xref: /dragonfly/contrib/gdb-7/gdb/remote.c (revision 2020c8fe)
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 
3    Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4    1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5    2010, 2011 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* See the GDB User Guide for details of the GDB remote protocol.  */
23 
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47 
48 #include <ctype.h>
49 #include <sys/time.h>
50 
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54 
55 #include <signal.h>
56 #include "serial.h"
57 
58 #include "gdbcore.h" /* for exec_bfd */
59 
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64 
65 #include "memory-map.h"
66 
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 
71 /* Temp hacks for tracepoint encoding migration.  */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 		char ***tdp_actions, char ***stepping_actions);
77 
78 /* The size to align memory write packets, when practical.  The protocol
79    does not guarantee any alignment, and gdb will generate short
80    writes and unaligned writes, but even as a best-effort attempt this
81    can improve bulk transfers.  For instance, if a write is misaligned
82    relative to the target's data bus, the stub may need to make an extra
83    round trip fetching data from the target.  This doesn't make a
84    huge difference, but it's easy to do, so we try to be helpful.
85 
86    The alignment chosen is arbitrary; usually data bus width is
87    important here, not the possibly larger cache line size.  */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89 
90 /* Prototypes for local functions.  */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 				 int forever);
96 
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101 
102 static void remote_files_info (struct target_ops *ignore);
103 
104 static void remote_prepare_to_store (struct regcache *regcache);
105 
106 static void remote_open (char *name, int from_tty);
107 
108 static void extended_remote_open (char *name, int from_tty);
109 
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111 
112 static void remote_close (int quitting);
113 
114 static void remote_mourn (struct target_ops *ops);
115 
116 static void extended_remote_restart (void);
117 
118 static void extended_remote_mourn (struct target_ops *);
119 
120 static void remote_mourn_1 (struct target_ops *);
121 
122 static void remote_send (char **buf, long *sizeof_buf_p);
123 
124 static int readchar (int timeout);
125 
126 static void remote_kill (struct target_ops *ops);
127 
128 static int tohex (int nib);
129 
130 static int remote_can_async_p (void);
131 
132 static int remote_is_async_p (void);
133 
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 					    void *context), void *context);
136 
137 static int remote_async_mask (int new_mask);
138 
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140 
141 static void remote_interrupt (int signo);
142 
143 static void remote_interrupt_twice (int signo);
144 
145 static void interrupt_query (void);
146 
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149 
150 static void get_offsets (void);
151 
152 static void skip_frame (void);
153 
154 static long read_frame (char **buf_p, long *sizeof_buf);
155 
156 static int hexnumlen (ULONGEST num);
157 
158 static void init_remote_ops (void);
159 
160 static void init_extended_remote_ops (void);
161 
162 static void remote_stop (ptid_t);
163 
164 static int ishex (int ch, int *val);
165 
166 static int stubhex (int ch);
167 
168 static int hexnumstr (char *, ULONGEST);
169 
170 static int hexnumnstr (char *, ULONGEST, int);
171 
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173 
174 static void print_packet (char *);
175 
176 static void compare_sections_command (char *, int);
177 
178 static void packet_command (char *, int);
179 
180 static int stub_unpack_int (char *buff, int fieldlength);
181 
182 static ptid_t remote_current_thread (ptid_t oldptid);
183 
184 static void remote_find_new_threads (void);
185 
186 static void record_currthread (ptid_t currthread);
187 
188 static int fromhex (int a);
189 
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191 
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193 
194 static int putpkt_binary (char *buf, int cnt);
195 
196 static void check_binary_download (CORE_ADDR addr);
197 
198 struct packet_config;
199 
200 static void show_packet_config_cmd (struct packet_config *config);
201 
202 static void update_packet_config (struct packet_config *config);
203 
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 					    struct cmd_list_element *c);
206 
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 					     int from_tty,
209 					     struct cmd_list_element *c,
210 					     const char *value);
211 
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214 
215 static void remote_set_permissions (void);
216 
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219 
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221 
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223 
224 static void remote_query_supported (void);
225 
226 static void remote_check_symbols (struct objfile *objfile);
227 
228 void _initialize_remote (void);
229 
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239 
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242 
243 static void remote_terminal_ours (void);
244 
245 static int remote_read_description_p (struct target_ops *target);
246 
247 static void remote_console_output (char *msg);
248 
249 /* The non-stop remote protocol provisions for one pending stop reply.
250    This is where we keep it until it is acknowledged.  */
251 
252 static struct stop_reply *pending_stop_reply = NULL;
253 
254 /* For "remote".  */
255 
256 static struct cmd_list_element *remote_cmdlist;
257 
258 /* For "set remote" and "show remote".  */
259 
260 static struct cmd_list_element *remote_set_cmdlist;
261 static struct cmd_list_element *remote_show_cmdlist;
262 
263 /* Description of the remote protocol state for the currently
264    connected target.  This is per-target state, and independent of the
265    selected architecture.  */
266 
267 struct remote_state
268 {
269   /* A buffer to use for incoming packets, and its current size.  The
270      buffer is grown dynamically for larger incoming packets.
271      Outgoing packets may also be constructed in this buffer.
272      BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273      REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274      packets.  */
275   char *buf;
276   long buf_size;
277 
278   /* If we negotiated packet size explicitly (and thus can bypass
279      heuristics for the largest packet size that will not overflow
280      a buffer in the stub), this will be set to that packet size.
281      Otherwise zero, meaning to use the guessed size.  */
282   long explicit_packet_size;
283 
284   /* remote_wait is normally called when the target is running and
285      waits for a stop reply packet.  But sometimes we need to call it
286      when the target is already stopped.  We can send a "?" packet
287      and have remote_wait read the response.  Or, if we already have
288      the response, we can stash it in BUF and tell remote_wait to
289      skip calling getpkt.  This flag is set when BUF contains a
290      stop reply packet and the target is not waiting.  */
291   int cached_wait_status;
292 
293   /* True, if in no ack mode.  That is, neither GDB nor the stub will
294      expect acks from each other.  The connection is assumed to be
295      reliable.  */
296   int noack_mode;
297 
298   /* True if we're connected in extended remote mode.  */
299   int extended;
300 
301   /* True if the stub reported support for multi-process
302      extensions.  */
303   int multi_process_aware;
304 
305   /* True if we resumed the target and we're waiting for the target to
306      stop.  In the mean time, we can't start another command/query.
307      The remote server wouldn't be ready to process it, so we'd
308      timeout waiting for a reply that would never come and eventually
309      we'd close the connection.  This can happen in asynchronous mode
310      because we allow GDB commands while the target is running.  */
311   int waiting_for_stop_reply;
312 
313   /* True if the stub reports support for non-stop mode.  */
314   int non_stop_aware;
315 
316   /* True if the stub reports support for vCont;t.  */
317   int support_vCont_t;
318 
319   /* True if the stub reports support for conditional tracepoints.  */
320   int cond_tracepoints;
321 
322   /* True if the stub reports support for fast tracepoints.  */
323   int fast_tracepoints;
324 
325   /* True if the stub reports support for static tracepoints.  */
326   int static_tracepoints;
327 
328   /* True if the stub can continue running a trace while GDB is
329      disconnected.  */
330   int disconnected_tracing;
331 
332   /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333      responded to that.  */
334   int ctrlc_pending_p;
335 };
336 
337 /* Private data that we'll store in (struct thread_info)->private.  */
338 struct private_thread_info
339 {
340   char *extra;
341   int core;
342 };
343 
344 static void
345 free_private_thread_info (struct private_thread_info *info)
346 {
347   xfree (info->extra);
348   xfree (info);
349 }
350 
351 /* Returns true if the multi-process extensions are in effect.  */
352 static int
353 remote_multi_process_p (struct remote_state *rs)
354 {
355   return rs->extended && rs->multi_process_aware;
356 }
357 
358 /* This data could be associated with a target, but we do not always
359    have access to the current target when we need it, so for now it is
360    static.  This will be fine for as long as only one target is in use
361    at a time.  */
362 static struct remote_state remote_state;
363 
364 static struct remote_state *
365 get_remote_state_raw (void)
366 {
367   return &remote_state;
368 }
369 
370 /* Description of the remote protocol for a given architecture.  */
371 
372 struct packet_reg
373 {
374   long offset; /* Offset into G packet.  */
375   long regnum; /* GDB's internal register number.  */
376   LONGEST pnum; /* Remote protocol register number.  */
377   int in_g_packet; /* Always part of G packet.  */
378   /* long size in bytes;  == register_size (target_gdbarch, regnum);
379      at present.  */
380   /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381      at present.  */
382 };
383 
384 struct remote_arch_state
385 {
386   /* Description of the remote protocol registers.  */
387   long sizeof_g_packet;
388 
389   /* Description of the remote protocol registers indexed by REGNUM
390      (making an array gdbarch_num_regs in size).  */
391   struct packet_reg *regs;
392 
393   /* This is the size (in chars) of the first response to the ``g''
394      packet.  It is used as a heuristic when determining the maximum
395      size of memory-read and memory-write packets.  A target will
396      typically only reserve a buffer large enough to hold the ``g''
397      packet.  The size does not include packet overhead (headers and
398      trailers).  */
399   long actual_register_packet_size;
400 
401   /* This is the maximum size (in chars) of a non read/write packet.
402      It is also used as a cap on the size of read/write packets.  */
403   long remote_packet_size;
404 };
405 
406 long sizeof_pkt = 2000;
407 
408 /* Utility: generate error from an incoming stub packet.  */
409 static void
410 trace_error (char *buf)
411 {
412   if (*buf++ != 'E')
413     return;			/* not an error msg */
414   switch (*buf)
415     {
416     case '1':			/* malformed packet error */
417       if (*++buf == '0')	/*   general case: */
418 	error (_("remote.c: error in outgoing packet."));
419       else
420 	error (_("remote.c: error in outgoing packet at field #%ld."),
421 	       strtol (buf, NULL, 16));
422     case '2':
423       error (_("trace API error 0x%s."), ++buf);
424     default:
425       error (_("Target returns error code '%s'."), buf);
426     }
427 }
428 
429 /* Utility: wait for reply from stub, while accepting "O" packets.  */
430 static char *
431 remote_get_noisy_reply (char **buf_p,
432 			long *sizeof_buf)
433 {
434   do				/* Loop on reply from remote stub.  */
435     {
436       char *buf;
437 
438       QUIT;			/* Allow user to bail out with ^C.  */
439       getpkt (buf_p, sizeof_buf, 0);
440       buf = *buf_p;
441       if (buf[0] == 'E')
442 	trace_error (buf);
443       else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 	{
445 	  ULONGEST ul;
446 	  CORE_ADDR from, to, org_to;
447 	  char *p, *pp;
448 	  int adjusted_size = 0;
449 	  volatile struct gdb_exception ex;
450 
451 	  p = buf + strlen ("qRelocInsn:");
452 	  pp = unpack_varlen_hex (p, &ul);
453 	  if (*pp != ';')
454 	    error (_("invalid qRelocInsn packet: %s"), buf);
455 	  from = ul;
456 
457 	  p = pp + 1;
458 	  unpack_varlen_hex (p, &ul);
459 	  to = ul;
460 
461 	  org_to = to;
462 
463 	  TRY_CATCH (ex, RETURN_MASK_ALL)
464 	    {
465 	      gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 	    }
467 	  if (ex.reason >= 0)
468 	    {
469 	      adjusted_size = to - org_to;
470 
471 	      sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 	      putpkt (buf);
473 	    }
474 	  else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 	    {
476 	      /* Propagate memory errors silently back to the target.
477 		 The stub may have limited the range of addresses we
478 		 can write to, for example.  */
479 	      putpkt ("E01");
480 	    }
481 	  else
482 	    {
483 	      /* Something unexpectedly bad happened.  Be verbose so
484 		 we can tell what, and propagate the error back to the
485 		 stub, so it doesn't get stuck waiting for a
486 		 response.  */
487 	      exception_fprintf (gdb_stderr, ex,
488 				 _("warning: relocating instruction: "));
489 	      putpkt ("E01");
490 	    }
491 	}
492       else if (buf[0] == 'O' && buf[1] != 'K')
493 	remote_console_output (buf + 1);	/* 'O' message from stub */
494       else
495 	return buf;		/* Here's the actual reply.  */
496     }
497   while (1);
498 }
499 
500 /* Handle for retreving the remote protocol data from gdbarch.  */
501 static struct gdbarch_data *remote_gdbarch_data_handle;
502 
503 static struct remote_arch_state *
504 get_remote_arch_state (void)
505 {
506   return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507 }
508 
509 /* Fetch the global remote target state.  */
510 
511 static struct remote_state *
512 get_remote_state (void)
513 {
514   /* Make sure that the remote architecture state has been
515      initialized, because doing so might reallocate rs->buf.  Any
516      function which calls getpkt also needs to be mindful of changes
517      to rs->buf, but this call limits the number of places which run
518      into trouble.  */
519   get_remote_arch_state ();
520 
521   return get_remote_state_raw ();
522 }
523 
524 static int
525 compare_pnums (const void *lhs_, const void *rhs_)
526 {
527   const struct packet_reg * const *lhs = lhs_;
528   const struct packet_reg * const *rhs = rhs_;
529 
530   if ((*lhs)->pnum < (*rhs)->pnum)
531     return -1;
532   else if ((*lhs)->pnum == (*rhs)->pnum)
533     return 0;
534   else
535     return 1;
536 }
537 
538 static void *
539 init_remote_state (struct gdbarch *gdbarch)
540 {
541   int regnum, num_remote_regs, offset;
542   struct remote_state *rs = get_remote_state_raw ();
543   struct remote_arch_state *rsa;
544   struct packet_reg **remote_regs;
545 
546   rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
547 
548   /* Use the architecture to build a regnum<->pnum table, which will be
549      1:1 unless a feature set specifies otherwise.  */
550   rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
551 				      gdbarch_num_regs (gdbarch),
552 				      struct packet_reg);
553   for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
554     {
555       struct packet_reg *r = &rsa->regs[regnum];
556 
557       if (register_size (gdbarch, regnum) == 0)
558 	/* Do not try to fetch zero-sized (placeholder) registers.  */
559 	r->pnum = -1;
560       else
561 	r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
562 
563       r->regnum = regnum;
564     }
565 
566   /* Define the g/G packet format as the contents of each register
567      with a remote protocol number, in order of ascending protocol
568      number.  */
569 
570   remote_regs = alloca (gdbarch_num_regs (gdbarch)
571 			  * sizeof (struct packet_reg *));
572   for (num_remote_regs = 0, regnum = 0;
573        regnum < gdbarch_num_regs (gdbarch);
574        regnum++)
575     if (rsa->regs[regnum].pnum != -1)
576       remote_regs[num_remote_regs++] = &rsa->regs[regnum];
577 
578   qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
579 	 compare_pnums);
580 
581   for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
582     {
583       remote_regs[regnum]->in_g_packet = 1;
584       remote_regs[regnum]->offset = offset;
585       offset += register_size (gdbarch, remote_regs[regnum]->regnum);
586     }
587 
588   /* Record the maximum possible size of the g packet - it may turn out
589      to be smaller.  */
590   rsa->sizeof_g_packet = offset;
591 
592   /* Default maximum number of characters in a packet body.  Many
593      remote stubs have a hardwired buffer size of 400 bytes
594      (c.f. BUFMAX in m68k-stub.c and i386-stub.c).  BUFMAX-1 is used
595      as the maximum packet-size to ensure that the packet and an extra
596      NUL character can always fit in the buffer.  This stops GDB
597      trashing stubs that try to squeeze an extra NUL into what is
598      already a full buffer (As of 1999-12-04 that was most stubs).  */
599   rsa->remote_packet_size = 400 - 1;
600 
601   /* This one is filled in when a ``g'' packet is received.  */
602   rsa->actual_register_packet_size = 0;
603 
604   /* Should rsa->sizeof_g_packet needs more space than the
605      default, adjust the size accordingly.  Remember that each byte is
606      encoded as two characters.  32 is the overhead for the packet
607      header / footer.  NOTE: cagney/1999-10-26: I suspect that 8
608      (``$NN:G...#NN'') is a better guess, the below has been padded a
609      little.  */
610   if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
611     rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
612 
613   /* Make sure that the packet buffer is plenty big enough for
614      this architecture.  */
615   if (rs->buf_size < rsa->remote_packet_size)
616     {
617       rs->buf_size = 2 * rsa->remote_packet_size;
618       rs->buf = xrealloc (rs->buf, rs->buf_size);
619     }
620 
621   return rsa;
622 }
623 
624 /* Return the current allowed size of a remote packet.  This is
625    inferred from the current architecture, and should be used to
626    limit the length of outgoing packets.  */
627 static long
628 get_remote_packet_size (void)
629 {
630   struct remote_state *rs = get_remote_state ();
631   struct remote_arch_state *rsa = get_remote_arch_state ();
632 
633   if (rs->explicit_packet_size)
634     return rs->explicit_packet_size;
635 
636   return rsa->remote_packet_size;
637 }
638 
639 static struct packet_reg *
640 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
641 {
642   if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
643     return NULL;
644   else
645     {
646       struct packet_reg *r = &rsa->regs[regnum];
647 
648       gdb_assert (r->regnum == regnum);
649       return r;
650     }
651 }
652 
653 static struct packet_reg *
654 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
655 {
656   int i;
657 
658   for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
659     {
660       struct packet_reg *r = &rsa->regs[i];
661 
662       if (r->pnum == pnum)
663 	return r;
664     }
665   return NULL;
666 }
667 
668 /* FIXME: graces/2002-08-08: These variables should eventually be
669    bound to an instance of the target object (as in gdbarch-tdep()),
670    when such a thing exists.  */
671 
672 /* This is set to the data address of the access causing the target
673    to stop for a watchpoint.  */
674 static CORE_ADDR remote_watch_data_address;
675 
676 /* This is non-zero if target stopped for a watchpoint.  */
677 static int remote_stopped_by_watchpoint_p;
678 
679 static struct target_ops remote_ops;
680 
681 static struct target_ops extended_remote_ops;
682 
683 static int remote_async_mask_value = 1;
684 
685 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
686    ``forever'' still use the normal timeout mechanism.  This is
687    currently used by the ASYNC code to guarentee that target reads
688    during the initial connect always time-out.  Once getpkt has been
689    modified to return a timeout indication and, in turn
690    remote_wait()/wait_for_inferior() have gained a timeout parameter
691    this can go away.  */
692 static int wait_forever_enabled_p = 1;
693 
694 /* Allow the user to specify what sequence to send to the remote
695    when he requests a program interruption: Although ^C is usually
696    what remote systems expect (this is the default, here), it is
697    sometimes preferable to send a break.  On other systems such
698    as the Linux kernel, a break followed by g, which is Magic SysRq g
699    is required in order to interrupt the execution.  */
700 const char interrupt_sequence_control_c[] = "Ctrl-C";
701 const char interrupt_sequence_break[] = "BREAK";
702 const char interrupt_sequence_break_g[] = "BREAK-g";
703 static const char *interrupt_sequence_modes[] =
704   {
705     interrupt_sequence_control_c,
706     interrupt_sequence_break,
707     interrupt_sequence_break_g,
708     NULL
709   };
710 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
711 
712 static void
713 show_interrupt_sequence (struct ui_file *file, int from_tty,
714 			 struct cmd_list_element *c,
715 			 const char *value)
716 {
717   if (interrupt_sequence_mode == interrupt_sequence_control_c)
718     fprintf_filtered (file,
719 		      _("Send the ASCII ETX character (Ctrl-c) "
720 			"to the remote target to interrupt the "
721 			"execution of the program.\n"));
722   else if (interrupt_sequence_mode == interrupt_sequence_break)
723     fprintf_filtered (file,
724 		      _("send a break signal to the remote target "
725 			"to interrupt the execution of the program.\n"));
726   else if (interrupt_sequence_mode == interrupt_sequence_break_g)
727     fprintf_filtered (file,
728 		      _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
729 			"the remote target to interrupt the execution "
730 			"of Linux kernel.\n"));
731   else
732     internal_error (__FILE__, __LINE__,
733 		    _("Invalid value for interrupt_sequence_mode: %s."),
734 		    interrupt_sequence_mode);
735 }
736 
737 /* This boolean variable specifies whether interrupt_sequence is sent
738    to the remote target when gdb connects to it.
739    This is mostly needed when you debug the Linux kernel: The Linux kernel
740    expects BREAK g which is Magic SysRq g for connecting gdb.  */
741 static int interrupt_on_connect = 0;
742 
743 /* This variable is used to implement the "set/show remotebreak" commands.
