xref: /dragonfly/contrib/gdb-7/gdb/gdbtypes.c (revision a68e0df0)
1 /* Support routines for manipulating internal types for GDB.
2 
3    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4    2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5 
6    Contributed by Cygnus Support, using pieces from other GDB modules.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
41 
42 
43 /* Floatformat pairs.  */
44 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
45   &floatformat_ieee_single_big,
46   &floatformat_ieee_single_little
47 };
48 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
49   &floatformat_ieee_double_big,
50   &floatformat_ieee_double_little
51 };
52 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
53   &floatformat_ieee_double_big,
54   &floatformat_ieee_double_littlebyte_bigword
55 };
56 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
57   &floatformat_i387_ext,
58   &floatformat_i387_ext
59 };
60 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
61   &floatformat_m68881_ext,
62   &floatformat_m68881_ext
63 };
64 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
65   &floatformat_arm_ext_big,
66   &floatformat_arm_ext_littlebyte_bigword
67 };
68 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
69   &floatformat_ia64_spill_big,
70   &floatformat_ia64_spill_little
71 };
72 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
73   &floatformat_ia64_quad_big,
74   &floatformat_ia64_quad_little
75 };
76 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
77   &floatformat_vax_f,
78   &floatformat_vax_f
79 };
80 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
81   &floatformat_vax_d,
82   &floatformat_vax_d
83 };
84 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
85   &floatformat_ibm_long_double,
86   &floatformat_ibm_long_double
87 };
88 
89 
90 int opaque_type_resolution = 1;
91 static void
92 show_opaque_type_resolution (struct ui_file *file, int from_tty,
93 			     struct cmd_list_element *c,
94 			     const char *value)
95 {
96   fprintf_filtered (file, _("\
97 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
98 		    value);
99 }
100 
101 int overload_debug = 0;
102 static void
103 show_overload_debug (struct ui_file *file, int from_tty,
104 		     struct cmd_list_element *c, const char *value)
105 {
106   fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
107 		    value);
108 }
109 
110 struct extra
111   {
112     char str[128];
113     int len;
114   };				/* Maximum extension is 128!  FIXME  */
115 
116 static void print_bit_vector (B_TYPE *, int);
117 static void print_arg_types (struct field *, int, int);
118 static void dump_fn_fieldlists (struct type *, int);
119 static void print_cplus_stuff (struct type *, int);
120 
121 
122 /* Allocate a new OBJFILE-associated type structure and fill it
123    with some defaults.  Space for the type structure is allocated
124    on the objfile's objfile_obstack.  */
125 
126 struct type *
127 alloc_type (struct objfile *objfile)
128 {
129   struct type *type;
130 
131   gdb_assert (objfile != NULL);
132 
133   /* Alloc the structure and start off with all fields zeroed.  */
134   type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
135   TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
136 					  struct main_type);
137   OBJSTAT (objfile, n_types++);
138 
139   TYPE_OBJFILE_OWNED (type) = 1;
140   TYPE_OWNER (type).objfile = objfile;
141 
142   /* Initialize the fields that might not be zero.  */
143 
144   TYPE_CODE (type) = TYPE_CODE_UNDEF;
145   TYPE_VPTR_FIELDNO (type) = -1;
146   TYPE_CHAIN (type) = type;	/* Chain back to itself.  */
147 
148   return type;
149 }
150 
151 /* Allocate a new GDBARCH-associated type structure and fill it
152    with some defaults.  Space for the type structure is allocated
153    on the heap.  */
154 
155 struct type *
156 alloc_type_arch (struct gdbarch *gdbarch)
157 {
158   struct type *type;
159 
160   gdb_assert (gdbarch != NULL);
161 
162   /* Alloc the structure and start off with all fields zeroed.  */
163 
164   type = XZALLOC (struct type);
165   TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
166 
167   TYPE_OBJFILE_OWNED (type) = 0;
168   TYPE_OWNER (type).gdbarch = gdbarch;
169 
170   /* Initialize the fields that might not be zero.  */
171 
172   TYPE_CODE (type) = TYPE_CODE_UNDEF;
173   TYPE_VPTR_FIELDNO (type) = -1;
174   TYPE_CHAIN (type) = type;	/* Chain back to itself.  */
175 
176   return type;
177 }
178 
179 /* If TYPE is objfile-associated, allocate a new type structure
180    associated with the same objfile.  If TYPE is gdbarch-associated,
181    allocate a new type structure associated with the same gdbarch.  */
182 
183 struct type *
184 alloc_type_copy (const struct type *type)
185 {
186   if (TYPE_OBJFILE_OWNED (type))
187     return alloc_type (TYPE_OWNER (type).objfile);
188   else
189     return alloc_type_arch (TYPE_OWNER (type).gdbarch);
190 }
191 
192 /* If TYPE is gdbarch-associated, return that architecture.
193    If TYPE is objfile-associated, return that objfile's architecture.  */
194 
195 struct gdbarch *
196 get_type_arch (const struct type *type)
197 {
198   if (TYPE_OBJFILE_OWNED (type))
199     return get_objfile_arch (TYPE_OWNER (type).objfile);
200   else
201     return TYPE_OWNER (type).gdbarch;
202 }
203 
204 
205 /* Alloc a new type instance structure, fill it with some defaults,
206    and point it at OLDTYPE.  Allocate the new type instance from the
207    same place as OLDTYPE.  */
208 
209 static struct type *
210 alloc_type_instance (struct type *oldtype)
211 {
212   struct type *type;
213 
214   /* Allocate the structure.  */
215 
216   if (! TYPE_OBJFILE_OWNED (oldtype))
217     type = XZALLOC (struct type);
218   else
219     type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
220 			   struct type);
221 
222   TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
223 
224   TYPE_CHAIN (type) = type;	/* Chain back to itself for now.  */
225 
226   return type;
227 }
228 
229 /* Clear all remnants of the previous type at TYPE, in preparation for
230    replacing it with something else.  Preserve owner information.  */
231 static void
232 smash_type (struct type *type)
233 {
234   int objfile_owned = TYPE_OBJFILE_OWNED (type);
235   union type_owner owner = TYPE_OWNER (type);
236 
237   memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
238 
239   /* Restore owner information.  */
240   TYPE_OBJFILE_OWNED (type) = objfile_owned;
241   TYPE_OWNER (type) = owner;
242 
243   /* For now, delete the rings.  */
244   TYPE_CHAIN (type) = type;
245 
246   /* For now, leave the pointer/reference types alone.  */
247 }
248 
249 /* Lookup a pointer to a type TYPE.  TYPEPTR, if nonzero, points
250    to a pointer to memory where the pointer type should be stored.
251    If *TYPEPTR is zero, update it to point to the pointer type we return.
252    We allocate new memory if needed.  */
253 
254 struct type *
255 make_pointer_type (struct type *type, struct type **typeptr)
256 {
257   struct type *ntype;	/* New type */
258   struct type *chain;
259 
260   ntype = TYPE_POINTER_TYPE (type);
261 
262   if (ntype)
263     {
264       if (typeptr == 0)
265 	return ntype;		/* Don't care about alloc,
266 				   and have new type.  */
267       else if (*typeptr == 0)
268 	{
269 	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
270 	  return ntype;
271 	}
272     }
273 
274   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
275     {
276       ntype = alloc_type_copy (type);
277       if (typeptr)
278 	*typeptr = ntype;
279     }
280   else			/* We have storage, but need to reset it.  */
281     {
282       ntype = *typeptr;
283       chain = TYPE_CHAIN (ntype);
284       smash_type (ntype);
285       TYPE_CHAIN (ntype) = chain;
286     }
287 
288   TYPE_TARGET_TYPE (ntype) = type;
289   TYPE_POINTER_TYPE (type) = ntype;
290 
291   /* FIXME!  Assume the machine has only one representation for
292      pointers!  */
293 
294   TYPE_LENGTH (ntype)
295     = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
296   TYPE_CODE (ntype) = TYPE_CODE_PTR;
297 
298   /* Mark pointers as unsigned.  The target converts between pointers
299      and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
300      gdbarch_address_to_pointer.  */
301   TYPE_UNSIGNED (ntype) = 1;
302 
303   if (!TYPE_POINTER_TYPE (type))	/* Remember it, if don't have one.  */
304     TYPE_POINTER_TYPE (type) = ntype;
305 
306   /* Update the length of all the other variants of this type.  */
307   chain = TYPE_CHAIN (ntype);
308   while (chain != ntype)
309     {
310       TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
311       chain = TYPE_CHAIN (chain);
312     }
313 
314   return ntype;
315 }
316 
317 /* Given a type TYPE, return a type of pointers to that type.
318    May need to construct such a type if this is the first use.  */
319 
320 struct type *
321 lookup_pointer_type (struct type *type)
322 {
323   return make_pointer_type (type, (struct type **) 0);
324 }
325 
326 /* Lookup a C++ `reference' to a type TYPE.  TYPEPTR, if nonzero,
327    points to a pointer to memory where the reference type should be
328    stored.  If *TYPEPTR is zero, update it to point to the reference
329    type we return.  We allocate new memory if needed.  */
330 
331 struct type *
332 make_reference_type (struct type *type, struct type **typeptr)
333 {
334   struct type *ntype;	/* New type */
335   struct type *chain;
336 
337   ntype = TYPE_REFERENCE_TYPE (type);
338 
339   if (ntype)
340     {
341       if (typeptr == 0)
342 	return ntype;		/* Don't care about alloc,
343 				   and have new type.  */
344       else if (*typeptr == 0)
345 	{
346 	  *typeptr = ntype;	/* Tracking alloc, and have new type.  */
347 	  return ntype;
348 	}
349     }
350 
351   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
352     {
353       ntype = alloc_type_copy (type);
354       if (typeptr)
355 	*typeptr = ntype;
356     }
357   else			/* We have storage, but need to reset it.  */
358     {
359       ntype = *typeptr;
360       chain = TYPE_CHAIN (ntype);
361       smash_type (ntype);
362       TYPE_CHAIN (ntype) = chain;
363     }
364 
365   TYPE_TARGET_TYPE (ntype) = type;
366   TYPE_REFERENCE_TYPE (type) = ntype;
367 
368   /* FIXME!  Assume the machine has only one representation for
369      references, and that it matches the (only) representation for
370      pointers!  */
371 
372   TYPE_LENGTH (ntype) =
373     gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
374   TYPE_CODE (ntype) = TYPE_CODE_REF;
375 
376   if (!TYPE_REFERENCE_TYPE (type))	/* Remember it, if don't have one.  */
377     TYPE_REFERENCE_TYPE (type) = ntype;
378 
379   /* Update the length of all the other variants of this type.  */
380   chain = TYPE_CHAIN (ntype);
381   while (chain != ntype)
382     {
383       TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
384       chain = TYPE_CHAIN (chain);
385     }
386 
387   return ntype;
388 }
389 
390 /* Same as above, but caller doesn't care about memory allocation
391    details.  */
392 
393 struct type *
394 lookup_reference_type (struct type *type)
395 {
396   return make_reference_type (type, (struct type **) 0);
397 }
398 
399 /* Lookup a function type that returns type TYPE.  TYPEPTR, if
400    nonzero, points to a pointer to memory where the function type
401    should be stored.  If *TYPEPTR is zero, update it to point to the
402    function type we return.  We allocate new memory if needed.  */
403 
404 struct type *
405 make_function_type (struct type *type, struct type **typeptr)
406 {
407   struct type *ntype;	/* New type */
408 
409   if (typeptr == 0 || *typeptr == 0)	/* We'll need to allocate one.  */
410     {
411       ntype = alloc_type_copy (type);
412       if (typeptr)
413 	*typeptr = ntype;
414     }
415   else			/* We have storage, but need to reset it.  */
416     {
417       ntype = *typeptr;
418       smash_type (ntype);
419     }
420 
421   TYPE_TARGET_TYPE (ntype) = type;
422 
423   TYPE_LENGTH (ntype) = 1;
424   TYPE_CODE (ntype) = TYPE_CODE_FUNC;
425 
426   return ntype;
427 }
428 
429 
430 /* Given a type TYPE, return a type of functions that return that type.
431    May need to construct such a type if this is the first use.  */
432 
433 struct type *
434 lookup_function_type (struct type *type)
435 {
436   return make_function_type (type, (struct type **) 0);
437 }
438 
439 /* Identify address space identifier by name --
440    return the integer flag defined in gdbtypes.h.  */
441 extern int
442 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
443 {
444   int type_flags;
445   /* Check for known address space delimiters.  */
446   if (!strcmp (space_identifier, "code"))
447     return TYPE_INSTANCE_FLAG_CODE_SPACE;
448   else if (!strcmp (space_identifier, "data"))
449     return TYPE_INSTANCE_FLAG_DATA_SPACE;
450   else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
451            && gdbarch_address_class_name_to_type_flags (gdbarch,
452 							space_identifier,
453 							&type_flags))
454     return type_flags;
455   else
456     error (_("Unknown address space specifier: \"%s\""), space_identifier);
457 }
458 
459 /* Identify address space identifier by integer flag as defined in
460    gdbtypes.h -- return the string version of the adress space name.  */
461 
462 const char *
463 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
464 {
465   if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
466     return "code";
467   else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
468     return "data";
469   else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
470            && gdbarch_address_class_type_flags_to_name_p (gdbarch))
471     return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
472   else
473     return NULL;
474 }
475 
476 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
477 
478    If STORAGE is non-NULL, create the new type instance there.
479    STORAGE must be in the same obstack as TYPE.  */
480 
481 static struct type *
482 make_qualified_type (struct type *type, int new_flags,
483 		     struct type *storage)
484 {
485   struct type *ntype;
486 
487   ntype = type;
488   do
489     {
490       if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
491 	return ntype;
492       ntype = TYPE_CHAIN (ntype);
493     }
494   while (ntype != type);
495 
496   /* Create a new type instance.  */
497   if (storage == NULL)
498     ntype = alloc_type_instance (type);
499   else
500     {
501       /* If STORAGE was provided, it had better be in the same objfile
502 	 as TYPE.  Otherwise, we can't link it into TYPE's cv chain:
503 	 if one objfile is freed and the other kept, we'd have
504 	 dangling pointers.  */
505       gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
506 
507       ntype = storage;
508       TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
509       TYPE_CHAIN (ntype) = ntype;
510     }
511 
512   /* Pointers or references to the original type are not relevant to
513      the new type.  */
514   TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
515   TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
516 
517   /* Chain the new qualified type to the old type.  */
518   TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
519   TYPE_CHAIN (type) = ntype;
520 
521   /* Now set the instance flags and return the new type.  */
522   TYPE_INSTANCE_FLAGS (ntype) = new_flags;
523 
524   /* Set length of new type to that of the original type.  */
525   TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
526 
527   return ntype;
528 }
529 
530 /* Make an address-space-delimited variant of a type -- a type that
531    is identical to the one supplied except that it has an address
532    space attribute attached to it (such as "code" or "data").
