xref: /dragonfly/contrib/gdb-7/gdb/dwarf2-frame.c (revision 28c26f7e)
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2 
3    Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6    Contributed by Mark Kettenis.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "dwarf2expr.h"
25 #include "dwarf2.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "symtab.h"
32 #include "objfiles.h"
33 #include "regcache.h"
34 #include "value.h"
35 
36 #include "gdb_assert.h"
37 #include "gdb_string.h"
38 
39 #include "complaints.h"
40 #include "dwarf2-frame.h"
41 
42 struct comp_unit;
43 
44 /* Call Frame Information (CFI).  */
45 
46 /* Common Information Entry (CIE).  */
47 
48 struct dwarf2_cie
49 {
50   /* Computation Unit for this CIE.  */
51   struct comp_unit *unit;
52 
53   /* Offset into the .debug_frame section where this CIE was found.
54      Used to identify this CIE.  */
55   ULONGEST cie_pointer;
56 
57   /* Constant that is factored out of all advance location
58      instructions.  */
59   ULONGEST code_alignment_factor;
60 
61   /* Constants that is factored out of all offset instructions.  */
62   LONGEST data_alignment_factor;
63 
64   /* Return address column.  */
65   ULONGEST return_address_register;
66 
67   /* Instruction sequence to initialize a register set.  */
68   gdb_byte *initial_instructions;
69   gdb_byte *end;
70 
71   /* Saved augmentation, in case it's needed later.  */
72   char *augmentation;
73 
74   /* Encoding of addresses.  */
75   gdb_byte encoding;
76 
77   /* Target address size in bytes.  */
78   int addr_size;
79 
80   /* True if a 'z' augmentation existed.  */
81   unsigned char saw_z_augmentation;
82 
83   /* True if an 'S' augmentation existed.  */
84   unsigned char signal_frame;
85 
86   /* The version recorded in the CIE.  */
87   unsigned char version;
88 };
89 
90 struct dwarf2_cie_table
91 {
92   int num_entries;
93   struct dwarf2_cie **entries;
94 };
95 
96 /* Frame Description Entry (FDE).  */
97 
98 struct dwarf2_fde
99 {
100   /* CIE for this FDE.  */
101   struct dwarf2_cie *cie;
102 
103   /* First location associated with this FDE.  */
104   CORE_ADDR initial_location;
105 
106   /* Number of bytes of program instructions described by this FDE.  */
107   CORE_ADDR address_range;
108 
109   /* Instruction sequence.  */
110   gdb_byte *instructions;
111   gdb_byte *end;
112 
113   /* True if this FDE is read from a .eh_frame instead of a .debug_frame
114      section.  */
115   unsigned char eh_frame_p;
116 };
117 
118 struct dwarf2_fde_table
119 {
120   int num_entries;
121   struct dwarf2_fde **entries;
122 };
123 
124 /* A minimal decoding of DWARF2 compilation units.  We only decode
125    what's needed to get to the call frame information.  */
126 
127 struct comp_unit
128 {
129   /* Keep the bfd convenient.  */
130   bfd *abfd;
131 
132   struct objfile *objfile;
133 
134   /* Pointer to the .debug_frame section loaded into memory.  */
135   gdb_byte *dwarf_frame_buffer;
136 
137   /* Length of the loaded .debug_frame section.  */
138   bfd_size_type dwarf_frame_size;
139 
140   /* Pointer to the .debug_frame section.  */
141   asection *dwarf_frame_section;
142 
143   /* Base for DW_EH_PE_datarel encodings.  */
144   bfd_vma dbase;
145 
146   /* Base for DW_EH_PE_textrel encodings.  */
147   bfd_vma tbase;
148 };
149 
150 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc);
151 
152 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
153 				       int eh_frame_p);
154 
155 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
156 				     int ptr_len, gdb_byte *buf,
157 				     unsigned int *bytes_read_ptr,
158 				     CORE_ADDR func_base);
159 
160 
161 /* Structure describing a frame state.  */
162 
163 struct dwarf2_frame_state
164 {
165   /* Each register save state can be described in terms of a CFA slot,
166      another register, or a location expression.  */
167   struct dwarf2_frame_state_reg_info
168   {
169     struct dwarf2_frame_state_reg *reg;
170     int num_regs;
171 
172     LONGEST cfa_offset;
173     ULONGEST cfa_reg;
174     enum {
175       CFA_UNSET,
176       CFA_REG_OFFSET,
177       CFA_EXP
178     } cfa_how;
179     gdb_byte *cfa_exp;
180 
181     /* Used to implement DW_CFA_remember_state.  */
182     struct dwarf2_frame_state_reg_info *prev;
183   } regs;
184 
185   /* The PC described by the current frame state.  */
186   CORE_ADDR pc;
187 
188   /* Initial register set from the CIE.
189      Used to implement DW_CFA_restore.  */
190   struct dwarf2_frame_state_reg_info initial;
191 
192   /* The information we care about from the CIE.  */
193   LONGEST data_align;
194   ULONGEST code_align;
195   ULONGEST retaddr_column;
196 
197   /* Flags for known producer quirks.  */
198 
199   /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
200      and DW_CFA_def_cfa_offset takes a factored offset.  */
201   int armcc_cfa_offsets_sf;
202 
203   /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
204      the CFA is defined as REG - OFFSET rather than REG + OFFSET.  */
205   int armcc_cfa_offsets_reversed;
206 };
207 
208 /* Store the length the expression for the CFA in the `cfa_reg' field,
209    which is unused in that case.  */
210 #define cfa_exp_len cfa_reg
211 
212 /* Assert that the register set RS is large enough to store gdbarch_num_regs
213    columns.  If necessary, enlarge the register set.  */
214 
215 static void
216 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
217 			       int num_regs)
218 {
219   size_t size = sizeof (struct dwarf2_frame_state_reg);
220 
221   if (num_regs <= rs->num_regs)
222     return;
223 
224   rs->reg = (struct dwarf2_frame_state_reg *)
225     xrealloc (rs->reg, num_regs * size);
226 
227   /* Initialize newly allocated registers.  */
228   memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
229   rs->num_regs = num_regs;
230 }
231 
232 /* Copy the register columns in register set RS into newly allocated
233    memory and return a pointer to this newly created copy.  */
234 
235 static struct dwarf2_frame_state_reg *
236 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
237 {
238   size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
239   struct dwarf2_frame_state_reg *reg;
240 
241   reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
242   memcpy (reg, rs->reg, size);
243 
244   return reg;
245 }
246 
247 /* Release the memory allocated to register set RS.  */
248 
249 static void
250 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
251 {
252   if (rs)
253     {
254       dwarf2_frame_state_free_regs (rs->prev);
255 
256       xfree (rs->reg);
257       xfree (rs);
258     }
259 }
260 
261 /* Release the memory allocated to the frame state FS.  */
262 
263 static void
264 dwarf2_frame_state_free (void *p)
265 {
266   struct dwarf2_frame_state *fs = p;
267 
268   dwarf2_frame_state_free_regs (fs->initial.prev);
269   dwarf2_frame_state_free_regs (fs->regs.prev);
270   xfree (fs->initial.reg);
271   xfree (fs->regs.reg);
272   xfree (fs);
273 }
274 
275 
276 /* Helper functions for execute_stack_op.  */
277 
278 static CORE_ADDR
279 read_reg (void *baton, int reg)
280 {
281   struct frame_info *this_frame = (struct frame_info *) baton;
282   struct gdbarch *gdbarch = get_frame_arch (this_frame);
283   int regnum;
284   gdb_byte *buf;
285 
286   regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
287 
288   buf = alloca (register_size (gdbarch, regnum));
289   get_frame_register (this_frame, regnum, buf);
290 
291   /* Convert the register to an integer.  This returns a LONGEST
292      rather than a CORE_ADDR, but unpack_pointer does the same thing
293      under the covers, and this makes more sense for non-pointer
294      registers.  Maybe read_reg and the associated interfaces should
295      deal with "struct value" instead of CORE_ADDR.  */
296   return unpack_long (register_type (gdbarch, regnum), buf);
297 }
298 
299 static void
300 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
301 {
302   read_memory (addr, buf, len);
303 }
304 
305 static void
306 no_get_frame_base (void *baton, gdb_byte **start, size_t *length)
307 {
308   internal_error (__FILE__, __LINE__,
309 		  _("Support for DW_OP_fbreg is unimplemented"));
310 }
311 
312 /* Helper function for execute_stack_op.  */
313 
314 static CORE_ADDR
315 no_get_frame_cfa (void *baton)
316 {
317   internal_error (__FILE__, __LINE__,
318 		  _("Support for DW_OP_call_frame_cfa is unimplemented"));
319 }
320 
321 static CORE_ADDR
322 no_get_tls_address (void *baton, CORE_ADDR offset)
323 {
324   internal_error (__FILE__, __LINE__,
325 		  _("Support for DW_OP_GNU_push_tls_address is unimplemented"));
326 }
327 
328 /* Execute the required actions for both the DW_CFA_restore and
329 DW_CFA_restore_extended instructions.  */
330 static void
331 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
332 		     struct dwarf2_frame_state *fs, int eh_frame_p)
333 {
334   ULONGEST reg;
335 
336   gdb_assert (fs->initial.reg);
337   reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
338   dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
339 
340   /* Check if this register was explicitly initialized in the
341   CIE initial instructions.  If not, default the rule to
342   UNSPECIFIED.  */
343   if (reg < fs->initial.num_regs)
344     fs->regs.reg[reg] = fs->initial.reg[reg];
345   else
346     fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
347 
348   if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
349     complaint (&symfile_complaints, _("\
350 incomplete CFI data; DW_CFA_restore unspecified\n\
351 register %s (#%d) at %s"),
352 		       gdbarch_register_name
353 		       (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
354 		       gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
355 		       paddress (gdbarch, fs->pc));
356 }
357 
358 static CORE_ADDR
359 execute_stack_op (gdb_byte *exp, ULONGEST len, int addr_size,
360 		  struct frame_info *this_frame, CORE_ADDR initial,
361 		  int initial_in_stack_memory)
362 {
363   struct dwarf_expr_context *ctx;
364   CORE_ADDR result;
365   struct cleanup *old_chain;
366 
367   ctx = new_dwarf_expr_context ();
368   old_chain = make_cleanup_free_dwarf_expr_context (ctx);
369 