744    Since these commands are now deprecated in favor of "set/show remote
745    interrupt-sequence", it no longer has any effect on the code.  */
746 static int remote_break;
747 
748 static void
749 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
750 {
751   if (remote_break)
752     interrupt_sequence_mode = interrupt_sequence_break;
753   else
754     interrupt_sequence_mode = interrupt_sequence_control_c;
755 }
756 
757 static void
758 show_remotebreak (struct ui_file *file, int from_tty,
759 		  struct cmd_list_element *c,
760 		  const char *value)
761 {
762 }
763 
764 /* Descriptor for I/O to remote machine.  Initialize it to NULL so that
765    remote_open knows that we don't have a file open when the program
766    starts.  */
767 static struct serial *remote_desc = NULL;
768 
769 /* This variable sets the number of bits in an address that are to be
770    sent in a memory ("M" or "m") packet.  Normally, after stripping
771    leading zeros, the entire address would be sent.  This variable
772    restricts the address to REMOTE_ADDRESS_SIZE bits.  HISTORY: The
773    initial implementation of remote.c restricted the address sent in
774    memory packets to ``host::sizeof long'' bytes - (typically 32
775    bits).  Consequently, for 64 bit targets, the upper 32 bits of an
776    address was never sent.  Since fixing this bug may cause a break in
777    some remote targets this variable is principly provided to
778    facilitate backward compatibility.  */
779 
780 static int remote_address_size;
781 
782 /* Temporary to track who currently owns the terminal.  See
783    remote_terminal_* for more details.  */
784 
785 static int remote_async_terminal_ours_p;
786 
787 /* The executable file to use for "run" on the remote side.  */
788 
789 static char *remote_exec_file = "";
790 
791 
792 /* User configurable variables for the number of characters in a
793    memory read/write packet.  MIN (rsa->remote_packet_size,
794    rsa->sizeof_g_packet) is the default.  Some targets need smaller
795    values (fifo overruns, et.al.) and some users need larger values
796    (speed up transfers).  The variables ``preferred_*'' (the user
797    request), ``current_*'' (what was actually set) and ``forced_*''
798    (Positive - a soft limit, negative - a hard limit).  */
799 
800 struct memory_packet_config
801 {
802   char *name;
803   long size;
804   int fixed_p;
805 };
806 
807 /* Compute the current size of a read/write packet.  Since this makes
808    use of ``actual_register_packet_size'' the computation is dynamic.  */
809 
810 static long
811 get_memory_packet_size (struct memory_packet_config *config)
812 {
813   struct remote_state *rs = get_remote_state ();
814   struct remote_arch_state *rsa = get_remote_arch_state ();
815 
816   /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
817      law?) that some hosts don't cope very well with large alloca()
818      calls.  Eventually the alloca() code will be replaced by calls to
819      xmalloc() and make_cleanups() allowing this restriction to either
820      be lifted or removed.  */
821 #ifndef MAX_REMOTE_PACKET_SIZE
822 #define MAX_REMOTE_PACKET_SIZE 16384
823 #endif
824   /* NOTE: 20 ensures we can write at least one byte.  */
825 #ifndef MIN_REMOTE_PACKET_SIZE
826 #define MIN_REMOTE_PACKET_SIZE 20
827 #endif
828   long what_they_get;
829   if (config->fixed_p)
830     {
831       if (config->size <= 0)
832 	what_they_get = MAX_REMOTE_PACKET_SIZE;
833       else
834 	what_they_get = config->size;
835     }
836   else
837     {
838       what_they_get = get_remote_packet_size ();
839       /* Limit the packet to the size specified by the user.  */
840       if (config->size > 0
841 	  && what_they_get > config->size)
842 	what_they_get = config->size;
843 
844       /* Limit it to the size of the targets ``g'' response unless we have
845 	 permission from the stub to use a larger packet size.  */
846       if (rs->explicit_packet_size == 0
847 	  && rsa->actual_register_packet_size > 0
848 	  && what_they_get > rsa->actual_register_packet_size)
849 	what_they_get = rsa->actual_register_packet_size;
850     }
851   if (what_they_get > MAX_REMOTE_PACKET_SIZE)
852     what_they_get = MAX_REMOTE_PACKET_SIZE;
853   if (what_they_get < MIN_REMOTE_PACKET_SIZE)
854     what_they_get = MIN_REMOTE_PACKET_SIZE;
855 
856   /* Make sure there is room in the global buffer for this packet
857      (including its trailing NUL byte).  */
858   if (rs->buf_size < what_they_get + 1)
859     {
860       rs->buf_size = 2 * what_they_get;
861       rs->buf = xrealloc (rs->buf, 2 * what_they_get);
862     }
863 
864   return what_they_get;
865 }
866 
867 /* Update the size of a read/write packet.  If they user wants
868    something really big then do a sanity check.  */
869 
870 static void
871 set_memory_packet_size (char *args, struct memory_packet_config *config)
872 {
873   int fixed_p = config->fixed_p;
874   long size = config->size;
875 
876   if (args == NULL)
877     error (_("Argument required (integer, `fixed' or `limited')."));
878   else if (strcmp (args, "hard") == 0
879       || strcmp (args, "fixed") == 0)
880     fixed_p = 1;
881   else if (strcmp (args, "soft") == 0
882 	   || strcmp (args, "limit") == 0)
883     fixed_p = 0;
884   else
885     {
886       char *end;
887 
888       size = strtoul (args, &end, 0);
889       if (args == end)
890 	error (_("Invalid %s (bad syntax)."), config->name);
891 #if 0
892       /* Instead of explicitly capping the size of a packet to
893          MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
894          instead allowed to set the size to something arbitrarily
895          large.  */
896       if (size > MAX_REMOTE_PACKET_SIZE)
897 	error (_("Invalid %s (too large)."), config->name);
898 #endif
899     }
900   /* Extra checks?  */
901   if (fixed_p && !config->fixed_p)
902     {
903       if (! query (_("The target may not be able to correctly handle a %s\n"
904 		   "of %ld bytes. Change the packet size? "),
905 		   config->name, size))
906 	error (_("Packet size not changed."));
907     }
908   /* Update the config.  */
909   config->fixed_p = fixed_p;
910   config->size = size;
911 }
912 
913 static void
914 show_memory_packet_size (struct memory_packet_config *config)
915 {
916   printf_filtered (_("The %s is %ld. "), config->name, config->size);
917   if (config->fixed_p)
918     printf_filtered (_("Packets are fixed at %ld bytes.\n"),
919 		     get_memory_packet_size (config));
920   else
921     printf_filtered (_("Packets are limited to %ld bytes.\n"),
922 		     get_memory_packet_size (config));
923 }
924 
925 static struct memory_packet_config memory_write_packet_config =
926 {
927   "memory-write-packet-size",
928 };
929 
930 static void
931 set_memory_write_packet_size (char *args, int from_tty)
932 {
933   set_memory_packet_size (args, &memory_write_packet_config);
934 }
935 
936 static void
937 show_memory_write_packet_size (char *args, int from_tty)
938 {
939   show_memory_packet_size (&memory_write_packet_config);
940 }
941 
942 static long
943 get_memory_write_packet_size (void)
944 {
945   return get_memory_packet_size (&memory_write_packet_config);
946 }
947 
948 static struct memory_packet_config memory_read_packet_config =
949 {
950   "memory-read-packet-size",
951 };
952 
953 static void
954 set_memory_read_packet_size (char *args, int from_tty)
955 {
956   set_memory_packet_size (args, &memory_read_packet_config);
957 }
958 
959 static void
960 show_memory_read_packet_size (char *args, int from_tty)
961 {
962   show_memory_packet_size (&memory_read_packet_config);
963 }
964 
965 static long
966 get_memory_read_packet_size (void)
967 {
968   long size = get_memory_packet_size (&memory_read_packet_config);
969 
970   /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
971      extra buffer size argument before the memory read size can be
972      increased beyond this.  */
973   if (size > get_remote_packet_size ())
974     size = get_remote_packet_size ();
975   return size;
976 }
977 
978 
979 /* Generic configuration support for packets the stub optionally
980    supports.  Allows the user to specify the use of the packet as well
981    as allowing GDB to auto-detect support in the remote stub.  */
982 
983 enum packet_support
984   {
985     PACKET_SUPPORT_UNKNOWN = 0,
986     PACKET_ENABLE,
987     PACKET_DISABLE
988   };
989 
990 struct packet_config
991   {
992     const char *name;
993     const char *title;
994     enum auto_boolean detect;
995     enum packet_support support;
996   };
997 
998 /* Analyze a packet's return value and update the packet config
999    accordingly.  */
1000 
1001 enum packet_result
1002 {
1003   PACKET_ERROR,
1004   PACKET_OK,
1005   PACKET_UNKNOWN
1006 };
1007 
1008 static void
1009 update_packet_config (struct packet_config *config)
1010 {
1011   switch (config->detect)
1012     {
1013     case AUTO_BOOLEAN_TRUE:
1014       config->support = PACKET_ENABLE;
1015       break;
1016     case AUTO_BOOLEAN_FALSE:
1017       config->support = PACKET_DISABLE;
1018       break;
1019     case AUTO_BOOLEAN_AUTO:
1020       config->support = PACKET_SUPPORT_UNKNOWN;
1021       break;
1022     }
1023 }
1024 
1025 static void
1026 show_packet_config_cmd (struct packet_config *config)
1027 {
1028   char *support = "internal-error";
1029 
1030   switch (config->support)
1031     {
1032     case PACKET_ENABLE:
1033       support = "enabled";
1034       break;
1035     case PACKET_DISABLE:
1036       support = "disabled";
1037       break;
1038     case PACKET_SUPPORT_UNKNOWN:
1039       support = "unknown";
1040       break;
1041     }
1042   switch (config->detect)
1043     {
1044     case AUTO_BOOLEAN_AUTO:
1045       printf_filtered (_("Support for the `%s' packet "
1046 			 "is auto-detected, currently %s.\n"),
1047 		       config->name, support);
1048       break;
1049     case AUTO_BOOLEAN_TRUE:
1050     case AUTO_BOOLEAN_FALSE:
1051       printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1052 		       config->name, support);
1053       break;
1054     }
1055 }
1056 
1057 static void
1058 add_packet_config_cmd (struct packet_config *config, const char *name,
1059 		       const char *title, int legacy)
1060 {
1061   char *set_doc;
1062   char *show_doc;
1063   char *cmd_name;
1064 
1065   config->name = name;
1066   config->title = title;
1067   config->detect = AUTO_BOOLEAN_AUTO;
1068   config->support = PACKET_SUPPORT_UNKNOWN;
1069   set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1070 			name, title);
1071   show_doc = xstrprintf ("Show current use of remote "
1072 			 "protocol `%s' (%s) packet",
1073 			 name, title);
1074   /* set/show TITLE-packet {auto,on,off} */
1075   cmd_name = xstrprintf ("%s-packet", title);
1076   add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1077 				&config->detect, set_doc,
1078 				show_doc, NULL, /* help_doc */
1079 				set_remote_protocol_packet_cmd,
1080 				show_remote_protocol_packet_cmd,
1081 				&remote_set_cmdlist, &remote_show_cmdlist);
1082   /* The command code copies the documentation strings.  */
1083   xfree (set_doc);
1084   xfree (show_doc);
1085   /* set/show remote NAME-packet {auto,on,off} -- legacy.  */
1086   if (legacy)
1087     {
1088       char *legacy_name;
1089 
1090       legacy_name = xstrprintf ("%s-packet", name);
1091       add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1092 		     &remote_set_cmdlist);
1093       add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1094 		     &remote_show_cmdlist);
1095     }
1096 }
1097 
1098 static enum packet_result
1099 packet_check_result (const char *buf)
1100 {
1101   if (buf[0] != '\0')
1102     {
1103       /* The stub recognized the packet request.  Check that the
1104 	 operation succeeded.  */
1105       if (buf[0] == 'E'
1106 	  && isxdigit (buf[1]) && isxdigit (buf[2])
1107 	  && buf[3] == '\0')
1108 	/* "Enn"  - definitly an error.  */
1109 	return PACKET_ERROR;
1110 
1111       /* Always treat "E." as an error.  This will be used for
1112 	 more verbose error messages, such as E.memtypes.  */
1113       if (buf[0] == 'E' && buf[1] == '.')
1114 	return PACKET_ERROR;
1115 
1116       /* The packet may or may not be OK.  Just assume it is.  */
1117       return PACKET_OK;
1118     }
1119   else
1120     /* The stub does not support the packet.  */
1121     return PACKET_UNKNOWN;
1122 }
1123 
1124 static enum packet_result
1125 packet_ok (const char *buf, struct packet_config *config)
1126 {
1127   enum packet_result result;
1128 
1129   result = packet_check_result (buf);
1130   switch (result)
1131     {
1132     case PACKET_OK:
1133     case PACKET_ERROR:
1134       /* The stub recognized the packet request.  */
1135       switch (config->support)
1136 	{
1137 	case PACKET_SUPPORT_UNKNOWN:
1138 	  if (remote_debug)
1139 	    fprintf_unfiltered (gdb_stdlog,
1140 				    "Packet %s (%s) is supported\n",
1141 				    config->name, config->title);
1142 	  config->support = PACKET_ENABLE;
1143 	  break;
1144 	case PACKET_DISABLE:
1145 	  internal_error (__FILE__, __LINE__,
1146 			  _("packet_ok: attempt to use a disabled packet"));
1147 	  break;
1148 	case PACKET_ENABLE:
1149 	  break;
1150 	}
1151       break;
1152     case PACKET_UNKNOWN:
1153       /* The stub does not support the packet.  */
1154       switch (config->support)
1155 	{
1156 	case PACKET_ENABLE:
1157 	  if (config->detect == AUTO_BOOLEAN_AUTO)
1158 	    /* If the stub previously indicated that the packet was
1159 	       supported then there is a protocol error..  */
1160 	    error (_("Protocol error: %s (%s) conflicting enabled responses."),
1161 		   config->name, config->title);
1162 	  else
1163 	    /* The user set it wrong.  */
1164 	    error (_("Enabled packet %s (%s) not recognized by stub"),
1165 		   config->name, config->title);
1166 	  break;
1167 	case PACKET_SUPPORT_UNKNOWN:
1168 	  if (remote_debug)
1169 	    fprintf_unfiltered (gdb_stdlog,
1170 				"Packet %s (%s) is NOT supported\n",
1171 				config->name, config->title);
1172 	  config->support = PACKET_DISABLE;
1173 	  break;
1174 	case PACKET_DISABLE:
1175 	  break;
1176 	}
1177       break;
1178     }
1179 
1180   return result;
1181 }
1182 
1183 enum {
1184   PACKET_vCont = 0,
1185   PACKET_X,
1186   PACKET_qSymbol,
1187   PACKET_P,
1188   PACKET_p,
1189   PACKET_Z0,
1190   PACKET_Z1,
1191   PACKET_Z2,
1192   PACKET_Z3,
1193   PACKET_Z4,
1194   PACKET_vFile_open,
1195   PACKET_vFile_pread,
1196   PACKET_vFile_pwrite,
1197   PACKET_vFile_close,
1198   PACKET_vFile_unlink,
1199   PACKET_qXfer_auxv,
1200   PACKET_qXfer_features,
1201   PACKET_qXfer_libraries,
1202   PACKET_qXfer_memory_map,
1203   PACKET_qXfer_spu_read,
1204   PACKET_qXfer_spu_write,
1205   PACKET_qXfer_osdata,
1206   PACKET_qXfer_threads,
1207   PACKET_qXfer_statictrace_read,
1208   PACKET_qXfer_traceframe_info,
1209   PACKET_qGetTIBAddr,
1210   PACKET_qGetTLSAddr,
1211   PACKET_qSupported,
1212   PACKET_QPassSignals,
1213   PACKET_qSearch_memory,
1214   PACKET_vAttach,
1215   PACKET_vRun,
1216   PACKET_QStartNoAckMode,
1217   PACKET_vKill,
1218   PACKET_qXfer_siginfo_read,
1219   PACKET_qXfer_siginfo_write,
1220   PACKET_qAttached,
1221   PACKET_ConditionalTracepoints,
1222   PACKET_FastTracepoints,
1223   PACKET_StaticTracepoints,
1224   PACKET_bc,
1225   PACKET_bs,
1226   PACKET_TracepointSource,
1227   PACKET_QAllow,
1228   PACKET_MAX
1229 };
1230 
1231 static struct packet_config remote_protocol_packets[PACKET_MAX];
1232 
1233 static void
1234 set_remote_protocol_packet_cmd (char *args, int from_tty,
1235 				struct cmd_list_element *c)
1236 {
1237   struct packet_config *packet;
1238 
1239   for (packet = remote_protocol_packets;
1240        packet < &remote_protocol_packets[PACKET_MAX];
1241        packet++)
1242     {
1243       if (&packet->detect == c->var)
1244 	{
1245 	  update_packet_config (packet);
1246 	  return;
1247 	}
1248     }
1249   internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1250 		  c->name);
1251 }
1252 
1253 static void
1254 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1255 				 struct cmd_list_element *c,
1256 				 const char *value)
1257 {
1258   struct packet_config *packet;
1259 
1260   for (packet = remote_protocol_packets;
1261        packet < &remote_protocol_packets[PACKET_MAX];
1262        packet++)
1263     {
1264       if (&packet->detect == c->var)
1265 	{
1266 	  show_packet_config_cmd (packet);
1267 	  return;
1268 	}
1269     }
1270   internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1271 		  c->name);
1272 }
1273 
1274 /* Should we try one of the 'Z' requests?  */
1275 
1276 enum Z_packet_type
1277 {
1278   Z_PACKET_SOFTWARE_BP,
1279   Z_PACKET_HARDWARE_BP,
1280   Z_PACKET_WRITE_WP,
1281   Z_PACKET_READ_WP,
1282   Z_PACKET_ACCESS_WP,
1283   NR_Z_PACKET_TYPES
1284 };
1285 
1286 /* For compatibility with older distributions.  Provide a ``set remote
1287    Z-packet ...'' command that updates all the Z packet types.  */
1288 
1289 static enum auto_boolean remote_Z_packet_detect;
1290 
1291 static void
1292 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1293 				  struct cmd_list_element *c)
1294 {
1295   int i;
1296 
1297   for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1298     {
1299       remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1300       update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1301     }
1302 }
1303 
1304 static void
1305 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1306 				   struct cmd_list_element *c,
1307 				   const char *value)
1308 {
1309   int i;
1310 
1311   for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1312     {
1313       show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1314     }
1315 }
1316 
1317 /* Should we try the 'ThreadInfo' query packet?
1318 
1319    This variable (NOT available to the user: auto-detect only!)
1320    determines whether GDB will use the new, simpler "ThreadInfo"
1321    query or the older, more complex syntax for thread queries.
1322    This is an auto-detect variable (set to true at each connect,
1323    and set to false when the target fails to recognize it).  */
1324 
1325 static int use_threadinfo_query;
1326 static int use_threadextra_query;
1327 
1328 /* Tokens for use by the asynchronous signal handlers for SIGINT.  */
1329 static struct async_signal_handler *sigint_remote_twice_token;
1330 static struct async_signal_handler *sigint_remote_token;
1331 
1332 
1333 /* Asynchronous signal handle registered as event loop source for
1334    when we have pending events ready to be passed to the core.  */
1335 
1336 static struct async_event_handler *remote_async_inferior_event_token;
1337 
1338 /* Asynchronous signal handle registered as event loop source for when
1339    the remote sent us a %Stop notification.  The registered callback
1340    will do a vStopped sequence to pull the rest of the events out of
1341    the remote side into our event queue.  */
1342 
1343 static struct async_event_handler *remote_async_get_pending_events_token;
1344 
1345 
1346 static ptid_t magic_null_ptid;
1347 static ptid_t not_sent_ptid;
1348 static ptid_t any_thread_ptid;
1349 
1350 /* These are the threads which we last sent to the remote system.  The
1351    TID member will be -1 for all or -2 for not sent yet.  */
1352 
1353 static ptid_t general_thread;
1354 static ptid_t continue_thread;
1355 
1356 /* This the traceframe which we last selected on the remote system.
1357    It will be -1 if no traceframe is selected.  */
1358 static int remote_traceframe_number = -1;
1359 
1360 /* Find out if the stub attached to PID (and hence GDB should offer to
1361    detach instead of killing it when bailing out).  */
1362 
1363 static int
1364 remote_query_attached (int pid)
1365 {
1366   struct remote_state *rs = get_remote_state ();
1367 
1368   if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1369     return 0;
1370 
1371   if (remote_multi_process_p (rs))
1372     sprintf (rs->buf, "qAttached:%x", pid);
1373   else
1374     sprintf (rs->buf, "qAttached");
1375 
1376   putpkt (rs->buf);
1377   getpkt (&rs->buf, &rs->buf_size, 0);
1378 
1379   switch (packet_ok (rs->buf,
1380 		     &remote_protocol_packets[PACKET_qAttached]))
1381     {
1382     case PACKET_OK:
1383       if (strcmp (rs->buf, "1") == 0)
1384 	return 1;
1385       break;
1386     case PACKET_ERROR:
1387       warning (_("Remote failure reply: %s"), rs->buf);
1388       break;
1389     case PACKET_UNKNOWN:
1390       break;
1391     }
1392 
1393   return 0;
1394 }
1395 
1396 /* Add PID to GDB's inferior table.  Since we can be connected to a
1397    remote system before before knowing about any inferior, mark the
1398    target with execution when we find the first inferior.  If ATTACHED
1399    is 1, then we had just attached to this inferior.  If it is 0, then
1400    we just created this inferior.  If it is -1, then try querying the
1401    remote stub to find out if it had attached to the inferior or
1402    not.  */
1403 
1404 static struct inferior *
1405 remote_add_inferior (int pid, int attached)
1406 {
1407   struct inferior *inf;
1408 
1409   /* Check whether this process we're learning about is to be
1410      considered attached, or if is to be considered to have been
1411      spawned by the stub.  */
1412   if (attached == -1)
1413     attached = remote_query_attached (pid);
1414 
1415   if (gdbarch_has_global_solist (target_gdbarch))
1416     {
1417       /* If the target shares code across all inferiors, then every
1418 	 attach adds a new inferior.  */
1419       inf = add_inferior (pid);
1420 
1421       /* ... and every inferior is bound to the same program space.
