xref: /dragonfly/contrib/gdb-7/gdb/parse.c (revision c3762235)
1 /* Parse expressions for GDB.
2 
3    Copyright (C) 1986-2013 Free Software Foundation, Inc.
4 
5    Modified from expread.y by the Department of Computer Science at the
6    State University of New York at Buffalo, 1991.
7 
8    This file is part of GDB.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
22 
23 /* Parse an expression from text in a string,
24    and return the result as a struct expression pointer.
25    That structure contains arithmetic operations in reverse polish,
26    with constants represented by operations that are followed by special data.
27    See expression.h for the details of the format.
28    What is important here is that it can be built up sequentially
29    during the process of parsing; the lower levels of the tree always
30    come first in the result.  */
31 
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "gdb_string.h"
36 #include "symtab.h"
37 #include "gdbtypes.h"
38 #include "frame.h"
39 #include "expression.h"
40 #include "value.h"
41 #include "command.h"
42 #include "language.h"
43 #include "f-lang.h"
44 #include "parser-defs.h"
45 #include "gdbcmd.h"
46 #include "symfile.h"		/* for overlay functions */
47 #include "inferior.h"
48 #include "doublest.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "source.h"
52 #include "objfiles.h"
53 #include "exceptions.h"
54 #include "user-regs.h"
55 
56 /* Standard set of definitions for printing, dumping, prefixifying,
57  * and evaluating expressions.  */
58 
59 const struct exp_descriptor exp_descriptor_standard =
60   {
61     print_subexp_standard,
62     operator_length_standard,
63     operator_check_standard,
64     op_name_standard,
65     dump_subexp_body_standard,
66     evaluate_subexp_standard
67   };
68 
69 /* Global variables declared in parser-defs.h (and commented there).  */
70 struct expression *expout;
71 int expout_size;
72 int expout_ptr;
73 const struct block *expression_context_block;
74 CORE_ADDR expression_context_pc;
75 const struct block *innermost_block;
76 int arglist_len;
77 static struct type_stack type_stack;
78 char *lexptr;
79 char *prev_lexptr;
80 int paren_depth;
81 int comma_terminates;
82 
83 /* True if parsing an expression to attempt completion.  */
84 int parse_completion;
85 
86 /* The index of the last struct expression directly before a '.' or
87    '->'.  This is set when parsing and is only used when completing a
88    field name.  It is -1 if no dereference operation was found.  */
89 static int expout_last_struct = -1;
90 
91 /* If we are completing a tagged type name, this will be nonzero.  */
92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
93 
94 /* The token for tagged type name completion.  */
95 static char *expout_completion_name;
96 
97 
98 static unsigned int expressiondebug = 0;
99 static void
100 show_expressiondebug (struct ui_file *file, int from_tty,
101 		      struct cmd_list_element *c, const char *value)
102 {
103   fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
104 }
105 
106 
107 /* Non-zero if an expression parser should set yydebug.  */
108 int parser_debug;
109 
110 static void
111 show_parserdebug (struct ui_file *file, int from_tty,
112 		  struct cmd_list_element *c, const char *value)
113 {
114   fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
115 }
116 
117 
118 static void free_funcalls (void *ignore);
119 
120 static int prefixify_subexp (struct expression *, struct expression *, int,
121 			     int);
122 
123 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
124 						const struct block *, int,
125 						int, int *);
126 
127 void _initialize_parse (void);
128 
129 /* Data structure for saving values of arglist_len for function calls whose
130    arguments contain other function calls.  */
131 
132 struct funcall
133   {
134     struct funcall *next;
135     int arglist_len;
136   };
137 
138 static struct funcall *funcall_chain;
139 
140 /* Begin counting arguments for a function call,
141    saving the data about any containing call.  */
142 
143 void
144 start_arglist (void)
145 {
146   struct funcall *new;
147 
148   new = (struct funcall *) xmalloc (sizeof (struct funcall));
149   new->next = funcall_chain;
150   new->arglist_len = arglist_len;
151   arglist_len = 0;
152   funcall_chain = new;
153 }
154 
155 /* Return the number of arguments in a function call just terminated,
156    and restore the data for the containing function call.  */
157 
158 int
159 end_arglist (void)
160 {
161   int val = arglist_len;
162   struct funcall *call = funcall_chain;
163 
164   funcall_chain = call->next;
165   arglist_len = call->arglist_len;
166   xfree (call);
167   return val;
168 }
169 
170 /* Free everything in the funcall chain.
171    Used when there is an error inside parsing.  */
172 
173 static void
174 free_funcalls (void *ignore)
175 {
176   struct funcall *call, *next;
177 
178   for (call = funcall_chain; call; call = next)
179     {
180       next = call->next;
181       xfree (call);
182     }
183 }
184 
185 /* This page contains the functions for adding data to the struct expression
186    being constructed.  */
187 
188 /* See definition in parser-defs.h.  */
189 
190 void
191 initialize_expout (int initial_size, const struct language_defn *lang,
192 		   struct gdbarch *gdbarch)
193 {
194   expout_size = initial_size;
195   expout_ptr = 0;
196   expout = xmalloc (sizeof (struct expression)
197 		    + EXP_ELEM_TO_BYTES (expout_size));
198   expout->language_defn = lang;
199   expout->gdbarch = gdbarch;
200 }
201 
202 /* See definition in parser-defs.h.  */
203 
204 void
205 reallocate_expout (void)
206 {
207   /* Record the actual number of expression elements, and then
208      reallocate the expression memory so that we free up any
209      excess elements.  */
210 
211   expout->nelts = expout_ptr;
212   expout = xrealloc ((char *) expout,
213 		     sizeof (struct expression)
214 		     + EXP_ELEM_TO_BYTES (expout_ptr));
215 }
216 
217 /* Add one element to the end of the expression.  */
218 
219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
220    a register through here.  */
221 
222 static void
223 write_exp_elt (const union exp_element *expelt)
224 {
225   if (expout_ptr >= expout_size)
226     {
227       expout_size *= 2;
228       expout = (struct expression *)
229 	xrealloc ((char *) expout, sizeof (struct expression)
230 		  + EXP_ELEM_TO_BYTES (expout_size));
231     }
232   expout->elts[expout_ptr++] = *expelt;
233 }
234 
235 void
236 write_exp_elt_opcode (enum exp_opcode expelt)
237 {
238   union exp_element tmp;
239 
240   memset (&tmp, 0, sizeof (union exp_element));
241   tmp.opcode = expelt;
242   write_exp_elt (&tmp);
243 }
244 
245 void
246 write_exp_elt_sym (struct symbol *expelt)
247 {
248   union exp_element tmp;
249 
250   memset (&tmp, 0, sizeof (union exp_element));
251   tmp.symbol = expelt;
252   write_exp_elt (&tmp);
253 }
254 
255 void
256 write_exp_elt_block (const struct block *b)
257 {
258   union exp_element tmp;
259 
260   memset (&tmp, 0, sizeof (union exp_element));
261   tmp.block = b;
262   write_exp_elt (&tmp);
263 }
264 
265 void
266 write_exp_elt_objfile (struct objfile *objfile)
267 {
268   union exp_element tmp;
269 
270   memset (&tmp, 0, sizeof (union exp_element));
271   tmp.objfile = objfile;
272   write_exp_elt (&tmp);
273 }
274 
275 void
276 write_exp_elt_longcst (LONGEST expelt)
277 {
278   union exp_element tmp;
279 
280   memset (&tmp, 0, sizeof (union exp_element));
281   tmp.longconst = expelt;
282   write_exp_elt (&tmp);
283 }
284 
285 void
286 write_exp_elt_dblcst (DOUBLEST expelt)
287 {
288   union exp_element tmp;
289 
290   memset (&tmp, 0, sizeof (union exp_element));
291   tmp.doubleconst = expelt;
292   write_exp_elt (&tmp);
293 }
294 
295 void
296 write_exp_elt_decfloatcst (gdb_byte expelt[16])
297 {
298   union exp_element tmp;
299   int index;
300 
301   for (index = 0; index < 16; index++)
302     tmp.decfloatconst[index] = expelt[index];
303 
304   write_exp_elt (&tmp);
305 }
306 
307 void
308 write_exp_elt_type (struct type *expelt)
309 {
310   union exp_element tmp;
311 
312   memset (&tmp, 0, sizeof (union exp_element));
313   tmp.type = expelt;
314   write_exp_elt (&tmp);
315 }
316 
317 void
318 write_exp_elt_intern (struct internalvar *expelt)
319 {
320   union exp_element tmp;
321 
322   memset (&tmp, 0, sizeof (union exp_element));
323   tmp.internalvar = expelt;
324   write_exp_elt (&tmp);
325 }
326 
327 /* Add a string constant to the end of the expression.
