xref: /dragonfly/contrib/gdb-7/gdb/f-exp.y (revision 25a2db75)
1 /* YACC parser for Fortran expressions, for GDB.
2    Copyright (C) 1986, 1989-1991, 1993-1996, 2000-2012 Free Software
3    Foundation, Inc.
4 
5    Contributed by Motorola.  Adapted from the C parser by Farooq Butt
6    (fmbutt@engage.sps.mot.com).
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 /* This was blantantly ripped off the C expression parser, please
24    be aware of that as you look at its basic structure -FMB */
25 
26 /* Parse a F77 expression from text in a string,
27    and return the result as a  struct expression  pointer.
28    That structure contains arithmetic operations in reverse polish,
29    with constants represented by operations that are followed by special data.
30    See expression.h for the details of the format.
31    What is important here is that it can be built up sequentially
32    during the process of parsing; the lower levels of the tree always
33    come first in the result.
34 
35    Note that malloc's and realloc's in this file are transformed to
36    xmalloc and xrealloc respectively by the same sed command in the
37    makefile that remaps any other malloc/realloc inserted by the parser
38    generator.  Doing this with #defines and trying to control the interaction
39    with include files (<malloc.h> and <stdlib.h> for example) just became
40    too messy, particularly when such includes can be inserted at random
41    times by the parser generator.  */
42 
43 %{
44 
45 #include "defs.h"
46 #include "gdb_string.h"
47 #include "expression.h"
48 #include "value.h"
49 #include "parser-defs.h"
50 #include "language.h"
51 #include "f-lang.h"
52 #include "bfd.h" /* Required by objfiles.h.  */
53 #include "symfile.h" /* Required by objfiles.h.  */
54 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
55 #include "block.h"
56 #include <ctype.h>
57 
58 #define parse_type builtin_type (parse_gdbarch)
59 #define parse_f_type builtin_f_type (parse_gdbarch)
60 
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
62    as well as gratuitiously global symbol names, so we can have multiple
63    yacc generated parsers in gdb.  Note that these are only the variables
64    produced by yacc.  If other parser generators (bison, byacc, etc) produce
65    additional global names that conflict at link time, then those parser
66    generators need to be fixed instead of adding those names to this list.  */
67 
68 #define	yymaxdepth f_maxdepth
69 #define	yyparse	f_parse
70 #define	yylex	f_lex
71 #define	yyerror	f_error
72 #define	yylval	f_lval
73 #define	yychar	f_char
74 #define	yydebug	f_debug
75 #define	yypact	f_pact
76 #define	yyr1	f_r1
77 #define	yyr2	f_r2
78 #define	yydef	f_def
79 #define	yychk	f_chk
80 #define	yypgo	f_pgo
81 #define	yyact	f_act
82 #define	yyexca	f_exca
83 #define yyerrflag f_errflag
84 #define yynerrs	f_nerrs
85 #define	yyps	f_ps
86 #define	yypv	f_pv
87 #define	yys	f_s
88 #define	yy_yys	f_yys
89 #define	yystate	f_state
90 #define	yytmp	f_tmp
91 #define	yyv	f_v
92 #define	yy_yyv	f_yyv
93 #define	yyval	f_val
94 #define	yylloc	f_lloc
95 #define yyreds	f_reds		/* With YYDEBUG defined */
96 #define yytoks	f_toks		/* With YYDEBUG defined */
97 #define yyname	f_name		/* With YYDEBUG defined */
98 #define yyrule	f_rule		/* With YYDEBUG defined */
99 #define yylhs	f_yylhs
100 #define yylen	f_yylen
101 #define yydefred f_yydefred
102 #define yydgoto	f_yydgoto
103 #define yysindex f_yysindex
104 #define yyrindex f_yyrindex
105 #define yygindex f_yygindex
106 #define yytable	 f_yytable
107 #define yycheck	 f_yycheck
108 
109 #ifndef YYDEBUG
110 #define	YYDEBUG	1		/* Default to yydebug support */
111 #endif
112 
113 #define YYFPRINTF parser_fprintf
114 
115 int yyparse (void);
116 
117 static int yylex (void);
118 
119 void yyerror (char *);
120 
121 static void growbuf_by_size (int);
122 
123 static int match_string_literal (void);
124 
125 %}
126 
127 /* Although the yacc "value" of an expression is not used,
128    since the result is stored in the structure being created,
129    other node types do have values.  */
130 
131 %union
132   {
133     LONGEST lval;
134     struct {
135       LONGEST val;
136       struct type *type;
137     } typed_val;
138     DOUBLEST dval;
139     struct symbol *sym;
140     struct type *tval;
141     struct stoken sval;
142     struct ttype tsym;
143     struct symtoken ssym;
144     int voidval;
145     struct block *bval;
146     enum exp_opcode opcode;
147     struct internalvar *ivar;
148 
149     struct type **tvec;
150     int *ivec;
151   }
152 
153 %{
154 /* YYSTYPE gets defined by %union */
155 static int parse_number (char *, int, int, YYSTYPE *);
156 %}
157 
158 %type <voidval> exp  type_exp start variable
159 %type <tval> type typebase
160 %type <tvec> nonempty_typelist
161 /* %type <bval> block */
162 
163 /* Fancy type parsing.  */
164 %type <voidval> func_mod direct_abs_decl abs_decl
165 %type <tval> ptype
166 
167 %token <typed_val> INT
168 %token <dval> FLOAT
169 
170 /* Both NAME and TYPENAME tokens represent symbols in the input,
171    and both convey their data as strings.