1422 	 However, each inferior may still have its own address
1423 	 space.  */
1424       inf->aspace = maybe_new_address_space ();
1425       inf->pspace = current_program_space;
1426     }
1427   else
1428     {
1429       /* In the traditional debugging scenario, there's a 1-1 match
1430 	 between program/address spaces.  We simply bind the inferior
1431 	 to the program space's address space.  */
1432       inf = current_inferior ();
1433       inferior_appeared (inf, pid);
1434     }
1435 
1436   inf->attach_flag = attached;
1437 
1438   return inf;
1439 }
1440 
1441 /* Add thread PTID to GDB's thread list.  Tag it as executing/running
1442    according to RUNNING.  */
1443 
1444 static void
1445 remote_add_thread (ptid_t ptid, int running)
1446 {
1447   add_thread (ptid);
1448 
1449   set_executing (ptid, running);
1450   set_running (ptid, running);
1451 }
1452 
1453 /* Come here when we learn about a thread id from the remote target.
1454    It may be the first time we hear about such thread, so take the
1455    opportunity to add it to GDB's thread list.  In case this is the
1456    first time we're noticing its corresponding inferior, add it to
1457    GDB's inferior list as well.  */
1458 
1459 static void
1460 remote_notice_new_inferior (ptid_t currthread, int running)
1461 {
1462   /* If this is a new thread, add it to GDB's thread list.
1463      If we leave it up to WFI to do this, bad things will happen.  */
1464 
1465   if (in_thread_list (currthread) && is_exited (currthread))
1466     {
1467       /* We're seeing an event on a thread id we knew had exited.
1468 	 This has to be a new thread reusing the old id.  Add it.  */
1469       remote_add_thread (currthread, running);
1470       return;
1471     }
1472 
1473   if (!in_thread_list (currthread))
1474     {
1475       struct inferior *inf = NULL;
1476       int pid = ptid_get_pid (currthread);
1477 
1478       if (ptid_is_pid (inferior_ptid)
1479 	  && pid == ptid_get_pid (inferior_ptid))
1480 	{
1481 	  /* inferior_ptid has no thread member yet.  This can happen
1482 	     with the vAttach -> remote_wait,"TAAthread:" path if the
1483 	     stub doesn't support qC.  This is the first stop reported
1484 	     after an attach, so this is the main thread.  Update the
1485 	     ptid in the thread list.  */
1486 	  if (in_thread_list (pid_to_ptid (pid)))
1487 	    thread_change_ptid (inferior_ptid, currthread);
1488 	  else
1489 	    {
1490 	      remote_add_thread (currthread, running);
1491 	      inferior_ptid = currthread;
1492 	    }
1493 	  return;
1494 	}
1495 
1496       if (ptid_equal (magic_null_ptid, inferior_ptid))
1497 	{
1498 	  /* inferior_ptid is not set yet.  This can happen with the
1499 	     vRun -> remote_wait,"TAAthread:" path if the stub
1500 	     doesn't support qC.  This is the first stop reported
1501 	     after an attach, so this is the main thread.  Update the
1502 	     ptid in the thread list.  */
1503 	  thread_change_ptid (inferior_ptid, currthread);
1504 	  return;
1505 	}
1506 
1507       /* When connecting to a target remote, or to a target
1508 	 extended-remote which already was debugging an inferior, we
1509 	 may not know about it yet.  Add it before adding its child
1510 	 thread, so notifications are emitted in a sensible order.  */
1511       if (!in_inferior_list (ptid_get_pid (currthread)))
1512 	inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1513 
1514       /* This is really a new thread.  Add it.  */
1515       remote_add_thread (currthread, running);
1516 
1517       /* If we found a new inferior, let the common code do whatever
1518 	 it needs to with it (e.g., read shared libraries, insert
1519 	 breakpoints).  */
1520       if (inf != NULL)
1521 	notice_new_inferior (currthread, running, 0);
1522     }
1523 }
1524 
1525 /* Return the private thread data, creating it if necessary.  */
1526 
1527 struct private_thread_info *
1528 demand_private_info (ptid_t ptid)
1529 {
1530   struct thread_info *info = find_thread_ptid (ptid);
1531 
1532   gdb_assert (info);
1533 
1534   if (!info->private)
1535     {
1536       info->private = xmalloc (sizeof (*(info->private)));
1537       info->private_dtor = free_private_thread_info;
1538       info->private->core = -1;
1539       info->private->extra = 0;
1540     }
1541 
1542   return info->private;
1543 }
1544 
1545 /* Call this function as a result of
1546    1) A halt indication (T packet) containing a thread id
1547    2) A direct query of currthread
1548    3) Successful execution of set thread */
1549 
1550 static void
1551 record_currthread (ptid_t currthread)
1552 {
1553   general_thread = currthread;
1554 }
1555 
1556 static char *last_pass_packet;
1557 
1558 /* If 'QPassSignals' is supported, tell the remote stub what signals
1559    it can simply pass through to the inferior without reporting.  */
1560 
1561 static void
1562 remote_pass_signals (void)
1563 {
1564   if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1565     {
1566       char *pass_packet, *p;
1567       int numsigs = (int) TARGET_SIGNAL_LAST;
1568       int count = 0, i;
1569 
1570       gdb_assert (numsigs < 256);
1571       for (i = 0; i < numsigs; i++)
1572 	{
1573 	  if (signal_stop_state (i) == 0
1574 	      && signal_print_state (i) == 0
1575 	      && signal_pass_state (i) == 1)
1576 	    count++;
1577 	}
1578       pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1579       strcpy (pass_packet, "QPassSignals:");
1580       p = pass_packet + strlen (pass_packet);
1581       for (i = 0; i < numsigs; i++)
1582 	{
1583 	  if (signal_stop_state (i) == 0
1584 	      && signal_print_state (i) == 0
1585 	      && signal_pass_state (i) == 1)
1586 	    {
1587 	      if (i >= 16)
1588 		*p++ = tohex (i >> 4);
1589 	      *p++ = tohex (i & 15);
1590 	      if (count)
1591 		*p++ = ';';
1592 	      else
1593 		break;
1594 	      count--;
1595 	    }
1596 	}
1597       *p = 0;
1598       if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1599 	{
1600 	  struct remote_state *rs = get_remote_state ();
1601 	  char *buf = rs->buf;
1602 
1603 	  putpkt (pass_packet);
1604 	  getpkt (&rs->buf, &rs->buf_size, 0);
1605 	  packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1606 	  if (last_pass_packet)
1607 	    xfree (last_pass_packet);
1608 	  last_pass_packet = pass_packet;
1609 	}
1610       else
1611 	xfree (pass_packet);
1612     }
1613 }
1614 
1615 static void
1616 remote_notice_signals (ptid_t ptid)
1617 {
1618   /* Update the remote on signals to silently pass, if they've
1619      changed.  */
1620   remote_pass_signals ();
1621 }
1622 
1623 /* If PTID is MAGIC_NULL_PTID, don't set any thread.  If PTID is
1624    MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1625    thread.  If GEN is set, set the general thread, if not, then set
1626    the step/continue thread.  */
1627 static void
1628 set_thread (struct ptid ptid, int gen)
1629 {
1630   struct remote_state *rs = get_remote_state ();
1631   ptid_t state = gen ? general_thread : continue_thread;
1632   char *buf = rs->buf;
1633   char *endbuf = rs->buf + get_remote_packet_size ();
1634 
1635   if (ptid_equal (state, ptid))
1636     return;
1637 
1638   *buf++ = 'H';
1639   *buf++ = gen ? 'g' : 'c';
1640   if (ptid_equal (ptid, magic_null_ptid))
1641     xsnprintf (buf, endbuf - buf, "0");
1642   else if (ptid_equal (ptid, any_thread_ptid))
1643     xsnprintf (buf, endbuf - buf, "0");
1644   else if (ptid_equal (ptid, minus_one_ptid))
1645     xsnprintf (buf, endbuf - buf, "-1");
1646   else
1647     write_ptid (buf, endbuf, ptid);
1648   putpkt (rs->buf);
1649   getpkt (&rs->buf, &rs->buf_size, 0);
1650   if (gen)
1651     general_thread = ptid;
1652   else
1653     continue_thread = ptid;
1654 }
1655 
1656 static void
1657 set_general_thread (struct ptid ptid)
1658 {
1659   set_thread (ptid, 1);
1660 }
1661 
1662 static void
1663 set_continue_thread (struct ptid ptid)
1664 {
1665   set_thread (ptid, 0);
1666 }
1667 
1668 /* Change the remote current process.  Which thread within the process
1669    ends up selected isn't important, as long as it is the same process
1670    as what INFERIOR_PTID points to.
1671 
1672    This comes from that fact that there is no explicit notion of
1673    "selected process" in the protocol.  The selected process for
1674    general operations is the process the selected general thread
1675    belongs to.  */
1676 
1677 static void
1678 set_general_process (void)
1679 {
1680   struct remote_state *rs = get_remote_state ();
1681 
1682   /* If the remote can't handle multiple processes, don't bother.  */
1683   if (!remote_multi_process_p (rs))
1684     return;
1685 
1686   /* We only need to change the remote current thread if it's pointing
1687      at some other process.  */
1688   if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1689     set_general_thread (inferior_ptid);
1690 }
1691 
1692 
1693 /*  Return nonzero if the thread PTID is still alive on the remote
1694     system.  */
1695 
1696 static int
1697 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1698 {
1699   struct remote_state *rs = get_remote_state ();
1700   char *p, *endp;
1701 
1702   if (ptid_equal (ptid, magic_null_ptid))
1703     /* The main thread is always alive.  */
1704     return 1;
1705 
1706   if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1707     /* The main thread is always alive.  This can happen after a
1708        vAttach, if the remote side doesn't support
1709        multi-threading.  */
1710     return 1;
1711 
1712   p = rs->buf;
1713   endp = rs->buf + get_remote_packet_size ();
1714 
1715   *p++ = 'T';
1716   write_ptid (p, endp, ptid);
1717 
1718   putpkt (rs->buf);
1719   getpkt (&rs->buf, &rs->buf_size, 0);
1720   return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1721 }
1722 
1723 /* About these extended threadlist and threadinfo packets.  They are
1724    variable length packets but, the fields within them are often fixed
1725    length.  They are redundent enough to send over UDP as is the
1726    remote protocol in general.  There is a matching unit test module
1727    in libstub.  */
1728 
1729 #define OPAQUETHREADBYTES 8
1730 
1731 /* a 64 bit opaque identifier */
1732 typedef unsigned char threadref[OPAQUETHREADBYTES];
1733 
1734 /* WARNING: This threadref data structure comes from the remote O.S.,
1735    libstub protocol encoding, and remote.c.  It is not particularly
1736    changable.  */
1737 
1738 /* Right now, the internal structure is int. We want it to be bigger.
1739    Plan to fix this.  */
1740 
1741 typedef int gdb_threadref;	/* Internal GDB thread reference.  */
1742 
1743 /* gdb_ext_thread_info is an internal GDB data structure which is
1744    equivalent to the reply of the remote threadinfo packet.  */
1745 
1746 struct gdb_ext_thread_info
1747   {
1748     threadref threadid;		/* External form of thread reference.  */
1749     int active;			/* Has state interesting to GDB?
1750 				   regs, stack.  */
1751     char display[256];		/* Brief state display, name,
1752 				   blocked/suspended.  */
1753     char shortname[32];		/* To be used to name threads.  */
1754     char more_display[256];	/* Long info, statistics, queue depth,
1755 				   whatever.  */
1756   };
1757 
1758 /* The volume of remote transfers can be limited by submitting
1759    a mask containing bits specifying the desired information.
1760    Use a union of these values as the 'selection' parameter to
1761    get_thread_info.  FIXME: Make these TAG names more thread specific.  */
1762 
1763 #define TAG_THREADID 1
1764 #define TAG_EXISTS 2
1765 #define TAG_DISPLAY 4
1766 #define TAG_THREADNAME 8
1767 #define TAG_MOREDISPLAY 16
1768 
1769 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1770 
1771 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1772 
1773 static char *unpack_nibble (char *buf, int *val);
1774 
1775 static char *pack_nibble (char *buf, int nibble);
1776 
1777 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1778 
1779 static char *unpack_byte (char *buf, int *value);
1780 
1781 static char *pack_int (char *buf, int value);
1782 
1783 static char *unpack_int (char *buf, int *value);
1784 
1785 static char *unpack_string (char *src, char *dest, int length);
1786 
1787 static char *pack_threadid (char *pkt, threadref *id);
1788 
1789 static char *unpack_threadid (char *inbuf, threadref *id);
1790 
1791 void int_to_threadref (threadref *id, int value);
1792 
1793 static int threadref_to_int (threadref *ref);
1794 
1795 static void copy_threadref (threadref *dest, threadref *src);
1796 
1797 static int threadmatch (threadref *dest, threadref *src);
1798 
1799 static char *pack_threadinfo_request (char *pkt, int mode,
1800 				      threadref *id);
1801 
1802 static int remote_unpack_thread_info_response (char *pkt,
1803 					       threadref *expectedref,
1804 					       struct gdb_ext_thread_info
1805 					       *info);
1806 
1807 
1808 static int remote_get_threadinfo (threadref *threadid,
1809 				  int fieldset,	/*TAG mask */
1810 				  struct gdb_ext_thread_info *info);
1811 
1812 static char *pack_threadlist_request (char *pkt, int startflag,
1813 				      int threadcount,
1814 				      threadref *nextthread);
1815 
1816 static int parse_threadlist_response (char *pkt,
1817 				      int result_limit,
1818 				      threadref *original_echo,
1819 				      threadref *resultlist,
1820 				      int *doneflag);
1821 
1822 static int remote_get_threadlist (int startflag,
1823 				  threadref *nextthread,
1824 				  int result_limit,
1825 				  int *done,
1826 				  int *result_count,
1827 				  threadref *threadlist);
1828 
1829 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1830 
1831 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1832 				       void *context, int looplimit);
1833 
1834 static int remote_newthread_step (threadref *ref, void *context);
1835 
1836 
1837 /* Write a PTID to BUF.  ENDBUF points to one-passed-the-end of the
1838    buffer we're allowed to write to.  Returns
1839    BUF+CHARACTERS_WRITTEN.  */
1840 
1841 static char *
1842 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1843 {
1844   int pid, tid;
1845   struct remote_state *rs = get_remote_state ();
1846 
1847   if (remote_multi_process_p (rs))
1848     {
1849       pid = ptid_get_pid (ptid);
1850       if (pid < 0)
1851 	buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1852       else
1853 	buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1854     }
1855   tid = ptid_get_tid (ptid);
1856   if (tid < 0)
1857     buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1858   else
1859     buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1860 
1861   return buf;
1862 }
1863 
1864 /* Extract a PTID from BUF.  If non-null, OBUF is set to the to one
1865    passed the last parsed char.  Returns null_ptid on error.  */
1866 
1867 static ptid_t
1868 read_ptid (char *buf, char **obuf)
1869 {
1870   char *p = buf;
1871   char *pp;
1872   ULONGEST pid = 0, tid = 0;
1873 
1874   if (*p == 'p')
1875     {
1876       /* Multi-process ptid.  */
1877       pp = unpack_varlen_hex (p + 1, &pid);
1878       if (*pp != '.')
1879 	error (_("invalid remote ptid: %s"), p);
1880 
1881       p = pp;
1882       pp = unpack_varlen_hex (p + 1, &tid);
1883       if (obuf)
1884 	*obuf = pp;
1885       return ptid_build (pid, 0, tid);
1886     }
1887 
1888   /* No multi-process.  Just a tid.  */
1889   pp = unpack_varlen_hex (p, &tid);
1890 
1891   /* Since the stub is not sending a process id, then default to
1892      what's in inferior_ptid, unless it's null at this point.  If so,
1893      then since there's no way to know the pid of the reported
1894      threads, use the magic number.  */
1895   if (ptid_equal (inferior_ptid, null_ptid))
1896     pid = ptid_get_pid (magic_null_ptid);
1897   else
1898     pid = ptid_get_pid (inferior_ptid);
1899 
1900   if (obuf)
1901     *obuf = pp;
1902   return ptid_build (pid, 0, tid);
1903 }
1904 
1905 /* Encode 64 bits in 16 chars of hex.  */
1906 
1907 static const char hexchars[] = "0123456789abcdef";
1908 
1909 static int
1910 ishex (int ch, int *val)
1911 {
1912   if ((ch >= 'a') && (ch <= 'f'))
1913     {
1914       *val = ch - 'a' + 10;
1915       return 1;
1916     }
1917   if ((ch >= 'A') && (ch <= 'F'))
1918     {
1919       *val = ch - 'A' + 10;
1920       return 1;
1921     }
1922   if ((ch >= '0') && (ch <= '9'))
1923     {
1924       *val = ch - '0';
1925       return 1;
1926     }
1927   return 0;
1928 }
1929 
1930 static int
1931 stubhex (int ch)
1932 {
1933   if (ch >= 'a' && ch <= 'f')
1934     return ch - 'a' + 10;
1935   if (ch >= '0' && ch <= '9')
1936     return ch - '0';
1937   if (ch >= 'A' && ch <= 'F')
1938     return ch - 'A' + 10;
1939   return -1;
1940 }
1941 
1942 static int
1943 stub_unpack_int (char *buff, int fieldlength)
1944 {
1945   int nibble;
1946   int retval = 0;
1947 
1948   while (fieldlength)
1949     {
1950       nibble = stubhex (*buff++);
1951       retval |= nibble;
1952       fieldlength--;
1953       if (fieldlength)
1954 	retval = retval << 4;
1955     }
1956   return retval;
1957 }
1958 
1959 char *
1960 unpack_varlen_hex (char *buff,	/* packet to parse */
1961 		   ULONGEST *result)
1962 {
1963   int nibble;
1964   ULONGEST retval = 0;
1965 
1966   while (ishex (*buff, &nibble))
1967     {
1968       buff++;
1969       retval = retval << 4;
1970       retval |= nibble & 0x0f;
1971     }
1972   *result = retval;
1973   return buff;
1974 }
1975 
1976 static char *
1977 unpack_nibble (char *buf, int *val)
1978 {
1979   *val = fromhex (*buf++);
1980   return buf;
1981 }
1982 
1983 static char *
1984 pack_nibble (char *buf, int nibble)
1985 {
1986   *buf++ = hexchars[(nibble & 0x0f)];
1987   return buf;
1988 }
1989 
1990 static char *
1991 pack_hex_byte (char *pkt, int byte)
1992 {
1993   *pkt++ = hexchars[(byte >> 4) & 0xf];
1994   *pkt++ = hexchars[(byte & 0xf)];
1995   return pkt;
1996 }
1997 
1998 static char *
1999 unpack_byte (char *buf, int *value)
2000 {
2001   *value = stub_unpack_int (buf, 2);
2002   return buf + 2;
2003 }
2004 
2005 static char *
2006 pack_int (char *buf, int value)
2007 {
2008   buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2009   buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2010   buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2011   buf = pack_hex_byte (buf, (value & 0xff));
2012   return buf;
2013 }
2014 
2015 static char *
2016 unpack_int (char *buf, int *value)
2017 {
2018   *value = stub_unpack_int (buf, 8);
2019   return buf + 8;
2020 }
2021 
2022 #if 0			/* Currently unused, uncomment when needed.  */
2023 static char *pack_string (char *pkt, char *string);
2024 
2025 static char *
2026 pack_string (char *pkt, char *string)
2027 {
2028   char ch;
2029   int len;
2030 
2031   len = strlen (string);
2032   if (len > 200)
2033     len = 200;		/* Bigger than most GDB packets, junk???  */
2034   pkt = pack_hex_byte (pkt, len);
2035   while (len-- > 0)
2036     {
2037       ch = *string++;
2038       if ((ch == '\0') || (ch == '#'))
2039 	ch = '*';		/* Protect encapsulation.  */
2040       *pkt++ = ch;
2041     }
2042   return pkt;
2043 }
2044 #endif /* 0 (unused) */
2045 
2046 static char *
2047 unpack_string (char *src, char *dest, int length)
2048 {
2049   while (length--)
2050     *dest++ = *src++;
2051   *dest = '\0';
2052   return src;
2053 }
2054 
2055 static char *