328 
329    String constants are stored by first writing an expression element
330    that contains the length of the string, then stuffing the string
331    constant itself into however many expression elements are needed
332    to hold it, and then writing another expression element that contains
333    the length of the string.  I.e. an expression element at each end of
334    the string records the string length, so you can skip over the
335    expression elements containing the actual string bytes from either
336    end of the string.  Note that this also allows gdb to handle
337    strings with embedded null bytes, as is required for some languages.
338 
339    Don't be fooled by the fact that the string is null byte terminated,
340    this is strictly for the convenience of debugging gdb itself.
341    Gdb does not depend up the string being null terminated, since the
342    actual length is recorded in expression elements at each end of the
343    string.  The null byte is taken into consideration when computing how
344    many expression elements are required to hold the string constant, of
345    course.  */
346 
347 
348 void
349 write_exp_string (struct stoken str)
350 {
351   int len = str.length;
352   int lenelt;
353   char *strdata;
354 
355   /* Compute the number of expression elements required to hold the string
356      (including a null byte terminator), along with one expression element
357      at each end to record the actual string length (not including the
358      null byte terminator).  */
359 
360   lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
361 
362   /* Ensure that we have enough available expression elements to store
363      everything.  */
364 
365   if ((expout_ptr + lenelt) >= expout_size)
366     {
367       expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
368       expout = (struct expression *)
369 	xrealloc ((char *) expout, (sizeof (struct expression)
370 				    + EXP_ELEM_TO_BYTES (expout_size)));
371     }
372 
373   /* Write the leading length expression element (which advances the current
374      expression element index), then write the string constant followed by a
375      terminating null byte, and then write the trailing length expression
376      element.  */
377 
378   write_exp_elt_longcst ((LONGEST) len);
379   strdata = (char *) &expout->elts[expout_ptr];
380   memcpy (strdata, str.ptr, len);
381   *(strdata + len) = '\0';
382   expout_ptr += lenelt - 2;
383   write_exp_elt_longcst ((LONGEST) len);
384 }
385 
386 /* Add a vector of string constants to the end of the expression.
387 
388    This adds an OP_STRING operation, but encodes the contents
389    differently from write_exp_string.  The language is expected to
390    handle evaluation of this expression itself.
391 
392    After the usual OP_STRING header, TYPE is written into the
393    expression as a long constant.  The interpretation of this field is
394    up to the language evaluator.
395 
396    Next, each string in VEC is written.  The length is written as a
397    long constant, followed by the contents of the string.  */
398 
399 void
400 write_exp_string_vector (int type, struct stoken_vector *vec)
401 {
402   int i, n_slots, len;
403 
404   /* Compute the size.  We compute the size in number of slots to
405      avoid issues with string padding.  */
406   n_slots = 0;
407   for (i = 0; i < vec->len; ++i)
408     {
409       /* One slot for the length of this element, plus the number of
410 	 slots needed for this string.  */
411       n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
412     }
413 
414   /* One more slot for the type of the string.  */
415   ++n_slots;
416 
417   /* Now compute a phony string length.  */
418   len = EXP_ELEM_TO_BYTES (n_slots) - 1;
419 
420   n_slots += 4;
421   if ((expout_ptr + n_slots) >= expout_size)
422     {
423       expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
424       expout = (struct expression *)
425 	xrealloc ((char *) expout, (sizeof (struct expression)
426 				    + EXP_ELEM_TO_BYTES (expout_size)));
427     }
428 
429   write_exp_elt_opcode (OP_STRING);
430   write_exp_elt_longcst (len);
431   write_exp_elt_longcst (type);
432 
433   for (i = 0; i < vec->len; ++i)
434     {
435       write_exp_elt_longcst (vec->tokens[i].length);
436       memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
437 	      vec->tokens[i].length);
438       expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
439     }
440 
441   write_exp_elt_longcst (len);
442   write_exp_elt_opcode (OP_STRING);
443 }
444 
445 /* Add a bitstring constant to the end of the expression.