370   ctx->gdbarch = get_frame_arch (this_frame);
371   ctx->addr_size = addr_size;
372   ctx->baton = this_frame;
373   ctx->read_reg = read_reg;
374   ctx->read_mem = read_mem;
375   ctx->get_frame_base = no_get_frame_base;
376   ctx->get_frame_cfa = no_get_frame_cfa;
377   ctx->get_tls_address = no_get_tls_address;
378 
379   dwarf_expr_push (ctx, initial, initial_in_stack_memory);
380   dwarf_expr_eval (ctx, exp, len);
381   result = dwarf_expr_fetch (ctx, 0);
382 
383   if (ctx->location == DWARF_VALUE_REGISTER)
384     result = read_reg (this_frame, result);
385   else if (ctx->location != DWARF_VALUE_MEMORY)
386     {
387       /* This is actually invalid DWARF, but if we ever do run across
388 	 it somehow, we might as well support it.  So, instead, report
389 	 it as unimplemented.  */
390       error (_("Not implemented: computing unwound register using explicit value operator"));
391     }
392 
393   do_cleanups (old_chain);
394 
395   return result;
396 }
397 
398 
399 static void
400 execute_cfa_program (struct dwarf2_fde *fde, gdb_byte *insn_ptr,
401 		     gdb_byte *insn_end, struct frame_info *this_frame,
402 		     struct dwarf2_frame_state *fs)
403 {
404   int eh_frame_p = fde->eh_frame_p;
405   CORE_ADDR pc = get_frame_pc (this_frame);
406   int bytes_read;
407   struct gdbarch *gdbarch = get_frame_arch (this_frame);
408   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
409 
410   while (insn_ptr < insn_end && fs->pc <= pc)
411     {
412       gdb_byte insn = *insn_ptr++;
413       ULONGEST utmp, reg;
414       LONGEST offset;
415 
416       if ((insn & 0xc0) == DW_CFA_advance_loc)
417 	fs->pc += (insn & 0x3f) * fs->code_align;
418       else if ((insn & 0xc0) == DW_CFA_offset)
419 	{
420 	  reg = insn & 0x3f;
421 	  reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
422 	  insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
423 	  offset = utmp * fs->data_align;
424 	  dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
425 	  fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
426 	  fs->regs.reg[reg].loc.offset = offset;
427 	}
428       else if ((insn & 0xc0) == DW_CFA_restore)
429 	{
430 	  reg = insn & 0x3f;
431 	  dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
432 	}
433       else
434 	{
435 	  switch (insn)
436 	    {
437 	    case DW_CFA_set_loc:
438 	      fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
439 					   fde->cie->addr_size, insn_ptr,
440 					   &bytes_read, fde->initial_location);
441 	      /* Apply the objfile offset for relocatable objects.  */
442 	      fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
443 				  SECT_OFF_TEXT (fde->cie->unit->objfile));
444 	      insn_ptr += bytes_read;
445 	      break;
446 
447 	    case DW_CFA_advance_loc1:
448 	      utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
449 	      fs->pc += utmp * fs->code_align;
450 	      insn_ptr++;
451 	      break;
452 	    case DW_CFA_advance_loc2:
453 	      utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
454 	      fs->pc += utmp * fs->code_align;
455 	      insn_ptr += 2;
456 	      break;
457 	    case DW_CFA_advance_loc4:
458 	      utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
459 	      fs->pc += utmp * fs->code_align;
460 	      insn_ptr += 4;
461 	      break;
462 
463 	    case DW_CFA_offset_extended:
464 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
465 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
466 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
467 	      offset = utmp * fs->data_align;
468 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
469 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
470 	      fs->regs.reg[reg].loc.offset = offset;
471 	      break;
472 
473 	    case DW_CFA_restore_extended:
474 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
475 	      dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
476 	      break;
477 
478 	    case DW_CFA_undefined:
479 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
480 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
481 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
482 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
483 	      break;
484 
485 	    case DW_CFA_same_value:
486 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
487 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
488 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
489 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
490 	      break;
491 
492 	    case DW_CFA_register:
493 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
494 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
495 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
496 	      utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
497 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
498 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
499 	      fs->regs.reg[reg].loc.reg = utmp;
500 	      break;
501 
502 	    case DW_CFA_remember_state:
503 	      {
504 		struct dwarf2_frame_state_reg_info *new_rs;
505 
506 		new_rs = XMALLOC (struct dwarf2_frame_state_reg_info);
507 		*new_rs = fs->regs;
508 		fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
509 		fs->regs.prev = new_rs;
510 	      }
511 	      break;
512 
513 	    case DW_CFA_restore_state:
514 	      {
515 		struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
516 
517 		if (old_rs == NULL)
518 		  {
519 		    complaint (&symfile_complaints, _("\
520 bad CFI data; mismatched DW_CFA_restore_state at %s"),
521 			       paddress (gdbarch, fs->pc));
522 		  }
523 		else
524 		  {
525 		    xfree (fs->regs.reg);
526 		    fs->regs = *old_rs;
527 		    xfree (old_rs);
528 		  }
529 	      }
530 	      break;
531 
532 	    case DW_CFA_def_cfa:
533 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
534 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
535 
536 	      if (fs->armcc_cfa_offsets_sf)
537 		utmp *= fs->data_align;
538 
539 	      fs->regs.cfa_offset = utmp;
540 	      fs->regs.cfa_how = CFA_REG_OFFSET;
541 	      break;
542 
543 	    case DW_CFA_def_cfa_register:
544 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
545 	      fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
546                                                              fs->regs.cfa_reg,
547                                                              eh_frame_p);
548 	      fs->regs.cfa_how = CFA_REG_OFFSET;
549 	      break;
550 
551 	    case DW_CFA_def_cfa_offset:
552 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
553 
554 	      if (fs->armcc_cfa_offsets_sf)
555 		utmp *= fs->data_align;
556 
557 	      fs->regs.cfa_offset = utmp;
558 	      /* cfa_how deliberately not set.  */
559 	      break;
560 
561 	    case DW_CFA_nop:
562 	      break;
563 
564 	    case DW_CFA_def_cfa_expression:
565 	      insn_ptr = read_uleb128 (insn_ptr, insn_end,
566                                        &fs->regs.cfa_exp_len);
567 	      fs->regs.cfa_exp = insn_ptr;
568 	      fs->regs.cfa_how = CFA_EXP;
569 	      insn_ptr += fs->regs.cfa_exp_len;
570 	      break;
571 
572 	    case DW_CFA_expression:
573 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
574 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
575 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
576 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
577 	      fs->regs.reg[reg].loc.exp = insn_ptr;
578 	      fs->regs.reg[reg].exp_len = utmp;
579 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
580 	      insn_ptr += utmp;
581 	      break;
582 
583 	    case DW_CFA_offset_extended_sf:
584 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
585 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
586 	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
587 	      offset *= fs->data_align;
588 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
589 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
590 	      fs->regs.reg[reg].loc.offset = offset;
591 	      break;
592 
593 	    case DW_CFA_val_offset:
594 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
595 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
596 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
597 	      offset = utmp * fs->data_align;
598 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
599 	      fs->regs.reg[reg].loc.offset = offset;
600 	      break;
601 
602 	    case DW_CFA_val_offset_sf:
603 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
604 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
605 	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
606 	      offset *= fs->data_align;
607 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
608 	      fs->regs.reg[reg].loc.offset = offset;
609 	      break;
610 
611 	    case DW_CFA_val_expression:
612 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
613 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
614 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
615 	      fs->regs.reg[reg].loc.exp = insn_ptr;
616 	      fs->regs.reg[reg].exp_len = utmp;
617 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
618 	      insn_ptr += utmp;
619 	      break;
620 
621 	    case DW_CFA_def_cfa_sf:
622 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg);
623 	      fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch,
624                                                              fs->regs.cfa_reg,
625                                                              eh_frame_p);
626 	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
627 	      fs->regs.cfa_offset = offset * fs->data_align;
628 	      fs->regs.cfa_how = CFA_REG_OFFSET;
629 	      break;
630 
631 	    case DW_CFA_def_cfa_offset_sf:
632 	      insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset);
633 	      fs->regs.cfa_offset = offset * fs->data_align;
634 	      /* cfa_how deliberately not set.  */
635 	      break;
636 
637 	    case DW_CFA_GNU_window_save:
638 	      /* This is SPARC-specific code, and contains hard-coded
639 		 constants for the register numbering scheme used by
640 		 GCC.  Rather than having a architecture-specific
641 		 operation that's only ever used by a single
642 		 architecture, we provide the implementation here.
