1 /* Event loop machinery for GDB, the GNU debugger. 2 Copyright (C) 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2008, 2009 3 Free Software Foundation, Inc. 4 Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "event-loop.h" 23 #include "event-top.h" 24 25 #ifdef HAVE_POLL 26 #if defined (HAVE_POLL_H) 27 #include <poll.h> 28 #elif defined (HAVE_SYS_POLL_H) 29 #include <sys/poll.h> 30 #endif 31 #endif 32 33 #include <sys/types.h> 34 #include "gdb_string.h" 35 #include <errno.h> 36 #include <sys/time.h> 37 #include "exceptions.h" 38 #include "gdb_assert.h" 39 #include "gdb_select.h" 40 41 /* Data point to pass to the event handler. */ 42 typedef union event_data 43 { 44 void *ptr; 45 int integer; 46 } event_data; 47 48 typedef struct gdb_event gdb_event; 49 typedef void (event_handler_func) (event_data); 50 51 /* Event for the GDB event system. Events are queued by calling 52 async_queue_event and serviced later on by gdb_do_one_event. An 53 event can be, for instance, a file descriptor becoming ready to be 54 read. Servicing an event simply means that the procedure PROC will 55 be called. We have 2 queues, one for file handlers that we listen 56 to in the event loop, and one for the file handlers+events that are 57 ready. The procedure PROC associated with each event is dependant 58 of the event source. In the case of monitored file descriptors, it 59 is always the same (handle_file_event). Its duty is to invoke the 60 handler associated with the file descriptor whose state change 61 generated the event, plus doing other cleanups and such. In the 62 case of async signal handlers, it is 63 invoke_async_signal_handler. */ 64 65 struct gdb_event 66 { 67 /* Procedure to call to service this event. */ 68 event_handler_func *proc; 69 70 /* Data to pass to the event handler. */ 71 event_data data; 72 73 /* Next in list of events or NULL. */ 74 struct gdb_event *next_event; 75 }; 76 77 /* Information about each file descriptor we register with the event 78 loop. */ 79 80 typedef struct file_handler 81 { 82 int fd; /* File descriptor. */ 83 int mask; /* Events we want to monitor: POLLIN, etc. */ 84 int ready_mask; /* Events that have been seen since 85 the last time. */ 86 handler_func *proc; /* Procedure to call when fd is ready. */ 87 gdb_client_data client_data; /* Argument to pass to proc. */ 88 int error; /* Was an error detected on this fd? */ 89 struct file_handler *next_file; /* Next registered file descriptor. */ 90 } 91 file_handler; 92 93 /* PROC is a function to be invoked when the READY flag is set. This 94 happens when there has been a signal and the corresponding signal 95 handler has 'triggered' this async_signal_handler for 96 execution. The actual work to be done in response to a signal will 97 be carried out by PROC at a later time, within process_event. This 98 provides a deferred execution of signal handlers. 99 Async_init_signals takes care of setting up such an 100 async_signal_handler for each interesting signal. */ 101 typedef struct async_signal_handler 102 { 103 int ready; /* If ready, call this handler from the main event loop, 104 using invoke_async_handler. */ 105 struct async_signal_handler *next_handler; /* Ptr to next handler */ 106 sig_handler_func *proc; /* Function to call to do the work */ 107 gdb_client_data client_data; /* Argument to async_handler_func */ 108 } 109 async_signal_handler; 110 111 /* PROC is a function to be invoked when the READY flag is set. This 112 happens when the event has been marked with 113 MARK_ASYNC_EVENT_HANDLER. The actual work to be done in response 114 to an event will be carried out by PROC at a later time, within 115 process_event. This provides a deferred execution of event 116 handlers. */ 117 typedef struct async_event_handler 118 { 119 /* If ready, call this handler from the main event loop, using 120 invoke_event_handler. */ 121 int ready; 122 123 /* Point to next handler. */ 124 struct async_event_handler *next_handler; 125 126 /* Function to call to do the work. */ 127 async_event_handler_func *proc; 128 129 /* Argument to PROC. */ 130 gdb_client_data client_data; 131 } 132 async_event_handler; 133 134 135 /* Event queue: 136 - the first event in the queue is the head of the queue. 137 It will be the next to be serviced. 138 - the last event in the queue 139 140 Events can be inserted at the front of the queue or at the end of 141 the queue. Events will be extracted from the queue for processing 142 starting from the head. Therefore, events inserted at the head of 143 the queue will be processed in a last in first out fashion, while 144 those inserted at the tail of the queue will be processed in a first 145 in first out manner. All the fields are NULL if the queue is 146 empty. */ 147 148 static struct 149 { 150 gdb_event *first_event; /* First pending event */ 151 gdb_event *last_event; /* Last pending event */ 152 } 153 event_queue; 154 155 /* Gdb_notifier is just a list of file descriptors gdb is interested in. 156 These are the input file descriptor, and the target file 157 descriptor. We have two flavors of the notifier, one for platforms 158 that have the POLL function, the other for those that don't, and 159 only support SELECT. Each of the elements in the gdb_notifier list is 160 basically a description of what kind of events gdb is interested 161 in, for each fd. */ 162 163 /* As of 1999-04-30 only the input file descriptor is registered with the 164 event loop. */ 165 166 /* Do we use poll or select ? */ 167 #ifdef HAVE_POLL 168 #define USE_POLL 1 169 #else 170 #define USE_POLL 0 171 #endif /* HAVE_POLL */ 172 173 static unsigned char use_poll = USE_POLL; 174 175 #ifdef USE_WIN32API 176 #include <windows.h> 177 #include <io.h> 178 #endif 179 180 static struct 181 { 182 /* Ptr to head of file handler list. */ 183 file_handler *first_file_handler; 184 185 #ifdef HAVE_POLL 186 /* Ptr to array of pollfd structures. */ 187 struct pollfd *poll_fds; 188 189 /* Timeout in milliseconds for calls to poll(). */ 190 int poll_timeout; 191 #endif 192 193 /* Masks to be used in the next call to select. 