1 /* Frame unwinder for frames with DWARF Call Frame Information. 2 3 Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011 4 Free Software Foundation, Inc. 5 6 Contributed by Mark Kettenis. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 #include "defs.h" 24 #include "dwarf2expr.h" 25 #include "dwarf2.h" 26 #include "frame.h" 27 #include "frame-base.h" 28 #include "frame-unwind.h" 29 #include "gdbcore.h" 30 #include "gdbtypes.h" 31 #include "symtab.h" 32 #include "objfiles.h" 33 #include "regcache.h" 34 #include "value.h" 35 36 #include "gdb_assert.h" 37 #include "gdb_string.h" 38 39 #include "complaints.h" 40 #include "dwarf2-frame.h" 41 #include "ax.h" 42 #include "dwarf2loc.h" 43 #include "exceptions.h" 44 45 struct comp_unit; 46 47 /* Call Frame Information (CFI). */ 48 49 /* Common Information Entry (CIE). */ 50 51 struct dwarf2_cie 52 { 53 /* Computation Unit for this CIE. */ 54 struct comp_unit *unit; 55 56 /* Offset into the .debug_frame section where this CIE was found. 57 Used to identify this CIE. */ 58 ULONGEST cie_pointer; 59 60 /* Constant that is factored out of all advance location 61 instructions. */ 62 ULONGEST code_alignment_factor; 63 64 /* Constants that is factored out of all offset instructions. */ 65 LONGEST data_alignment_factor; 66 67 /* Return address column. */ 68 ULONGEST return_address_register; 69 70 /* Instruction sequence to initialize a register set. */ 71 gdb_byte *initial_instructions; 72 gdb_byte *end; 73 74 /* Saved augmentation, in case it's needed later. */ 75 char *augmentation; 76 77 /* Encoding of addresses. */ 78 gdb_byte encoding; 79 80 /* Target address size in bytes. */ 81 int addr_size; 82 83 /* Target pointer size in bytes. */ 84 int ptr_size; 85 86 /* True if a 'z' augmentation existed. */ 87 unsigned char saw_z_augmentation; 88 89 /* True if an 'S' augmentation existed. */ 90 unsigned char signal_frame; 91 92 /* The version recorded in the CIE. */ 93 unsigned char version; 94 95 /* The segment size. */ 96 unsigned char segment_size; 97 }; 98 99 struct dwarf2_cie_table 100 { 101 int num_entries; 102 struct dwarf2_cie **entries; 103 }; 104 105 /* Frame Description Entry (FDE). */ 106 107 struct dwarf2_fde 108 { 109 /* CIE for this FDE. */ 110 struct dwarf2_cie *cie; 111 112 /* First location associated with this FDE. */ 113 CORE_ADDR initial_location; 114 115 /* Number of bytes of program instructions described by this FDE. */ 116 CORE_ADDR address_range; 117 118 /* Instruction sequence. */ 119 gdb_byte *instructions; 120 gdb_byte *end; 121 122 /* True if this FDE is read from a .eh_frame instead of a .debug_frame 123 section. */ 124 unsigned char eh_frame_p; 125 }; 126 127 struct dwarf2_fde_table 128 { 129 int num_entries; 130 struct dwarf2_fde **entries; 131 }; 132 133 /* A minimal decoding of DWARF2 compilation units. We only decode 134 what's needed to get to the call frame information. */ 135 136 struct comp_unit 137 { 138 /* Keep the bfd convenient. */ 139 bfd *abfd; 140 141 struct objfile *objfile; 142 143 /* Pointer to the .debug_frame section loaded into memory. */ 144 gdb_byte *dwarf_frame_buffer; 145 146 /* Length of the loaded .debug_frame section. */ 147 bfd_size_type dwarf_frame_size; 148 149 /* Pointer to the .debug_frame section. */ 150 asection *dwarf_frame_section; 151 152 /* Base for DW_EH_PE_datarel encodings. */ 153 bfd_vma dbase; 154 155 /* Base for DW_EH_PE_textrel encodings. */ 156 bfd_vma tbase; 157 }; 158 159 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc, 160 CORE_ADDR *out_offset); 161 162 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, 163 int eh_frame_p); 164 165 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, 166 int ptr_len, const gdb_byte *buf, 167 unsigned int *bytes_read_ptr, 168 CORE_ADDR func_base); 169 170 171 /* Structure describing a frame state. */ 172 173 struct dwarf2_frame_state 174 { 175 /* Each register save state can be described in terms of a CFA slot, 176 another register, or a location expression. */ 177 struct dwarf2_frame_state_reg_info 178 { 179 struct dwarf2_frame_state_reg *reg; 180 int num_regs; 181 182 LONGEST cfa_offset; 183 ULONGEST cfa_reg; 184 enum { 185 CFA_UNSET, 186 CFA_REG_OFFSET, 187 CFA_EXP 188 } cfa_how; 189 const gdb_byte *cfa_exp; 190 191 /* Used to implement DW_CFA_remember_state. */ 192 struct dwarf2_frame_state_reg_info *prev; 193 } regs; 194 195 /* The PC described by the current frame state. */ 196 CORE_ADDR pc; 197 198 /* Initial register set from the CIE. 199 Used to implement DW_CFA_restore. */ 200 struct dwarf2_frame_state_reg_info initial; 201 202 /* The information we care about from the CIE. */ 203 LONGEST data_align; 204 ULONGEST code_align; 205 ULONGEST retaddr_column; 206 207 /* Flags for known producer quirks. */ 208 209 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa 210 and DW_CFA_def_cfa_offset takes a factored offset. */ 211 int armcc_cfa_offsets_sf; 212 213 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that 214 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */ 215 int armcc_cfa_offsets_reversed; 216 }; 217 218 /* Store the length the expression for the CFA in the `cfa_reg' field, 219 which is unused in that case. */ 220 #define cfa_exp_len cfa_reg 221 222 /* Assert that the register set RS is large enough to store gdbarch_num_regs 223 columns. If necessary, enlarge the register set. */ 224 225 static void 226 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, 227 int num_regs) 228 { 229 size_t size = sizeof (struct dwarf2_frame_state_reg); 230 231 if (num_regs <= rs->num_regs) 232 return; 233 234 rs->reg = (struct dwarf2_frame_state_reg *) 235 xrealloc (rs->reg, num_regs * size); 236 237 /* Initialize newly allocated registers. */ 238 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); 239 rs->num_regs = num_regs; 240 } 241 242 /* Copy the register columns in register set RS into newly allocated 243 memory and return a pointer to this newly created copy. */ 244 245 static struct dwarf2_frame_state_reg * 246 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) 247 { 248 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg); 249 struct dwarf2_frame_state_reg *reg; 250 251 reg = (struct dwarf2_frame_state_reg *) xmalloc (size); 252 memcpy (reg, rs->reg, size); 253 254 return reg; 255 } 256 257 /* Release the memory allocated to register set RS. */ 258 259 static void 260 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) 261 { 262 if (rs) 263 { 264 dwarf2_frame_state_free_regs (rs->prev); 265 266 xfree (rs->reg); 267 xfree (rs); 268 } 269 } 270 271 /* Release the memory allocated to the frame state FS. */ 272 273 static void 274 dwarf2_frame_state_free (void *p) 275 { 276 struct dwarf2_frame_state *fs = p; 277 278 dwarf2_frame_state_free_regs (fs->initial.prev); 279 dwarf2_frame_state_free_regs (fs->regs.prev); 280 xfree (fs->initial.reg); 281 xfree (fs->regs.reg); 282 xfree (fs); 283 } 284 285 286 /* Helper functions for execute_stack_op. */ 287 288 static CORE_ADDR 289 read_reg (void *baton, int reg) 290 { 291 struct frame_info *this_frame = (struct frame_info *) baton; 292 struct gdbarch *gdbarch = get_frame_arch (this_frame); 293 int regnum; 294 gdb_byte *buf; 295 296 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg); 297 298 buf = alloca (register_size (gdbarch, regnum)); 299 get_frame_register (this_frame, regnum, buf); 300 301 /* Convert the register to an integer. This returns a LONGEST 302 rather than a CORE_ADDR, but unpack_pointer does the same thing 303 under the covers, and this makes more sense for non-pointer 304 registers. Maybe read_reg and the associated interfaces should 305 deal with "struct value" instead of CORE_ADDR. */ 306 return unpack_long (register_type (gdbarch, regnum), buf); 307 } 308 309 static void 310 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) 311 { 312 read_memory (addr, buf, len); 313 } 314 315 static void 316 no_get_frame_base (void *baton, const gdb_byte **start, size_t *length) 317 { 318 internal_error (__FILE__, __LINE__, 319 _("Support for DW_OP_fbreg is unimplemented")); 320 } 321 322 /* Helper function for execute_stack_op. */ 323 324 static CORE_ADDR 325 no_get_frame_cfa (void *baton) 326 { 327 internal_error (__FILE__, __LINE__, 328 _("Support for DW_OP_call_frame_cfa is unimplemented")); 329 } 330 331 /* Helper function for execute_stack_op. */ 332 333 static CORE_ADDR 334 no_get_frame_pc (void *baton) 335 { 336 internal_error (__FILE__, __LINE__, _("\ 337 Support for DW_OP_GNU_implicit_pointer is unimplemented")); 338 } 339 340 static CORE_ADDR 341 no_get_tls_address (void *baton, CORE_ADDR offset) 342 { 343 internal_error (__FILE__, __LINE__, _("\ 344 Support for DW_OP_GNU_push_tls_address is unimplemented")); 345 } 346 347 /* Helper function for execute_stack_op. */ 348 349 static void 350 no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset) 351 { 352 internal_error (__FILE__, __LINE__, 353 _("Support for DW_OP_call* is invalid