172    But a TYPENAME is a string that happens to be defined as a typedef
173    or builtin type name (such as int or char)
174    and a NAME is any other symbol.
175    Contexts where this distinction is not important can use the
176    nonterminal "name", which matches either NAME or TYPENAME.  */
177 
178 %token <sval> STRING_LITERAL
179 %token <lval> BOOLEAN_LITERAL
180 %token <ssym> NAME
181 %token <tsym> TYPENAME
182 %type <sval> name
183 %type <ssym> name_not_typename
184 
185 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
186    but which would parse as a valid number in the current input radix.
187    E.g. "c" when input_radix==16.  Depending on the parse, it will be
188    turned into a name or into a number.  */
189 
190 %token <ssym> NAME_OR_INT
191 
192 %token  SIZEOF
193 %token ERROR
194 
195 /* Special type cases, put in to allow the parser to distinguish different
196    legal basetypes.  */
197 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
198 %token LOGICAL_S8_KEYWORD
199 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
200 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
201 %token BOOL_AND BOOL_OR BOOL_NOT
202 %token <lval> CHARACTER
203 
204 %token <voidval> VARIABLE
205 
206 %token <opcode> ASSIGN_MODIFY
207 
208 %left ','
209 %left ABOVE_COMMA
210 %right '=' ASSIGN_MODIFY
211 %right '?'
212 %left BOOL_OR
213 %right BOOL_NOT
214 %left BOOL_AND
215 %left '|'
216 %left '^'
217 %left '&'
218 %left EQUAL NOTEQUAL
219 %left LESSTHAN GREATERTHAN LEQ GEQ
220 %left LSH RSH
221 %left '@'
222 %left '+' '-'
223 %left '*' '/'
224 %right STARSTAR
225 %right '%'
226 %right UNARY
227 %right '('
228 
229 
230 %%
231 
232 start   :	exp
233 	|	type_exp
234 	;
235 
236 type_exp:	type
237 			{ write_exp_elt_opcode(OP_TYPE);
238 			  write_exp_elt_type($1);
239 			  write_exp_elt_opcode(OP_TYPE); }
240 	;
241 
242 exp     :       '(' exp ')'
243         		{ }
244         ;
245 
246 /* Expressions, not including the comma operator.  */
247 exp	:	'*' exp    %prec UNARY
248 			{ write_exp_elt_opcode (UNOP_IND); }
249 	;
250 
251 exp	:	'&' exp    %prec UNARY
252 			{ write_exp_elt_opcode (UNOP_ADDR); }
253 	;
254 
255 exp	:	'-' exp    %prec UNARY
256 			{ write_exp_elt_opcode (UNOP_NEG); }
257 	;
258 
259 exp	:	BOOL_NOT exp    %prec UNARY
260 			{ write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
261 	;
262 
263 exp	:	'~' exp    %prec UNARY
264 			{ write_exp_elt_opcode (UNOP_COMPLEMENT); }
265 	;
266 
267 exp	:	SIZEOF exp       %prec UNARY
268 			{ write_exp_elt_opcode (UNOP_SIZEOF); }
269 	;
270 
271 /* No more explicit array operators, we treat everything in F77 as
272    a function call.  The disambiguation as to whether we are
273    doing a subscript operation or a function call is done
274    later in eval.c.  */
275 
276 exp	:	exp '('
277 			{ start_arglist (); }
278 		arglist ')'
279 			{ write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
280 			  write_exp_elt_longcst ((LONGEST) end_arglist ());
281 			  write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
282 	;
283 
284 arglist	:
285 	;
286 
287 arglist	:	exp
288 			{ arglist_len = 1; }
289 	;
290 
291 arglist :	subrange
292 			{ arglist_len = 1; }
293 	;
294 
295 arglist	:	arglist ',' exp   %prec ABOVE_COMMA
296 			{ arglist_len++; }
297 	;
298 
299 /* There are four sorts of subrange types in F90.  */
300 
301 subrange:	exp ':' exp	%prec ABOVE_COMMA
302 			{ write_exp_elt_opcode (OP_F90_RANGE);
303 			  write_exp_elt_longcst (NONE_BOUND_DEFAULT);
304 			  write_exp_elt_opcode (OP_F90_RANGE); }
305 	;
306 
307 subrange:	exp ':'	%prec ABOVE_COMMA
308 			{ write_exp_elt_opcode (OP_F90_RANGE);
309 			  write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
310 			  write_exp_elt_opcode (OP_F90_RANGE); }
311 	;
312 
313 subrange:	':' exp	%prec ABOVE_COMMA
314 			{ write_exp_elt_opcode (OP_F90_RANGE);
315 			  write_exp_elt_longcst (LOW_BOUND_DEFAULT);
316 			  write_exp_elt_opcode (OP_F90_RANGE); }
317 	;
318 
319 subrange:	':'	%prec ABOVE_COMMA
320 			{ write_exp_elt_opcode (OP_F90_RANGE);