643 		 Incidentally that's what GCC does too in its
644 		 unwinder.  */
645 	      {
646 		int size = register_size (gdbarch, 0);
647 		dwarf2_frame_state_alloc_regs (&fs->regs, 32);
648 		for (reg = 8; reg < 16; reg++)
649 		  {
650 		    fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
651 		    fs->regs.reg[reg].loc.reg = reg + 16;
652 		  }
653 		for (reg = 16; reg < 32; reg++)
654 		  {
655 		    fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
656 		    fs->regs.reg[reg].loc.offset = (reg - 16) * size;
657 		  }
658 	      }
659 	      break;
660 
661 	    case DW_CFA_GNU_args_size:
662 	      /* Ignored.  */
663 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp);
664 	      break;
665 
666 	    case DW_CFA_GNU_negative_offset_extended:
667 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &reg);
668 	      reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
669 	      insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset);
670 	      offset *= fs->data_align;
671 	      dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
672 	      fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
673 	      fs->regs.reg[reg].loc.offset = -offset;
674 	      break;
675 
676 	    default:
677 	      internal_error (__FILE__, __LINE__, _("Unknown CFI encountered."));
678 	    }
679 	}
680     }
681 
682   /* Don't allow remember/restore between CIE and FDE programs.  */
683   dwarf2_frame_state_free_regs (fs->regs.prev);
684   fs->regs.prev = NULL;
685 }
686 
687 
688 /* Architecture-specific operations.  */
689 
690 /* Per-architecture data key.  */
691 static struct gdbarch_data *dwarf2_frame_data;
692 
693 struct dwarf2_frame_ops
694 {
695   /* Pre-initialize the register state REG for register REGNUM.  */
696   void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
697 		    struct frame_info *);
698 
699   /* Check whether the THIS_FRAME is a signal trampoline.  */
700   int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
701 
702   /* Convert .eh_frame register number to DWARF register number, or
703      adjust .debug_frame register number.  */
704   int (*adjust_regnum) (struct gdbarch *, int, int);
705 };
706 
707 /* Default architecture-specific register state initialization
708    function.  */
709 
710 static void
711 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
712 			       struct dwarf2_frame_state_reg *reg,
713 			       struct frame_info *this_frame)
714 {
715   /* If we have a register that acts as a program counter, mark it as
716      a destination for the return address.  If we have a register that
717      serves as the stack pointer, arrange for it to be filled with the
718      call frame address (CFA).  The other registers are marked as
719      unspecified.
720 
721      We copy the return address to the program counter, since many
722      parts in GDB assume that it is possible to get the return address
723      by unwinding the program counter register.  However, on ISA's
724      with a dedicated return address register, the CFI usually only
725      contains information to unwind that return address register.
726 
727      The reason we're treating the stack pointer special here is
728      because in many cases GCC doesn't emit CFI for the stack pointer
729      and implicitly assumes that it is equal to the CFA.  This makes
730      some sense since the DWARF specification (version 3, draft 8,
731      p. 102) says that:
732 
733      "Typically, the CFA is defined to be the value of the stack
734      pointer at the call site in the previous frame (which may be
735      different from its value on entry to the current frame)."
736 
737      However, this isn't true for all platforms supported by GCC
738      (e.g. IBM S/390 and zSeries).  Those architectures should provide
739      their own architecture-specific initialization function.  */
740 
741   if (regnum == gdbarch_pc_regnum (gdbarch))
742     reg->how = DWARF2_FRAME_REG_RA;
743   else if (regnum == gdbarch_sp_regnum (gdbarch))
744     reg->how = DWARF2_FRAME_REG_CFA;
745 }
746 
747 /* Return a default for the architecture-specific operations.  */
748 
749 static void *
750 dwarf2_frame_init (struct obstack *obstack)
751 {
752   struct dwarf2_frame_ops *ops;
753 
754   ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
755   ops->init_reg = dwarf2_frame_default_init_reg;
756   return ops;
757 }
758 
759 /* Set the architecture-specific register state initialization
760    function for GDBARCH to INIT_REG.  */
761 
762 void
763 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
764 			   void (*init_reg) (struct gdbarch *, int,
765 					     struct dwarf2_frame_state_reg *,
766 					     struct frame_info *))
767 {
768   struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
769 
770   ops->init_reg = init_reg;
771 }
772 
773 /* Pre-initialize the register state REG for register REGNUM.  */
774 
775 static void
776 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
777 		       struct dwarf2_frame_state_reg *reg,
778 		       struct frame_info *this_frame)
779 {
780   struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
781 
782   ops->init_reg (gdbarch, regnum, reg, this_frame);
783 }
784 
785 /* Set the architecture-specific signal trampoline recognition
786    function for GDBARCH to SIGNAL_FRAME_P.  */
787 
788 void
789 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
790 				 int (*signal_frame_p) (struct gdbarch *,
791 							struct frame_info *))
792 {
793   struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
794 
795   ops->signal_frame_p = signal_frame_p;
796 }
797 
798 /* Query the architecture-specific signal frame recognizer for
799    THIS_FRAME.  */
800 
801 static int
802 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
803 			     struct frame_info *this_frame)
804 {
805   struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
806 
807   if (ops->signal_frame_p == NULL)
808     return 0;
809   return ops->signal_frame_p (gdbarch, this_frame);
810 }
811 
812 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
813    register numbers.  */
814 
815 void
816 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
817 				int (*adjust_regnum) (struct gdbarch *,
818 						      int, int))
819 {
820   struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
821 
822   ops->adjust_regnum = adjust_regnum;
823 }
824 
825 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
826    register.  */
827 
828 static int
829 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p)
830 {
831   struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
832 
833   if (ops->adjust_regnum == NULL)
834     return regnum;
835   return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
836 }
837 
838 static void
839 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
840 			  struct dwarf2_fde *fde)
841 {
842   static const char *arm_idents[] = {
843     "ARM C Compiler, ADS",
844     "Thumb C Compiler, ADS",
845     "ARM C++ Compiler, ADS",
846     "Thumb C++ Compiler, ADS",
847     "ARM/Thumb C/C++ Compiler, RVCT"
848   };
849   int i;
850 
851   struct symtab *s;
852 
853   s = find_pc_symtab (fs->pc);
854   if (s == NULL || s->producer == NULL)
855     return;
856 
857   for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
858     if (strncmp (s->producer, arm_idents[i], strlen (arm_idents[i])) == 0)
859       {
860 	if (fde->cie->version == 1)
861 	  fs->armcc_cfa_offsets_sf = 1;
862 
863 	if (fde->cie->version == 1)
864 	  fs->armcc_cfa_offsets_reversed = 1;
865 
866 	/* The reversed offset problem is present in some compilers
867 	   using DWARF3, but it was eventually fixed.  Check the ARM
868 	   defined augmentations, which are in the format "armcc" followed
869 	   by a list of one-character options.  The "+" option means
870 	   this problem is fixed (no quirk needed).  If the armcc
871 	   augmentation is missing, the quirk is needed.  */
872 	if (fde->cie->version == 3
873 	    && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
874 		|| strchr (fde->cie->augmentation + 5, '+') == NULL))
875 	  fs->armcc_cfa_offsets_reversed = 1;
876 
877 	return;
878       }
879 }
880 
881 
882 struct dwarf2_frame_cache
883 {
884   /* DWARF Call Frame Address.  */
885   CORE_ADDR cfa;
886 
887   /* Set if the return address column was marked as undefined.  */
888   int undefined_retaddr;
889 
890   /* Saved registers, indexed by GDB register number, not by DWARF
891      register number.  */
892   struct dwarf2_frame_state_reg *reg;
893 
894   /* Return address register.  */
895   struct dwarf2_frame_state_reg retaddr_reg;
896 
897   /* Target address size in bytes.  */
898   int addr_size;
899 };
900 
901 static struct dwarf2_frame_cache *
902 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
903 {
904   struct cleanup *old_chain;
905   struct gdbarch *gdbarch = get_frame_arch (this_frame);
906   const int num_regs = gdbarch_num_regs (gdbarch)
907 		       + gdbarch_num_pseudo_regs (gdbarch);
908   struct dwarf2_frame_cache *cache;
909   struct dwarf2_frame_state *fs;
910   struct dwarf2_fde *fde;
911 
912   if (*this_cache)
913     return *this_cache;
914 
915   /* Allocate a new cache.  */
916   cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
917   cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
918 
919   /* Allocate and initialize the frame state.  */
920   fs = XMALLOC (struct dwarf2_frame_state);
921   memset (fs, 0, sizeof (struct dwarf2_frame_state));
922   old_chain = make_cleanup (dwarf2_frame_state_free, fs);
923 
924   /* Unwind the PC.
