  */
11070 
11071   end = args;
11072   while (*end != '\0' && !isspace (*end))
11073     end++;
11074 
11075   /* Adjust ARGSP to point to the start of the next argument.  */
11076 
11077   *argsp = end;
11078 
11079   /* Make a copy of the current argument and return it.  */
11080 
11081   result = xmalloc (end - args + 1);
11082   strncpy (result, args, end - args);
11083   result[end - args] = '\0';
11084 
11085   return result;
11086 }
11087 
11088 /* Split the arguments specified in a "catch exception" command.
11089    Set EX to the appropriate catchpoint type.
11090    Set EXP_STRING to the name of the specific exception if
11091    specified by the user.  */
11092 
11093 static void
11094 catch_ada_exception_command_split (char *args,
11095                                    enum exception_catchpoint_kind *ex,
11096                                    char **exp_string)
11097 {
11098   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11099   char *exception_name;
11100 
11101   exception_name = ada_get_next_arg (&args);
11102   make_cleanup (xfree, exception_name);
11103 
11104   /* Check that we do not have any more arguments.  Anything else
11105      is unexpected.  */
11106 
11107   while (isspace (*args))
11108     args++;
11109 
11110   if (args[0] != '\0')
11111     error (_("Junk at end of expression"));
11112 
11113   discard_cleanups (old_chain);
11114 
11115   if (exception_name == NULL)
11116     {
11117       /* Catch all exceptions.  */
11118       *ex = ex_catch_exception;
11119       *exp_string = NULL;
11120     }
11121   else if (strcmp (exception_name, "unhandled") == 0)
11122     {
11123       /* Catch unhandled exceptions.  */
11124       *ex = ex_catch_exception_unhandled;
11125       *exp_string = NULL;
11126     }
11127   else
11128     {
11129       /* Catch a specific exception.  */
11130       *ex = ex_catch_exception;
11131       *exp_string = exception_name;
11132     }
11133 }
11134 
11135 /* Return the name of the symbol on which we should break in order to
11136    implement a catchpoint of the EX kind.  */
11137 
11138 static const char *
11139 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11140 {
11141   gdb_assert (exception_info != NULL);
11142 
11143   switch (ex)
11144     {
11145       case ex_catch_exception:
11146         return (exception_info->catch_exception_sym);
11147         break;
11148       case ex_catch_exception_unhandled:
11149         return (exception_info->catch_exception_unhandled_sym);
11150         break;
11151       case ex_catch_assert:
11152         return (exception_info->catch_assert_sym);
11153         break;
11154       default:
11155         internal_error (__FILE__, __LINE__,
11156                         _("unexpected catchpoint kind (%d)"), ex);
11157     }
11158 }
11159 
11160 /* Return the breakpoint ops "virtual table" used for catchpoints
11161    of the EX kind.  */
11162 
11163 static struct breakpoint_ops *
11164 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11165 {
11166   switch (ex)
11167     {
11168       case ex_catch_exception:
11169         return (&catch_exception_breakpoint_ops);
11170         break;
11171       case ex_catch_exception_unhandled:
11172         return (&catch_exception_unhandled_breakpoint_ops);
11173         break;
11174       case ex_catch_assert:
11175         return (&catch_assert_breakpoint_ops);
11176         break;
11177       default:
11178         internal_error (__FILE__, __LINE__,
11179                         _("unexpected catchpoint kind (%d)"), ex);
11180     }
11181 }
11182 
11183 /* Return the condition that will be used to match the current exception
11184    being raised with the exception that the user wants to catch.  This
11185    assumes that this condition is used when the inferior just triggered
11186    an exception catchpoint.
11187 
11188    The string returned is a newly allocated string that needs to be
11189    deallocated later.  */
11190 
11191 static char *
11192 ada_exception_catchpoint_cond_string (const char *exp_string)
11193 {
11194   int i;
11195 
11196   /* The standard exceptions are a special case.  They are defined in
11197      runtime units that have been compiled without debugging info; if
11198      EXP_STRING is the not-fully-qualified name of a standard
11199      exception (e.g. "constraint_error") then, during the evaluation
11200      of the condition expression, the symbol lookup on this name would
11201      *not* return this standard exception.  The catchpoint condition
11202      may then be set only on user-defined exceptions which have the
11203      same not-fully-qualified name (e.g. my_package.constraint_error).