in CFI")); 354 } 355 356 /* Execute the required actions for both the DW_CFA_restore and 357 DW_CFA_restore_extended instructions. */ 358 static void 359 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num, 360 struct dwarf2_frame_state *fs, int eh_frame_p) 361 { 362 ULONGEST reg; 363 364 gdb_assert (fs->initial.reg); 365 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p); 366 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 367 368 /* Check if this register was explicitly initialized in the 369 CIE initial instructions. If not, default the rule to 370 UNSPECIFIED. */ 371 if (reg < fs->initial.num_regs) 372 fs->regs.reg[reg] = fs->initial.reg[reg]; 373 else 374 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED; 375 376 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED) 377 complaint (&symfile_complaints, _("\ 378 incomplete CFI data; DW_CFA_restore unspecified\n\ 379 register %s (#%d) at %s"), 380 gdbarch_register_name 381 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)), 382 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg), 383 paddress (gdbarch, fs->pc)); 384 } 385 386 static CORE_ADDR 387 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size, 388 CORE_ADDR offset, struct frame_info *this_frame, 389 CORE_ADDR initial, int initial_in_stack_memory) 390 { 391 struct dwarf_expr_context *ctx; 392 CORE_ADDR result; 393 struct cleanup *old_chain; 394 395 ctx = new_dwarf_expr_context (); 396 old_chain = make_cleanup_free_dwarf_expr_context (ctx); 397 398 ctx->gdbarch = get_frame_arch (this_frame); 399 ctx->addr_size = addr_size; 400 ctx->offset = offset; 401 ctx->baton = this_frame; 402 ctx->read_reg = read_reg; 403 ctx->read_mem = read_mem; 404 ctx->get_frame_base = no_get_frame_base; 405 ctx->get_frame_cfa = no_get_frame_cfa; 406 ctx->get_frame_pc = no_get_frame_pc; 407 ctx->get_tls_address = no_get_tls_address; 408 ctx->dwarf_call = no_dwarf_call; 409 410 dwarf_expr_push (ctx, initial, initial_in_stack_memory); 411 dwarf_expr_eval (ctx, exp, len); 412 413 if (ctx->location == DWARF_VALUE_MEMORY) 414 result = dwarf_expr_fetch_address (ctx, 0); 415 else if (ctx->location == DWARF_VALUE_REGISTER) 416 result = read_reg (this_frame, dwarf_expr_fetch (ctx, 0)); 417 else 418 { 419 /* This is actually invalid DWARF, but if we ever do run across 420 it somehow, we might as well support it. So, instead, report 421 it as unimplemented. */ 422 error (_("\ 423 Not implemented: computing unwound register using explicit value operator")); 424 } 425 426 do_cleanups (old_chain); 427 428 return result; 429 } 430 431 432 static void 433 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr, 434 const gdb_byte *insn_end, struct gdbarch *gdbarch, 435 CORE_ADDR pc, struct dwarf2_frame_state *fs) 436 { 437 int eh_frame_p = fde->eh_frame_p; 438 int bytes_read; 439 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 440 441 while (insn_ptr < insn_end && fs->pc <= pc) 442 { 443 gdb_byte insn = *insn_ptr++; 444 ULONGEST utmp, reg; 445 LONGEST offset; 446 447 if ((insn & 0xc0) == DW_CFA_advance_loc) 448 fs->pc += (insn & 0x3f) * fs->code_align; 449 else if ((insn & 0xc0) == DW_CFA_offset) 450 { 451 reg = insn & 0x3f; 452 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 453 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 454 offset = utmp * fs->data_align; 455 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 456 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 457 fs->regs.reg[reg].loc.offset = offset; 458 } 459 else if ((insn & 0xc0) == DW_CFA_restore) 460 { 461 reg = insn & 0x3f; 462 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); 463 } 464 else 465 { 466 switch (insn) 467 { 468 case DW_CFA_set_loc: 469 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding, 470 fde->cie->ptr_size, insn_ptr, 471 &bytes_read, fde->initial_location); 472 /* Apply the objfile offset for relocatable objects. */ 473 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets, 474 SECT_OFF_TEXT (fde->cie->unit->objfile)); 475 insn_ptr += bytes_read; 476 break; 477 478 case DW_CFA_advance_loc1: 479 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order); 480 fs->pc += utmp * fs->code_align; 481 insn_ptr++; 482 break; 483 case DW_CFA_advance_loc2: 484 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order); 485 fs->pc += utmp * fs->code_align; 486 insn_ptr += 2; 487 break; 488 case DW_CFA_advance_loc4: 489 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order); 490 fs->pc += utmp * fs->code_align; 491 insn_ptr += 4; 492 break; 493 494 case DW_CFA_offset_extended: 495 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 496 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 497 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 498 offset = utmp * fs->data_align; 499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 501 fs->regs.reg[reg].loc.offset = offset; 502 break; 503 504 case DW_CFA_restore_extended: 505 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 506 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); 507 break; 508 509 case DW_CFA_undefined: 510 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 511 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 512 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 513 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; 514 break; 515 516 case DW_CFA_same_value: 517 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 518 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 519 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 520 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; 521 break; 522 523 case DW_CFA_register: 524 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 525 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 526 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 527 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p); 528 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 529 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; 530 fs->regs.reg[reg].loc.reg = utmp; 531 break; 532 533 case DW_CFA_remember_state: 534 { 535 struct dwarf2_frame_state_reg_info *new_rs; 536 537 new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); 538 *new_rs = fs->regs; 539 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); 540 fs->regs.prev = new_rs; 541 } 542 break; 543 544 case DW_CFA_restore_state: 545 { 546 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; 547 548 if (old_rs == NULL) 549 { 550 complaint (&symfile_complaints, _("\ 551 bad CFI data; mismatched DW_CFA_restore_state at %s"), 552 paddress (gdbarch, fs->pc)); 553 } 554 else 555 { 556 xfree (fs->regs.reg); 557 fs->regs = *old_rs; 558 xfree (old_rs); 559 } 560 } 561 break; 562 563 case DW_CFA_def_cfa: 564 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); 565 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 566 567 if (fs->armcc_cfa_offsets_sf) 568 utmp *= fs->data_align; 569 570 fs->regs.cfa_offset = utmp; 571 fs->regs.cfa_how = CFA_REG_OFFSET; 572 break; 573 574 case DW_CFA_def_cfa_register: 575 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); 576 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, 577 fs->regs.cfa_reg, 578 eh_frame_p); 579 fs->regs.cfa_how = CFA_REG_OFFSET; 580 break; 581 582 case DW_CFA_def_cfa_offset: 583 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 584 585 if (fs->armcc_cfa_offsets_sf) 586 utmp *= fs->data_align; 587 588 fs->regs.cfa_offset = utmp; 589 /* cfa_how deliberately not set. */ 590 break; 591 592 case DW_CFA_nop: 593 break; 594 595 case DW_CFA_def_cfa_expression: 596 insn_ptr = read_uleb128 (insn_ptr, insn_end, 597 &fs->regs.cfa_exp_len); 598 fs->regs.cfa_exp = insn_ptr; 599 fs->regs.cfa_how = CFA_EXP; 600 insn_ptr += fs->regs.cfa_exp_len; 601 break; 602 603 case DW_CFA_expression: 604 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 605 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 607 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 608 fs->regs.reg[reg].loc.exp = insn_ptr; 609 fs->regs.reg[reg].exp_len = utmp; 610 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; 611 insn_ptr += utmp; 612 break; 613 614 case DW_CFA_offset_extended_sf: 615 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 616 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 617 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 618 offset *= fs->data_align; 619 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 621 fs->regs.reg[reg].loc.offset = offset; 622 break; 623 624 case DW_CFA_val_offset: 625 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 626 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 627 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 628 offset = utmp * fs->data_align; 629 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; 630 fs->regs.reg[reg].loc.offset = offset; 631 break; 632 633 case DW_CFA_val_offset_sf: 634 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 635 