446 
447    Bitstring constants are stored by first writing an expression element
448    that contains the length of the bitstring (in bits), then stuffing the
449    bitstring constant itself into however many expression elements are
450    needed to hold it, and then writing another expression element that
451    contains the length of the bitstring.  I.e. an expression element at
452    each end of the bitstring records the bitstring length, so you can skip
453    over the expression elements containing the actual bitstring bytes from
454    either end of the bitstring.  */
455 
456 void
457 write_exp_bitstring (struct stoken str)
458 {
459   int bits = str.length;	/* length in bits */
460   int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
461   int lenelt;
462   char *strdata;
463 
464   /* Compute the number of expression elements required to hold the bitstring,
465      along with one expression element at each end to record the actual
466      bitstring length in bits.  */
467 
468   lenelt = 2 + BYTES_TO_EXP_ELEM (len);
469 
470   /* Ensure that we have enough available expression elements to store
471      everything.  */
472 
473   if ((expout_ptr + lenelt) >= expout_size)
474     {
475       expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
476       expout = (struct expression *)
477 	xrealloc ((char *) expout, (sizeof (struct expression)
478 				    + EXP_ELEM_TO_BYTES (expout_size)));
479     }
480 
481   /* Write the leading length expression element (which advances the current
482      expression element index), then write the bitstring constant, and then
483      write the trailing length expression element.  */
484 
485   write_exp_elt_longcst ((LONGEST) bits);
486   strdata = (char *) &expout->elts[expout_ptr];
487   memcpy (strdata, str.ptr, len);
488   expout_ptr += lenelt - 2;
489   write_exp_elt_longcst ((LONGEST) bits);
490 }
491 
492 /* Add the appropriate elements for a minimal symbol to the end of
493    the expression.  */
494 
495 void
496 write_exp_msymbol (struct minimal_symbol *msymbol)
497 {
498   struct objfile *objfile = msymbol_objfile (msymbol);
499   struct gdbarch *gdbarch = get_objfile_arch (objfile);
500 
501   CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
502   struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
503   enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
504   CORE_ADDR pc;
505 
506   /* The minimal symbol might point to a function descriptor;
507      resolve it to the actual code address instead.  */
508   pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
509   if (pc != addr)
510     {
511       struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
512 
513       /* In this case, assume we have a code symbol instead of
514 	 a data symbol.  */
515 
516       if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
517 	  && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
518 	{
519 	  /* A function descriptor has been resolved but PC is still in the
520 	     STT_GNU_IFUNC resolver body (such as because inferior does not
521 	     run to be able to call it).  */
522 
523 	  type = mst_text_gnu_ifunc;
524 	}
525       else
526 	type = mst_text;
527       section = NULL;
528       addr = pc;
529     }
530 
531   if (overlay_debugging)
532     addr = symbol_overlayed_address (addr, section);
533 
534   write_exp_elt_opcode (OP_LONG);
535   /* Let's make the type big enough to hold a 64-bit address.  */
536   write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
537   write_exp_elt_longcst ((LONGEST) addr);
538   write_exp_elt_opcode (OP_LONG);
539 
540   if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
541     {
542       write_exp_elt_opcode (UNOP_MEMVAL_TLS);
543       write_exp_elt_objfile (objfile);
544       write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
545       write_exp_elt_opcode (UNOP_MEMVAL_TLS);
546       return;
547     }
548 
549   write_exp_elt_opcode (UNOP_MEMVAL);
550   switch (type)
551     {
552     case mst_text:
553     case mst_file_text:
554     case mst_solib_trampoline:
555       write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
556       break;
557 
558     case mst_text_gnu_ifunc:
559       write_exp_elt_type (objfile_type (objfile)
560 					       ->nodebug_text_gnu_ifunc_symbol);
561       break;
562 
563     case mst_data:
564     case mst_file_data:
565     case mst_bss:
566     case mst_file_bss:
567       write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
568       break;
569 
570     case mst_slot_got_plt:
571       write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
572       break;
573 
574     default:
575       write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
576       break;
577     }
578   write_exp_elt_opcode (UNOP_MEMVAL);
579 }
580 
581 /* Mark the current index as the starting location of a structure
582    expression.  This is used when completing on field names.  */
583 
584 void
585 mark_struct_expression (void)
586 {
587   gdb_assert (parse_completion
588 	      && expout_tag_completion_type == TYPE_CODE_UNDEF);
589   expout_last_struct = expout_ptr;
590 }
591 
592 /* Indicate that the current parser invocation is completing a tag.
593    TAG is the type code of the tag, and PTR and LENGTH represent the
594    start of the tag name.  */
595 
596 void
597 mark_completion_tag (enum type_code tag, const char *ptr, int length)
598 {
599   gdb_assert (parse_completion
600 	      && expout_tag_completion_type == TYPE_CODE_UNDEF
601 	      && expout_completion_name == NULL
602 	      && expout_last_struct == -1);
603   gdb_assert (tag == TYPE_CODE_UNION
604 	      || tag == TYPE_CODE_STRUCT
605 	      || tag == TYPE_CODE_CLASS
606 	      || tag == TYPE_CODE_ENUM);
607   expout_tag_completion_type = tag;
608   expout_completion_name = xmalloc (length + 1);
609   memcpy (expout_completion_name, ptr, length);
610   expout_completion_name[length] = '\0';
611 }
612 
613 
614 /* Recognize tokens that start with '$'.  These include:
615 
616    $regname     A native register name or a "standard
617    register name".
618 
619    $variable    A convenience variable with a name chosen
620    by the user.
621 
622    $digits              Value history with index <digits>, starting
623    from the first value which has index 1.
624 
625    $$digits     Value history with index <digits> relative
626    to the last value.  I.e. $$0 is the last
627    value, $$1 is the one previous to that, $$2
628    is the one previous to $$1, etc.
629 
630    $ | $0 | $$0 The last value in the value history.
631 
632    $$           An abbreviation for the second to the last
633    value in the value history, I.e. $$1  */
634 
635 void
636 write_dollar_variable (struct stoken str)
637 {
638   struct symbol *sym = NULL;
639   struct minimal_symbol *msym = NULL;
640   struct internalvar *isym = NULL;
641 
642   /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
643      and $$digits (equivalent to $<-digits> if you could type that).  */
644 
645   int negate = 0;
646   int i = 1;
647   /* Double dollar means negate the number and add -1 as well.
648      Thus $$ alone means -1.  */
649   if (str.length >= 2 && str.ptr[1] == '$')
650     {
651       negate = 1;
652       i = 2;
653     }
654   if (i == str.length)
655     {
656       /* Just dollars (one or two).  */
657       i = -negate;
658       goto handle_last;
659     }
660   /* Is the rest of the token digits?  */
661   for (; i < str.length; i++)
662     if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
663       break;
664   if (i == str.length)
665     {
666       i = atoi (str.ptr + 1 + negate);
667       if (negate)
668 	i = -i;
669       goto handle_last;
670     }
671 
672   /* Handle tokens that refer to machine registers:
673      $ followed by a register name.  */
674   i = user_reg_map_name_to_regnum (parse_gdbarch,
675 				   str.ptr + 1, str.length - 1);
676   if (i >= 0)
677     goto handle_register;
678 
679   /* Any names starting with $ are probably debugger internal variables.  */
680 
681   isym = lookup_only_internalvar (copy_name (str) + 1);
682   if (isym)
683     {
684       write_exp_elt_opcode (OP_INTERNALVAR);
685       write_exp_elt_intern (isym);
686       write_exp_elt_opcode (OP_INTERNALVAR);
687       return;
688     }
689 
690   /* On some systems, such as HP-UX and hppa-linux, certain system routines
691      have names beginning with $ or $$.  Check for those, first.  */
692 
693   sym = lookup_symbol (copy_name (str), (struct block *) NULL,
694 		       VAR_DOMAIN, NULL);
695   if (sym)
696     {
697       write_exp_elt_opcode (OP_VAR_VALUE);
698       write_exp_elt_block (block_found);	/* set by lookup_symbol */
699       write_exp_elt_sym (sym);
700       write_exp_elt_opcode (OP_VAR_VALUE);
701       return;
702     }
703   msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
704   if (msym)
705     {
706       write_exp_msymbol (msym);
707       return;
708     }
709 
710   /* Any other names are assumed to be debugger internal variables.  */
711 
712   write_exp_elt_opcode (OP_INTERNALVAR);
713   write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
714   write_exp_elt_opcode (OP_INTERNALVAR);
715   return;
716 handle_last:
717   write_exp_elt_opcode (OP_LAST);
718   write_exp_elt_longcst ((LONGEST) i);
719   write_exp_elt_opcode (OP_LAST);
720   return;
721 handle_register:
722   write_exp_elt_opcode (OP_REGISTER);
723   str.length--;
724   str.ptr++;
725   write_exp_string (str);
726   write_exp_elt_opcode (OP_REGISTER);
727   return;
728 }
729 
730 
731 char *
732 find_template_name_end (char *p)
733 {
734   int depth = 1;
735   int just_seen_right = 0;
736   int just_seen_colon = 0;
737   int just_seen_space = 0;
738 
739   if (!p || (*p != '<'))
740     return 0;
741 
742   while (*++p)
743     {
744       switch (*p)
745 	{
746 	case '\'':
747 	case '\"':
748 	case '{':
749 	case '}':
750 	  /* In future, may want to allow these??  */
751 	  return 0;
752 	case '<':
753 	  depth++;		/* start nested template */
754 	  if (just_seen_colon || just_seen_right || just_seen_space)
755 	    return 0;		/* but not after : or :: or > or space */
756 	  break;
757 	case '>':
758 	  if (just_seen_colon || just_seen_right)
759 	    return 0;		/* end a (nested?) template */
760 	  just_seen_right = 1;	/* but not after : or :: */
761 	  if (--depth == 0)	/* also disallow >>, insist on > > */
762 	    return ++p;		/* if outermost ended, return */
763 	  break;
764 	case ':':
765 	  if (just_seen_space || (just_seen_colon > 1))
766 	    return 0;		/* nested class spec coming up */
767 	  just_seen_colon++;	/* we allow :: but not :::: */
768 	  break;
769 	case ' ':
770 	  break;
771 	default:
772 	  if (!((*p >= 'a' && *p <= 'z') ||	/* allow token chars */
773 		(*p >= 'A' && *p <= 'Z') ||
774 		(*p >= '0' && *p <= '9') ||
775 		(*p == '_') || (*p == ',') ||	/* commas for template args */
776 		(*p == '&') || (*p == '*') ||	/* pointer and ref types */
777 		(*p == '(') || (*p == ')') ||	/* function types */
778 		(*p == '[') || (*p == ']')))	/* array types */
779 	    return 0;
780 	}
781       if (*p != ' ')
782 	just_seen_space = 0;
783       if (*p != ':')
784 	just_seen_colon = 0;
785       if (*p != '>')
786 	just_seen_right = 0;
787     }
788   return 0;
789 }
790 
791 
792 /* Return a null-terminated temporary copy of the name of a string token.
