xref: /dragonfly/contrib/gdb-7/gdb/buildsym.c (revision 2020c8fe)
1 /* Support routines for building symbol tables in GDB's internal format.
2    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
4    2010, 2011 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 /* This module provides subroutines used for creating and adding to
22    the symbol table.  These routines are called from various symbol-
23    file-reading routines.
24 
25    Routines to support specific debugging information formats (stabs,
26    DWARF, etc) belong somewhere else.  */
27 
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h"		/* For "enum exp_opcode" used by...  */
39 #include "bcache.h"
40 #include "filenames.h"		/* For DOSish file names.  */
41 #include "macrotab.h"
42 #include "demangle.h"		/* Needed by SYMBOL_INIT_DEMANGLED_NAME.  */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
47 
48 /* Ask buildsym.h to define the vars it normally declares `extern'.  */
49 #define	EXTERN
50 /**/
51 #include "buildsym.h"		/* Our own declarations.  */
52 #undef	EXTERN
53 
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55    questionable--see comment where we call them).  */
56 
57 #include "stabsread.h"
58 
59 /* List of subfiles.  */
60 
61 static struct subfile *subfiles;
62 
63 /* List of free `struct pending' structures for reuse.  */
64 
65 static struct pending *free_pendings;
66 
67 /* Non-zero if symtab has line number info.  This prevents an
68    otherwise empty symtab from being tossed.  */
69 
70 static int have_line_numbers;
71 
72 /* The mutable address map for the compilation unit whose symbols
73    we're currently reading.  The symtabs' shared blockvector will
74    point to a fixed copy of this.  */
75 static struct addrmap *pending_addrmap;
76 
77 /* The obstack on which we allocate pending_addrmap.
78    If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79    initialized (and holds pending_addrmap).  */
80 static struct obstack pending_addrmap_obstack;
81 
82 /* Non-zero if we recorded any ranges in the addrmap that are
83    different from those in the blockvector already.  We set this to
84    zero when we start processing a symfile, and if it's still zero at
85    the end, then we just toss the addrmap.  */
86 static int pending_addrmap_interesting;
87 
88 
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
90 
91 
92 /* Initial sizes of data structures.  These are realloc'd larger if
93    needed, and realloc'd down to the size actually used, when
94    completed.  */
95 
96 #define	INITIAL_CONTEXT_STACK_SIZE	10
97 #define	INITIAL_LINE_VECTOR_LENGTH	1000
98 
99 
100 /* Maintain the lists of symbols and blocks.  */
101 
102 /* Add a pending list to free_pendings.  */
103 void
104 add_free_pendings (struct pending *list)
105 {
106   struct pending *link = list;
107 
108   if (list)
109     {
110       while (link->next) link = link->next;
111       link->next = free_pendings;
112       free_pendings = list;
113     }
114 }
115 
116 /* Add a symbol to one of the lists of symbols.  While we're at it, if
117    we're in the C++ case and don't have full namespace debugging info,
118    check to see if it references an anonymous namespace; if so, add an
119    appropriate using directive.  */
120 
121 void
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
123 {
124   struct pending *link;
125 
126   /* If this is an alias for another symbol, don't add it.  */
127   if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
128     return;
129 
130   /* We keep PENDINGSIZE symbols in each link of the list.  If we
131      don't have a link with room in it, add a new link.  */
132   if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
133     {
134       if (free_pendings)
135 	{
136 	  link = free_pendings;
137 	  free_pendings = link->next;
138 	}
139       else
140 	{
141 	  link = (struct pending *) xmalloc (sizeof (struct pending));
142 	}
143 
144       link->next = *listhead;
145       *listhead = link;
146       link->nsyms = 0;
147     }
148 
149   (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
150 }
151 
152 /* Find a symbol named NAME on a LIST.  NAME need not be
153    '\0'-terminated; LENGTH is the length of the name.  */
154 
155 struct symbol *
156 find_symbol_in_list (struct pending *list, char *name, int length)
157 {
158   int j;
159   char *pp;
160 
161   while (list != NULL)
162     {
163       for (j = list->nsyms; --j >= 0;)
164 	{
165 	  pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 	  if (*pp == *name && strncmp (pp, name, length) == 0
167 	      && pp[length] == '\0')
168 	    {
169 	      return (list->symbol[j]);
170 	    }
171 	}
172       list = list->next;
173     }
174   return (NULL);
175 }
176 
177 /* At end of reading syms, or in case of quit, really free as many
178    `struct pending's as we can easily find.  */
179 
180 void
181 really_free_pendings (void *dummy)
182 {
183   struct pending *next, *next1;
184 
185   for (next = free_pendings; next; next = next1)
186     {
187       next1 = next->next;
188       xfree ((void *) next);
189     }
190   free_pendings = NULL;
191 
192   free_pending_blocks ();
193 
194   for (next = file_symbols; next != NULL; next = next1)
195     {
196       next1 = next->next;
197       xfree ((void *) next);
198     }
199   file_symbols = NULL;
200 
201   for (next = global_symbols; next != NULL; next = next1)
202     {
203       next1 = next->next;
204       xfree ((void *) next);
205     }
206   global_symbols = NULL;
207 
208   if (pending_macros)
209     free_macro_table (pending_macros);
210 
211   if (pending_addrmap)
212     {
213       obstack_free (&pending_addrmap_obstack, NULL);
214       pending_addrmap = NULL;
215     }
216 }
217 
218 /* This function is called to discard any pending blocks.  */
219 
220 void
221 free_pending_blocks (void)