321 			  write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
322 			  write_exp_elt_opcode (OP_F90_RANGE); }
323 	;
324 
325 complexnum:     exp ',' exp
326                 	{ }
327         ;
328 
329 exp	:	'(' complexnum ')'
330                 	{ write_exp_elt_opcode(OP_COMPLEX);
331 			  write_exp_elt_type (parse_f_type->builtin_complex_s16);
332                 	  write_exp_elt_opcode(OP_COMPLEX); }
333 	;
334 
335 exp	:	'(' type ')' exp  %prec UNARY
336 			{ write_exp_elt_opcode (UNOP_CAST);
337 			  write_exp_elt_type ($2);
338 			  write_exp_elt_opcode (UNOP_CAST); }
339 	;
340 
341 exp     :       exp '%' name
342                         { write_exp_elt_opcode (STRUCTOP_STRUCT);
343                           write_exp_string ($3);
344                           write_exp_elt_opcode (STRUCTOP_STRUCT); }
345         ;
346 
347 /* Binary operators in order of decreasing precedence.  */
348 
349 exp	:	exp '@' exp
350 			{ write_exp_elt_opcode (BINOP_REPEAT); }
351 	;
352 
353 exp	:	exp STARSTAR exp
354 			{ write_exp_elt_opcode (BINOP_EXP); }
355 	;
356 
357 exp	:	exp '*' exp
358 			{ write_exp_elt_opcode (BINOP_MUL); }
359 	;
360 
361 exp	:	exp '/' exp
362 			{ write_exp_elt_opcode (BINOP_DIV); }
363 	;
364 
365 exp	:	exp '+' exp
366 			{ write_exp_elt_opcode (BINOP_ADD); }
367 	;
368 
369 exp	:	exp '-' exp
370 			{ write_exp_elt_opcode (BINOP_SUB); }
371 	;
372 
373 exp	:	exp LSH exp
374 			{ write_exp_elt_opcode (BINOP_LSH); }
375 	;
376 
377 exp	:	exp RSH exp
378 			{ write_exp_elt_opcode (BINOP_RSH); }
379 	;
380 
381 exp	:	exp EQUAL exp
382 			{ write_exp_elt_opcode (BINOP_EQUAL); }
383 	;
384 
385 exp	:	exp NOTEQUAL exp
386 			{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
387 	;
388 
389 exp	:	exp LEQ exp
390 			{ write_exp_elt_opcode (BINOP_LEQ); }
391 	;
392 
393 exp	:	exp GEQ exp
394 			{ write_exp_elt_opcode (BINOP_GEQ); }
395 	;
396 
397 exp	:	exp LESSTHAN exp
398 			{ write_exp_elt_opcode (BINOP_LESS); }
399 	;
400 
401 exp	:	exp GREATERTHAN exp
402 			{ write_exp_elt_opcode (BINOP_GTR); }
403 	;
404 
405 exp	:	exp '&' exp
406 			{ write_exp_elt_opcode (BINOP_BITWISE_AND); }
407 	;
408 
409 exp	:	exp '^' exp
410 			{ write_exp_elt_opcode (BINOP_BITWISE_XOR); }
411 	;
412 
413 exp	:	exp '|' exp
414 			{ write_exp_elt_opcode (BINOP_BITWISE_IOR); }
415 	;
416 
417 exp     :       exp BOOL_AND exp
418 			{ write_exp_elt_opcode (BINOP_LOGICAL_AND); }
419 	;
420 
421 
422 exp	:	exp BOOL_OR exp
423 			{ write_exp_elt_opcode (BINOP_LOGICAL_OR); }
424 	;
425 
426 exp	:	exp '=' exp
427 			{ write_exp_elt_opcode (BINOP_ASSIGN); }
428 	;
429 
430 exp	:	exp ASSIGN_MODIFY exp
431 			{ write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
432 			  write_exp_elt_opcode ($2);
433 			  write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
434 	;
435 
436 exp	:	INT
437 			{ write_exp_elt_opcode (OP_LONG);
438 			  write_exp_elt_type ($1.type);
439 			  write_exp_elt_longcst ((LONGEST)($1.val));
440 			  write_exp_elt_opcode (OP_LONG); }
441 	;
442 
443 exp	:	NAME_OR_INT
444 			{ YYSTYPE val;
445 			  parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
446 			  write_exp_elt_opcode (OP_LONG);
447 			  write_exp_elt_type (val.typed_val.type);
448 			  write_exp_elt_longcst ((LONGEST)val.typed_val.val);
449 			  write_exp_elt_opcode (OP_LONG); }
450 	;
451 
452 exp	:	FLOAT
453 			{ write_exp_elt_opcode (OP_DOUBLE);
454 			  write_exp_elt_type (parse_f_type->builtin_real_s8);
455 			  write_exp_elt_dblcst ($1);
456 			  write_exp_elt_opcode (OP_DOUBLE); }
457 	;
458 
459 exp	:	variable
460 	;
461 
462 exp	:	VARIABLE
463 	;
464 
465 exp	:	SIZEOF '(' type ')'	%prec UNARY
466 			{ write_exp_elt_opcode (OP_LONG);
467 			  write_exp_elt_type (parse_f_type->builtin_integer);
468 			  CHECK_TYPEDEF ($3);
469 			  write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
470 			  write_exp_elt_opcode (OP_LONG); }
471 	;
472 
473 exp     :       BOOLEAN_LITERAL
474 			{ write_exp_elt_opcode (OP_BOOL);
475 			  write_exp_elt_longcst ((LONGEST) $1);
476 			  write_exp_elt_opcode (OP_BOOL);
477 			}
