1 /* Parse expressions for GDB. 2 3 Copyright (C) 1986-2013 Free Software Foundation, Inc. 4 5 Modified from expread.y by the Department of Computer Science at the 6 State University of New York at Buffalo, 1991. 7 8 This file is part of GDB. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 22 23 /* Parse an expression from text in a string, 24 and return the result as a struct expression pointer. 25 That structure contains arithmetic operations in reverse polish, 26 with constants represented by operations that are followed by special data. 27 See expression.h for the details of the format. 28 What is important here is that it can be built up sequentially 29 during the process of parsing; the lower levels of the tree always 30 come first in the result. */ 31 32 #include "defs.h" 33 #include <ctype.h> 34 #include "arch-utils.h" 35 #include "gdb_string.h" 36 #include "symtab.h" 37 #include "gdbtypes.h" 38 #include "frame.h" 39 #include "expression.h" 40 #include "value.h" 41 #include "command.h" 42 #include "language.h" 43 #include "f-lang.h" 44 #include "parser-defs.h" 45 #include "gdbcmd.h" 46 #include "symfile.h" /* for overlay functions */ 47 #include "inferior.h" 48 #include "doublest.h" 49 #include "gdb_assert.h" 50 #include "block.h" 51 #include "source.h" 52 #include "objfiles.h" 53 #include "exceptions.h" 54 #include "user-regs.h" 55 56 /* Standard set of definitions for printing, dumping, prefixifying, 57 * and evaluating expressions. */ 58 59 const struct exp_descriptor exp_descriptor_standard = 60 { 61 print_subexp_standard, 62 operator_length_standard, 63 operator_check_standard, 64 op_name_standard, 65 dump_subexp_body_standard, 66 evaluate_subexp_standard 67 }; 68 69 /* Global variables declared in parser-defs.h (and commented there). */ 70 struct expression *expout; 71 int expout_size; 72 int expout_ptr; 73 const struct block *expression_context_block; 74 CORE_ADDR expression_context_pc; 75 const struct block *innermost_block; 76 int arglist_len; 77 static struct type_stack type_stack; 78 char *lexptr; 79 char *prev_lexptr; 80 int paren_depth; 81 int comma_terminates; 82 83 /* True if parsing an expression to attempt completion. */ 84 int parse_completion; 85 86 /* The index of the last struct expression directly before a '.' or 87 '->'. This is set when parsing and is only used when completing a 88 field name. It is -1 if no dereference operation was found. */ 89 static int expout_last_struct = -1; 90 91 /* If we are completing a tagged type name, this will be nonzero. */ 92 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF; 93 94 /* The token for tagged type name completion. */ 95 static char *expout_completion_name; 96 97 98 static unsigned int expressiondebug = 0; 99 static void 100 show_expressiondebug (struct ui_file *file, int from_tty, 101 struct cmd_list_element *c, const char *value) 102 { 103 fprintf_filtered (file, _("Expression debugging is %s.\n"), value); 104 } 105 106 107 /* Non-zero if an expression parser should set yydebug. */ 108 int parser_debug; 109 110 static void 111 show_parserdebug (struct ui_file *file, int from_tty, 112 struct cmd_list_element *c, const char *value) 113 { 114 fprintf_filtered (file, _("Parser debugging is %s.\n"), value); 115 } 116 117 118 static void free_funcalls (void *ignore); 119 120 static int prefixify_subexp (struct expression *, struct expression *, int, 121 int); 122 123 static struct expression *parse_exp_in_context (char **, CORE_ADDR, 124 const struct block *, int, 125 int, int *); 126 127 void _initialize_parse (void); 128 129 /* Data structure for saving values of arglist_len for function calls whose 130 arguments contain other function calls. */ 131 132 struct funcall 133 { 134 struct funcall *next; 135 int arglist_len; 136 }; 137 138 static struct funcall *funcall_chain; 139 140 /* Begin counting arguments for a function call, 141 saving the data about any containing call. */ 142 143 void 144 start_arglist (void) 145 { 146 struct funcall *new; 147 148 new = (struct funcall *) xmalloc (sizeof (struct funcall)); 149 new->next = funcall_chain; 150 new->arglist_len = arglist_len; 151 arglist_len = 0; 152 funcall_chain = new; 153 } 154 155 /* Return the number of arguments in a function call just terminated, 156 and restore the data for the containing function call. */ 157 158 int 159 end_arglist (void) 160 { 161 int val = arglist_len; 162 struct funcall *call = funcall_chain; 163 164 funcall_chain = call->next; 165 arglist_len = call->arglist_len; 166 xfree (call); 167 return val; 168 } 169 170 /* Free everything in the funcall chain. 171 Used when there is an error inside parsing. */ 172 173 static void 174 free_funcalls (void *ignore) 175 { 176 struct funcall *call, *next; 177 178 for (call = funcall_chain; call; call = next) 179 { 180 next = call->next; 181 xfree (call); 182 } 183 } 184 185 /* This page contains the functions for adding data to the struct expression 186 being constructed. */ 187 188 /* See definition in parser-defs.h. */ 189 190 void 191 initialize_expout (int initial_size, const struct language_defn *lang, 192 struct gdbarch *gdbarch) 193 { 194 expout_size = initial_size; 195 expout_ptr = 0; 196 expout = xmalloc (sizeof (struct expression) 197 + EXP_ELEM_TO_BYTES (expout_size)); 198 expout->language_defn = lang; 199 expout->gdbarch = gdbarch; 200 } 201 202 /* See definition in parser-defs.h. */ 203 204 void 205 reallocate_expout (void) 206 { 207 /* Record the actual number of expression elements, and then 208 reallocate the expression memory so that we free up any 209 excess elements. */ 210 211 expout->nelts = expout_ptr; 212 expout = xrealloc ((char *) expout, 213 sizeof (struct expression) 214 + EXP_ELEM_TO_BYTES (expout_ptr)); 215 } 216 217 /* Add one element to the end of the expression. */ 218 219 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into 220 a register through here. */ 221 222 static void 223 write_exp_elt (const union exp_element *expelt) 224 { 225 if (expout_ptr >= expout_size) 226 { 227 expout_size *= 2; 228 expout = (struct expression *) 229 xrealloc ((char *) expout, sizeof (struct expression) 230 + EXP_ELEM_TO_BYTES (expout_size)); 231 } 232 expout->elts[expout_ptr++] = *expelt; 233 } 234 235 void 236 write_exp_elt_opcode (enum exp_opcode expelt) 237 { 238 union exp_element tmp; 239 240 memset (&tmp, 0, sizeof (union exp_element)); 241 tmp.opcode = expelt; 242 write_exp_elt (&tmp); 243 } 244 245 void 246 write_exp_elt_sym (struct symbol *expelt) 247 { 248 union exp_element tmp; 249 250 memset (&tmp, 0, sizeof (union exp_element)); 251 tmp.symbol = expelt; 252 write_exp_elt (&tmp); 253 } 254 255 void 256 write_exp_elt_block (const struct block *b) 257 { 258 union exp_element tmp; 259 260 memset (&tmp, 0, sizeof (union exp_element)); 261 tmp.block = b; 262 write_exp_elt (&tmp); 263 } 264 265 void 266 write_exp_elt_objfile (struct objfile *objfile) 267 { 268 union exp_element tmp; 269 270 memset (&tmp, 0, sizeof (union exp_element)); 271 tmp.objfile = objfile; 272 write_exp_elt (&tmp); 273 } 274 275 void 276 write_exp_elt_longcst (LONGEST expelt) 277 { 278 union exp_element tmp; 279 280 memset (&tmp, 0, sizeof (union exp_element)); 281 tmp.longconst = expelt; 282 write_exp_elt (&tmp); 283 } 284 285 void 286 write_exp_elt_dblcst (DOUBLEST expelt) 287 { 288 union exp_element tmp; 289 290 memset (&tmp, 0, sizeof (union exp_element)); 291 tmp.doubleconst = expelt; 292 write_exp_elt (&tmp); 293 } 294 295 void 296 write_exp_elt_decfloatcst (gdb_byte expelt[16]) 297 { 298 union exp_element tmp; 299 int index; 300 301 for (index = 0; index < 16; index++) 302 tmp.decfloatconst[index] = expelt[index]; 303 304 write_exp_elt (&tmp); 305 } 306 307 void 308 write_exp_elt_type (struct type *expelt) 309 { 310 union exp_element tmp; 311 312 memset (&tmp, 0, sizeof (union exp_element)); 313 tmp.type = expelt; 314 write_exp_elt (&tmp); 315 } 316 317 void 318 write_exp_elt_intern (struct internalvar *expelt) 319 { 320 union exp_element tmp; 321 322 memset (&tmp, 0, sizeof (union exp_element)); 323 tmp.internalvar = expelt; 324 write_exp_elt (&tmp); 325 } 326 327 /* Add a string constant to the end of the expression. 328 329 String constants are stored by first writing an expression element 330 that contains the length of the string, then stuffing the string 331 constant itself into however many expression elements are needed 332 to hold it, and then writing another expression element that contains 333 the length of the string. I.e. an expression element at each end of 334 the string records the string length, so you can skip over the 335 expression elements containing the actual string bytes from either 336 end of the string. Note that this also allows gdb to handle 337 strings with embedded null bytes, as is required for some languages. 338 339 Don't be fooled by the fact that the string is null byte terminated, 340 this is strictly for the convenience of debugging gdb itself. 341 Gdb does not depend up the string being null terminated, since the 342 actual length is recorded in expression elements at each end of the 343 string. The null byte is taken into consideration when computing how 344 many expression elements are required to hold the string constant, of 345 course. */ 346 347 348 void 349 write_exp_string (struct stoken str) 350 { 351 int len = str.length; 352 int lenelt; 353 char *strdata; 354 355 /* Compute the number of expression elements required to hold the string 356 (including a null byte terminator), along with one expression element 357 at each end to record the actual string length (not including the 358 null byte terminator). */ 359 360 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1); 361 362 /* Ensure that we have enough available expression elements to store 363 everything. */ 364 365 if ((expout_ptr + lenelt) >= expout_size) 366 { 367 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); 368 expout = (struct expression *) 369 xrealloc ((char *) expout, (sizeof (struct expression) 370 + EXP_ELEM_TO_BYTES (expout_size))); 371 } 372 373 /* Write the leading length expression element (which advances the current 374 expression element index), then write the string constant followed by a 375 terminating null byte, and then write the trailing length expression 376 element. */ 377 378 write_exp_elt_longcst ((LONGEST) len); 379 strdata = (char *) &expout->elts[expout_ptr]; 380 memcpy (strdata, str.ptr, len); 381 *(strdata + len) = '\0'; 382 expout_ptr += lenelt - 2; 383 write_exp_elt_longcst ((LONGEST) len); 384 } 385 386 /* Add a vector of string constants to the end of the expression. 387 388 This adds an OP_STRING operation, but encodes the contents 389 differently from write_exp_string. The language is expected to 390 handle evaluation of this expression itself. 391 392 After the usual OP_STRING header, TYPE is written into the 393 expression as a long constant. The interpretation of this field is 394 up to the language evaluator. 395 396 Next, each string in VEC is written. The length is written as a 397 long constant, followed by the contents of the string. */ 398 399 void 400 write_exp_string_vector (int type, struct stoken_vector *vec) 401 { 402 int i, n_slots, len; 403 404 /* Compute the size. We compute the size in number of slots to 405 avoid issues with string padding. */ 406 n_slots = 0; 407 for (i = 0; i < vec->len; ++i) 408 { 409 /* One slot for the length of this element, plus the number of 410 slots needed for this string. */ 411 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length); 412 } 413 414 /* One more slot for the type of the string. */ 415 ++n_slots; 416 417 /* Now compute a phony string length. */ 418 len = EXP_ELEM_TO_BYTES (n_slots) - 1; 419 420 n_slots += 4; 421 if ((expout_ptr + n_slots) >= expout_size) 422 { 423 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10); 424 expout = (struct expression *) 425 xrealloc ((char *) expout, (sizeof (struct expression) 426 + EXP_ELEM_TO_BYTES (expout_size))); 427 } 428 429 write_exp_elt_opcode (OP_STRING); 430 write_exp_elt_longcst (len); 431 write_exp_elt_longcst (type); 432 433 for (i = 0; i < vec->len; ++i) 434 { 435 write_exp_elt_longcst (vec->tokens[i].length); 436 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr, 437 vec->tokens[i].length); 438 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length); 439 } 440 441 write_exp_elt_longcst (len); 442 write_exp_elt_opcode (OP_STRING); 443 } 444 445 /* Add a bitstring constant to the end of the expression. 446 447 Bitstring constants are stored by first writing an expression element 448 that contains the length of the bitstring (in bits), then stuffing the 449 bitstring constant itself into however many expression elements are 450 needed to hold it, and then writing another expression element that 451 contains the length of the bitstring. I.e. an expression element at 452 each end of the bitstring records the bitstring length, so you can skip 453 over the expression elements containing the actual bitstring bytes from 454 either end of the bitstring. */ 455 456 void 457 write_exp_bitstring (struct stoken str) 458 { 459 int bits = str.length; /* length in bits */ 460 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 461 int lenelt; 462 char *strdata; 463 464 /* Compute the number of expression elements required to hold the bitstring, 465 along with one expression element at each end to record the actual 466 bitstring length in bits. */ 467 468 lenelt = 2 + BYTES_TO_EXP_ELEM (len); 469 470 /* Ensure that we have enough available expression elements to store 471 everything. */ 472 473 if ((expout_ptr + lenelt) >= expout_size) 474 { 475 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10); 476 expout = (struct expression *) 477 xrealloc ((char *) expout, (sizeof (struct expression) 478 + EXP_ELEM_TO_BYTES (expout_size))); 479 } 480 481 /* Write the leading length expression element (which advances the current 482 expression element index), then write the bitstring constant, and then 483 write the trailing length expression element. */ 484 485 write_exp_elt_longcst ((LONGEST) bits); 486 strdata = (char *) &expout->elts[expout_ptr]; 487 memcpy (strdata, str.ptr, len); 488 expout_ptr += lenelt - 2; 489 write_exp_elt_longcst ((LONGEST) bits); 490 } 491 492 /* Add the appropriate elements for a minimal symbol to the end of 493 the expression. */ 494 495 void 496 write_exp_msymbol (struct minimal_symbol *msymbol) 497 { 498 struct objfile *objfile = msymbol_objfile (msymbol); 499 struct gdbarch *gdbarch = get_objfile_arch (objfile); 500 501 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol); 502 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol); 503 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol); 504 CORE_ADDR pc; 505 506 /* The minimal symbol might point to a function descriptor; 507 resolve it to the actual code address instead. */ 508 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, ¤t_target); 509 if (pc != addr) 510 { 511 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc); 512 513 /* In this case, assume we have a code symbol instead of 514 a data symbol. */ 515 516 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc 517 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc) 518 { 519 /* A function descriptor has been resolved but PC is still in the 520 STT_GNU_IFUNC resolver body (such as because inferior does not 521 run to be able to call it). */ 522 523 type = mst_text_gnu_ifunc; 524 } 525 else 526 type = mst_text; 527 section = NULL; 528 addr = pc; 529 } 530 531 if (overlay_debugging) 532 addr = symbol_overlayed_address (addr, section); 533 534 write_exp_elt_opcode (OP_LONG); 535 /* Let's make the type big enough to hold a 64-bit address. */ 536 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr); 537 write_exp_elt_longcst ((LONGEST) addr); 538 write_exp_elt_opcode (OP_LONG); 539 540 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL) 541 { 542 write_exp_elt_opcode (UNOP_MEMVAL_TLS); 543 write_exp_elt_objfile (objfile); 544 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol); 545 write_exp_elt_opcode (UNOP_MEMVAL_TLS); 546 return; 547 } 548 549 write_exp_elt_opcode (UNOP_MEMVAL); 550 switch (type) 551 { 552 case mst_text: 553 case mst_file_text: 554 case mst_solib_trampoline: 555 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol); 556 break; 557 558 case mst_text_gnu_ifunc: 559 write_exp_elt_type (objfile_type (objfile) 560 ->nodebug_text_gnu_ifunc_symbol); 561 break; 562 563 case mst_data: 564 case mst_file_data: 565 case mst_bss: 566 case mst_file_bss: 567 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol); 568 break; 569 570 case mst_slot_got_plt: 571 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol); 572 break; 573 574 default: 575 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol); 576 break; 577 } 578 write_exp_elt_opcode (UNOP_MEMVAL); 579 } 580 581 /* Mark the current index as the starting location of a structure 582 expression. This is used when completing on field names. */ 583 584 void 585 mark_struct_expression (void) 586 { 587 gdb_assert (parse_completion 588 && expout_tag_completion_type == TYPE_CODE_UNDEF); 589 expout_last_struct = expout_ptr; 590 } 591 592 /* Indicate that the current parser invocation is completing a tag. 593 TAG is the type code of the tag, and PTR and LENGTH represent the 594 start of the tag name. */ 595 596 void 597 mark_completion_tag (enum type_code tag, const char *ptr, int length) 598 { 599 gdb_assert (parse_completion 600 && expout_tag_completion_type == TYPE_CODE_UNDEF 601 && expout_completion_name == NULL 602 && expout_last_struct == -1); 603 gdb_assert (tag == TYPE_CODE_UNION 604 || tag == TYPE_CODE_STRUCT 605 || tag == TYPE_CODE_CLASS 606 || tag == TYPE_CODE_ENUM); 607 expout_tag_completion_type = tag; 608 expout_completion_name = xmalloc (length + 1); 609 memcpy (expout_completion_name, ptr, length); 610 expout_completion_name[length] = '\0'; 611 } 612 613 614 /* Recognize tokens that start with '$'. These include: 615 616 $regname A native register name or a "standard 617 register name". 618 619 $variable A convenience variable with a name chosen 620 by the user. 621 622 $digits Value history with index <digits>, starting 623 from the first value which has index 1. 624 625 $$digits Value history with index <digits> relative 626 to the last value. I.e. $$0 is the last 627 value, $$1 is the one previous to that, $$2 628 is the one previous to $$1, etc. 629 630 $ | $0 | $$0 The last value in the value history. 631 632 $$ An abbreviation for the second to the last 633 value in the value history, I.e. $$1 */ 634 635 void 636 write_dollar_variable (struct stoken str) 637 { 638 struct symbol *sym = NULL; 639 struct minimal_symbol *msym = NULL; 640 struct internalvar *isym = NULL; 641 642 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1) 643 and $$digits (equivalent to $<-digits> if you could type that). */ 644 645 int negate = 0; 646 int i = 1; 647 /* Double dollar means negate the number and add -1 as well. 648 Thus $$ alone means -1. */ 649 if (str.length >= 2 && str.ptr[1] == '$') 650 { 651 negate = 1; 652 i = 2; 653 } 654 if (i == str.length) 655 { 656 /* Just dollars (one or two). */ 657 i = -negate; 658 goto handle_last; 659 } 660 /* Is the rest of the token digits? */ 661 for (; i < str.length; i++) 662 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9')) 663 break; 664 if (i == str.length) 665 { 666 i = atoi (str.ptr + 1 + negate); 667 if (negate) 668 i = -i; 669 goto handle_last; 670 } 671 672 /* Handle tokens that refer to machine registers: 673 $ followed by a register name. */ 674 i = user_reg_map_name_to_regnum (parse_gdbarch, 675 str.ptr + 1, str.length - 1); 676 if (i >= 0) 677 goto handle_register; 678 679 /* Any names starting with $ are probably debugger internal variables. */ 680 681 isym = lookup_only_internalvar (copy_name (str) + 1); 682 if (isym) 683 { 684 write_exp_elt_opcode (OP_INTERNALVAR); 685 write_exp_elt_intern (isym); 686 write_exp_elt_opcode (OP_INTERNALVAR); 687 return; 688 } 689 690 /* On some systems, such as HP-UX and hppa-linux, certain system routines 691 have names beginning with $ or $$. Check for those, first. */ 692 693 sym = lookup_symbol (copy_name (str), (struct block *) NULL, 694 VAR_DOMAIN, NULL); 695 if (sym) 696 { 697 write_exp_elt_opcode (OP_VAR_VALUE); 698 write_exp_elt_block (block_found); /* set by lookup_symbol */ 699 write_exp_elt_sym (sym); 700 write_exp_elt_opcode (OP_VAR_VALUE); 701 return; 702 } 703 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL); 704 if (msym) 705 { 706 write_exp_msymbol (msym); 707 return; 708 } 709 710 /* Any