793 
794    Tokens that refer to names do so with explicit pointer and length,
795    so they can share the storage that lexptr is parsing.
796    When it is necessary to pass a name to a function that expects
797    a null-terminated string, the substring is copied out
798    into a separate block of storage.
799 
800    N.B. A single buffer is reused on each call.  */
801 
802 char *
803 copy_name (struct stoken token)
804 {
805   /* A temporary buffer for identifiers, so we can null-terminate them.
806      We allocate this with xrealloc.  parse_exp_1 used to allocate with
807      alloca, using the size of the whole expression as a conservative
808      estimate of the space needed.  However, macro expansion can
809      introduce names longer than the original expression; there's no
810      practical way to know beforehand how large that might be.  */
811   static char *namecopy;
812   static size_t namecopy_size;
813 
814   /* Make sure there's enough space for the token.  */
815   if (namecopy_size < token.length + 1)
816     {
817       namecopy_size = token.length + 1;
818       namecopy = xrealloc (namecopy, token.length + 1);
819     }
820 
821   memcpy (namecopy, token.ptr, token.length);
822   namecopy[token.length] = 0;
823 
824   return namecopy;
825 }
826 
827 
828 /* See comments on parser-defs.h.  */
829 
830 int
831 prefixify_expression (struct expression *expr)
832 {
833   int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
834   struct expression *temp;
835   int inpos = expr->nelts, outpos = 0;
836 
837   temp = (struct expression *) alloca (len);
838 
839   /* Copy the original expression into temp.  */
840   memcpy (temp, expr, len);
841 
842   return prefixify_subexp (temp, expr, inpos, outpos);
843 }
844 
845 /* Return the number of exp_elements in the postfix subexpression
846    of EXPR whose operator is at index ENDPOS - 1 in EXPR.  */
847 
848 int
849 length_of_subexp (struct expression *expr, int endpos)
850 {
851   int oplen, args;
852 
853   operator_length (expr, endpos, &oplen, &args);
854 
855   while (args > 0)
856     {
857       oplen += length_of_subexp (expr, endpos - oplen);
858       args--;
859     }
860 
861   return oplen;
862 }
863 
864 /* Sets *OPLENP to the length of the operator whose (last) index is
865    ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
866    operator takes.  */
867 
868 void
869 operator_length (const struct expression *expr, int endpos, int *oplenp,
870 		 int *argsp)
871 {
872   expr->language_defn->la_exp_desc->operator_length (expr, endpos,
873 						     oplenp, argsp);
874 }
875 
876 /* Default value for operator_length in exp_descriptor vectors.  */
877 
878 void
879 operator_length_standard (const struct expression *expr, int endpos,
880 			  int *oplenp, int *argsp)
881 {
882   int oplen = 1;
883   int args = 0;
884   enum f90_range_type range_type;
885   int i;
886 
887   if (endpos < 1)
888     error (_("?error in operator_length_standard"));
889 
890   i = (int) expr->elts[endpos - 1].opcode;
891 
892   switch (i)
893     {
894       /* C++  */
895     case OP_SCOPE:
896       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
897       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
898       break;
899 
900     case OP_LONG:
901     case OP_DOUBLE:
902     case OP_DECFLOAT:
903     case OP_VAR_VALUE:
904       oplen = 4;
905       break;
906 
907     case OP_TYPE:
908     case OP_BOOL:
909     case OP_LAST:
910     case OP_INTERNALVAR:
911     case OP_VAR_ENTRY_VALUE:
912       oplen = 3;
913       break;
914 
915     case OP_COMPLEX:
916       oplen = 3;
917       args = 2;
918       break;
919 
920     case OP_FUNCALL:
921     case OP_F77_UNDETERMINED_ARGLIST:
922       oplen = 3;
923       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
924       break;
925 
926     case TYPE_INSTANCE:
927       oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
928       args = 1;
929       break;
930 
931     case OP_OBJC_MSGCALL:	/* Objective C message (method) call.  */
932       oplen = 4;
933       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
934       break;
935 
936     case UNOP_MAX:
937     case UNOP_MIN:
938       oplen = 3;
939       break;
940 
941     case UNOP_CAST_TYPE:
942     case UNOP_DYNAMIC_CAST:
943     case UNOP_REINTERPRET_CAST:
944     case UNOP_MEMVAL_TYPE:
945       oplen = 1;
946       args = 2;
947       break;
948 
949     case BINOP_VAL:
950     case UNOP_CAST:
951     case UNOP_MEMVAL:
952       oplen = 3;
953       args = 1;
954       break;
955 
956     case UNOP_MEMVAL_TLS:
957       oplen = 4;
958       args = 1;
959       break;
960 
961     case UNOP_ABS:
962     case UNOP_CAP:
963     case UNOP_CHR:
964     case UNOP_FLOAT:
965     case UNOP_HIGH:
966     case UNOP_ODD:
967     case UNOP_ORD:
968     case UNOP_TRUNC:
969     case OP_TYPEOF:
970     case OP_DECLTYPE:
971       oplen = 1;
972       args = 1;
973       break;
974 
975     case OP_ADL_FUNC:
976       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
977       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
978       oplen++;
979       oplen++;
980       break;
981 
982     case STRUCTOP_STRUCT:
983     case STRUCTOP_PTR:
984       args = 1;
985       /* fall through */
986     case OP_REGISTER:
987     case OP_M2_STRING:
988     case OP_STRING:
989     case OP_OBJC_NSSTRING:	/* Objective C Foundation Class
990 				   NSString constant.  */
991     case OP_OBJC_SELECTOR:	/* Objective C "@selector" pseudo-op.  */
992     case OP_NAME:
993       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
994       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
995       break;
996 
997     case OP_ARRAY:
998       oplen = 4;
999       args = longest_to_int (expr->elts[endpos - 2].longconst);
1000       args -= longest_to_int (expr->elts[endpos - 3].longconst);
1001       args += 1;
1002       break;
1003 
1004     case TERNOP_COND:
1005     case TERNOP_SLICE:
1006       args = 3;
1007       break;
1008 
1009       /* Modula-2 */
1010     case MULTI_SUBSCRIPT:
1011       oplen = 3;
1012       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
1013       break;
1014 
1015     case BINOP_ASSIGN_MODIFY:
1016       oplen = 3;
1017       args = 2;
1018       break;
1019 
1020       /* C++ */
1021     case OP_THIS:
1022       oplen = 2;
1023       break;
1024 
1025     case OP_F90_RANGE:
1026       oplen = 3;
1027 
1028       range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1029       switch (range_type)
1030 	{
1031 	case LOW_BOUND_DEFAULT:
1032 	case HIGH_BOUND_DEFAULT:
1033 	  args = 1;
1034 	  break;
1035 	case BOTH_BOUND_DEFAULT:
1036 	  args = 0;
1037 	  break;
1038 	case NONE_BOUND_DEFAULT:
1039 	  args = 2;
1040 	  break;
1041 	}
1042 
1043       break;
1044 
1045     default:
1046       args = 1 + (i < (int) BINOP_END);
1047     }
1048 
1049   *oplenp = oplen;
1050   *argsp = args;
1051 }
1052 
1053 /* Copy the subexpression ending just before index INEND in INEXPR
1054    into OUTEXPR, starting at index OUTBEG.