478         ;
479 
480 exp	:	STRING_LITERAL
481 			{
482 			  write_exp_elt_opcode (OP_STRING);
483 			  write_exp_string ($1);
484 			  write_exp_elt_opcode (OP_STRING);
485 			}
486 	;
487 
488 variable:	name_not_typename
489 			{ struct symbol *sym = $1.sym;
490 
491 			  if (sym)
492 			    {
493 			      if (symbol_read_needs_frame (sym))
494 				{
495 				  if (innermost_block == 0
496 				      || contained_in (block_found,
497 						       innermost_block))
498 				    innermost_block = block_found;
499 				}
500 			      write_exp_elt_opcode (OP_VAR_VALUE);
501 			      /* We want to use the selected frame, not
502 				 another more inner frame which happens to
503 				 be in the same block.  */
504 			      write_exp_elt_block (NULL);
505 			      write_exp_elt_sym (sym);
506 			      write_exp_elt_opcode (OP_VAR_VALUE);
507 			      break;
508 			    }
509 			  else
510 			    {
511 			      struct minimal_symbol *msymbol;
512 			      char *arg = copy_name ($1.stoken);
513 
514 			      msymbol =
515 				lookup_minimal_symbol (arg, NULL, NULL);
516 			      if (msymbol != NULL)
517 				write_exp_msymbol (msymbol);
518 			      else if (!have_full_symbols () && !have_partial_symbols ())
519 				error (_("No symbol table is loaded.  Use the \"file\" command."));
520 			      else
521 				error (_("No symbol \"%s\" in current context."),
522 				       copy_name ($1.stoken));
523 			    }
524 			}
525 	;
526 
527 
528 type    :       ptype
529         ;
530 
531 ptype	:	typebase
532 	|	typebase abs_decl
533 		{
534 		  /* This is where the interesting stuff happens.  */
535 		  int done = 0;
536 		  int array_size;
537 		  struct type *follow_type = $1;
538 		  struct type *range_type;
539 
540 		  while (!done)
541 		    switch (pop_type ())
542 		      {
543 		      case tp_end:
544 			done = 1;
545 			break;
546 		      case tp_pointer:
547 			follow_type = lookup_pointer_type (follow_type);
548 			break;
549 		      case tp_reference:
550 			follow_type = lookup_reference_type (follow_type);
551 			break;
552 		      case tp_array:
553 			array_size = pop_type_int ();
554 			if (array_size != -1)
555 			  {
556 			    range_type =
557 			      create_range_type ((struct type *) NULL,
558 						 parse_f_type->builtin_integer,
559 						 0, array_size - 1);
560 			    follow_type =
561 			      create_array_type ((struct type *) NULL,
562 						 follow_type, range_type);
563 			  }
564 			else
565 			  follow_type = lookup_pointer_type (follow_type);
566 			break;
567 		      case tp_function:
568 			follow_type = lookup_function_type (follow_type);
569 			break;
570 		      }
571 		  $$ = follow_type;
572 		}
573 	;
574 
575 abs_decl:	'*'
576 			{ push_type (tp_pointer); $$ = 0; }
577 	|	'*' abs_decl
578 			{ push_type (tp_pointer); $$ = $2; }
579 	|	'&'
580 			{ push_type (tp_reference); $$ = 0; }
581 	|	'&' abs_decl
582 			{ push_type (tp_reference); $$ = $2; }
583 	|	direct_abs_decl
584 	;
585 
586 direct_abs_decl: '(' abs_decl ')'
587 			{ $$ = $2; }
588 	| 	direct_abs_decl func_mod
589 			{ push_type (tp_function); }
590 	|	func_mod
591 			{ push_type (tp_function); }
592 	;
593 
594 func_mod:	'(' ')'
595 			{ $$ = 0; }
596 	|	'(' nonempty_typelist ')'
597 			{ free ($2); $$ = 0; }
598 	;
599 
600 typebase  /* Implements (approximately): (type-qualifier)* type-specifier */
601 	:	TYPENAME
602 			{ $$ = $1.type; }
603 	|	INT_KEYWORD
604 			{ $$ = parse_f_type->builtin_integer; }
605 	|	INT_S2_KEYWORD
606 			{ $$ = parse_f_type->builtin_integer_s2; }
607 	|	CHARACTER
608 			{ $$ = parse_f_type->builtin_character; }
609 	|	LOGICAL_S8_KEYWORD
610 			{ $$ = parse_f_type->builtin_logical_s8; }
611 	|	LOGICAL_KEYWORD
612 			{ $$ = parse_f_type->builtin_logical; }
613 	|	LOGICAL_S2_KEYWORD
614 			{ $$ = parse_f_type->builtin_logical_s2; }
615 	|	LOGICAL_S1_KEYWORD
616 			{ $$ = parse_f_type->builtin_logical_s1; }
617 	|	REAL_KEYWORD
618 			{ $$ = parse_f_type->builtin_real; }
619 	|       REAL_S8_KEYWORD
620 			{ $$ = parse_f_type->builtin_real_s8; }
621 	|	REAL_S16_KEYWORD
622 			{ $$ = parse_f_type->builtin_real_s16; }