533 
534    The space attributes "code" and "data" are for Harvard
535    architectures.  The address space attributes are for architectures
536    which have alternately sized pointers or pointers with alternate
537    representations.  */
538 
539 struct type *
540 make_type_with_address_space (struct type *type, int space_flag)
541 {
542   struct type *ntype;
543   int new_flags = ((TYPE_INSTANCE_FLAGS (type)
544 		    & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
545 			| TYPE_INSTANCE_FLAG_DATA_SPACE
546 		        | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
547 		   | space_flag);
548 
549   return make_qualified_type (type, new_flags, NULL);
550 }
551 
552 /* Make a "c-v" variant of a type -- a type that is identical to the
553    one supplied except that it may have const or volatile attributes
554    CNST is a flag for setting the const attribute
555    VOLTL is a flag for setting the volatile attribute
556    TYPE is the base type whose variant we are creating.
557 
558    If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
559    storage to hold the new qualified type; *TYPEPTR and TYPE must be
560    in the same objfile.  Otherwise, allocate fresh memory for the new
561    type whereever TYPE lives.  If TYPEPTR is non-zero, set it to the
562    new type we construct.  */
563 struct type *
564 make_cv_type (int cnst, int voltl,
565 	      struct type *type,
566 	      struct type **typeptr)
567 {
568   struct type *ntype;	/* New type */
569   struct type *tmp_type = type;	/* tmp type */
570   struct objfile *objfile;
571 
572   int new_flags = (TYPE_INSTANCE_FLAGS (type)
573 		   & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
574 
575   if (cnst)
576     new_flags |= TYPE_INSTANCE_FLAG_CONST;
577 
578   if (voltl)
579     new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
580 
581   if (typeptr && *typeptr != NULL)
582     {
583       /* TYPE and *TYPEPTR must be in the same objfile.  We can't have
584 	 a C-V variant chain that threads across objfiles: if one
585 	 objfile gets freed, then the other has a broken C-V chain.
586 
587 	 This code used to try to copy over the main type from TYPE to
588 	 *TYPEPTR if they were in different objfiles, but that's
589 	 wrong, too: TYPE may have a field list or member function
590 	 lists, which refer to types of their own, etc. etc.  The
591 	 whole shebang would need to be copied over recursively; you
592 	 can't have inter-objfile pointers.  The only thing to do is
593 	 to leave stub types as stub types, and look them up afresh by
594 	 name each time you encounter them.  */
595       gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
596     }
597 
598   ntype = make_qualified_type (type, new_flags,
599 			       typeptr ? *typeptr : NULL);
600 
601   if (typeptr != NULL)
602     *typeptr = ntype;
603 
604   return ntype;
605 }
606 
607 /* Replace the contents of ntype with the type *type.  This changes the
608    contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
609    the changes are propogated to all types in the TYPE_CHAIN.
610 
611    In order to build recursive types, it's inevitable that we'll need
612    to update types in place --- but this sort of indiscriminate
613    smashing is ugly, and needs to be replaced with something more
614    controlled.  TYPE_MAIN_TYPE is a step in this direction; it's not
615    clear if more steps are needed.  */
616 void
617 replace_type (struct type *ntype, struct type *type)
618 {
619   struct type *chain;
620 
621   /* These two types had better be in the same objfile.  Otherwise,
622      the assignment of one type's main type structure to the other
623      will produce a type with references to objects (names; field
624      lists; etc.) allocated on an objfile other than its own.  */
625   gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
626 
627   *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
628 
629   /* The type length is not a part of the main type.  Update it for
630      each type on the variant chain.  */
631   chain = ntype;
632   do
633     {
634       /* Assert that this element of the chain has no address-class bits
635 	 set in its flags.  Such type variants might have type lengths
636 	 which are supposed to be different from the non-address-class
637 	 variants.  This assertion shouldn't ever be triggered because
638 	 symbol readers which do construct address-class variants don't
639 	 call replace_type().  */
640       gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
641 
642       TYPE_LENGTH (chain) = TYPE_LENGTH (type);
643       chain = TYPE_CHAIN (chain);
644     }
645   while (ntype != chain);
646 
647   /* Assert that the two types have equivalent instance qualifiers.
648      This should be true for at least all of our debug readers.  */
649   gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
650 }
651 
652 /* Implement direct support for MEMBER_TYPE in GNU C++.
653    May need to construct such a type if this is the first use.
654    The TYPE is the type of the member.  The DOMAIN is the type
655    of the aggregate that the member belongs to.  */
656 
657 struct type *
658 lookup_memberptr_type (struct type *type, struct type *domain)
659 {
660   struct type *mtype;
661 
662   mtype = alloc_type_copy (type);
663   smash_to_memberptr_type (mtype, domain, type);
664   return mtype;
665 }
666 
667 /* Return a pointer-to-method type, for a method of type TO_TYPE.  */
668 
669 struct type *
670 lookup_methodptr_type (struct type *to_type)
671 {
672   struct type *mtype;
673 
674   mtype = alloc_type_copy (to_type);
675   TYPE_TARGET_TYPE (mtype) = to_type;
676   TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
677   TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
678   TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
679   return mtype;
680 }
681 
682 /* Allocate a stub method whose return type is TYPE.  This apparently
683    happens for speed of symbol reading, since parsing out the
684    arguments to the method is cpu-intensive, the way we are doing it.
685    So, we will fill in arguments later.  This always returns a fresh
686    type.  */
687 
688 struct type *
689 allocate_stub_method (struct type *type)
690 {
691   struct type *mtype;
692 
693   mtype = alloc_type_copy (type);
694   TYPE_CODE (mtype) = TYPE_CODE_METHOD;
695   TYPE_LENGTH (mtype) = 1;
696   TYPE_STUB (mtype) = 1;
697   TYPE_TARGET_TYPE (mtype) = type;
698   /*  _DOMAIN_TYPE (mtype) = unknown yet */
699   return mtype;
700 }
701 
702 /* Create a range type using either a blank type supplied in
703    RESULT_TYPE, or creating a new type, inheriting the objfile from
704    INDEX_TYPE.
705 
706    Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
707    to HIGH_BOUND, inclusive.
708 
709    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
710    sure it is TYPE_CODE_UNDEF before we bash it into a range type?  */
711 
712 struct type *
713 create_range_type (struct type *result_type, struct type *index_type,
714 		   int low_bound, int high_bound)
715 {
716   if (result_type == NULL)
717     result_type = alloc_type_copy (index_type);
718   TYPE_CODE (result_type) = TYPE_CODE_RANGE;
719   TYPE_TARGET_TYPE (result_type) = index_type;
720   if (TYPE_STUB (index_type))
721     TYPE_TARGET_STUB (result_type) = 1;
722   else
723     TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
724   TYPE_NFIELDS (result_type) = 2;
725   TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type,
726 					   TYPE_NFIELDS (result_type)
727 					   * sizeof (struct field));
728   TYPE_LOW_BOUND (result_type) = low_bound;
729   TYPE_HIGH_BOUND (result_type) = high_bound;
730 
731   if (low_bound >= 0)
732     TYPE_UNSIGNED (result_type) = 1;
733 
734   return result_type;
735 }
736 
737 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
738    TYPE.  Return 1 if type is a range type, 0 if it is discrete (and
739    bounds will fit in LONGEST), or -1 otherwise.  */
740 
741 int
742 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
743 {
744   CHECK_TYPEDEF (type);
745   switch (TYPE_CODE (type))
746     {
747     case TYPE_CODE_RANGE:
748       *lowp = TYPE_LOW_BOUND (type);
749       *highp = TYPE_HIGH_BOUND (type);
750       return 1;
751     case TYPE_CODE_ENUM:
752       if (TYPE_NFIELDS (type) > 0)
753 	{
754 	  /* The enums may not be sorted by value, so search all
755 	     entries */
756 	  int i;
757 
758 	  *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
759 	  for (i = 0; i < TYPE_NFIELDS (type); i++)
760 	    {
761 	      if (TYPE_FIELD_BITPOS (type, i) < *lowp)
762 		*lowp = TYPE_FIELD_BITPOS (type, i);
763 	      if (TYPE_FIELD_BITPOS (type, i) > *highp)
764 		*highp = TYPE_FIELD_BITPOS (type, i);
765 	    }
766 
767 	  /* Set unsigned indicator if warranted.  */
768 	  if (*lowp >= 0)
769 	    {
770 	      TYPE_UNSIGNED (type) = 1;
771 	    }
772 	}
773       else
774 	{
775 	  *lowp = 0;
776 	  *highp = -1;
777 	}
778       return 0;
779     case TYPE_CODE_BOOL:
780       *lowp = 0;
781       *highp = 1;
782       return 0;
783     case TYPE_CODE_INT:
784       if (TYPE_LENGTH (type) > sizeof (LONGEST))	/* Too big */
785 	return -1;
786       if (!TYPE_UNSIGNED (type))
787 	{
788 	  *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
789 	  *highp = -*lowp - 1;
790 	  return 0;
791 	}
792       /* ... fall through for unsigned ints ...  */
793     case TYPE_CODE_CHAR:
794       *lowp = 0;
795       /* This round-about calculation is to avoid shifting by
796          TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
797          if TYPE_LENGTH (type) == sizeof (LONGEST).  */
798       *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
799       *highp = (*highp - 1) | *highp;
800       return 0;
801     default:
802       return -1;
803     }
804 }
805 
806 /* Create an array type using either a blank type supplied in
807    RESULT_TYPE, or creating a new type, inheriting the objfile from
808    RANGE_TYPE.
809 
810    Elements will be of type ELEMENT_TYPE, the indices will be of type
811    RANGE_TYPE.
812 
813    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
814    sure it is TYPE_CODE_UNDEF before we bash it into an array
815    type?  */
816 
817 struct type *
818 create_array_type (struct type *result_type,
819 		   struct type *element_type,
820 		   struct type *range_type)
821 {
822   LONGEST low_bound, high_bound;
823 
824   if (result_type == NULL)
825     result_type = alloc_type_copy (range_type);
826 
827   TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
828   TYPE_TARGET_TYPE (result_type) = element_type;
829   if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
830     low_bound = high_bound = 0;
831   CHECK_TYPEDEF (element_type);
832   /* Be careful when setting the array length.  Ada arrays can be
833      empty arrays with the high_bound being smaller than the low_bound.
834      In such cases, the array length should be zero.  */
835   if (high_bound < low_bound)
836     TYPE_LENGTH (result_type) = 0;
837   else
838     TYPE_LENGTH (result_type) =
839       TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
840   TYPE_NFIELDS (result_type) = 1;
841   TYPE_FIELDS (result_type) =
842     (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
843   TYPE_INDEX_TYPE (result_type) = range_type;
844   TYPE_VPTR_FIELDNO (result_type) = -1;
845 
846   /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
847   if (TYPE_LENGTH (result_type) == 0)
848     TYPE_TARGET_STUB (result_type) = 1;
849 
850   return result_type;
851 }
852 
853 struct type *
854 lookup_array_range_type (struct type *element_type,
855 			 int low_bound, int high_bound)
856 {
857   struct gdbarch *gdbarch = get_type_arch (element_type);
858   struct type *index_type = builtin_type (gdbarch)->builtin_int;
859   struct type *range_type
860     = create_range_type (NULL, index_type, low_bound, high_bound);
861   return create_array_type (NULL, element_type, range_type);
862 }
863 
864 /* Create a string type using either a blank type supplied in
865    RESULT_TYPE, or creating a new type.  String types are similar
866    enough to array of char types that we can use create_array_type to
867    build the basic type and then bash it into a string type.
868 
869    For fixed length strings, the range type contains 0 as the lower
870    bound and the length of the string minus one as the upper bound.
871 
872    FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873    sure it is TYPE_CODE_UNDEF before we bash it into a string
874    type?  */
875 
876 struct type *
877 create_string_type (struct type *result_type,
878 		    struct type *string_char_type,
879 		    struct type *range_type)
880 {
881   result_type = create_array_type (result_type,
882 				   string_char_type,
883 				   range_type);
884   TYPE_CODE (result_type) = TYPE_CODE_STRING;
885   return result_type;
886 }
887 
888 struct type *
889 lookup_string_range_type (struct type *string_char_type,
890 			  int low_bound, int high_bound)
891 {
892   struct type *result_type;
893   result_type = lookup_array_range_type (string_char_type,
894 					 low_bound, high_bound);
895   TYPE_CODE (result_type) = TYPE_CODE_STRING;
896   return result_type;
897 }
898 
899 struct type *
900 create_set_type (struct type *result_type, struct type *domain_type)
901 {
902   if (result_type == NULL)
903     result_type = alloc_type_copy (domain_type);
904 
905   TYPE_CODE (result_type) = TYPE_CODE_SET;
906   TYPE_NFIELDS (result_type) = 1;
907   TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
908 
909   if (!TYPE_STUB (domain_type))
910     {
911       LONGEST low_bound, high_bound, bit_length;
912       if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
913 	low_bound = high_bound = 0;
914       bit_length = high_bound - low_bound + 1;
915       TYPE_LENGTH (result_type)
916 	= (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
917       if (low_bound >= 0)
918 	TYPE_UNSIGNED (result_type) = 1;
919     }
920   TYPE_FIELD_TYPE (result_type, 0) = domain_type;
921 
922   return result_type;
923 }
924 
925 /* Convert ARRAY_TYPE to a vector type.  This may modify ARRAY_TYPE
926    and any array types nested inside it.  */
927 
928 void
929 make_vector_type (struct type *array_type)
930 {
931   struct type *inner_array, *elt_type;
932   int flags;
933 
934   /* Find the innermost array type, in case the array is
935      multi-dimensional.  */
936   inner_array = array_type;
937   while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
938     inner_array = TYPE_TARGET_TYPE (inner_array);
939 
940   elt_type = TYPE_TARGET_TYPE (inner_array);
941   if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
942     {
943       flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
944       elt_type = make_qualified_type (elt_type, flags, NULL);
945       TYPE_TARGET_TYPE (inner_array) = elt_type;
946     }
947 
948   TYPE_VECTOR (array_type) = 1;
949 }
950 
951 struct type *
952 init_vector_type (struct type *elt_type, int n)
953 {
954   struct type *array_type;
955   array_type = lookup_array_range_type (elt_type, 0, n - 1);
956   make_vector_type (array_type);
957   return array_type;
958 }
959 
960 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
961    TO_TYPE.  A member pointer is a wierd thing -- it amounts to a
962    typed offset into a struct, e.g. "an int at offset 8".  A MEMBER
963    TYPE doesn't include the offset (that's the value of the MEMBER
964    itself), but does include the structure type into which it points
965    (for some reason).