11204 
11205      To avoid this unexcepted behavior, these standard exceptions are
11206      systematically prefixed by "standard".  This means that "catch
11207      exception constraint_error" is rewritten into "catch exception
11208      standard.constraint_error".
11209 
11210      If an exception named contraint_error is defined in another package of
11211      the inferior program, then the only way to specify this exception as a
11212      breakpoint condition is to use its fully-qualified named:
11213      e.g. my_package.constraint_error.  */
11214 
11215   for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11216     {
11217       if (strcmp (standard_exc [i], exp_string) == 0)
11218 	{
11219           return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11220                              exp_string);
11221 	}
11222     }
11223   return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11224 }
11225 
11226 /* Return the expression corresponding to COND_STRING evaluated at SAL.  */
11227 
11228 static struct expression *
11229 ada_parse_catchpoint_condition (char *cond_string,
11230                                 struct symtab_and_line sal)
11231 {
11232   return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11233 }
11234 
11235 /* Return the symtab_and_line that should be used to insert an exception
11236    catchpoint of the TYPE kind.
11237 
11238    EX_STRING should contain the name of a specific exception
11239    that the catchpoint should catch, or NULL otherwise.
11240 
11241    The idea behind all the remaining parameters is that their names match
11242    the name of certain fields in the breakpoint structure that are used to
11243    handle exception catchpoints.  This function returns the value to which
11244    these fields should be set, depending on the type of catchpoint we need
11245    to create.
11246 
11247    If COND and COND_STRING are both non-NULL, any value they might
11248    hold will be free'ed, and then replaced by newly allocated ones.
11249    These parameters are left untouched otherwise.  */
11250 
11251 static struct symtab_and_line
11252 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11253                    char **addr_string, char **cond_string,
11254                    struct expression **cond, struct breakpoint_ops **ops)
11255 {
11256   const char *sym_name;
11257   struct symbol *sym;
11258   struct symtab_and_line sal;
11259 
11260   /* First, find out which exception support info to use.  */
11261   ada_exception_support_info_sniffer ();
11262 
11263   /* Then lookup the function on which we will break in order to catch
11264      the Ada exceptions requested by the user.  */
11265 
11266   sym_name = ada_exception_sym_name (ex);
11267   sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11268 
11269   /* The symbol we're looking up is provided by a unit in the GNAT runtime
11270      that should be compiled with debugging information.  As a result, we
11271      expect to find that symbol in the symtabs.  If we don't find it, then
11272      the target most likely does not support Ada exceptions, or we cannot
11273      insert exception breakpoints yet, because the GNAT runtime hasn't been
11274      loaded yet.  */
11275 
11276   /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11277      in such a way that no debugging information is produced for the symbol
11278      we are looking for.  In this case, we could search the minimal symbols
11279      as a fall-back mechanism.  This would still be operating in degraded
11280      mode, however, as we would still be missing the debugging information
11281      that is needed in order to extract the name of the exception being
11282      raised (this name is printed in the catchpoint message, and is also
11283      used when trying to catch a specific exception).  We do not handle
11284      this case for now.  */
11285 
11286   if (sym == NULL)
11287     error (_("Unable to break on '%s' in this configuration."), sym_name);
11288 
11289   /* Make sure that the symbol we found corresponds to a function.  */
11290   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11291     error (_("Symbol \"%s\" is not a function (class = %d)"),
11292            sym_name, SYMBOL_CLASS (sym));
11293 
11294   sal = find_function_start_sal (sym, 1);
11295 
11296   /* Set ADDR_STRING.  */
11297 
11298   *addr_string = xstrdup (sym_name);
11299 
11300   /* Set the COND and COND_STRING (if not NULL).  */
11301 
11302   if (cond_string != NULL && cond != NULL)
11303     {
11304       if (*cond_string != NULL)
11305         {
11306           xfree (*cond_string);
11307           *cond_string = NULL;
11308         }
11309       if (*cond != NULL)
11310         {
11311           xfree (*cond);
11312           *cond = NULL;
11313         }
11314       if (exp_string != NULL)
11315         {
11316           *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11317           *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11318         }
11319     }
11320 
11321   /* Set OPS.  */
11322   *ops = ada_exception_breakpoint_ops (ex);
11323 
11324   return sal;
11325 }
11326 
11327 /* Parse the arguments (ARGS) of the "catch exception" command.