2056 pack_threadid (char *pkt, threadref *id)
2057 {
2058   char *limit;
2059   unsigned char *altid;
2060 
2061   altid = (unsigned char *) id;
2062   limit = pkt + BUF_THREAD_ID_SIZE;
2063   while (pkt < limit)
2064     pkt = pack_hex_byte (pkt, *altid++);
2065   return pkt;
2066 }
2067 
2068 
2069 static char *
2070 unpack_threadid (char *inbuf, threadref *id)
2071 {
2072   char *altref;
2073   char *limit = inbuf + BUF_THREAD_ID_SIZE;
2074   int x, y;
2075 
2076   altref = (char *) id;
2077 
2078   while (inbuf < limit)
2079     {
2080       x = stubhex (*inbuf++);
2081       y = stubhex (*inbuf++);
2082       *altref++ = (x << 4) | y;
2083     }
2084   return inbuf;
2085 }
2086 
2087 /* Externally, threadrefs are 64 bits but internally, they are still
2088    ints.  This is due to a mismatch of specifications.  We would like
2089    to use 64bit thread references internally.  This is an adapter
2090    function.  */
2091 
2092 void
2093 int_to_threadref (threadref *id, int value)
2094 {
2095   unsigned char *scan;
2096 
2097   scan = (unsigned char *) id;
2098   {
2099     int i = 4;
2100     while (i--)
2101       *scan++ = 0;
2102   }
2103   *scan++ = (value >> 24) & 0xff;
2104   *scan++ = (value >> 16) & 0xff;
2105   *scan++ = (value >> 8) & 0xff;
2106   *scan++ = (value & 0xff);
2107 }
2108 
2109 static int
2110 threadref_to_int (threadref *ref)
2111 {
2112   int i, value = 0;
2113   unsigned char *scan;
2114 
2115   scan = *ref;
2116   scan += 4;
2117   i = 4;
2118   while (i-- > 0)
2119     value = (value << 8) | ((*scan++) & 0xff);
2120   return value;
2121 }
2122 
2123 static void
2124 copy_threadref (threadref *dest, threadref *src)
2125 {
2126   int i;
2127   unsigned char *csrc, *cdest;
2128 
2129   csrc = (unsigned char *) src;
2130   cdest = (unsigned char *) dest;
2131   i = 8;
2132   while (i--)
2133     *cdest++ = *csrc++;
2134 }
2135 
2136 static int
2137 threadmatch (threadref *dest, threadref *src)
2138 {
2139   /* Things are broken right now, so just assume we got a match.  */
2140 #if 0
2141   unsigned char *srcp, *destp;
2142   int i, result;
2143   srcp = (char *) src;
2144   destp = (char *) dest;
2145 
2146   result = 1;
2147   while (i-- > 0)
2148     result &= (*srcp++ == *destp++) ? 1 : 0;
2149   return result;
2150 #endif
2151   return 1;
2152 }
2153 
2154 /*
2155    threadid:1,        # always request threadid
2156    context_exists:2,
2157    display:4,
2158    unique_name:8,
2159    more_display:16
2160  */
2161 
2162 /* Encoding:  'Q':8,'P':8,mask:32,threadid:64 */
2163 
2164 static char *
2165 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2166 {
2167   *pkt++ = 'q';				/* Info Query */
2168   *pkt++ = 'P';				/* process or thread info */
2169   pkt = pack_int (pkt, mode);		/* mode */
2170   pkt = pack_threadid (pkt, id);	/* threadid */
2171   *pkt = '\0';				/* terminate */
2172   return pkt;
2173 }
2174 
2175 /* These values tag the fields in a thread info response packet.  */
2176 /* Tagging the fields allows us to request specific fields and to
2177    add more fields as time goes by.  */
2178 
2179 #define TAG_THREADID 1		/* Echo the thread identifier.  */
2180 #define TAG_EXISTS 2		/* Is this process defined enough to
2181 				   fetch registers and its stack?  */
2182 #define TAG_DISPLAY 4		/* A short thing maybe to put on a window */
2183 #define TAG_THREADNAME 8	/* string, maps 1-to-1 with a thread is.  */
2184 #define TAG_MOREDISPLAY 16	/* Whatever the kernel wants to say about
2185 				   the process.  */
2186 
2187 static int
2188 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2189 				    struct gdb_ext_thread_info *info)
2190 {
2191   struct remote_state *rs = get_remote_state ();
2192   int mask, length;
2193   int tag;
2194   threadref ref;
2195   char *limit = pkt + rs->buf_size; /* Plausible parsing limit.  */
2196   int retval = 1;
2197 
2198   /* info->threadid = 0; FIXME: implement zero_threadref.  */
2199   info->active = 0;
2200   info->display[0] = '\0';
2201   info->shortname[0] = '\0';
2202   info->more_display[0] = '\0';
2203 
2204   /* Assume the characters indicating the packet type have been
2205      stripped.  */
2206   pkt = unpack_int (pkt, &mask);	/* arg mask */
2207   pkt = unpack_threadid (pkt, &ref);
2208 
2209   if (mask == 0)
2210     warning (_("Incomplete response to threadinfo request."));
2211   if (!threadmatch (&ref, expectedref))
2212     {			/* This is an answer to a different request.  */
2213       warning (_("ERROR RMT Thread info mismatch."));
2214       return 0;
2215     }
2216   copy_threadref (&info->threadid, &ref);
2217 
2218   /* Loop on tagged fields , try to bail if somthing goes wrong.  */
2219 
2220   /* Packets are terminated with nulls.  */
2221   while ((pkt < limit) && mask && *pkt)
2222     {
2223       pkt = unpack_int (pkt, &tag);	/* tag */
2224       pkt = unpack_byte (pkt, &length);	/* length */
2225       if (!(tag & mask))		/* Tags out of synch with mask.  */
2226 	{
2227 	  warning (_("ERROR RMT: threadinfo tag mismatch."));
2228 	  retval = 0;
2229 	  break;
2230 	}
2231       if (tag == TAG_THREADID)
2232 	{
2233 	  if (length != 16)
2234 	    {
2235 	      warning (_("ERROR RMT: length of threadid is not 16."));
2236 	      retval = 0;
2237 	      break;
2238 	    }
2239 	  pkt = unpack_threadid (pkt, &ref);
2240 	  mask = mask & ~TAG_THREADID;
2241 	  continue;
2242 	}
2243       if (tag == TAG_EXISTS)
2244 	{
2245 	  info->active = stub_unpack_int (pkt, length);
2246 	  pkt += length;
2247 	  mask = mask & ~(TAG_EXISTS);
2248 	  if (length > 8)
2249 	    {
2250 	      warning (_("ERROR RMT: 'exists' length too long."));
2251 	      retval = 0;
2252 	      break;
2253 	    }
2254 	  continue;
2255 	}
2256       if (tag == TAG_THREADNAME)
2257 	{
2258 	  pkt = unpack_string (pkt, &info->shortname[0], length);
2259 	  mask = mask & ~TAG_THREADNAME;
2260 	  continue;
2261 	}
2262       if (tag == TAG_DISPLAY)
2263 	{
2264 	  pkt = unpack_string (pkt, &info->display[0], length);
2265 	  mask = mask & ~TAG_DISPLAY;
2266 	  continue;
2267 	}
2268       if (tag == TAG_MOREDISPLAY)
2269 	{
2270 	  pkt = unpack_string (pkt, &info->more_display[0], length);
2271 	  mask = mask & ~TAG_MOREDISPLAY;
2272 	  continue;
2273 	}
2274       warning (_("ERROR RMT: unknown thread info tag."));
2275       break;			/* Not a tag we know about.  */
2276     }
2277   return retval;
2278 }
2279 
2280 static int
2281 remote_get_threadinfo (threadref *threadid, int fieldset,	/* TAG mask */
2282 		       struct gdb_ext_thread_info *info)
2283 {
2284   struct remote_state *rs = get_remote_state ();
2285   int result;
2286 
2287   pack_threadinfo_request (rs->buf, fieldset, threadid);
2288   putpkt (rs->buf);
2289   getpkt (&rs->buf, &rs->buf_size, 0);
2290 
2291   if (rs->buf[0] == '\0')
2292     return 0;
2293 
2294   result = remote_unpack_thread_info_response (rs->buf + 2,
2295 					       threadid, info);
2296   return result;
2297 }
2298 
2299 /*    Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32   */
2300 
2301 static char *
2302 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2303 			 threadref *nextthread)
2304 {
2305   *pkt++ = 'q';			/* info query packet */
2306   *pkt++ = 'L';			/* Process LIST or threadLIST request */
2307   pkt = pack_nibble (pkt, startflag);		/* initflag 1 bytes */
2308   pkt = pack_hex_byte (pkt, threadcount);	/* threadcount 2 bytes */
2309   pkt = pack_threadid (pkt, nextthread);	/* 64 bit thread identifier */
2310   *pkt = '\0';
2311   return pkt;
2312 }
2313 
2314 /* Encoding:   'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2315 
2316 static int
2317 parse_threadlist_response (char *pkt, int result_limit,
2318 			   threadref *original_echo, threadref *resultlist,
2319 			   int *doneflag)
2320 {
2321   struct remote_state *rs = get_remote_state ();
2322   char *limit;
2323   int count, resultcount, done;
2324 
2325   resultcount = 0;
2326   /* Assume the 'q' and 'M chars have been stripped.  */
2327   limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2328   /* done parse past here */
2329   pkt = unpack_byte (pkt, &count);	/* count field */
2330   pkt = unpack_nibble (pkt, &done);
2331   /* The first threadid is the argument threadid.  */
2332   pkt = unpack_threadid (pkt, original_echo);	/* should match query packet */
2333   while ((count-- > 0) && (pkt < limit))
2334     {
2335       pkt = unpack_threadid (pkt, resultlist++);
2336       if (resultcount++ >= result_limit)
2337 	break;
2338     }
2339   if (doneflag)
2340     *doneflag = done;
2341   return resultcount;
2342 }
2343 
2344 static int
2345 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2346 		       int *done, int *result_count, threadref *threadlist)
2347 {
2348   struct remote_state *rs = get_remote_state ();
2349   static threadref echo_nextthread;
2350   int result = 1;
2351 
2352   /* Trancate result limit to be smaller than the packet size.  */
2353   if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2354       >= get_remote_packet_size ())
2355     result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2356 
2357   pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2358   putpkt (rs->buf);
2359   getpkt (&rs->buf, &rs->buf_size, 0);
2360 
2361   if (*rs->buf == '\0')
2362     return 0;
2363   else
2364     *result_count =
2365       parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2366                                  threadlist, done);
2367 
2368   if (!threadmatch (&echo_nextthread, nextthread))
2369     {
2370       /* FIXME: This is a good reason to drop the packet.  */
2371       /* Possably, there is a duplicate response.  */
2372       /* Possabilities :
2373          retransmit immediatly - race conditions
2374          retransmit after timeout - yes
2375          exit
2376          wait for packet, then exit
2377        */
2378       warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2379       return 0;			/* I choose simply exiting.  */
2380     }
2381   if (*result_count <= 0)
2382     {
2383       if (*done != 1)
2384 	{
2385 	  warning (_("RMT ERROR : failed to get remote thread list."));
2386 	  result = 0;
2387 	}
2388       return result;		/* break; */
2389     }
2390   if (*result_count > result_limit)
2391     {
2392       *result_count = 0;
2393       warning (_("RMT ERROR: threadlist response longer than requested."));
2394       return 0;
2395     }
2396   return result;
2397 }
2398 
2399 /* This is the interface between remote and threads, remotes upper
2400    interface.  */
2401 
2402 /* remote_find_new_threads retrieves the thread list and for each
2403    thread in the list, looks up the thread in GDB's internal list,
2404    adding the thread if it does not already exist.  This involves
2405    getting partial thread lists from the remote target so, polling the
2406    quit_flag is required.  */
2407 
2408 
2409 /* About this many threadisds fit in a packet.  */
2410 
2411 #define MAXTHREADLISTRESULTS 32
2412 
2413 static int
2414 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2415 			    int looplimit)
2416 {
2417   int done, i, result_count;
2418   int startflag = 1;
2419   int result = 1;
2420   int loopcount = 0;
2421   static threadref nextthread;
2422   static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2423 
2424   done = 0;
2425   while (!done)
2426     {
2427       if (loopcount++ > looplimit)
2428 	{
2429 	  result = 0;
2430 	  warning (_("Remote fetch threadlist -infinite loop-."));
2431 	  break;
2432 	}
2433       if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2434 				  &done, &result_count, resultthreadlist))
2435 	{
2436 	  result = 0;
2437 	  break;
2438 	}
2439       /* Clear for later iterations.  */
2440       startflag = 0;
2441       /* Setup to resume next batch of thread references, set nextthread.  */
2442       if (result_count >= 1)
2443 	copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2444       i = 0;
2445       while (result_count--)
2446 	if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2447 	  break;
2448     }
2449   return result;
2450 }
2451 
2452 static int
2453 remote_newthread_step (threadref *ref, void *context)
2454 {
2455   int pid = ptid_get_pid (inferior_ptid);
2456   ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2457 
2458   if (!in_thread_list (ptid))
2459     add_thread (ptid);
2460   return 1;			/* continue iterator */
2461 }
2462 
2463 #define CRAZY_MAX_THREADS 1000
2464 
2465 static ptid_t
2466 remote_current_thread (ptid_t oldpid)
2467 {
2468   struct remote_state *rs = get_remote_state ();
2469 
2470   putpkt ("qC");
2471   getpkt (&rs->buf, &rs->buf_size, 0);
2472   if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2473     return read_ptid (&rs->buf[2], NULL);
2474   else
2475     return oldpid;
2476 }
2477 
2478 /* Find new threads for info threads command.
2479  * Original version, using John Metzler's thread protocol.
2480  */
2481 
2482 static void
2483 remote_find_new_threads (void)
2484 {
2485   remote_threadlist_iterator (remote_newthread_step, 0,
2486 			      CRAZY_MAX_THREADS);
2487 }
2488 
2489 #if defined(HAVE_LIBEXPAT)
2490 
2491 typedef struct thread_item
2492 {
2493   ptid_t ptid;
2494   char *extra;
2495   int core;
2496 } thread_item_t;
2497 DEF_VEC_O(thread_item_t);
2498 
2499 struct threads_parsing_context
2500 {
2501   VEC (thread_item_t) *items;
2502 };
2503 
2504 static void
2505 start_thread (struct gdb_xml_parser *parser,
2506 	      const struct gdb_xml_element *element,
2507 	      void *user_data, VEC(gdb_xml_value_s) *attributes)
2508 {
2509   struct threads_parsing_context *data = user_data;
2510 
2511   struct thread_item item;
2512   char *id;
2513   struct gdb_xml_value *attr;
2514 
2515   id = xml_find_attribute (attributes, "id")->value;
2516   item.ptid = read_ptid (id, NULL);
2517 
2518   attr = xml_find_attribute (attributes, "core");
2519   if (attr != NULL)
2520     item.core = *(ULONGEST *) attr->value;
2521   else
2522     item.core = -1;
2523 
2524   item.extra = 0;
2525 
2526   VEC_safe_push (thread_item_t, data->items, &item);
2527 }
2528 
2529 static void
2530 end_thread (struct gdb_xml_parser *parser,
2531 	    const struct gdb_xml_element *element,
2532 	    void *user_data, const char *body_text)
2533 {
2534   struct threads_parsing_context *data = user_data;
2535 
2536   if (body_text && *body_text)
2537     VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2538 }
2539 
2540 const struct gdb_xml_attribute thread_attributes[] = {
2541   { "id", GDB_XML_AF_NONE, NULL, NULL },
2542   { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2543   { NULL, GDB_XML_AF_NONE, NULL, NULL }
2544 };
2545 
2546 const struct gdb_xml_element thread_children[] = {
2547   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2548 };
2549 
2550 const struct gdb_xml_element threads_children[] = {
2551   { "thread", thread_attributes, thread_children,
2552     GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2553     start_thread, end_thread },
2554   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2555 };
2556 
2557 const struct gdb_xml_element threads_elements[] = {
2558   { "threads", NULL, threads_children,
2559     GDB_XML_EF_NONE, NULL, NULL },
2560   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2561 };
2562 
2563 /* Discard the contents of the constructed thread info context.  */
2564 
2565 static void
2566 clear_threads_parsing_context (void *p)
2567 {
2568   struct threads_parsing_context *context = p;
2569   int i;
2570   struct thread_item *item;
2571 
2572   for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2573     xfree (item->extra);
2574 
2575   VEC_free (thread_item_t, context->items);
2576 }
2577 
2578 #endif
2579 
2580 /*
2581  * Find all threads for info threads command.
2582  * Uses new thread protocol contributed by Cisco.
2583  * Falls back and attempts to use the older method (above)
2584  * if the target doesn't respond to the new method.
2585  */
2586 
2587 static void
2588 remote_threads_info (struct target_ops *ops)
2589 {
2590   struct remote_state *rs = get_remote_state ();
2591   char *bufp;
2592   ptid_t new_thread;
2593 
2594   if (remote_desc == 0)		/* paranoia */
2595     error (_("Command can only be used when connected to the remote target."));
2596 
2597 #if defined(HAVE_LIBEXPAT)
2598   if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2599     {
2600       char *xml = target_read_stralloc (&current_target,
2601 					 TARGET_OBJECT_THREADS, NULL);
2602 
2603       struct cleanup *back_to = make_cleanup (xfree, xml);
2604 
2605       if (xml && *xml)
2606 	{
2607 	  struct threads_parsing_context context;
2608 
2609 	  context.items = NULL;
2610 	  make_cleanup (clear_threads_parsing_context, &context);
2611 
2612 	  if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2613 				   threads_elements, xml, &context) == 0)
2614 	    {
2615 	      int i;
2616 	      struct thread_item *item;
2617 
2618 	      for (i = 0;
2619 		   VEC_iterate (thread_item_t, context.items, i, item);
2620 		   ++i)
2621 		{
2622 		  if (!ptid_equal (item->ptid, null_ptid))
2623 		    {
2624 		      struct private_thread_info *info;
2625 		      /* In non-stop mode, we assume new found threads
2626 			 are running until proven otherwise with a
2627 			 stop reply.  In all-stop, we can only get
2628 			 here if all threads are stopped.  */
2629 		      int running = non_stop ? 1 : 0;
2630 
2631 		      remote_notice_new_inferior (item->ptid, running);
2632 
2633 		      info = demand_private_info (item->ptid);
2634 		      info->core = item->core;
2635 		      info->extra = item->extra;
2636 		      item->extra = NULL;
2637 		    }
2638 		}
2639 	    }
2640 	}
2641 
2642       do_cleanups (back_to);
2643       return;
2644     }
2645 #endif
2646 
2647   if (use_threadinfo_query)
2648     {
2649       putpkt ("qfThreadInfo");
2650       getpkt (&rs->buf, &rs->buf_size, 0);
2651       bufp = rs->buf;
2652       if (bufp[0] != '\0')		/* q packet recognized */
2653 	{
2654 	  while (*bufp++ == 'm')	/* reply contains one or more TID */
2655 	    {
2656 	      do
2657 		{
2658 		  new_thread = read_ptid (bufp, &bufp);
2659 		  if (!ptid_equal (new_thread, null_ptid))
2660 		    {
2661 		      /* In non-stop mode, we assume new found threads
2662 			 are running until proven otherwise with a
2663 			 stop reply.  In all-stop, we can only get
2664 			 here if all threads are stopped.  */
2665 		      int running = non_stop ? 1 : 0;
2666 
2667 		      remote_notice_new_inferior (new_thread, running);
2668 		    }
2669 		}
2670 	      while (*bufp++ == ',');	/* comma-separated list */
2671 	      putpkt ("qsThreadInfo");
2672 	      getpkt (&rs->buf, &rs->buf_size, 0);
2673 	      bufp = rs->buf;
2674 	    }
2675 	  return;	/* done */
2676 	}
2677     }
2678 
2679   /* Only qfThreadInfo is supported in non-stop mode.  */
2680   if (non_stop)
2681     return;
2682 
2683   /* Else fall back to old method based on jmetzler protocol.  */
2684   use_threadinfo_query = 0;
2685   remote_find_new_threads ();
2686   return;
2687 }
2688 
2689 /*
2690  * Collect a descriptive string about the given thread.
2691  * The target may say anything it wants to about the thread
2692  * (typically info about its blocked / runnable state, name, etc.).
2693  * This string will appear in the info threads display.
2694  *
2695  * Optional: targets are not required to implement this function.