925 
926      Note that if the next frame is never supposed to return (i.e. a call
927      to abort), the compiler might optimize away the instruction at
928      its return address.  As a result the return address will
929      point at some random instruction, and the CFI for that
930      instruction is probably worthless to us.  GCC's unwinder solves
931      this problem by substracting 1 from the return address to get an
932      address in the middle of a presumed call instruction (or the
933      instruction in the associated delay slot).  This should only be
934      done for "normal" frames and not for resume-type frames (signal
935      handlers, sentinel frames, dummy frames).  The function
936      get_frame_address_in_block does just this.  It's not clear how
937      reliable the method is though; there is the potential for the
938      register state pre-call being different to that on return.  */
939   fs->pc = get_frame_address_in_block (this_frame);
940 
941   /* Find the correct FDE.  */
942   fde = dwarf2_frame_find_fde (&fs->pc);
943   gdb_assert (fde != NULL);
944 
945   /* Extract any interesting information from the CIE.  */
946   fs->data_align = fde->cie->data_alignment_factor;
947   fs->code_align = fde->cie->code_alignment_factor;
948   fs->retaddr_column = fde->cie->return_address_register;
949   cache->addr_size = fde->cie->addr_size;
950 
951   /* Check for "quirks" - known bugs in producers.  */
952   dwarf2_frame_find_quirks (fs, fde);
953 
954   /* First decode all the insns in the CIE.  */
955   execute_cfa_program (fde, fde->cie->initial_instructions,
956 		       fde->cie->end, this_frame, fs);
957 
958   /* Save the initialized register set.  */
959   fs->initial = fs->regs;
960   fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
961 
962   /* Then decode the insns in the FDE up to our target PC.  */
963   execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs);
964 
965   /* Calculate the CFA.  */
966   switch (fs->regs.cfa_how)
967     {
968     case CFA_REG_OFFSET:
969       cache->cfa = read_reg (this_frame, fs->regs.cfa_reg);
970       if (fs->armcc_cfa_offsets_reversed)
971 	cache->cfa -= fs->regs.cfa_offset;
972       else
973 	cache->cfa += fs->regs.cfa_offset;
974       break;
975 
976     case CFA_EXP:
977       cache->cfa =
978 	execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
979 			  cache->addr_size, this_frame, 0, 0);
980       break;
981 
982     default:
983       internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
984     }
985 
986   /* Initialize the register state.  */
987   {
988     int regnum;
989 
990     for (regnum = 0; regnum < num_regs; regnum++)
991       dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
992   }
993 
994   /* Go through the DWARF2 CFI generated table and save its register
995      location information in the cache.  Note that we don't skip the
996      return address column; it's perfectly all right for it to
997      correspond to a real register.  If it doesn't correspond to a
998      real register, or if we shouldn't treat it as such,
999      gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1000      the range [0, gdbarch_num_regs).  */
1001   {
1002     int column;		/* CFI speak for "register number".  */
1003 
1004     for (column = 0; column < fs->regs.num_regs; column++)
1005       {
1006 	/* Use the GDB register number as the destination index.  */
1007 	int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1008 
1009 	/* If there's no corresponding GDB register, ignore it.  */
1010 	if (regnum < 0 || regnum >= num_regs)
1011 	  continue;
1012 
1013 	/* NOTE: cagney/2003-09-05: CFI should specify the disposition
1014 	   of all debug info registers.  If it doesn't, complain (but
1015 	   not too loudly).  It turns out that GCC assumes that an
1016 	   unspecified register implies "same value" when CFI (draft
1017 	   7) specifies nothing at all.  Such a register could equally
1018 	   be interpreted as "undefined".  Also note that this check
1019 	   isn't sufficient; it only checks that all registers in the
1020 	   range [0 .. max column] are specified, and won't detect
1021 	   problems when a debug info register falls outside of the
1022 	   table.  We need a way of iterating through all the valid
1023 	   DWARF2 register numbers.  */
1024 	if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1025 	  {
1026 	    if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1027 	      complaint (&symfile_complaints, _("\
1028 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1029 			 gdbarch_register_name (gdbarch, regnum),
1030 			 paddress (gdbarch, fs->pc));
1031 	  }
1032 	else
1033 	  cache->reg[regnum] = fs->regs.reg[column];
1034       }
1035   }
1036 
1037   /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1038      we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules.  */
1039   {
1040     int regnum;
1041 
1042     for (regnum = 0; regnum < num_regs; regnum++)
1043       {
1044 	if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1045 	    || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1046 	  {
1047 	    struct dwarf2_frame_state_reg *retaddr_reg =
1048 	      &fs->regs.reg[fs->retaddr_column];
1049 
1050 	    /* It seems rather bizarre to specify an "empty" column as
1051                the return adress column.  However, this is exactly
1052                what GCC does on some targets.  It turns out that GCC
1053                assumes that the return address can be found in the
1054                register corresponding to the return address column.
1055                Incidentally, that's how we should treat a return
1056                address column specifying "same value" too.  */
1057 	    if (fs->retaddr_column < fs->regs.num_regs
1058 		&& retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1059 		&& retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1060 	      {
1061 		if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1062 		  cache->reg[regnum] = *retaddr_reg;
1063 		else
1064 		  cache->retaddr_reg = *retaddr_reg;
1065 	      }
1066 	    else
1067 	      {
1068 		if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1069 		  {
1070 		    cache->reg[regnum].loc.reg = fs->retaddr_column;
1071 		    cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1072 		  }
1073 		else
1074 		  {
1075 		    cache->retaddr_reg.loc.reg = fs->retaddr_column;
1076 		    cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1077 		  }
1078 	      }
1079 	  }
1080       }
1081   }
1082 
1083   if (fs->retaddr_column < fs->regs.num_regs
1084       && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1085     cache->undefined_retaddr = 1;
1086 
1087   do_cleanups (old_chain);
1088 
1089   *this_cache = cache;
1090   return cache;
1091 }
1092 
1093 static void
1094 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1095 		      struct frame_id *this_id)
1096 {
1097   struct dwarf2_frame_cache *cache =
1098     dwarf2_frame_cache (this_frame, this_cache);
1099 
1100   if (cache->undefined_retaddr)
1101     return;
1102 
1103   (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1104 }
1105 
1106 static struct value *
1107 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1108 			    int regnum)
1109 {
1110   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1111   struct dwarf2_frame_cache *cache =
1112     dwarf2_frame_cache (this_frame, this_cache);
1113   CORE_ADDR addr;
1114   int realnum;
1115 
1116   switch (cache->reg[regnum].how)
1117     {
1118     case DWARF2_FRAME_REG_UNDEFINED:
1119       /* If CFI explicitly specified that the value isn't defined,
1120 	 mark it as optimized away; the value isn't available.  */
1121       return frame_unwind_got_optimized (this_frame, regnum);
1122 
1123     case DWARF2_FRAME_REG_SAVED_OFFSET:
1124       addr = cache->cfa + cache->reg[regnum].loc.offset;
1125       return frame_unwind_got_memory (this_frame, regnum, addr);
1126 
1127     case DWARF2_FRAME_REG_SAVED_REG:
1128       realnum
1129 	= gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1130       return frame_unwind_got_register (this_frame, regnum, realnum);
1131 
1132     case DWARF2_FRAME_REG_SAVED_EXP:
1133       addr = execute_stack_op (cache->reg[regnum].loc.exp,
1134 			       cache->reg[regnum].exp_len,
1135 			       cache->addr_size, this_frame, cache->cfa, 1);
1136       return frame_unwind_got_memory (this_frame, regnum, addr);
1137 
1138     case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1139       addr = cache->cfa + cache->reg[regnum].loc.offset;
1140       return frame_unwind_got_constant (this_frame, regnum, addr);
1141 
1142     case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1143       addr = execute_stack_op (cache->reg[regnum].loc.exp,
1144 			       cache->reg[regnum].exp_len,
1145 			       cache->addr_size, this_frame, cache->cfa, 1);
1146       return frame_unwind_got_constant (this_frame, regnum, addr);
1147 
1148     case DWARF2_FRAME_REG_UNSPECIFIED:
1149       /* GCC, in its infinite wisdom decided to not provide unwind
1150 	 information for registers that are "same value".  Since
1151 	 DWARF2 (3 draft 7) doesn't define such behavior, said
1152 	 registers are actually undefined (which is different to CFI
1153 	 "undefined").  Code above issues a complaint about this.