other names are assumed to be debugger internal variables. */ 711 712 write_exp_elt_opcode (OP_INTERNALVAR); 713 write_exp_elt_intern (create_internalvar (copy_name (str) + 1)); 714 write_exp_elt_opcode (OP_INTERNALVAR); 715 return; 716 handle_last: 717 write_exp_elt_opcode (OP_LAST); 718 write_exp_elt_longcst ((LONGEST) i); 719 write_exp_elt_opcode (OP_LAST); 720 return; 721 handle_register: 722 write_exp_elt_opcode (OP_REGISTER); 723 str.length--; 724 str.ptr++; 725 write_exp_string (str); 726 write_exp_elt_opcode (OP_REGISTER); 727 return; 728 } 729 730 731 char * 732 find_template_name_end (char *p) 733 { 734 int depth = 1; 735 int just_seen_right = 0; 736 int just_seen_colon = 0; 737 int just_seen_space = 0; 738 739 if (!p || (*p != '<')) 740 return 0; 741 742 while (*++p) 743 { 744 switch (*p) 745 { 746 case '\'': 747 case '\"': 748 case '{': 749 case '}': 750 /* In future, may want to allow these?? */ 751 return 0; 752 case '<': 753 depth++; /* start nested template */ 754 if (just_seen_colon || just_seen_right || just_seen_space) 755 return 0; /* but not after : or :: or > or space */ 756 break; 757 case '>': 758 if (just_seen_colon || just_seen_right) 759 return 0; /* end a (nested?) template */ 760 just_seen_right = 1; /* but not after : or :: */ 761 if (--depth == 0) /* also disallow >>, insist on > > */ 762 return ++p; /* if outermost ended, return */ 763 break; 764 case ':': 765 if (just_seen_space || (just_seen_colon > 1)) 766 return 0; /* nested class spec coming up */ 767 just_seen_colon++; /* we allow :: but not :::: */ 768 break; 769 case ' ': 770 break; 771 default: 772 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */ 773 (*p >= 'A' && *p <= 'Z') || 774 (*p >= '0' && *p <= '9') || 775 (*p == '_') || (*p == ',') || /* commas for template args */ 776 (*p == '&') || (*p == '*') || /* pointer and ref types */ 777 (*p == '(') || (*p == ')') || /* function types */ 778 (*p == '[') || (*p == ']'))) /* array types */ 779 return 0; 780 } 781 if (*p != ' ') 782 just_seen_space = 0; 783 if (*p != ':') 784 just_seen_colon = 0; 785 if (*p != '>') 786 just_seen_right = 0; 787 } 788 return 0; 789 } 790 791 792 /* Return a null-terminated temporary copy of the name of a string token. 793 794 Tokens that refer to names do so with explicit pointer and length, 795 so they can share the storage that lexptr is parsing. 796 When it is necessary to pass a name to a function that expects 797 a null-terminated string, the substring is copied out 798 into a separate block of storage. 799 800 N.B. A single buffer is reused on each call. */ 801 802 char * 803 copy_name (struct stoken token) 804 { 805 /* A temporary buffer for identifiers, so we can null-terminate them. 806 We allocate this with xrealloc. parse_exp_1 used to allocate with 807 alloca, using the size of the whole expression as a conservative 808 estimate of the space needed. However, macro expansion can 809 introduce names longer than the original expression; there's no 810 practical way to know beforehand how large that might be. */ 811 static char *namecopy; 812 static size_t namecopy_size; 813 814 /* Make sure there's enough space for the token. */ 815 if (namecopy_size < token.length + 1) 816 { 817 namecopy_size = token.length + 1; 818 namecopy = xrealloc (namecopy, token.length + 1); 819 } 820 821 memcpy (namecopy, token.ptr, token.length); 822 namecopy[token.length] = 0; 823 824 return namecopy; 825 } 826 827 828 /* See comments on parser-defs.h. */ 829 830 int 831 prefixify_expression (struct expression *expr) 832 { 833 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts); 834 struct expression *temp; 835 int inpos = expr->nelts, outpos = 0; 836 837 temp = (struct expression *) alloca (len); 838 839 /* Copy the original expression into temp. */ 840 memcpy (temp, expr, len); 841 842 return prefixify_subexp (temp, expr, inpos, outpos); 843 } 844 845 /* Return the number of exp_elements in the postfix subexpression 846 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */ 847 848 int 849 length_of_subexp (struct expression *expr, int endpos) 850 { 851 int oplen, args; 852 853 operator_length (expr, endpos, &oplen, &args); 854 855 while (args > 0) 856 { 857 oplen += length_of_subexp (expr, endpos - oplen); 858 args--; 859 } 860 861 return oplen; 862 } 863 864 /* Sets *OPLENP to the length of the operator whose (last) index is 865 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that 866 operator takes. */ 867 868 void 869 operator_length (const struct expression *expr, int endpos, int *oplenp, 870 int *argsp) 871 { 872 expr->language_defn->la_exp_desc->operator_length (expr, endpos, 873 oplenp, argsp); 874 } 875 876 /* Default value for operator_length in exp_descriptor vectors. */ 877 878 void 879 operator_length_standard (const struct expression *expr, int endpos, 880 int *oplenp, int *argsp) 881 { 882 int oplen = 1; 883 int args = 0; 884 enum f90_range_type range_type; 885 int i; 886 887 if (endpos < 1) 888 error (_("?error in operator_length_standard")); 889 890 i = (int) expr->elts[endpos - 1].opcode; 891 892 switch (i) 893 { 894 /* C++ */ 895 case OP_SCOPE: 896 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 897 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1); 898 break; 899 900 case OP_LONG: 901 case OP_DOUBLE: 902 case OP_DECFLOAT: 903 case OP_VAR_VALUE: 904 oplen = 4; 905 break; 906 907 case OP_TYPE: 908 case OP_BOOL: 909 case OP_LAST: 910 case OP_INTERNALVAR: 911 case OP_VAR_ENTRY_VALUE: 912 oplen = 3; 913 break; 914 915 case OP_COMPLEX: 916 oplen = 3; 917 args = 2; 918 break; 919 920 case OP_FUNCALL: 921 case OP_F77_UNDETERMINED_ARGLIST: 922 oplen = 3; 923 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 924 break; 925 926 case TYPE_INSTANCE: 927 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst); 928 args = 1; 929 break; 930 931 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */ 932 oplen = 4; 933 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 934 break; 935 936 case UNOP_MAX: 937 case UNOP_MIN: 938 oplen = 3; 939 break; 940 941 case UNOP_CAST_TYPE: 942 case UNOP_DYNAMIC_CAST: 943 case UNOP_REINTERPRET_CAST: 944 case UNOP_MEMVAL_TYPE: 945 oplen = 1; 946 args = 2; 947 break; 948 949 case BINOP_VAL: 950 case UNOP_CAST: 951 case UNOP_MEMVAL: 952 oplen = 3; 953 args = 1; 954 break; 955 956 case UNOP_MEMVAL_TLS: 957 oplen = 4; 958 args = 1; 959 break; 960 961 case UNOP_ABS: 962 case UNOP_CAP: 963 case UNOP_CHR: 964 case UNOP_FLOAT: 965 case UNOP_HIGH: 966 case UNOP_ODD: 967 case UNOP_ORD: 968 case UNOP_TRUNC: 969 case OP_TYPEOF: 970 case OP_DECLTYPE: 971 oplen = 1; 972 args = 1; 973 break; 974 975 case OP_ADL_FUNC: 976 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 977 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 978 oplen++; 979 oplen++; 980 break; 981 982 case STRUCTOP_STRUCT: 983 case STRUCTOP_PTR: 984 args = 1; 985 /* fall through */ 