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 636 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 637 offset *= fs->data_align; 638 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; 639 fs->regs.reg[reg].loc.offset = offset; 640 break; 641 642 case DW_CFA_val_expression: 643 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 644 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 645 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 646 fs->regs.reg[reg].loc.exp = insn_ptr; 647 fs->regs.reg[reg].exp_len = utmp; 648 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; 649 insn_ptr += utmp; 650 break; 651 652 case DW_CFA_def_cfa_sf: 653 insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); 654 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, 655 fs->regs.cfa_reg, 656 eh_frame_p); 657 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 658 fs->regs.cfa_offset = offset * fs->data_align; 659 fs->regs.cfa_how = CFA_REG_OFFSET; 660 break; 661 662 case DW_CFA_def_cfa_offset_sf: 663 insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); 664 fs->regs.cfa_offset = offset * fs->data_align; 665 /* cfa_how deliberately not set. */ 666 break; 667 668 case DW_CFA_GNU_window_save: 669 /* This is SPARC-specific code, and contains hard-coded 670 constants for the register numbering scheme used by 671 GCC. Rather than having a architecture-specific 672 operation that's only ever used by a single 673 architecture, we provide the implementation here. 674 Incidentally that's what GCC does too in its 675 unwinder. */ 676 { 677 int size = register_size (gdbarch, 0); 678 679 dwarf2_frame_state_alloc_regs (&fs->regs, 32); 680 for (reg = 8; reg < 16; reg++) 681 { 682 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; 683 fs->regs.reg[reg].loc.reg = reg + 16; 684 } 685 for (reg = 16; reg < 32; reg++) 686 { 687 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 688 fs->regs.reg[reg].loc.offset = (reg - 16) * size; 689 } 690 } 691 break; 692 693 case DW_CFA_GNU_args_size: 694 /* Ignored. */ 695 insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); 696 break; 697 698 case DW_CFA_GNU_negative_offset_extended: 699 insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); 700 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); 701 insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset); 702 offset *= fs->data_align; 703 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); 704 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; 705 fs->regs.reg[reg].loc.offset = -offset; 706 break; 707 708 default: 709 internal_error (__FILE__, __LINE__, 710 _("Unknown CFI encountered.")); 711 } 712 } 713 } 714 715 /* Don't allow remember/restore between CIE and FDE programs. */ 716 dwarf2_frame_state_free_regs (fs->regs.prev); 717 fs->regs.prev = NULL; 718 } 719 720 721 /* Architecture-specific operations. */ 722 723 /* Per-architecture data key. */ 724 static struct gdbarch_data *dwarf2_frame_data; 725 726 struct dwarf2_frame_ops 727 { 728 /* Pre-initialize the register state REG for register REGNUM. */ 729 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, 730 struct frame_info *); 731 732 /* Check whether the THIS_FRAME is a signal trampoline. */ 733 int (*signal_frame_p) (struct gdbarch *, struct frame_info *); 734 735 /* Convert .eh_frame register number to DWARF register number, or 736 adjust .debug_frame register number. */ 737 int (*adjust_regnum) (struct gdbarch *, int, int); 738 }; 739 740 /* Default architecture-specific register state initialization 741 function. */ 742 743 static void 744 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, 745 struct dwarf2_frame_state_reg *reg, 746 struct frame_info *this_frame) 747 { 748 /* If we have a register that acts as a program counter, mark it as 749 a destination for the return address. If we have a register that 750 serves as the stack pointer, arrange for it to be filled with the 751 call frame address (CFA). The other registers are marked as 752 unspecified. 753 754 We copy the return address to the program counter, since many 755 parts in GDB assume that it is possible to get the return address 756 by unwinding the program counter register. However, on ISA's 757 with a dedicated return address register, the CFI usually only 758 contains information to unwind that return address register. 759 760 The reason we're treating the stack pointer special here is 761 because in many cases GCC doesn't emit CFI for the stack pointer 762 and implicitly assumes that it is equal to the CFA. This makes 763 some sense since the DWARF specification (version 3, draft 8, 764 p. 102) says that: 765 766 "Typically, the CFA is defined to be the value of the stack 767 pointer at the call site in the previous frame (which may be 768 different from its value on entry to the current frame)." 769 770 However, this isn't true for all platforms supported by GCC 771 (e.g. IBM S/390 and zSeries). Those architectures should provide 772 their own architecture-specific initialization function. */ 773 774 if (regnum == gdbarch_pc_regnum (gdbarch)) 775 reg->how = DWARF2_FRAME_REG_RA; 776 else if (regnum == gdbarch_sp_regnum (gdbarch)) 777 reg->how = DWARF2_FRAME_REG_CFA; 778 } 779 780 /* Return a default for the architecture-specific operations. */ 781 782 static void * 783 dwarf2_frame_init (struct obstack *obstack) 784 { 785 struct dwarf2_frame_ops *ops; 786 787 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); 788 ops->init_reg = dwarf2_frame_default_init_reg; 789 return ops; 790 } 791 792 /* Set the architecture-specific register state initialization 793 function for GDBARCH to INIT_REG. */ 794 795 void 796 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, 797 void (*init_reg) (struct gdbarch *, int, 798 struct dwarf2_frame_state_reg *, 799 struct frame_info *)) 800 { 801 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 802 803 ops->init_reg = init_reg; 804 } 805 806 /* Pre-initialize the register state REG for register REGNUM. */ 807 808 static void 809 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 810 struct dwarf2_frame_state_reg *reg, 811 struct frame_info *this_frame) 812 { 813 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 814 815 ops->init_reg (gdbarch, regnum, reg, this_frame); 816 } 817 818 /* Set the architecture-specific signal trampoline recognition 819 function for GDBARCH to SIGNAL_FRAME_P. */ 820 821 void 822 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch, 823 int (*signal_frame_p) (struct gdbarch *, 824 struct frame_info *)) 825 { 826 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 827 828 ops->signal_frame_p = signal_frame_p; 829 } 830 831 /* Query the architecture-specific signal frame recognizer for 832 THIS_FRAME. */ 833 834 static int 835 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch, 836 struct frame_info *this_frame) 837 { 838 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 839 840 if (ops->signal_frame_p == NULL) 841 return 0; 842 return ops->signal_frame_p (gdbarch, this_frame); 843 } 844 845 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame 846 register numbers. */ 847 848 void 849 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch, 850 int (*adjust_regnum) (struct gdbarch *, 851 int, int)) 852 { 853 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 854 855 ops->adjust_regnum = adjust_regnum; 856 } 857 858 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame 859 register. */ 860 861 static int 862 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, 863 int regnum, int eh_frame_p) 864 { 865 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); 866 867 if (ops->adjust_regnum == NULL) 868 return regnum; 869 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p); 870 } 871 872 static void 873 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs, 874 struct dwarf2_fde *fde) 875 { 876 struct symtab *s; 877 878 s = find_pc_symtab (fs->pc); 879 if (s == NULL) 880 return; 881 882 if (producer_is_realview (s->producer)) 883 { 884 if (fde->cie->version == 1) 885 fs->armcc_cfa_offsets_sf = 1; 886 887 if (fde->cie->version == 1) 888 fs->armcc_cfa_offsets_reversed = 1; 889 890 /* The reversed offset problem is present in some compilers 891 using DWARF3, but it was eventually fixed. Check the ARM 892 defined augmentations, which are in the format "armcc" followed 893 by a list of one-character options. The "+" option means 894 this problem is fixed (no quirk needed). If the armcc 895 augmentation is missing, the quirk is needed. */ 896 if (fde->cie->version == 3 897 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0 898 || strchr (fde->cie->augmentation + 5, '+') == NULL)) 899 fs->armcc_cfa_offsets_reversed = 1; 900 901 return; 902 } 903 } 904 905 906 void 907 dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc, 908 struct gdbarch *gdbarch, 909 CORE_ADDR pc, 910 struct dwarf2_per_cu_data *data) 911 { 912 const int num_regs = gdbarch_num_regs (gdbarch) 913 + gdbarch_num_pseudo_regs (gdbarch); 914 struct dwarf2_fde *fde; 915 CORE_ADDR text_offset, cfa; 916 struct dwarf2_frame_state fs; 917 int addr_size; 918 919 memset (&fs, 0, sizeof (struct dwarf2_frame_state)); 920 921 fs.pc = pc; 922 923 /* Find the correct FDE. */ 924 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset); 925 if (fde == NULL) 926 error (_("Could not compute CFA; needed to translate this expression")); 927 928 /* Extract any interesting information from the CIE. */ 929 fs.data_align = fde->cie->data_alignment_factor; 930 fs.code_align = fde->cie->code_alignment_factor; 931 fs.retaddr_column = fde->cie->return_address_register; 932 addr_size = fde->cie->addr_size; 933 934 /* Check for "quirks" - known bugs in producers. */ 935 dwarf2_frame_find_quirks (&fs, fde); 936 937 /* First decode all the insns in the CIE. */ 938 execute_cfa_program (fde, fde->cie->initial_instructions, 939 fde->cie->end, gdbarch, pc, &fs); 940 941 /* Save the initialized register set. */ 942 fs.initial = fs.regs; 943 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs); 944 945 /* Then decode the insns in the FDE up to our target PC. */ 946 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs); 947 948 /* Calculate the CFA. */ 949 switch (fs.regs.cfa_how) 950 { 951 case CFA_REG_OFFSET: 952 { 953 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg); 954 955 if (regnum == -1) 956 error (_("Unable to access DWARF register number %d"), 957 (int) fs.regs.cfa_reg); /* FIXME */ 958 ax_reg (expr, regnum); 959 960 if (fs.regs.cfa_offset != 0) 961 { 962 if (fs.armcc_cfa_offsets_reversed) 963 ax_const_l (expr, -fs.regs.cfa_offset); 964 else 965 ax_const_l (expr, fs.regs.cfa_offset); 966 ax_simple (expr, aop_add); 967 } 968 } 969 break; 970 971 case CFA_EXP: 972 ax_const_l (expr, text_offset); 973 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size, 974 fs.regs.cfa_exp, 975 fs.regs.cfa_exp + fs.regs.cfa_exp_len, 976 data); 977 break; 978 979 default: 980 internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); 981 } 982 } 983 984 985 struct dwarf2_frame_cache 986 { 987 /* DWARF Call Frame Address. */ 988 CORE_ADDR cfa; 989 990 /* Set if the return address column was marked as unavailable 991 (required non-collected memory or registers to compute). */ 992 int unavailable_retaddr; 993 994 /* Set if the return address column was marked as undefined. */ 995 int undefined_retaddr; 996 997 /* Saved registers, indexed by GDB register number, not by DWARF 998 register number. */ 999 struct dwarf2_frame_state_reg *reg; 1000 1001 /* Return address register. */ 1002 struct dwarf2_frame_state_reg retaddr_reg; 1003 1004 /* Target address size in bytes. */ 1005 int addr_size; 1006 1007 /* The .text offset. */ 1008 CORE_ADDR text_offset; 1009 }; 1010 1011 static struct dwarf2_frame_cache * 1012 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache) 1013 { 1014 struct cleanup *old_chain; 1015 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1016 const int num_regs = gdbarch_num_regs (gdbarch) 1017 + gdbarch_num_pseudo_regs (gdbarch); 1018 struct dwarf2_frame_cache *cache; 1019 struct dwarf2_frame_state *fs; 1020 struct dwarf2_fde *fde; 1021 volatile struct gdb_exception ex; 1022 1023 if (*this_cache) 1024 return *this_cache; 1025 1026 /* Allocate a new cache. */ 1027 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); 1028 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); 1029 *this_cache = cache; 1030 1031 /* Allocate and initialize the frame state. */ 1032 fs = XZALLOC (struct dwarf2_frame_state); 1033 old_chain = make_cleanup (dwarf2_frame_state_free, fs); 1034 1035 /* Unwind the PC. 1036 1037 Note that if the next frame is never supposed to return (i.e. a call 1038 to abort), the compiler might optimize away the instruction at 1039 its return address. As a result the return address will 1040 point at some random instruction, and the CFI for that 1041 instruction is probably worthless to us. GCC's unwinder solves 1042 this problem by substracting 1 from the return address to get an 1043 address in the middle of a presumed call instruction (or the 1044 instruction in the associated delay slot). This should only be 1045 done for "normal" frames and not for resume-type frames (signal 1046 handlers, sentinel frames, dummy frames). The function 1047 get_frame_address_in_block does just this. It's not clear how 1048 reliable the method is though; there is the potential for the 1049 register state pre-call being different to that on return. */ 1050 fs->pc = get_frame_address_in_block (this_frame); 1051 1052 /* Find the correct FDE. */ 1053 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset); 1054 gdb_assert (fde != NULL); 1055 1056 /* Extract any interesting information from the CIE. */ 1057 fs->data_align = fde->cie->data_alignment_factor; 1058 fs->code_align = fde->cie->code_alignment_factor; 1059 fs->retaddr_column = fde->cie->return_address_register; 1060 cache->addr_size = fde->cie->addr_size; 1061 1062 /* Check for "quirks" - known bugs in producers. */ 1063 dwarf2_frame_find_quirks (fs, fde); 1064 1065 /* First decode all the insns in the CIE. */ 1066 execute_cfa_program (fde, fde->cie->initial_instructions, 1067 fde->cie->end, gdbarch, get_frame_pc (this_frame), fs); 1068 1069 /* Save the initialized register set. */ 1070 fs->initial = fs->regs; 1071 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); 1072 1073 /* Then decode the insns in the FDE up to our target PC. */ 1074 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, 1075 get_frame_pc (this_frame), fs); 1076 1077 TRY_CATCH (ex, RETURN_MASK_ERROR) 1078 { 1079 /* Calculate the CFA. */ 1080 switch (fs->regs.cfa_how) 1081 { 1082 case CFA_REG_OFFSET: 1083 cache->cfa = read_reg (this_frame, fs->regs.cfa_reg); 1084 if (fs->armcc_cfa_offsets_reversed) 1085 cache->cfa -= fs->regs.cfa_offset; 1086 else 1087 cache->cfa += fs->regs.cfa_offset; 1088 break; 1089 1090 case CFA_EXP: 1091 cache->cfa = 1092 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len, 1093 cache->addr_size, cache->text_offset, 1094 this_frame, 0, 0); 1095 break; 1096 1097 default: 1098 internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); 1099 } 1100 } 1101 if (ex.reason < 0) 1102 { 1103 if (ex.error == NOT_AVAILABLE_ERROR) 1104 { 1105 cache->unavailable_retaddr = 1; 1106 return cache; 1107 } 1108 1109 throw_exception (ex); 1110 } 1111 1112 /* Initialize the register state. */ 1113 { 1114 int regnum; 1115 1116 for (regnum = 0; regnum < num_regs; regnum++) 1117 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame); 1118 } 1119 1120 /* Go through the DWARF2 CFI generated table and save its register 1121 location information in the cache. Note that we don't skip the 1122 return address column; it's perfectly all right for it to 1123 correspond to a real register. If it doesn't correspond to a 1124 real register, or if we shouldn't treat it as such, 1125 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside 1126 the range [0, gdbarch_num_regs). */ 1127 { 1128 int column; /* CFI speak for "register number". */ 1129 1130 for (column = 0; column < fs->regs.num_regs; column++) 1131 { 1132 /* Use the GDB register number as the destination index. */ 1133 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column); 1134 1135 /* If there's no corresponding GDB register, ignore it. */ 1136 if (regnum < 0 || regnum >= num_regs) 1137 continue; 1138 1139 /* NOTE: cagney/2003-09-05: CFI should specify the disposition 1140 of all debug info registers. If it doesn't, complain (but 1141 not too loudly). It turns out that GCC assumes that an 1142 unspecified register implies "same value" when CFI (draft 1143 7) specifies nothing at all. Such a register could equally 1144 be interpreted as "undefined". Also note that this check 1145 isn't sufficient; it only checks that all registers in the 1146 range [0 .. max column] are specified, and won't detect 1147 problems when a debug info register falls outside of the 1148 table. We need a way of iterating through all the valid 1149 DWARF2 register numbers. */ 1150 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) 1151 { 1152 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED) 1153 complaint (&symfile_complaints, _("\ 1154 incomplete CFI data; unspecified registers (e.g., %s) at %s"), 1155 gdbarch_register_name (gdbarch, regnum), 1156 paddress (gdbarch, fs->pc)); 1157 } 1158 else 1159 cache->reg[regnum] = fs->regs.reg[column]; 1160 } 1161 } 1162 1163 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information 1164 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */ 1165 { 1166 int regnum; 1167 1168 for (regnum = 0; regnum < num_regs; regnum++) 1169 { 1170 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA 1171 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET) 1172 { 1173 struct dwarf2_frame_state_reg *retaddr_reg = 1174 &fs->regs.reg[fs->retaddr_column]; 1175 1176 /* It seems rather bizarre to specify an "empty" column as 1177 the return adress column. However, this is exactly 1178 what GCC does on some targets. It turns out that GCC 1179 assumes that the return address can be found in the 1180 register corresponding to the return address column. 