966 
967    When "smashing" the type, we preserve the objfile that the old type
968    pointed to, since we aren't changing where the type is actually
969    allocated.  */
970 
971 void
972 smash_to_memberptr_type (struct type *type, struct type *domain,
973 			 struct type *to_type)
974 {
975   smash_type (type);
976   TYPE_TARGET_TYPE (type) = to_type;
977   TYPE_DOMAIN_TYPE (type) = domain;
978   /* Assume that a data member pointer is the same size as a normal
979      pointer.  */
980   TYPE_LENGTH (type)
981     = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
982   TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
983 }
984 
985 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
986    METHOD just means `function that gets an extra "this" argument'.
987 
988    When "smashing" the type, we preserve the objfile that the old type
989    pointed to, since we aren't changing where the type is actually
990    allocated.  */
991 
992 void
993 smash_to_method_type (struct type *type, struct type *domain,
994 		      struct type *to_type, struct field *args,
995 		      int nargs, int varargs)
996 {
997   smash_type (type);
998   TYPE_TARGET_TYPE (type) = to_type;
999   TYPE_DOMAIN_TYPE (type) = domain;
1000   TYPE_FIELDS (type) = args;
1001   TYPE_NFIELDS (type) = nargs;
1002   if (varargs)
1003     TYPE_VARARGS (type) = 1;
1004   TYPE_LENGTH (type) = 1;	/* In practice, this is never needed.  */
1005   TYPE_CODE (type) = TYPE_CODE_METHOD;
1006 }
1007 
1008 /* Return a typename for a struct/union/enum type without "struct ",
1009    "union ", or "enum ".  If the type has a NULL name, return NULL.  */
1010 
1011 char *
1012 type_name_no_tag (const struct type *type)
1013 {
1014   if (TYPE_TAG_NAME (type) != NULL)
1015     return TYPE_TAG_NAME (type);
1016 
1017   /* Is there code which expects this to return the name if there is
1018      no tag name?  My guess is that this is mainly used for C++ in
1019      cases where the two will always be the same.  */
1020   return TYPE_NAME (type);
1021 }
1022 
1023 /* Lookup a typedef or primitive type named NAME, visible in lexical
1024    block BLOCK.  If NOERR is nonzero, return zero if NAME is not
1025    suitably defined.  */
1026 
1027 struct type *
1028 lookup_typename (const struct language_defn *language,
1029 		 struct gdbarch *gdbarch, char *name,
1030 		 struct block *block, int noerr)
1031 {
1032   struct symbol *sym;
1033   struct type *tmp;
1034 
1035   sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1036   if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1037     {
1038       tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1039       if (tmp)
1040 	{
1041 	  return tmp;
1042 	}
1043       else if (!tmp && noerr)
1044 	{
1045 	  return NULL;
1046 	}
1047       else
1048 	{
1049 	  error (_("No type named %s."), name);
1050 	}
1051     }
1052   return (SYMBOL_TYPE (sym));
1053 }
1054 
1055 struct type *
1056 lookup_unsigned_typename (const struct language_defn *language,
1057 			  struct gdbarch *gdbarch, char *name)
1058 {
1059   char *uns = alloca (strlen (name) + 10);
1060 
1061   strcpy (uns, "unsigned ");
1062   strcpy (uns + 9, name);
1063   return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1064 }
1065 
1066 struct type *
1067 lookup_signed_typename (const struct language_defn *language,
1068 			struct gdbarch *gdbarch, char *name)
1069 {
1070   struct type *t;
1071   char *uns = alloca (strlen (name) + 8);
1072 
1073   strcpy (uns, "signed ");
1074   strcpy (uns + 7, name);
1075   t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1076   /* If we don't find "signed FOO" just try again with plain "FOO".  */
1077   if (t != NULL)
1078     return t;
1079   return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1080 }
1081 
1082 /* Lookup a structure type named "struct NAME",
1083    visible in lexical block BLOCK.  */
1084 
1085 struct type *
1086 lookup_struct (char *name, struct block *block)
1087 {
1088   struct symbol *sym;
1089 
1090   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1091 
1092   if (sym == NULL)
1093     {
1094       error (_("No struct type named %s."), name);
1095     }
1096   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1097     {
1098       error (_("This context has class, union or enum %s, not a struct."),
1099 	     name);
1100     }
1101   return (SYMBOL_TYPE (sym));
1102 }
1103 
1104 /* Lookup a union type named "union NAME",
1105    visible in lexical block BLOCK.  */
1106 
1107 struct type *
1108 lookup_union (char *name, struct block *block)
1109 {
1110   struct symbol *sym;
1111   struct type *t;
1112 
1113   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1114 
1115   if (sym == NULL)
1116     error (_("No union type named %s."), name);
1117 
1118   t = SYMBOL_TYPE (sym);
1119 
1120   if (TYPE_CODE (t) == TYPE_CODE_UNION)
1121     return t;
1122 
1123   /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1124    * a further "declared_type" field to discover it is really a union.
1125    */
1126   if (HAVE_CPLUS_STRUCT (t))
1127     if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1128       return t;
1129 
1130   /* If we get here, it's not a union.  */
1131   error (_("This context has class, struct or enum %s, not a union."),
1132 	 name);
1133 }
1134 
1135 
1136 /* Lookup an enum type named "enum NAME",
1137    visible in lexical block BLOCK.  */
1138 
1139 struct type *
1140 lookup_enum (char *name, struct block *block)
1141 {
1142   struct symbol *sym;
1143 
1144   sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1145   if (sym == NULL)
1146     {
1147       error (_("No enum type named %s."), name);
1148     }
1149   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1150     {
1151       error (_("This context has class, struct or union %s, not an enum."),
1152 	     name);
1153     }
1154   return (SYMBOL_TYPE (sym));
1155 }
1156 
1157 /* Lookup a template type named "template NAME<TYPE>",
1158    visible in lexical block BLOCK.  */
1159 
1160 struct type *
1161 lookup_template_type (char *name, struct type *type,
1162 		      struct block *block)
1163 {
1164   struct symbol *sym;
1165   char *nam = (char *)
1166     alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1167   strcpy (nam, name);
1168   strcat (nam, "<");
1169   strcat (nam, TYPE_NAME (type));
1170   strcat (nam, " >");	/* FIXME, extra space still introduced in gcc? */
1171 
1172   sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1173 
1174   if (sym == NULL)
1175     {
1176       error (_("No template type named %s."), name);
1177     }
1178   if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1179     {
1180       error (_("This context has class, union or enum %s, not a struct."),
1181 	     name);
1182     }
1183   return (SYMBOL_TYPE (sym));
1184 }
1185 
1186 /* Given a type TYPE, lookup the type of the component of type named
1187    NAME.
1188 
1189    TYPE can be either a struct or union, or a pointer or reference to
1190    a struct or union.  If it is a pointer or reference, its target
1191    type is automatically used.  Thus '.' and '->' are interchangable,
1192    as specified for the definitions of the expression element types
1193    STRUCTOP_STRUCT and STRUCTOP_PTR.
1194 
1195    If NOERR is nonzero, return zero if NAME is not suitably defined.
1196    If NAME is the name of a baseclass type, return that type.  */
1197 
1198 struct type *
1199 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1200 {
1201   int i;
1202 
1203   for (;;)
1204     {
1205       CHECK_TYPEDEF (type);
1206       if (TYPE_CODE (type) != TYPE_CODE_PTR
1207 	  && TYPE_CODE (type) != TYPE_CODE_REF)
1208 	break;
1209       type = TYPE_TARGET_TYPE (type);
1210     }
1211 
1212   if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1213       && TYPE_CODE (type) != TYPE_CODE_UNION)
1214     {
1215       target_terminal_ours ();
1216       gdb_flush (gdb_stdout);
1217       fprintf_unfiltered (gdb_stderr, "Type ");
1218       type_print (type, "", gdb_stderr, -1);
1219       error (_(" is not a structure or union type."));
1220     }
1221 
1222 #if 0
1223   /* FIXME: This change put in by Michael seems incorrect for the case
1224      where the structure tag name is the same as the member name.
1225      I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1226      foo; } bell;" Disabled by fnf.  */
1227   {
1228     char *typename;
1229 
1230     typename = type_name_no_tag (type);
1231     if (typename != NULL && strcmp (typename, name) == 0)
1232       return type;
1233   }
1234 #endif
1235 
1236   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1237     {
1238       char *t_field_name = TYPE_FIELD_NAME (type, i);
1239 
1240       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1241 	{
1242 	  return TYPE_FIELD_TYPE (type, i);
1243 	}
1244     }
1245 
1246   /* OK, it's not in this class.  Recursively check the baseclasses.  */
1247   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1248     {
1249       struct type *t;
1250 
1251       t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1252       if (t != NULL)
1253 	{
1254 	  return t;
1255 	}
1256     }
1257 
1258   if (noerr)
1259     {
1260       return NULL;
1261     }
1262 
1263   target_terminal_ours ();
1264   gdb_flush (gdb_stdout);
1265   fprintf_unfiltered (gdb_stderr, "Type ");
1266   type_print (type, "", gdb_stderr, -1);
1267   fprintf_unfiltered (gdb_stderr, " has no component named ");
1268   fputs_filtered (name, gdb_stderr);
1269   error (("."));
1270   return (struct type *) -1;	/* For lint */
1271 }
1272 
1273 /* Lookup the vptr basetype/fieldno values for TYPE.
1274    If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1275    vptr_fieldno.  Also, if found and basetype is from the same objfile,
1276    cache the results.
1277    If not found, return -1 and ignore BASETYPEP.
1278    Callers should be aware that in some cases (for example,
1279    the type or one of its baseclasses is a stub type and we are
1280    debugging a .o file), this function will not be able to find the
1281    virtual function table pointer, and vptr_fieldno will remain -1 and
1282    vptr_basetype will remain NULL or incomplete.  */
1283 
1284 int
1285 get_vptr_fieldno (struct type *type, struct type **basetypep)
1286 {
1287   CHECK_TYPEDEF (type);
1288 
1289   if (TYPE_VPTR_FIELDNO (type) < 0)
1290     {
1291       int i;
1292 
1293       /* We must start at zero in case the first (and only) baseclass
1294          is virtual (and hence we cannot share the table pointer).  */
1295       for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1296 	{
1297 	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1298 	  int fieldno;
1299 	  struct type *basetype;
1300 
1301 	  fieldno = get_vptr_fieldno (baseclass, &basetype);
1302 	  if (fieldno >= 0)
1303 	    {
1304 	      /* If the type comes from a different objfile we can't cache
1305 		 it, it may have a different lifetime. PR 2384 */
1306 	      if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1307 		{
1308 		  TYPE_VPTR_FIELDNO (type) = fieldno;
1309 		  TYPE_VPTR_BASETYPE (type) = basetype;
1310 		}
1311 	      if (basetypep)
1312 		*basetypep = basetype;
1313 	      return fieldno;
1314 	    }
1315 	}
1316 
1317       /* Not found.  */
1318       return -1;
1319     }
1320   else
1321     {
1322       if (basetypep)
1323 	*basetypep = TYPE_VPTR_BASETYPE (type);
1324       return TYPE_VPTR_FIELDNO (type);
1325     }
1326 }
1327 
1328 static void
1329 stub_noname_complaint (void)
1330 {
1331   complaint (&symfile_complaints, _("stub type has NULL name"));
1332 }
1333 
1334 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1335 
1336    If this is a stubbed struct (i.e. declared as struct foo *), see if
1337    we can find a full definition in some other file. If so, copy this
1338    definition, so we can use it in future.  There used to be a comment
1339    (but not any code) that if we don't find a full definition, we'd
1340    set a flag so we don't spend time in the future checking the same
1341    type.  That would be a mistake, though--we might load in more
1342    symbols which contain a full definition for the type.
1343 
1344    This used to be coded as a macro, but I don't think it is called
1345    often enough to merit such treatment.  */
1346 
1347 /* Find the real type of TYPE.  This function returns the real type,
1348    after removing all layers of typedefs and completing opaque or stub
1349    types.  Completion changes the TYPE argument, but stripping of
1350    typedefs does not.  */
1351 
1352 struct type *
1353 check_typedef (struct type *type)
1354 {
1355   struct type *orig_type = type;
1356   int is_const, is_volatile;
1357 
1358   gdb_assert (type);
1359 
1360   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1361     {
1362       if (!TYPE_TARGET_TYPE (type))
1363 	{
1364 	  char *name;
1365 	  struct symbol *sym;
1366 
1367 	  /* It is dangerous to call lookup_symbol if we are currently
1368 	     reading a symtab.  Infinite recursion is one danger.  */
1369 	  if (currently_reading_symtab)
1370 	    return type;
1371 
1372 	  name = type_name_no_tag (type);
1373 	  /* FIXME: shouldn't we separately check the TYPE_NAME and
1374 	     the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1375 	     VAR_DOMAIN as appropriate?  (this code was written before
1376 	     TYPE_NAME and TYPE_TAG_NAME were separate).  */
1377 	  if (name == NULL)
1378 	    {
1379 	      stub_noname_complaint ();
1380 	      return type;
1381 	    }
1382 	  sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1383 	  if (sym)
1384 	    TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1385 	  else					/* TYPE_CODE_UNDEF */
1386 	    TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1387 	}
1388       type = TYPE_TARGET_TYPE (type);
1389     }
1390 
1391   is_const = TYPE_CONST (type);
1392   is_volatile = TYPE_VOLATILE (type);
1393 
1394   /* If this is a struct/class/union with no fields, then check
1395      whether a full definition exists somewhere else.  This is for
1396      systems where a type definition with no fields is issued for such
1397      types, instead of identifying them as stub types in the first
1398      place.  */
1399 
1400   if (TYPE_IS_OPAQUE (type)
1401       && opaque_type_resolution
1402       && !currently_reading_symtab)
1403     {
1404       char *name = type_name_no_tag (type);
1405       struct type *newtype;
1406       if (name == NULL)
1407 	{
1408 	  stub_noname_complaint ();
1409 	  return type;
1410 	}
1411       newtype = lookup_transparent_type (name);
1412 
1413       if (newtype)
1414 	{
1415 	  /* If the resolved type and the stub are in the same
1416 	     objfile, then replace the stub type with the real deal.