623 	|	COMPLEX_S8_KEYWORD
624 			{ $$ = parse_f_type->builtin_complex_s8; }
625 	|	COMPLEX_S16_KEYWORD
626 			{ $$ = parse_f_type->builtin_complex_s16; }
627 	|	COMPLEX_S32_KEYWORD
628 			{ $$ = parse_f_type->builtin_complex_s32; }
629 	;
630 
631 nonempty_typelist
632 	:	type
633 		{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
634 		  $<ivec>$[0] = 1;	/* Number of types in vector */
635 		  $$[1] = $1;
636 		}
637 	|	nonempty_typelist ',' type
638 		{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
639 		  $$ = (struct type **) realloc ((char *) $1, len);
640 		  $$[$<ivec>$[0]] = $3;
641 		}
642 	;
643 
644 name	:	NAME
645 		{  $$ = $1.stoken; }
646 	;
647 
648 name_not_typename :	NAME
649 /* These would be useful if name_not_typename was useful, but it is just
650    a fake for "variable", so these cause reduce/reduce conflicts because
651    the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
652    =exp) or just an exp.  If name_not_typename was ever used in an lvalue
653    context where only a name could occur, this might be useful.
654   	|	NAME_OR_INT
655    */
656 	;
657 
658 %%
659 
660 /* Take care of parsing a number (anything that starts with a digit).
661    Set yylval and return the token type; update lexptr.
662    LEN is the number of characters in it.  */
663 
664 /*** Needs some error checking for the float case ***/
665 
666 static int
667 parse_number (p, len, parsed_float, putithere)
668      char *p;
669      int len;
670      int parsed_float;
671      YYSTYPE *putithere;
672 {
673   LONGEST n = 0;
674   LONGEST prevn = 0;
675   int c;
676   int base = input_radix;
677   int unsigned_p = 0;
678   int long_p = 0;
679   ULONGEST high_bit;
680   struct type *signed_type;
681   struct type *unsigned_type;
682 
683   if (parsed_float)
684     {
685       /* It's a float since it contains a point or an exponent.  */
686       /* [dD] is not understood as an exponent by atof, change it to 'e'.  */
687       char *tmp, *tmp2;
688 
689       tmp = xstrdup (p);
690       for (tmp2 = tmp; *tmp2; ++tmp2)
691 	if (*tmp2 == 'd' || *tmp2 == 'D')
692 	  *tmp2 = 'e';
693       putithere->dval = atof (tmp);
694       free (tmp);
695       return FLOAT;
696     }
697 
698   /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
699   if (p[0] == '0')
700     switch (p[1])
701       {
702       case 'x':
703       case 'X':
704 	if (len >= 3)
705 	  {
706 	    p += 2;
707 	    base = 16;
708 	    len -= 2;
709 	  }
710 	break;
711 
712       case 't':
713       case 'T':
714       case 'd':
715       case 'D':
716 	if (len >= 3)
717 	  {
718 	    p += 2;
719 	    base = 10;
720 	    len -= 2;
721 	  }
722 	break;
723 
724       default:
725 	base = 8;
726 	break;
727       }
728 
729   while (len-- > 0)
730     {
731       c = *p++;
732       if (isupper (c))
733 	c = tolower (c);
734       if (len == 0 && c == 'l')
735 	long_p = 1;
736       else if (len == 0 && c == 'u')
737 	unsigned_p = 1;
738       else
739 	{
740 	  int i;
741 	  if (c >= '0' && c <= '9')
742 	    i = c - '0';
743 	  else if (c >= 'a' && c <= 'f')
744 	    i = c - 'a' + 10;
745 	  else
746 	    return ERROR;	/* Char not a digit */
747 	  if (i >= base)
748 	    return ERROR;		/* Invalid digit in this base */
749 	  n *= base;
750 	  n += i;
751 	}
752       /* Portably test for overflow (only works for nonzero values, so make
753 	 a second check for zero).  */
754       if ((prevn >= n) && n != 0)
755 	unsigned_p=1;		/* Try something unsigned */
756       /* If range checking enabled, portably test for unsigned overflow.  */
757       if (RANGE_CHECK && n != 0)
758 	{
759 	  if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
760 	    range_error (_("Overflow on numeric constant."));
761 	}
762       prevn = n;
763     }
764 
765   /* If the number is too big to be an int, or it's got an l suffix
766      then it's a long.  Work out if this has to be a long by
767      shifting right and seeing if anything remains, and the
768      target int size is different to the target long size.