986 case OP_REGISTER: 987 case OP_M2_STRING: 988 case OP_STRING: 989 case OP_OBJC_NSSTRING: /* Objective C Foundation Class 990 NSString constant. */ 991 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */ 992 case OP_NAME: 993 oplen = longest_to_int (expr->elts[endpos - 2].longconst); 994 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1); 995 break; 996 997 case OP_ARRAY: 998 oplen = 4; 999 args = longest_to_int (expr->elts[endpos - 2].longconst); 1000 args -= longest_to_int (expr->elts[endpos - 3].longconst); 1001 args += 1; 1002 break; 1003 1004 case TERNOP_COND: 1005 case TERNOP_SLICE: 1006 args = 3; 1007 break; 1008 1009 /* Modula-2 */ 1010 case MULTI_SUBSCRIPT: 1011 oplen = 3; 1012 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst); 1013 break; 1014 1015 case BINOP_ASSIGN_MODIFY: 1016 oplen = 3; 1017 args = 2; 1018 break; 1019 1020 /* C++ */ 1021 case OP_THIS: 1022 oplen = 2; 1023 break; 1024 1025 case OP_F90_RANGE: 1026 oplen = 3; 1027 1028 range_type = longest_to_int (expr->elts[endpos - 2].longconst); 1029 switch (range_type) 1030 { 1031 case LOW_BOUND_DEFAULT: 1032 case HIGH_BOUND_DEFAULT: 1033 args = 1; 1034 break; 1035 case BOTH_BOUND_DEFAULT: 1036 args = 0; 1037 break; 1038 case NONE_BOUND_DEFAULT: 1039 args = 2; 1040 break; 1041 } 1042 1043 break; 1044 1045 default: 1046 args = 1 + (i < (int) BINOP_END); 1047 } 1048 1049 *oplenp = oplen; 1050 *argsp = args; 1051 } 1052 1053 /* Copy the subexpression ending just before index INEND in INEXPR 1054 into OUTEXPR, starting at index OUTBEG. 1055 In the process, convert it from suffix to prefix form. 1056 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1. 1057 Otherwise, it returns the index of the subexpression which is the 1058 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */ 1059 1060 static int 1061 prefixify_subexp (struct expression *inexpr, 1062 struct expression *outexpr, int inend, int outbeg) 1063 { 1064 int oplen; 1065 int args; 1066 int i; 1067 int *arglens; 1068 int result = -1; 1069 1070 operator_length (inexpr, inend, &oplen, &args); 1071 1072 /* Copy the final operator itself, from the end of the input 1073 to the beginning of the output. */ 1074 inend -= oplen; 1075 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend], 1076 EXP_ELEM_TO_BYTES (oplen)); 1077 outbeg += oplen; 1078 1079 if (expout_last_struct == inend) 1080 result = outbeg - oplen; 1081 1082 /* Find the lengths of the arg subexpressions. */ 1083 arglens = (int *) alloca (args * sizeof (int)); 1084 for (i = args - 1; i >= 0; i--) 1085 { 1086 oplen = length_of_subexp (inexpr, inend); 1087 arglens[i] = oplen; 1088 inend -= oplen; 1089 } 1090 1091 /* Now copy each subexpression, preserving the order of 1092 the subexpressions, but prefixifying each one. 1093 In this loop, inend starts at the beginning of 1094 the expression this level is working on 1095 and marches forward over the arguments. 1096 outbeg does similarly in the output. */ 1097 for (i = 0; i < args; i++) 1098 { 1099 int r; 1100 1101 oplen = arglens[i]; 1102 inend += oplen; 1103 r = prefixify_subexp (inexpr, outexpr, inend, outbeg); 1104 if (r != -1) 1105 { 1106 /* Return immediately. We probably have only parsed a 1107 partial expression, so we don't want to try to reverse 1108 the other operands. */ 1109 return r; 1110 } 1111 outbeg += oplen; 1112 } 1113 1114 return result; 1115 } 1116 1117 /* Read an expression from the string *STRINGPTR points to, 1118 parse it, and return a pointer to a struct expression that we malloc. 1119 Use block BLOCK as the lexical context for variable names; 1120 if BLOCK is zero, use the block of the selected stack frame. 1121 Meanwhile, advance *STRINGPTR to point after the expression, 1122 at the first nonwhite character that is not part of the expression 1123 (possibly a null character). 1124 1125 If COMMA is nonzero, stop if a comma is reached. */ 1126 1127 struct expression * 1128 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block, 1129 int comma) 1130 { 1131 struct expression *expr; 1132 char *const_hack = *stringptr ? xstrdup (*stringptr) : NULL; 1133 char *orig = const_hack; 1134 struct cleanup *back_to = make_cleanup (xfree, const_hack); 1135 1136 expr = parse_exp_in_context (&const_hack, pc, block, comma, 0, NULL); 1137 (*stringptr) += const_hack - orig; 1138 do_cleanups (back_to); 1139 return expr; 1140 } 1141 1142 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then 1143 no value is expected from the expression. 1144 OUT_SUBEXP is set when attempting to complete a field name; in this 1145 case it is set to the index of the subexpression on the 1146 left-hand-side of the struct op. If not doing such completion, it 1147 is left untouched. */ 1148 1149 static struct expression * 1150 parse_exp_in_context (char **stringptr, CORE_ADDR pc, const struct block *block, 1151 int comma, int void_context_p, int *out_subexp) 1152 { 1153 volatile struct gdb_exception except; 1154 struct cleanup *old_chain, *inner_chain; 1155 const struct language_defn *lang = NULL; 1156 int subexp; 1157 1158 lexptr = *stringptr; 1159 prev_lexptr = NULL; 1160 1161 paren_depth = 0; 1162 type_stack.depth = 0; 1163 expout_last_struct = -1; 1164 expout_tag_completion_type = TYPE_CODE_UNDEF; 1165 xfree (expout_completion_name); 1166 expout_completion_name = NULL; 1167 1168 comma_terminates = comma; 1169 1170 if (lexptr == 0 || *lexptr == 0) 1171 error_no_arg (_("expression to compute")); 1172 1173 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/); 1174 funcall_chain = 0; 1175 1176 expression_context_block = block; 1177 1178 /* If no context specified, try using the current frame, if any. */ 1179 if (!expression_context_block) 1180 expression_context_block = get_selected_block (&expression_context_pc); 1181 else if (pc == 0) 1182 expression_context_pc = BLOCK_START (expression_context_block); 1183 else 1184 expression_context_pc = pc; 1185 1186 /* Fall back to using the current source static context, if any. */ 1187 1188 if (!expression_context_block) 1189 { 1190 struct symtab_and_line cursal = get_current_source_symtab_and_line (); 1191 if (cursal.symtab) 1192 expression_context_block 1193 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK); 1194 if (expression_context_block) 1195 expression_context_pc = BLOCK_START (expression_context_block); 1196 } 1197 1198 if (language_mode == language_mode_auto && block != NULL) 1199 { 1200 /* Find the language associated to the given context block. 1201 Default to the current language if it can not be determined. 