1055    In the process, convert it from suffix to prefix form.
1056    If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1057    Otherwise, it returns the index of the subexpression which is the
1058    left-hand-side of the expression at EXPOUT_LAST_STRUCT.  */
1059 
1060 static int
1061 prefixify_subexp (struct expression *inexpr,
1062 		  struct expression *outexpr, int inend, int outbeg)
1063 {
1064   int oplen;
1065   int args;
1066   int i;
1067   int *arglens;
1068   int result = -1;
1069 
1070   operator_length (inexpr, inend, &oplen, &args);
1071 
1072   /* Copy the final operator itself, from the end of the input
1073      to the beginning of the output.  */
1074   inend -= oplen;
1075   memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1076 	  EXP_ELEM_TO_BYTES (oplen));
1077   outbeg += oplen;
1078 
1079   if (expout_last_struct == inend)
1080     result = outbeg - oplen;
1081 
1082   /* Find the lengths of the arg subexpressions.  */
1083   arglens = (int *) alloca (args * sizeof (int));
1084   for (i = args - 1; i >= 0; i--)
1085     {
1086       oplen = length_of_subexp (inexpr, inend);
1087       arglens[i] = oplen;
1088       inend -= oplen;
1089     }
1090 
1091   /* Now copy each subexpression, preserving the order of
1092      the subexpressions, but prefixifying each one.
1093      In this loop, inend starts at the beginning of
1094      the expression this level is working on
1095      and marches forward over the arguments.
1096      outbeg does similarly in the output.  */
1097   for (i = 0; i < args; i++)
1098     {
1099       int r;
1100 
1101       oplen = arglens[i];
1102       inend += oplen;
1103       r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1104       if (r != -1)
1105 	{
1106 	  /* Return immediately.  We probably have only parsed a
1107 	     partial expression, so we don't want to try to reverse
1108 	     the other operands.  */
1109 	  return r;
1110 	}
1111       outbeg += oplen;
1112     }
1113 
1114   return result;
1115 }
1116 
1117 /* Read an expression from the string *STRINGPTR points to,
1118    parse it, and return a pointer to a struct expression that we malloc.
1119    Use block BLOCK as the lexical context for variable names;
1120    if BLOCK is zero, use the block of the selected stack frame.
1121    Meanwhile, advance *STRINGPTR to point after the expression,
1122    at the first nonwhite character that is not part of the expression
1123    (possibly a null character).
1124 
1125    If COMMA is nonzero, stop if a comma is reached.  */
1126 
1127 struct expression *
1128 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1129 	     int comma)
1130 {
1131   struct expression *expr;
1132   char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL;
1133   char *orig = const_hack;
1134   struct cleanup *back_to = make_cleanup (xfree, const_hack);
1135 
1136   expr = parse_exp_in_context (&const_hack, pc, block, comma, 0, NULL);
1137   (*stringptr) += const_hack - orig;
1138   do_cleanups (back_to);
1139   return expr;
1140 }
1141 
1142 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1143    no value is expected from the expression.
1144    OUT_SUBEXP is set when attempting to complete a field name; in this
1145    case it is set to the index of the subexpression on the
1146    left-hand-side of the struct op.  If not doing such completion, it
1147    is left untouched.  */
1148 
1149 static struct expression *
1150 parse_exp_in_context (char **stringptr, CORE_ADDR pc, const struct block *block,
1151 		      int comma, int void_context_p, int *out_subexp)
1152 {
1153   volatile struct gdb_exception except;
1154   struct cleanup *old_chain, *inner_chain;
1155   const struct language_defn *lang = NULL;
1156   int subexp;
1157 
1158   lexptr = *stringptr;
1159   prev_lexptr = NULL;
1160 
1161   paren_depth = 0;
1162   type_stack.depth = 0;
1163   expout_last_struct = -1;
1164   expout_tag_completion_type = TYPE_CODE_UNDEF;
1165   xfree (expout_completion_name);
1166   expout_completion_name = NULL;
1167 
1168   comma_terminates = comma;
1169 
1170   if (lexptr == 0 || *lexptr == 0)
1171     error_no_arg (_("expression to compute"));
1172 
1173   old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1174   funcall_chain = 0;
1175 
1176   expression_context_block = block;
1177 
1178   /* If no context specified, try using the current frame, if any.  */
1179   if (!expression_context_block)
1180     expression_context_block = get_selected_block (&expression_context_pc);
1181   else if (pc == 0)
1182     expression_context_pc = BLOCK_START (expression_context_block);
1183   else
1184     expression_context_pc = pc;
1185 
1186   /* Fall back to using the current source static context, if any.  */
1187 
1188   if (!expression_context_block)
1189     {
1190       struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1191       if (cursal.symtab)
1192 	expression_context_block
1193 	  = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1194       if (expression_context_block)
1195 	expression_context_pc = BLOCK_START (expression_context_block);
1196     }
1197 
1198   if (language_mode == language_mode_auto && block != NULL)
1199     {
1200       /* Find the language associated to the given context block.