194 Bits are set in response to calls to create_file_handler. */ 195 fd_set check_masks[3]; 196 197 /* What file descriptors were found ready by select. */ 198 fd_set ready_masks[3]; 199 200 /* Number of file descriptors to monitor. (for poll) */ 201 /* Number of valid bits (highest fd value + 1). (for select) */ 202 int num_fds; 203 204 /* Time structure for calls to select(). */ 205 struct timeval select_timeout; 206 207 /* Flag to tell whether the timeout should be used. */ 208 int timeout_valid; 209 } 210 gdb_notifier; 211 212 /* Structure associated with a timer. PROC will be executed at the 213 first occasion after WHEN. */ 214 struct gdb_timer 215 { 216 struct timeval when; 217 int timer_id; 218 struct gdb_timer *next; 219 timer_handler_func *proc; /* Function to call to do the work */ 220 gdb_client_data client_data; /* Argument to async_handler_func */ 221 } 222 gdb_timer; 223 224 /* List of currently active timers. It is sorted in order of 225 increasing timers. */ 226 static struct 227 { 228 /* Pointer to first in timer list. */ 229 struct gdb_timer *first_timer; 230 231 /* Id of the last timer created. */ 232 int num_timers; 233 } 234 timer_list; 235 236 /* All the async_signal_handlers gdb is interested in are kept onto 237 this list. */ 238 static struct 239 { 240 /* Pointer to first in handler list. */ 241 async_signal_handler *first_handler; 242 243 /* Pointer to last in handler list. */ 244 async_signal_handler *last_handler; 245 } 246 sighandler_list; 247 248 /* All the async_event_handlers gdb is interested in are kept onto 249 this list. */ 250 static struct 251 { 252 /* Pointer to first in handler list. */ 253 async_event_handler *first_handler; 254 255 /* Pointer to last in handler list. */ 256 async_event_handler *last_handler; 257 } 258 async_event_handler_list; 259 260 static int invoke_async_signal_handlers (void); 261 static void create_file_handler (int fd, int mask, handler_func *proc, 262 gdb_client_data client_data); 263 static void handle_file_event (event_data data); 264 static void check_async_event_handlers (void); 265 static void check_async_signal_handlers (void); 266 static int gdb_wait_for_event (int); 267 static void poll_timers (void); 268 269 270 /* Insert an event object into the gdb event queue at 271 the specified position. 272 POSITION can be head or tail, with values TAIL, HEAD. 273 EVENT_PTR points to the event to be inserted into the queue. 274 The caller must allocate memory for the event. It is freed 275 after the event has ben handled. 276 Events in the queue will be processed head to tail, therefore, 277 events inserted at the head of the queue will be processed 278 as last in first out. Event appended at the tail of the queue 279 will be processed first in first out. */ 280 static void 281 async_queue_event (gdb_event * event_ptr, queue_position position) 282 { 283 if (position == TAIL) 284 { 285 /* The event will become the new last_event. */ 286 287 event_ptr->next_event = NULL; 288 if (event_queue.first_event == NULL) 289 event_queue.first_event = event_ptr; 290 else 291 event_queue.last_event->next_event = event_ptr; 292 event_queue.last_event = event_ptr; 293 } 294 else if (position == HEAD) 295 { 296 /* The event becomes the new first_event. */ 297 298 event_ptr->next_event = event_queue.first_event; 299 if (event_queue.first_event == NULL) 300 event_queue.last_event = event_ptr; 301 event_queue.first_event = event_ptr; 302 } 303 } 304 305 /* Create a generic event, to be enqueued in the event queue for 306 processing. PROC is the procedure associated to the event. DATA 307 is passed to PROC upon PROC invocation. */ 308 309 static gdb_event * 310 create_event (event_handler_func proc, event_data data) 311 { 312 gdb_event *event; 313 314 event = xmalloc (sizeof (*event)); 315 event->proc = proc; 316 event->data = data; 317 318 return event; 319 } 320 321 /* Create a file event, to be enqueued in the event queue for 322 processing. The procedure associated to this event is always 323 handle_file_event, which will in turn invoke the one that was 324 associated to FD when it was registered with the event loop. */ 325 static gdb_event * 326 create_file_event (int fd) 327 { 328 event_data data; 329 330 data.integer = fd; 331 return create_event (handle_file_event, data); 332 } 333 334 /* Process one event. 335 The event can be the next one to be serviced in the event queue, 336 or an asynchronous event handler can be invoked in response to 337 the reception of a signal. 