1417 	     But if they're in separate objfiles, leave the stub
1418 	     alone; we'll just look up the transparent type every time
1419 	     we call check_typedef.  We can't create pointers between
1420 	     types allocated to different objfiles, since they may
1421 	     have different lifetimes.  Trying to copy NEWTYPE over to
1422 	     TYPE's objfile is pointless, too, since you'll have to
1423 	     move over any other types NEWTYPE refers to, which could
1424 	     be an unbounded amount of stuff.  */
1425 	  if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1426 	    make_cv_type (is_const, is_volatile, newtype, &type);
1427 	  else
1428 	    type = newtype;
1429 	}
1430     }
1431   /* Otherwise, rely on the stub flag being set for opaque/stubbed
1432      types.  */
1433   else if (TYPE_STUB (type) && !currently_reading_symtab)
1434     {
1435       char *name = type_name_no_tag (type);
1436       /* FIXME: shouldn't we separately check the TYPE_NAME and the
1437          TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1438          as appropriate?  (this code was written before TYPE_NAME and
1439          TYPE_TAG_NAME were separate).  */
1440       struct symbol *sym;
1441       if (name == NULL)
1442 	{
1443 	  stub_noname_complaint ();
1444 	  return type;
1445 	}
1446       sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1447       if (sym)
1448         {
1449           /* Same as above for opaque types, we can replace the stub
1450              with the complete type only if they are int the same
1451              objfile.  */
1452 	  if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1453             make_cv_type (is_const, is_volatile,
1454 			  SYMBOL_TYPE (sym), &type);
1455 	  else
1456 	    type = SYMBOL_TYPE (sym);
1457         }
1458     }
1459 
1460   if (TYPE_TARGET_STUB (type))
1461     {
1462       struct type *range_type;
1463       struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1464 
1465       if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1466 	{
1467 	  /* Empty.  */
1468 	}
1469       else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1470 	       && TYPE_NFIELDS (type) == 1
1471 	       && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1472 		   == TYPE_CODE_RANGE))
1473 	{
1474 	  /* Now recompute the length of the array type, based on its
1475 	     number of elements and the target type's length.
1476 	     Watch out for Ada null Ada arrays where the high bound
1477 	     is smaller than the low bound.  */
1478 	  const int low_bound = TYPE_LOW_BOUND (range_type);
1479 	  const int high_bound = TYPE_HIGH_BOUND (range_type);
1480 	  int nb_elements;
1481 
1482 	  if (high_bound < low_bound)
1483 	    nb_elements = 0;
1484 	  else
1485 	    nb_elements = high_bound - low_bound + 1;
1486 
1487 	  TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
1488 	  TYPE_TARGET_STUB (type) = 0;
1489 	}
1490       else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1491 	{
1492 	  TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1493 	  TYPE_TARGET_STUB (type) = 0;
1494 	}
1495     }
1496   /* Cache TYPE_LENGTH for future use.  */
1497   TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1498   return type;
1499 }
1500 
1501 /* Parse a type expression in the string [P..P+LENGTH).  If an error
1502    occurs, silently return a void type.  */
1503 
1504 static struct type *
1505 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1506 {
1507   struct ui_file *saved_gdb_stderr;
1508   struct type *type;
1509 
1510   /* Suppress error messages.  */
1511   saved_gdb_stderr = gdb_stderr;
1512   gdb_stderr = ui_file_new ();
1513 
1514   /* Call parse_and_eval_type() without fear of longjmp()s.  */
1515   if (!gdb_parse_and_eval_type (p, length, &type))
1516     type = builtin_type (gdbarch)->builtin_void;
1517 
1518   /* Stop suppressing error messages.  */
1519   ui_file_delete (gdb_stderr);
1520   gdb_stderr = saved_gdb_stderr;
1521 
1522   return type;
1523 }
1524 
1525 /* Ugly hack to convert method stubs into method types.
1526 
1527    He ain't kiddin'.  This demangles the name of the method into a
1528    string including argument types, parses out each argument type,
1529    generates a string casting a zero to that type, evaluates the
1530    string, and stuffs the resulting type into an argtype vector!!!
1531    Then it knows the type of the whole function (including argument
1532    types for overloading), which info used to be in the stab's but was
1533    removed to hack back the space required for them.  */
1534 
1535 static void
1536 check_stub_method (struct type *type, int method_id, int signature_id)
1537 {
1538   struct gdbarch *gdbarch = get_type_arch (type);
1539   struct fn_field *f;
1540   char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1541   char *demangled_name = cplus_demangle (mangled_name,
1542 					 DMGL_PARAMS | DMGL_ANSI);
1543   char *argtypetext, *p;
1544   int depth = 0, argcount = 1;
1545   struct field *argtypes;
1546   struct type *mtype;
1547 
1548   /* Make sure we got back a function string that we can use.  */
1549   if (demangled_name)
1550     p = strchr (demangled_name, '(');
1551   else
1552     p = NULL;
1553 
1554   if (demangled_name == NULL || p == NULL)
1555     error (_("Internal: Cannot demangle mangled name `%s'."),
1556 	   mangled_name);
1557 
1558   /* Now, read in the parameters that define this type.  */
1559   p += 1;
1560   argtypetext = p;
1561   while (*p)
1562     {
1563       if (*p == '(' || *p == '<')
1564 	{
1565 	  depth += 1;
1566 	}
1567       else if (*p == ')' || *p == '>')
1568 	{
1569 	  depth -= 1;
1570 	}
1571       else if (*p == ',' && depth == 0)
1572 	{
1573 	  argcount += 1;
1574 	}
1575 
1576       p += 1;
1577     }
1578 
1579   /* If we read one argument and it was ``void'', don't count it.  */
1580   if (strncmp (argtypetext, "(void)", 6) == 0)
1581     argcount -= 1;
1582 
1583   /* We need one extra slot, for the THIS pointer.  */
1584 
1585   argtypes = (struct field *)
1586     TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1587   p = argtypetext;
1588 
1589   /* Add THIS pointer for non-static methods.  */
1590   f = TYPE_FN_FIELDLIST1 (type, method_id);
1591   if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1592     argcount = 0;
1593   else
1594     {
1595       argtypes[0].type = lookup_pointer_type (type);
1596       argcount = 1;
1597     }
1598 
1599   if (*p != ')')		/* () means no args, skip while */
1600     {
1601       depth = 0;
1602       while (*p)
1603 	{
1604 	  if (depth <= 0 && (*p == ',' || *p == ')'))
1605 	    {
1606 	      /* Avoid parsing of ellipsis, they will be handled below.
1607 	         Also avoid ``void'' as above.  */
1608 	      if (strncmp (argtypetext, "...", p - argtypetext) != 0
1609 		  && strncmp (argtypetext, "void", p - argtypetext) != 0)
1610 		{
1611 		  argtypes[argcount].type =
1612 		    safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1613 		  argcount += 1;
1614 		}
1615 	      argtypetext = p + 1;
1616 	    }
1617 
1618 	  if (*p == '(' || *p == '<')
1619 	    {
1620 	      depth += 1;
1621 	    }
1622 	  else if (*p == ')' || *p == '>')
1623 	    {
1624 	      depth -= 1;
1625 	    }
1626 
1627 	  p += 1;
1628 	}
1629     }
1630 
1631   TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1632 
1633   /* Now update the old "stub" type into a real type.  */
1634   mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1635   TYPE_DOMAIN_TYPE (mtype) = type;
1636   TYPE_FIELDS (mtype) = argtypes;
1637   TYPE_NFIELDS (mtype) = argcount;
1638   TYPE_STUB (mtype) = 0;
1639   TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1640   if (p[-2] == '.')
1641     TYPE_VARARGS (mtype) = 1;
1642 
1643   xfree (demangled_name);
1644 }
1645 
1646 /* This is the external interface to check_stub_method, above.  This
1647    function unstubs all of the signatures for TYPE's METHOD_ID method
1648    name.  After calling this function TYPE_FN_FIELD_STUB will be
1649    cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1650    correct.
1651 
1652    This function unfortunately can not die until stabs do.  */
1653 
1654 void
1655 check_stub_method_group (struct type *type, int method_id)
1656 {
1657   int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1658   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1659   int j, found_stub = 0;
1660 
1661   for (j = 0; j < len; j++)
1662     if (TYPE_FN_FIELD_STUB (f, j))
1663       {
1664 	found_stub = 1;
1665 	check_stub_method (type, method_id, j);
1666       }
1667 
1668   /* GNU v3 methods with incorrect names were corrected when we read
1669      in type information, because it was cheaper to do it then.  The
1670      only GNU v2 methods with incorrect method names are operators and
1671      destructors; destructors were also corrected when we read in type
1672      information.
1673 
1674      Therefore the only thing we need to handle here are v2 operator
1675      names.  */
1676   if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1677     {
1678       int ret;
1679       char dem_opname[256];
1680 
1681       ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1682 							   method_id),
1683 				   dem_opname, DMGL_ANSI);
1684       if (!ret)
1685 	ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1686 							     method_id),
1687 				     dem_opname, 0);
1688       if (ret)
1689 	TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1690     }
1691 }
1692 
1693 const struct cplus_struct_type cplus_struct_default;
1694 
1695 void
1696 allocate_cplus_struct_type (struct type *type)
1697 {
1698   if (!HAVE_CPLUS_STRUCT (type))
1699     {
1700       TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1701 	TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1702       *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1703     }
1704 }
1705 
1706 /* Helper function to initialize the standard scalar types.
1707 
1708    If NAME is non-NULL, then we make a copy of the string pointed
1709    to by name in the objfile_obstack for that objfile, and initialize
1710    the type name to that copy.  There are places (mipsread.c in particular),
1711    where init_type is called with a NULL value for NAME).  */
1712 
1713 struct type *
1714 init_type (enum type_code code, int length, int flags,
1715 	   char *name, struct objfile *objfile)
1716 {
1717   struct type *type;
1718 
1719   type = alloc_type (objfile);
1720   TYPE_CODE (type) = code;
1721   TYPE_LENGTH (type) = length;
1722 
1723   gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1724   if (flags & TYPE_FLAG_UNSIGNED)
1725     TYPE_UNSIGNED (type) = 1;
1726   if (flags & TYPE_FLAG_NOSIGN)
1727     TYPE_NOSIGN (type) = 1;
1728   if (flags & TYPE_FLAG_STUB)
1729     TYPE_STUB (type) = 1;
1730   if (flags & TYPE_FLAG_TARGET_STUB)
1731     TYPE_TARGET_STUB (type) = 1;
1732   if (flags & TYPE_FLAG_STATIC)
1733     TYPE_STATIC (type) = 1;
1734   if (flags & TYPE_FLAG_PROTOTYPED)
1735     TYPE_PROTOTYPED (type) = 1;
1736   if (flags & TYPE_FLAG_INCOMPLETE)
1737     TYPE_INCOMPLETE (type) = 1;
1738   if (flags & TYPE_FLAG_VARARGS)
1739     TYPE_VARARGS (type) = 1;
1740   if (flags & TYPE_FLAG_VECTOR)
1741     TYPE_VECTOR (type) = 1;
1742   if (flags & TYPE_FLAG_STUB_SUPPORTED)
1743     TYPE_STUB_SUPPORTED (type) = 1;
1744   if (flags & TYPE_FLAG_NOTTEXT)
1745     TYPE_NOTTEXT (type) = 1;
1746   if (flags & TYPE_FLAG_FIXED_INSTANCE)
1747     TYPE_FIXED_INSTANCE (type) = 1;
1748 
1749   if (name)
1750     TYPE_NAME (type) = obsavestring (name, strlen (name),
1751 				     &objfile->objfile_obstack);
1752 
1753   /* C++ fancies.  */
1754 
1755   if (name && strcmp (name, "char") == 0)
1756     TYPE_NOSIGN (type) = 1;
1757 
1758   if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1759       || code == TYPE_CODE_NAMESPACE)
1760     {
1761       INIT_CPLUS_SPECIFIC (type);
1762     }
1763   return type;
1764 }
1765 
1766 int
1767 can_dereference (struct type *t)
1768 {
1769   /* FIXME: Should we return true for references as well as
1770      pointers?  */
1771   CHECK_TYPEDEF (t);
1772   return
1773     (t != NULL
1774      && TYPE_CODE (t) == TYPE_CODE_PTR
1775      && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1776 }
1777 
1778 int
1779 is_integral_type (struct type *t)
1780 {
1781   CHECK_TYPEDEF (t);
1782   return
1783     ((t != NULL)
1784      && ((TYPE_CODE (t) == TYPE_CODE_INT)
1785 	 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1786 	 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1787 	 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1788 	 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1789 	 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1790 }
1791 
1792 /* Check whether BASE is an ancestor or base class or DCLASS
1793    Return 1 if so, and 0 if not.
1794    Note: callers may want to check for identity of the types before
1795    calling this function -- identical types are considered to satisfy
1796    the ancestor relationship even if they're identical.  */
1797 
1798 int
1799 is_ancestor (struct type *base, struct type *dclass)
1800 {
1801   int i;
1802 
1803   CHECK_TYPEDEF (base);
1804   CHECK_TYPEDEF (dclass);
1805 
1806   if (base == dclass)
1807     return 1;
1808   if (TYPE_NAME (base) && TYPE_NAME (dclass)
1809       && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1810     return 1;
1811 
1812   for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1813     if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1814       return 1;
1815 
1816   return 0;
1817 }
1818 
1819 
1820 
1821 /* Functions for overload resolution begin here */
1822 
1823 /* Compare two badness vectors A and B and return the result.