222 {
223   /* The links are made in the objfile_obstack, so we only need to
224      reset PENDING_BLOCKS.  */
225   pending_blocks = NULL;
226 }
227 
228 /* Take one of the lists of symbols and make a block from it.  Keep
229    the order the symbols have in the list (reversed from the input
230    file).  Put the block on the list of pending blocks.  */
231 
232 struct block *
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 	      struct pending_block *old_blocks,
235 	      CORE_ADDR start, CORE_ADDR end,
236 	      struct objfile *objfile)
237 {
238   struct gdbarch *gdbarch = get_objfile_arch (objfile);
239   struct pending *next, *next1;
240   struct block *block;
241   struct pending_block *pblock;
242   struct pending_block *opblock;
243 
244   block = allocate_block (&objfile->objfile_obstack);
245 
246   if (symbol)
247     {
248       BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
249 					       *listhead);
250     }
251   else
252     {
253       BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
254 					       *listhead);
255     }
256 
257   BLOCK_START (block) = start;
258   BLOCK_END (block) = end;
259   /* Superblock filled in when containing block is made.  */
260   BLOCK_SUPERBLOCK (block) = NULL;
261   BLOCK_NAMESPACE (block) = NULL;
262 
263   /* Put the block in as the value of the symbol that names it.  */
264 
265   if (symbol)
266     {
267       struct type *ftype = SYMBOL_TYPE (symbol);
268       struct dict_iterator iter;
269       SYMBOL_BLOCK_VALUE (symbol) = block;
270       BLOCK_FUNCTION (block) = symbol;
271 
272       if (TYPE_NFIELDS (ftype) <= 0)
273 	{
274 	  /* No parameter type information is recorded with the
275 	     function's type.  Set that from the type of the
276 	     parameter symbols.  */
277 	  int nparams = 0, iparams;
278 	  struct symbol *sym;
279 	  ALL_BLOCK_SYMBOLS (block, iter, sym)
280 	    {
281 	      if (SYMBOL_IS_ARGUMENT (sym))
282 		nparams++;
283 	    }
284 	  if (nparams > 0)
285 	    {
286 	      TYPE_NFIELDS (ftype) = nparams;
287 	      TYPE_FIELDS (ftype) = (struct field *)
288 		TYPE_ALLOC (ftype, nparams * sizeof (struct field));
289 
290 	      iparams = 0;
291 	      ALL_BLOCK_SYMBOLS (block, iter, sym)
292 		{
293 		  if (iparams == nparams)
294 		    break;
295 
296 		  if (SYMBOL_IS_ARGUMENT (sym))
297 		    {
298 		      TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
299 		      TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
300 		      iparams++;
301 		    }
302 		}
303 	    }
304 	}
305     }
306   else
307     {
308       BLOCK_FUNCTION (block) = NULL;
309     }
310 
311   /* Now "free" the links of the list, and empty the list.  */
312 
313   for (next = *listhead; next; next = next1)
314     {
315       next1 = next->next;
316       next->next = free_pendings;
317       free_pendings = next;
318     }
319   *listhead = NULL;
320 
321   /* Check to be sure that the blocks have an end address that is
322      greater than starting address.  */
323 
324   if (BLOCK_END (block) < BLOCK_START (block))
325     {
326       if (symbol)
327 	{
328 	  complaint (&symfile_complaints,
329 		     _("block end address less than block "
330 		       "start address in %s (patched it)"),
331 		     SYMBOL_PRINT_NAME (symbol));
332 	}
333       else
334 	{
335 	  complaint (&symfile_complaints,
336 		     _("block end address %s less than block "
337 		       "start address %s (patched it)"),
338 		     paddress (gdbarch, BLOCK_END (block)),
339 		     paddress (gdbarch, BLOCK_START (block)));
340 	}
341       /* Better than nothing.  */
342       BLOCK_END (block) = BLOCK_START (block);
343     }
344 
345   /* Install this block as the superblock of all blocks made since the
346      start of this scope that don't have superblocks yet.  */
347 
348   opblock = NULL;
349   for (pblock = pending_blocks;
350        pblock && pblock != old_blocks;
351        pblock = pblock->next)
352     {
353       if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
354 	{
355 	  /* Check to be sure the blocks are nested as we receive
356 	     them.  If the compiler/assembler/linker work, this just
357 	     burns a small amount of time.
358 
359 	     Skip blocks which correspond to a function; they're not
360 	     physically nested inside this other blocks, only
361 	     lexically nested.  */
362 	  if (BLOCK_FUNCTION (pblock->block) == NULL
363 	      && (BLOCK_START (pblock->block) < BLOCK_START (block)
364 		  || BLOCK_END (pblock->block) > BLOCK_END (block)))
365 	    {
366 	      if (symbol)
367 		{
368 		  complaint (&symfile_complaints,
369 			     _("inner block not inside outer block in %s"),
370 			     SYMBOL_PRINT_NAME (symbol));
371 		}
372 	      else
373 		{
374 		  complaint (&symfile_complaints,
375 			     _("inner block (%s-%s) not "
376 			       "inside outer block (%s-%s)"),
377 			     paddress (gdbarch, BLOCK_START (pblock->block)),
378 			     paddress (gdbarch, BLOCK_END (pblock->block)),
379 			     paddress (gdbarch, BLOCK_START (block)),
380 			     paddress (gdbarch, BLOCK_END (block)));
381 		}
382 	      if (BLOCK_START (pblock->block) < BLOCK_START (block))
383 		BLOCK_START (pblock->block) = BLOCK_START (block);
384 	      if (BLOCK_END (pblock->block) > BLOCK_END (block))
385 		BLOCK_END (pblock->block) = BLOCK_END (block);
386 	    }
387 	  BLOCK_SUPERBLOCK (pblock->block) = block;
388 	}
389       opblock = pblock;
390     }
391 
392   block_set_using (block, using_directives, &objfile->objfile_obstack);
393   using_directives = NULL;
394 
395   record_pending_block (objfile, block, opblock);
396 
397   return block;
398 }
399 
400 
401 /* Record BLOCK on the list of all blocks in the file.  Put it after
402    OPBLOCK, or at the beginning if opblock is NULL.  This puts the
403    block in the list after all its subblocks.