2696  */
2697 
2698 static char *
2699 remote_threads_extra_info (struct thread_info *tp)
2700 {
2701   struct remote_state *rs = get_remote_state ();
2702   int result;
2703   int set;
2704   threadref id;
2705   struct gdb_ext_thread_info threadinfo;
2706   static char display_buf[100];	/* arbitrary...  */
2707   int n = 0;                    /* position in display_buf */
2708 
2709   if (remote_desc == 0)		/* paranoia */
2710     internal_error (__FILE__, __LINE__,
2711 		    _("remote_threads_extra_info"));
2712 
2713   if (ptid_equal (tp->ptid, magic_null_ptid)
2714       || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2715     /* This is the main thread which was added by GDB.  The remote
2716        server doesn't know about it.  */
2717     return NULL;
2718 
2719   if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2720     {
2721       struct thread_info *info = find_thread_ptid (tp->ptid);
2722 
2723       if (info && info->private)
2724 	return info->private->extra;
2725       else
2726 	return NULL;
2727     }
2728 
2729   if (use_threadextra_query)
2730     {
2731       char *b = rs->buf;
2732       char *endb = rs->buf + get_remote_packet_size ();
2733 
2734       xsnprintf (b, endb - b, "qThreadExtraInfo,");
2735       b += strlen (b);
2736       write_ptid (b, endb, tp->ptid);
2737 
2738       putpkt (rs->buf);
2739       getpkt (&rs->buf, &rs->buf_size, 0);
2740       if (rs->buf[0] != 0)
2741 	{
2742 	  n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2743 	  result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2744 	  display_buf [result] = '\0';
2745 	  return display_buf;
2746 	}
2747     }
2748 
2749   /* If the above query fails, fall back to the old method.  */
2750   use_threadextra_query = 0;
2751   set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2752     | TAG_MOREDISPLAY | TAG_DISPLAY;
2753   int_to_threadref (&id, ptid_get_tid (tp->ptid));
2754   if (remote_get_threadinfo (&id, set, &threadinfo))
2755     if (threadinfo.active)
2756       {
2757 	if (*threadinfo.shortname)
2758 	  n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2759 			  " Name: %s,", threadinfo.shortname);
2760 	if (*threadinfo.display)
2761 	  n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2762 			  " State: %s,", threadinfo.display);
2763 	if (*threadinfo.more_display)
2764 	  n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2765 			  " Priority: %s", threadinfo.more_display);
2766 
2767 	if (n > 0)
2768 	  {
2769 	    /* For purely cosmetic reasons, clear up trailing commas.  */
2770 	    if (',' == display_buf[n-1])
2771 	      display_buf[n-1] = ' ';
2772 	    return display_buf;
2773 	  }
2774       }
2775   return NULL;
2776 }
2777 
2778 
2779 static int
2780 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2781 				    struct static_tracepoint_marker *marker)
2782 {
2783   struct remote_state *rs = get_remote_state ();
2784   char *p = rs->buf;
2785 
2786   sprintf (p, "qTSTMat:");
2787   p += strlen (p);
2788   p += hexnumstr (p, addr);
2789   putpkt (rs->buf);
2790   getpkt (&rs->buf, &rs->buf_size, 0);
2791   p = rs->buf;
2792 
2793   if (*p == 'E')
2794     error (_("Remote failure reply: %s"), p);
2795 
2796   if (*p++ == 'm')
2797     {
2798       parse_static_tracepoint_marker_definition (p, &p, marker);
2799       return 1;
2800     }
2801 
2802   return 0;
2803 }
2804 
2805 static void
2806 free_current_marker (void *arg)
2807 {
2808   struct static_tracepoint_marker **marker_p = arg;
2809 
2810   if (*marker_p != NULL)
2811     {
2812       release_static_tracepoint_marker (*marker_p);
2813       xfree (*marker_p);
2814     }
2815   else
2816     *marker_p = NULL;
2817 }
2818 
2819 static VEC(static_tracepoint_marker_p) *
2820 remote_static_tracepoint_markers_by_strid (const char *strid)
2821 {
2822   struct remote_state *rs = get_remote_state ();
2823   VEC(static_tracepoint_marker_p) *markers = NULL;
2824   struct static_tracepoint_marker *marker = NULL;
2825   struct cleanup *old_chain;
2826   char *p;
2827 
2828   /* Ask for a first packet of static tracepoint marker
2829      definition.  */
2830   putpkt ("qTfSTM");
2831   getpkt (&rs->buf, &rs->buf_size, 0);
2832   p = rs->buf;
2833   if (*p == 'E')
2834     error (_("Remote failure reply: %s"), p);
2835 
2836   old_chain = make_cleanup (free_current_marker, &marker);
2837 
2838   while (*p++ == 'm')
2839     {
2840       if (marker == NULL)
2841 	marker = XCNEW (struct static_tracepoint_marker);
2842 
2843       do
2844 	{
2845 	  parse_static_tracepoint_marker_definition (p, &p, marker);
2846 
2847 	  if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2848 	    {
2849 	      VEC_safe_push (static_tracepoint_marker_p,
2850 			     markers, marker);
2851 	      marker = NULL;
2852 	    }
2853 	  else
2854 	    {
2855 	      release_static_tracepoint_marker (marker);
2856 	      memset (marker, 0, sizeof (*marker));
2857 	    }
2858 	}
2859       while (*p++ == ',');	/* comma-separated list */
2860       /* Ask for another packet of static tracepoint definition.  */
2861       putpkt ("qTsSTM");
2862       getpkt (&rs->buf, &rs->buf_size, 0);
2863       p = rs->buf;
2864     }
2865 
2866   do_cleanups (old_chain);
2867   return markers;
2868 }
2869 
2870 
2871 /* Implement the to_get_ada_task_ptid function for the remote targets.  */
2872 
2873 static ptid_t
2874 remote_get_ada_task_ptid (long lwp, long thread)
2875 {
2876   return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2877 }
2878 
2879 
2880 /* Restart the remote side; this is an extended protocol operation.  */
2881 
2882 static void
2883 extended_remote_restart (void)
2884 {
2885   struct remote_state *rs = get_remote_state ();
2886 
2887   /* Send the restart command; for reasons I don't understand the
2888      remote side really expects a number after the "R".  */
2889   xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2890   putpkt (rs->buf);
2891 
2892   remote_fileio_reset ();
2893 }
2894 
2895 /* Clean up connection to a remote debugger.  */
2896 
2897 static void
2898 remote_close (int quitting)
2899 {
2900   if (remote_desc == NULL)
2901     return; /* already closed */
2902 
2903   /* Make sure we leave stdin registered in the event loop, and we
2904      don't leave the async SIGINT signal handler installed.  */
2905   remote_terminal_ours ();
2906 
2907   serial_close (remote_desc);
2908   remote_desc = NULL;
2909 
2910   /* We don't have a connection to the remote stub anymore.  Get rid
2911      of all the inferiors and their threads we were controlling.
2912      Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2913      will be unable to find the thread corresponding to (pid, 0, 0).  */
2914   inferior_ptid = null_ptid;
2915   discard_all_inferiors ();
2916 
2917   /* We're no longer interested in any of these events.  */
2918   discard_pending_stop_replies (-1);
2919 
2920   if (remote_async_inferior_event_token)
2921     delete_async_event_handler (&remote_async_inferior_event_token);
2922   if (remote_async_get_pending_events_token)
2923     delete_async_event_handler (&remote_async_get_pending_events_token);
2924 }
2925 
2926 /* Query the remote side for the text, data and bss offsets.  */
2927 
2928 static void
2929 get_offsets (void)
2930 {
2931   struct remote_state *rs = get_remote_state ();
2932   char *buf;
2933   char *ptr;
2934   int lose, num_segments = 0, do_sections, do_segments;
2935   CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2936   struct section_offsets *offs;
2937   struct symfile_segment_data *data;
2938 
2939   if (symfile_objfile == NULL)
2940     return;
2941 
2942   putpkt ("qOffsets");
2943   getpkt (&rs->buf, &rs->buf_size, 0);
2944   buf = rs->buf;
2945 
2946   if (buf[0] == '\000')
2947     return;			/* Return silently.  Stub doesn't support
2948 				   this command.  */
2949   if (buf[0] == 'E')
2950     {
2951       warning (_("Remote failure reply: %s"), buf);
2952       return;
2953     }
2954 
2955   /* Pick up each field in turn.  This used to be done with scanf, but
2956      scanf will make trouble if CORE_ADDR size doesn't match
2957      conversion directives correctly.  The following code will work
2958      with any size of CORE_ADDR.  */
2959   text_addr = data_addr = bss_addr = 0;
2960   ptr = buf;
2961   lose = 0;
2962 
2963   if (strncmp (ptr, "Text=", 5) == 0)
2964     {
2965       ptr += 5;
2966       /* Don't use strtol, could lose on big values.  */
2967       while (*ptr && *ptr != ';')
2968 	text_addr = (text_addr << 4) + fromhex (*ptr++);
2969 
2970       if (strncmp (ptr, ";Data=", 6) == 0)
2971 	{
2972 	  ptr += 6;
2973 	  while (*ptr && *ptr != ';')
2974 	    data_addr = (data_addr << 4) + fromhex (*ptr++);
2975 	}
2976       else
2977 	lose = 1;
2978 
2979       if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2980 	{
2981 	  ptr += 5;
2982 	  while (*ptr && *ptr != ';')
2983 	    bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2984 
2985 	  if (bss_addr != data_addr)
2986 	    warning (_("Target reported unsupported offsets: %s"), buf);
2987 	}
2988       else
2989 	lose = 1;
2990     }
2991   else if (strncmp (ptr, "TextSeg=", 8) == 0)
2992     {
2993       ptr += 8;
2994       /* Don't use strtol, could lose on big values.  */
2995       while (*ptr && *ptr != ';')
2996 	text_addr = (text_addr << 4) + fromhex (*ptr++);
2997       num_segments = 1;
2998 
2999       if (strncmp (ptr, ";DataSeg=", 9) == 0)
3000 	{
3001 	  ptr += 9;
3002 	  while (*ptr && *ptr != ';')
3003 	    data_addr = (data_addr << 4) + fromhex (*ptr++);
3004 	  num_segments++;
3005 	}
3006     }
3007   else
3008     lose = 1;
3009 
3010   if (lose)
3011     error (_("Malformed response to offset query, %s"), buf);
3012   else if (*ptr != '\0')
3013     warning (_("Target reported unsupported offsets: %s"), buf);
3014 
3015   offs = ((struct section_offsets *)
3016 	  alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3017   memcpy (offs, symfile_objfile->section_offsets,
3018 	  SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3019 
3020   data = get_symfile_segment_data (symfile_objfile->obfd);
3021   do_segments = (data != NULL);
3022   do_sections = num_segments == 0;
3023 
3024   if (num_segments > 0)
3025     {
3026       segments[0] = text_addr;
3027       segments[1] = data_addr;
3028     }
3029   /* If we have two segments, we can still try to relocate everything
3030      by assuming that the .text and .data offsets apply to the whole
3031      text and data segments.  Convert the offsets given in the packet
3032      to base addresses for symfile_map_offsets_to_segments.  */
3033   else if (data && data->num_segments == 2)
3034     {
3035       segments[0] = data->segment_bases[0] + text_addr;
3036       segments[1] = data->segment_bases[1] + data_addr;
3037       num_segments = 2;
3038     }
3039   /* If the object file has only one segment, assume that it is text
3040      rather than data; main programs with no writable data are rare,
3041      but programs with no code are useless.  Of course the code might
3042      have ended up in the data segment... to detect that we would need
3043      the permissions here.  */
3044   else if (data && data->num_segments == 1)
3045     {
3046       segments[0] = data->segment_bases[0] + text_addr;
3047       num_segments = 1;
3048     }
3049   /* There's no way to relocate by segment.  */
3050   else
3051     do_segments = 0;
3052 
3053   if (do_segments)
3054     {
3055       int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3056 						 offs, num_segments, segments);
3057 
3058       if (ret == 0 && !do_sections)
3059 	error (_("Can not handle qOffsets TextSeg "
3060 		 "response with this symbol file"));
3061 
3062       if (ret > 0)
3063 	do_sections = 0;
3064     }
3065 
3066   if (data)
3067     free_symfile_segment_data (data);
3068 
3069   if (do_sections)
3070     {
3071       offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3072 
3073       /* This is a temporary kludge to force data and bss to use the
3074 	 same offsets because that's what nlmconv does now.  The real
3075 	 solution requires changes to the stub and remote.c that I
3076 	 don't have time to do right now.  */
3077 
3078       offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3079       offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3080     }
3081 
3082   objfile_relocate (symfile_objfile, offs);
3083 }
3084 
3085 /* Callback for iterate_over_threads.  Set the STOP_REQUESTED flags in
3086    threads we know are stopped already.  This is used during the
3087    initial remote connection in non-stop mode --- threads that are
3088    reported as already being stopped are left stopped.  */
3089 
3090 static int
3091 set_stop_requested_callback (struct thread_info *thread, void *data)
3092 {
3093   /* If we have a stop reply for this thread, it must be stopped.  */
3094   if (peek_stop_reply (thread->ptid))
3095     set_stop_requested (thread->ptid, 1);
3096 
3097   return 0;
3098 }
3099 
3100 /* Stub for catch_exception.  */
3101 
3102 struct start_remote_args
3103 {
3104   int from_tty;
3105 
3106   /* The current target.  */
3107   struct target_ops *target;
3108 
3109   /* Non-zero if this is an extended-remote target.  */
3110   int extended_p;
3111 };
3112 
3113 /* Send interrupt_sequence to remote target.  */
3114 static void
3115 send_interrupt_sequence (void)
3116 {
3117   if (interrupt_sequence_mode == interrupt_sequence_control_c)
3118     serial_write (remote_desc, "\x03", 1);
3119   else if (interrupt_sequence_mode == interrupt_sequence_break)
3120     serial_send_break (remote_desc);
3121   else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3122     {
3123       serial_send_break (remote_desc);
3124       serial_write (remote_desc, "g", 1);
3125     }
3126   else
3127     internal_error (__FILE__, __LINE__,
3128 		    _("Invalid value for interrupt_sequence_mode: %s."),
3129 		    interrupt_sequence_mode);
3130 }
3131 
3132 static void
3133 remote_start_remote (struct ui_out *uiout, void *opaque)
3134 {
3135   struct start_remote_args *args = opaque;
3136   struct remote_state *rs = get_remote_state ();
3137   struct packet_config *noack_config;
3138   char *wait_status = NULL;
3139 
3140   immediate_quit++;		/* Allow user to interrupt it.  */
3141 
3142   if (interrupt_on_connect)
3143     send_interrupt_sequence ();
3144 
3145   /* Ack any packet which the remote side has already sent.  */
3146   serial_write (remote_desc, "+", 1);
3147 
3148   /* The first packet we send to the target is the optional "supported
3149      packets" request.  If the target can answer this, it will tell us
3150      which later probes to skip.  */
3151   remote_query_supported ();
3152 
3153   /* If the stub wants to get a QAllow, compose one and send it.  */
3154   if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3155     remote_set_permissions ();
3156 
3157   /* Next, we possibly activate noack mode.
3158 
3159      If the QStartNoAckMode packet configuration is set to AUTO,
3160      enable noack mode if the stub reported a wish for it with
3161      qSupported.
3162 
3163      If set to TRUE, then enable noack mode even if the stub didn't
3164      report it in qSupported.  If the stub doesn't reply OK, the
3165      session ends with an error.
3166 
3167      If FALSE, then don't activate noack mode, regardless of what the
3168      stub claimed should be the default with qSupported.  */
3169 
3170   noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3171 
3172   if (noack_config->detect == AUTO_BOOLEAN_TRUE
3173       || (noack_config->detect == AUTO_BOOLEAN_AUTO
3174 	  && noack_config->support == PACKET_ENABLE))
3175     {
3176       putpkt ("QStartNoAckMode");
3177       getpkt (&rs->buf, &rs->buf_size, 0);
3178       if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3179 	rs->noack_mode = 1;
3180     }
3181 
3182   if (args->extended_p)
3183     {
3184       /* Tell the remote that we are using the extended protocol.  */
3185       putpkt ("!");
3186       getpkt (&rs->buf, &rs->buf_size, 0);
3187     }
3188 
3189   /* Next, if the target can specify a description, read it.  We do
3190      this before anything involving memory or registers.  */
3191   target_find_description ();
3192 
3193   /* Next, now that we know something about the target, update the
3194      address spaces in the program spaces.  */
3195   update_address_spaces ();
3196 
3197   /* On OSs where the list of libraries is global to all
3198      processes, we fetch them early.  */
3199   if (gdbarch_has_global_solist (target_gdbarch))
3200     solib_add (NULL, args->from_tty, args->target, auto_solib_add);
3201 
3202   if (non_stop)
3203     {
3204       if (!rs->non_stop_aware)
3205 	error (_("Non-stop mode requested, but remote "
3206 		 "does not support non-stop"));
3207 
3208       putpkt ("QNonStop:1");
3209       getpkt (&rs->buf, &rs->buf_size, 0);
3210 
3211       if (strcmp (rs->buf, "OK") != 0)
3212 	error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3213 
3214       /* Find about threads and processes the stub is already
3215 	 controlling.  We default to adding them in the running state.
3216 	 The '?' query below will then tell us about which threads are
3217 	 stopped.  */
3218       remote_threads_info (args->target);
3219     }
3220   else if (rs->non_stop_aware)
3221     {
3222       /* Don't assume that the stub can operate in all-stop mode.
3223 	 Request it explicitely.  */
3224       putpkt ("QNonStop:0");
3225       getpkt (&rs->buf, &rs->buf_size, 0);
3226 
3227       if (strcmp (rs->buf, "OK") != 0)
3228 	error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3229     }
3230 
3231   /* Check whether the target is running now.  */
3232   putpkt ("?");
3233   getpkt (&rs->buf, &rs->buf_size, 0);
3234 
3235   if (!non_stop)
3236     {
3237       if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3238 	{
3239 	  if (!args->extended_p)
3240 	    error (_("The target is not running (try extended-remote?)"));
3241 
3242 	  /* We're connected, but not running.  Drop out before we
3243 	     call start_remote.  */
3244 	  return;
3245 	}
3246       else
3247 	{
3248 	  /* Save the reply for later.  */
3249 	  wait_status = alloca (strlen (rs->buf) + 1);
3250 	  strcpy (wait_status, rs->buf);
3251 	}
3252 
3253       /* Let the stub know that we want it to return the thread.  */
3254       set_continue_thread (minus_one_ptid);
3255 
3256       /* Without this, some commands which require an active target
3257 	 (such as kill) won't work.  This variable serves (at least)
3258 	 double duty as both the pid of the target process (if it has
3259 	 such), and as a flag indicating that a target is active.
3260 	 These functions should be split out into seperate variables,
3261 	 especially since GDB will someday have a notion of debugging
3262 	 several processes.  */
3263       inferior_ptid = magic_null_ptid;
3264 
3265       /* Now, if we have thread information, update inferior_ptid.  */
3266       inferior_ptid = remote_current_thread (inferior_ptid);
3267 
3268       remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3269 
3270       /* Always add the main thread.  */
3271       add_thread_silent (inferior_ptid);
3272 
3273       get_offsets ();		/* Get text, data & bss offsets.  */
3274 
3275       /* If we could not find a description using qXfer, and we know
3276 	 how to do it some other way, try again.  This is not
3277 	 supported for non-stop; it could be, but it is tricky if
3278 	 there are no stopped threads when we connect.  */
3279       if (remote_read_description_p (args->target)
3280 	  && gdbarch_target_desc (target_gdbarch) == NULL)
3281 	{
3282 	  target_clear_description ();
3283 	  target_find_description ();
3284 	}
3285 
3286       /* Use the previously fetched status.  */
3287       gdb_assert (wait_status != NULL);
3288       strcpy (rs->buf, wait_status);
3289       rs->cached_wait_status = 1;
3290 
3291       immediate_quit--;
3292       start_remote (args->from_tty); /* Initialize gdb process mechanisms.  */
3293     }
3294   else
3295     {
3296       /* Clear WFI global state.  Do this before finding about new
3297 	 threads and inferiors, and setting the current inferior.
3298 	 Otherwise we would clear the proceed status of the current
3299 	 inferior when we want its stop_soon state to be preserved
3300 	 (see notice_new_inferior).  */
3301       init_wait_for_inferior ();
3302 
3303       /* In non-stop, we will either get an "OK", meaning that there
3304 	 are no stopped threads at this time; or, a regular stop
3305 	 reply.  In the latter case, there may be more than one thread
3306 	 stopped --- we pull them all out using the vStopped
3307 	 mechanism.  */
3308       if (strcmp (rs->buf, "OK") != 0)
3309 	{
3310 	  struct stop_reply *stop_reply;
3311 	  struct cleanup *old_chain;
3312 
3313 	  stop_reply = stop_reply_xmalloc ();
3314 	  old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3315 
3316 	  remote_parse_stop_reply (rs->buf, stop_reply);
3317 	  discard_cleanups (old_chain);
3318 
3319 	  /* get_pending_stop_replies acks this one, and gets the rest
3320 	     out.  */
3321 	  pending_stop_reply = stop_reply;
3322 	  remote_get_pending_stop_replies ();
3323 
3324 	  /* Make sure that threads that were stopped remain
3325 	     stopped.  */
3326 	  iterate_over_threads (set_stop_requested_callback, NULL);
3327 	}
3328 
3329       if (target_can_async_p ())
3330 	target_async (inferior_event_handler, 0);
3331 
3332       if (thread_count () == 0)
3333 	{
3334 	  if (!args->extended_p)
3335 	    error (_("The target is not running (try extended-remote?)"));
3336 
3337 	  /* We're connected, but not running.  Drop out before we
3338 	     call start_remote.  */
3339 	  return;
3340 	}
3341 
3342       /* Let the stub know that we want it to return the thread.  */
3343 
3344       /* Force the stub to choose a thread.  */
3345       set_general_thread (null_ptid);
3346 
3347       /* Query it.  */
3348       inferior_ptid = remote_current_thread (minus_one_ptid);
3349       if (ptid_equal (inferior_ptid, minus_one_ptid))
3350 	error (_("remote didn't report the current thread in non-stop mode"));
3351 
3352       get_offsets ();		/* Get text, data & bss offsets.  */
3353 
3354       /* In non-stop mode, any cached wait status will be stored in
3355 	 the stop reply queue.  */
3356       gdb_assert (wait_status == NULL);
3357 
3358       /* Update the remote on signals to silently pass, or more
3359 	 importantly, which to not ignore, in case a previous session
3360 	 had set some different set of signals to be ignored.  */
3361       remote_pass_signals ();
3362     }
3363 
3364   /* If we connected to a live target, do some additional setup.  */
3365   if (target_has_execution)
3366     {
3367       if (exec_bfd) 	/* No use without an exec file.  */
3368 	remote_check_symbols (symfile_objfile);
3369     }
3370 
3371   /* Possibly the target has been engaged in a trace run started
3372      previously; find out where things are at.  */
3373   if (remote_get_trace_status (current_trace_status ()) != -1)
3374     {
3375       struct uploaded_tp *uploaded_tps = NULL;
3376       struct uploaded_tsv *uploaded_tsvs = NULL;
3377 
3378       if (current_trace_status ()->running)
3379 	printf_filtered (_("Trace is already running on the target.\n"));
3380 
3381       /* Get trace state variables first, they may be checked when
3382 	 parsing uploaded commands.  */
3383 
3384       remote_upload_trace_state_variables (&uploaded_tsvs);
3385 
3386       merge_uploaded_trace_state_variables (&uploaded_tsvs);
3387 
3388       remote_upload_tracepoints (&uploaded_tps);
3389 
3390       merge_uploaded_tracepoints (&uploaded_tps);
3391     }
3392 
3393   /* If breakpoints are global, insert them now.  */
3394   if (gdbarch_has_global_breakpoints (target_gdbarch)
3395       && breakpoints_always_inserted_mode ())
3396     insert_breakpoints ();
3397 }
3398 
3399 /* Open a connection to a remote debugger.