1181 Incidentally, that's how we should treat a return 1182 address column specifying "same value" too. */ 1183 if (fs->retaddr_column < fs->regs.num_regs 1184 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED 1185 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) 1186 { 1187 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) 1188 cache->reg[regnum] = *retaddr_reg; 1189 else 1190 cache->retaddr_reg = *retaddr_reg; 1191 } 1192 else 1193 { 1194 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) 1195 { 1196 cache->reg[regnum].loc.reg = fs->retaddr_column; 1197 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; 1198 } 1199 else 1200 { 1201 cache->retaddr_reg.loc.reg = fs->retaddr_column; 1202 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG; 1203 } 1204 } 1205 } 1206 } 1207 } 1208 1209 if (fs->retaddr_column < fs->regs.num_regs 1210 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED) 1211 cache->undefined_retaddr = 1; 1212 1213 do_cleanups (old_chain); 1214 1215 return cache; 1216 } 1217 1218 static enum unwind_stop_reason 1219 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame, 1220 void **this_cache) 1221 { 1222 struct dwarf2_frame_cache *cache 1223 = dwarf2_frame_cache (this_frame, this_cache); 1224 1225 if (cache->unavailable_retaddr) 1226 return UNWIND_UNAVAILABLE; 1227 1228 if (cache->undefined_retaddr) 1229 return UNWIND_OUTERMOST; 1230 1231 return UNWIND_NO_REASON; 1232 } 1233 1234 static void 1235 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache, 1236 struct frame_id *this_id) 1237 { 1238 struct dwarf2_frame_cache *cache = 1239 dwarf2_frame_cache (this_frame, this_cache); 1240 1241 if (cache->unavailable_retaddr) 1242 return; 1243 1244 if (cache->undefined_retaddr) 1245 return; 1246 1247 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame)); 1248 } 1249 1250 static struct value * 1251 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache, 1252 int regnum) 1253 { 1254 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1255 struct dwarf2_frame_cache *cache = 1256 dwarf2_frame_cache (this_frame, this_cache); 1257 CORE_ADDR addr; 1258 int realnum; 1259 1260 switch (cache->reg[regnum].how) 1261 { 1262 case DWARF2_FRAME_REG_UNDEFINED: 1263 /* If CFI explicitly specified that the value isn't defined, 1264 mark it as optimized away; the value isn't available. */ 1265 return frame_unwind_got_optimized (this_frame, regnum); 1266 1267 case DWARF2_FRAME_REG_SAVED_OFFSET: 1268 addr = cache->cfa + cache->reg[regnum].loc.offset; 1269 return frame_unwind_got_memory (this_frame, regnum, addr); 1270 1271 case DWARF2_FRAME_REG_SAVED_REG: 1272 realnum 1273 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg); 1274 return frame_unwind_got_register (this_frame, regnum, realnum); 1275 1276 case DWARF2_FRAME_REG_SAVED_EXP: 1277 addr = execute_stack_op (cache->reg[regnum].loc.exp, 1278 cache->reg[regnum].exp_len, 1279 cache->addr_size, cache->text_offset, 1280 this_frame, cache->cfa, 1); 1281 return frame_unwind_got_memory (this_frame, regnum, addr); 1282 1283 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET: 1284 addr = cache->cfa + cache->reg[regnum].loc.offset; 1285 return frame_unwind_got_constant (this_frame, regnum, addr); 1286 1287 case DWARF2_FRAME_REG_SAVED_VAL_EXP: 1288 addr = execute_stack_op (cache->reg[regnum].loc.exp, 1289 cache->reg[regnum].exp_len, 1290 cache->addr_size, cache->text_offset, 1291 this_frame, cache->cfa, 1); 1292 return frame_unwind_got_constant (this_frame, regnum, addr); 1293 1294 case DWARF2_FRAME_REG_UNSPECIFIED: 1295 /* GCC, in its infinite wisdom decided to not provide unwind 1296 information for registers that are "same value". Since 1297 DWARF2 (3 draft 7) doesn't define such behavior, said 1298 registers are actually undefined (which is different to CFI 1299 "undefined"). Code above issues a complaint about this. 1300 Here just fudge the books, assume GCC, and that the value is 1301 more inner on the stack. */ 1302 return frame_unwind_got_register (this_frame, regnum, regnum); 1303 1304 case DWARF2_FRAME_REG_SAME_VALUE: 1305 return frame_unwind_got_register (this_frame, regnum, regnum); 1306 1307 case DWARF2_FRAME_REG_CFA: 1308 return frame_unwind_got_address (this_frame, regnum, cache->cfa); 1309 1310 case DWARF2_FRAME_REG_CFA_OFFSET: 1311 addr = cache->cfa + cache->reg[regnum].loc.offset; 1312 return frame_unwind_got_address (this_frame, regnum, addr); 1313 1314 case DWARF2_FRAME_REG_RA_OFFSET: 1315 addr = cache->reg[regnum].loc.offset; 1316 regnum = gdbarch_dwarf2_reg_to_regnum 1317 (gdbarch, cache->retaddr_reg.loc.reg); 1318 addr += get_frame_register_unsigned (this_frame, regnum); 1319 return frame_unwind_got_address (this_frame, regnum, addr); 1320 1321 case DWARF2_FRAME_REG_FN: 1322 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum); 1323 1324 default: 1325 internal_error (__FILE__, __LINE__, _("Unknown register rule.")); 1326 } 1327 } 1328 1329 static int 1330 dwarf2_frame_sniffer (const struct frame_unwind *self, 1331 struct frame_info *this_frame, void **this_cache) 1332 { 1333 /* Grab an address that is guarenteed to reside somewhere within the 1334 function. get_frame_pc(), with a no-return next function, can 1335 end up returning something past the end of this function's body. 1336 If the frame we're sniffing for is a signal frame whose start 1337 address is placed on the stack by the OS, its FDE must 1338 extend one byte before its start address or we could potentially 1339 select the FDE of the previous function. */ 1340 CORE_ADDR block_addr = get_frame_address_in_block (this_frame); 1341 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL); 1342 1343 if (!fde) 1344 return 0; 1345 1346 /* On some targets, signal trampolines may have unwind information. 1347 We need to recognize them so that we set the frame type 1348 correctly. */ 1349 1350 if (fde->cie->signal_frame 1351 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame), 1352 this_frame)) 1353 return self->type == SIGTRAMP_FRAME; 1354 1355 return self->type != SIGTRAMP_FRAME; 1356 } 1357 1358 static const struct frame_unwind dwarf2_frame_unwind = 1359 { 1360 NORMAL_FRAME, 1361 dwarf2_frame_unwind_stop_reason, 1362 dwarf2_frame_this_id, 1363 dwarf2_frame_prev_register, 1364 NULL, 1365 dwarf2_frame_sniffer 1366 }; 1367 1368 static const struct frame_unwind dwarf2_signal_frame_unwind = 1369 { 1370 SIGTRAMP_FRAME, 1371 dwarf2_frame_unwind_stop_reason, 1372 dwarf2_frame_this_id, 1373 dwarf2_frame_prev_register, 1374 NULL, 1375 dwarf2_frame_sniffer 1376 }; 1377 1378 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */ 1379 1380 void 1381 dwarf2_append_unwinders (struct gdbarch *gdbarch) 1382 { 1383 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind); 1384 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind); 1385 } 1386 1387 1388 /* There is no explicitly defined relationship between the CFA and the 1389 location of frame's local variables and arguments/parameters. 1390 Therefore, frame base methods on this page should probably only be 1391 used as a last resort, just to avoid printing total garbage as a 1392 response to the "info frame" command. */ 1393 1394 static CORE_ADDR 1395 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache) 1396 { 1397 struct dwarf2_frame_cache *cache = 1398 dwarf2_frame_cache (this_frame, this_cache); 1399 1400 return cache->cfa; 1401 } 1402 1403 static const struct frame_base dwarf2_frame_base = 1404 { 1405 &dwarf2_frame_unwind, 1406 dwarf2_frame_base_address, 1407 dwarf2_frame_base_address, 1408 dwarf2_frame_base_address 1409 }; 1410 1411 const struct frame_base * 1412 dwarf2_frame_base_sniffer (struct frame_info *this_frame) 1413 { 1414 CORE_ADDR block_addr = get_frame_address_in_block (this_frame); 1415 1416 if (dwarf2_frame_find_fde (&block_addr, NULL)) 1417 return &dwarf2_frame_base; 1418 1419 return NULL; 1420 } 1421 1422 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from 1423 the DWARF unwinder. This is used to implement 1424 DW_OP_call_frame_cfa. */ 1425 1426 CORE_ADDR 1427 dwarf2_frame_cfa (struct frame_info *this_frame) 1428 { 1429 while (get_frame_type (this_frame) == INLINE_FRAME) 1430 this_frame = get_prev_frame (this_frame); 1431 /* This restriction could be lifted if other unwinders are known to 1432 compute the frame base in a way compatible with the DWARF 1433 unwinder. */ 1434 if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind)) 1435 error (_("can't compute CFA for this frame")); 1436 return get_frame_base (this_frame); 1437 } 1438 1439 const struct objfile_data *dwarf2_frame_objfile_data; 1440 1441 static unsigned int 1442 read_1_byte (bfd *abfd, gdb_byte *buf) 1443 { 