404 
405    Allocate the pending block struct in the objfile_obstack to save
406    time.  This wastes a little space.  FIXME: Is it worth it?  */
407 
408 void
409 record_pending_block (struct objfile *objfile, struct block *block,
410 		      struct pending_block *opblock)
411 {
412   struct pending_block *pblock;
413 
414   pblock = (struct pending_block *)
415     obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
416   pblock->block = block;
417   if (opblock)
418     {
419       pblock->next = opblock->next;
420       opblock->next = pblock;
421     }
422   else
423     {
424       pblock->next = pending_blocks;
425       pending_blocks = pblock;
426     }
427 }
428 
429 
430 /* Record that the range of addresses from START to END_INCLUSIVE
431    (inclusive, like it says) belongs to BLOCK.  BLOCK's start and end
432    addresses must be set already.  You must apply this function to all
433    BLOCK's children before applying it to BLOCK.
434 
435    If a call to this function complicates the picture beyond that
436    already provided by BLOCK_START and BLOCK_END, then we create an
437    address map for the block.  */
438 void
439 record_block_range (struct block *block,
440                     CORE_ADDR start, CORE_ADDR end_inclusive)
441 {
442   /* If this is any different from the range recorded in the block's
443      own BLOCK_START and BLOCK_END, then note that the address map has
444      become interesting.  Note that even if this block doesn't have
445      any "interesting" ranges, some later block might, so we still
446      need to record this block in the addrmap.  */
447   if (start != BLOCK_START (block)
448       || end_inclusive + 1 != BLOCK_END (block))
449     pending_addrmap_interesting = 1;
450 
451   if (! pending_addrmap)
452     {
453       obstack_init (&pending_addrmap_obstack);
454       pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
455     }
456 
457   addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
458 }
459 
460 
461 static struct blockvector *
462 make_blockvector (struct objfile *objfile)
463 {
464   struct pending_block *next;
465   struct blockvector *blockvector;
466   int i;
467 
468   /* Count the length of the list of blocks.  */
469 
470   for (next = pending_blocks, i = 0; next; next = next->next, i++)
471     {;
472     }
473 
474   blockvector = (struct blockvector *)
475     obstack_alloc (&objfile->objfile_obstack,
476 		   (sizeof (struct blockvector)
477 		    + (i - 1) * sizeof (struct block *)));
478 
479   /* Copy the blocks into the blockvector.  This is done in reverse
480      order, which happens to put the blocks into the proper order
481      (ascending starting address).  finish_block has hair to insert
482      each block into the list after its subblocks in order to make
483      sure this is true.  */
484 
485   BLOCKVECTOR_NBLOCKS (blockvector) = i;
486   for (next = pending_blocks; next; next = next->next)
487     {
488       BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
489     }
490 
491   free_pending_blocks ();
492 
493   /* If we needed an address map for this symtab, record it in the
494      blockvector.  */
495   if (pending_addrmap && pending_addrmap_interesting)
496     BLOCKVECTOR_MAP (blockvector)
497       = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
498   else
499     BLOCKVECTOR_MAP (blockvector) = 0;
500 
501   /* Some compilers output blocks in the wrong order, but we depend on
502      their being in the right order so we can binary search.  Check the
503      order and moan about it.  */
504   if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
505     {
506       for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
507 	{
508 	  if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
509 	      > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
510 	    {
511 	      CORE_ADDR start
512 		= BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
513 
514 	      complaint (&symfile_complaints, _("block at %s out of order"),
515 			 hex_string ((LONGEST) start));
516 	    }
517 	}
518     }
519 
520   return (blockvector);
521 }
522 
523 /* Start recording information about source code that came from an
524    included (or otherwise merged-in) source file with a different
525    name.  NAME is the name of the file (cannot be NULL), DIRNAME is
526    the directory in which the file was compiled (or NULL if not
527    known).  */
528 
529 void
530 start_subfile (const char *name, const char *dirname)
531 {
532   struct subfile *subfile;
533 
534   /* See if this subfile is already known as a subfile of the current
535      main source file.  */
536 
537   for (subfile = subfiles; subfile; subfile = subfile->next)
538     {
539       char *subfile_name;
540 
541       /* If NAME is an absolute path, and this subfile is not, then
542 	 attempt to create an absolute path to compare.  */
543       if (IS_ABSOLUTE_PATH (name)
544 	  && !IS_ABSOLUTE_PATH (subfile->name)
545 	  && subfile->dirname != NULL)
546 	subfile_name = concat (subfile->dirname, SLASH_STRING,
547 			       subfile->name, (char *) NULL);
548       else
549 	subfile_name = subfile->name;
550 
551       if (FILENAME_CMP (subfile_name, name) == 0)
552 	{
553 	  current_subfile = subfile;
554 	  if (subfile_name != subfile->name)
555 	    xfree (subfile_name);
556 	  return;
557 	}
558       if (subfile_name != subfile->name)
559 	xfree (subfile_name);
560     }
561 
562   /* This subfile is not known.  Add an entry for it.  Make an entry
563      for this subfile in the list of all subfiles of the current main
564      source file.  */
565 
566   subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