1202 1203 Note that using the language corresponding to the current frame 1204 can sometimes give unexpected results. For instance, this 1205 routine is often called several times during the inferior 1206 startup phase to re-parse breakpoint expressions after 1207 a new shared library has been loaded. The language associated 1208 to the current frame at this moment is not relevant for 1209 the breakpoint. Using it would therefore be silly, so it seems 1210 better to rely on the current language rather than relying on 1211 the current frame language to parse the expression. That's why 1212 we do the following language detection only if the context block 1213 has been specifically provided. */ 1214 struct symbol *func = block_linkage_function (block); 1215 1216 if (func != NULL) 1217 lang = language_def (SYMBOL_LANGUAGE (func)); 1218 if (lang == NULL || lang->la_language == language_unknown) 1219 lang = current_language; 1220 } 1221 else 1222 lang = current_language; 1223 1224 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame. 1225 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol 1226 and others called from *.y) ensure CURRENT_LANGUAGE gets restored 1227 to the value matching SELECTED_FRAME as set by get_current_arch. */ 1228 initialize_expout (10, lang, get_current_arch ()); 1229 inner_chain = make_cleanup_restore_current_language (); 1230 set_language (lang->la_language); 1231 1232 TRY_CATCH (except, RETURN_MASK_ALL) 1233 { 1234 if (lang->la_parser ()) 1235 lang->la_error (NULL); 1236 } 1237 if (except.reason < 0) 1238 { 1239 if (! parse_completion) 1240 { 1241 xfree (expout); 1242 throw_exception (except); 1243 } 1244 } 1245 1246 reallocate_expout (); 1247 1248 /* Convert expression from postfix form as generated by yacc 1249 parser, to a prefix form. */ 1250 1251 if (expressiondebug) 1252 dump_raw_expression (expout, gdb_stdlog, 1253 "before conversion to prefix form"); 1254 1255 subexp = prefixify_expression (expout); 1256 if (out_subexp) 1257 *out_subexp = subexp; 1258 1259 lang->la_post_parser (&expout, void_context_p); 1260 1261 if (expressiondebug) 1262 dump_prefix_expression (expout, gdb_stdlog); 1263 1264 do_cleanups (inner_chain); 1265 discard_cleanups (old_chain); 1266 1267 *stringptr = lexptr; 1268 return expout; 1269 } 1270 1271 /* Parse STRING as an expression, and complain if this fails 1272 to use up all of the contents of STRING. */ 1273 1274 struct expression * 1275 parse_expression (const char *string) 1276 { 1277 struct expression *exp; 1278 1279 exp = parse_exp_1 (&string, 0, 0, 0); 1280 if (*string) 1281 error (_("Junk after end of expression.")); 1282 return exp; 1283 } 1284 1285 /* Parse STRING as an expression. If parsing ends in the middle of a 1286 field reference, return the type of the left-hand-side of the 1287 reference; furthermore, if the parsing ends in the field name, 1288 return the field name in *NAME. If the parsing ends in the middle 1289 of a field reference, but the reference is somehow invalid, throw 1290 an exception. In all other cases, return NULL. Returned non-NULL 1291 *NAME must be freed by the caller. */ 1292 1293 struct type * 1294 parse_expression_for_completion (char *string, char **name, 1295 enum type_code *code) 1296 { 1297 struct expression *exp = NULL; 1298 struct value *val; 1299 int subexp; 1300 volatile struct gdb_exception except; 1301 1302 TRY_CATCH (except, RETURN_MASK_ERROR) 1303 { 1304 parse_completion = 1; 1305 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp); 1306 } 1307 parse_completion = 0; 1308 if (except.reason < 0 || ! exp) 1309 return NULL; 1310 1311 if (expout_tag_completion_type != TYPE_CODE_UNDEF) 1312 { 1313 *code = expout_tag_completion_type; 1314 *name = expout_completion_name; 1315 expout_completion_name = NULL; 1316 return NULL; 1317 } 1318 1319 if (expout_last_struct == -1) 1320 { 1321 xfree (exp); 1322 return NULL; 1323 } 1324 1325 *name = extract_field_op (exp, &subexp); 1326 if (!*name) 1327 { 1328 xfree (exp); 1329 return NULL; 1330 } 1331 1332 /* This might throw an exception. If so, we want to let it 1333 propagate. */ 1334 val = evaluate_subexpression_type (exp, subexp); 1335 /* (*NAME) is a part of the EXP memory block freed below. */ 1336 *name = xstrdup (*name); 1337 xfree (exp); 1338 1339 return value_type (val); 1340 } 1341 1342 /* A post-parser that does nothing. */ 1343 1344 void 1345 null_post_parser (struct expression **exp, int void_context_p) 1346 { 1347 } 1348 1349 /* Parse floating point value P of length LEN. 1350 Return 0 (false) if invalid, 1 (true) if valid. 1351 The successfully parsed number is stored in D. 1352 *SUFFIX points to the suffix of the number in P. 1353 1354 NOTE: This accepts the floating point syntax that sscanf accepts. */ 1355 1356 int 1357 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix) 1358 { 1359 char *copy; 1360 int n, num; 1361 1362 copy = xmalloc (len + 1); 1363 memcpy (copy, p, len); 1364 copy[len] = 0; 1365 1366 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n); 1367 xfree (copy); 1368 1369 /* The sscanf man page suggests not making any assumptions on the effect 1370 of %n on the result, so we don't. 1371 That is why we simply test num == 0. */ 1372 if (num == 0) 1373 return 0; 1374 1375 *suffix = p + n; 1376 return 1; 1377 } 1378 1379 /* Parse floating point value P of length LEN, using the C syntax for floats. 1380 Return 0 (false) if invalid, 1 (true) if valid. 1381 The successfully parsed number is stored in *D. 1382 Its type is taken from builtin_type (gdbarch) and is stored in *T. */ 1383 1384 int 1385 parse_c_float (struct gdbarch *gdbarch, const char *p, int len, 1386 DOUBLEST *d, struct type **t) 1387 { 1388 const char *suffix; 1389 int suffix_len; 1390 const struct builtin_type *builtin_types = builtin_type (gdbarch); 1391 1392 if (! parse_float (p, len, d, &suffix)) 1393 return 0; 1394 1395 suffix_len = p + len - suffix; 1396 1397 if (suffix_len == 0) 1398 *t = builtin_types->builtin_double; 1399 else if (suffix_len == 1) 1400 { 1401 /* Handle suffixes: 'f' for float, 'l' for long double. */ 1402 if (tolower (*suffix) == 'f') 1403 *t = builtin_types->builtin_float; 1404 else if (tolower (*suffix) == 'l') 1405 *t = builtin_types->builtin_long_double; 1406 else 1407 return 0; 1408 } 1409 else 1410 return 0; 1411 1412 return 1; 1413 } 1414 1415 /* Stuff for maintaining a stack of types. Currently just used by C, but 1416 probably useful for any language which declares its types "backwards". */ 1417 1418 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */ 1419 1420 static void 1421 type_stack_reserve (struct type_stack *stack, int howmuch) 1422 { 1423 if (stack->depth + howmuch >= stack->size) 1424 { 1425 stack->size *= 2; 1426 if (stack->size < howmuch) 1427 stack->size = howmuch; 1428 stack->elements = xrealloc (stack->elements, 1429 stack->size * sizeof (union type_stack_elt)); 1430 } 1431 } 1432 1433 /* Ensure that there is a single open slot in the global type stack. */ 1434 1435 static void 1436 check_type_stack_depth (void) 1437 { 1438 type_stack_reserve (&type_stack, 1); 1439 } 1440 1441 /* A helper function for insert_type and insert_type_address_space. 