1201          Default to the current language if it can not be determined.
1202 
1203          Note that using the language corresponding to the current frame
1204          can sometimes give unexpected results.  For instance, this
1205          routine is often called several times during the inferior
1206          startup phase to re-parse breakpoint expressions after
1207          a new shared library has been loaded.  The language associated
1208          to the current frame at this moment is not relevant for
1209          the breakpoint.  Using it would therefore be silly, so it seems
1210          better to rely on the current language rather than relying on
1211          the current frame language to parse the expression.  That's why
1212          we do the following language detection only if the context block
1213          has been specifically provided.  */
1214       struct symbol *func = block_linkage_function (block);
1215 
1216       if (func != NULL)
1217         lang = language_def (SYMBOL_LANGUAGE (func));
1218       if (lang == NULL || lang->la_language == language_unknown)
1219         lang = current_language;
1220     }
1221   else
1222     lang = current_language;
1223 
1224   /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1225      While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1226      and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1227      to the value matching SELECTED_FRAME as set by get_current_arch.  */
1228   initialize_expout (10, lang, get_current_arch ());
1229   inner_chain = make_cleanup_restore_current_language ();
1230   set_language (lang->la_language);
1231 
1232   TRY_CATCH (except, RETURN_MASK_ALL)
1233     {
1234       if (lang->la_parser ())
1235         lang->la_error (NULL);
1236     }
1237   if (except.reason < 0)
1238     {
1239       if (! parse_completion)
1240 	{
1241 	  xfree (expout);
1242 	  throw_exception (except);
1243 	}
1244     }
1245 
1246   reallocate_expout ();
1247 
1248   /* Convert expression from postfix form as generated by yacc
1249      parser, to a prefix form.  */
1250 
1251   if (expressiondebug)
1252     dump_raw_expression (expout, gdb_stdlog,
1253 			 "before conversion to prefix form");
1254 
1255   subexp = prefixify_expression (expout);
1256   if (out_subexp)
1257     *out_subexp = subexp;
1258 
1259   lang->la_post_parser (&expout, void_context_p);
1260 
1261   if (expressiondebug)
1262     dump_prefix_expression (expout, gdb_stdlog);
1263 
1264   do_cleanups (inner_chain);
1265   discard_cleanups (old_chain);
1266 
1267   *stringptr = lexptr;
1268   return expout;
1269 }
1270 
1271 /* Parse STRING as an expression, and complain if this fails
1272    to use up all of the contents of STRING.  */
1273 
1274 struct expression *
1275 parse_expression (const char *string)
1276 {
1277   struct expression *exp;
1278 
1279   exp = parse_exp_1 (&string, 0, 0, 0);
1280   if (*string)
1281     error (_("Junk after end of expression."));
1282   return exp;
1283 }
1284 
1285 /* Parse STRING as an expression.  If parsing ends in the middle of a
1286    field reference, return the type of the left-hand-side of the
1287    reference; furthermore, if the parsing ends in the field name,
1288    return the field name in *NAME.  If the parsing ends in the middle
1289    of a field reference, but the reference is somehow invalid, throw
1290    an exception.  In all other cases, return NULL.  Returned non-NULL
1291    *NAME must be freed by the caller.  */
1292 
1293 struct type *
1294 parse_expression_for_completion (char *string, char **name,
1295 				 enum type_code *code)
1296 {
1297   struct expression *exp = NULL;
1298   struct value *val;
1299   int subexp;
1300   volatile struct gdb_exception except;
1301 
1302   TRY_CATCH (except, RETURN_MASK_ERROR)
1303     {
1304       parse_completion = 1;
1305       exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1306     }
1307   parse_completion = 0;
1308   if (except.reason < 0 || ! exp)
1309     return NULL;
1310 
1311   if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1312     {
1313       *code = expout_tag_completion_type;
1314       *name = expout_completion_name;
1315       expout_completion_name = NULL;
1316       return NULL;
1317     }
1318 
1319   if (expout_last_struct == -1)
1320     {
1321       xfree (exp);
1322       return NULL;
1323     }
1324 
1325   *name = extract_field_op (exp, &subexp);
1326   if (!*name)
1327     {
1328       xfree (exp);
1329       return NULL;
1330     }
1331 
1332   /* This might throw an exception.  If so, we want to let it
1333      propagate.  */
1334   val = evaluate_subexpression_type (exp, subexp);
1335   /* (*NAME) is a part of the EXP memory block freed below.  */
1336   *name = xstrdup (*name);
1337   xfree (exp);
1338 
1339   return value_type (val);
1340 }
1341 
1342 /* A post-parser that does nothing.  */
1343 
1344 void
1345 null_post_parser (struct expression **exp, int void_context_p)
1346 {
1347 }
1348 
1349 /* Parse floating point value P of length LEN.
1350    Return 0 (false) if invalid, 1 (true) if valid.
1351    The successfully parsed number is stored in D.
1352    *SUFFIX points to the suffix of the number in P.
1353 
1354    NOTE: This accepts the floating point syntax that sscanf accepts.  */
1355 
1356 int
1357 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1358 {
1359   char *copy;
1360   int n, num;
1361 
1362   copy = xmalloc (len + 1);
1363   memcpy (copy, p, len);
1364   copy[len] = 0;
1365 
1366   num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1367   xfree (copy);
1368 
1369   /* The sscanf man page suggests not making any assumptions on the effect
1370      of %n on the result, so we don't.
1371      That is why we simply test num == 0.  */
1372   if (num == 0)
1373     return 0;
1374 
1375   *suffix = p + n;
1376   return 1;
1377 }
1378 
1379 /* Parse floating point value P of length LEN, using the C syntax for floats.
1380    Return 0 (false) if invalid, 1 (true) if valid.
1381    The successfully parsed number is stored in *D.
1382    Its type is taken from builtin_type (gdbarch) and is stored in *T.  */
1383 
1384 int
1385 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1386 	       DOUBLEST *d, struct type **t)
1387 {
1388   const char *suffix;
1389   int suffix_len;
1390   const struct builtin_type *builtin_types = builtin_type (gdbarch);
1391 
1392   if (! parse_float (p, len, d, &suffix))
1393     return 0;
1394 
1395   suffix_len = p + len - suffix;
1396 
1397   if (suffix_len == 0)
1398     *t = builtin_types->builtin_double;
1399   else if (suffix_len == 1)
1400     {
1401       /* Handle suffixes: 'f' for float, 'l' for long double.  */
1402       if (tolower (*suffix) == 'f')
1403 	*t = builtin_types->builtin_float;
1404       else if (tolower (*suffix) == 'l')
1405 	*t = builtin_types->builtin_long_double;
1406       else
1407 	return 0;
1408     }
1409   else
1410     return 0;
1411 
1412   return 1;
1413 }
1414 
1415 /* Stuff for maintaining a stack of types.  Currently just used by C, but
1416    probably useful for any language which declares its types "backwards".  */
1417 
1418 /* Ensure that there are HOWMUCH open slots on the type stack STACK.  */
1419 
1420 static void
1421 type_stack_reserve (struct type_stack *stack, int howmuch)
1422 {
1423   if (stack->depth + howmuch >= stack->size)
1424     {
1425       stack->size *= 2;
1426       if (stack->size < howmuch)
1427 	stack->size = howmuch;
1428       stack->elements = xrealloc (stack->elements,
1429 				  stack->size * sizeof (union type_stack_elt));
1430     }
1431 }
1432 
1433 /* Ensure that there is a single open slot in the global type stack.  */
1434 
1435 static void
1436 check_type_stack_depth (void)
1437 {
1438   type_stack_reserve (&type_stack, 1);
1439 }
1440 
1441 /* A helper function for insert_type and insert_type_address_space.