11328 
11329    Set TYPE to the appropriate exception catchpoint type.
11330    If the user asked the catchpoint to catch only a specific
11331    exception, then save the exception name in ADDR_STRING.
11332 
11333    See ada_exception_sal for a description of all the remaining
11334    function arguments of this function.  */
11335 
11336 struct symtab_and_line
11337 ada_decode_exception_location (char *args, char **addr_string,
11338                                char **exp_string, char **cond_string,
11339                                struct expression **cond,
11340                                struct breakpoint_ops **ops)
11341 {
11342   enum exception_catchpoint_kind ex;
11343 
11344   catch_ada_exception_command_split (args, &ex, exp_string);
11345   return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11346                             cond, ops);
11347 }
11348 
11349 struct symtab_and_line
11350 ada_decode_assert_location (char *args, char **addr_string,
11351                             struct breakpoint_ops **ops)
11352 {
11353   /* Check that no argument where provided at the end of the command.  */
11354 
11355   if (args != NULL)
11356     {
11357       while (isspace (*args))
11358         args++;
11359       if (*args != '\0')
11360         error (_("Junk at end of arguments."));
11361     }
11362 
11363   return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11364                             ops);
11365 }
11366 
11367                                 /* Operators */
11368 /* Information about operators given special treatment in functions
11369    below.  */
11370 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
11371 
11372 #define ADA_OPERATORS \
11373     OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11374     OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11375     OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11376     OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11377     OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11378     OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11379     OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11380     OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11381     OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11382     OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11383     OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11384     OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11385     OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11386     OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11387     OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11388     OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11389     OP_DEFN (OP_OTHERS, 1, 1, 0) \
11390     OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11391     OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11392 
11393 static void
11394 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11395 		     int *argsp)
11396 {
11397   switch (exp->elts[pc - 1].opcode)
11398     {
11399     default:
11400       operator_length_standard (exp, pc, oplenp, argsp);
11401       break;
11402 
11403 #define OP_DEFN(op, len, args, binop) \
11404     case op: *oplenp = len; *argsp = args; break;
11405       ADA_OPERATORS;
11406 #undef OP_DEFN
11407 
11408     case OP_AGGREGATE:
11409       *oplenp = 3;
11410       *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11411       break;
11412 
11413     case OP_CHOICES:
11414       *oplenp = 3;
11415       *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11416       break;
11417     }
11418 }
11419 
11420 /* Implementation of the exp_descriptor method operator_check.  */
11421 
11422 static int
11423 ada_operator_check (struct expression *exp, int pos,
11424 		    int (*objfile_func) (struct objfile *objfile, void *data),
11425 		    void *data)
11426 {
11427   const union exp_element *const elts = exp->elts;
11428   struct type *type = NULL;
11429 
11430   switch (elts[pos].opcode)
11431     {
11432       case UNOP_IN_RANGE:
11433       case UNOP_QUAL:
11434 	type = elts[pos + 1].type;
11435 	break;
11436 
11437       default:
11438 	return operator_check_standard (exp, pos, objfile_func, data);
11439     }
11440 
11441   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
11442 
11443   if (type && TYPE_OBJFILE (type)
11444       && (*objfile_func) (TYPE_OBJFILE (type), data))
11445     return 1;
11446 
11447   return 0;
11448 }
11449 
11450 static char *