1154 	 Here just fudge the books, assume GCC, and that the value is
1155 	 more inner on the stack.  */
1156       return frame_unwind_got_register (this_frame, regnum, regnum);
1157 
1158     case DWARF2_FRAME_REG_SAME_VALUE:
1159       return frame_unwind_got_register (this_frame, regnum, regnum);
1160 
1161     case DWARF2_FRAME_REG_CFA:
1162       return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1163 
1164     case DWARF2_FRAME_REG_CFA_OFFSET:
1165       addr = cache->cfa + cache->reg[regnum].loc.offset;
1166       return frame_unwind_got_address (this_frame, regnum, addr);
1167 
1168     case DWARF2_FRAME_REG_RA_OFFSET:
1169       addr = cache->reg[regnum].loc.offset;
1170       regnum = gdbarch_dwarf2_reg_to_regnum
1171 	(gdbarch, cache->retaddr_reg.loc.reg);
1172       addr += get_frame_register_unsigned (this_frame, regnum);
1173       return frame_unwind_got_address (this_frame, regnum, addr);
1174 
1175     case DWARF2_FRAME_REG_FN:
1176       return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1177 
1178     default:
1179       internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1180     }
1181 }
1182 
1183 static int
1184 dwarf2_frame_sniffer (const struct frame_unwind *self,
1185 		      struct frame_info *this_frame, void **this_cache)
1186 {
1187   /* Grab an address that is guarenteed to reside somewhere within the
1188      function.  get_frame_pc(), with a no-return next function, can
1189      end up returning something past the end of this function's body.
1190      If the frame we're sniffing for is a signal frame whose start
1191      address is placed on the stack by the OS, its FDE must
1192      extend one byte before its start address or we could potentially
1193      select the FDE of the previous function.  */
1194   CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1195   struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr);
1196   if (!fde)
1197     return 0;
1198 
1199   /* On some targets, signal trampolines may have unwind information.
1200      We need to recognize them so that we set the frame type
1201      correctly.  */
1202 
1203   if (fde->cie->signal_frame
1204       || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1205 				      this_frame))
1206     return self->type == SIGTRAMP_FRAME;
1207 
1208   return self->type != SIGTRAMP_FRAME;
1209 }
1210 
1211 static const struct frame_unwind dwarf2_frame_unwind =
1212 {
1213   NORMAL_FRAME,
1214   dwarf2_frame_this_id,
1215   dwarf2_frame_prev_register,
1216   NULL,
1217   dwarf2_frame_sniffer
1218 };
1219 
1220 static const struct frame_unwind dwarf2_signal_frame_unwind =
1221 {
1222   SIGTRAMP_FRAME,
1223   dwarf2_frame_this_id,
1224   dwarf2_frame_prev_register,
1225   NULL,
1226   dwarf2_frame_sniffer
1227 };
1228 
1229 /* Append the DWARF-2 frame unwinders to GDBARCH's list.  */
1230 
1231 void
1232 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1233 {
1234   frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1235   frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1236 }
1237 
1238 
1239 /* There is no explicitly defined relationship between the CFA and the
1240    location of frame's local variables and arguments/parameters.
1241    Therefore, frame base methods on this page should probably only be
1242    used as a last resort, just to avoid printing total garbage as a
1243    response to the "info frame" command.  */
1244 
1245 static CORE_ADDR
1246 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1247 {
1248   struct dwarf2_frame_cache *cache =
1249     dwarf2_frame_cache (this_frame, this_cache);
1250 
1251   return cache->cfa;
1252 }
1253 
1254 static const struct frame_base dwarf2_frame_base =
1255 {
1256   &dwarf2_frame_unwind,
1257   dwarf2_frame_base_address,
1258   dwarf2_frame_base_address,
1259   dwarf2_frame_base_address
1260 };
1261 
1262 const struct frame_base *
1263 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1264 {
1265   CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1266   if (dwarf2_frame_find_fde (&block_addr))
1267     return &dwarf2_frame_base;
1268 
1269   return NULL;
1270 }
1271 
1272 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1273    the DWARF unwinder.  This is used to implement
1274    DW_OP_call_frame_cfa.  */
1275 
1276 CORE_ADDR
1277 dwarf2_frame_cfa (struct frame_info *this_frame)
1278 {
1279   while (get_frame_type (this_frame) == INLINE_FRAME)
1280     this_frame = get_prev_frame (this_frame);
1281   /* This restriction could be lifted if other unwinders are known to
1282      compute the frame base in a way compatible with the DWARF
1283      unwinder.  */
1284   if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind))
1285     error (_("can't compute CFA for this frame"));
1286   return get_frame_base (this_frame);
1287 }
1288 
1289 const struct objfile_data *dwarf2_frame_objfile_data;
1290 
1291 static unsigned int
1292 read_1_byte (bfd *abfd, gdb_byte *buf)
1293 {
1294   return bfd_get_8 (abfd, buf);
1295 }
1296 
1297 static unsigned int
1298 read_4_bytes (bfd *abfd, gdb_byte *buf)
1299 {
1300   return bfd_get_32 (abfd, buf);
1301 }
1302 
1303 static ULONGEST
1304 read_8_bytes (bfd *abfd, gdb_byte *buf)
1305 {
1306   return bfd_get_64 (abfd, buf);
1307 }
1308 
1309 static ULONGEST
1310 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1311 {
1312   ULONGEST result;
1313   unsigned int num_read;
1314   int shift;
1315   gdb_byte byte;
1316 
1317   result = 0;
1318   shift = 0;
1319   num_read = 0;
1320 
1321   do
1322     {
1323       byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1324       buf++;
1325       num_read++;
1326       result |= ((byte & 0x7f) << shift);
1327       shift += 7;
1328     }
1329   while (byte & 0x80);
1330 
1331   *bytes_read_ptr = num_read;
1332 
1333   return result;
1334 }
1335 
1336 static LONGEST
1337 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1338 {
1339   LONGEST result;
1340   int shift;
1341   unsigned int num_read;
1342   gdb_byte byte;
1343 
1344   result = 0;
1345   shift = 0;
1346   num_read = 0;
1347 
1348   do
1349     {
1350       byte = bfd_get_8 (abfd, (bfd_byte *) buf);
1351       buf++;
1352       num_read++;
1353       result |= ((byte & 0x7f) << shift);
1354       shift += 7;
1355     }
1356   while (byte & 0x80);
1357 
1358   if (shift < 8 * sizeof (result) && (byte & 0x40))
1359     result |= -(((LONGEST)1) << shift);
1360 
1361   *bytes_read_ptr = num_read;
1362 
1363   return result;
1364 }
1365 
1366 static ULONGEST
1367 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
1368 {
1369   LONGEST result;
1370 
1371   result = bfd_get_32 (abfd, buf);
1372   if (result == 0xffffffff)
1373     {
1374       result = bfd_get_64 (abfd, buf + 4);
1375       *bytes_read_ptr = 12;
1376     }
1377   else
1378     *bytes_read_ptr = 4;
1379 
1380   return result;
1381 }
1382 
1383 
1384 /* Pointer encoding helper functions.  */
1385 
1386 /* GCC supports exception handling based on DWARF2 CFI.  However, for
1387    technical reasons, it encodes addresses in its FDE's in a different
1388    way.  Several "pointer encodings" are supported.  The encoding
1389    that's used for a particular FDE is determined by the 'R'
1390    augmentation in the associated CIE.  The argument of this
1391    augmentation is a single byte.