1824    0 => A and B are identical
1825    1 => A and B are incomparable
1826    2 => A is better than B
1827    3 => A is worse than B  */
1828 
1829 int
1830 compare_badness (struct badness_vector *a, struct badness_vector *b)
1831 {
1832   int i;
1833   int tmp;
1834   short found_pos = 0;		/* any positives in c? */
1835   short found_neg = 0;		/* any negatives in c? */
1836 
1837   /* differing lengths => incomparable */
1838   if (a->length != b->length)
1839     return 1;
1840 
1841   /* Subtract b from a */
1842   for (i = 0; i < a->length; i++)
1843     {
1844       tmp = a->rank[i] - b->rank[i];
1845       if (tmp > 0)
1846 	found_pos = 1;
1847       else if (tmp < 0)
1848 	found_neg = 1;
1849     }
1850 
1851   if (found_pos)
1852     {
1853       if (found_neg)
1854 	return 1;		/* incomparable */
1855       else
1856 	return 3;		/* A > B */
1857     }
1858   else
1859     /* no positives */
1860     {
1861       if (found_neg)
1862 	return 2;		/* A < B */
1863       else
1864 	return 0;		/* A == B */
1865     }
1866 }
1867 
1868 /* Rank a function by comparing its parameter types (PARMS, length
1869    NPARMS), to the types of an argument list (ARGS, length NARGS).
1870    Return a pointer to a badness vector.  This has NARGS + 1
1871    entries.  */
1872 
1873 struct badness_vector *
1874 rank_function (struct type **parms, int nparms,
1875 	       struct type **args, int nargs)
1876 {
1877   int i;
1878   struct badness_vector *bv;
1879   int min_len = nparms < nargs ? nparms : nargs;
1880 
1881   bv = xmalloc (sizeof (struct badness_vector));
1882   bv->length = nargs + 1;	/* add 1 for the length-match rank */
1883   bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1884 
1885   /* First compare the lengths of the supplied lists.
1886      If there is a mismatch, set it to a high value.  */
1887 
1888   /* pai/1997-06-03 FIXME: when we have debug info about default
1889      arguments and ellipsis parameter lists, we should consider those
1890      and rank the length-match more finely.  */
1891 
1892   LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1893 
1894   /* Now rank all the parameters of the candidate function */
1895   for (i = 1; i <= min_len; i++)
1896     bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1897 
1898   /* If more arguments than parameters, add dummy entries */
1899   for (i = min_len + 1; i <= nargs; i++)
1900     bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1901 
1902   return bv;
1903 }
1904 
1905 /* Compare the names of two integer types, assuming that any sign
1906    qualifiers have been checked already.  We do it this way because
1907    there may be an "int" in the name of one of the types.  */
1908 
1909 static int
1910 integer_types_same_name_p (const char *first, const char *second)
1911 {
1912   int first_p, second_p;
1913 
1914   /* If both are shorts, return 1; if neither is a short, keep
1915      checking.  */
1916   first_p = (strstr (first, "short") != NULL);
1917   second_p = (strstr (second, "short") != NULL);
1918   if (first_p && second_p)
1919     return 1;
1920   if (first_p || second_p)
1921     return 0;
1922 
1923   /* Likewise for long.  */
1924   first_p = (strstr (first, "long") != NULL);
1925   second_p = (strstr (second, "long") != NULL);
1926   if (first_p && second_p)
1927     return 1;
1928   if (first_p || second_p)
1929     return 0;
1930 
1931   /* Likewise for char.  */
1932   first_p = (strstr (first, "char") != NULL);
1933   second_p = (strstr (second, "char") != NULL);
1934   if (first_p && second_p)
1935     return 1;
1936   if (first_p || second_p)
1937     return 0;
1938 
1939   /* They must both be ints.  */
1940   return 1;
1941 }
1942 
1943 /* Compare one type (PARM) for compatibility with another (ARG).
1944  * PARM is intended to be the parameter type of a function; and
1945  * ARG is the supplied argument's type.  This function tests if
1946  * the latter can be converted to the former.
1947  *
1948  * Return 0 if they are identical types;
1949  * Otherwise, return an integer which corresponds to how compatible
1950  * PARM is to ARG.  The higher the return value, the worse the match.
1951  * Generally the "bad" conversions are all uniformly assigned a 100.  */
1952 
1953 int
1954 rank_one_type (struct type *parm, struct type *arg)
1955 {
1956   /* Identical type pointers.  */
1957   /* However, this still doesn't catch all cases of same type for arg
1958      and param.  The reason is that builtin types are different from
1959      the same ones constructed from the object.  */
1960   if (parm == arg)
1961     return 0;
1962 
1963   /* Resolve typedefs */
1964   if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
1965     parm = check_typedef (parm);
1966   if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
1967     arg = check_typedef (arg);
1968 
1969   /*
1970      Well, damnit, if the names are exactly the same, I'll say they
1971      are exactly the same.  This happens when we generate method
1972      stubs.  The types won't point to the same address, but they
1973      really are the same.
1974   */
1975 
1976   if (TYPE_NAME (parm) && TYPE_NAME (arg)
1977       && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
1978     return 0;
1979 
1980   /* Check if identical after resolving typedefs.  */
1981   if (parm == arg)
1982     return 0;
1983 
1984   /* See through references, since we can almost make non-references
1985      references.  */
1986   if (TYPE_CODE (arg) == TYPE_CODE_REF)
1987     return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
1988 	    + REFERENCE_CONVERSION_BADNESS);
1989   if (TYPE_CODE (parm) == TYPE_CODE_REF)
1990     return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
1991 	    + REFERENCE_CONVERSION_BADNESS);
1992   if (overload_debug)
1993   /* Debugging only.  */
1994     fprintf_filtered (gdb_stderr,
1995 		      "------ Arg is %s [%d], parm is %s [%d]\n",
1996 		      TYPE_NAME (arg), TYPE_CODE (arg),
1997 		      TYPE_NAME (parm), TYPE_CODE (parm));
1998 
1999   /* x -> y means arg of type x being supplied for parameter of type y */
2000 
2001   switch (TYPE_CODE (parm))
2002     {
2003     case TYPE_CODE_PTR:
2004       switch (TYPE_CODE (arg))
2005 	{
2006 	case TYPE_CODE_PTR:
2007 	  if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2008 	    return VOID_PTR_CONVERSION_BADNESS;
2009 	  else
2010 	    return rank_one_type (TYPE_TARGET_TYPE (parm),
2011 				  TYPE_TARGET_TYPE (arg));
2012 	case TYPE_CODE_ARRAY:
2013 	  return rank_one_type (TYPE_TARGET_TYPE (parm),
2014 				TYPE_TARGET_TYPE (arg));
2015 	case TYPE_CODE_FUNC:
2016 	  return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2017 	case TYPE_CODE_INT:
2018 	case TYPE_CODE_ENUM:
2019 	case TYPE_CODE_FLAGS:
2020 	case TYPE_CODE_CHAR:
2021 	case TYPE_CODE_RANGE:
2022 	case TYPE_CODE_BOOL:
2023 	  return POINTER_CONVERSION_BADNESS;
2024 	default:
2025 	  return INCOMPATIBLE_TYPE_BADNESS;
2026 	}
2027     case TYPE_CODE_ARRAY:
2028       switch (TYPE_CODE (arg))
2029 	{
2030 	case TYPE_CODE_PTR:
2031 	case TYPE_CODE_ARRAY:
2032 	  return rank_one_type (TYPE_TARGET_TYPE (parm),
2033 				TYPE_TARGET_TYPE (arg));
2034 	default:
2035 	  return INCOMPATIBLE_TYPE_BADNESS;
2036 	}
2037     case TYPE_CODE_FUNC:
2038       switch (TYPE_CODE (arg))
2039 	{
2040 	case TYPE_CODE_PTR:	/* funcptr -> func */
2041 	  return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2042 	default:
2043 	  return INCOMPATIBLE_TYPE_BADNESS;
2044 	}
2045     case TYPE_CODE_INT:
2046       switch (TYPE_CODE (arg))
2047 	{
2048 	case TYPE_CODE_INT:
2049 	  if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2050 	    {
2051 	      /* Deal with signed, unsigned, and plain chars and
2052 	         signed and unsigned ints.  */
2053 	      if (TYPE_NOSIGN (parm))
2054 		{
2055 		  /* This case only for character types */
2056 		  if (TYPE_NOSIGN (arg))
2057 		    return 0;	/* plain char -> plain char */
2058 		  else		/* signed/unsigned char -> plain char */
2059 		    return INTEGER_CONVERSION_BADNESS;
2060 		}
2061 	      else if (TYPE_UNSIGNED (parm))
2062 		{
2063 		  if (TYPE_UNSIGNED (arg))
2064 		    {
2065 		      /* unsigned int -> unsigned int, or
2066 			 unsigned long -> unsigned long */
2067 		      if (integer_types_same_name_p (TYPE_NAME (parm),
2068 						     TYPE_NAME (arg)))
2069 			return 0;
2070 		      else if (integer_types_same_name_p (TYPE_NAME (arg),
2071 							  "int")
2072 			       && integer_types_same_name_p (TYPE_NAME (parm),
2073 							     "long"))
2074 			return INTEGER_PROMOTION_BADNESS;	/* unsigned int -> unsigned long */
2075 		      else
2076 			return INTEGER_CONVERSION_BADNESS;	/* unsigned long -> unsigned int */
2077 		    }
2078 		  else
2079 		    {
2080 		      if (integer_types_same_name_p (TYPE_NAME (arg),
2081 						     "long")
2082 			  && integer_types_same_name_p (TYPE_NAME (parm),
2083 							"int"))
2084 			return INTEGER_CONVERSION_BADNESS;	/* signed long -> unsigned int */
2085 		      else
2086 			return INTEGER_CONVERSION_BADNESS;	/* signed int/long -> unsigned int/long */
2087 		    }
2088 		}
2089 	      else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2090 		{
2091 		  if (integer_types_same_name_p (TYPE_NAME (parm),
2092 						 TYPE_NAME (arg)))
2093 		    return 0;
2094 		  else if (integer_types_same_name_p (TYPE_NAME (arg),
2095 						      "int")
2096 			   && integer_types_same_name_p (TYPE_NAME (parm),
2097 							 "long"))
2098 		    return INTEGER_PROMOTION_BADNESS;
2099 		  else
2100 		    return INTEGER_CONVERSION_BADNESS;
2101 		}
2102 	      else
2103 		return INTEGER_CONVERSION_BADNESS;
2104 	    }
2105 	  else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2106 	    return INTEGER_PROMOTION_BADNESS;
2107 	  else
2108 	    return INTEGER_CONVERSION_BADNESS;
2109 	case TYPE_CODE_ENUM:
2110 	case TYPE_CODE_FLAGS:
2111 	case TYPE_CODE_CHAR:
2112 	case TYPE_CODE_RANGE:
2113 	case TYPE_CODE_BOOL:
2114 	  return INTEGER_PROMOTION_BADNESS;
2115 	case TYPE_CODE_FLT:
2116 	  return INT_FLOAT_CONVERSION_BADNESS;
2117 	case TYPE_CODE_PTR:
2118 	  return NS_POINTER_CONVERSION_BADNESS;
2119 	default:
2120 	  return INCOMPATIBLE_TYPE_BADNESS;
2121 	}
2122       break;
2123     case TYPE_CODE_ENUM:
2124       switch (TYPE_CODE (arg))
2125 	{
2126 	case TYPE_CODE_INT:
2127 	case TYPE_CODE_CHAR:
2128 	case TYPE_CODE_RANGE:
2129 	case TYPE_CODE_BOOL:
2130 	case TYPE_CODE_ENUM:
2131 	  return INTEGER_CONVERSION_BADNESS;
2132 	case TYPE_CODE_FLT:
2133 	  return INT_FLOAT_CONVERSION_BADNESS;
2134 	default:
2135 	  return INCOMPATIBLE_TYPE_BADNESS;
2136 	}
2137       break;
2138     case TYPE_CODE_CHAR:
2139       switch (TYPE_CODE (arg))
2140 	{
2141 	case TYPE_CODE_RANGE:
2142 	case TYPE_CODE_BOOL:
2143 	case TYPE_CODE_ENUM:
2144 	  return INTEGER_CONVERSION_BADNESS;
2145 	case TYPE_CODE_FLT:
2146 	  return INT_FLOAT_CONVERSION_BADNESS;
2147 	case TYPE_CODE_INT:
2148 	  if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2149 	    return INTEGER_CONVERSION_BADNESS;
2150 	  else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2151 	    return INTEGER_PROMOTION_BADNESS;
2152 	  /* >>> !! else fall through !! <<< */
2153 	case TYPE_CODE_CHAR:
2154 	  /* Deal with signed, unsigned, and plain chars for C++ and
2155 	     with int cases falling through from previous case.  */
2156 	  if (TYPE_NOSIGN (parm))
2157 	    {
2158 	      if (TYPE_NOSIGN (arg))
2159 		return 0;
2160 	      else
2161 		return INTEGER_CONVERSION_BADNESS;
2162 	    }
2163 	  else if (TYPE_UNSIGNED (parm))
2164 	    {
2165 	      if (TYPE_UNSIGNED (arg))
2166 		return 0;
2167 	      else
2168 		return INTEGER_PROMOTION_BADNESS;
2169 	    }
2170 	  else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2171 	    return 0;
2172 	  else
2173 	    return INTEGER_CONVERSION_BADNESS;
2174 	default:
2175 	  return INCOMPATIBLE_TYPE_BADNESS;
2176 	}
2177       break;
2178     case TYPE_CODE_RANGE:
2179       switch (TYPE_CODE (arg))
2180 	{
2181 	case TYPE_CODE_INT:
2182 	case TYPE_CODE_CHAR:
2183 	case TYPE_CODE_RANGE:
2184 	case TYPE_CODE_BOOL:
2185 	case TYPE_CODE_ENUM:
2186 	  return INTEGER_CONVERSION_BADNESS;
2187 	case TYPE_CODE_FLT:
2188 	  return INT_FLOAT_CONVERSION_BADNESS;
2189 	default:
2190 	  return INCOMPATIBLE_TYPE_BADNESS;
2191 	}
2192       break;
2193     case TYPE_CODE_BOOL:
2194       switch (TYPE_CODE (arg))
2195 	{
2196 	case TYPE_CODE_INT:
2197 	case TYPE_CODE_CHAR:
2198 	case TYPE_CODE_RANGE:
2199 	case TYPE_CODE_ENUM:
2200 	case TYPE_CODE_FLT:
2201 	case TYPE_CODE_PTR:
2202 	  return BOOLEAN_CONVERSION_BADNESS;
2203 	case TYPE_CODE_BOOL:
2204 	  return 0;
2205 	default:
2206 	  return INCOMPATIBLE_TYPE_BADNESS;
2207 	}
2208       break;
2209     case TYPE_CODE_FLT:
2210       switch (TYPE_CODE (arg))
2211 	{
2212 	case TYPE_CODE_FLT:
2213 	  if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2214 	    return FLOAT_PROMOTION_BADNESS;
2215 	  else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2216 	    return 0;
2217 	  else
2218 	    return FLOAT_CONVERSION_BADNESS;
2219 	case TYPE_CODE_INT:
2220 	case TYPE_CODE_BOOL:
2221 	case TYPE_CODE_ENUM:
2222 	case TYPE_CODE_RANGE:
2223 	case TYPE_CODE_CHAR:
2224 	  return INT_FLOAT_CONVERSION_BADNESS;
2225 	default:
2226 	  return INCOMPATIBLE_TYPE_BADNESS;
2227 	}
2228       break;
2229     case TYPE_CODE_COMPLEX:
2230       switch (TYPE_CODE (arg))
2231 	{		/* Strictly not needed for C++, but...  */
2232 	case TYPE_CODE_FLT:
2233 	  return FLOAT_PROMOTION_BADNESS;
2234 	case TYPE_CODE_COMPLEX:
2235 	  return 0;
2236 	default:
2237 	  return INCOMPATIBLE_TYPE_BADNESS;
2238 	}
2239       break;
2240     case TYPE_CODE_STRUCT:
2241       /* currently same as TYPE_CODE_CLASS */
2242       switch (TYPE_CODE (arg))
2243 	{
2244 	case TYPE_CODE_STRUCT:
2245 	  /* Check for derivation */
2246 	  if (is_ancestor (parm, arg))
2247 	    return BASE_CONVERSION_BADNESS;
2248 	  /* else fall through */
2249 	default:
2250 	  return INCOMPATIBLE_TYPE_BADNESS;
2251 	}
2252       break;
2253     case TYPE_CODE_UNION:
2254       switch (TYPE_CODE (arg))
2255 	{
2256 	case TYPE_CODE_UNION:
2257 	default:
2258 	  return INCOMPATIBLE_TYPE_BADNESS;
2259 	}
2260       break;
2261     case TYPE_CODE_MEMBERPTR:
2262       switch (TYPE_CODE (arg))
2263 	{
2264 	default:
2265 	  return INCOMPATIBLE_TYPE_BADNESS;
2266 	}
2267       break;
2268     case TYPE_CODE_METHOD:
2269       switch (TYPE_CODE (arg))
2270 	{
2271 
2272 	default:
2273 	  return INCOMPATIBLE_TYPE_BADNESS;