567   memset ((char *) subfile, 0, sizeof (struct subfile));
568   subfile->next = subfiles;
569   subfiles = subfile;
570   current_subfile = subfile;
571 
572   /* Save its name and compilation directory name.  */
573   subfile->name = (name == NULL) ? NULL : xstrdup (name);
574   subfile->dirname = (dirname == NULL) ? NULL : xstrdup (dirname);
575 
576   /* Initialize line-number recording for this subfile.  */
577   subfile->line_vector = NULL;
578 
579   /* Default the source language to whatever can be deduced from the
580      filename.  If nothing can be deduced (such as for a C/C++ include
581      file with a ".h" extension), then inherit whatever language the
582      previous subfile had.  This kludgery is necessary because there
583      is no standard way in some object formats to record the source
584      language.  Also, when symtabs are allocated we try to deduce a
585      language then as well, but it is too late for us to use that
586      information while reading symbols, since symtabs aren't allocated
587      until after all the symbols have been processed for a given
588      source file.  */
589 
590   subfile->language = deduce_language_from_filename (subfile->name);
591   if (subfile->language == language_unknown
592       && subfile->next != NULL)
593     {
594       subfile->language = subfile->next->language;
595     }
596 
597   /* Initialize the debug format string to NULL.  We may supply it
598      later via a call to record_debugformat.  */
599   subfile->debugformat = NULL;
600 
601   /* Similarly for the producer.  */
602   subfile->producer = NULL;
603 
604   /* If the filename of this subfile ends in .C, then change the
605      language of any pending subfiles from C to C++.  We also accept
606      any other C++ suffixes accepted by deduce_language_from_filename.  */
607   /* Likewise for f2c.  */
608 
609   if (subfile->name)
610     {
611       struct subfile *s;
612       enum language sublang = deduce_language_from_filename (subfile->name);
613 
614       if (sublang == language_cplus || sublang == language_fortran)
615 	for (s = subfiles; s != NULL; s = s->next)
616 	  if (s->language == language_c)
617 	    s->language = sublang;
618     }
619 
620   /* And patch up this file if necessary.  */
621   if (subfile->language == language_c
622       && subfile->next != NULL
623       && (subfile->next->language == language_cplus
624 	  || subfile->next->language == language_fortran))
625     {
626       subfile->language = subfile->next->language;
627     }
628 }
629 
630 /* For stabs readers, the first N_SO symbol is assumed to be the
631    source file name, and the subfile struct is initialized using that
632    assumption.  If another N_SO symbol is later seen, immediately
633    following the first one, then the first one is assumed to be the
634    directory name and the second one is really the source file name.
635 
636    So we have to patch up the subfile struct by moving the old name
637    value to dirname and remembering the new name.  Some sanity
638    checking is performed to ensure that the state of the subfile
639    struct is reasonable and that the old name we are assuming to be a
640    directory name actually is (by checking for a trailing '/').  */
641 
642 void
643 patch_subfile_names (struct subfile *subfile, char *name)
644 {
645   if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
646       && IS_DIR_SEPARATOR (subfile->name[strlen (subfile->name) - 1]))
647     {
648       subfile->dirname = subfile->name;
649       subfile->name = xstrdup (name);
650       last_source_file = name;
651 
652       /* Default the source language to whatever can be deduced from
653          the filename.  If nothing can be deduced (such as for a C/C++
654          include file with a ".h" extension), then inherit whatever
655          language the previous subfile had.  This kludgery is
656          necessary because there is no standard way in some object
657          formats to record the source language.  Also, when symtabs
658          are allocated we try to deduce a language then as well, but
659          it is too late for us to use that information while reading
660          symbols, since symtabs aren't allocated until after all the
661          symbols have been processed for a given source file.  */
662 
663       subfile->language = deduce_language_from_filename (subfile->name);
664       if (subfile->language == language_unknown
665 	  && subfile->next != NULL)
666 	{
667 	  subfile->language = subfile->next->language;
668 	}
669     }
670 }
671 
672 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
673    switching source files (different subfiles, as we call them) within
674    one object file, but using a stack rather than in an arbitrary
675    order.  */
676 
677 void
678 push_subfile (void)
679 {
680   struct subfile_stack *tem
681     = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
682 
683   tem->next = subfile_stack;
684   subfile_stack = tem;
685   if (current_subfile == NULL || current_subfile->name == NULL)
686     {
687       internal_error (__FILE__, __LINE__,
688 		      _("failed internal consistency check"));
689     }
690   tem->name = current_subfile->name;
691 }
692 
693 char *
694 pop_subfile (void)
695 {
696   char *name;
697   struct subfile_stack *link = subfile_stack;
698 
699   if (link == NULL)
700     {
701       internal_error (__FILE__, __LINE__,
702 		      _("failed internal consistency check"));
703     }
704   name = link->name;
705   subfile_stack = link->next;
706   xfree ((void *) link);
707   return (name);
708 }
709 
710 /* Add a linetable entry for line number LINE and address PC to the