11451 ada_op_name (enum exp_opcode opcode)
11452 {
11453   switch (opcode)
11454     {
11455     default:
11456       return op_name_standard (opcode);
11457 
11458 #define OP_DEFN(op, len, args, binop) case op: return #op;
11459       ADA_OPERATORS;
11460 #undef OP_DEFN
11461 
11462     case OP_AGGREGATE:
11463       return "OP_AGGREGATE";
11464     case OP_CHOICES:
11465       return "OP_CHOICES";
11466     case OP_NAME:
11467       return "OP_NAME";
11468     }
11469 }
11470 
11471 /* As for operator_length, but assumes PC is pointing at the first
11472    element of the operator, and gives meaningful results only for the
11473    Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
11474 
11475 static void
11476 ada_forward_operator_length (struct expression *exp, int pc,
11477                              int *oplenp, int *argsp)
11478 {
11479   switch (exp->elts[pc].opcode)
11480     {
11481     default:
11482       *oplenp = *argsp = 0;
11483       break;
11484 
11485 #define OP_DEFN(op, len, args, binop) \
11486     case op: *oplenp = len; *argsp = args; break;
11487       ADA_OPERATORS;
11488 #undef OP_DEFN
11489 
11490     case OP_AGGREGATE:
11491       *oplenp = 3;
11492       *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11493       break;
11494 
11495     case OP_CHOICES:
11496       *oplenp = 3;
11497       *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11498       break;
11499 
11500     case OP_STRING:
11501     case OP_NAME:
11502       {
11503 	int len = longest_to_int (exp->elts[pc + 1].longconst);
11504 
11505 	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11506 	*argsp = 0;
11507 	break;
11508       }
11509     }
11510 }
11511 
11512 static int
11513 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11514 {
11515   enum exp_opcode op = exp->elts[elt].opcode;
11516   int oplen, nargs;
11517   int pc = elt;
11518   int i;
11519 
11520   ada_forward_operator_length (exp, elt, &oplen, &nargs);
11521 
11522   switch (op)
11523     {
11524       /* Ada attributes ('Foo).  */
11525     case OP_ATR_FIRST:
11526     case OP_ATR_LAST:
11527     case OP_ATR_LENGTH:
11528     case OP_ATR_IMAGE:
11529     case OP_ATR_MAX:
11530     case OP_ATR_MIN:
11531     case OP_ATR_MODULUS:
11532     case OP_ATR_POS:
11533     case OP_ATR_SIZE:
11534     case OP_ATR_TAG:
11535     case OP_ATR_VAL:
11536       break;
11537 
11538     case UNOP_IN_RANGE:
11539     case UNOP_QUAL:
11540       /* XXX: gdb_sprint_host_address, type_sprint */
11541       fprintf_filtered (stream, _("Type @"));
11542       gdb_print_host_address (exp->elts[pc + 1].type, stream);
11543       fprintf_filtered (stream, " (");
11544       type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11545       fprintf_filtered (stream, ")");
11546       break;
11547     case BINOP_IN_BOUNDS:
11548       fprintf_filtered (stream, " (%d)",
11549 			longest_to_int (exp->elts[pc + 2].longconst));
11550       break;
11551     case TERNOP_IN_RANGE:
11552       break;
11553 
11554     case OP_AGGREGATE:
11555     case OP_OTHERS:
11556     case OP_DISCRETE_RANGE:
11557     case OP_POSITIONAL:
11558     case OP_CHOICES:
11559       break;
11560 
11561     case OP_NAME:
11562     case OP_STRING:
11563       {
11564 	char *name = &exp->elts[elt + 2].string;
11565 	int len = longest_to_int (exp->elts[elt + 1].longconst);
11566 
11567 	fprintf_filtered (stream, "Text: `%.*s'", len, name);
11568 	break;
11569       }
11570 
11571     default:
11572       return dump_subexp_body_standard (exp, stream, elt);
11573     }
11574 
11575   elt += oplen;
11576   for (i = 0; i < nargs; i += 1)
11577     elt = dump_subexp (exp, stream, elt);
11578 
11579   return elt;
11580 }
11581 
11582 /* The Ada extension of print_subexp (q.v.).  */
11583 
11584 static void
11585 ada_print_subexp (struct expression *exp, int *pos,
11586                   struct ui_file *stream, enum precedence prec)
11587 {
11588   int oplen, nargs, i;
11589   int pc = *pos;
11590   enum exp_opcode op = exp->elts[pc].opcode;
11591 
11592   ada_forward_operator_length (exp, pc, &oplen, &nargs);
11593 
11594   *pos += oplen;
11595   switch (op)
11596     {
11597     default:
11598       *pos -= oplen;
11599       print_subexp_standard (exp, pos, stream, prec);
11600       return;
11601 
11602     case OP_VAR_VALUE:
11603       fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11604       return;
11605 
11606     case BINOP_IN_BOUNDS:
11607       /* XXX: sprint_subexp */
11608       print_subexp (exp, pos, stream, PREC_SUFFIX);