3400    NAME is the filename used for communication.  */
3401 
3402 static void
3403 remote_open (char *name, int from_tty)
3404 {
3405   remote_open_1 (name, from_tty, &remote_ops, 0);
3406 }
3407 
3408 /* Open a connection to a remote debugger using the extended
3409    remote gdb protocol.  NAME is the filename used for communication.  */
3410 
3411 static void
3412 extended_remote_open (char *name, int from_tty)
3413 {
3414   remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3415 }
3416 
3417 /* Generic code for opening a connection to a remote target.  */
3418 
3419 static void
3420 init_all_packet_configs (void)
3421 {
3422   int i;
3423 
3424   for (i = 0; i < PACKET_MAX; i++)
3425     update_packet_config (&remote_protocol_packets[i]);
3426 }
3427 
3428 /* Symbol look-up.  */
3429 
3430 static void
3431 remote_check_symbols (struct objfile *objfile)
3432 {
3433   struct remote_state *rs = get_remote_state ();
3434   char *msg, *reply, *tmp;
3435   struct minimal_symbol *sym;
3436   int end;
3437 
3438   /* The remote side has no concept of inferiors that aren't running
3439      yet, it only knows about running processes.  If we're connected
3440      but our current inferior is not running, we should not invite the
3441      remote target to request symbol lookups related to its
3442      (unrelated) current process.  */
3443   if (!target_has_execution)
3444     return;
3445 
3446   if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3447     return;
3448 
3449   /* Make sure the remote is pointing at the right process.  Note
3450      there's no way to select "no process".  */
3451   set_general_process ();
3452 
3453   /* Allocate a message buffer.  We can't reuse the input buffer in RS,
3454      because we need both at the same time.  */
3455   msg = alloca (get_remote_packet_size ());
3456 
3457   /* Invite target to request symbol lookups.  */
3458 
3459   putpkt ("qSymbol::");
3460   getpkt (&rs->buf, &rs->buf_size, 0);
3461   packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3462   reply = rs->buf;
3463 
3464   while (strncmp (reply, "qSymbol:", 8) == 0)
3465     {
3466       tmp = &reply[8];
3467       end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3468       msg[end] = '\0';
3469       sym = lookup_minimal_symbol (msg, NULL, NULL);
3470       if (sym == NULL)
3471 	xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3472       else
3473 	{
3474 	  int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3475 	  CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3476 
3477 	  /* If this is a function address, return the start of code
3478 	     instead of any data function descriptor.  */
3479 	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3480 							 sym_addr,
3481 							 &current_target);
3482 
3483 	  xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3484 		     phex_nz (sym_addr, addr_size), &reply[8]);
3485 	}
3486 
3487       putpkt (msg);
3488       getpkt (&rs->buf, &rs->buf_size, 0);
3489       reply = rs->buf;
3490     }
3491 }
3492 
3493 static struct serial *
3494 remote_serial_open (char *name)
3495 {
3496   static int udp_warning = 0;
3497 
3498   /* FIXME: Parsing NAME here is a hack.  But we want to warn here instead
3499      of in ser-tcp.c, because it is the remote protocol assuming that the
3500      serial connection is reliable and not the serial connection promising
3501      to be.  */
3502   if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3503     {
3504       warning (_("The remote protocol may be unreliable over UDP.\n"
3505 		 "Some events may be lost, rendering further debugging "
3506 		 "impossible."));
3507       udp_warning = 1;
3508     }
3509 
3510   return serial_open (name);
3511 }
3512 
3513 /* Inform the target of our permission settings.  The permission flags
3514    work without this, but if the target knows the settings, it can do
3515    a couple things.  First, it can add its own check, to catch cases
3516    that somehow manage to get by the permissions checks in target
3517    methods.  Second, if the target is wired to disallow particular
3518    settings (for instance, a system in the field that is not set up to
3519    be able to stop at a breakpoint), it can object to any unavailable
3520    permissions.  */
3521 
3522 void
3523 remote_set_permissions (void)
3524 {
3525   struct remote_state *rs = get_remote_state ();
3526 
3527   sprintf (rs->buf, "QAllow:"
3528 	   "WriteReg:%x;WriteMem:%x;"
3529 	   "InsertBreak:%x;InsertTrace:%x;"
3530 	   "InsertFastTrace:%x;Stop:%x",
3531 	   may_write_registers, may_write_memory,
3532 	   may_insert_breakpoints, may_insert_tracepoints,
3533 	   may_insert_fast_tracepoints, may_stop);
3534   putpkt (rs->buf);
3535   getpkt (&rs->buf, &rs->buf_size, 0);
3536 
3537   /* If the target didn't like the packet, warn the user.  Do not try
3538      to undo the user's settings, that would just be maddening.  */
3539   if (strcmp (rs->buf, "OK") != 0)
3540     warning (_("Remote refused setting permissions with: %s"), rs->buf);
3541 }
3542 
3543 /* This type describes each known response to the qSupported
3544    packet.  */
3545 struct protocol_feature
3546 {
3547   /* The name of this protocol feature.  */
3548   const char *name;
3549 
3550   /* The default for this protocol feature.  */
3551   enum packet_support default_support;
3552 
3553   /* The function to call when this feature is reported, or after
3554      qSupported processing if the feature is not supported.
3555      The first argument points to this structure.  The second
3556      argument indicates whether the packet requested support be
3557      enabled, disabled, or probed (or the default, if this function
3558      is being called at the end of processing and this feature was
3559      not reported).  The third argument may be NULL; if not NULL, it
3560      is a NUL-terminated string taken from the packet following
3561      this feature's name and an equals sign.  */
3562   void (*func) (const struct protocol_feature *, enum packet_support,
3563 		const char *);
3564 
3565   /* The corresponding packet for this feature.  Only used if
3566      FUNC is remote_supported_packet.  */
3567   int packet;
3568 };
3569 
3570 static void
3571 remote_supported_packet (const struct protocol_feature *feature,
3572 			 enum packet_support support,
3573 			 const char *argument)
3574 {
3575   if (argument)
3576     {
3577       warning (_("Remote qSupported response supplied an unexpected value for"
3578 		 " \"%s\"."), feature->name);
3579       return;
3580     }
3581 
3582   if (remote_protocol_packets[feature->packet].support
3583       == PACKET_SUPPORT_UNKNOWN)
3584     remote_protocol_packets[feature->packet].support = support;
3585 }
3586 
3587 static void
3588 remote_packet_size (const struct protocol_feature *feature,
3589 		    enum packet_support support, const char *value)
3590 {
3591   struct remote_state *rs = get_remote_state ();
3592 
3593   int packet_size;
3594   char *value_end;
3595 
3596   if (support != PACKET_ENABLE)
3597     return;
3598 
3599   if (value == NULL || *value == '\0')
3600     {
3601       warning (_("Remote target reported \"%s\" without a size."),
3602 	       feature->name);
3603       return;
3604     }
3605 
3606   errno = 0;
3607   packet_size = strtol (value, &value_end, 16);
3608   if (errno != 0 || *value_end != '\0' || packet_size < 0)
3609     {
3610       warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3611 	       feature->name, value);
3612       return;
3613     }
3614 
3615   if (packet_size > MAX_REMOTE_PACKET_SIZE)
3616     {
3617       warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3618 	       packet_size, MAX_REMOTE_PACKET_SIZE);
3619       packet_size = MAX_REMOTE_PACKET_SIZE;
3620     }
3621 
3622   /* Record the new maximum packet size.  */
3623   rs->explicit_packet_size = packet_size;
3624 }
3625 
3626 static void
3627 remote_multi_process_feature (const struct protocol_feature *feature,
3628 			      enum packet_support support, const char *value)
3629 {
3630   struct remote_state *rs = get_remote_state ();
3631 
3632   rs->multi_process_aware = (support == PACKET_ENABLE);
3633 }
3634 
3635 static void
3636 remote_non_stop_feature (const struct protocol_feature *feature,
3637 			      enum packet_support support, const char *value)
3638 {
3639   struct remote_state *rs = get_remote_state ();
3640 
3641   rs->non_stop_aware = (support == PACKET_ENABLE);
3642 }
3643 
3644 static void
3645 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3646 				       enum packet_support support,
3647 				       const char *value)
3648 {
3649   struct remote_state *rs = get_remote_state ();
3650 
3651   rs->cond_tracepoints = (support == PACKET_ENABLE);
3652 }
3653 
3654 static void
3655 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3656 				enum packet_support support,
3657 				const char *value)
3658 {
3659   struct remote_state *rs = get_remote_state ();
3660 
3661   rs->fast_tracepoints = (support == PACKET_ENABLE);
3662 }
3663 
3664 static void
3665 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3666 				  enum packet_support support,
3667 				  const char *value)
3668 {
3669   struct remote_state *rs = get_remote_state ();
3670 
3671   rs->static_tracepoints = (support == PACKET_ENABLE);
3672 }
3673 
3674 static void
3675 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3676 				     enum packet_support support,
3677 				     const char *value)
3678 {
3679   struct remote_state *rs = get_remote_state ();
3680 
3681   rs->disconnected_tracing = (support == PACKET_ENABLE);
3682 }
3683 
3684 static struct protocol_feature remote_protocol_features[] = {
3685   { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3686   { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3687     PACKET_qXfer_auxv },
3688   { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3689     PACKET_qXfer_features },
3690   { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3691     PACKET_qXfer_libraries },
3692   { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3693     PACKET_qXfer_memory_map },
3694   { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3695     PACKET_qXfer_spu_read },
3696   { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3697     PACKET_qXfer_spu_write },
3698   { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3699     PACKET_qXfer_osdata },
3700   { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3701     PACKET_qXfer_threads },
3702   { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3703     PACKET_qXfer_traceframe_info },
3704   { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3705     PACKET_QPassSignals },
3706   { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3707     PACKET_QStartNoAckMode },
3708   { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3709   { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3710   { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3711     PACKET_qXfer_siginfo_read },
3712   { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3713     PACKET_qXfer_siginfo_write },
3714   { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3715     PACKET_ConditionalTracepoints },
3716   { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3717     PACKET_FastTracepoints },
3718   { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3719     PACKET_StaticTracepoints },
3720   { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3721     -1 },
3722   { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3723     PACKET_bc },
3724   { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3725     PACKET_bs },
3726   { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3727     PACKET_TracepointSource },
3728   { "QAllow", PACKET_DISABLE, remote_supported_packet,
3729     PACKET_QAllow },
3730 };
3731 
3732 static char *remote_support_xml;
3733 
3734 /* Register string appended to "xmlRegisters=" in qSupported query.  */
3735 
3736 void
3737 register_remote_support_xml (const char *xml)
3738 {
3739 #if defined(HAVE_LIBEXPAT)
3740   if (remote_support_xml == NULL)
3741     remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3742   else
3743     {
3744       char *copy = xstrdup (remote_support_xml + 13);
3745       char *p = strtok (copy, ",");
3746 
3747       do
3748 	{
3749 	  if (strcmp (p, xml) == 0)
3750 	    {
3751 	      /* already there */
3752 	      xfree (copy);
3753 	      return;
3754 	    }
3755 	}
3756       while ((p = strtok (NULL, ",")) != NULL);
3757       xfree (copy);
3758 
3759       remote_support_xml = reconcat (remote_support_xml,
3760 				     remote_support_xml, ",", xml,
3761 				     (char *) NULL);
3762     }
3763 #endif
3764 }
3765 
3766 static char *
3767 remote_query_supported_append (char *msg, const char *append)
3768 {
3769   if (msg)
3770     return reconcat (msg, msg, ";", append, (char *) NULL);
3771   else
3772     return xstrdup (append);
3773 }
3774 
3775 static void
3776 remote_query_supported (void)
3777 {
3778   struct remote_state *rs = get_remote_state ();
3779   char *next;
3780   int i;
3781   unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3782 
3783   /* The packet support flags are handled differently for this packet
3784      than for most others.  We treat an error, a disabled packet, and
3785      an empty response identically: any features which must be reported
3786      to be used will be automatically disabled.  An empty buffer
3787      accomplishes this, since that is also the representation for a list
3788      containing no features.  */
3789 
3790   rs->buf[0] = 0;
3791   if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3792     {
3793       char *q = NULL;
3794       struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3795 
3796       if (rs->extended)
3797 	q = remote_query_supported_append (q, "multiprocess+");
3798 
3799       if (remote_support_xml)
3800 	q = remote_query_supported_append (q, remote_support_xml);
3801 
3802       q = remote_query_supported_append (q, "qRelocInsn+");
3803 
3804       q = reconcat (q, "qSupported:", q, (char *) NULL);
3805       putpkt (q);
3806 
3807       do_cleanups (old_chain);
3808 
3809       getpkt (&rs->buf, &rs->buf_size, 0);
3810 
3811       /* If an error occured, warn, but do not return - just reset the
3812 	 buffer to empty and go on to disable features.  */
3813       if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3814 	  == PACKET_ERROR)
3815 	{
3816 	  warning (_("Remote failure reply: %s"), rs->buf);
3817 	  rs->buf[0] = 0;
3818 	}
3819     }
3820 
3821   memset (seen, 0, sizeof (seen));
3822 
3823   next = rs->buf;
3824   while (*next)
3825     {
3826       enum packet_support is_supported;
3827       char *p, *end, *name_end, *value;
3828 
3829       /* First separate out this item from the rest of the packet.  If
3830 	 there's another item after this, we overwrite the separator
3831 	 (terminated strings are much easier to work with).  */
3832       p = next;
3833       end = strchr (p, ';');
3834       if (end == NULL)
3835 	{
3836 	  end = p + strlen (p);
3837 	  next = end;
3838 	}
3839       else
3840 	{
3841 	  *end = '\0';
3842 	  next = end + 1;
3843 
3844 	  if (end == p)
3845 	    {
3846 	      warning (_("empty item in \"qSupported\" response"));
3847 	      continue;
3848 	    }
3849 	}
3850 
3851       name_end = strchr (p, '=');
3852       if (name_end)
3853 	{
3854 	  /* This is a name=value entry.  */
3855 	  is_supported = PACKET_ENABLE;
3856 	  value = name_end + 1;
3857 	  *name_end = '\0';
3858 	}
3859       else
3860 	{
3861 	  value = NULL;
3862 	  switch (end[-1])
3863 	    {
3864 	    case '+':
3865 	      is_supported = PACKET_ENABLE;
3866 	      break;
3867 
3868 	    case '-':
3869 	      is_supported = PACKET_DISABLE;
3870 	      break;
3871 
3872 	    case '?':
3873 	      is_supported = PACKET_SUPPORT_UNKNOWN;
3874 	      break;
3875 
3876 	    default:
3877 	      warning (_("unrecognized item \"%s\" "
3878 			 "in \"qSupported\" response"), p);
3879 	      continue;
3880 	    }
3881 	  end[-1] = '\0';
3882 	}
3883 
3884       for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3885 	if (strcmp (remote_protocol_features[i].name, p) == 0)
3886 	  {
3887 	    const struct protocol_feature *feature;
3888 
3889 	    seen[i] = 1;
3890 	    feature = &remote_protocol_features[i];
3891 	    feature->func (feature, is_supported, value);
3892 	    break;
3893 	  }
3894     }
3895 
3896   /* If we increased the packet size, make sure to increase the global
3897      buffer size also.  We delay this until after parsing the entire
3898      qSupported packet, because this is the same buffer we were
3899      parsing.  */
3900   if (rs->buf_size < rs->explicit_packet_size)
3901     {
3902       rs->buf_size = rs->explicit_packet_size;
3903       rs->buf = xrealloc (rs->buf, rs->buf_size);
3904     }
3905 
3906   /* Handle the defaults for unmentioned features.  */
3907   for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3908     if (!seen[i])
3909       {
3910 	const struct protocol_feature *feature;
3911 
3912 	feature = &remote_protocol_features[i];
3913 	feature->func (feature, feature->default_support, NULL);
3914       }
3915 }
3916 
3917 
3918 static void
3919 remote_open_1 (char *name, int from_tty,
3920 	       struct target_ops *target, int extended_p)
3921 {
3922   struct remote_state *rs = get_remote_state ();
3923 
3924   if (name == 0)
3925     error (_("To open a remote debug connection, you need to specify what\n"
3926 	   "serial device is attached to the remote system\n"
3927 	   "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3928 
3929   /* See FIXME above.  */
3930   if (!target_async_permitted)
3931     wait_forever_enabled_p = 1;
3932 
3933   /* If we're connected to a running target, target_preopen will kill it.
3934      But if we're connected to a target system with no running process,
3935      then we will still be connected when it returns.  Ask this question
3936      first, before target_preopen has a chance to kill anything.  */
3937   if (remote_desc != NULL && !have_inferiors ())
3938     {
3939       if (!from_tty
3940 	  || query (_("Already connected to a remote target.  Disconnect? ")))
3941 	pop_target ();
3942       else
3943 	error (_("Still connected."));
3944     }
3945 
3946   target_preopen (from_tty);
3947 
3948   unpush_target (target);
3949 
3950   /* This time without a query.  If we were connected to an
3951      extended-remote target and target_preopen killed the running
3952      process, we may still be connected.  If we are starting "target
3953      remote" now, the extended-remote target will not have been
3954      removed by unpush_target.  */
3955   if (remote_desc != NULL && !have_inferiors ())
3956     pop_target ();
3957 
3958   /* Make sure we send the passed signals list the next time we resume.  */
3959   xfree (last_pass_packet);
3960   last_pass_packet = NULL;
3961 
3962   remote_fileio_reset ();
3963   reopen_exec_file ();
3964   reread_symbols ();
3965 
3966   remote_desc = remote_serial_open (name);
3967   if (!remote_desc)
3968     perror_with_name (name);
3969 
3970   if (baud_rate != -1)
3971     {
3972       if (serial_setbaudrate (remote_desc, baud_rate))
3973 	{
3974 	  /* The requested speed could not be set.  Error out to
3975 	     top level after closing remote_desc.  Take care to
3976 	     set remote_desc to NULL to avoid closing remote_desc
3977 	     more than once.  */
3978 	  serial_close (remote_desc);
3979 	  remote_desc = NULL;
3980 	  perror_with_name (name);
3981 	}
3982     }
3983 
3984   serial_raw (remote_desc);
3985 
3986   /* If there is something sitting in the buffer we might take it as a
3987      response to a command, which would be bad.  */
3988   serial_flush_input (remote_desc);
3989 
3990   if (from_tty)
3991     {
3992       puts_filtered ("Remote debugging using ");
3993       puts_filtered (name);
3994       puts_filtered ("\n");
3995     }
3996   push_target (target);		/* Switch to using remote target now.  */
3997 
3998   /* Register extra event sources in the event loop.  */
3999   remote_async_inferior_event_token
4000     = create_async_event_handler (remote_async_inferior_event_handler,
4001 				  NULL);
4002   remote_async_get_pending_events_token
4003     = create_async_event_handler (remote_async_get_pending_events_handler,
4004 				  NULL);
4005 
4006   /* Reset the target state; these things will be queried either by
4007      remote_query_supported or as they are needed.  */
4008   init_all_packet_configs ();
4009   rs->cached_wait_status = 0;
4010   rs->explicit_packet_size = 0;
4011   rs->noack_mode = 0;
4012   rs->multi_process_aware = 0;
4013   rs->extended = extended_p;
4014   rs->non_stop_aware = 0;
4015   rs->waiting_for_stop_reply = 0;
4016   rs->ctrlc_pending_p = 0;
4017 
4018   general_thread = not_sent_ptid;
4019   continue_thread = not_sent_ptid;
4020   remote_traceframe_number = -1;
4021 
4022   /* Probe for ability to use "ThreadInfo" query, as required.  */
4023   use_threadinfo_query = 1;
4024   use_threadextra_query = 1;
4025 
4026   if (target_async_permitted)
4027     {
4028       /* With this target we start out by owning the terminal.  */
4029       remote_async_terminal_ours_p = 1;
4030 
4031       /* FIXME: cagney/1999-09-23: During the initial connection it is
4032 	 assumed that the target is already ready and able to respond to
4033 	 requests.  Unfortunately remote_start_remote() eventually calls
4034 	 wait_for_inferior() with no timeout.  wait_forever_enabled_p gets
4035 	 around this.  Eventually a mechanism that allows
4036 	 wait_for_inferior() to expect/get timeouts will be
4037 	 implemented.  */
4038       wait_forever_enabled_p = 0;
4039     }
4040 
4041   /* First delete any symbols previously loaded from shared libraries.  */
4042   no_shared_libraries (NULL, 0);
4043 
4044   /* Start afresh.  */
4045   init_thread_list ();