711    line vector for SUBFILE.  */
712 
713 void
714 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
715 {
716   struct linetable_entry *e;
717 
718   /* Ignore the dummy line number in libg.o */
719   if (line == 0xffff)
720     {
721       return;
722     }
723 
724   /* Make sure line vector exists and is big enough.  */
725   if (!subfile->line_vector)
726     {
727       subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
728       subfile->line_vector = (struct linetable *)
729 	xmalloc (sizeof (struct linetable)
730 	   + subfile->line_vector_length * sizeof (struct linetable_entry));
731       subfile->line_vector->nitems = 0;
732       have_line_numbers = 1;
733     }
734 
735   if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
736     {
737       subfile->line_vector_length *= 2;
738       subfile->line_vector = (struct linetable *)
739 	xrealloc ((char *) subfile->line_vector,
740 		  (sizeof (struct linetable)
741 		   + (subfile->line_vector_length
742 		      * sizeof (struct linetable_entry))));
743     }
744 
745   /* Normally, we treat lines as unsorted.  But the end of sequence
746      marker is special.  We sort line markers at the same PC by line
747      number, so end of sequence markers (which have line == 0) appear
748      first.  This is right if the marker ends the previous function,
749      and there is no padding before the next function.  But it is
750      wrong if the previous line was empty and we are now marking a
751      switch to a different subfile.  We must leave the end of sequence
752      marker at the end of this group of lines, not sort the empty line
753      to after the marker.  The easiest way to accomplish this is to
754      delete any empty lines from our table, if they are followed by
755      end of sequence markers.  All we lose is the ability to set
756      breakpoints at some lines which contain no instructions
757      anyway.  */
758   if (line == 0 && subfile->line_vector->nitems > 0)
759     {
760       e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
761       while (subfile->line_vector->nitems > 0 && e->pc == pc)
762 	{
763 	  e--;
764 	  subfile->line_vector->nitems--;
765 	}
766     }
767 
768   e = subfile->line_vector->item + subfile->line_vector->nitems++;
769   e->line = line;
770   e->pc = pc;
771 }
772 
773 /* Needed in order to sort line tables from IBM xcoff files.  Sigh!  */
774 
775 static int
776 compare_line_numbers (const void *ln1p, const void *ln2p)
777 {
778   struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
779   struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
780 
781   /* Note: this code does not assume that CORE_ADDRs can fit in ints.
782      Please keep it that way.  */
783   if (ln1->pc < ln2->pc)
784     return -1;
785 
786   if (ln1->pc > ln2->pc)
787     return 1;
788 
789   /* If pc equal, sort by line.  I'm not sure whether this is optimum
790      behavior (see comment at struct linetable in symtab.h).  */
791   return ln1->line - ln2->line;
792 }
793 
794 /* Start a new symtab for a new source file.  Called, for example,
795    when a stabs symbol of type N_SO is seen, or when a DWARF
796    TAG_compile_unit DIE is seen.  It indicates the start of data for
797    one original source file.
798 
799    NAME is the name of the file (cannot be NULL).  DIRNAME is the directory in
800    which the file was compiled (or NULL if not known).  START_ADDR is the
801    lowest address of objects in the file (or 0 if not known).  */
802 
803 void
804 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
805 {
806   last_source_file = name;
807   last_source_start_addr = start_addr;
808   file_symbols = NULL;
809   global_symbols = NULL;
810   within_function = 0;
811   have_line_numbers = 0;
812 
813   /* Context stack is initially empty.  Allocate first one with room
814      for 10 levels; reuse it forever afterward.  */
815   if (context_stack == NULL)
816     {
817       context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
818       context_stack = (struct context_stack *)
819 	xmalloc (context_stack_size * sizeof (struct context_stack));
820     }
821   context_stack_depth = 0;
822 
823   /* We shouldn't have any address map at this point.  */
824   gdb_assert (! pending_addrmap);
825 
826   /* Initialize the list of sub source files with one entry for this
827      file (the top-level source file).  */
828 
829   subfiles = NULL;
830   current_subfile = NULL;
831   start_subfile (name, dirname);
832 }
833 
834 /* Subroutine of end_symtab to simplify it.  Look for a subfile that
835    matches the main source file's basename.  If there is only one, and
836    if the main source file doesn't have any symbol or line number
837    information, then copy this file's symtab and line_vector to the
838    main source file's subfile and discard the other subfile.  This can
839    happen because of a compiler bug or from the user playing games
840    with #line or from things like a distributed build system that
841    manipulates the debug info.  */
842 
843 static void
844 watch_main_source_file_lossage (void)
845 {
846   struct subfile *mainsub, *subfile;
847 
848   /* Find the main source file.
849      This loop could be eliminated if start_symtab saved it for us.  */
850   mainsub = NULL;
851   for (subfile = subfiles; subfile; subfile = subfile->next)
852     {
853       /* The main subfile is guaranteed to be the last one.  */
854       if (subfile->next == NULL)
855 	mainsub = subfile;
856     }
857 
858   /* If the main source file doesn't have any line number or symbol
859      info, look for an alias in another subfile.