2274 	}
2275       break;
2276     case TYPE_CODE_REF:
2277       switch (TYPE_CODE (arg))
2278 	{
2279 
2280 	default:
2281 	  return INCOMPATIBLE_TYPE_BADNESS;
2282 	}
2283 
2284       break;
2285     case TYPE_CODE_SET:
2286       switch (TYPE_CODE (arg))
2287 	{
2288 	  /* Not in C++ */
2289 	case TYPE_CODE_SET:
2290 	  return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2291 				TYPE_FIELD_TYPE (arg, 0));
2292 	default:
2293 	  return INCOMPATIBLE_TYPE_BADNESS;
2294 	}
2295       break;
2296     case TYPE_CODE_VOID:
2297     default:
2298       return INCOMPATIBLE_TYPE_BADNESS;
2299     }				/* switch (TYPE_CODE (arg)) */
2300 }
2301 
2302 
2303 /* End of functions for overload resolution */
2304 
2305 static void
2306 print_bit_vector (B_TYPE *bits, int nbits)
2307 {
2308   int bitno;
2309 
2310   for (bitno = 0; bitno < nbits; bitno++)
2311     {
2312       if ((bitno % 8) == 0)
2313 	{
2314 	  puts_filtered (" ");
2315 	}
2316       if (B_TST (bits, bitno))
2317 	printf_filtered (("1"));
2318       else
2319 	printf_filtered (("0"));
2320     }
2321 }
2322 
2323 /* Note the first arg should be the "this" pointer, we may not want to
2324    include it since we may get into a infinitely recursive
2325    situation.  */
2326 
2327 static void
2328 print_arg_types (struct field *args, int nargs, int spaces)
2329 {
2330   if (args != NULL)
2331     {
2332       int i;
2333 
2334       for (i = 0; i < nargs; i++)
2335 	recursive_dump_type (args[i].type, spaces + 2);
2336     }
2337 }
2338 
2339 int
2340 field_is_static (struct field *f)
2341 {
2342   /* "static" fields are the fields whose location is not relative
2343      to the address of the enclosing struct.  It would be nice to
2344      have a dedicated flag that would be set for static fields when
2345      the type is being created.  But in practice, checking the field
2346      loc_kind should give us an accurate answer (at least as long as
2347      we assume that DWARF block locations are not going to be used
2348      for static fields).  FIXME?  */
2349   return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2350 	  || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2351 }
2352 
2353 static void
2354 dump_fn_fieldlists (struct type *type, int spaces)
2355 {
2356   int method_idx;
2357   int overload_idx;
2358   struct fn_field *f;
2359 
2360   printfi_filtered (spaces, "fn_fieldlists ");
2361   gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2362   printf_filtered ("\n");
2363   for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2364     {
2365       f = TYPE_FN_FIELDLIST1 (type, method_idx);
2366       printfi_filtered (spaces + 2, "[%d] name '%s' (",
2367 			method_idx,
2368 			TYPE_FN_FIELDLIST_NAME (type, method_idx));
2369       gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2370 			      gdb_stdout);
2371       printf_filtered (_(") length %d\n"),
2372 		       TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2373       for (overload_idx = 0;
2374 	   overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2375 	   overload_idx++)
2376 	{
2377 	  printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2378 			    overload_idx,
2379 			    TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2380 	  gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2381 				  gdb_stdout);
2382 	  printf_filtered (")\n");
2383 	  printfi_filtered (spaces + 8, "type ");
2384 	  gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2385 				  gdb_stdout);
2386 	  printf_filtered ("\n");
2387 
2388 	  recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2389 			       spaces + 8 + 2);
2390 
2391 	  printfi_filtered (spaces + 8, "args ");
2392 	  gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2393 				  gdb_stdout);
2394 	  printf_filtered ("\n");
2395 
2396 	  print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2397 			   TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2398 							     overload_idx)),
2399 			   spaces);
2400 	  printfi_filtered (spaces + 8, "fcontext ");
2401 	  gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2402 				  gdb_stdout);
2403 	  printf_filtered ("\n");
2404 
2405 	  printfi_filtered (spaces + 8, "is_const %d\n",
2406 			    TYPE_FN_FIELD_CONST (f, overload_idx));
2407 	  printfi_filtered (spaces + 8, "is_volatile %d\n",
2408 			    TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2409 	  printfi_filtered (spaces + 8, "is_private %d\n",
2410 			    TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2411 	  printfi_filtered (spaces + 8, "is_protected %d\n",
2412 			    TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2413 	  printfi_filtered (spaces + 8, "is_stub %d\n",
2414 			    TYPE_FN_FIELD_STUB (f, overload_idx));
2415 	  printfi_filtered (spaces + 8, "voffset %u\n",
2416 			    TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2417 	}
2418     }
2419 }
2420 
2421 static void
2422 print_cplus_stuff (struct type *type, int spaces)
2423 {
2424   printfi_filtered (spaces, "n_baseclasses %d\n",
2425 		    TYPE_N_BASECLASSES (type));
2426   printfi_filtered (spaces, "nfn_fields %d\n",
2427 		    TYPE_NFN_FIELDS (type));
2428   printfi_filtered (spaces, "nfn_fields_total %d\n",
2429 		    TYPE_NFN_FIELDS_TOTAL (type));
2430   if (TYPE_N_BASECLASSES (type) > 0)
2431     {
2432       printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2433 			TYPE_N_BASECLASSES (type));
2434       gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2435 			      gdb_stdout);
2436       printf_filtered (")");
2437 
2438       print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2439 			TYPE_N_BASECLASSES (type));
2440       puts_filtered ("\n");
2441     }
2442   if (TYPE_NFIELDS (type) > 0)
2443     {
2444       if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2445 	{
2446 	  printfi_filtered (spaces,
2447 			    "private_field_bits (%d bits at *",
2448 			    TYPE_NFIELDS (type));
2449 	  gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2450 				  gdb_stdout);
2451 	  printf_filtered (")");
2452 	  print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2453 			    TYPE_NFIELDS (type));
2454 	  puts_filtered ("\n");
2455 	}
2456       if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2457 	{
2458 	  printfi_filtered (spaces,
2459 			    "protected_field_bits (%d bits at *",
2460 			    TYPE_NFIELDS (type));
2461 	  gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2462 				  gdb_stdout);
2463 	  printf_filtered (")");
2464 	  print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2465 			    TYPE_NFIELDS (type));
2466 	  puts_filtered ("\n");
2467 	}
2468     }
2469   if (TYPE_NFN_FIELDS (type) > 0)
2470     {
2471       dump_fn_fieldlists (type, spaces);
2472     }
2473 }
2474 
2475 static struct obstack dont_print_type_obstack;
2476 
2477 void
2478 recursive_dump_type (struct type *type, int spaces)
2479 {
2480   int idx;
2481 
2482   if (spaces == 0)
2483     obstack_begin (&dont_print_type_obstack, 0);
2484 
2485   if (TYPE_NFIELDS (type) > 0
2486       || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2487     {
2488       struct type **first_dont_print
2489 	= (struct type **) obstack_base (&dont_print_type_obstack);
2490 
2491       int i = (struct type **)
2492 	obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2493 
2494       while (--i >= 0)
2495 	{
2496 	  if (type == first_dont_print[i])
2497 	    {
2498 	      printfi_filtered (spaces, "type node ");
2499 	      gdb_print_host_address (type, gdb_stdout);
2500 	      printf_filtered (_(" <same as already seen type>\n"));
2501 	      return;
2502 	    }
2503 	}
2504 
2505       obstack_ptr_grow (&dont_print_type_obstack, type);
2506     }
2507 
2508   printfi_filtered (spaces, "type node ");
2509   gdb_print_host_address (type, gdb_stdout);
2510   printf_filtered ("\n");
2511   printfi_filtered (spaces, "name '%s' (",
2512 		    TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2513   gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2514   printf_filtered (")\n");
2515   printfi_filtered (spaces, "tagname '%s' (",
2516 		    TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2517   gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2518   printf_filtered (")\n");
2519   printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2520   switch (TYPE_CODE (type))
2521     {
2522     case TYPE_CODE_UNDEF:
2523       printf_filtered ("(TYPE_CODE_UNDEF)");
2524       break;
2525     case TYPE_CODE_PTR:
2526       printf_filtered ("(TYPE_CODE_PTR)");
2527       break;
2528     case TYPE_CODE_ARRAY:
2529       printf_filtered ("(TYPE_CODE_ARRAY)");
2530       break;
2531     case TYPE_CODE_STRUCT:
2532       printf_filtered ("(TYPE_CODE_STRUCT)");
2533       break;
2534     case TYPE_CODE_UNION:
2535       printf_filtered ("(TYPE_CODE_UNION)");
2536       break;
2537     case TYPE_CODE_ENUM:
2538       printf_filtered ("(TYPE_CODE_ENUM)");
2539       break;
2540     case TYPE_CODE_FLAGS:
2541       printf_filtered ("(TYPE_CODE_FLAGS)");
2542       break;
2543     case TYPE_CODE_FUNC:
2544       printf_filtered ("(TYPE_CODE_FUNC)");
2545       break;
2546     case TYPE_CODE_INT:
2547       printf_filtered ("(TYPE_CODE_INT)");
2548       break;
2549     case TYPE_CODE_FLT:
2550       printf_filtered ("(TYPE_CODE_FLT)");
2551       break;
2552     case TYPE_CODE_VOID:
2553       printf_filtered ("(TYPE_CODE_VOID)");
2554       break;
2555     case TYPE_CODE_SET:
2556       printf_filtered ("(TYPE_CODE_SET)");
2557       break;
2558     case TYPE_CODE_RANGE:
2559       printf_filtered ("(TYPE_CODE_RANGE)");
2560       break;
2561     case TYPE_CODE_STRING:
2562       printf_filtered ("(TYPE_CODE_STRING)");
2563       break;
2564     case TYPE_CODE_BITSTRING:
2565       printf_filtered ("(TYPE_CODE_BITSTRING)");
2566       break;
2567     case TYPE_CODE_ERROR:
2568       printf_filtered ("(TYPE_CODE_ERROR)");
2569       break;
2570     case TYPE_CODE_MEMBERPTR:
2571       printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2572       break;
2573     case TYPE_CODE_METHODPTR:
2574       printf_filtered ("(TYPE_CODE_METHODPTR)");
2575       break;
2576     case TYPE_CODE_METHOD:
2577       printf_filtered ("(TYPE_CODE_METHOD)");
2578       break;
2579     case TYPE_CODE_REF:
2580       printf_filtered ("(TYPE_CODE_REF)");
2581       break;
2582     case TYPE_CODE_CHAR:
2583       printf_filtered ("(TYPE_CODE_CHAR)");
2584       break;
2585     case TYPE_CODE_BOOL:
2586       printf_filtered ("(TYPE_CODE_BOOL)");
2587       break;
2588     case TYPE_CODE_COMPLEX:
2589       printf_filtered ("(TYPE_CODE_COMPLEX)");
2590       break;
2591     case TYPE_CODE_TYPEDEF:
2592       printf_filtered ("(TYPE_CODE_TYPEDEF)");
2593       break;
2594     case TYPE_CODE_TEMPLATE:
2595       printf_filtered ("(TYPE_CODE_TEMPLATE)");
2596       break;
2597     case TYPE_CODE_TEMPLATE_ARG:
2598       printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2599       break;
2600     case TYPE_CODE_NAMESPACE:
2601       printf_filtered ("(TYPE_CODE_NAMESPACE)");
2602       break;
2603     default:
2604       printf_filtered ("(UNKNOWN TYPE CODE)");
2605       break;
2606     }
2607   puts_filtered ("\n");
2608   printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2609   if (TYPE_OBJFILE_OWNED (type))
2610     {
2611       printfi_filtered (spaces, "objfile ");
2612       gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2613     }
2614   else
2615     {
2616       printfi_filtered (spaces, "gdbarch ");
2617       gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2618     }
2619   printf_filtered ("\n");
2620   printfi_filtered (spaces, "target_type ");
2621   gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2622   printf_filtered ("\n");
2623   if (TYPE_TARGET_TYPE (type) != NULL)
2624     {
2625       recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2626     }
2627   printfi_filtered (spaces, "pointer_type ");
2628   gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2629   printf_filtered ("\n");
2630   printfi_filtered (spaces, "reference_type ");
2631   gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2632   printf_filtered ("\n");
2633   printfi_filtered (spaces, "type_chain ");
2634   gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2635   printf_filtered ("\n");
2636   printfi_filtered (spaces, "instance_flags 0x%x",
2637 		    TYPE_INSTANCE_FLAGS (type));
2638   if (TYPE_CONST (type))
2639     {
2640       puts_filtered (" TYPE_FLAG_CONST");
2641     }
2642   if (TYPE_VOLATILE (type))
2643     {
2644       puts_filtered (" TYPE_FLAG_VOLATILE");
2645     }
2646   if (TYPE_CODE_SPACE (type))
2647     {
2648       puts_filtered (" TYPE_FLAG_CODE_SPACE");
2649     }
2650   if (TYPE_DATA_SPACE (type))
2651     {
2652       puts_filtered (" TYPE_FLAG_DATA_SPACE");
2653     }
2654   if (TYPE_ADDRESS_CLASS_1 (type))
2655     {
2656       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2657     }
2658   if (TYPE_ADDRESS_CLASS_2 (type))
2659     {
2660       puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2661     }
2662   puts_filtered ("\n");
2663 
2664   printfi_filtered (spaces, "flags");
2665   if (TYPE_UNSIGNED (type))
2666     {
2667       puts_filtered (" TYPE_FLAG_UNSIGNED");
2668     }
2669   if (TYPE_NOSIGN (type))
2670     {
2671       puts_filtered (" TYPE_FLAG_NOSIGN");
2672     }
2673   if (TYPE_STUB (type))
2674     {
2675       puts_filtered (" TYPE_FLAG_STUB");
2676     }
2677   if (TYPE_TARGET_STUB (type))
2678     {
2679       puts_filtered (" TYPE_FLAG_TARGET_STUB");
2680     }
2681   if (TYPE_STATIC (type))
2682     {
2683       puts_filtered (" TYPE_FLAG_STATIC");
2684     }
2685   if (TYPE_PROTOTYPED (type))
2686     {
2687       puts_filtered (" TYPE_FLAG_PROTOTYPED");
2688     }
2689   if (TYPE_INCOMPLETE (type))
2690     {
2691       puts_filtered (" TYPE_FLAG_INCOMPLETE");
2692     }
2693   if (TYPE_VARARGS (type))
2694     {
2695       puts_filtered (" TYPE_FLAG_VARARGS");
2696     }
2697   /* This is used for things like AltiVec registers on ppc.  Gcc emits
2698      an attribute for the array type, which tells whether or not we
2699      have a vector, instead of a regular array.  */
2700   if (TYPE_VECTOR (type))
2701     {
2702       puts_filtered (" TYPE_FLAG_VECTOR");
2703     }
2704   if (TYPE_FIXED_INSTANCE (type))
2705     {
2706       puts_filtered (" TYPE_FIXED_INSTANCE");
2707     }
2708   if (TYPE_STUB_SUPPORTED (type))
2709     {