1442 This does work of expanding the type stack and inserting the new 1443 element, ELEMENT, into the stack at location SLOT. */ 1444 1445 static void 1446 insert_into_type_stack (int slot, union type_stack_elt element) 1447 { 1448 check_type_stack_depth (); 1449 1450 if (slot < type_stack.depth) 1451 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot], 1452 (type_stack.depth - slot) * sizeof (union type_stack_elt)); 1453 type_stack.elements[slot] = element; 1454 ++type_stack.depth; 1455 } 1456 1457 /* Insert a new type, TP, at the bottom of the type stack. If TP is 1458 tp_pointer or tp_reference, it is inserted at the bottom. If TP is 1459 a qualifier, it is inserted at slot 1 (just above a previous 1460 tp_pointer) if there is anything on the stack, or simply pushed if 1461 the stack is empty. Other values for TP are invalid. */ 1462 1463 void 1464 insert_type (enum type_pieces tp) 1465 { 1466 union type_stack_elt element; 1467 int slot; 1468 1469 gdb_assert (tp == tp_pointer || tp == tp_reference 1470 || tp == tp_const || tp == tp_volatile); 1471 1472 /* If there is anything on the stack (we know it will be a 1473 tp_pointer), insert the qualifier above it. Otherwise, simply 1474 push this on the top of the stack. */ 1475 if (type_stack.depth && (tp == tp_const || tp == tp_volatile)) 1476 slot = 1; 1477 else 1478 slot = 0; 1479 1480 element.piece = tp; 1481 insert_into_type_stack (slot, element); 1482 } 1483 1484 void 1485 push_type (enum type_pieces tp) 1486 { 1487 check_type_stack_depth (); 1488 type_stack.elements[type_stack.depth++].piece = tp; 1489 } 1490 1491 void 1492 push_type_int (int n) 1493 { 1494 check_type_stack_depth (); 1495 type_stack.elements[type_stack.depth++].int_val = n; 1496 } 1497 1498 /* Insert a tp_space_identifier and the corresponding address space 1499 value into the stack. STRING is the name of an address space, as 1500 recognized by address_space_name_to_int. If the stack is empty, 1501 the new elements are simply pushed. If the stack is not empty, 1502 this function assumes that the first item on the stack is a 1503 tp_pointer, and the new values are inserted above the first 1504 item. */ 1505 1506 void 1507 insert_type_address_space (char *string) 1508 { 1509 union type_stack_elt element; 1510 int slot; 1511 1512 /* If there is anything on the stack (we know it will be a 1513 tp_pointer), insert the address space qualifier above it. 1514 Otherwise, simply push this on the top of the stack. */ 1515 if (type_stack.depth) 1516 slot = 1; 1517 else 1518 slot = 0; 1519 1520 element.piece = tp_space_identifier; 1521 insert_into_type_stack (slot, element); 1522 element.int_val = address_space_name_to_int (parse_gdbarch, string); 1523 insert_into_type_stack (slot, element); 1524 } 1525 1526 enum type_pieces 1527 pop_type (void) 1528 { 1529 if (type_stack.depth) 1530 return type_stack.elements[--type_stack.depth].piece; 1531 return tp_end; 1532 } 1533 1534 int 1535 pop_type_int (void) 1536 { 1537 if (type_stack.depth) 1538 return type_stack.elements[--type_stack.depth].int_val; 1539 /* "Can't happen". */ 1540 return 0; 1541 } 1542 1543 /* Pop a type list element from the global type stack. */ 1544 1545 static VEC (type_ptr) * 1546 pop_typelist (void) 1547 { 1548 gdb_assert (type_stack.depth); 1549 return type_stack.elements[--type_stack.depth].typelist_val; 1550 } 1551 1552 /* Pop a type_stack element from the global type stack. */ 1553 1554 static struct type_stack * 1555 pop_type_stack (void) 1556 { 1557 gdb_assert (type_stack.depth); 1558 return type_stack.elements[--type_stack.depth].stack_val; 1559 } 1560 1561 /* Append the elements of the type stack FROM to the type stack TO. 1562 Always returns TO. */ 1563 1564 struct type_stack * 1565 append_type_stack (struct type_stack *to, struct type_stack *from) 1566 { 1567 type_stack_reserve (to, from->depth); 1568 1569 memcpy (&to->elements[to->depth], &from->elements[0], 1570 from->depth * sizeof (union type_stack_elt)); 1571 to->depth += from->depth; 1572 1573 return to; 1574 } 1575 1576 /* Push the type stack STACK as an element on the global type stack. */ 1577 1578 void 1579 push_type_stack (struct type_stack *stack) 1580 { 1581 check_type_stack_depth (); 1582 type_stack.elements[type_stack.depth++].stack_val = stack; 1583 push_type (tp_type_stack); 1584 } 1585 1586 /* Copy the global type stack into a newly allocated type stack and 1587 return it. The global stack is cleared. The returned type stack 1588 must be freed with type_stack_cleanup. */ 1589 1590 struct type_stack * 1591 get_type_stack (void) 1592 { 1593 struct type_stack *result = XNEW (struct type_stack); 1594 1595 *result = type_stack; 1596 type_stack.depth = 0; 1597 type_stack.size = 0; 1598 type_stack.elements = NULL; 1599 1600 return result; 1601 } 1602 1603 /* A cleanup function that destroys a single type stack. */ 1604 1605 void 1606 type_stack_cleanup (void *arg) 1607 { 1608 struct type_stack *stack = arg; 1609 1610 xfree (stack->elements); 1611 xfree (stack); 1612 } 1613 1614 /* Push a function type with arguments onto the global type stack. 1615 LIST holds the argument types. If the final item in LIST is NULL, 1616 then the function will be varargs. */ 1617 1618 void 1619 push_typelist (VEC (type_ptr) *list) 1620 { 1621 check_type_stack_depth (); 1622 type_stack.elements[type_stack.depth++].typelist_val = list; 1623 push_type (tp_function_with_arguments); 1624 } 1625 1626 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE 1627 as modified by all the stuff on the stack. */ 1628 struct type * 1629 follow_types (struct type *follow_type) 1630 { 1631 int done = 0; 1632 int make_const = 0; 1633 int make_volatile = 0; 1634 int make_addr_space = 0; 1635 int array_size; 1636 1637 while (!done) 1638 switch (pop_type ()) 1639 { 1640 case tp_end: 1641 done = 1; 1642 if (make_const) 1643 follow_type = make_cv_type (make_const, 1644 TYPE_VOLATILE (follow_type), 1645 follow_type, 0); 1646 if (make_volatile) 1647 follow_type = make_cv_type (TYPE_CONST (follow_type), 1648 make_volatile, 1649 follow_type, 0); 1650 if (make_addr_space) 1651 follow_type = make_type_with_address_space (follow_type, 1652 make_addr_space); 1653 make_const = make_volatile = 0; 1654 make_addr_space = 0; 1655 break; 1656 case tp_const: 1657 make_const = 1; 1658 break; 1659 case tp_volatile: 1660 make_volatile = 1; 1661 break; 1662 case tp_space_identifier: 1663 make_addr_space = pop_type_int (); 1664 break; 1665 case tp_pointer: 1666 follow_type = lookup_pointer_type (follow_type); 1667 if (make_const) 1668 follow_type = make_cv_type (make_const, 1669 TYPE_VOLATILE (follow_type), 1670 follow_type, 0); 1671 if (make_volatile) 1672 follow_type = make_cv_type (TYPE_CONST (follow_type), 1673 make_volatile, 1674 follow_type, 0); 1675 if (make_addr_space) 1676 follow_type = make_type_with_address_space (follow_type, 1677 make_addr_space); 1678 make_const = make_volatile = 0; 1679 make_addr_space = 0; 1680 break; 1681 case tp_reference: 1682 follow_type = lookup_reference_type (follow_type); 1683 if (make_const) 1684 follow_type = make_cv_type (make_const, 1685 TYPE_VOLATILE (follow_type), 1686 follow_type, 0); 1687 if (make_volatile) 1688 follow_type = make_cv_type (TYPE_CONST (follow_type), 1689 make_volatile, 1690 follow_type, 0); 1691 if (make_addr_space) 1692 follow_type = make_type_with_address_space (follow_type, 1693 make_addr_space); 1694 make_const = make_volatile = 0; 1695 make_addr_space = 0; 1696 break; 1697 case tp_array: 1698 array_size = pop_type_int (); 1699 /* FIXME-type-allocation: need a way to free this type when we are 1700 done with it. */ 1701 follow_type = 1702 lookup_array_range_type (follow_type, 1703 0, array_size >= 0 ? array_size - 1 : 0); 1704 if (array_size < 0) 1705 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1; 1706 break; 1707 case tp_function: 1708 /* FIXME-type-allocation: need a way to free this type when we are 1709 done with it. */ 1710 follow_type = lookup_function_type (follow_type); 1711 break; 1712 1713 case tp_function_with_arguments: 1714 { 1715 VEC (type_ptr) *args = pop_typelist (); 1716 1717 follow_type 1718 = lookup_function_type_with_arguments (follow_type, 1719 VEC_length (type_ptr, args), 1720 VEC_address (type_ptr, 1721 args)); 1722 VEC_free (type_ptr, args); 1723 } 1724 break; 1725 1726 case tp_type_stack: 1727 { 1728 struct type_stack *stack = pop_type_stack (); 1729 /* Sort of ugly, but not really much worse than the 1730 alternatives. */ 1731 struct type_stack save = type_stack; 1732 1733 type_stack = *stack; 1734 follow_type = follow_types (follow_type); 1735 gdb_assert (type_stack.depth == 0); 1736 1737 type_stack = save; 1738 } 1739 break; 1740 default: 1741 gdb_assert_not_reached ("unrecognized tp_ value in follow_types"); 1742 } 1743 return follow_type; 1744 } 1745 1746 /* This function avoids direct calls to fprintf 1747 in the parser generated debug code. */ 1748 void 1749 parser_fprintf (FILE *x, const char *y, ...) 1750 { 1751 va_list args; 1752 1753 va_start (args, y); 1754 if (x == stderr) 1755 vfprintf_unfiltered (gdb_stderr, y, args); 1756 else 1757 { 1758 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n"); 1759 vfprintf_unfiltered (gdb_stderr, y, args); 1760 } 1761 va_end (args); 1762 } 1763 1764 /* Implementation of the exp_descriptor method operator_check. */ 1765 1766 int 1767 operator_check_standard (struct expression *exp, int pos, 1768 int (*objfile_func) (struct objfile *objfile, 1769 void *data), 1770 void *data) 1771 { 1772 const union exp_element *const elts = exp->elts; 1773 struct type *type = NULL; 1774 struct objfile *objfile = NULL; 1775 1776 /* Extended operators should have been already handled by exp_descriptor 1777 iterate method of its specific language. */ 1778 gdb_assert (elts[pos].opcode < OP_EXTENDED0); 1779 1780 /* Track the callers of write_exp_elt_type for this table. */ 1781 1782 switch (elts[pos].opcode) 1783 { 1784 case BINOP_VAL: 1785 case OP_COMPLEX: 1786 case OP_DECFLOAT: 1787 case OP_DOUBLE: 1788 case OP_LONG: 1789 case OP_SCOPE: 1790 case OP_TYPE: 1791 case UNOP_CAST: 1792 case UNOP_MAX: 1793 case UNOP_MEMVAL: 1794 case UNOP_MIN: 1795 type = elts[pos + 1].type; 1796 break; 1797 1798 case TYPE_INSTANCE: 1799 { 1800 LONGEST arg, nargs = elts[pos + 1].longconst; 1801 1802 for (arg = 0; arg < nargs; arg++) 1803 { 1804 struct type *type = elts[pos + 2 + arg].type; 1805 struct objfile *objfile = TYPE_OBJFILE (type); 1806 1807 if (objfile && (*objfile_func) (objfile, data)) 1808 return 1; 1809 } 1810 } 1811 break; 1812 1813 case UNOP_MEMVAL_TLS: 1814 objfile = elts[pos + 1].objfile; 1815 type = elts[pos + 2].type; 1816 break; 1817 1818 case OP_VAR_VALUE: 1819 { 1820 const struct block *const block = elts[pos + 1].block; 1821 const struct symbol *const symbol = elts[pos + 2].symbol; 1822 1823 /* Check objfile where the variable itself is placed. 1824 SYMBOL_OBJ_SECTION (symbol) may be NULL. */ 1825 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data)) 1826 return 1; 1827 1828 /* Check objfile where is placed the code touching the variable. */ 1829 objfile = lookup_objfile_from_block (block); 1830 1831 type = SYMBOL_TYPE (symbol); 1832 } 1833 break; 1834 } 1835 1836 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 1837 1838 if (type && TYPE_OBJFILE (type) 1839 && (*objfile_func) (TYPE_OBJFILE (type), data)) 1840 return 1; 1841 if (objfile && (*objfile_func) (objfile, data)) 1842 return 1; 1843 1844 return 0; 1845 } 1846 1847 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP. 1848 The functions are never called with NULL OBJFILE. Functions get passed an 1849 arbitrary caller supplied DATA pointer. If any of the functions returns 1850 non-zero value then (any other) non-zero value is immediately returned to 1851 the caller. Otherwise zero is returned after iterating through whole EXP. 1852 */ 1853 1854 static int 1855 exp_iterate (struct expression *exp, 1856 int (*objfile_func) (struct objfile *objfile, void *data), 1857 void *data) 1858 { 1859 int endpos; 1860 1861 for (endpos = exp->nelts; endpos > 0; ) 1862 { 1863 int pos, args, oplen = 0; 1864 1865 operator_length (exp, endpos, &oplen, &args); 1866 gdb_assert (oplen > 0); 1867 1868 pos = endpos - oplen; 1869 if (exp->language_defn->la_exp_desc->operator_check (exp, pos, 1870 objfile_func, data)) 1871 return 1; 1872 1873 endpos = pos; 1874 } 1875 1876 return 0; 1877 } 1878 1879 /* Helper for exp_uses_objfile. */ 1880 1881 static int 1882 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp) 1883 { 1884 struct objfile *objfile = objfile_voidp; 1885 1886 if (exp_objfile->separate_debug_objfile_backlink) 1887 exp_objfile = exp_objfile->separate_debug_objfile_backlink; 1888 1889 return exp_objfile == objfile; 1890 } 1891 1892 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE 1893 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info 1894 file. */ 1895 1896 int 1897 exp_uses_objfile (struct expression *exp, struct objfile *objfile) 1898 { 1899 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 1900 1901 return exp_iterate (exp, exp_uses_objfile_iter, objfile); 1902 } 1903 1904 void 1905 _initialize_parse (void) 1906 { 1907 type_stack.size = 0; 1908 type_stack.depth = 0; 1909 type_stack.elements = NULL; 1910 1911 add_setshow_zuinteger_cmd ("expression", class_maintenance, 1912 &expressiondebug, 1913 _("Set expression debugging."), 1914 _("Show expression debugging."), 1915 _("When non-zero, the internal representation " 1916 "of expressions will be printed."), 1917 NULL, 1918 show_expressiondebug, 1919 &setdebuglist, &showdebuglist); 1920 add_setshow_boolean_cmd ("parser", class_maintenance, 1921 &parser_debug, 1922 _("Set parser debugging."), 1923 _("Show parser debugging."), 1924 _("When non-zero, expression parser " 1925 "tracing will be enabled."), 1926 NULL, 1927 show_parserdebug, 1928 &setdebuglist, &showdebuglist); 1929 } 1930