860 
861      We have to watch for mainsub == NULL here.  It's a quirk of
862      end_symtab, it can return NULL so there may not be a main
863      subfile.  */
864 
865   if (mainsub
866       && mainsub->line_vector == NULL
867       && mainsub->symtab == NULL)
868     {
869       const char *mainbase = lbasename (mainsub->name);
870       int nr_matches = 0;
871       struct subfile *prevsub;
872       struct subfile *mainsub_alias = NULL;
873       struct subfile *prev_mainsub_alias = NULL;
874 
875       prevsub = NULL;
876       for (subfile = subfiles;
877 	   /* Stop before we get to the last one.  */
878 	   subfile->next;
879 	   subfile = subfile->next)
880 	{
881 	  if (filename_cmp (lbasename (subfile->name), mainbase) == 0)
882 	    {
883 	      ++nr_matches;
884 	      mainsub_alias = subfile;
885 	      prev_mainsub_alias = prevsub;
886 	    }
887 	  prevsub = subfile;
888 	}
889 
890       if (nr_matches == 1)
891 	{
892 	  gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
893 
894 	  /* Found a match for the main source file.
895 	     Copy its line_vector and symtab to the main subfile
896 	     and then discard it.  */
897 
898 	  mainsub->line_vector = mainsub_alias->line_vector;
899 	  mainsub->line_vector_length = mainsub_alias->line_vector_length;
900 	  mainsub->symtab = mainsub_alias->symtab;
901 
902 	  if (prev_mainsub_alias == NULL)
903 	    subfiles = mainsub_alias->next;
904 	  else
905 	    prev_mainsub_alias->next = mainsub_alias->next;
906 	  xfree (mainsub_alias);
907 	}
908     }
909 }
910 
911 /* Helper function for qsort.  Parametes are `struct block *' pointers,
912    function sorts them in descending order by their BLOCK_START.  */
913 
914 static int
915 block_compar (const void *ap, const void *bp)
916 {
917   const struct block *a = *(const struct block **) ap;
918   const struct block *b = *(const struct block **) bp;
919 
920   return ((BLOCK_START (b) > BLOCK_START (a))
921 	  - (BLOCK_START (b) < BLOCK_START (a)));
922 }
923 
924 /* Finish the symbol definitions for one main source file, close off
925    all the lexical contexts for that file (creating struct block's for
926    them), then make the struct symtab for that file and put it in the
927    list of all such.
928 
929    END_ADDR is the address of the end of the file's text.  SECTION is
930    the section number (in objfile->section_offsets) of the blockvector
931    and linetable.
932 
933    Note that it is possible for end_symtab() to return NULL.  In
934    particular, for the DWARF case at least, it will return NULL when
935    it finds a compilation unit that has exactly one DIE, a
936    TAG_compile_unit DIE.  This can happen when we link in an object
937    file that was compiled from an empty source file.  Returning NULL
938    is probably not the correct thing to do, because then gdb will
939    never know about this empty file (FIXME).  */
940 
941 struct symtab *
942 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
943 {
944   struct symtab *symtab = NULL;
945   struct blockvector *blockvector;
946   struct subfile *subfile;
947   struct context_stack *cstk;
948   struct subfile *nextsub;
949 
950   /* Finish the lexical context of the last function in the file; pop
951      the context stack.  */
952 
953   if (context_stack_depth > 0)
954     {
955       cstk = pop_context ();
956       /* Make a block for the local symbols within.  */
957       finish_block (cstk->name, &local_symbols, cstk->old_blocks,
958 		    cstk->start_addr, end_addr, objfile);
959 
960       if (context_stack_depth > 0)
961 	{
962 	  /* This is said to happen with SCO.  The old coffread.c
963 	     code simply emptied the context stack, so we do the
964 	     same.  FIXME: Find out why it is happening.  This is not
965 	     believed to happen in most cases (even for coffread.c);
966 	     it used to be an abort().  */
967 	  complaint (&symfile_complaints,
968 	             _("Context stack not empty in end_symtab"));
969 	  context_stack_depth = 0;
970 	}
971     }
972 
973   /* Reordered executables may have out of order pending blocks; if
974      OBJF_REORDERED is true, then sort the pending blocks.  */
975   if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
976     {
977       unsigned count = 0;
978       struct pending_block *pb;
979       struct block **barray, **bp;
980       struct cleanup *back_to;
981 
982       for (pb = pending_blocks; pb != NULL; pb = pb->next)
983 	count++;
984 
985       barray = xmalloc (sizeof (*barray) * count);
986       back_to = make_cleanup (xfree, barray);
987 
988       bp = barray;
989       for (pb = pending_blocks; pb != NULL; pb = pb->next)
990 	*bp++ = pb->block;
991 
992       qsort (barray, count, sizeof (*barray), block_compar);
993 
994       bp = barray;
995       for (pb = pending_blocks; pb != NULL; pb = pb->next)
996 	pb->block = *bp++;
997 
998       do_cleanups (back_to);
999     }
1000 
1001   /* Cleanup any undefined types that have been left hanging around
1002      (this needs to be done before the finish_blocks so that
1003      file_symbols is still good).