769 
770      In the expression below, we could have tested
771      (n >> gdbarch_int_bit (parse_gdbarch))
772      to see if it was zero,
773      but too many compilers warn about that, when ints and longs
774      are the same size.  So we shift it twice, with fewer bits
775      each time, for the same result.  */
776 
777   if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
778        && ((n >> 2)
779 	   >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
780       || long_p)
781     {
782       high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
783       unsigned_type = parse_type->builtin_unsigned_long;
784       signed_type = parse_type->builtin_long;
785     }
786   else
787     {
788       high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
789       unsigned_type = parse_type->builtin_unsigned_int;
790       signed_type = parse_type->builtin_int;
791     }
792 
793   putithere->typed_val.val = n;
794 
795   /* If the high bit of the worked out type is set then this number
796      has to be unsigned.  */
797 
798   if (unsigned_p || (n & high_bit))
799     putithere->typed_val.type = unsigned_type;
800   else
801     putithere->typed_val.type = signed_type;
802 
803   return INT;
804 }
805 
806 struct token
807 {
808   char *operator;
809   int token;
810   enum exp_opcode opcode;
811 };
812 
813 static const struct token dot_ops[] =
814 {
815   { ".and.", BOOL_AND, BINOP_END },
816   { ".AND.", BOOL_AND, BINOP_END },
817   { ".or.", BOOL_OR, BINOP_END },
818   { ".OR.", BOOL_OR, BINOP_END },
819   { ".not.", BOOL_NOT, BINOP_END },
820   { ".NOT.", BOOL_NOT, BINOP_END },
821   { ".eq.", EQUAL, BINOP_END },
822   { ".EQ.", EQUAL, BINOP_END },
823   { ".eqv.", EQUAL, BINOP_END },
824   { ".NEQV.", NOTEQUAL, BINOP_END },
825   { ".neqv.", NOTEQUAL, BINOP_END },
826   { ".EQV.", EQUAL, BINOP_END },
827   { ".ne.", NOTEQUAL, BINOP_END },
828   { ".NE.", NOTEQUAL, BINOP_END },
829   { ".le.", LEQ, BINOP_END },
830   { ".LE.", LEQ, BINOP_END },
831   { ".ge.", GEQ, BINOP_END },
832   { ".GE.", GEQ, BINOP_END },
833   { ".gt.", GREATERTHAN, BINOP_END },
834   { ".GT.", GREATERTHAN, BINOP_END },
835   { ".lt.", LESSTHAN, BINOP_END },
836   { ".LT.", LESSTHAN, BINOP_END },
837   { NULL, 0, 0 }
838 };
839 
840 struct f77_boolean_val
841 {
842   char *name;
843   int value;
844 };
845 
846 static const struct f77_boolean_val boolean_values[]  =
847 {
848   { ".true.", 1 },
849   { ".TRUE.", 1 },
850   { ".false.", 0 },
851   { ".FALSE.", 0 },
852   { NULL, 0 }
853 };
854 
855 static const struct token f77_keywords[] =
856 {
857   { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
858   { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
859   { "character", CHARACTER, BINOP_END },
860   { "integer_2", INT_S2_KEYWORD, BINOP_END },
861   { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
862   { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
863   { "logical_8", LOGICAL_S8_KEYWORD, BINOP_END },
864   { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
865   { "integer", INT_KEYWORD, BINOP_END },
866   { "logical", LOGICAL_KEYWORD, BINOP_END },
867   { "real_16", REAL_S16_KEYWORD, BINOP_END },
868   { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
869   { "sizeof", SIZEOF, BINOP_END },
870   { "real_8", REAL_S8_KEYWORD, BINOP_END },
871   { "real", REAL_KEYWORD, BINOP_END },
872   { NULL, 0, 0 }
873 };
874 
875 /* Implementation of a dynamically expandable buffer for processing input
876    characters acquired through lexptr and building a value to return in
877    yylval.  Ripped off from ch-exp.y */
878 
879 static char *tempbuf;		/* Current buffer contents */
880 static int tempbufsize;		/* Size of allocated buffer */
881 static int tempbufindex;	/* Current index into buffer */
882 
883 #define GROWBY_MIN_SIZE 64	/* Minimum amount to grow buffer by */
884 
885 #define CHECKBUF(size) \
886   do { \
887     if (tempbufindex + (size) >= tempbufsize) \
888       { \
889 	growbuf_by_size (size); \
890       } \
891   } while (0);
892 
893 
894 /* Grow the static temp buffer if necessary, including allocating the
895    first one on demand.  */
896 
897 static void
898 growbuf_by_size (count)
899      int count;
900 {
901   int growby;
902 
903   growby = max (count, GROWBY_MIN_SIZE);
904   tempbufsize += growby;
905   if (tempbuf == NULL)
906     tempbuf = (char *) malloc (tempbufsize);
907   else
908     tempbuf = (char *) realloc (tempbuf, tempbufsize);
909 }
910 
911 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
912    string-literals.