11609       fputs_filtered (" in ", stream);
11610       print_subexp (exp, pos, stream, PREC_SUFFIX);
11611       fputs_filtered ("'range", stream);
11612       if (exp->elts[pc + 1].longconst > 1)
11613         fprintf_filtered (stream, "(%ld)",
11614                           (long) exp->elts[pc + 1].longconst);
11615       return;
11616 
11617     case TERNOP_IN_RANGE:
11618       if (prec >= PREC_EQUAL)
11619         fputs_filtered ("(", stream);
11620       /* XXX: sprint_subexp */
11621       print_subexp (exp, pos, stream, PREC_SUFFIX);
11622       fputs_filtered (" in ", stream);
11623       print_subexp (exp, pos, stream, PREC_EQUAL);
11624       fputs_filtered (" .. ", stream);
11625       print_subexp (exp, pos, stream, PREC_EQUAL);
11626       if (prec >= PREC_EQUAL)
11627         fputs_filtered (")", stream);
11628       return;
11629 
11630     case OP_ATR_FIRST:
11631     case OP_ATR_LAST:
11632     case OP_ATR_LENGTH:
11633     case OP_ATR_IMAGE:
11634     case OP_ATR_MAX:
11635     case OP_ATR_MIN:
11636     case OP_ATR_MODULUS:
11637     case OP_ATR_POS:
11638     case OP_ATR_SIZE:
11639     case OP_ATR_TAG:
11640     case OP_ATR_VAL:
11641       if (exp->elts[*pos].opcode == OP_TYPE)
11642         {
11643           if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11644             LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11645           *pos += 3;
11646         }
11647       else
11648         print_subexp (exp, pos, stream, PREC_SUFFIX);
11649       fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11650       if (nargs > 1)
11651         {
11652           int tem;
11653 
11654           for (tem = 1; tem < nargs; tem += 1)
11655             {
11656               fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11657               print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11658             }
11659           fputs_filtered (")", stream);
11660         }
11661       return;
11662 
11663     case UNOP_QUAL:
11664       type_print (exp->elts[pc + 1].type, "", stream, 0);
11665       fputs_filtered ("'(", stream);
11666       print_subexp (exp, pos, stream, PREC_PREFIX);
11667       fputs_filtered (")", stream);
11668       return;
11669 
11670     case UNOP_IN_RANGE:
11671       /* XXX: sprint_subexp */
11672       print_subexp (exp, pos, stream, PREC_SUFFIX);
11673       fputs_filtered (" in ", stream);
11674       LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11675       return;
11676 
11677     case OP_DISCRETE_RANGE:
11678       print_subexp (exp, pos, stream, PREC_SUFFIX);
11679       fputs_filtered ("..", stream);
11680       print_subexp (exp, pos, stream, PREC_SUFFIX);
11681       return;
11682 
11683     case OP_OTHERS:
11684       fputs_filtered ("others => ", stream);
11685       print_subexp (exp, pos, stream, PREC_SUFFIX);
11686       return;
11687 
11688     case OP_CHOICES:
11689       for (i = 0; i < nargs-1; i += 1)
11690 	{
11691 	  if (i > 0)
11692 	    fputs_filtered ("|", stream);
11693 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
11694 	}
11695       fputs_filtered (" => ", stream);
11696       print_subexp (exp, pos, stream, PREC_SUFFIX);
11697       return;
11698 
11699     case OP_POSITIONAL:
11700       print_subexp (exp, pos, stream, PREC_SUFFIX);
11701       return;
11702 
11703     case OP_AGGREGATE:
11704       fputs_filtered ("(", stream);
11705       for (i = 0; i < nargs; i += 1)
11706 	{
11707 	  if (i > 0)
11708 	    fputs_filtered (", ", stream);
11709 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
11710 	}
11711       fputs_filtered (")", stream);
11712       return;
11713     }
11714 }
11715 
11716 /* Table mapping opcodes into strings for printing operators
11717    and precedences of the operators.  */
11718 
11719 static const struct op_print ada_op_print_tab[] = {
11720   {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11721   {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11722   {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11723   {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11724   {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11725   {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11726   {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11727   {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11728   {"<=", BINOP_LEQ, PREC_ORDER, 0},
11729   {">=", BINOP_GEQ, PREC_ORDER, 0},
11730   {">", BINOP_GTR, PREC_ORDER, 0},
11731   {"<", BINOP_LESS, PREC_ORDER, 0},
11732   {">>", BINOP_RSH, PREC_SHIFT, 0},