1004 
1005      Both cleanup_undefined_types and finish_global_stabs are stabs
1006      specific, but harmless for other symbol readers, since on gdb
1007      startup or when finished reading stabs, the state is set so these
1008      are no-ops.  FIXME: Is this handled right in case of QUIT?  Can
1009      we make this cleaner?  */
1010 
1011   cleanup_undefined_types (objfile);
1012   finish_global_stabs (objfile);
1013 
1014   if (pending_blocks == NULL
1015       && file_symbols == NULL
1016       && global_symbols == NULL
1017       && have_line_numbers == 0
1018       && pending_macros == NULL)
1019     {
1020       /* Ignore symtabs that have no functions with real debugging
1021          info.  */
1022       blockvector = NULL;
1023     }
1024   else
1025     {
1026       /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1027          blockvector.  */
1028       finish_block (0, &file_symbols, 0, last_source_start_addr,
1029 		    end_addr, objfile);
1030       finish_block (0, &global_symbols, 0, last_source_start_addr,
1031 		    end_addr, objfile);
1032       blockvector = make_blockvector (objfile);
1033     }
1034 
1035   /* Read the line table if it has to be read separately.  */
1036   if (objfile->sf->sym_read_linetable != NULL)
1037     objfile->sf->sym_read_linetable ();
1038 
1039   /* Handle the case where the debug info specifies a different path
1040      for the main source file.  It can cause us to lose track of its
1041      line number information.  */
1042   watch_main_source_file_lossage ();
1043 
1044   /* Now create the symtab objects proper, one for each subfile.  */
1045   /* (The main file is the last one on the chain.)  */
1046 
1047   for (subfile = subfiles; subfile; subfile = nextsub)
1048     {
1049       int linetablesize = 0;
1050       symtab = NULL;
1051 
1052       /* If we have blocks of symbols, make a symtab.  Otherwise, just
1053          ignore this file and any line number info in it.  */
1054       if (blockvector)
1055 	{
1056 	  if (subfile->line_vector)
1057 	    {
1058 	      linetablesize = sizeof (struct linetable) +
1059 	        subfile->line_vector->nitems * sizeof (struct linetable_entry);
1060 
1061 	      /* Like the pending blocks, the line table may be
1062 	         scrambled in reordered executables.  Sort it if
1063 	         OBJF_REORDERED is true.  */
1064 	      if (objfile->flags & OBJF_REORDERED)
1065 		qsort (subfile->line_vector->item,
1066 		       subfile->line_vector->nitems,
1067 		     sizeof (struct linetable_entry), compare_line_numbers);
1068 	    }
1069 
1070 	  /* Now, allocate a symbol table.  */
1071 	  if (subfile->symtab == NULL)
1072 	    symtab = allocate_symtab (subfile->name, objfile);
1073 	  else
1074 	    symtab = subfile->symtab;
1075 
1076 	  /* Fill in its components.  */
1077 	  symtab->blockvector = blockvector;
1078           symtab->macro_table = pending_macros;
1079 	  if (subfile->line_vector)
1080 	    {
1081 	      /* Reallocate the line table on the symbol obstack.  */
1082 	      symtab->linetable = (struct linetable *)
1083 		obstack_alloc (&objfile->objfile_obstack, linetablesize);
1084 	      memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1085 	    }
1086 	  else
1087 	    {
1088 	      symtab->linetable = NULL;
1089 	    }
1090 	  symtab->block_line_section = section;
1091 	  if (subfile->dirname)
1092 	    {
1093 	      /* Reallocate the dirname on the symbol obstack.  */
1094 	      symtab->dirname = (char *)
1095 		obstack_alloc (&objfile->objfile_obstack,
1096 			       strlen (subfile->dirname) + 1);
1097 	      strcpy (symtab->dirname, subfile->dirname);
1098 	    }
1099 	  else
1100 	    {
1101 	      symtab->dirname = NULL;
1102 	    }
1103 	  symtab->free_code = free_linetable;
1104 	  symtab->free_func = NULL;
1105 
1106 	  /* Use whatever language we have been using for this
1107 	     subfile, not the one that was deduced in allocate_symtab
1108 	     from the filename.  We already did our own deducing when
1109 	     we created the subfile, and we may have altered our
1110 	     opinion of what language it is from things we found in
1111 	     the symbols.  */
1112 	  symtab->language = subfile->language;
1113 
1114 	  /* Save the debug format string (if any) in the symtab.  */
1115 	  if (subfile->debugformat != NULL)
1116 	    {
1117 	      symtab->debugformat = obsavestring (subfile->debugformat,
1118 					      strlen (subfile->debugformat),
1119 						  &objfile->objfile_obstack);
1120 	    }
1121 
1122 	  /* Similarly for the producer.  */
1123 	  if (subfile->producer != NULL)
1124 	    symtab->producer = obsavestring (subfile->producer,
1125 					     strlen (subfile->producer),
1126 					     &objfile->objfile_obstack);
1127 
1128 	  /* All symtabs for the main file and the subfiles share a
1129 	     blockvector, so we need to clear primary for everything
1130 	     but the main file.  */
1131 
1132 	  symtab->primary = 0;
1133 	}
1134       else
1135         {
1136           if (subfile->symtab)
1137             {
1138               /* Since we are ignoring that subfile, we also need
1139                  to unlink the associated empty symtab that we created.
1140                  Otherwise, we can into trouble because various parts
1141                  such as the block-vector are uninitialized whereas
1142                  the rest of the code assumes that they are.