1392 
1393    The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1394    LEB128.  This is encoded in bits 0, 1 and 2.  Bit 3 encodes whether
1395    the address is signed or unsigned.  Bits 4, 5 and 6 encode how the
1396    address should be interpreted (absolute, relative to the current
1397    position in the FDE, ...).  Bit 7, indicates that the address
1398    should be dereferenced.  */
1399 
1400 static gdb_byte
1401 encoding_for_size (unsigned int size)
1402 {
1403   switch (size)
1404     {
1405     case 2:
1406       return DW_EH_PE_udata2;
1407     case 4:
1408       return DW_EH_PE_udata4;
1409     case 8:
1410       return DW_EH_PE_udata8;
1411     default:
1412       internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1413     }
1414 }
1415 
1416 static CORE_ADDR
1417 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1418 		    int ptr_len, gdb_byte *buf, unsigned int *bytes_read_ptr,
1419 		    CORE_ADDR func_base)
1420 {
1421   ptrdiff_t offset;
1422   CORE_ADDR base;
1423 
1424   /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1425      FDE's.  */
1426   if (encoding & DW_EH_PE_indirect)
1427     internal_error (__FILE__, __LINE__,
1428 		    _("Unsupported encoding: DW_EH_PE_indirect"));
1429 
1430   *bytes_read_ptr = 0;
1431 
1432   switch (encoding & 0x70)
1433     {
1434     case DW_EH_PE_absptr:
1435       base = 0;
1436       break;
1437     case DW_EH_PE_pcrel:
1438       base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1439       base += (buf - unit->dwarf_frame_buffer);
1440       break;
1441     case DW_EH_PE_datarel:
1442       base = unit->dbase;
1443       break;
1444     case DW_EH_PE_textrel:
1445       base = unit->tbase;
1446       break;
1447     case DW_EH_PE_funcrel:
1448       base = func_base;
1449       break;
1450     case DW_EH_PE_aligned:
1451       base = 0;
1452       offset = buf - unit->dwarf_frame_buffer;
1453       if ((offset % ptr_len) != 0)
1454 	{
1455 	  *bytes_read_ptr = ptr_len - (offset % ptr_len);
1456 	  buf += *bytes_read_ptr;
1457 	}
1458       break;
1459     default:
1460       internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1461     }
1462 
1463   if ((encoding & 0x07) == 0x00)
1464     {
1465       encoding |= encoding_for_size (ptr_len);
1466       if (bfd_get_sign_extend_vma (unit->abfd))
1467 	encoding |= DW_EH_PE_signed;
1468     }
1469 
1470   switch (encoding & 0x0f)
1471     {
1472     case DW_EH_PE_uleb128:
1473       {
1474 	ULONGEST value;
1475 	gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1476 	*bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf;
1477 	return base + value;
1478       }
1479     case DW_EH_PE_udata2:
1480       *bytes_read_ptr += 2;
1481       return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1482     case DW_EH_PE_udata4:
1483       *bytes_read_ptr += 4;
1484       return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1485     case DW_EH_PE_udata8:
1486       *bytes_read_ptr += 8;
1487       return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1488     case DW_EH_PE_sleb128:
1489       {
1490 	LONGEST value;
1491 	gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1492 	*bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf;
1493 	return base + value;
1494       }
1495     case DW_EH_PE_sdata2:
1496       *bytes_read_ptr += 2;
1497       return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1498     case DW_EH_PE_sdata4:
1499       *bytes_read_ptr += 4;
1500       return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1501     case DW_EH_PE_sdata8:
1502       *bytes_read_ptr += 8;
1503       return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1504     default:
1505       internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding"));
1506     }
1507 }
1508 
1509 
1510 static int
1511 bsearch_cie_cmp (const void *key, const void *element)
1512 {
1513   ULONGEST cie_pointer = *(ULONGEST *) key;
1514   struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1515 
1516   if (cie_pointer == cie->cie_pointer)
1517     return 0;
1518 
1519   return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1520 }
1521 
1522 /* Find CIE with the given CIE_POINTER in CIE_TABLE.  */
1523 static struct dwarf2_cie *
1524 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1525 {
1526   struct dwarf2_cie **p_cie;
1527 
1528   p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1529                    sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1530   if (p_cie != NULL)
1531     return *p_cie;
1532   return NULL;
1533 }
1534 
1535 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it.  */
1536 static void
1537 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1538 {
1539   const int n = cie_table->num_entries;
1540 
1541   gdb_assert (n < 1
1542               || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1543 
1544   cie_table->entries =
1545       xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1546   cie_table->entries[n] = cie;
1547   cie_table->num_entries = n + 1;
1548 }
1549 
1550 static int
1551 bsearch_fde_cmp (const void *key, const void *element)
1552 {
1553   CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1554   struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1555   if (seek_pc < fde->initial_location)
1556     return -1;
1557   if (seek_pc < fde->initial_location + fde->address_range)
1558     return 0;
1559   return 1;
1560 }
1561 
1562 /* Find the FDE for *PC.  Return a pointer to the FDE, and store the
1563    inital location associated with it into *PC.  */
1564 
1565 static struct dwarf2_fde *
1566 dwarf2_frame_find_fde (CORE_ADDR *pc)
1567 {
1568   struct objfile *objfile;
1569 
1570   ALL_OBJFILES (objfile)
1571     {
1572       struct dwarf2_fde_table *fde_table;
1573       struct dwarf2_fde **p_fde;
1574       CORE_ADDR offset;
1575       CORE_ADDR seek_pc;
1576 
1577       fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1578       if (fde_table == NULL)
1579 	continue;
1580 
1581       gdb_assert (objfile->section_offsets);
1582       offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1583 
1584       gdb_assert (fde_table->num_entries > 0);
1585       if (*pc < offset + fde_table->entries[0]->initial_location)
1586         continue;
1587 
1588       seek_pc = *pc - offset;
1589       p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1590                        sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1591       if (p_fde != NULL)
1592         {
1593           *pc = (*p_fde)->initial_location + offset;
1594           return *p_fde;
1595         }
1596     }
1597   return NULL;
1598 }
1599 
1600 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it.  */
1601 static void
1602 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1603 {
1604   if (fde->address_range == 0)
1605     /* Discard useless FDEs.  */
1606     return;
1607 
1608   fde_table->num_entries += 1;
1609   fde_table->entries =
1610       xrealloc (fde_table->entries,
1611                 fde_table->num_entries * sizeof (fde_table->entries[0]));
1612   fde_table->entries[fde_table->num_entries - 1] = fde;
1613 }
1614 
1615 #ifdef CC_HAS_LONG_LONG
1616 #define DW64_CIE_ID 0xffffffffffffffffULL
1617 #else
1618 #define DW64_CIE_ID ~0
1619 #endif
1620 
1621 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start,
1622 				     int eh_frame_p,
1623                                      struct dwarf2_cie_table *cie_table,
1624                                      struct dwarf2_fde_table *fde_table);
1625 
1626 /* Decode the next CIE or FDE.  Return NULL if invalid input, otherwise
1627    the next byte to be processed.  */
1628 static gdb_byte *
1629 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1630                       struct dwarf2_cie_table *cie_table,
1631                       struct dwarf2_fde_table *fde_table)
1632 {
1633   struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1634   gdb_byte *buf, *end;
1635   LONGEST length;
1636   unsigned int bytes_read;
1637   int dwarf64_p;
1638   ULONGEST cie_id;
1639   ULONGEST cie_pointer;
1640 
1641   buf = start;
1642   length = read_initial_length (unit->abfd, buf, &bytes_read);
1643   buf += bytes_read;
1644   end = buf + length;
1645 
1646   /* Are we still within the section? */
1647   if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1648     return NULL;
1649 
1650   if (length == 0)
1651     return end;
1652 
1653   /* Distinguish between 32 and 64-bit encoded frame info.  */
1654   dwarf64_p = (bytes_read == 12);
1655 
1656   /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs.  */
1657   if (eh_frame_p)
1658     cie_id = 0;
1659   else if (dwarf64_p)
1660     cie_id = DW64_CIE_ID;
1661   else
1662     cie_id = DW_CIE_ID;
1663 