913 
914    Recognize a string literal.  A string literal is a nonzero sequence
915    of characters enclosed in matching single quotes, except that
916    a single character inside single quotes is a character literal, which
917    we reject as a string literal.  To embed the terminator character inside
918    a string, it is simply doubled (I.E. 'this''is''one''string') */
919 
920 static int
921 match_string_literal (void)
922 {
923   char *tokptr = lexptr;
924 
925   for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
926     {
927       CHECKBUF (1);
928       if (*tokptr == *lexptr)
929 	{
930 	  if (*(tokptr + 1) == *lexptr)
931 	    tokptr++;
932 	  else
933 	    break;
934 	}
935       tempbuf[tempbufindex++] = *tokptr;
936     }
937   if (*tokptr == '\0'					/* no terminator */
938       || tempbufindex == 0)				/* no string */
939     return 0;
940   else
941     {
942       tempbuf[tempbufindex] = '\0';
943       yylval.sval.ptr = tempbuf;
944       yylval.sval.length = tempbufindex;
945       lexptr = ++tokptr;
946       return STRING_LITERAL;
947     }
948 }
949 
950 /* Read one token, getting characters through lexptr.  */
951 
952 static int
953 yylex (void)
954 {
955   int c;
956   int namelen;
957   unsigned int i,token;
958   char *tokstart;
959 
960  retry:
961 
962   prev_lexptr = lexptr;
963 
964   tokstart = lexptr;
965 
966   /* First of all, let us make sure we are not dealing with the
967      special tokens .true. and .false. which evaluate to 1 and 0.  */
968 
969   if (*lexptr == '.')
970     {
971       for (i = 0; boolean_values[i].name != NULL; i++)
972 	{
973 	  if (strncmp (tokstart, boolean_values[i].name,
974 		       strlen (boolean_values[i].name)) == 0)
975 	    {
976 	      lexptr += strlen (boolean_values[i].name);
977 	      yylval.lval = boolean_values[i].value;
978 	      return BOOLEAN_LITERAL;
979 	    }
980 	}
981     }
982 
983   /* See if it is a special .foo. operator.  */
984 
985   for (i = 0; dot_ops[i].operator != NULL; i++)
986     if (strncmp (tokstart, dot_ops[i].operator,
987 		 strlen (dot_ops[i].operator)) == 0)
988       {
989 	lexptr += strlen (dot_ops[i].operator);
990 	yylval.opcode = dot_ops[i].opcode;
991 	return dot_ops[i].token;
992       }
993 
994   /* See if it is an exponentiation operator.  */
995 
996   if (strncmp (tokstart, "**", 2) == 0)
997     {
998       lexptr += 2;
999       yylval.opcode = BINOP_EXP;
1000       return STARSTAR;
1001     }
1002 
1003   switch (c = *tokstart)
1004     {
1005     case 0:
1006       return 0;
1007 
1008     case ' ':
1009     case '\t':
1010     case '\n':
1011       lexptr++;
1012       goto retry;
1013 
1014     case '\'':
1015       token = match_string_literal ();
1016       if (token != 0)
1017 	return (token);
1018       break;
1019 
1020     case '(':
1021       paren_depth++;
1022       lexptr++;
1023       return c;
1024 
1025     case ')':
1026       if (paren_depth == 0)
1027 	return 0;
1028       paren_depth--;
1029       lexptr++;
1030       return c;
1031 
1032     case ',':
1033       if (comma_terminates && paren_depth == 0)
1034 	return 0;
1035       lexptr++;
1036       return c;
1037 
1038     case '.':
1039       /* Might be a floating point number.  */
1040       if (lexptr[1] < '0' || lexptr[1] > '9')
1041 	goto symbol;		/* Nope, must be a symbol.  */
1042       /* FALL THRU into number case.  */
1043 
1044     case '0':
1045     case '1':
1046     case '2':
1047     case '3':
1048     case '4':
1049     case '5':
1050     case '6':
1051     case '7':
1052     case '8':
1053     case '9':
1054       {
1055         /* It's a number.  */
1056 	int got_dot = 0, got_e = 0, got_d = 0, toktype;
1057 	char *p = tokstart;
1058 	int hex = input_radix > 10;
1059 
1060 	if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1061 	  {
1062 	    p += 2;
1063 	    hex = 1;
1064 	  }
1065 	else if (c == '0' && (p[1]=='t' || p[1]=='T'
1066 			      || p[1]=='d' || p[1]=='D'))
1067 	  {
1068 	    p += 2;
1069 	    hex = 0;
1070 	  }
1071 
1072 	for (;; ++p)
1073 	  {
1074 	    if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1075 	      got_dot = got_e = 1;
1076 	    else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1077 	      got_dot = got_d = 1;
1078 	    else if (!hex && !got_dot && *p == '.')