1444 return bfd_get_8 (abfd, buf); 1445 } 1446 1447 static unsigned int 1448 read_4_bytes (bfd *abfd, gdb_byte *buf) 1449 { 1450 return bfd_get_32 (abfd, buf); 1451 } 1452 1453 static ULONGEST 1454 read_8_bytes (bfd *abfd, gdb_byte *buf) 1455 { 1456 return bfd_get_64 (abfd, buf); 1457 } 1458 1459 static ULONGEST 1460 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) 1461 { 1462 ULONGEST result; 1463 unsigned int num_read; 1464 int shift; 1465 gdb_byte byte; 1466 1467 result = 0; 1468 shift = 0; 1469 num_read = 0; 1470 1471 do 1472 { 1473 byte = bfd_get_8 (abfd, (bfd_byte *) buf); 1474 buf++; 1475 num_read++; 1476 result |= ((byte & 0x7f) << shift); 1477 shift += 7; 1478 } 1479 while (byte & 0x80); 1480 1481 *bytes_read_ptr = num_read; 1482 1483 return result; 1484 } 1485 1486 static LONGEST 1487 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) 1488 { 1489 LONGEST result; 1490 int shift; 1491 unsigned int num_read; 1492 gdb_byte byte; 1493 1494 result = 0; 1495 shift = 0; 1496 num_read = 0; 1497 1498 do 1499 { 1500 byte = bfd_get_8 (abfd, (bfd_byte *) buf); 1501 buf++; 1502 num_read++; 1503 result |= ((byte & 0x7f) << shift); 1504 shift += 7; 1505 } 1506 while (byte & 0x80); 1507 1508 if (shift < 8 * sizeof (result) && (byte & 0x40)) 1509 result |= -(((LONGEST)1) << shift); 1510 1511 *bytes_read_ptr = num_read; 1512 1513 return result; 1514 } 1515 1516 static ULONGEST 1517 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) 1518 { 1519 LONGEST result; 1520 1521 result = bfd_get_32 (abfd, buf); 1522 if (result == 0xffffffff) 1523 { 1524 result = bfd_get_64 (abfd, buf + 4); 1525 *bytes_read_ptr = 12; 1526 } 1527 else 1528 *bytes_read_ptr = 4; 1529 1530 return result; 1531 } 1532 1533 1534 /* Pointer encoding helper functions. */ 1535 1536 /* GCC supports exception handling based on DWARF2 CFI. However, for 1537 technical reasons, it encodes addresses in its FDE's in a different 1538 way. Several "pointer encodings" are supported. The encoding 1539 that's used for a particular FDE is determined by the 'R' 1540 augmentation in the associated CIE. The argument of this 1541 augmentation is a single byte. 1542 1543 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a 1544 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether 1545 the address is signed or unsigned. Bits 4, 5 and 6 encode how the 1546 address should be interpreted (absolute, relative to the current 1547 position in the FDE, ...). Bit 7, indicates that the address 1548 should be dereferenced. */ 1549 1550 static gdb_byte 1551 encoding_for_size (unsigned int size) 1552 { 1553 switch (size) 1554 { 1555 case 2: 1556 return DW_EH_PE_udata2; 1557 case 4: 1558 return DW_EH_PE_udata4; 1559 case 8: 1560 return DW_EH_PE_udata8; 1561 default: 1562 internal_error (__FILE__, __LINE__, _("Unsupported address size")); 1563 } 1564 } 1565 1566 static CORE_ADDR 1567 read_encoded_value (struct comp_unit *unit, gdb_byte encoding, 1568 int ptr_len, const gdb_byte *buf, 1569 unsigned int *bytes_read_ptr, 1570 CORE_ADDR func_base) 1571 { 1572 ptrdiff_t offset; 1573 CORE_ADDR base; 1574 1575 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for 1576 FDE's. */ 1577 if (encoding & DW_EH_PE_indirect) 1578 internal_error (__FILE__, __LINE__, 1579 _("Unsupported encoding: DW_EH_PE_indirect")); 1580 1581 *bytes_read_ptr = 0; 1582 1583 switch (encoding & 0x70) 1584 { 1585 case DW_EH_PE_absptr: 1586 base = 0; 1587 break; 1588 case DW_EH_PE_pcrel: 1589 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section); 1590 base += (buf - unit->dwarf_frame_buffer); 1591 break; 1592 case DW_EH_PE_datarel: 1593 base = unit->dbase; 1594 break; 1595 case DW_EH_PE_textrel: 1596 base = unit->tbase; 1597 break; 1598 case DW_EH_PE_funcrel: 1599 base = func_base; 1600 break; 1601 case DW_EH_PE_aligned: 1602 base = 0; 1603 offset = buf - unit->dwarf_frame_buffer; 1604 if ((offset % ptr_len) != 0) 1605 { 1606 *bytes_read_ptr = ptr_len - (offset % ptr_len); 1607 buf += *bytes_read_ptr; 1608 } 1609 break; 1610 default: 1611 internal_error (__FILE__, __LINE__, 1612 _("Invalid or unsupported encoding")); 1613 } 1614 1615 if ((encoding & 0x07) == 0x00) 1616 { 1617 encoding |= encoding_for_size (ptr_len); 1618 if (bfd_get_sign_extend_vma (unit->abfd)) 1619 encoding |= DW_EH_PE_signed; 1620 } 1621 1622 switch (encoding & 0x0f) 1623 { 1624 case DW_EH_PE_uleb128: 1625 { 1626 ULONGEST value; 1627 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; 1628 1629 *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf; 1630 return base + value; 1631 } 1632 case DW_EH_PE_udata2: 1633 *bytes_read_ptr += 2; 1634 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); 1635 case DW_EH_PE_udata4: 1636 *bytes_read_ptr += 4; 1637 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); 1638 case DW_EH_PE_udata8: 1639 *bytes_read_ptr += 8; 1640 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); 1641 case DW_EH_PE_sleb128: 1642 { 1643 LONGEST value; 1644 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; 1645 1646 *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf; 1647 return base + value; 1648 } 1649 case DW_EH_PE_sdata2: 1650 *bytes_read_ptr += 2; 1651 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); 1652 case DW_EH_PE_sdata4: 1653 *bytes_read_ptr += 4; 1654 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); 1655 case DW_EH_PE_sdata8: 1656 *bytes_read_ptr += 8; 1657 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); 1658 default: 1659 internal_error (__FILE__, __LINE__, 1660 _("Invalid or unsupported encoding")); 1661 } 1662 } 1663 1664 1665 static int 1666 bsearch_cie_cmp (const void *key, const void *element) 1667 { 1668 ULONGEST cie_pointer = *(ULONGEST *) key; 1669 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element; 1670 1671 if (cie_pointer == cie->cie_pointer) 1672 return 0; 1673 1674 return (cie_pointer < cie->cie_pointer) ? -1 : 1; 1675 } 1676 1677 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */ 1678 static struct dwarf2_cie * 1679 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer) 1680 { 1681 struct dwarf2_cie **p_cie; 1682 1683 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to 1684 bsearch be non-NULL. */ 1685 if (cie_table->entries == NULL) 1686 { 1687 gdb_assert (cie_table->num_entries == 0); 1688 return NULL; 1689 } 1690 1691 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries, 1692 sizeof (cie_table->entries[0]), bsearch_cie_cmp); 1693 if (p_cie != NULL) 1694 return *p_cie; 1695 return NULL; 1696 } 1697 1698 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */ 1699 static void 1700 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie) 1701 { 1702 const int n = cie_table->num_entries; 1703 1704 gdb_assert (n < 1 1705 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer); 1706 1707 cie_table->entries = 1708 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0])); 1709 cie_table->entries[n] = cie; 1710 cie_table->num_entries = n + 1; 1711 } 1712 1713 static int 1714 bsearch_fde_cmp (const void *key, const void *element) 1715 { 1716 CORE_ADDR seek_pc = *(CORE_ADDR *) key; 1717 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element; 1718 1719 if (seek_pc < fde->initial_location) 1720 return -1; 1721 if (seek_pc < fde->initial_location + fde->address_range) 1722 return 0; 1723 return 1; 1724 } 1725 1726 /* Find the FDE for *PC. Return a pointer to the FDE, and store the 1727 inital location associated with it into *PC. */ 1728 1729 static struct dwarf2_fde * 1730 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset) 1731 { 1732 struct objfile *objfile; 1733 1734 ALL_OBJFILES (objfile) 1735 { 1736 struct dwarf2_fde_table *fde_table; 1737 struct dwarf2_fde **p_fde; 1738 CORE_ADDR offset; 1739 CORE_ADDR seek_pc; 1740 1741 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); 1742 if (fde_table == NULL) 1743 { 1744 dwarf2_build_frame_info (objfile); 1745 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); 1746 } 1747 gdb_assert (fde_table != NULL); 1748 1749 if (fde_table->num_entries == 0) 1750 continue; 1751 1752 gdb_assert (objfile->section_offsets); 1753 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); 1754 1755 gdb_assert (fde_table->num_entries > 0); 1756 if (*pc < offset + fde_table->entries[0]->initial_location) 1757 continue; 1758 1759 seek_pc = *pc - offset; 1760 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries, 1761 sizeof (fde_table->entries[0]), bsearch_fde_cmp); 1762 if (p_fde != NULL) 1763 { 1764 *pc = (*p_fde)->initial_location + offset; 1765 if (out_offset) 1766 *out_offset = offset; 1767 return *p_fde; 1768 } 1769 } 1770 return NULL; 1771 } 1772 1773 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */ 1774 static void 1775 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde) 1776 { 1777 if (fde->address_range == 0) 1778 /* Discard useless FDEs. */ 1779 return; 1780 1781 fde_table->num_entries += 1; 1782 fde_table->entries = 1783 xrealloc (fde_table->entries, 1784 fde_table->num_entries * sizeof (fde_table->entries[0])); 1785 fde_table->entries[fde_table->num_entries - 1] = fde; 1786 } 1787 1788 #ifdef CC_HAS_LONG_LONG 1789 #define DW64_CIE_ID 0xffffffffffffffffULL 1790 #else 1791 #define DW64_CIE_ID ~0 1792 #endif 1793 1794 static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start, 1795 int eh_frame_p, 1796 struct dwarf2_cie_table *cie_table, 1797 struct dwarf2_fde_table *fde_table); 1798 1799 /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise 1800 the next byte to be processed. */ 1801 static gdb_byte * 1802 decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, 1803 struct dwarf2_cie_table *cie_table, 1804 struct dwarf2_fde_table *fde_table) 1805 { 1806 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile); 1807 gdb_byte *buf, *end; 1808 LONGEST length; 1809 unsigned int bytes_read; 1810 int dwarf64_p; 1811 ULONGEST cie_id; 1812 ULONGEST cie_pointer; 1813 1814 buf = start; 1815 length = read_initial_length (unit->abfd, buf, &bytes_read); 1816 buf += bytes_read; 1817 end = buf + length; 1818 1819 /* Are we still within the section? */ 1820 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) 1821 return NULL; 1822 1823 if (length == 0) 1824 return end; 1825 1826 /* Distinguish between 32 and 64-bit encoded frame info. */ 1827 dwarf64_p = (bytes_read == 12); 1828 1829 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ 1830 if (eh_frame_p) 1831 cie_id = 0; 1832 else if (dwarf64_p) 1833 cie_id = DW64_CIE_ID; 1834 else 1835 cie_id = DW_CIE_ID; 1836 1837 if (dwarf64_p) 1838 { 1839 cie_pointer = read_8_bytes (unit->abfd, buf); 1840 buf += 8; 1841 } 1842 else 1843 { 1844 cie_pointer = read_4_bytes (unit->abfd, buf); 1845 buf += 4; 1846 } 1847 1848 if (cie_pointer == cie_id) 1849 { 1850 /* This is a CIE. */ 1851 struct dwarf2_cie *cie; 1852 char *augmentation; 1853 unsigned int cie_version; 1854 1855 /* Record the offset into the .debug_frame section of this CIE. */ 1856 cie_pointer = start - unit->dwarf_frame_buffer; 1857 1858 /* Check whether we've already read it. */ 1859 if (find_cie (cie_table, cie_pointer)) 1860 return end; 1861 1862 cie = (struct dwarf2_cie *) 1863 obstack_alloc (&unit->objfile->objfile_obstack, 1864 sizeof (struct dwarf2_cie)); 1865 cie->initial_instructions = NULL; 1866 cie->cie_pointer = cie_pointer; 1867 1868 /* The encoding for FDE's in a normal .debug_frame section 1869 depends on the target address size. */ 1870 cie->encoding = DW_EH_PE_absptr; 1871 1872 /* We'll determine the final value later, but we need to 1873 initialize it conservatively. */ 1874 cie->signal_frame = 0; 1875 1876 /* Check version number. */ 1877 cie_version = read_1_byte (unit->abfd, buf); 1878 if (cie_version != 1 && cie_version != 3 && cie_version != 4) 1879 return NULL; 1880 cie->version = cie_version; 1881 buf += 1; 1882 1883 /* Interpret the interesting bits of the augmentation. */ 1884 cie->augmentation = augmentation = (char *) buf; 1885 buf += (strlen (augmentation) + 1); 1886 1887 /* Ignore armcc augmentations. We only use them for quirks, 1888 and that doesn't happen until later. */ 1889 if (strncmp (augmentation, "armcc", 5) == 0) 1890 augmentation += strlen (augmentation); 1891 1892 /* The GCC 2.x "eh" augmentation has a pointer immediately 1893 following the augmentation string, so it must be handled 1894 first. */ 1895 if (augmentation[0] == 'e' && augmentation[1] == 'h') 1896 { 1897 /* Skip. */ 1898 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; 1899 augmentation += 2; 1900 } 1901 1902 if (cie->version >= 4) 1903 { 1904 /* FIXME: check that this is the same as from the CU header. */ 1905 cie->addr_size = read_1_byte (unit->abfd, buf); 1906 ++buf; 1907 cie->segment_size = read_1_byte (unit->abfd, buf); 1908 ++buf; 1909 } 1910 else 1911 { 1912 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch); 1913 cie->segment_size = 0; 1914 } 1915 /* Address values in .eh_frame sections are defined to have the 1916 target's pointer size. Watchout: This breaks frame info for 1917 targets with pointer size < address size, unless a .debug_frame 1918 section exists as well. */ 1919 if (eh_frame_p) 1920 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; 1921 else 1922 cie->ptr_size = cie->addr_size; 1923 1924 cie->code_alignment_factor = 1925 read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1926 buf += bytes_read; 1927 1928 cie->data_alignment_factor = 1929 read_signed_leb128 (unit->abfd, buf, &bytes_read); 1930 buf += bytes_read; 1931 1932 if (cie_version == 1) 1933 { 1934 cie->return_address_register = read_1_byte (unit->abfd, buf); 1935 bytes_read = 1; 1936 } 1937 else 1938 cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf, 1939 &bytes_read); 1940 cie->return_address_register 1941 = dwarf2_frame_adjust_regnum (gdbarch, 1942 cie->return_address_register, 1943 eh_frame_p); 1944 1945 buf += bytes_read; 1946 1947 cie->saw_z_augmentation = (*augmentation == 'z'); 1948 if (cie->saw_z_augmentation) 1949 { 1950 ULONGEST length; 1951 1952 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 1953 buf += bytes_read; 1954 if (buf > end) 1955 return NULL; 1956 cie->initial_instructions = buf + length; 1957 augmentation++; 1958 } 1959 1960 while (*augmentation) 1961 { 1962 /* "L" indicates a byte showing how the LSDA pointer is encoded. */ 1963 if (*augmentation == 'L') 1964 { 1965 /* Skip. */ 1966 buf++; 1967 augmentation++; 1968 } 1969 1970 /* "R" indicates a byte indicating how FDE addresses are encoded. */ 1971 else if (*augmentation == 'R') 1972 { 1973 cie->encoding = *buf++; 1974 augmentation++; 1975 } 1976 1977 /* "P" indicates a personality routine in the CIE augmentation. */ 1978 else if (*augmentation == 'P') 1979 { 1980 /* Skip. Avoid indirection since we throw away the result. */ 1981 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect; 1982 read_encoded_value (unit, encoding, cie->ptr_size, 1983 buf, &bytes_read, 0); 1984 buf += bytes_read; 1985 augmentation++; 1986 } 1987 1988 /* "S" indicates a signal frame, such that the return 1989 address must not be decremented to locate the call frame 1990 info for the previous frame; it might even be the first 1991 instruction of a function, so decrementing it would take 1992 us to a different function. */ 1993 else if (*augmentation == 'S') 1994 { 1995 cie->signal_frame = 1; 1996 augmentation++; 1997 } 1998 1999 /* Otherwise we have an unknown augmentation. Assume that either 2000 there is no augmentation data, or we saw a 'z' prefix. */ 2001 else 2002 { 2003 if (cie->initial_instructions) 2004 buf = cie->initial_instructions; 2005 break; 2006 } 2007 } 2008 2009 cie->initial_instructions = buf; 2010 cie->end = end; 2011 cie->unit = unit; 2012 2013 add_cie (cie_table, cie); 2014 } 2015 else 2016 { 2017 /* This is a FDE. */ 2018 struct dwarf2_fde *fde; 2019 2020 /* In an .eh_frame section, the CIE pointer is the delta between the 2021 address within the FDE where the CIE pointer is stored and the 2022 address of the CIE. Convert it to an offset into the .eh_frame 2023 section. */ 2024 if (eh_frame_p) 2025 { 2026 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; 2027 cie_pointer -= (dwarf64_p ? 8 : 4); 2028 } 2029 2030 /* In either case, validate the result is still within the section. */ 2031 if (cie_pointer >= unit->dwarf_frame_size) 2032 return NULL; 2033 2034 fde = (struct dwarf2_fde *) 2035 obstack_alloc (&unit->objfile->objfile_obstack, 2036 sizeof (struct dwarf2_fde)); 2037 fde->cie = find_cie (cie_table, cie_pointer); 2038 if (fde->cie == NULL) 2039 { 2040 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, 2041 eh_frame_p, cie_table, fde_table); 2042 fde->cie = find_cie (cie_table, cie_pointer); 2043 } 2044 2045 gdb_assert (fde->cie != NULL); 2046 2047 fde->initial_location = 2048 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size, 2049 buf, &bytes_read, 0); 2050 buf += bytes_read; 2051 2052 fde->address_range = 2053 read_encoded_value (unit, fde->cie->encoding & 0x0f, 2054 fde->cie->ptr_size, buf, &bytes_read, 0); 2055 buf += bytes_read; 2056 2057 /* A 'z' augmentation in the CIE implies the presence of an 2058 augmentation field in the FDE as well. The only thing known 2059 to be in here at present is the LSDA entry for EH. So we 2060 can skip the whole thing. */ 2061 if (fde->cie->saw_z_augmentation) 2062 { 2063 ULONGEST length; 2064 2065 length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); 2066 buf += bytes_read + length; 2067 if (buf > end) 2068 return NULL; 2069 } 2070 2071 fde->instructions = buf; 2072 fde->end = end; 2073 2074 fde->eh_frame_p = eh_frame_p; 2075 2076 add_fde (fde_table, fde); 2077 } 2078 2079 return end; 2080 } 2081 2082 /* Read a CIE or FDE in BUF and decode it. */ 2083 static gdb_byte * 2084 decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, 2085 struct dwarf2_cie_table *cie_table, 2086 struct dwarf2_fde_table *fde_table) 2087 { 2088 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; 2089 gdb_byte *ret; 2090 ptrdiff_t start_offset; 2091 2092 while (1) 2093 { 2094 ret = decode_frame_entry_1 (unit, start, eh_frame_p, 2095 cie_table, fde_table); 2096 if (ret != NULL) 2097 break; 2098 2099 /* We have corrupt input data of some form. */ 2100 2101 /* ??? Try, weakly, to work around compiler/assembler/linker bugs 2102 and mismatches wrt padding and alignment of debug sections. */ 2103 /* Note that there is no requirement in the standard for any 2104 alignment at all in the frame unwind sections. Testing for 2105 alignment before trying to interpret data would be incorrect. 