1442    This does work of expanding the type stack and inserting the new
1443    element, ELEMENT, into the stack at location SLOT.  */
1444 
1445 static void
1446 insert_into_type_stack (int slot, union type_stack_elt element)
1447 {
1448   check_type_stack_depth ();
1449 
1450   if (slot < type_stack.depth)
1451     memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1452 	     (type_stack.depth - slot) * sizeof (union type_stack_elt));
1453   type_stack.elements[slot] = element;
1454   ++type_stack.depth;
1455 }
1456 
1457 /* Insert a new type, TP, at the bottom of the type stack.  If TP is
1458    tp_pointer or tp_reference, it is inserted at the bottom.  If TP is
1459    a qualifier, it is inserted at slot 1 (just above a previous
1460    tp_pointer) if there is anything on the stack, or simply pushed if
1461    the stack is empty.  Other values for TP are invalid.  */
1462 
1463 void
1464 insert_type (enum type_pieces tp)
1465 {
1466   union type_stack_elt element;
1467   int slot;
1468 
1469   gdb_assert (tp == tp_pointer || tp == tp_reference
1470 	      || tp == tp_const || tp == tp_volatile);
1471 
1472   /* If there is anything on the stack (we know it will be a
1473      tp_pointer), insert the qualifier above it.  Otherwise, simply
1474      push this on the top of the stack.  */
1475   if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1476     slot = 1;
1477   else
1478     slot = 0;
1479 
1480   element.piece = tp;
1481   insert_into_type_stack (slot, element);
1482 }
1483 
1484 void
1485 push_type (enum type_pieces tp)
1486 {
1487   check_type_stack_depth ();
1488   type_stack.elements[type_stack.depth++].piece = tp;
1489 }
1490 
1491 void
1492 push_type_int (int n)
1493 {
1494   check_type_stack_depth ();
1495   type_stack.elements[type_stack.depth++].int_val = n;
1496 }
1497 
1498 /* Insert a tp_space_identifier and the corresponding address space
1499    value into the stack.  STRING is the name of an address space, as
1500    recognized by address_space_name_to_int.  If the stack is empty,
1501    the new elements are simply pushed.  If the stack is not empty,
1502    this function assumes that the first item on the stack is a
1503    tp_pointer, and the new values are inserted above the first
1504    item.  */
1505 
1506 void
1507 insert_type_address_space (char *string)
1508 {
1509   union type_stack_elt element;
1510   int slot;
1511 
1512   /* If there is anything on the stack (we know it will be a
1513      tp_pointer), insert the address space qualifier above it.
1514      Otherwise, simply push this on the top of the stack.  */
1515   if (type_stack.depth)
1516     slot = 1;
1517   else
1518     slot = 0;
1519 
1520   element.piece = tp_space_identifier;
1521   insert_into_type_stack (slot, element);
1522   element.int_val = address_space_name_to_int (parse_gdbarch, string);
1523   insert_into_type_stack (slot, element);
1524 }
1525 
1526 enum type_pieces
1527 pop_type (void)
1528 {
1529   if (type_stack.depth)
1530     return type_stack.elements[--type_stack.depth].piece;
1531   return tp_end;
1532 }
1533 
1534 int
1535 pop_type_int (void)
1536 {
1537   if (type_stack.depth)
1538     return type_stack.elements[--type_stack.depth].int_val;
1539   /* "Can't happen".  */
1540   return 0;
1541 }
1542 
1543 /* Pop a type list element from the global type stack.  */
1544 
1545 static VEC (type_ptr) *
1546 pop_typelist (void)
1547 {
1548   gdb_assert (type_stack.depth);
1549   return type_stack.elements[--type_stack.depth].typelist_val;
1550 }
1551 
1552 /* Pop a type_stack element from the global type stack.  */
1553 
1554 static struct type_stack *
1555 pop_type_stack (void)
1556 {
1557   gdb_assert (type_stack.depth);
1558   return type_stack.elements[--type_stack.depth].stack_val;
1559 }
1560 
1561 /* Append the elements of the type stack FROM to the type stack TO.
1562    Always returns TO.  */
1563 
1564 struct type_stack *
1565 append_type_stack (struct type_stack *to, struct type_stack *from)
1566 {
1567   type_stack_reserve (to, from->depth);
1568 
1569   memcpy (&to->elements[to->depth], &from->elements[0],
1570 	  from->depth * sizeof (union type_stack_elt));
1571   to->depth += from->depth;
1572 
1573   return to;
1574 }
1575 
1576 /* Push the type stack STACK as an element on the global type stack.  */
1577 
1578 void
1579 push_type_stack (struct type_stack *stack)
1580 {
1581   check_type_stack_depth ();
1582   type_stack.elements[type_stack.depth++].stack_val = stack;
1583   push_type (tp_type_stack);
1584 }
1585 
1586 /* Copy the global type stack into a newly allocated type stack and
1587    return it.  The global stack is cleared.  The returned type stack
1588    must be freed with type_stack_cleanup.  */
1589 
1590 struct type_stack *
1591 get_type_stack (void)
1592 {
1593   struct type_stack *result = XNEW (struct type_stack);
1594 
1595   *result = type_stack;
1596   type_stack.depth = 0;
1597   type_stack.size = 0;
1598   type_stack.elements = NULL;
1599 
1600   return result;
1601 }
1602 
1603 /* A cleanup function that destroys a single type stack.  */
1604 
1605 void
1606 type_stack_cleanup (void *arg)
1607 {
1608   struct type_stack *stack = arg;
1609 
1610   xfree (stack->elements);
1611   xfree (stack);
1612 }
1613 
1614 /* Push a function type with arguments onto the global type stack.
1615    LIST holds the argument types.  If the final item in LIST is NULL,
1616    then the function will be varargs.  */
1617 
1618 void
1619 push_typelist (VEC (type_ptr) *list)
1620 {
1621   check_type_stack_depth ();
1622   type_stack.elements[type_stack.depth++].typelist_val = list;
1623   push_type (tp_function_with_arguments);
1624 }
1625 
1626 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1627    as modified by all the stuff on the stack.  */
1628 struct type *
1629 follow_types (struct type *follow_type)
1630 {
1631   int done = 0;
1632   int make_const = 0;
1633   int make_volatile = 0;
1634   int make_addr_space = 0;
1635   int array_size;
1636 
1637   while (!done)
1638     switch (pop_type ())
1639       {
1640       case tp_end:
1641 	done = 1;
1642 	if (make_const)
1643 	  follow_type = make_cv_type (make_const,
1644 				      TYPE_VOLATILE (follow_type),
1645 				      follow_type, 0);
1646 	if (make_volatile)
1647 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1648 				      make_volatile,
1649 				      follow_type, 0);
1650 	if (make_addr_space)
1651 	  follow_type = make_type_with_address_space (follow_type,
1652 						      make_addr_space);
1653 	make_const = make_volatile = 0;
1654 	make_addr_space = 0;
1655 	break;
1656       case tp_const:
1657 	make_const = 1;
1658 	break;
1659       case tp_volatile:
1660 	make_volatile = 1;
1661 	break;
1662       case tp_space_identifier:
1663 	make_addr_space = pop_type_int ();
1664 	break;
1665       case tp_pointer:
1666 	follow_type = lookup_pointer_type (follow_type);
1667 	if (make_const)
1668 	  follow_type = make_cv_type (make_const,
1669 				      TYPE_VOLATILE (follow_type),
1670 				      follow_type, 0);
1671 	if (make_volatile)
1672 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1673 				      make_volatile,
1674 				      follow_type, 0);
1675 	if (make_addr_space)
1676 	  follow_type = make_type_with_address_space (follow_type,
1677 						      make_addr_space);
1678 	make_const = make_volatile = 0;
1679 	make_addr_space = 0;
1680 	break;
1681       case tp_reference:
1682 	follow_type = lookup_reference_type (follow_type);
1683 	if (make_const)
1684 	  follow_type = make_cv_type (make_const,
1685 				      TYPE_VOLATILE (follow_type),
1686 				      follow_type, 0);
1687 	if (make_volatile)
1688 	  follow_type = make_cv_type (TYPE_CONST (follow_type),
1689 				      make_volatile,
1690 				      follow_type, 0);
1691 	if (make_addr_space)
1692 	  follow_type = make_type_with_address_space (follow_type,
1693 						      make_addr_space);
1694 	make_const = make_volatile = 0;
1695 	make_addr_space = 0;
1696 	break;
1697       case tp_array:
1698 	array_size = pop_type_int ();
1699 	/* FIXME-type-allocation: need a way to free this type when we are
1700 	   done with it.  */
1701 	follow_type =
1702 	  lookup_array_range_type (follow_type,
1703 				   0, array_size >= 0 ? array_size - 1 : 0);
1704 	if (array_size < 0)
1705 	  TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1706 	break;
1707       case tp_function:
1708 	/* FIXME-type-allocation: need a way to free this type when we are
1709 	   done with it.  */
1710 	follow_type = lookup_function_type (follow_type);
1711 	break;
1712 
1713       case tp_function_with_arguments:
1714 	{
1715 	  VEC (type_ptr) *args = pop_typelist ();
1716 
1717 	  follow_type
1718 	    = lookup_function_type_with_arguments (follow_type,
1719 						   VEC_length (type_ptr, args),
1720 						   VEC_address (type_ptr,
1721 								args));
1722 	  VEC_free (type_ptr, args);
1723 	}
1724 	break;
1725 
1726       case tp_type_stack:
1727 	{
1728 	  struct type_stack *stack = pop_type_stack ();
1729 	  /* Sort of ugly, but not really much worse than the
1730 	     alternatives.  */
1731 	  struct type_stack save = type_stack;
1732 
1733 	  type_stack = *stack;
1734 	  follow_type = follow_types (follow_type);
1735 	  gdb_assert (type_stack.depth == 0);
1736 
1737 	  type_stack = save;
1738 	}
1739 	break;
1740       default:
1741 	gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1742       }
1743   return follow_type;
1744 }
1745 
1746 /* This function avoids direct calls to fprintf
1747    in the parser generated debug code.  */
1748 void
1749 parser_fprintf (FILE *x, const char *y, ...)