1079 	      got_dot = 1;
1080 	    else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1081 		     || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1082 		     && (*p == '-' || *p == '+'))
1083 	      /* This is the sign of the exponent, not the end of the
1084 		 number.  */
1085 	      continue;
1086 	    /* We will take any letters or digits.  parse_number will
1087 	       complain if past the radix, or if L or U are not final.  */
1088 	    else if ((*p < '0' || *p > '9')
1089 		     && ((*p < 'a' || *p > 'z')
1090 			 && (*p < 'A' || *p > 'Z')))
1091 	      break;
1092 	  }
1093 	toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1094 				&yylval);
1095         if (toktype == ERROR)
1096           {
1097 	    char *err_copy = (char *) alloca (p - tokstart + 1);
1098 
1099 	    memcpy (err_copy, tokstart, p - tokstart);
1100 	    err_copy[p - tokstart] = 0;
1101 	    error (_("Invalid number \"%s\"."), err_copy);
1102 	  }
1103 	lexptr = p;
1104 	return toktype;
1105       }
1106 
1107     case '+':
1108     case '-':
1109     case '*':
1110     case '/':
1111     case '%':
1112     case '|':
1113     case '&':
1114     case '^':
1115     case '~':
1116     case '!':
1117     case '@':
1118     case '<':
1119     case '>':
1120     case '[':
1121     case ']':
1122     case '?':
1123     case ':':
1124     case '=':
1125     case '{':
1126     case '}':
1127     symbol:
1128       lexptr++;
1129       return c;
1130     }
1131 
1132   if (!(c == '_' || c == '$' || c ==':'
1133 	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1134     /* We must have come across a bad character (e.g. ';').  */
1135     error (_("Invalid character '%c' in expression."), c);
1136 
1137   namelen = 0;
1138   for (c = tokstart[namelen];
1139        (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9')
1140 	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1141        c = tokstart[++namelen]);
1142 
1143   /* The token "if" terminates the expression and is NOT
1144      removed from the input stream.  */
1145 
1146   if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1147     return 0;
1148 
1149   lexptr += namelen;
1150 
1151   /* Catch specific keywords.  */
1152 
1153   for (i = 0; f77_keywords[i].operator != NULL; i++)
1154     if (strlen (f77_keywords[i].operator) == namelen
1155 	&& strncmp (tokstart, f77_keywords[i].operator, namelen) == 0)
1156       {
1157 	/* 	lexptr += strlen(f77_keywords[i].operator); */
1158 	yylval.opcode = f77_keywords[i].opcode;
1159 	return f77_keywords[i].token;
1160       }
1161 
1162   yylval.sval.ptr = tokstart;
1163   yylval.sval.length = namelen;
1164 
1165   if (*tokstart == '$')
1166     {
1167       write_dollar_variable (yylval.sval);
1168       return VARIABLE;
1169     }
1170 
1171   /* Use token-type TYPENAME for symbols that happen to be defined
1172      currently as names of types; NAME for other symbols.
1173      The caller is not constrained to care about the distinction.  */
1174   {
1175     char *tmp = copy_name (yylval.sval);
1176     struct symbol *sym;
1177     int is_a_field_of_this = 0;
1178     int hextype;
1179 
1180     sym = lookup_symbol (tmp, expression_context_block,
1181 			 VAR_DOMAIN,
1182 			 parse_language->la_language == language_cplus
1183 			 ? &is_a_field_of_this : NULL);
1184     if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1185       {
1186 	yylval.tsym.type = SYMBOL_TYPE (sym);
1187 	return TYPENAME;
1188       }
1189     yylval.tsym.type
1190       = language_lookup_primitive_type_by_name (parse_language,
1191 						parse_gdbarch, tmp);
1192     if (yylval.tsym.type != NULL)
1193       return TYPENAME;
1194 
1195     /* Input names that aren't symbols but ARE valid hex numbers,
1196        when the input radix permits them, can be names or numbers
1197        depending on the parse.  Note we support radixes > 16 here.  */
1198     if (!sym
1199 	&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1200 	    || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1201       {
1202  	YYSTYPE newlval;	/* Its value is ignored.  */
1203 	hextype = parse_number (tokstart, namelen, 0, &newlval);
1204 	if (hextype == INT)
1205 	  {
1206 	    yylval.ssym.sym = sym;
1207 	    yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1208 	    return NAME_OR_INT;
1209 	  }
1210       }
1211 
1212     /* Any other kind of symbol */
1213     yylval.ssym.sym = sym;
1214     yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1215     return NAME;
1216   }
1217 }
1218 
1219 void
1220 yyerror (msg)
1221      char *msg;
1222 {
1223   if (prev_lexptr)
1224     lexptr = prev_lexptr;
1225 
1226   error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
1227 }
1228