1664   if (dwarf64_p)
1665     {
1666       cie_pointer = read_8_bytes (unit->abfd, buf);
1667       buf += 8;
1668     }
1669   else
1670     {
1671       cie_pointer = read_4_bytes (unit->abfd, buf);
1672       buf += 4;
1673     }
1674 
1675   if (cie_pointer == cie_id)
1676     {
1677       /* This is a CIE.  */
1678       struct dwarf2_cie *cie;
1679       char *augmentation;
1680       unsigned int cie_version;
1681 
1682       /* Record the offset into the .debug_frame section of this CIE.  */
1683       cie_pointer = start - unit->dwarf_frame_buffer;
1684 
1685       /* Check whether we've already read it.  */
1686       if (find_cie (cie_table, cie_pointer))
1687 	return end;
1688 
1689       cie = (struct dwarf2_cie *)
1690 	obstack_alloc (&unit->objfile->objfile_obstack,
1691 		       sizeof (struct dwarf2_cie));
1692       cie->initial_instructions = NULL;
1693       cie->cie_pointer = cie_pointer;
1694 
1695       /* The encoding for FDE's in a normal .debug_frame section
1696          depends on the target address size.  */
1697       cie->encoding = DW_EH_PE_absptr;
1698 
1699       /* The target address size.  For .eh_frame FDEs this is considered
1700 	 equal to the size of a target pointer.  For .dwarf_frame FDEs,
1701 	 this is supposed to be the target address size from the associated
1702 	 CU header.  FIXME: We do not have a good way to determine the
1703 	 latter.  Always use the target pointer size for now.  */
1704       cie->addr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1705 
1706       /* We'll determine the final value later, but we need to
1707 	 initialize it conservatively.  */
1708       cie->signal_frame = 0;
1709 
1710       /* Check version number.  */
1711       cie_version = read_1_byte (unit->abfd, buf);
1712       if (cie_version != 1 && cie_version != 3)
1713 	return NULL;
1714       cie->version = cie_version;
1715       buf += 1;
1716 
1717       /* Interpret the interesting bits of the augmentation.  */
1718       cie->augmentation = augmentation = (char *) buf;
1719       buf += (strlen (augmentation) + 1);
1720 
1721       /* Ignore armcc augmentations.  We only use them for quirks,
1722 	 and that doesn't happen until later.  */
1723       if (strncmp (augmentation, "armcc", 5) == 0)
1724 	augmentation += strlen (augmentation);
1725 
1726       /* The GCC 2.x "eh" augmentation has a pointer immediately
1727          following the augmentation string, so it must be handled
1728          first.  */
1729       if (augmentation[0] == 'e' && augmentation[1] == 'h')
1730 	{
1731 	  /* Skip.  */
1732 	  buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1733 	  augmentation += 2;
1734 	}
1735 
1736       cie->code_alignment_factor =
1737 	read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1738       buf += bytes_read;
1739 
1740       cie->data_alignment_factor =
1741 	read_signed_leb128 (unit->abfd, buf, &bytes_read);
1742       buf += bytes_read;
1743 
1744       if (cie_version == 1)
1745 	{
1746 	  cie->return_address_register = read_1_byte (unit->abfd, buf);
1747 	  bytes_read = 1;
1748 	}
1749       else
1750 	cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf,
1751 							     &bytes_read);
1752       cie->return_address_register
1753 	= dwarf2_frame_adjust_regnum (gdbarch,
1754 				      cie->return_address_register,
1755 				      eh_frame_p);
1756 
1757       buf += bytes_read;
1758 
1759       cie->saw_z_augmentation = (*augmentation == 'z');
1760       if (cie->saw_z_augmentation)
1761 	{
1762 	  ULONGEST length;
1763 
1764 	  length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1765 	  buf += bytes_read;
1766 	  if (buf > end)
1767 	    return NULL;
1768 	  cie->initial_instructions = buf + length;
1769 	  augmentation++;
1770 	}
1771 
1772       while (*augmentation)
1773 	{
1774 	  /* "L" indicates a byte showing how the LSDA pointer is encoded.  */
1775 	  if (*augmentation == 'L')
1776 	    {
1777 	      /* Skip.  */
1778 	      buf++;
1779 	      augmentation++;
1780 	    }
1781 
1782 	  /* "R" indicates a byte indicating how FDE addresses are encoded.  */
1783 	  else if (*augmentation == 'R')
1784 	    {
1785 	      cie->encoding = *buf++;
1786 	      augmentation++;
1787 	    }
1788 
1789 	  /* "P" indicates a personality routine in the CIE augmentation.  */
1790 	  else if (*augmentation == 'P')
1791 	    {
1792 	      /* Skip.  Avoid indirection since we throw away the result.  */
1793 	      gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
1794 	      read_encoded_value (unit, encoding, cie->addr_size,
1795 				  buf, &bytes_read, 0);
1796 	      buf += bytes_read;
1797 	      augmentation++;
1798 	    }
1799 
1800 	  /* "S" indicates a signal frame, such that the return
1801 	     address must not be decremented to locate the call frame
1802 	     info for the previous frame; it might even be the first
1803 	     instruction of a function, so decrementing it would take
1804 	     us to a different function.  */
1805 	  else if (*augmentation == 'S')
1806 	    {
1807 	      cie->signal_frame = 1;
1808 	      augmentation++;
1809 	    }
1810 
1811 	  /* Otherwise we have an unknown augmentation.  Assume that either
1812 	     there is no augmentation data, or we saw a 'z' prefix.  */
1813 	  else
1814 	    {
1815 	      if (cie->initial_instructions)
1816 		buf = cie->initial_instructions;
1817 	      break;
1818 	    }
1819 	}
1820 
1821       cie->initial_instructions = buf;
1822       cie->end = end;
1823       cie->unit = unit;
1824 
1825       add_cie (cie_table, cie);
1826     }
1827   else
1828     {
1829       /* This is a FDE.  */
1830       struct dwarf2_fde *fde;
1831 
1832       /* In an .eh_frame section, the CIE pointer is the delta between the
1833 	 address within the FDE where the CIE pointer is stored and the
1834 	 address of the CIE.  Convert it to an offset into the .eh_frame
1835 	 section.  */
1836       if (eh_frame_p)
1837 	{
1838 	  cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1839 	  cie_pointer -= (dwarf64_p ? 8 : 4);
1840 	}
1841 
1842       /* In either case, validate the result is still within the section.  */
1843       if (cie_pointer >= unit->dwarf_frame_size)
1844 	return NULL;
1845 
1846       fde = (struct dwarf2_fde *)
1847 	obstack_alloc (&unit->objfile->objfile_obstack,
1848 		       sizeof (struct dwarf2_fde));
1849       fde->cie = find_cie (cie_table, cie_pointer);
1850       if (fde->cie == NULL)
1851 	{
1852 	  decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
1853 			      eh_frame_p, cie_table, fde_table);
1854 	  fde->cie = find_cie (cie_table, cie_pointer);
1855 	}
1856 
1857       gdb_assert (fde->cie != NULL);
1858 
1859       fde->initial_location =
1860 	read_encoded_value (unit, fde->cie->encoding, fde->cie->addr_size,
1861 			    buf, &bytes_read, 0);
1862       buf += bytes_read;
1863 
1864       fde->address_range =
1865 	read_encoded_value (unit, fde->cie->encoding & 0x0f,
1866 			    fde->cie->addr_size, buf, &bytes_read, 0);
1867       buf += bytes_read;
1868 
1869       /* A 'z' augmentation in the CIE implies the presence of an
1870 	 augmentation field in the FDE as well.  The only thing known
1871 	 to be in here at present is the LSDA entry for EH.  So we
1872 	 can skip the whole thing.  */
1873       if (fde->cie->saw_z_augmentation)
1874 	{
1875 	  ULONGEST length;
1876 
1877 	  length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read);
1878 	  buf += bytes_read + length;
1879 	  if (buf > end)
1880 	    return NULL;
1881 	}
1882 
1883       fde->instructions = buf;
1884       fde->end = end;
1885 
1886       fde->eh_frame_p = eh_frame_p;
1887 
1888       add_fde (fde_table, fde);
1889     }
1890 
1891   return end;
1892 }
1893 
1894 /* Read a CIE or FDE in BUF and decode it.  */
1895 static gdb_byte *
1896 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p,
1897                     struct dwarf2_cie_table *cie_table,
1898                     struct dwarf2_fde_table *fde_table)
1899 {
1900   enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
1901   gdb_byte *ret;
1902   const char *msg;
1903   ptrdiff_t start_offset;
1904 
1905   while (1)
1906     {
1907       ret = decode_frame_entry_1 (unit, start, eh_frame_p,
1908                                   cie_table, fde_table);
1909       if (ret != NULL)
1910 	break;
1911 
1912       /* We have corrupt input data of some form.  */
1913 
1914       /* ??? Try, weakly, to work around compiler/assembler/linker bugs
1915 	 and mismatches wrt padding and alignment of debug sections.  */
1916       /* Note that there is no requirement in the standard for any
1917 	 alignment at all in the frame unwind sections.  Testing for
1918 	 alignment before trying to interpret data would be incorrect.