4046 
4047   /* Start the remote connection.  If error() or QUIT, discard this
4048      target (we'd otherwise be in an inconsistent state) and then
4049      propogate the error on up the exception chain.  This ensures that
4050      the caller doesn't stumble along blindly assuming that the
4051      function succeeded.  The CLI doesn't have this problem but other
4052      UI's, such as MI do.
4053 
4054      FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4055      this function should return an error indication letting the
4056      caller restore the previous state.  Unfortunately the command
4057      ``target remote'' is directly wired to this function making that
4058      impossible.  On a positive note, the CLI side of this problem has
4059      been fixed - the function set_cmd_context() makes it possible for
4060      all the ``target ....'' commands to share a common callback
4061      function.  See cli-dump.c.  */
4062   {
4063     struct gdb_exception ex;
4064     struct start_remote_args args;
4065 
4066     args.from_tty = from_tty;
4067     args.target = target;
4068     args.extended_p = extended_p;
4069 
4070     ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
4071     if (ex.reason < 0)
4072       {
4073 	/* Pop the partially set up target - unless something else did
4074 	   already before throwing the exception.  */
4075 	if (remote_desc != NULL)
4076 	  pop_target ();
4077 	if (target_async_permitted)
4078 	  wait_forever_enabled_p = 1;
4079 	throw_exception (ex);
4080       }
4081   }
4082 
4083   if (target_async_permitted)
4084     wait_forever_enabled_p = 1;
4085 }
4086 
4087 /* This takes a program previously attached to and detaches it.  After
4088    this is done, GDB can be used to debug some other program.  We
4089    better not have left any breakpoints in the target program or it'll
4090    die when it hits one.  */
4091 
4092 static void
4093 remote_detach_1 (char *args, int from_tty, int extended)
4094 {
4095   int pid = ptid_get_pid (inferior_ptid);
4096   struct remote_state *rs = get_remote_state ();
4097 
4098   if (args)
4099     error (_("Argument given to \"detach\" when remotely debugging."));
4100 
4101   if (!target_has_execution)
4102     error (_("No process to detach from."));
4103 
4104   /* Tell the remote target to detach.  */
4105   if (remote_multi_process_p (rs))
4106     sprintf (rs->buf, "D;%x", pid);
4107   else
4108     strcpy (rs->buf, "D");
4109 
4110   putpkt (rs->buf);
4111   getpkt (&rs->buf, &rs->buf_size, 0);
4112 
4113   if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4114     ;
4115   else if (rs->buf[0] == '\0')
4116     error (_("Remote doesn't know how to detach"));
4117   else
4118     error (_("Can't detach process."));
4119 
4120   if (from_tty)
4121     {
4122       if (remote_multi_process_p (rs))
4123 	printf_filtered (_("Detached from remote %s.\n"),
4124 			 target_pid_to_str (pid_to_ptid (pid)));
4125       else
4126 	{
4127 	  if (extended)
4128 	    puts_filtered (_("Detached from remote process.\n"));
4129 	  else
4130 	    puts_filtered (_("Ending remote debugging.\n"));
4131 	}
4132     }
4133 
4134   discard_pending_stop_replies (pid);
4135   target_mourn_inferior ();
4136 }
4137 
4138 static void
4139 remote_detach (struct target_ops *ops, char *args, int from_tty)
4140 {
4141   remote_detach_1 (args, from_tty, 0);
4142 }
4143 
4144 static void
4145 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4146 {
4147   remote_detach_1 (args, from_tty, 1);
4148 }
4149 
4150 /* Same as remote_detach, but don't send the "D" packet; just disconnect.  */
4151 
4152 static void
4153 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4154 {
4155   if (args)
4156     error (_("Argument given to \"disconnect\" when remotely debugging."));
4157 
4158   /* Make sure we unpush even the extended remote targets; mourn
4159      won't do it.  So call remote_mourn_1 directly instead of
4160      target_mourn_inferior.  */
4161   remote_mourn_1 (target);
4162 
4163   if (from_tty)
4164     puts_filtered ("Ending remote debugging.\n");
4165 }
4166 
4167 /* Attach to the process specified by ARGS.  If FROM_TTY is non-zero,
4168    be chatty about it.  */
4169 
4170 static void
4171 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4172 {
4173   struct remote_state *rs = get_remote_state ();
4174   int pid;
4175   char *wait_status = NULL;
4176 
4177   pid = parse_pid_to_attach (args);
4178 
4179   /* Remote PID can be freely equal to getpid, do not check it here the same
4180      way as in other targets.  */
4181 
4182   if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4183     error (_("This target does not support attaching to a process"));
4184 
4185   sprintf (rs->buf, "vAttach;%x", pid);
4186   putpkt (rs->buf);
4187   getpkt (&rs->buf, &rs->buf_size, 0);
4188 
4189   if (packet_ok (rs->buf,
4190 		 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4191     {
4192       if (from_tty)
4193 	printf_unfiltered (_("Attached to %s\n"),
4194 			   target_pid_to_str (pid_to_ptid (pid)));
4195 
4196       if (!non_stop)
4197 	{
4198 	  /* Save the reply for later.  */
4199 	  wait_status = alloca (strlen (rs->buf) + 1);
4200 	  strcpy (wait_status, rs->buf);
4201 	}
4202       else if (strcmp (rs->buf, "OK") != 0)
4203 	error (_("Attaching to %s failed with: %s"),
4204 	       target_pid_to_str (pid_to_ptid (pid)),
4205 	       rs->buf);
4206     }
4207   else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4208     error (_("This target does not support attaching to a process"));
4209   else
4210     error (_("Attaching to %s failed"),
4211 	   target_pid_to_str (pid_to_ptid (pid)));
4212 
4213   set_current_inferior (remote_add_inferior (pid, 1));
4214 
4215   inferior_ptid = pid_to_ptid (pid);
4216 
4217   if (non_stop)
4218     {
4219       struct thread_info *thread;
4220 
4221       /* Get list of threads.  */
4222       remote_threads_info (target);
4223 
4224       thread = first_thread_of_process (pid);
4225       if (thread)
4226 	inferior_ptid = thread->ptid;
4227       else
4228 	inferior_ptid = pid_to_ptid (pid);
4229 
4230       /* Invalidate our notion of the remote current thread.  */
4231       record_currthread (minus_one_ptid);
4232     }
4233   else
4234     {
4235       /* Now, if we have thread information, update inferior_ptid.  */
4236       inferior_ptid = remote_current_thread (inferior_ptid);
4237 
4238       /* Add the main thread to the thread list.  */
4239       add_thread_silent (inferior_ptid);
4240     }
4241 
4242   /* Next, if the target can specify a description, read it.  We do
4243      this before anything involving memory or registers.  */
4244   target_find_description ();
4245 
4246   if (!non_stop)
4247     {
4248       /* Use the previously fetched status.  */
4249       gdb_assert (wait_status != NULL);
4250 
4251       if (target_can_async_p ())
4252 	{
4253 	  struct stop_reply *stop_reply;
4254 	  struct cleanup *old_chain;
4255 
4256 	  stop_reply = stop_reply_xmalloc ();
4257 	  old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4258 	  remote_parse_stop_reply (wait_status, stop_reply);
4259 	  discard_cleanups (old_chain);
4260 	  push_stop_reply (stop_reply);
4261 
4262 	  target_async (inferior_event_handler, 0);
4263 	}
4264       else
4265 	{
4266 	  gdb_assert (wait_status != NULL);
4267 	  strcpy (rs->buf, wait_status);
4268 	  rs->cached_wait_status = 1;
4269 	}
4270     }
4271   else
4272     gdb_assert (wait_status == NULL);
4273 }
4274 
4275 static void
4276 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4277 {
4278   extended_remote_attach_1 (ops, args, from_tty);
4279 }
4280 
4281 /* Convert hex digit A to a number.  */
4282 
4283 static int
4284 fromhex (int a)
4285 {
4286   if (a >= '0' && a <= '9')
4287     return a - '0';
4288   else if (a >= 'a' && a <= 'f')
4289     return a - 'a' + 10;
4290   else if (a >= 'A' && a <= 'F')
4291     return a - 'A' + 10;
4292   else
4293     error (_("Reply contains invalid hex digit %d"), a);
4294 }
4295 
4296 int
4297 hex2bin (const char *hex, gdb_byte *bin, int count)
4298 {
4299   int i;
4300 
4301   for (i = 0; i < count; i++)
4302     {
4303       if (hex[0] == 0 || hex[1] == 0)
4304 	{
4305 	  /* Hex string is short, or of uneven length.
4306 	     Return the count that has been converted so far.  */
4307 	  return i;
4308 	}
4309       *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4310       hex += 2;
4311     }
4312   return i;
4313 }
4314 
4315 /* Convert number NIB to a hex digit.  */
4316 
4317 static int
4318 tohex (int nib)
4319 {
4320   if (nib < 10)
4321     return '0' + nib;
4322   else
4323     return 'a' + nib - 10;
4324 }
4325 
4326 int
4327 bin2hex (const gdb_byte *bin, char *hex, int count)
4328 {
4329   int i;
4330 
4331   /* May use a length, or a nul-terminated string as input.  */
4332   if (count == 0)
4333     count = strlen ((char *) bin);
4334 
4335   for (i = 0; i < count; i++)
4336     {
4337       *hex++ = tohex ((*bin >> 4) & 0xf);
4338       *hex++ = tohex (*bin++ & 0xf);
4339     }
4340   *hex = 0;
4341   return i;
4342 }
4343 
4344 /* Check for the availability of vCont.  This function should also check
4345    the response.  */
4346 
4347 static void
4348 remote_vcont_probe (struct remote_state *rs)
4349 {
4350   char *buf;
4351 
4352   strcpy (rs->buf, "vCont?");
4353   putpkt (rs->buf);
4354   getpkt (&rs->buf, &rs->buf_size, 0);
4355   buf = rs->buf;
4356 
4357   /* Make sure that the features we assume are supported.  */
4358   if (strncmp (buf, "vCont", 5) == 0)
4359     {
4360       char *p = &buf[5];
4361       int support_s, support_S, support_c, support_C;
4362 
4363       support_s = 0;
4364       support_S = 0;
4365       support_c = 0;
4366       support_C = 0;
4367       rs->support_vCont_t = 0;
4368       while (p && *p == ';')
4369 	{
4370 	  p++;
4371 	  if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4372 	    support_s = 1;
4373 	  else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4374 	    support_S = 1;
4375 	  else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4376 	    support_c = 1;
4377 	  else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4378 	    support_C = 1;
4379 	  else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4380 	    rs->support_vCont_t = 1;
4381 
4382 	  p = strchr (p, ';');
4383 	}
4384 
4385       /* If s, S, c, and C are not all supported, we can't use vCont.  Clearing
4386          BUF will make packet_ok disable the packet.  */
4387       if (!support_s || !support_S || !support_c || !support_C)
4388 	buf[0] = 0;
4389     }
4390 
4391   packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4392 }
4393 
4394 /* Helper function for building "vCont" resumptions.  Write a
4395    resumption to P.  ENDP points to one-passed-the-end of the buffer
4396    we're allowed to write to.  Returns BUF+CHARACTERS_WRITTEN.  The
4397    thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4398    resumed thread should be single-stepped and/or signalled.  If PTID
4399    equals minus_one_ptid, then all threads are resumed; if PTID
4400    represents a process, then all threads of the process are resumed;
4401    the thread to be stepped and/or signalled is given in the global
4402    INFERIOR_PTID.  */
4403 
4404 static char *
4405 append_resumption (char *p, char *endp,
4406 		   ptid_t ptid, int step, enum target_signal siggnal)
4407 {
4408   struct remote_state *rs = get_remote_state ();
4409 
4410   if (step && siggnal != TARGET_SIGNAL_0)
4411     p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4412   else if (step)
4413     p += xsnprintf (p, endp - p, ";s");
4414   else if (siggnal != TARGET_SIGNAL_0)
4415     p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4416   else
4417     p += xsnprintf (p, endp - p, ";c");
4418 
4419   if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4420     {
4421       ptid_t nptid;
4422 
4423       /* All (-1) threads of process.  */
4424       nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4425 
4426       p += xsnprintf (p, endp - p, ":");
4427       p = write_ptid (p, endp, nptid);
4428     }
4429   else if (!ptid_equal (ptid, minus_one_ptid))
4430     {
4431       p += xsnprintf (p, endp - p, ":");
4432       p = write_ptid (p, endp, ptid);
4433     }
4434 
4435   return p;
4436 }
4437 
4438 /* Resume the remote inferior by using a "vCont" packet.  The thread
4439    to be resumed is PTID; STEP and SIGGNAL indicate whether the
4440    resumed thread should be single-stepped and/or signalled.  If PTID
4441    equals minus_one_ptid, then all threads are resumed; the thread to
4442    be stepped and/or signalled is given in the global INFERIOR_PTID.
4443    This function returns non-zero iff it resumes the inferior.
4444 
4445    This function issues a strict subset of all possible vCont commands at the
4446    moment.  */
4447 
4448 static int
4449 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4450 {
4451   struct remote_state *rs = get_remote_state ();
4452   char *p;
4453   char *endp;
4454 
4455   if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4456     remote_vcont_probe (rs);
4457 
4458   if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4459     return 0;
4460 
4461   p = rs->buf;
4462   endp = rs->buf + get_remote_packet_size ();
4463 
4464   /* If we could generate a wider range of packets, we'd have to worry
4465      about overflowing BUF.  Should there be a generic
4466      "multi-part-packet" packet?  */
4467 
4468   p += xsnprintf (p, endp - p, "vCont");
4469 
4470   if (ptid_equal (ptid, magic_null_ptid))
4471     {
4472       /* MAGIC_NULL_PTID means that we don't have any active threads,
4473 	 so we don't have any TID numbers the inferior will
4474 	 understand.  Make sure to only send forms that do not specify
4475 	 a TID.  */
4476       append_resumption (p, endp, minus_one_ptid, step, siggnal);
4477     }
4478   else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4479     {
4480       /* Resume all threads (of all processes, or of a single
4481 	 process), with preference for INFERIOR_PTID.  This assumes
4482 	 inferior_ptid belongs to the set of all threads we are about
4483 	 to resume.  */
4484       if (step || siggnal != TARGET_SIGNAL_0)
4485 	{
4486 	  /* Step inferior_ptid, with or without signal.  */
4487 	  p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4488 	}
4489 
4490       /* And continue others without a signal.  */
4491       append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4492     }
4493   else
4494     {
4495       /* Scheduler locking; resume only PTID.  */
4496       append_resumption (p, endp, ptid, step, siggnal);
4497     }
4498 
4499   gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4500   putpkt (rs->buf);
4501 
4502   if (non_stop)
4503     {
4504       /* In non-stop, the stub replies to vCont with "OK".  The stop
4505 	 reply will be reported asynchronously by means of a `%Stop'
4506 	 notification.  */
4507       getpkt (&rs->buf, &rs->buf_size, 0);
4508       if (strcmp (rs->buf, "OK") != 0)
4509 	error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4510     }
4511 
4512   return 1;
4513 }
4514 
4515 /* Tell the remote machine to resume.  */
4516 
4517 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4518 
4519 static int last_sent_step;
4520 
4521 static void
4522 remote_resume (struct target_ops *ops,
4523 	       ptid_t ptid, int step, enum target_signal siggnal)
4524 {
4525   struct remote_state *rs = get_remote_state ();
4526   char *buf;
4527 
4528   last_sent_signal = siggnal;
4529   last_sent_step = step;
4530 
4531   /* Update the inferior on signals to silently pass, if they've changed.  */
4532   remote_pass_signals ();
4533 
4534   /* The vCont packet doesn't need to specify threads via Hc.  */
4535   /* No reverse support (yet) for vCont.  */
4536   if (execution_direction != EXEC_REVERSE)
4537     if (remote_vcont_resume (ptid, step, siggnal))
4538       goto done;
4539 
4540   /* All other supported resume packets do use Hc, so set the continue
4541      thread.  */
4542   if (ptid_equal (ptid, minus_one_ptid))
4543     set_continue_thread (any_thread_ptid);
4544   else
4545     set_continue_thread (ptid);
4546 
4547   buf = rs->buf;
4548   if (execution_direction == EXEC_REVERSE)
4549     {
4550       /* We don't pass signals to the target in reverse exec mode.  */
4551       if (info_verbose && siggnal != TARGET_SIGNAL_0)
4552 	warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4553 		 siggnal);
4554 
4555       if (step
4556 	  && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4557 	error (_("Remote reverse-step not supported."));
4558       if (!step
4559 	  && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4560 	error (_("Remote reverse-continue not supported."));
4561 
4562       strcpy (buf, step ? "bs" : "bc");
4563     }
4564   else if (siggnal != TARGET_SIGNAL_0)
4565     {
4566       buf[0] = step ? 'S' : 'C';
4567       buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4568       buf[2] = tohex (((int) siggnal) & 0xf);
4569       buf[3] = '\0';
4570     }
4571   else
4572     strcpy (buf, step ? "s" : "c");
4573 
4574   putpkt (buf);
4575 
4576  done:
4577   /* We are about to start executing the inferior, let's register it
4578      with the event loop.  NOTE: this is the one place where all the
4579      execution commands end up.  We could alternatively do this in each
4580      of the execution commands in infcmd.c.  */
4581   /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4582      into infcmd.c in order to allow inferior function calls to work
4583      NOT asynchronously.  */
4584   if (target_can_async_p ())
4585     target_async (inferior_event_handler, 0);
4586 
4587   /* We've just told the target to resume.  The remote server will
4588      wait for the inferior to stop, and then send a stop reply.  In
4589      the mean time, we can't start another command/query ourselves
4590      because the stub wouldn't be ready to process it.  This applies
4591      only to the base all-stop protocol, however.  In non-stop (which
4592      only supports vCont), the stub replies with an "OK", and is
4593      immediate able to process further serial input.  */
4594   if (!non_stop)
4595     rs->waiting_for_stop_reply = 1;
4596 }
4597 
4598 
4599 /* Set up the signal handler for SIGINT, while the target is
4600    executing, ovewriting the 'regular' SIGINT signal handler.  */
4601 static void
4602 initialize_sigint_signal_handler (void)
4603 {
4604   signal (SIGINT, handle_remote_sigint);
4605 }
4606 
4607 /* Signal handler for SIGINT, while the target is executing.  */
4608 static void
4609 handle_remote_sigint (int sig)
4610 {
4611   signal (sig, handle_remote_sigint_twice);
4612   mark_async_signal_handler_wrapper (sigint_remote_token);
4613 }
4614 
4615 /* Signal handler for SIGINT, installed after SIGINT has already been
4616    sent once.  It will take effect the second time that the user sends
4617    a ^C.  */
4618 static void
4619 handle_remote_sigint_twice (int sig)
4620 {
4621   signal (sig, handle_remote_sigint);
4622   mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4623 }
4624 
4625 /* Perform the real interruption of the target execution, in response
4626    to a ^C.  */
4627 static void
4628 async_remote_interrupt (gdb_client_data arg)
4629 {
4630   if (remote_debug)
4631     fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4632 
4633   target_stop (inferior_ptid);
4634 }
4635 
4636 /* Perform interrupt, if the first attempt did not succeed.  Just give
4637    up on the target alltogether.  */
4638 void
4639 async_remote_interrupt_twice (gdb_client_data arg)
4640 {
4641   if (remote_debug)
4642     fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4643 
4644   interrupt_query ();
4645 }
4646 
4647 /* Reinstall the usual SIGINT handlers, after the target has
4648    stopped.  */
4649 static void
4650 cleanup_sigint_signal_handler (void *dummy)
4651 {
4652   signal (SIGINT, handle_sigint);
4653 }
4654 
4655 /* Send ^C to target to halt it.  Target will respond, and send us a
4656    packet.  */
4657 static void (*ofunc) (int);
4658 
4659 /* The command line interface's stop routine.  This function is installed
4660    as a signal handler for SIGINT.  The first time a user requests a
4661    stop, we call remote_stop to send a break or ^C.  If there is no
4662    response from the target (it didn't stop when the user requested it),
4663    we ask the user if he'd like to detach from the target.  */
4664 static void
4665 remote_interrupt (int signo)
4666 {
4667   /* If this doesn't work, try more severe steps.  */
4668   signal (signo, remote_interrupt_twice);
4669 
4670   gdb_call_async_signal_handler (sigint_remote_token, 1);
4671 }
4672 
4673 /* The user typed ^C twice.  */
4674 
4675 static void
4676 remote_interrupt_twice (int signo)
4677 {
4678   signal (signo, ofunc);
4679   gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4680   signal (signo, remote_interrupt);
4681 }
4682 
4683 /* Non-stop version of target_stop.  Uses `vCont;t' to stop a remote
4684    thread, all threads of a remote process, or all threads of all
4685    processes.  */
4686 
4687 static void
4688 remote_stop_ns (ptid_t ptid)
4689 {
4690   struct remote_state *rs = get_remote_state ();
4691   char *p = rs->buf;