2710       puts_filtered (" TYPE_STUB_SUPPORTED");
2711     }
2712   if (TYPE_NOTTEXT (type))
2713     {
2714       puts_filtered (" TYPE_NOTTEXT");
2715     }
2716   puts_filtered ("\n");
2717   printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2718   gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2719   puts_filtered ("\n");
2720   for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2721     {
2722       printfi_filtered (spaces + 2,
2723 			"[%d] bitpos %d bitsize %d type ",
2724 			idx, TYPE_FIELD_BITPOS (type, idx),
2725 			TYPE_FIELD_BITSIZE (type, idx));
2726       gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2727       printf_filtered (" name '%s' (",
2728 		       TYPE_FIELD_NAME (type, idx) != NULL
2729 		       ? TYPE_FIELD_NAME (type, idx)
2730 		       : "<NULL>");
2731       gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2732       printf_filtered (")\n");
2733       if (TYPE_FIELD_TYPE (type, idx) != NULL)
2734 	{
2735 	  recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2736 	}
2737     }
2738   printfi_filtered (spaces, "vptr_basetype ");
2739   gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2740   puts_filtered ("\n");
2741   if (TYPE_VPTR_BASETYPE (type) != NULL)
2742     {
2743       recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2744     }
2745   printfi_filtered (spaces, "vptr_fieldno %d\n",
2746 		    TYPE_VPTR_FIELDNO (type));
2747   switch (TYPE_CODE (type))
2748     {
2749     case TYPE_CODE_STRUCT:
2750       printfi_filtered (spaces, "cplus_stuff ");
2751       gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2752 			      gdb_stdout);
2753       puts_filtered ("\n");
2754       print_cplus_stuff (type, spaces);
2755       break;
2756 
2757     case TYPE_CODE_FLT:
2758       printfi_filtered (spaces, "floatformat ");
2759       if (TYPE_FLOATFORMAT (type) == NULL)
2760 	puts_filtered ("(null)");
2761       else
2762 	{
2763 	  puts_filtered ("{ ");
2764 	  if (TYPE_FLOATFORMAT (type)[0] == NULL
2765 	      || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2766 	    puts_filtered ("(null)");
2767 	  else
2768 	    puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2769 
2770 	  puts_filtered (", ");
2771 	  if (TYPE_FLOATFORMAT (type)[1] == NULL
2772 	      || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2773 	    puts_filtered ("(null)");
2774 	  else
2775 	    puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2776 
2777 	  puts_filtered (" }");
2778 	}
2779       puts_filtered ("\n");
2780       break;
2781 
2782     default:
2783       /* We have to pick one of the union types to be able print and
2784          test the value.  Pick cplus_struct_type, even though we know
2785          it isn't any particular one.  */
2786       printfi_filtered (spaces, "type_specific ");
2787       gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2788       if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2789 	{
2790 	  printf_filtered (_(" (unknown data form)"));
2791 	}
2792       printf_filtered ("\n");
2793       break;
2794 
2795     }
2796   if (spaces == 0)
2797     obstack_free (&dont_print_type_obstack, NULL);
2798 }
2799 
2800 /* Trivial helpers for the libiberty hash table, for mapping one
2801    type to another.  */
2802 
2803 struct type_pair
2804 {
2805   struct type *old, *new;
2806 };
2807 
2808 static hashval_t
2809 type_pair_hash (const void *item)
2810 {
2811   const struct type_pair *pair = item;
2812   return htab_hash_pointer (pair->old);
2813 }
2814 
2815 static int
2816 type_pair_eq (const void *item_lhs, const void *item_rhs)
2817 {
2818   const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2819   return lhs->old == rhs->old;
2820 }
2821 
2822 /* Allocate the hash table used by copy_type_recursive to walk
2823    types without duplicates.  We use OBJFILE's obstack, because
2824    OBJFILE is about to be deleted.  */
2825 
2826 htab_t
2827 create_copied_types_hash (struct objfile *objfile)
2828 {
2829   return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2830 			       NULL, &objfile->objfile_obstack,
2831 			       hashtab_obstack_allocate,
2832 			       dummy_obstack_deallocate);
2833 }
2834 
2835 /* Recursively copy (deep copy) TYPE, if it is associated with
2836    OBJFILE.  Return a new type allocated using malloc, a saved type if
2837    we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2838    not associated with OBJFILE.  */
2839 
2840 struct type *
2841 copy_type_recursive (struct objfile *objfile,
2842 		     struct type *type,
2843 		     htab_t copied_types)
2844 {
2845   struct type_pair *stored, pair;
2846   void **slot;
2847   struct type *new_type;
2848 
2849   if (! TYPE_OBJFILE_OWNED (type))
2850     return type;
2851 
2852   /* This type shouldn't be pointing to any types in other objfiles;
2853      if it did, the type might disappear unexpectedly.  */
2854   gdb_assert (TYPE_OBJFILE (type) == objfile);
2855 
2856   pair.old = type;
2857   slot = htab_find_slot (copied_types, &pair, INSERT);
2858   if (*slot != NULL)
2859     return ((struct type_pair *) *slot)->new;
2860 
2861   new_type = alloc_type_arch (get_type_arch (type));
2862 
2863   /* We must add the new type to the hash table immediately, in case
2864      we encounter this type again during a recursive call below.  */
2865   stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
2866   stored->old = type;
2867   stored->new = new_type;
2868   *slot = stored;
2869 
2870   /* Copy the common fields of types.  For the main type, we simply
2871      copy the entire thing and then update specific fields as needed.  */
2872   *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
2873   TYPE_OBJFILE_OWNED (new_type) = 0;
2874   TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
2875 
2876   if (TYPE_NAME (type))
2877     TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2878   if (TYPE_TAG_NAME (type))
2879     TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2880 
2881   TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2882   TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2883 
2884   /* Copy the fields.  */
2885   if (TYPE_NFIELDS (type))
2886     {
2887       int i, nfields;
2888 
2889       nfields = TYPE_NFIELDS (type);
2890       TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
2891       for (i = 0; i < nfields; i++)
2892 	{
2893 	  TYPE_FIELD_ARTIFICIAL (new_type, i) =
2894 	    TYPE_FIELD_ARTIFICIAL (type, i);
2895 	  TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2896 	  if (TYPE_FIELD_TYPE (type, i))
2897 	    TYPE_FIELD_TYPE (new_type, i)
2898 	      = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2899 				     copied_types);
2900 	  if (TYPE_FIELD_NAME (type, i))
2901 	    TYPE_FIELD_NAME (new_type, i) =
2902 	      xstrdup (TYPE_FIELD_NAME (type, i));
2903 	  switch (TYPE_FIELD_LOC_KIND (type, i))
2904 	    {
2905 	    case FIELD_LOC_KIND_BITPOS:
2906 	      SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2907 				TYPE_FIELD_BITPOS (type, i));
2908 	      break;
2909 	    case FIELD_LOC_KIND_PHYSADDR:
2910 	      SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
2911 				  TYPE_FIELD_STATIC_PHYSADDR (type, i));
2912 	      break;
2913 	    case FIELD_LOC_KIND_PHYSNAME:
2914 	      SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
2915 				  xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
2916 								       i)));
2917 	      break;
2918 	    default:
2919 	      internal_error (__FILE__, __LINE__,
2920 			      _("Unexpected type field location kind: %d"),
2921 			      TYPE_FIELD_LOC_KIND (type, i));
2922 	    }
2923 	}
2924     }
2925 
2926   /* Copy pointers to other types.  */
2927   if (TYPE_TARGET_TYPE (type))
2928     TYPE_TARGET_TYPE (new_type) =
2929       copy_type_recursive (objfile,
2930 			   TYPE_TARGET_TYPE (type),
2931 			   copied_types);
2932   if (TYPE_VPTR_BASETYPE (type))
2933     TYPE_VPTR_BASETYPE (new_type) =
2934       copy_type_recursive (objfile,
2935 			   TYPE_VPTR_BASETYPE (type),
2936 			   copied_types);
2937   /* Maybe copy the type_specific bits.
2938 
2939      NOTE drow/2005-12-09: We do not copy the C++-specific bits like
2940      base classes and methods.  There's no fundamental reason why we
2941      can't, but at the moment it is not needed.  */
2942 
2943   if (TYPE_CODE (type) == TYPE_CODE_FLT)
2944     TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
2945   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2946 	   || TYPE_CODE (type) == TYPE_CODE_UNION
2947 	   || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
2948 	   || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
2949     INIT_CPLUS_SPECIFIC (new_type);
2950 
2951   return new_type;
2952 }
2953 
2954 /* Make a copy of the given TYPE, except that the pointer & reference
2955    types are not preserved.
2956 
2957    This function assumes that the given type has an associated objfile.
2958    This objfile is used to allocate the new type.  */
2959 
2960 struct type *
2961 copy_type (const struct type *type)
2962 {
2963   struct type *new_type;
2964 
2965   gdb_assert (TYPE_OBJFILE_OWNED (type));
2966 
2967   new_type = alloc_type_copy (type);
2968   TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2969   TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2970   memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
2971 	  sizeof (struct main_type));
2972 
2973   return new_type;
2974 }
2975 
2976 
2977 /* Helper functions to initialize architecture-specific types.  */
2978 
2979 /* Allocate a type structure associated with GDBARCH and set its
2980    CODE, LENGTH, and NAME fields.  */
2981 struct type *
2982 arch_type (struct gdbarch *gdbarch,
2983 	   enum type_code code, int length, char *name)
2984 {
2985   struct type *type;
2986 
2987   type = alloc_type_arch (gdbarch);
2988   TYPE_CODE (type) = code;
2989   TYPE_LENGTH (type) = length;
2990 
2991   if (name)
2992     TYPE_NAME (type) = xstrdup (name);
2993 
2994   return type;
2995 }
2996 
2997 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
2998    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
2999    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3000 struct type *
3001 arch_integer_type (struct gdbarch *gdbarch,
3002 		   int bit, int unsigned_p, char *name)
3003 {
3004   struct type *t;
3005 
3006   t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3007   if (unsigned_p)
3008     TYPE_UNSIGNED (t) = 1;
3009   if (name && strcmp (name, "char") == 0)
3010     TYPE_NOSIGN (t) = 1;
3011 
3012   return t;
3013 }
3014 
3015 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3016    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3017    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3018 struct type *
3019 arch_character_type (struct gdbarch *gdbarch,
3020 		     int bit, int unsigned_p, char *name)
3021 {
3022   struct type *t;
3023 
3024   t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3025   if (unsigned_p)
3026     TYPE_UNSIGNED (t) = 1;
3027 
3028   return t;
3029 }
3030 
3031 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3032    BIT is the type size in bits.  If UNSIGNED_P is non-zero, set
3033    the type's TYPE_UNSIGNED flag.  NAME is the type name.  */
3034 struct type *
3035 arch_boolean_type (struct gdbarch *gdbarch,
3036 		   int bit, int unsigned_p, char *name)
3037 {
3038   struct type *t;
3039 
3040   t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3041   if (unsigned_p)
3042     TYPE_UNSIGNED (t) = 1;
3043 
3044   return t;
3045 }
3046 
3047 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3048    BIT is the type size in bits; if BIT equals -1, the size is
3049    determined by the floatformat.  NAME is the type name.  Set the
3050    TYPE_FLOATFORMAT from FLOATFORMATS.  */
3051 struct type *
3052 arch_float_type (struct gdbarch *gdbarch,
3053 		 int bit, char *name, const struct floatformat **floatformats)
3054 {
3055   struct type *t;
3056 
3057   if (bit == -1)
3058     {
3059       gdb_assert (floatformats != NULL);
3060       gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3061       bit = floatformats[0]->totalsize;
3062     }
3063   gdb_assert (bit >= 0);
3064 
3065   t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3066   TYPE_FLOATFORMAT (t) = floatformats;
3067   return t;
3068 }
3069 
3070 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3071    NAME is the type name.  TARGET_TYPE is the component float type.  */
3072 struct type *
3073 arch_complex_type (struct gdbarch *gdbarch,
3074 		   char *name, struct type *target_type)
3075 {
3076   struct type *t;
3077   t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3078 		 2 * TYPE_LENGTH (target_type), name);
3079   TYPE_TARGET_TYPE (t) = target_type;
3080   return t;
3081 }
3082 
3083 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3084    NAME is the type name.  LENGTH is the number of flag bits.  */
3085 struct type *
3086 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3087 {
3088   int nfields = length * TARGET_CHAR_BIT;
3089   struct type *type;
3090 
3091   type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3092   TYPE_UNSIGNED (type) = 1;
3093   TYPE_NFIELDS (type) = nfields;
3094   TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3095 
3096   return type;
3097 }
3098 
3099 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3100    position BITPOS is called NAME.  */
3101 void
3102 append_flags_type_flag (struct type *type, int bitpos, char *name)
3103 {
3104   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3105   gdb_assert (bitpos < TYPE_NFIELDS (type));
3106   gdb_assert (bitpos >= 0);
3107 
3108   if (name)
3109     {
3110       TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3111       TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3112     }
3113   else
3114     {
3115       /* Don't show this field to the user.  */
3116       TYPE_FIELD_BITPOS (type, bitpos) = -1;
3117     }
3118 }
3119 
3120 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3121    specified by CODE) associated with GDBARCH.  NAME is the type name.  */
3122 struct type *
3123 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3124 {
3125   struct type *t;
3126   gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3127   t = arch_type (gdbarch, code, 0, NULL);
3128   TYPE_TAG_NAME (t) = name;
3129   INIT_CPLUS_SPECIFIC (t);
3130   return t;
3131 }
3132 
3133 /* Add new field with name NAME and type FIELD to composite type T.