338 If an event was processed (either way), 1 is returned otherwise 339 0 is returned. 340 Scan the queue from head to tail, processing therefore the high 341 priority events first, by invoking the associated event handler 342 procedure. */ 343 static int 344 process_event (void) 345 { 346 gdb_event *event_ptr, *prev_ptr; 347 event_handler_func *proc; 348 event_data data; 349 350 /* First let's see if there are any asynchronous event handlers that 351 are ready. These would be the result of invoking any of the 352 signal handlers. */ 353 354 if (invoke_async_signal_handlers ()) 355 return 1; 356 357 /* Look in the event queue to find an event that is ready 358 to be processed. */ 359 360 for (event_ptr = event_queue.first_event; event_ptr != NULL; 361 event_ptr = event_ptr->next_event) 362 { 363 /* Call the handler for the event. */ 364 365 proc = event_ptr->proc; 366 data = event_ptr->data; 367 368 /* Let's get rid of the event from the event queue. We need to 369 do this now because while processing the event, the proc 370 function could end up calling 'error' and therefore jump out 371 to the caller of this function, gdb_do_one_event. In that 372 case, we would have on the event queue an event wich has been 373 processed, but not deleted. */ 374 375 if (event_queue.first_event == event_ptr) 376 { 377 event_queue.first_event = event_ptr->next_event; 378 if (event_ptr->next_event == NULL) 379 event_queue.last_event = NULL; 380 } 381 else 382 { 383 prev_ptr = event_queue.first_event; 384 while (prev_ptr->next_event != event_ptr) 385 prev_ptr = prev_ptr->next_event; 386 387 prev_ptr->next_event = event_ptr->next_event; 388 if (event_ptr->next_event == NULL) 389 event_queue.last_event = prev_ptr; 390 } 391 xfree (event_ptr); 392 393 /* Now call the procedure associated with the event. */ 394 (*proc) (data); 395 return 1; 396 } 397 398 /* this is the case if there are no event on the event queue. */ 399 return 0; 400 } 401 402 /* Process one high level event. If nothing is ready at this time, 403 wait for something to happen (via gdb_wait_for_event), then process 404 it. Returns >0 if something was done otherwise returns <0 (this 405 can happen if there are no event sources to wait for). If an error 406 occurs catch_errors() which calls this function returns zero. */ 407 408 int 409 gdb_do_one_event (void *data) 410 { 411 static int event_source_head = 0; 412 const int number_of_sources = 3; 413 int current = 0; 414 415 /* Any events already waiting in the queue? */ 416 if (process_event ()) 417 return 1; 418 419 /* To level the fairness across event sources, we poll them in a 420 round-robin fashion. */ 421 for (current = 0; current < number_of_sources; current++) 422 { 423 switch (event_source_head) 424 { 425 case 0: 426 /* Are any timers that are ready? If so, put an event on the 427 queue. */ 428 poll_timers (); 429 break; 430 case 1: 431 /* Are there events already waiting to be collected on the 432 monitored file descriptors? */ 433 gdb_wait_for_event (0); 434 break; 435 case 2: 436 /* Are there any asynchronous event handlers ready? */ 437 check_async_event_handlers (); 438 break; 439 } 440 441 event_source_head++; 442 if (event_source_head == number_of_sources) 443 event_source_head = 0; 444 } 445 446 /* Handle any new events collected. */ 447 if (process_event ()) 448 return 1; 449 450 /* Block waiting for a new event. If gdb_wait_for_event returns -1, 451 we should get out because this means that there are no event 452 sources left. This will make the event loop stop, and the 453 application exit. */ 454 455 if (gdb_wait_for_event (1) < 0) 456 return -1; 457 458 /* Handle any new events occurred while waiting. */ 459 if (process_event ()) 460 return 1; 461 462 /* If gdb_wait_for_event has returned 1, it means that one event has 463 been handled. We break out of the loop. */ 464 return 1; 465 } 466 467 /* Start up the event loop. This is the entry point to the event loop 468 from the command loop. */ 469 470 void 471 start_event_loop (void) 472 { 473 /* Loop until there is nothing to do. This is the entry point to the 474 event loop engine. gdb_do_one_event, called via catch_errors() 475 will process one event for each invocation. It blocks waits for 476 an event and then processes it. >0 when an event is processed, 0 477 when catch_errors() caught an error and <0 when there are no 478 longer any event sources registered. */ 479 while (1) 480 { 481 int gdb_result; 482 483 gdb_result = catch_errors (gdb_do_one_event, 0, "", RETURN_MASK_ALL); 484 if (gdb_result < 0) 485 break; 486 487 /* If we long-jumped out of do_one_event, we probably 488 didn't get around to resetting the prompt, which leaves 489 readline in a messed-up state. Reset it here. */ 490 491 if (gdb_result == 0) 492 { 493 /* If any exception escaped to here, we better enable 494 stdin. Otherwise, any command that calls async_disable_stdin, 495 and then throws, will leave stdin inoperable. */ 496 async_enable_stdin (); 497 /* FIXME: this should really be a call to a hook that is 498 interface specific, because interfaces can display the 499 prompt in their own way. */ 500 display_gdb_prompt (0); 501 /* This call looks bizarre, but it is required. If the user 502 entered a command that caused an error, 503 after_char_processing_hook won't be called from 504 