2106 2107 However, GCC traditionally arranged for frame sections to be 2108 sized such that the FDE length and CIE fields happen to be 2109 aligned (in theory, for performance). This, unfortunately, 2110 was done with .align directives, which had the side effect of 2111 forcing the section to be aligned by the linker. 2112 2113 This becomes a problem when you have some other producer that 2114 creates frame sections that are not as strictly aligned. That 2115 produces a hole in the frame info that gets filled by the 2116 linker with zeros. 2117 2118 The GCC behaviour is arguably a bug, but it's effectively now 2119 part of the ABI, so we're now stuck with it, at least at the 2120 object file level. A smart linker may decide, in the process 2121 of compressing duplicate CIE information, that it can rewrite 2122 the entire output section without this extra padding. */ 2123 2124 start_offset = start - unit->dwarf_frame_buffer; 2125 if (workaround < ALIGN4 && (start_offset & 3) != 0) 2126 { 2127 start += 4 - (start_offset & 3); 2128 workaround = ALIGN4; 2129 continue; 2130 } 2131 if (workaround < ALIGN8 && (start_offset & 7) != 0) 2132 { 2133 start += 8 - (start_offset & 7); 2134 workaround = ALIGN8; 2135 continue; 2136 } 2137 2138 /* Nothing left to try. Arrange to return as if we've consumed 2139 the entire input section. Hopefully we'll get valid info from 2140 the other of .debug_frame/.eh_frame. */ 2141 workaround = FAIL; 2142 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; 2143 break; 2144 } 2145 2146 switch (workaround) 2147 { 2148 case NONE: 2149 break; 2150 2151 case ALIGN4: 2152 complaint (&symfile_complaints, _("\ 2153 Corrupt data in %s:%s; align 4 workaround apparently succeeded"), 2154 unit->dwarf_frame_section->owner->filename, 2155 unit->dwarf_frame_section->name); 2156 break; 2157 2158 case ALIGN8: 2159 complaint (&symfile_complaints, _("\ 2160 Corrupt data in %s:%s; align 8 workaround apparently succeeded"), 2161 unit->dwarf_frame_section->owner->filename, 2162 unit->dwarf_frame_section->name); 2163 break; 2164 2165 default: 2166 complaint (&symfile_complaints, 2167 _("Corrupt data in %s:%s"), 2168 unit->dwarf_frame_section->owner->filename, 2169 unit->dwarf_frame_section->name); 2170 break; 2171 } 2172 2173 return ret; 2174 } 2175 2176 2177 /* Imported from dwarf2read.c. */ 2178 extern void dwarf2_get_section_info (struct objfile *, const char *, 2179 asection **, gdb_byte **, 2180 bfd_size_type *); 2181 2182 static int 2183 qsort_fde_cmp (const void *a, const void *b) 2184 { 2185 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a; 2186 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b; 2187 2188 if (aa->initial_location == bb->initial_location) 2189 { 2190 if (aa->address_range != bb->address_range 2191 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0) 2192 /* Linker bug, e.g. gold/10400. 2193 Work around it by keeping stable sort order. */ 2194 return (a < b) ? -1 : 1; 2195 else 2196 /* Put eh_frame entries after debug_frame ones. */ 2197 return aa->eh_frame_p - bb->eh_frame_p; 2198 } 2199 2200 return (aa->initial_location < bb->initial_location) ? -1 : 1; 2201 } 2202 2203 void 2204 dwarf2_build_frame_info (struct objfile *objfile) 2205 { 2206 struct comp_unit *unit; 2207 gdb_byte *frame_ptr; 2208 struct dwarf2_cie_table cie_table; 2209 struct dwarf2_fde_table fde_table; 2210 struct dwarf2_fde_table *fde_table2; 2211 2212 cie_table.num_entries = 0; 2213 cie_table.entries = NULL; 2214 2215 fde_table.num_entries = 0; 2216 fde_table.entries = NULL; 2217 2218 /* Build a minimal decoding of the DWARF2 compilation unit. */ 2219 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack, 2220 sizeof (struct comp_unit)); 2221 unit->abfd = objfile->obfd; 2222 unit->objfile = objfile; 2223 unit->dbase = 0; 2224 unit->tbase = 0; 2225 2226 dwarf2_get_section_info (objfile, ".eh_frame", 2227 &unit->dwarf_frame_section, 2228 &unit->dwarf_frame_buffer, 2229 &unit->dwarf_frame_size); 2230 if (unit->dwarf_frame_size) 2231 { 2232 asection *got, *txt; 2233 2234 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base 2235 that is used for the i386/amd64 target, which currently is 2236 the only target in GCC that supports/uses the 2237 DW_EH_PE_datarel encoding. */ 2238 got = bfd_get_section_by_name (unit->abfd, ".got"); 2239 if (got) 2240 unit->dbase = got->vma; 2241 2242 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 2243 so far. */ 2244 txt = bfd_get_section_by_name (unit->abfd, ".text"); 2245 if (txt) 2246 unit->tbase = txt->vma; 2247 2248 frame_ptr = unit->dwarf_frame_buffer; 2249 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) 2250 frame_ptr = decode_frame_entry (unit, frame_ptr, 1, 2251 &cie_table, &fde_table); 2252 2253 if (cie_table.num_entries != 0) 2254 { 2255 /* Reinit cie_table: debug_frame has different CIEs. */ 2256 xfree (cie_table.entries); 2257 cie_table.num_entries = 0; 2258 cie_table.entries = NULL; 2259 } 2260 } 2261 2262 dwarf2_get_section_info (objfile, ".debug_frame", 2263 &unit->dwarf_frame_section, 2264 &unit->dwarf_frame_buffer, 2265 &unit->dwarf_frame_size); 2266 if (unit->dwarf_frame_size) 2267 { 2268 frame_ptr = unit->dwarf_frame_buffer; 2269 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) 2270 frame_ptr = decode_frame_entry (unit, frame_ptr, 0, 2271 &cie_table, &fde_table); 2272 } 2273 2274 /* Discard the cie_table, it is no longer needed. */ 2275 if (cie_table.num_entries != 0) 2276 { 2277 xfree (cie_table.entries); 2278 cie_table.entries = NULL; /* Paranoia. */ 2279 cie_table.num_entries = 0; /* Paranoia. */ 2280 } 2281 2282 /* Copy fde_table to obstack: it is needed at runtime. */ 2283 fde_table2 = (struct dwarf2_fde_table *) 2284 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2)); 2285 2286 if (fde_table.num_entries == 0) 2287 { 2288 fde_table2->entries = NULL; 2289 fde_table2->num_entries = 0; 2290 } 2291 else 2292 { 2293 struct dwarf2_fde *fde_prev = NULL; 2294 struct dwarf2_fde *first_non_zero_fde = NULL; 2295 int i; 2296 2297 /* Prepare FDE table for lookups. */ 2298 qsort (fde_table.entries, fde_table.num_entries, 2299 sizeof (fde_table.entries[0]), qsort_fde_cmp); 2300 2301 /* Check for leftovers from --gc-sections. The GNU linker sets 2302 the relevant symbols to zero, but doesn't zero the FDE *end* 2303 ranges because there's no relocation there. It's (offset, 2304 length), not (start, end). On targets where address zero is 2305 just another valid address this can be a problem, since the 2306 FDEs appear to be non-empty in the output --- we could pick 2307 out the wrong FDE. To work around this, when overlaps are 2308 detected, we prefer FDEs that do not start at zero. 2309 2310 Start by finding the first FDE with non-zero start. Below 2311 we'll discard all FDEs that start at zero and overlap this 2312 one. */ 2313 for (i = 0; i < fde_table.num_entries; i++) 2314 { 2315 struct dwarf2_fde *fde = fde_table.entries[i]; 2316 2317 if (fde->initial_location != 0) 2318 { 2319 first_non_zero_fde = fde; 2320 break; 2321 } 2322 } 2323 2324 /* Since we'll be doing bsearch, squeeze out identical (except 2325 for eh_frame_p) fde entries so bsearch result is predictable. 2326 Also discard leftovers from --gc-sections. */ 2327 fde_table2->num_entries = 0; 2328 for (i = 0; i < fde_table.num_entries; i++) 2329 { 2330 struct dwarf2_fde *fde = fde_table.entries[i]; 2331 2332 if (fde->initial_location == 0 2333 && first_non_zero_fde != NULL 2334 && (first_non_zero_fde->initial_location 2335 < fde->initial_location + fde->address_range)) 2336 continue; 2337 2338 if (fde_prev != NULL 2339 && fde_prev->initial_location == fde->initial_location) 2340 continue; 2341 2342 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i], 2343 sizeof (fde_table.entries[0])); 2344 ++fde_table2->num_entries; 2345 fde_prev = fde; 2346 } 2347 fde_table2->entries = obstack_finish (&objfile->objfile_obstack); 2348 2349 /* Discard the original fde_table. */ 2350 xfree (fde_table.entries); 2351 } 2352 2353 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2); 2354 } 2355 2356 /* Provide a prototype to silence -Wmissing-prototypes. */ 2357 void _initialize_dwarf2_frame (void); 2358 2359 void 2360 _initialize_dwarf2_frame (void) 2361 { 2362 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); 2363 dwarf2_frame_objfile_data = register_objfile_data (); 2364 } 2365