3134    ALIGNMENT (if non-zero) specifies the minimum field alignment.  */
3135 void
3136 append_composite_type_field_aligned (struct type *t, char *name,
3137 				     struct type *field, int alignment)
3138 {
3139   struct field *f;
3140   TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3141   TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3142 			      sizeof (struct field) * TYPE_NFIELDS (t));
3143   f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3144   memset (f, 0, sizeof f[0]);
3145   FIELD_TYPE (f[0]) = field;
3146   FIELD_NAME (f[0]) = name;
3147   if (TYPE_CODE (t) == TYPE_CODE_UNION)
3148     {
3149       if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3150 	TYPE_LENGTH (t) = TYPE_LENGTH (field);
3151     }
3152   else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3153     {
3154       TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3155       if (TYPE_NFIELDS (t) > 1)
3156 	{
3157 	  FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3158 				 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3159 				    * TARGET_CHAR_BIT));
3160 
3161 	  if (alignment)
3162 	    {
3163 	      int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3164 	      if (left)
3165 		{
3166 		  FIELD_BITPOS (f[0]) += left;
3167 		  TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3168 		}
3169 	    }
3170 	}
3171     }
3172 }
3173 
3174 /* Add new field with name NAME and type FIELD to composite type T.  */
3175 void
3176 append_composite_type_field (struct type *t, char *name,
3177 			     struct type *field)
3178 {
3179   append_composite_type_field_aligned (t, name, field, 0);
3180 }
3181 
3182 
3183 static struct gdbarch_data *gdbtypes_data;
3184 
3185 const struct builtin_type *
3186 builtin_type (struct gdbarch *gdbarch)
3187 {
3188   return gdbarch_data (gdbarch, gdbtypes_data);
3189 }
3190 
3191 static void *
3192 gdbtypes_post_init (struct gdbarch *gdbarch)
3193 {
3194   struct builtin_type *builtin_type
3195     = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3196 
3197   /* Basic types.  */
3198   builtin_type->builtin_void
3199     = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3200   builtin_type->builtin_char
3201     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3202 			 !gdbarch_char_signed (gdbarch), "char");
3203   builtin_type->builtin_signed_char
3204     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3205 			 0, "signed char");
3206   builtin_type->builtin_unsigned_char
3207     = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3208 			 1, "unsigned char");
3209   builtin_type->builtin_short
3210     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3211 			 0, "short");
3212   builtin_type->builtin_unsigned_short
3213     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3214 			 1, "unsigned short");
3215   builtin_type->builtin_int
3216     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3217 			 0, "int");
3218   builtin_type->builtin_unsigned_int
3219     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3220 			 1, "unsigned int");
3221   builtin_type->builtin_long
3222     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3223 			 0, "long");
3224   builtin_type->builtin_unsigned_long
3225     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3226 			 1, "unsigned long");
3227   builtin_type->builtin_long_long
3228     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3229 			 0, "long long");
3230   builtin_type->builtin_unsigned_long_long
3231     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3232 			 1, "unsigned long long");
3233   builtin_type->builtin_float
3234     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3235 		       "float", gdbarch_float_format (gdbarch));
3236   builtin_type->builtin_double
3237     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3238 		       "double", gdbarch_double_format (gdbarch));
3239   builtin_type->builtin_long_double
3240     = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3241 		       "long double", gdbarch_long_double_format (gdbarch));
3242   builtin_type->builtin_complex
3243     = arch_complex_type (gdbarch, "complex",
3244 			 builtin_type->builtin_float);
3245   builtin_type->builtin_double_complex
3246     = arch_complex_type (gdbarch, "double complex",
3247 			 builtin_type->builtin_double);
3248   builtin_type->builtin_string
3249     = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3250   builtin_type->builtin_bool
3251     = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3252 
3253   /* The following three are about decimal floating point types, which
3254      are 32-bits, 64-bits and 128-bits respectively.  */
3255   builtin_type->builtin_decfloat
3256     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3257   builtin_type->builtin_decdouble
3258     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3259   builtin_type->builtin_declong
3260     = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3261 
3262   /* "True" character types.  */
3263   builtin_type->builtin_true_char
3264     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3265   builtin_type->builtin_true_unsigned_char
3266     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3267 
3268   /* Fixed-size integer types.  */
3269   builtin_type->builtin_int0
3270     = arch_integer_type (gdbarch, 0, 0, "int0_t");
3271   builtin_type->builtin_int8
3272     = arch_integer_type (gdbarch, 8, 0, "int8_t");
3273   builtin_type->builtin_uint8
3274     = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3275   builtin_type->builtin_int16
3276     = arch_integer_type (gdbarch, 16, 0, "int16_t");
3277   builtin_type->builtin_uint16
3278     = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3279   builtin_type->builtin_int32
3280     = arch_integer_type (gdbarch, 32, 0, "int32_t");
3281   builtin_type->builtin_uint32
3282     = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3283   builtin_type->builtin_int64
3284     = arch_integer_type (gdbarch, 64, 0, "int64_t");
3285   builtin_type->builtin_uint64
3286     = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3287   builtin_type->builtin_int128
3288     = arch_integer_type (gdbarch, 128, 0, "int128_t");
3289   builtin_type->builtin_uint128
3290     = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3291   TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3292   TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
3293 
3294   /* Default data/code pointer types.  */
3295   builtin_type->builtin_data_ptr
3296     = lookup_pointer_type (builtin_type->builtin_void);
3297   builtin_type->builtin_func_ptr
3298     = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3299 
3300   /* This type represents a GDB internal function.  */
3301   builtin_type->internal_fn
3302     = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3303 		 "<internal function>");
3304 
3305   return builtin_type;
3306 }
3307 
3308 
3309 /* This set of objfile-based types is intended to be used by symbol
3310    readers as basic types.  */
3311 
3312 static const struct objfile_data *objfile_type_data;
3313 
3314 const struct objfile_type *
3315 objfile_type (struct objfile *objfile)
3316 {
3317   struct gdbarch *gdbarch;
3318   struct objfile_type *objfile_type
3319     = objfile_data (objfile, objfile_type_data);
3320 
3321   if (objfile_type)
3322     return objfile_type;
3323 
3324   objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3325 				 1, struct objfile_type);
3326 
3327   /* Use the objfile architecture to determine basic type properties.  */
3328   gdbarch = get_objfile_arch (objfile);
3329 
3330   /* Basic types.  */
3331   objfile_type->builtin_void
3332     = init_type (TYPE_CODE_VOID, 1,
3333 		 0,
3334 		 "void", objfile);
3335 
3336   objfile_type->builtin_char
3337     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3338 		 (TYPE_FLAG_NOSIGN
3339 		  | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3340 		 "char", objfile);
3341   objfile_type->builtin_signed_char
3342     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3343 		 0,
3344 		 "signed char", objfile);
3345   objfile_type->builtin_unsigned_char
3346     = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3347 		 TYPE_FLAG_UNSIGNED,
3348 		 "unsigned char", objfile);
3349   objfile_type->builtin_short
3350     = init_type (TYPE_CODE_INT,
3351 		 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3352 		 0, "short", objfile);
3353   objfile_type->builtin_unsigned_short
3354     = init_type (TYPE_CODE_INT,
3355 		 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3356 		 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3357   objfile_type->builtin_int
3358     = init_type (TYPE_CODE_INT,
3359 		 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3360 		 0, "int", objfile);
3361   objfile_type->builtin_unsigned_int
3362     = init_type (TYPE_CODE_INT,
3363 		 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3364 		 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3365   objfile_type->builtin_long
3366     = init_type (TYPE_CODE_INT,
3367 		 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3368 		 0, "long", objfile);
3369   objfile_type->builtin_unsigned_long
3370     = init_type (TYPE_CODE_INT,
3371 		 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3372 		 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3373   objfile_type->builtin_long_long
3374     = init_type (TYPE_CODE_INT,
3375 		 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3376 		 0, "long long", objfile);
3377   objfile_type->builtin_unsigned_long_long
3378     = init_type (TYPE_CODE_INT,
3379 		 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3380 		 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3381 
3382   objfile_type->builtin_float
3383     = init_type (TYPE_CODE_FLT,
3384 		 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3385 		 0, "float", objfile);
3386   TYPE_FLOATFORMAT (objfile_type->builtin_float)
3387     = gdbarch_float_format (gdbarch);
3388   objfile_type->builtin_double
3389     = init_type (TYPE_CODE_FLT,
3390 		 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3391 		 0, "double", objfile);
3392   TYPE_FLOATFORMAT (objfile_type->builtin_double)
3393     = gdbarch_double_format (gdbarch);
3394   objfile_type->builtin_long_double
3395     = init_type (TYPE_CODE_FLT,
3396 		 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3397 		 0, "long double", objfile);
3398   TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3399     = gdbarch_long_double_format (gdbarch);
3400 
3401   /* This type represents a type that was unrecognized in symbol read-in.  */
3402   objfile_type->builtin_error
3403     = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3404 
3405   /* The following set of types is used for symbols with no
3406      debug information.  */
3407   objfile_type->nodebug_text_symbol
3408     = init_type (TYPE_CODE_FUNC, 1, 0,
3409 		 "<text variable, no debug info>", objfile);
3410   TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3411     = objfile_type->builtin_int;
3412   objfile_type->nodebug_data_symbol
3413     = init_type (TYPE_CODE_INT,
3414 		 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3415 		 "<data variable, no debug info>", objfile);
3416   objfile_type->nodebug_unknown_symbol
3417     = init_type (TYPE_CODE_INT, 1, 0,
3418 		 "<variable (not text or data), no debug info>", objfile);
3419   objfile_type->nodebug_tls_symbol
3420     = init_type (TYPE_CODE_INT,
3421 		 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3422 		 "<thread local variable, no debug info>", objfile);
3423 
3424   /* NOTE: on some targets, addresses and pointers are not necessarily
3425      the same --- for example, on the D10V, pointers are 16 bits long,
3426      but addresses are 32 bits long.  See doc/gdbint.texinfo,
3427      ``Pointers Are Not Always Addresses''.
3428 
3429      The upshot is:
3430      - gdb's `struct type' always describes the target's
3431        representation.
3432      - gdb's `struct value' objects should always hold values in
3433        target form.
3434      - gdb's CORE_ADDR values are addresses in the unified virtual
3435        address space that the assembler and linker work with.  Thus,
3436        since target_read_memory takes a CORE_ADDR as an argument, it
3437        can access any memory on the target, even if the processor has
3438        separate code and data address spaces.
3439 
3440      So, for example:
3441      - If v is a value holding a D10V code pointer, its contents are
3442        in target form: a big-endian address left-shifted two bits.
3443      - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3444        sizeof (void *) == 2 on the target.
3445 
3446      In this context, objfile_type->builtin_core_addr is a bit odd:
3447      it's a target type for a value the target will never see.  It's
3448      only used to hold the values of (typeless) linker symbols, which
3449      are indeed in the unified virtual address space.  */
3450 
3451   objfile_type->builtin_core_addr
3452     = init_type (TYPE_CODE_INT,
3453 		 gdbarch_addr_bit (gdbarch) / 8,
3454 		 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3455 
3456   set_objfile_data (objfile, objfile_type_data, objfile_type);
3457   return objfile_type;
3458 }
3459 
3460 
3461 extern void _initialize_gdbtypes (void);
3462 void
3463 _initialize_gdbtypes (void)
3464 {
3465   gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3466   objfile_type_data = register_objfile_data ();
3467 
3468   add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3469 Set debugging of C++ overloading."), _("\
3470 Show debugging of C++ overloading."), _("\
3471 When enabled, ranking of the functions is displayed."),
3472 			    NULL,
3473 			    show_overload_debug,
3474 			    &setdebuglist, &showdebuglist);
3475 
3476   /* Add user knob for controlling resolution of opaque types.  */
3477   add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3478 			   &opaque_type_resolution, _("\
3479 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3480 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3481 			   NULL,
3482 			   show_opaque_type_resolution,
3483 			   &setlist, &showlist);
3484 }
3485