rl_callback_read_char_wrapper. Using a cleanup there 505 won't work, since we want this function to be called 506 after a new prompt is printed. */ 507 if (after_char_processing_hook) 508 (*after_char_processing_hook) (); 509 /* Maybe better to set a flag to be checked somewhere as to 510 whether display the prompt or not. */ 511 } 512 } 513 514 /* We are done with the event loop. There are no more event sources 515 to listen to. So we exit GDB. */ 516 return; 517 } 518 519 520 /* Wrapper function for create_file_handler, so that the caller 521 doesn't have to know implementation details about the use of poll 522 vs. select. */ 523 void 524 add_file_handler (int fd, handler_func * proc, gdb_client_data client_data) 525 { 526 #ifdef HAVE_POLL 527 struct pollfd fds; 528 #endif 529 530 if (use_poll) 531 { 532 #ifdef HAVE_POLL 533 /* Check to see if poll () is usable. If not, we'll switch to 534 use select. This can happen on systems like 535 m68k-motorola-sys, `poll' cannot be used to wait for `stdin'. 536 On m68k-motorola-sysv, tty's are not stream-based and not 537 `poll'able. */ 538 fds.fd = fd; 539 fds.events = POLLIN; 540 if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL)) 541 use_poll = 0; 542 #else 543 internal_error (__FILE__, __LINE__, 544 _("use_poll without HAVE_POLL")); 545 #endif /* HAVE_POLL */ 546 } 547 if (use_poll) 548 { 549 #ifdef HAVE_POLL 550 create_file_handler (fd, POLLIN, proc, client_data); 551 #else 552 internal_error (__FILE__, __LINE__, 553 _("use_poll without HAVE_POLL")); 554 #endif 555 } 556 else 557 create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION, proc, client_data); 558 } 559 560 /* Add a file handler/descriptor to the list of descriptors we are 561 interested in. 562 FD is the file descriptor for the file/stream to be listened to. 563 For the poll case, MASK is a combination (OR) of 564 POLLIN, POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM, 565 POLLWRBAND: these are the events we are interested in. If any of them 566 occurs, proc should be called. 567 For the select case, MASK is a combination of READABLE, WRITABLE, EXCEPTION. 568 PROC is the procedure that will be called when an event occurs for 569 FD. CLIENT_DATA is the argument to pass to PROC. */ 570 static void 571 create_file_handler (int fd, int mask, handler_func * proc, gdb_client_data client_data) 572 { 573 file_handler *file_ptr; 574 575 /* Do we already have a file handler for this file? (We may be 576 changing its associated procedure). */ 577 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL; 578 file_ptr = file_ptr->next_file) 579 { 580 if (file_ptr->fd == fd) 581 break; 582 } 583 584 /* It is a new file descriptor. Add it to the list. Otherwise, just 585 change the data associated with it. */ 586 if (file_ptr == NULL) 587 { 588 file_ptr = (file_handler *) xmalloc (sizeof (file_handler)); 589 file_ptr->fd = fd; 590 file_ptr->ready_mask = 0; 591 file_ptr->next_file = gdb_notifier.first_file_handler; 592 gdb_notifier.first_file_handler = file_ptr; 593 594 if (use_poll) 595 { 596 #ifdef HAVE_POLL 597 gdb_notifier.num_fds++; 598 if (gdb_notifier.poll_fds) 599 gdb_notifier.poll_fds = 600 (struct pollfd *) xrealloc (gdb_notifier.poll_fds, 601 (gdb_notifier.num_fds 602 * sizeof (struct pollfd))); 603 else 604 gdb_notifier.poll_fds = 605 (struct pollfd *) xmalloc (sizeof (struct pollfd)); 606 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd; 607 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask; 608 (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0; 609 #else 610 internal_error (__FILE__, __LINE__, 611 _("use_poll without HAVE_POLL")); 612 #endif /* HAVE_POLL */ 613 } 614 else 615 { 616 if (mask & GDB_READABLE) 617 FD_SET (fd, &gdb_notifier.check_masks[0]); 618 else 619 FD_CLR (fd, &gdb_notifier.check_masks[0]); 620 621 if (mask & GDB_WRITABLE) 622 FD_SET (fd, &gdb_notifier.check_masks[1]); 623 else 624 FD_CLR (fd, &gdb_notifier.check_masks[1]); 625 626 if (mask & GDB_EXCEPTION) 627 FD_SET (fd, &gdb_notifier.check_masks[2]); 628 else 629 FD_CLR (fd, &gdb_notifier.check_masks[2]); 630 631 if (gdb_notifier.num_fds <= fd) 632 gdb_notifier.num_fds = fd + 1; 633 } 634 } 635 636 file_ptr->proc = proc; 637 file_ptr->client_data = client_data; 638 file_ptr->mask = mask; 639 } 640 641 /* Remove the file descriptor FD from the list of monitored fd's: 642 i.e. we don't care anymore about events on the FD. */ 643 void 644 delete_file_handler (int fd) 645 { 646 file_handler *file_ptr, *prev_ptr = NULL; 647 int i; 648 #ifdef HAVE_POLL 649 int j; 650 struct pollfd *new_poll_fds; 651 #endif 652 653 /* Find the entry for the given file. */ 654 655 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL; 656 file_ptr = file_ptr->next_file) 657 { 658 if (file_ptr->fd == fd) 659 break; 660 } 661 662 if (file_ptr == NULL) 663 return; 664 665 if (use_poll) 666 { 667 #ifdef HAVE_POLL 668 /* Create a new poll_fds array by copying every fd's information but the 669 one we want to get rid of. */ 670 671 new_poll_fds = 672 (struct pollfd *) xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd)); 673 674 for (i = 0, j = 0; i < gdb_notifier.num_fds; i++) 675 { 676 if ((gdb_notifier.poll_fds + i)->fd != fd) 677 { 678 (new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd; 679 (new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events; 680 (new_poll_fds + j)->revents = (gdb_notifier.poll_fds + i)->revents; 681 j++; 682 } 683 } 684 xfree (gdb_notifier.poll_fds); 685 gdb_notifier.poll_fds = new_poll_fds; 686 gdb_notifier.num_fds--; 687 #else 688 internal_error (__FILE__, __LINE__, 689 _("use_poll without HAVE_POLL")); 690 #endif /* HAVE_POLL */ 691 } 692 else 693 { 694 if (file_ptr->mask & GDB_READABLE) 695 FD_CLR (fd, &gdb_notifier.check_masks[0]); 696 if (file_ptr->mask & GDB_WRITABLE) 697 FD_CLR (fd, &gdb_notifier.check_masks[1]); 698 if (file_ptr->mask & GDB_EXCEPTION) 699 FD_CLR (fd, &gdb_notifier.check_masks[2]); 700 701 /* Find current max fd. */ 702 703 if ((fd + 1) == gdb_notifier.num_fds) 704 { 705 gdb_notifier.num_fds--; 706 for (i = gdb_notifier.num_fds; i; i--) 707 { 708 if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0]) 709 || FD_ISSET (i - 1, &gdb_notifier.check_masks[1]) 710 || FD_ISSET (i - 1, &gdb_notifier.check_masks[2])) 711 break; 712 } 713 gdb_notifier.num_fds = i; 714 } 715 } 716 717 /* Deactivate the file descriptor, by clearing its mask, 718 so that it will not fire again. */ 719 720 file_ptr->mask = 0; 721 722 /* Get rid of the file handler in the file handler list. */ 723 if (file_ptr == gdb_notifier.first_file_handler) 724 gdb_notifier.first_file_handler = file_ptr->next_file; 725 else 726 { 727 for (prev_ptr = gdb_notifier.first_file_handler; 728 prev_ptr->next_file != file_ptr; 729 prev_ptr = prev_ptr->next_file) 730 ; 731 prev_ptr->next_file = file_ptr->next_file; 732 } 733 xfree (file_ptr); 734 } 735 736 /* Handle the given event by calling the procedure associated to the 737 corresponding file handler. Called by process_event indirectly, 738 through event_ptr->proc. EVENT_FILE_DESC is file descriptor of the 739 event in the front of the event queue. */ 740 static void 741 handle_file_event (event_data data) 742 { 743 file_handler *file_ptr; 744 int mask; 745 #ifdef HAVE_POLL 746 int error_mask; 747 int error_mask_returned; 748 #endif 749 int event_file_desc = data.integer; 750 751 /* Search the file handler list to find one that matches the fd in 752 the event. */ 753 for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL; 754 file_ptr = file_ptr->next_file) 755 { 756 if (file_ptr->fd == event_file_desc) 757 { 758 /* With poll, the ready_mask could have any of three events 759 set to 1: POLLHUP, POLLERR, POLLNVAL. These events cannot 760 be used in the requested event mask (events), but they 761 can be returned in the return mask (revents). We need to 762 check for those event too, and add them to the mask which 763 will be passed to the handler. */ 764 765 /* See if the desired events (mask) match the received 766 events (ready_mask). */ 767 768 if (use_poll) 769 { 770 #ifdef HAVE_POLL 771 error_mask = POLLHUP | POLLERR | POLLNVAL; 772 mask = (file_ptr->ready_mask & file_ptr->mask) | 773 (file_ptr->ready_mask & error_mask); 774 error_mask_returned = mask & error_mask; 775 776 if (error_mask_returned != 0) 777 { 778 /* Work in progress. We may need to tell somebody what 779 kind of error we had. */ 780 if (error_mask_returned & POLLHUP) 781 printf_unfiltered (_("Hangup detected on fd %d\n"), file_ptr->fd); 782 if (error_mask_returned & POLLERR) 783 printf_unfiltered (_("Error detected on fd %d\n"), file_ptr->fd); 784 if (error_mask_returned & POLLNVAL) 785 printf_unfiltered (_("Invalid or non-`poll'able fd %d\n"), file_ptr->fd); 786 file_ptr->error = 1; 787 } 788 else 789 file_ptr->error = 0; 790 #else 791 internal_error (__FILE__, __LINE__, 792 _("use_poll without HAVE_POLL")); 793 #endif /* HAVE_POLL */ 794 } 795 else 796 { 797 if (file_ptr->ready_mask & GDB_EXCEPTION) 798 { 799 printf_unfiltered (_("Exception condition detected on fd %d\n"), file_ptr->fd); 800 file_ptr->error = 1; 801 } 802 else 803 file_ptr->error = 0; 804 mask = file_ptr->ready_mask & file_ptr->mask; 805 } 806 807 /* Clear the received events for next time around. */ 808 file_ptr->ready_mask = 0; 809 810 /* If there was a match, then call the handler. */ 811 if (mask != 0) 812 (*file_ptr->proc) (file_ptr->error, file_ptr->client_data); 813 break; 814 } 815 } 816 } 817 818 /* Called by gdb_do_one_event to wait for new events on the monitored 819 file descriptors. Queue file events as they are detected by the 820 poll. If BLOCK and if there are no events, this function will 821 block in the call to poll. Return -1 if there are no files 822 descriptors to monitor, otherwise return 0. */ 823 static int 824 gdb_wait_for_event (int block) 825 { 826 file_handler *file_ptr; 827 gdb_event *file_event_ptr; 828 int num_found = 0; 829 int i; 830 831 /* Make sure all output is done before getting another event. */ 832 gdb_flush (gdb_stdout); 833 gdb_flush (gdb_stderr); 834 835 if (gdb_notifier.num_fds == 0) 836 return -1; 837 838 if (use_poll) 839 { 840 #ifdef HAVE_POLL 841 int timeout; 842 843 if (block) 844 timeout = gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1; 845 else 846 timeout = 0; 847 848 num_found = poll (gdb_notifier.poll_fds, 849 (unsigned long) gdb_notifier.num_fds, timeout); 850 851 /* Don't print anything if we get out of poll because of a 852 signal. */ 853 if (num_found == -1 && errno != EINTR) 854 perror_with_name (("poll")); 855 #else 856 internal_error (__FILE__, __LINE__, 857 _("use_poll without HAVE_POLL")); 858 #endif /* HAVE_POLL */ 859 } 860 else 861 { 862 struct timeval select_timeout; 863 864 struct timeval *timeout_p; 865 if (block) 866 timeout_p = gdb_notifier.timeout_valid 867 ? &gdb_notifier.select_timeout : NULL; 868 else 869 { 870 memset (&select_timeout, 0, sizeof (select_timeout)); 871 timeout_p = &select_timeout; 872 } 873 874 gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0]; 875 gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1]; 876 gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2]; 877 num_found = gdb_select (gdb_notifier.num_fds, 878 &gdb_notifier.ready_masks[0], 879 &gdb_notifier.ready_masks[1], 880 &gdb_notifier.ready_masks[2], 881 timeout_p); 882 883 /* Clear the masks after an error from select. */ 884 if (num_found == -1) 885 { 886 FD_ZERO (&gdb_notifier.ready_masks[0]); 887 FD_ZERO (&gdb_notifier.ready_masks[1]); 888 FD_ZERO (&gdb_notifier.ready_masks[2]); 889 890 /* Dont print anything if we got a signal, let gdb handle 891 it. */ 892 if (errno != EINTR) 893 perror_with_name (("select")); 894 } 895 } 896 897 /* Enqueue all detected file events. */ 898 899 if (use_poll) 900 { 901 #ifdef HAVE_POLL 902 for (i = 0; (i < gdb_notifier.num_fds) && (num_found > 0); i++) 903 { 904 if ((gdb_notifier.poll_fds + i)->revents) 905 num_found--; 906 else 907 continue; 908 909 for (file_ptr = gdb_notifier.first_file_handler; 910 file_ptr != NULL; 911 file_ptr = file_ptr->next_file) 912 { 913 if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd) 914 break; 915 } 916 917 if (file_ptr) 918 { 919 /* Enqueue an event only if this is still a new event for 920 this fd. */ 921 if (file_ptr->ready_mask == 0) 922 { 923 file_event_ptr = create_file_event (file_ptr->fd); 924 async_queue_event (file_event_ptr, TAIL); 925 } 926 file_ptr->ready_mask = (gdb_notifier.poll_fds + i)->revents; 927 } 928 } 929 #else 930 internal_error (__FILE__, __LINE__, 931 _("use_poll without HAVE_POLL")); 932 #endif /* HAVE_POLL */ 933 } 934 else 935 { 936 for (file_ptr = gdb_notifier.first_file_handler; 937 (file_ptr != NULL) && (num_found > 0); 938 file_ptr = file_ptr->next_file) 939 { 940 int mask = 0; 941 942 if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0])) 943 mask |= GDB_READABLE; 944 if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1])) 945 mask |= GDB_WRITABLE; 946 if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2])) 947 mask |= GDB_EXCEPTION; 948 949 if (!mask) 950 continue; 951 else 952 num_found--; 953 954 /* Enqueue an event only if this is still a new event for 955 this fd. */ 956 957 if (file_ptr->ready_mask == 0) 958 { 959 file_event_ptr = create_file_event (file_ptr->fd); 960 async_queue_event (file_event_ptr, TAIL); 961 } 962 file_ptr->ready_mask = mask; 963 } 964 } 965 return 0; 966 } 967 968 969 /* Create an asynchronous handler, allocating memory for it. 970 Return a pointer to the newly created handler. 971 This pointer will be used to invoke the handler by 972 invoke_async_signal_handler. 973 PROC is the function to call with CLIENT_DATA argument 974 whenever the handler is invoked. */ 975 async_signal_handler * 976 create_async_signal_handler (sig_handler_func * proc, gdb_client_data client_data) 977 { 978 async_signal_handler *async_handler_ptr; 979 980 async_handler_ptr = 981 (async_signal_handler *) xmalloc (sizeof (async_signal_handler)); 982 async_handler_ptr->ready = 0; 983 async_handler_ptr->next_handler = NULL; 984 async_handler_ptr->proc = proc; 985 async_handler_ptr->client_data = client_data; 986 if (sighandler_list.first_handler == NULL) 987 sighandler_list.first_handler = async_handler_ptr; 988 else 989 sighandler_list.last_handler->next_handler = async_handler_ptr; 990 sighandler_list.last_handler = async_handler_ptr; 991 return async_handler_ptr; 992 } 993 994 /* Call the handler from HANDLER immediately. This function runs 995 signal handlers when returning to the event loop would be too 996 slow. */ 997 void 998 call_async_signal_handler (struct async_signal_handler *handler) 999 { 1000 (*handler->proc) (handler->client_data); 1001 } 1002 1003 /* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information will 1004 be used when the handlers are invoked, after we have waited for 1005 some event. The caller of this function is the interrupt handler 1006 associated with a signal. */ 1007 void 1008 mark_async_signal_handler (async_signal_handler * async_handler_ptr) 1009 { 1010 async_handler_ptr->ready = 1; 1011 } 1012 1013 /* Call all the handlers that are ready. Returns true if any was 1014 indeed ready. */ 1015 static int 1016 invoke_async_signal_handlers (void) 1017 { 1018 async_signal_handler *async_handler_ptr; 1019 int any_ready = 0; 1020 1021 /* Invoke ready handlers. */ 1022 1023 while (1) 1024 { 1025 for (async_handler_ptr = sighandler_list.first_handler; 1026 async_handler_ptr != NULL; 1027 async_handler_ptr = async_handler_ptr->next_handler) 1028 { 1029 if (async_handler_ptr->ready) 1030 break; 1031 } 1032 if (async_handler_ptr == NULL) 1033 break; 1034 any_ready = 1; 1035 async_handler_ptr->ready = 0; 1036 (*async_handler_ptr->proc) (async_handler_ptr->client_data); 1037 } 1038 1039 return any_ready; 1040 } 1041 1042 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR). 