11733   {"<<", BINOP_LSH, PREC_SHIFT, 0},
11734   {"+", BINOP_ADD, PREC_ADD, 0},
11735   {"-", BINOP_SUB, PREC_ADD, 0},
11736   {"&", BINOP_CONCAT, PREC_ADD, 0},
11737   {"*", BINOP_MUL, PREC_MUL, 0},
11738   {"/", BINOP_DIV, PREC_MUL, 0},
11739   {"rem", BINOP_REM, PREC_MUL, 0},
11740   {"mod", BINOP_MOD, PREC_MUL, 0},
11741   {"**", BINOP_EXP, PREC_REPEAT, 0},
11742   {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11743   {"-", UNOP_NEG, PREC_PREFIX, 0},
11744   {"+", UNOP_PLUS, PREC_PREFIX, 0},
11745   {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11746   {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11747   {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11748   {".all", UNOP_IND, PREC_SUFFIX, 1},
11749   {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11750   {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11751   {NULL, 0, 0, 0}
11752 };
11753 
11754 enum ada_primitive_types {
11755   ada_primitive_type_int,
11756   ada_primitive_type_long,
11757   ada_primitive_type_short,
11758   ada_primitive_type_char,
11759   ada_primitive_type_float,
11760   ada_primitive_type_double,
11761   ada_primitive_type_void,
11762   ada_primitive_type_long_long,
11763   ada_primitive_type_long_double,
11764   ada_primitive_type_natural,
11765   ada_primitive_type_positive,
11766   ada_primitive_type_system_address,
11767   nr_ada_primitive_types
11768 };
11769 
11770 static void
11771 ada_language_arch_info (struct gdbarch *gdbarch,
11772 			struct language_arch_info *lai)
11773 {
11774   const struct builtin_type *builtin = builtin_type (gdbarch);
11775 
11776   lai->primitive_type_vector
11777     = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11778 			      struct type *);
11779 
11780   lai->primitive_type_vector [ada_primitive_type_int]
11781     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11782 			 0, "integer");
11783   lai->primitive_type_vector [ada_primitive_type_long]
11784     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11785 			 0, "long_integer");
11786   lai->primitive_type_vector [ada_primitive_type_short]
11787     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11788 			 0, "short_integer");
11789   lai->string_char_type
11790     = lai->primitive_type_vector [ada_primitive_type_char]
11791     = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11792   lai->primitive_type_vector [ada_primitive_type_float]
11793     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11794 		       "float", NULL);
11795   lai->primitive_type_vector [ada_primitive_type_double]
11796     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11797 		       "long_float", NULL);
11798   lai->primitive_type_vector [ada_primitive_type_long_long]
11799     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11800 			 0, "long_long_integer");
11801   lai->primitive_type_vector [ada_primitive_type_long_double]
11802     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11803 		       "long_long_float", NULL);
11804   lai->primitive_type_vector [ada_primitive_type_natural]
11805     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11806 			 0, "natural");
11807   lai->primitive_type_vector [ada_primitive_type_positive]
11808     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11809 			 0, "positive");
11810   lai->primitive_type_vector [ada_primitive_type_void]
11811     = builtin->builtin_void;
11812 
11813   lai->primitive_type_vector [ada_primitive_type_system_address]
11814     = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11815   TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11816     = "system__address";
11817 
11818   lai->bool_type_symbol = NULL;
11819   lai->bool_type_default = builtin->builtin_bool;
11820 }
11821 
11822 				/* Language vector */
11823 
11824 /* Not really used, but needed in the ada_language_defn.  */
11825 
11826 static void
11827 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11828 {
11829   ada_emit_char (c, type, stream, quoter, 1);
11830 }
11831 
11832 static int
11833 parse (void)
11834 {
11835   warnings_issued = 0;
11836   return ada_parse ();
11837 }
11838 
11839 static const struct exp_descriptor ada_exp_descriptor = {
11840   ada_print_subexp,
11841   ada_operator_length,
11842   ada_operator_check,
11843   ada_op_name,
11844   ada_dump_subexp_body,
11845   ada_evaluate_subexp
11846 };
11847 
11848 const struct language_defn ada_language_defn = {
11849   "ada",                        /* Language name */
11850   language_ada,