1750 {
1751   va_list args;
1752 
1753   va_start (args, y);
1754   if (x == stderr)
1755     vfprintf_unfiltered (gdb_stderr, y, args);
1756   else
1757     {
1758       fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1759       vfprintf_unfiltered (gdb_stderr, y, args);
1760     }
1761   va_end (args);
1762 }
1763 
1764 /* Implementation of the exp_descriptor method operator_check.  */
1765 
1766 int
1767 operator_check_standard (struct expression *exp, int pos,
1768 			 int (*objfile_func) (struct objfile *objfile,
1769 					      void *data),
1770 			 void *data)
1771 {
1772   const union exp_element *const elts = exp->elts;
1773   struct type *type = NULL;
1774   struct objfile *objfile = NULL;
1775 
1776   /* Extended operators should have been already handled by exp_descriptor
1777      iterate method of its specific language.  */
1778   gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1779 
1780   /* Track the callers of write_exp_elt_type for this table.  */
1781 
1782   switch (elts[pos].opcode)
1783     {
1784     case BINOP_VAL:
1785     case OP_COMPLEX:
1786     case OP_DECFLOAT:
1787     case OP_DOUBLE:
1788     case OP_LONG:
1789     case OP_SCOPE:
1790     case OP_TYPE:
1791     case UNOP_CAST:
1792     case UNOP_MAX:
1793     case UNOP_MEMVAL:
1794     case UNOP_MIN:
1795       type = elts[pos + 1].type;
1796       break;
1797 
1798     case TYPE_INSTANCE:
1799       {
1800 	LONGEST arg, nargs = elts[pos + 1].longconst;
1801 
1802 	for (arg = 0; arg < nargs; arg++)
1803 	  {
1804 	    struct type *type = elts[pos + 2 + arg].type;
1805 	    struct objfile *objfile = TYPE_OBJFILE (type);
1806 
1807 	    if (objfile && (*objfile_func) (objfile, data))
1808 	      return 1;
1809 	  }
1810       }
1811       break;
1812 
1813     case UNOP_MEMVAL_TLS:
1814       objfile = elts[pos + 1].objfile;
1815       type = elts[pos + 2].type;
1816       break;
1817 
1818     case OP_VAR_VALUE:
1819       {
1820 	const struct block *const block = elts[pos + 1].block;
1821 	const struct symbol *const symbol = elts[pos + 2].symbol;
1822 
1823 	/* Check objfile where the variable itself is placed.
1824 	   SYMBOL_OBJ_SECTION (symbol) may be NULL.  */
1825 	if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1826 	  return 1;
1827 
1828 	/* Check objfile where is placed the code touching the variable.  */
1829 	objfile = lookup_objfile_from_block (block);
1830 
1831 	type = SYMBOL_TYPE (symbol);
1832       }
1833       break;
1834     }
1835 
1836   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
1837 
1838   if (type && TYPE_OBJFILE (type)
1839       && (*objfile_func) (TYPE_OBJFILE (type), data))
1840     return 1;
1841   if (objfile && (*objfile_func) (objfile, data))
1842     return 1;
1843 
1844   return 0;
1845 }
1846 
1847 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1848    The functions are never called with NULL OBJFILE.  Functions get passed an
1849    arbitrary caller supplied DATA pointer.  If any of the functions returns
1850    non-zero value then (any other) non-zero value is immediately returned to
1851    the caller.  Otherwise zero is returned after iterating through whole EXP.
1852    */
1853 
1854 static int
1855 exp_iterate (struct expression *exp,
1856 	     int (*objfile_func) (struct objfile *objfile, void *data),
1857 	     void *data)
1858 {
1859   int endpos;
1860 
1861   for (endpos = exp->nelts; endpos > 0; )
1862     {
1863       int pos, args, oplen = 0;
1864 
1865       operator_length (exp, endpos, &oplen, &args);
1866       gdb_assert (oplen > 0);
1867 
1868       pos = endpos - oplen;
1869       if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1870 							   objfile_func, data))
1871 	return 1;
1872 
1873       endpos = pos;
1874     }
1875 
1876   return 0;
1877 }
1878 
1879 /* Helper for exp_uses_objfile.  */
1880 
1881 static int
1882 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1883 {
1884   struct objfile *objfile = objfile_voidp;
1885 
1886   if (exp_objfile->separate_debug_objfile_backlink)
1887     exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1888 
1889   return exp_objfile == objfile;
1890 }
1891 
1892 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1893    is unloaded), otherwise return 0.  OBJFILE must not be a separate debug info
1894    file.  */
1895 
1896 int
1897 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1898 {
1899   gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1900 
1901   return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1902 }
1903 
1904 void
1905 _initialize_parse (void)
1906 {
1907   type_stack.size = 0;
1908   type_stack.depth = 0;
1909   type_stack.elements = NULL;
1910 
1911   add_setshow_zuinteger_cmd ("expression", class_maintenance,
1912 			     &expressiondebug,
1913 			     _("Set expression debugging."),
1914 			     _("Show expression debugging."),
1915 			     _("When non-zero, the internal representation "
1916 			       "of expressions will be printed."),
1917 			     NULL,
1918 			     show_expressiondebug,
1919 			     &setdebuglist, &showdebuglist);
1920   add_setshow_boolean_cmd ("parser", class_maintenance,
1921 			    &parser_debug,
1922 			   _("Set parser debugging."),
1923 			   _("Show parser debugging."),
1924 			   _("When non-zero, expression parser "
1925 			     "tracing will be enabled."),
1926 			    NULL,
1927 			    show_parserdebug,
1928 			    &setdebuglist, &showdebuglist);
1929 }
1930