1043 Free the space allocated for it. */ 1044 void 1045 delete_async_signal_handler (async_signal_handler ** async_handler_ptr) 1046 { 1047 async_signal_handler *prev_ptr; 1048 1049 if (sighandler_list.first_handler == (*async_handler_ptr)) 1050 { 1051 sighandler_list.first_handler = (*async_handler_ptr)->next_handler; 1052 if (sighandler_list.first_handler == NULL) 1053 sighandler_list.last_handler = NULL; 1054 } 1055 else 1056 { 1057 prev_ptr = sighandler_list.first_handler; 1058 while (prev_ptr && prev_ptr->next_handler != (*async_handler_ptr)) 1059 prev_ptr = prev_ptr->next_handler; 1060 prev_ptr->next_handler = (*async_handler_ptr)->next_handler; 1061 if (sighandler_list.last_handler == (*async_handler_ptr)) 1062 sighandler_list.last_handler = prev_ptr; 1063 } 1064 xfree ((*async_handler_ptr)); 1065 (*async_handler_ptr) = NULL; 1066 } 1067 1068 /* Create an asynchronous event handler, allocating memory for it. 1069 Return a pointer to the newly created handler. PROC is the 1070 function to call with CLIENT_DATA argument whenever the handler is 1071 invoked. */ 1072 async_event_handler * 1073 create_async_event_handler (async_event_handler_func *proc, 1074 gdb_client_data client_data) 1075 { 1076 async_event_handler *h; 1077 1078 h = xmalloc (sizeof (*h)); 1079 h->ready = 0; 1080 h->next_handler = NULL; 1081 h->proc = proc; 1082 h->client_data = client_data; 1083 if (async_event_handler_list.first_handler == NULL) 1084 async_event_handler_list.first_handler = h; 1085 else 1086 async_event_handler_list.last_handler->next_handler = h; 1087 async_event_handler_list.last_handler = h; 1088 return h; 1089 } 1090 1091 /* Mark the handler (ASYNC_HANDLER_PTR) as ready. This information 1092 will be used by gdb_do_one_event. The caller will be whoever 1093 created the event source, and wants to signal that the event is 1094 ready to be handled. */ 1095 void 1096 mark_async_event_handler (async_event_handler *async_handler_ptr) 1097 { 1098 async_handler_ptr->ready = 1; 1099 } 1100 1101 struct async_event_handler_data 1102 { 1103 async_event_handler_func* proc; 1104 gdb_client_data client_data; 1105 }; 1106 1107 static void 1108 invoke_async_event_handler (event_data data) 1109 { 1110 struct async_event_handler_data *hdata = data.ptr; 1111 async_event_handler_func* proc = hdata->proc; 1112 gdb_client_data client_data = hdata->client_data; 1113 1114 xfree (hdata); 1115 (*proc) (client_data); 1116 } 1117 1118 /* Check if any asynchronous event handlers are ready, and queue 1119 events in the ready queue for any that are. */ 1120 static void 1121 check_async_event_handlers (void) 1122 { 1123 async_event_handler *async_handler_ptr; 1124 struct async_event_handler_data *hdata; 1125 struct gdb_event *event_ptr; 1126 event_data data; 1127 1128 for (async_handler_ptr = async_event_handler_list.first_handler; 1129 async_handler_ptr != NULL; 1130 async_handler_ptr = async_handler_ptr->next_handler) 1131 { 1132 if (async_handler_ptr->ready) 1133 { 1134 async_handler_ptr->ready = 0; 1135 1136 hdata = xmalloc (sizeof (*hdata)); 1137 1138 hdata->proc = async_handler_ptr->proc; 1139 hdata->client_data = async_handler_ptr->client_data; 1140 1141 data.ptr = hdata; 1142 1143 event_ptr = create_event (invoke_async_event_handler, data); 1144 async_queue_event (event_ptr, TAIL); 1145 } 1146 } 1147 } 1148 1149 /* Delete an asynchronous handler (ASYNC_HANDLER_PTR). 1150 Free the space allocated for it. */ 1151 void 1152 delete_async_event_handler (async_event_handler **async_handler_ptr) 1153 { 1154 async_event_handler *prev_ptr; 1155 1156 if (async_event_handler_list.first_handler == *async_handler_ptr) 1157 { 1158 async_event_handler_list.first_handler = (*async_handler_ptr)->next_handler; 1159 if (async_event_handler_list.first_handler == NULL) 1160 async_event_handler_list.last_handler = NULL; 1161 } 1162 else 1163 { 1164 prev_ptr = async_event_handler_list.first_handler; 1165 while (prev_ptr && prev_ptr->next_handler != *async_handler_ptr) 1166 prev_ptr = prev_ptr->next_handler; 1167 prev_ptr->next_handler = (*async_handler_ptr)->next_handler; 1168 if (async_event_handler_list.last_handler == (*async_handler_ptr)) 1169 async_event_handler_list.last_handler = prev_ptr; 1170 } 1171 xfree (*async_handler_ptr); 1172 *async_handler_ptr = NULL; 1173 } 1174 1175 /* Create a timer that will expire in MILLISECONDS from now. When the 1176 timer is ready, PROC will be executed. At creation, the timer is 1177 aded to the timers queue. This queue is kept sorted in order of 1178 increasing timers. Return a handle to the timer struct. */ 1179 int 1180 create_timer (int milliseconds, timer_handler_func * proc, gdb_client_data client_data) 1181 { 1182 struct gdb_timer *timer_ptr, *timer_index, *prev_timer; 1183 struct timeval time_now, delta; 1184 1185 /* compute seconds */ 1186 delta.tv_sec = milliseconds / 1000; 1187 /* compute microseconds */ 1188 delta.tv_usec = (milliseconds % 1000) * 1000; 1189 1190 gettimeofday (&time_now, NULL); 1191 1192 timer_ptr = (struct gdb_timer *) xmalloc (sizeof (gdb_timer)); 1193 timer_ptr->when.tv_sec = time_now.tv_sec + delta.tv_sec; 1194 timer_ptr->when.tv_usec = time_now.tv_usec + delta.tv_usec; 1195 /* carry? */ 1196 if (timer_ptr->when.tv_usec >= 1000000) 1197 { 1198 timer_ptr->when.tv_sec += 1; 1199 timer_ptr->when.tv_usec -= 1000000; 1200 } 1201 