1919 
1920 	 However, GCC traditionally arranged for frame sections to be
1921 	 sized such that the FDE length and CIE fields happen to be
1922 	 aligned (in theory, for performance).  This, unfortunately,
1923 	 was done with .align directives, which had the side effect of
1924 	 forcing the section to be aligned by the linker.
1925 
1926 	 This becomes a problem when you have some other producer that
1927 	 creates frame sections that are not as strictly aligned.  That
1928 	 produces a hole in the frame info that gets filled by the
1929 	 linker with zeros.
1930 
1931 	 The GCC behaviour is arguably a bug, but it's effectively now
1932 	 part of the ABI, so we're now stuck with it, at least at the
1933 	 object file level.  A smart linker may decide, in the process
1934 	 of compressing duplicate CIE information, that it can rewrite
1935 	 the entire output section without this extra padding.  */
1936 
1937       start_offset = start - unit->dwarf_frame_buffer;
1938       if (workaround < ALIGN4 && (start_offset & 3) != 0)
1939 	{
1940 	  start += 4 - (start_offset & 3);
1941 	  workaround = ALIGN4;
1942 	  continue;
1943 	}
1944       if (workaround < ALIGN8 && (start_offset & 7) != 0)
1945 	{
1946 	  start += 8 - (start_offset & 7);
1947 	  workaround = ALIGN8;
1948 	  continue;
1949 	}
1950 
1951       /* Nothing left to try.  Arrange to return as if we've consumed
1952 	 the entire input section.  Hopefully we'll get valid info from
1953 	 the other of .debug_frame/.eh_frame.  */
1954       workaround = FAIL;
1955       ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
1956       break;
1957     }
1958 
1959   switch (workaround)
1960     {
1961     case NONE:
1962       break;
1963 
1964     case ALIGN4:
1965       complaint (&symfile_complaints,
1966 		 _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
1967 		 unit->dwarf_frame_section->owner->filename,
1968 		 unit->dwarf_frame_section->name);
1969       break;
1970 
1971     case ALIGN8:
1972       complaint (&symfile_complaints,
1973 		 _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
1974 		 unit->dwarf_frame_section->owner->filename,
1975 		 unit->dwarf_frame_section->name);
1976       break;
1977 
1978     default:
1979       complaint (&symfile_complaints,
1980 		 _("Corrupt data in %s:%s"),
1981 		 unit->dwarf_frame_section->owner->filename,
1982 		 unit->dwarf_frame_section->name);
1983       break;
1984     }
1985 
1986   return ret;
1987 }
1988 
1989 
1990 /* Imported from dwarf2read.c.  */
1991 extern void dwarf2_get_section_info (struct objfile *, const char *, asection **,
1992                                      gdb_byte **, bfd_size_type *);
1993 
1994 static int
1995 qsort_fde_cmp (const void *a, const void *b)
1996 {
1997   struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
1998   struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
1999 
2000   if (aa->initial_location == bb->initial_location)
2001     {
2002       if (aa->address_range != bb->address_range
2003           && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2004         /* Linker bug, e.g. gold/10400.
2005            Work around it by keeping stable sort order.  */
2006         return (a < b) ? -1 : 1;
2007       else
2008         /* Put eh_frame entries after debug_frame ones.  */
2009         return aa->eh_frame_p - bb->eh_frame_p;
2010     }
2011 
2012   return (aa->initial_location < bb->initial_location) ? -1 : 1;
2013 }
2014 
2015 void
2016 dwarf2_build_frame_info (struct objfile *objfile)
2017 {
2018   struct comp_unit *unit;
2019   gdb_byte *frame_ptr;
2020   struct dwarf2_cie_table cie_table;
2021   struct dwarf2_fde_table fde_table;
2022 
2023   cie_table.num_entries = 0;
2024   cie_table.entries = NULL;
2025 
2026   fde_table.num_entries = 0;
2027   fde_table.entries = NULL;
2028 
2029   /* Build a minimal decoding of the DWARF2 compilation unit.  */
2030   unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2031 					     sizeof (struct comp_unit));
2032   unit->abfd = objfile->obfd;
2033   unit->objfile = objfile;
2034   unit->dbase = 0;
2035   unit->tbase = 0;
2036 
2037   dwarf2_get_section_info (objfile, ".eh_frame",
2038                            &unit->dwarf_frame_section,
2039                            &unit->dwarf_frame_buffer,
2040                            &unit->dwarf_frame_size);
2041   if (unit->dwarf_frame_size)
2042     {
2043       asection *got, *txt;
2044 
2045       /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2046 	 that is used for the i386/amd64 target, which currently is
2047 	 the only target in GCC that supports/uses the
2048 	 DW_EH_PE_datarel encoding.  */
2049       got = bfd_get_section_by_name (unit->abfd, ".got");
2050       if (got)
2051 	unit->dbase = got->vma;
2052 
2053       /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2054          so far.  */
2055       txt = bfd_get_section_by_name (unit->abfd, ".text");
2056       if (txt)
2057 	unit->tbase = txt->vma;
2058 
2059       frame_ptr = unit->dwarf_frame_buffer;
2060       while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2061 	frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2062                                         &cie_table, &fde_table);
2063 
2064       if (cie_table.num_entries != 0)
2065         {
2066           /* Reinit cie_table: debug_frame has different CIEs.  */
2067           xfree (cie_table.entries);
2068           cie_table.num_entries = 0;
2069           cie_table.entries = NULL;
2070         }
2071     }
2072 
2073   dwarf2_get_section_info (objfile, ".debug_frame",
2074                            &unit->dwarf_frame_section,
2075                            &unit->dwarf_frame_buffer,
2076                            &unit->dwarf_frame_size);
2077   if (unit->dwarf_frame_size)
2078     {
2079       frame_ptr = unit->dwarf_frame_buffer;
2080       while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2081 	frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2082                                         &cie_table, &fde_table);
2083     }
2084 
2085   /* Discard the cie_table, it is no longer needed.  */
2086   if (cie_table.num_entries != 0)
2087     {
2088       xfree (cie_table.entries);
2089       cie_table.entries = NULL;   /* Paranoia.  */
2090       cie_table.num_entries = 0;  /* Paranoia.  */
2091     }
2092 
2093   if (fde_table.num_entries != 0)
2094     {
2095       struct dwarf2_fde_table *fde_table2;
2096       int i, j;
2097 
2098       /* Prepare FDE table for lookups.  */
2099       qsort (fde_table.entries, fde_table.num_entries,
2100              sizeof (fde_table.entries[0]), qsort_fde_cmp);
2101 
2102       /* Copy fde_table to obstack: it is needed at runtime.  */
2103       fde_table2 = (struct dwarf2_fde_table *)
2104           obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2105 
2106       /* Since we'll be doing bsearch, squeeze out identical (except for
2107          eh_frame_p) fde entries so bsearch result is predictable.  */
2108       for (i = 0, j = 0; j < fde_table.num_entries; ++i)
2109         {
2110           const int k = j;
2111 
2112           obstack_grow (&objfile->objfile_obstack, &fde_table.entries[j],
2113                         sizeof (fde_table.entries[0]));
2114           while (++j < fde_table.num_entries
2115                  && (fde_table.entries[k]->initial_location ==
2116                      fde_table.entries[j]->initial_location))
2117             /* Skip.  */;
2118         }
2119       fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
2120       fde_table2->num_entries = i;
2121       set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2122 
2123       /* Discard the original fde_table.  */
2124       xfree (fde_table.entries);
2125     }
2126 }
2127 
2128 /* Provide a prototype to silence -Wmissing-prototypes.  */
2129 void _initialize_dwarf2_frame (void);
2130 
2131 void
2132 _initialize_dwarf2_frame (void)
2133 {
2134   dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2135   dwarf2_frame_objfile_data = register_objfile_data ();
2136 }
2137