1143 
1144                  We can only unlink the symtab because it was allocated
1145                  on the objfile obstack.  */
1146               struct symtab *s;
1147 
1148               if (objfile->symtabs == subfile->symtab)
1149                 objfile->symtabs = objfile->symtabs->next;
1150               else
1151                 ALL_OBJFILE_SYMTABS (objfile, s)
1152                   if (s->next == subfile->symtab)
1153                     {
1154                       s->next = s->next->next;
1155                       break;
1156                     }
1157               subfile->symtab = NULL;
1158             }
1159         }
1160       if (subfile->name != NULL)
1161 	{
1162 	  xfree ((void *) subfile->name);
1163 	}
1164       if (subfile->dirname != NULL)
1165 	{
1166 	  xfree ((void *) subfile->dirname);
1167 	}
1168       if (subfile->line_vector != NULL)
1169 	{
1170 	  xfree ((void *) subfile->line_vector);
1171 	}
1172       if (subfile->debugformat != NULL)
1173 	{
1174 	  xfree ((void *) subfile->debugformat);
1175 	}
1176       if (subfile->producer != NULL)
1177 	xfree (subfile->producer);
1178 
1179       nextsub = subfile->next;
1180       xfree ((void *) subfile);
1181     }
1182 
1183   /* Set this for the main source file.  */
1184   if (symtab)
1185     {
1186       symtab->primary = 1;
1187     }
1188 
1189   /* Default any symbols without a specified symtab to the primary
1190      symtab.  */
1191   if (blockvector)
1192     {
1193       int block_i;
1194 
1195       for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1196 	{
1197 	  struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1198 	  struct symbol *sym;
1199 	  struct dict_iterator iter;
1200 
1201 	  /* Inlined functions may have symbols not in the global or
1202 	     static symbol lists.  */
1203 	  if (BLOCK_FUNCTION (block) != NULL)
1204 	    if (SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) == NULL)
1205 	      SYMBOL_SYMTAB (BLOCK_FUNCTION (block)) = symtab;
1206 
1207 	  for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1208 	       sym != NULL;
1209 	       sym = dict_iterator_next (&iter))
1210 	    if (SYMBOL_SYMTAB (sym) == NULL)
1211 	      SYMBOL_SYMTAB (sym) = symtab;
1212 	}
1213     }
1214 
1215   last_source_file = NULL;
1216   current_subfile = NULL;
1217   pending_macros = NULL;
1218   if (pending_addrmap)
1219     {
1220       obstack_free (&pending_addrmap_obstack, NULL);
1221       pending_addrmap = NULL;
1222     }
1223 
1224   return symtab;
1225 }
1226 
1227 /* Push a context block.  Args are an identifying nesting level
1228    (checkable when you pop it), and the starting PC address of this
1229    context.  */
1230 
1231 struct context_stack *
1232 push_context (int desc, CORE_ADDR valu)
1233 {
1234   struct context_stack *new;
1235 
1236   if (context_stack_depth == context_stack_size)
1237     {
1238       context_stack_size *= 2;
1239       context_stack = (struct context_stack *)
1240 	xrealloc ((char *) context_stack,
1241 		  (context_stack_size * sizeof (struct context_stack)));
1242     }
1243 
1244   new = &context_stack[context_stack_depth++];
1245   new->depth = desc;
1246   new->locals = local_symbols;
1247   new->params = param_symbols;
1248   new->old_blocks = pending_blocks;
1249   new->start_addr = valu;
1250   new->using_directives = using_directives;
1251   new->name = NULL;
1252 
1253   local_symbols = NULL;
1254   param_symbols = NULL;
1255   using_directives = NULL;
1256 
1257   return new;
1258 }
1259 
1260 /* Pop a context block.  Returns the address of the context block just
1261    popped.  */
1262 
1263 struct context_stack *
1264 pop_context (void)
1265 {
1266   gdb_assert (context_stack_depth > 0);
1267   return (&context_stack[--context_stack_depth]);
1268 }
1269 
1270 
1271 
1272 /* Compute a small integer hash code for the given name.  */
1273 
1274 int
1275 hashname (char *name)
1276 {
1277     return (hash(name,strlen(name)) % HASHSIZE);
1278 }
1279 
1280 
1281 void
1282 record_debugformat (char *format)
1283 {
1284   current_subfile->debugformat = xstrdup (format);
1285 }
1286 
1287 void
1288 record_producer (const char *producer)
1289 {
1290   /* The producer is not always provided in the debugging info.
1291      Do nothing if PRODUCER is NULL.  */
1292   if (producer == NULL)
1293     return;
1294 
1295   current_subfile->producer = xstrdup (producer);
1296 }
1297 
1298 /* Merge the first symbol list SRCLIST into the second symbol list
1299    TARGETLIST by repeated calls to add_symbol_to_list().  This
1300    procedure "frees" each link of SRCLIST by adding it to the
1301    free_pendings list.  Caller must set SRCLIST to a null list after
1302    calling this function.
1303 
1304    Void return.  */
1305 
1306 void
1307 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1308 {
1309   int i;
1310 
1311   if (!srclist || !*srclist)
1312     return;
1313 
1314   /* Merge in elements from current link.  */
1315   for (i = 0; i < (*srclist)->nsyms; i++)
1316     add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1317 
1318   /* Recurse on next.  */
1319   merge_symbol_lists (&(*srclist)->next, targetlist);
1320 
1321   /* "Free" the current link.  */
1322   (*srclist)->next = free_pendings;
1323   free_pendings = (*srclist);
1324 }
1325 
1326 /* Initialize anything that needs initializing when starting to read a
1327    fresh piece of a symbol file, e.g. reading in the stuff
1328    corresponding to a psymtab.  */
1329 
1330 void
1331 buildsym_init (void)
1332 {
1333   free_pendings = NULL;
1334   file_symbols = NULL;
1335   global_symbols = NULL;
1336   pending_blocks = NULL;
1337   pending_macros = NULL;
1338 
1339   /* We shouldn't have any address map at this point.  */
1340   gdb_assert (! pending_addrmap);
1341   pending_addrmap_interesting = 0;
1342 }
1343 
1344 /* Initialize anything that needs initializing when a completely new
1345    symbol file is specified (not just adding some symbols from another
1346    file, e.g. a shared library).  */
1347 
1348 void
1349 buildsym_new_init (void)
1350 {
1351   buildsym_init ();
1352 }
1353