timer_ptr->proc = proc; 1202 timer_ptr->client_data = client_data; 1203 timer_list.num_timers++; 1204 timer_ptr->timer_id = timer_list.num_timers; 1205 1206 /* Now add the timer to the timer queue, making sure it is sorted in 1207 increasing order of expiration. */ 1208 1209 for (timer_index = timer_list.first_timer; 1210 timer_index != NULL; 1211 timer_index = timer_index->next) 1212 { 1213 /* If the seconds field is greater or if it is the same, but the 1214 microsecond field is greater. */ 1215 if ((timer_index->when.tv_sec > timer_ptr->when.tv_sec) || 1216 ((timer_index->when.tv_sec == timer_ptr->when.tv_sec) 1217 && (timer_index->when.tv_usec > timer_ptr->when.tv_usec))) 1218 break; 1219 } 1220 1221 if (timer_index == timer_list.first_timer) 1222 { 1223 timer_ptr->next = timer_list.first_timer; 1224 timer_list.first_timer = timer_ptr; 1225 1226 } 1227 else 1228 { 1229 for (prev_timer = timer_list.first_timer; 1230 prev_timer->next != timer_index; 1231 prev_timer = prev_timer->next) 1232 ; 1233 1234 prev_timer->next = timer_ptr; 1235 timer_ptr->next = timer_index; 1236 } 1237 1238 gdb_notifier.timeout_valid = 0; 1239 return timer_ptr->timer_id; 1240 } 1241 1242 /* There is a chance that the creator of the timer wants to get rid of 1243 it before it expires. */ 1244 void 1245 delete_timer (int id) 1246 { 1247 struct gdb_timer *timer_ptr, *prev_timer = NULL; 1248 1249 /* Find the entry for the given timer. */ 1250 1251 for (timer_ptr = timer_list.first_timer; timer_ptr != NULL; 1252 timer_ptr = timer_ptr->next) 1253 { 1254 if (timer_ptr->timer_id == id) 1255 break; 1256 } 1257 1258 if (timer_ptr == NULL) 1259 return; 1260 /* Get rid of the timer in the timer list. */ 1261 if (timer_ptr == timer_list.first_timer) 1262 timer_list.first_timer = timer_ptr->next; 1263 else 1264 { 1265 for (prev_timer = timer_list.first_timer; 1266 prev_timer->next != timer_ptr; 1267 prev_timer = prev_timer->next) 1268 ; 1269 prev_timer->next = timer_ptr->next; 1270 } 1271 xfree (timer_ptr); 1272 1273 gdb_notifier.timeout_valid = 0; 1274 } 1275 1276 /* When a timer event is put on the event queue, it will be handled by 1277 this function. Just call the associated procedure and delete the 1278 timer event from the event queue. Repeat this for each timer that 1279 has expired. */ 1280 static void 1281 handle_timer_event (event_data dummy) 1282 { 1283 struct timeval time_now; 1284 struct gdb_timer *timer_ptr, *saved_timer; 1285 1286 gettimeofday (&time_now, NULL); 1287 timer_ptr = timer_list.first_timer; 1288 1289 while (timer_ptr != NULL) 1290 { 1291 if ((timer_ptr->when.tv_sec > time_now.tv_sec) || 1292 ((timer_ptr->when.tv_sec == time_now.tv_sec) && 1293 (timer_ptr->when.tv_usec > time_now.tv_usec))) 1294 break; 1295 1296 /* Get rid of the timer from the beginning of the list. */ 1297 timer_list.first_timer = timer_ptr->next; 1298 saved_timer = timer_ptr; 1299 timer_ptr = timer_ptr->next; 1300 /* Call the procedure associated with that timer. */ 1301 (*saved_timer->proc) (saved_timer->client_data); 1302 xfree (saved_timer); 1303 } 1304 1305 gdb_notifier.timeout_valid = 0; 1306 } 1307 1308 /* Check whether any timers in the timers queue are ready. If at least 1309 one timer is ready, stick an event onto the event queue. Even in 1310 case more than one timer is ready, one event is enough, because the 1311 handle_timer_event() will go through the timers list and call the 1312 procedures associated with all that have expired. Update the 1313 timeout for the select() or poll() as well. */ 1314 static void 1315 poll_timers (void) 1316 { 1317 struct timeval time_now, delta; 1318 gdb_event *event_ptr; 1319 1320 if (timer_list.first_timer != NULL) 1321 { 1322 gettimeofday (&time_now, NULL); 1323 delta.tv_sec = timer_list.first_timer->when.tv_sec - time_now.tv_sec; 1324 delta.tv_usec = timer_list.first_timer->when.tv_usec - time_now.tv_usec; 1325 /* borrow? */ 1326 if (delta.tv_usec < 0) 1327 { 1328 delta.tv_sec -= 1; 1329 delta.tv_usec += 1000000; 1330 } 1331 1332 /* Oops it expired already. Tell select / poll to return 1333 immediately. (Cannot simply test if delta.tv_sec is negative 1334 because time_t might be unsigned.) */ 1335 if (timer_list.first_timer->when.tv_sec < time_now.tv_sec 1336 || (timer_list.first_timer->when.tv_sec == time_now.tv_sec 1337 && timer_list.first_timer->when.tv_usec < time_now.tv_usec)) 1338 { 1339 delta.tv_sec = 0; 1340 delta.tv_usec = 0; 1341 } 1342 1343 if (delta.tv_sec == 0 && delta.tv_usec == 0) 1344 { 1345 event_ptr = (gdb_event *) xmalloc (sizeof (gdb_event)); 1346 event_ptr->proc = handle_timer_event; 1347 event_ptr->data.integer = timer_list.first_timer->timer_id; 1348 async_queue_event (event_ptr, TAIL); 1349 } 1350 1351 /* Now we need to update the timeout for select/ poll, because we 1352 don't want to sit there while this timer is expiring. */ 1353 if (use_poll) 1354 { 1355 #ifdef HAVE_POLL 1356 gdb_notifier.poll_timeout = delta.tv_sec * 1000; 1357 #else 1358 internal_error (__FILE__, __LINE__, 1359 _("use_poll without HAVE_POLL")); 1360 #endif /* HAVE_POLL */ 1361 } 1362 else 1363 { 1364 gdb_notifier.select_timeout.tv_sec = delta.tv_sec; 1365 gdb_notifier.select_timeout.tv_usec = delta.tv_usec; 1366 } 1367 gdb_notifier.timeout_valid = 1; 1368 } 1369 else 1370 gdb_notifier.timeout_valid = 0; 1371 } 1372