11851   range_check_off,
11852   type_check_off,
11853   case_sensitive_on,            /* Yes, Ada is case-insensitive, but
11854                                    that's not quite what this means.  */
11855   array_row_major,
11856   macro_expansion_no,
11857   &ada_exp_descriptor,
11858   parse,
11859   ada_error,
11860   resolve,
11861   ada_printchar,                /* Print a character constant */
11862   ada_printstr,                 /* Function to print string constant */
11863   emit_char,                    /* Function to print single char (not used) */
11864   ada_print_type,               /* Print a type using appropriate syntax */
11865   ada_print_typedef,            /* Print a typedef using appropriate syntax */
11866   ada_val_print,                /* Print a value using appropriate syntax */
11867   ada_value_print,              /* Print a top-level value */
11868   NULL,                         /* Language specific skip_trampoline */
11869   NULL,                         /* name_of_this */
11870   ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
11871   basic_lookup_transparent_type,        /* lookup_transparent_type */
11872   ada_la_decode,                /* Language specific symbol demangler */
11873   NULL,                         /* Language specific
11874 				   class_name_from_physname */
11875   ada_op_print_tab,             /* expression operators for printing */
11876   0,                            /* c-style arrays */
11877   1,                            /* String lower bound */
11878   ada_get_gdb_completer_word_break_characters,
11879   ada_make_symbol_completion_list,
11880   ada_language_arch_info,
11881   ada_print_array_index,
11882   default_pass_by_reference,
11883   c_get_string,
11884   LANG_MAGIC
11885 };
11886 
11887 /* Provide a prototype to silence -Wmissing-prototypes.  */
11888 extern initialize_file_ftype _initialize_ada_language;
11889 
11890 /* Command-list for the "set/show ada" prefix command.  */
11891 static struct cmd_list_element *set_ada_list;
11892 static struct cmd_list_element *show_ada_list;
11893 
11894 /* Implement the "set ada" prefix command.  */
11895 
11896 static void
11897 set_ada_command (char *arg, int from_tty)
11898 {
11899   printf_unfiltered (_(\
11900 "\"set ada\" must be followed by the name of a setting.\n"));
11901   help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11902 }
11903 
11904 /* Implement the "show ada" prefix command.  */
11905 
11906 static void
11907 show_ada_command (char *args, int from_tty)
11908 {
11909   cmd_show_list (show_ada_list, from_tty, "");
11910 }
11911 
11912 void
11913 _initialize_ada_language (void)
11914 {
11915   add_language (&ada_language_defn);
11916 
11917   add_prefix_cmd ("ada", no_class, set_ada_command,
11918                   _("Prefix command for changing Ada-specfic settings"),
11919                   &set_ada_list, "set ada ", 0, &setlist);
11920 
11921   add_prefix_cmd ("ada", no_class, show_ada_command,
11922                   _("Generic command for showing Ada-specific settings."),
11923                   &show_ada_list, "show ada ", 0, &showlist);
11924 
11925   add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11926                            &trust_pad_over_xvs, _("\
11927 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11928 Show whether an optimization trusting PAD types over XVS types is activated"),
11929                            _("\
11930 This is related to the encoding used by the GNAT compiler.  The debugger\n\
11931 should normally trust the contents of PAD types, but certain older versions\n\
11932 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11933 to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
11934 work around this bug.  It is always safe to turn this option \"off\", but\n\
11935 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11936 this option to \"off\" unless necessary."),
11937                             NULL, NULL, &set_ada_list, &show_ada_list);
11938 
11939   varsize_limit = 65536;
11940 
11941   obstack_init (&symbol_list_obstack);
11942 
11943   decoded_names_store = htab_create_alloc
11944     (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11945      NULL, xcalloc, xfree);
11946 
11947   observer_attach_executable_changed (ada_executable_changed_observer);
11948 
11949   /* Setup per-inferior data.  */
11950   observer_attach_inferior_exit (ada_inferior_exit);
11951   ada_inferior_data
11952     = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
11953 }
11954