4692   char *endp = rs->buf + get_remote_packet_size ();
4693 
4694   if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4695     remote_vcont_probe (rs);
4696 
4697   if (!rs->support_vCont_t)
4698     error (_("Remote server does not support stopping threads"));
4699 
4700   if (ptid_equal (ptid, minus_one_ptid)
4701       || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4702     p += xsnprintf (p, endp - p, "vCont;t");
4703   else
4704     {
4705       ptid_t nptid;
4706 
4707       p += xsnprintf (p, endp - p, "vCont;t:");
4708 
4709       if (ptid_is_pid (ptid))
4710 	  /* All (-1) threads of process.  */
4711 	nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4712       else
4713 	{
4714 	  /* Small optimization: if we already have a stop reply for
4715 	     this thread, no use in telling the stub we want this
4716 	     stopped.  */
4717 	  if (peek_stop_reply (ptid))
4718 	    return;
4719 
4720 	  nptid = ptid;
4721 	}
4722 
4723       write_ptid (p, endp, nptid);
4724     }
4725 
4726   /* In non-stop, we get an immediate OK reply.  The stop reply will
4727      come in asynchronously by notification.  */
4728   putpkt (rs->buf);
4729   getpkt (&rs->buf, &rs->buf_size, 0);
4730   if (strcmp (rs->buf, "OK") != 0)
4731     error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4732 }
4733 
4734 /* All-stop version of target_stop.  Sends a break or a ^C to stop the
4735    remote target.  It is undefined which thread of which process
4736    reports the stop.  */
4737 
4738 static void
4739 remote_stop_as (ptid_t ptid)
4740 {
4741   struct remote_state *rs = get_remote_state ();
4742 
4743   rs->ctrlc_pending_p = 1;
4744 
4745   /* If the inferior is stopped already, but the core didn't know
4746      about it yet, just ignore the request.  The cached wait status
4747      will be collected in remote_wait.  */
4748   if (rs->cached_wait_status)
4749     return;
4750 
4751   /* Send interrupt_sequence to remote target.  */
4752   send_interrupt_sequence ();
4753 }
4754 
4755 /* This is the generic stop called via the target vector.  When a target
4756    interrupt is requested, either by the command line or the GUI, we
4757    will eventually end up here.  */
4758 
4759 static void
4760 remote_stop (ptid_t ptid)
4761 {
4762   if (remote_debug)
4763     fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4764 
4765   if (non_stop)
4766     remote_stop_ns (ptid);
4767   else
4768     remote_stop_as (ptid);
4769 }
4770 
4771 /* Ask the user what to do when an interrupt is received.  */
4772 
4773 static void
4774 interrupt_query (void)
4775 {
4776   target_terminal_ours ();
4777 
4778   if (target_can_async_p ())
4779     {
4780       signal (SIGINT, handle_sigint);
4781       deprecated_throw_reason (RETURN_QUIT);
4782     }
4783   else
4784     {
4785       if (query (_("Interrupted while waiting for the program.\n\
4786 Give up (and stop debugging it)? ")))
4787 	{
4788 	  pop_target ();
4789 	  deprecated_throw_reason (RETURN_QUIT);
4790 	}
4791     }
4792 
4793   target_terminal_inferior ();
4794 }
4795 
4796 /* Enable/disable target terminal ownership.  Most targets can use
4797    terminal groups to control terminal ownership.  Remote targets are
4798    different in that explicit transfer of ownership to/from GDB/target
4799    is required.  */
4800 
4801 static void
4802 remote_terminal_inferior (void)
4803 {
4804   if (!target_async_permitted)
4805     /* Nothing to do.  */
4806     return;
4807 
4808   /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4809      idempotent.  The event-loop GDB talking to an asynchronous target
4810      with a synchronous command calls this function from both
4811      event-top.c and infrun.c/infcmd.c.  Once GDB stops trying to
4812      transfer the terminal to the target when it shouldn't this guard
4813      can go away.  */
4814   if (!remote_async_terminal_ours_p)
4815     return;
4816   delete_file_handler (input_fd);
4817   remote_async_terminal_ours_p = 0;
4818   initialize_sigint_signal_handler ();
4819   /* NOTE: At this point we could also register our selves as the
4820      recipient of all input.  Any characters typed could then be
4821      passed on down to the target.  */
4822 }
4823 
4824 static void
4825 remote_terminal_ours (void)
4826 {
4827   if (!target_async_permitted)
4828     /* Nothing to do.  */
4829     return;
4830 
4831   /* See FIXME in remote_terminal_inferior.  */
4832   if (remote_async_terminal_ours_p)
4833     return;
4834   cleanup_sigint_signal_handler (NULL);
4835   add_file_handler (input_fd, stdin_event_handler, 0);
4836   remote_async_terminal_ours_p = 1;
4837 }
4838 
4839 static void
4840 remote_console_output (char *msg)
4841 {
4842   char *p;
4843 
4844   for (p = msg; p[0] && p[1]; p += 2)
4845     {
4846       char tb[2];
4847       char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4848 
4849       tb[0] = c;
4850       tb[1] = 0;
4851       fputs_unfiltered (tb, gdb_stdtarg);
4852     }
4853     gdb_flush (gdb_stdtarg);
4854   }
4855 
4856 typedef struct cached_reg
4857 {
4858   int num;
4859   gdb_byte data[MAX_REGISTER_SIZE];
4860 } cached_reg_t;
4861 
4862 DEF_VEC_O(cached_reg_t);
4863 
4864 struct stop_reply
4865 {
4866   struct stop_reply *next;
4867 
4868   ptid_t ptid;
4869 
4870   struct target_waitstatus ws;
4871 
4872   VEC(cached_reg_t) *regcache;
4873 
4874   int stopped_by_watchpoint_p;
4875   CORE_ADDR watch_data_address;
4876 
4877   int solibs_changed;
4878   int replay_event;
4879 
4880   int core;
4881 };
4882 
4883 /* The list of already fetched and acknowledged stop events.  */
4884 static struct stop_reply *stop_reply_queue;
4885 
4886 static struct stop_reply *
4887 stop_reply_xmalloc (void)
4888 {
4889   struct stop_reply *r = XMALLOC (struct stop_reply);
4890 
4891   r->next = NULL;
4892   return r;
4893 }
4894 
4895 static void
4896 stop_reply_xfree (struct stop_reply *r)
4897 {
4898   if (r != NULL)
4899     {
4900       VEC_free (cached_reg_t, r->regcache);
4901       xfree (r);
4902     }
4903 }
4904 
4905 /* Discard all pending stop replies of inferior PID.  If PID is -1,
4906    discard everything.  */
4907 
4908 static void
4909 discard_pending_stop_replies (int pid)
4910 {
4911   struct stop_reply *prev = NULL, *reply, *next;
4912 
4913   /* Discard the in-flight notification.  */
4914   if (pending_stop_reply != NULL
4915       && (pid == -1
4916 	  || ptid_get_pid (pending_stop_reply->ptid) == pid))
4917     {
4918       stop_reply_xfree (pending_stop_reply);
4919       pending_stop_reply = NULL;
4920     }
4921 
4922   /* Discard the stop replies we have already pulled with
4923      vStopped.  */
4924   for (reply = stop_reply_queue; reply; reply = next)
4925     {
4926       next = reply->next;
4927       if (pid == -1
4928 	  || ptid_get_pid (reply->ptid) == pid)
4929 	{
4930 	  if (reply == stop_reply_queue)
4931 	    stop_reply_queue = reply->next;
4932 	  else
4933 	    prev->next = reply->next;
4934 
4935 	  stop_reply_xfree (reply);
4936 	}
4937       else
4938 	prev = reply;
4939     }
4940 }
4941 
4942 /* Cleanup wrapper.  */
4943 
4944 static void
4945 do_stop_reply_xfree (void *arg)
4946 {
4947   struct stop_reply *r = arg;
4948 
4949   stop_reply_xfree (r);
4950 }
4951 
4952 /* Look for a queued stop reply belonging to PTID.  If one is found,
4953    remove it from the queue, and return it.  Returns NULL if none is
4954    found.  If there are still queued events left to process, tell the
4955    event loop to get back to target_wait soon.  */
4956 
4957 static struct stop_reply *
4958 queued_stop_reply (ptid_t ptid)
4959 {
4960   struct stop_reply *it;
4961   struct stop_reply **it_link;
4962 
4963   it = stop_reply_queue;
4964   it_link = &stop_reply_queue;
4965   while (it)
4966     {
4967       if (ptid_match (it->ptid, ptid))
4968 	{
4969 	  *it_link = it->next;
4970 	  it->next = NULL;
4971 	  break;
4972 	}
4973 
4974       it_link = &it->next;
4975       it = *it_link;
4976     }
4977 
4978   if (stop_reply_queue)
4979     /* There's still at least an event left.  */
4980     mark_async_event_handler (remote_async_inferior_event_token);
4981 
4982   return it;
4983 }
4984 
4985 /* Push a fully parsed stop reply in the stop reply queue.  Since we
4986    know that we now have at least one queued event left to pass to the
4987    core side, tell the event loop to get back to target_wait soon.  */
4988 
4989 static void
4990 push_stop_reply (struct stop_reply *new_event)
4991 {
4992   struct stop_reply *event;
4993 
4994   if (stop_reply_queue)
4995     {
4996       for (event = stop_reply_queue;
4997 	   event && event->next;
4998 	   event = event->next)
4999 	;
5000 
5001       event->next = new_event;
5002     }
5003   else
5004     stop_reply_queue = new_event;
5005 
5006   mark_async_event_handler (remote_async_inferior_event_token);
5007 }
5008 
5009 /* Returns true if we have a stop reply for PTID.  */
5010 
5011 static int
5012 peek_stop_reply (ptid_t ptid)
5013 {
5014   struct stop_reply *it;
5015 
5016   for (it = stop_reply_queue; it; it = it->next)
5017     if (ptid_equal (ptid, it->ptid))
5018       {
5019 	if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5020 	  return 1;
5021       }
5022 
5023   return 0;
5024 }
5025 
5026 /* Parse the stop reply in BUF.  Either the function succeeds, and the
5027    result is stored in EVENT, or throws an error.  */
5028 
5029 static void
5030 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5031 {
5032   struct remote_arch_state *rsa = get_remote_arch_state ();
5033   ULONGEST addr;
5034   char *p;
5035 
5036   event->ptid = null_ptid;
5037   event->ws.kind = TARGET_WAITKIND_IGNORE;
5038   event->ws.value.integer = 0;
5039   event->solibs_changed = 0;
5040   event->replay_event = 0;
5041   event->stopped_by_watchpoint_p = 0;
5042   event->regcache = NULL;
5043   event->core = -1;
5044 
5045   switch (buf[0])
5046     {
5047     case 'T':		/* Status with PC, SP, FP, ...	*/
5048       /* Expedited reply, containing Signal, {regno, reg} repeat.  */
5049       /*  format is:  'Tssn...:r...;n...:r...;n...:r...;#cc', where
5050 	    ss = signal number
5051 	    n... = register number
5052 	    r... = register contents
5053       */
5054 
5055       p = &buf[3];	/* after Txx */
5056       while (*p)
5057 	{
5058 	  char *p1;
5059 	  char *p_temp;
5060 	  int fieldsize;
5061 	  LONGEST pnum = 0;
5062 
5063 	  /* If the packet contains a register number, save it in
5064 	     pnum and set p1 to point to the character following it.
5065 	     Otherwise p1 points to p.  */
5066 
5067 	  /* If this packet is an awatch packet, don't parse the 'a'
5068 	     as a register number.  */
5069 
5070 	  if (strncmp (p, "awatch", strlen("awatch")) != 0
5071 	      && strncmp (p, "core", strlen ("core") != 0))
5072 	    {
5073 	      /* Read the ``P'' register number.  */
5074 	      pnum = strtol (p, &p_temp, 16);
5075 	      p1 = p_temp;
5076 	    }
5077 	  else
5078 	    p1 = p;
5079 
5080 	  if (p1 == p)	/* No register number present here.  */
5081 	    {
5082 	      p1 = strchr (p, ':');
5083 	      if (p1 == NULL)
5084 		error (_("Malformed packet(a) (missing colon): %s\n\
5085 Packet: '%s'\n"),
5086 		       p, buf);
5087 	      if (strncmp (p, "thread", p1 - p) == 0)
5088 		event->ptid = read_ptid (++p1, &p);
5089 	      else if ((strncmp (p, "watch", p1 - p) == 0)
5090 		       || (strncmp (p, "rwatch", p1 - p) == 0)
5091 		       || (strncmp (p, "awatch", p1 - p) == 0))
5092 		{
5093 		  event->stopped_by_watchpoint_p = 1;
5094 		  p = unpack_varlen_hex (++p1, &addr);
5095 		  event->watch_data_address = (CORE_ADDR) addr;
5096 		}
5097 	      else if (strncmp (p, "library", p1 - p) == 0)
5098 		{
5099 		  p1++;
5100 		  p_temp = p1;
5101 		  while (*p_temp && *p_temp != ';')
5102 		    p_temp++;
5103 
5104 		  event->solibs_changed = 1;
5105 		  p = p_temp;
5106 		}
5107 	      else if (strncmp (p, "replaylog", p1 - p) == 0)
5108 		{
5109 		  /* NO_HISTORY event.
5110 		     p1 will indicate "begin" or "end", but
5111 		     it makes no difference for now, so ignore it.  */
5112 		  event->replay_event = 1;
5113 		  p_temp = strchr (p1 + 1, ';');
5114 		  if (p_temp)
5115 		    p = p_temp;
5116 		}
5117 	      else if (strncmp (p, "core", p1 - p) == 0)
5118 		{
5119 		  ULONGEST c;
5120 
5121 		  p = unpack_varlen_hex (++p1, &c);
5122 		  event->core = c;
5123 		}
5124 	      else
5125 		{
5126 		  /* Silently skip unknown optional info.  */
5127 		  p_temp = strchr (p1 + 1, ';');
5128 		  if (p_temp)
5129 		    p = p_temp;
5130 		}
5131 	    }
5132 	  else
5133 	    {
5134 	      struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5135 	      cached_reg_t cached_reg;
5136 
5137 	      p = p1;
5138 
5139 	      if (*p != ':')
5140 		error (_("Malformed packet(b) (missing colon): %s\n\
5141 Packet: '%s'\n"),
5142 		       p, buf);
5143 	      ++p;
5144 
5145 	      if (reg == NULL)
5146 		error (_("Remote sent bad register number %s: %s\n\
5147 Packet: '%s'\n"),
5148 		       hex_string (pnum), p, buf);
5149 
5150 	      cached_reg.num = reg->regnum;
5151 
5152 	      fieldsize = hex2bin (p, cached_reg.data,
5153 				   register_size (target_gdbarch,
5154 						  reg->regnum));
5155 	      p += 2 * fieldsize;
5156 	      if (fieldsize < register_size (target_gdbarch,
5157 					     reg->regnum))
5158 		warning (_("Remote reply is too short: %s"), buf);
5159 
5160 	      VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5161 	    }
5162 
5163 	  if (*p != ';')
5164 	    error (_("Remote register badly formatted: %s\nhere: %s"),
5165 		   buf, p);
5166 	  ++p;
5167 	}
5168       /* fall through */
5169     case 'S':		/* Old style status, just signal only.  */
5170       if (event->solibs_changed)
5171 	event->ws.kind = TARGET_WAITKIND_LOADED;
5172       else if (event->replay_event)
5173 	event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5174       else
5175 	{
5176 	  event->ws.kind = TARGET_WAITKIND_STOPPED;
5177 	  event->ws.value.sig = (enum target_signal)
5178 	    (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5179 	}
5180       break;
5181     case 'W':		/* Target exited.  */
5182     case 'X':
5183       {
5184 	char *p;
5185 	int pid;
5186 	ULONGEST value;
5187 
5188 	/* GDB used to accept only 2 hex chars here.  Stubs should
5189 	   only send more if they detect GDB supports multi-process
5190 	   support.  */
5191 	p = unpack_varlen_hex (&buf[1], &value);
5192 
5193 	if (buf[0] == 'W')
5194 	  {
5195 	    /* The remote process exited.  */
5196 	    event->ws.kind = TARGET_WAITKIND_EXITED;
5197 	    event->ws.value.integer = value;
5198 	  }
5199 	else
5200 	  {
5201 	    /* The remote process exited with a signal.  */
5202 	    event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5203 	    event->ws.value.sig = (enum target_signal) value;
5204 	  }
5205 
5206 	/* If no process is specified, assume inferior_ptid.  */
5207 	pid = ptid_get_pid (inferior_ptid);
5208 	if (*p == '\0')
5209 	  ;
5210 	else if (*p == ';')
5211 	  {
5212 	    p++;
5213 
5214 	    if (p == '\0')
5215 	      ;
5216 	    else if (strncmp (p,
5217 			      "process:", sizeof ("process:") - 1) == 0)
5218 	      {
5219 		ULONGEST upid;
5220 
5221 		p += sizeof ("process:") - 1;
5222 		unpack_varlen_hex (p, &upid);
5223 		pid = upid;
5224 	      }
5225 	    else
5226 	      error (_("unknown stop reply packet: %s"), buf);
5227 	  }
5228 	else
5229 	  error (_("unknown stop reply packet: %s"), buf);
5230 	event->ptid = pid_to_ptid (pid);
5231       }
5232       break;
5233     }
5234 
5235   if (non_stop && ptid_equal (event->ptid, null_ptid))
5236     error (_("No process or thread specified in stop reply: %s"), buf);
5237 }
5238 
5239 /* When the stub wants to tell GDB about a new stop reply, it sends a
5240    stop notification (%Stop).  Those can come it at any time, hence,
5241    we have to make sure that any pending putpkt/getpkt sequence we're
5242    making is finished, before querying the stub for more events with
5243    vStopped.  E.g., if we started a vStopped sequence immediatelly
5244    upon receiving the %Stop notification, something like this could
5245    happen:
5246 
5247     1.1) --> Hg 1
5248     1.2) <-- OK
5249     1.3) --> g
5250     1.4) <-- %Stop
5251     1.5) --> vStopped
5252     1.6) <-- (registers reply to step #1.3)
5253 
5254    Obviously, the reply in step #1.6 would be unexpected to a vStopped
5255    query.
5256 
5257    To solve this, whenever we parse a %Stop notification sucessfully,
5258    we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5259    doing whatever we were doing:
5260 
5261     2.1) --> Hg 1
5262     2.2) <-- OK
5263     2.3) --> g
5264     2.4) <-- %Stop
5265       <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5266     2.5) <-- (registers reply to step #2.3)
5267 
5268    Eventualy after step #2.5, we return to the event loop, which
5269    notices there's an event on the
5270    REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5271    associated callback --- the function below.  At this point, we're
5272    always safe to start a vStopped sequence. :
5273 
5274     2.6) --> vStopped
5275     2.7) <-- T05 thread:2
5276     2.8) --> vStopped
5277     2.9) --> OK
5278 */
5279 
5280 static void
5281 remote_get_pending_stop_replies (void)
5282 {
5283   struct remote_state *rs = get_remote_state ();
5284 
5285   if (pending_stop_reply)
5286     {
5287       /* acknowledge */
5288       putpkt ("vStopped");
5289 
5290       /* Now we can rely on it.	 */
5291       push_stop_reply (pending_stop_reply);
5292       pending_stop_reply = NULL;
5293 
5294       while (1)
5295 	{
5296 	  getpkt (&rs->buf, &rs->buf_size, 0);
5297 	  if (strcmp (rs->buf, "OK") == 0)
5298 	    break;
5299 	  else
5300 	    {
5301 	      struct cleanup *old_chain;
5302 	      struct stop_reply *stop_reply = stop_reply_xmalloc ();
5303 
5304 	      old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5305 	      remote_parse_stop_reply (rs->buf, stop_reply);
5306 
5307 	      /* acknowledge */
5308 	      putpkt ("vStopped");
5309 
5310 	      if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5311 		{
5312 		  /* Now we can rely on it.  */
5313 		  discard_cleanups (old_chain);
5314 		  push_stop_reply (stop_reply);
5315 		}
5316 	      else
5317 		/* We got an unknown stop reply.  */
5318 		do_cleanups (old_chain);
5319 	    }
5320 	}
5321     }
5322 }
5323 
5324 
5325 /* Called when it is decided that STOP_REPLY holds the info of the
5326    event that is to be returned to the core.  This function always
5327    destroys STOP_REPLY.  */
5328 
5329 static ptid_t
5330 process_stop_reply (struct stop_reply *stop_reply,
5331 		    struct target_waitstatus *status)
5332 {
5333   ptid_t ptid;
5334 
5335   *status = stop_reply->ws;
5336   ptid = stop_reply->ptid;
5337 
5338   /* If no thread/process was reported by the stub, assume the current
5339      inferior.  */
5340   if (ptid_equal (ptid, null_ptid))
5341     ptid = inferior_ptid;
5342 
5343   if (status->kind != TARGET_WAITKIND_EXITED
5344       && status->kind != TARGET_WAITKIND_SIGNALLED)
5345     {
5346       /* Expedited registers.  */
5347       if (stop_reply->regcache)
5348 	{
5349 	  struct regcache *regcache
5350 	    = get_thread_arch_regcache (ptid, target_gdbarch);
5351 	  cached_reg_t *reg;
5352 	  int ix;
5353 
5354 	  for (ix = 0;
5355 	       VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5356 	       ix++)
5357 	    regcache_raw_supply (regcache, reg->num, reg->data);
5358 	  VEC_free (cached_reg_t, stop_reply->regcache);
5359 	}
5360 
5361       remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5362       remote_watch_data_address = stop_reply->watch_data_address;
5363 
5364       remote_notice_new_inferior (ptid, 0);
5365       demand_private_info (ptid)->core = stop_reply->core;
5366     }
5367 
5368   stop_reply_xfree (stop_reply);
5369   return ptid;
5370 }
5371 
5372 /* The non-stop mode version of target_wait.  */
5373 
5374 static ptid_t
5375 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5376 {
5377   struct remote_state *rs = get_remote_state ();
5378   struct stop_reply *stop_reply;
5379   int ret;
5380 
5381   /* If in non-stop mode, get out of getpkt even if a
5382      notification is received.	*/
5383 
5384   ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5385 			      0 /* forever */);
5386   while (1)
5387     {
5388       if (ret != -1)
5389 	switch (rs->buf[0])
5390 	  {
5391 	  case 'E':		/* Error of some sort.	*/
5392 	    /* We're out of sync with the target now.  Did it continue
5393 	       or not?  We can't tell which thread it was in non-stop,
5394 	       so just ignore this.  */
5395 	    warning (_("Remote failure reply: %s"), rs->buf);
5396 	    break;
5397 	  case 'O':		/* Console output.  */
5398 	    remote_console_output (rs->buf + 1);
5399 	    break;
5400 	  default:
5401 	    warning (_("Invalid remote reply: %s"), rs->buf);
5402 	    break;
5403 	  }
5404 
5405       /* Acknowledge a pending stop reply that may have arrived in the
5406 	 mean time.  */
5407       if (pending_stop_reply != NULL)
5408 	remote_get_pending_stop_replies ();
5409 
5410       /* If indeed we noticed a stop reply, we're done.  */
5411       stop_reply = queued_stop_reply (ptid);
5412       if (stop_reply != NULL)
5413 	return process_stop_reply (stop_reply, status);
5414 
5415       /* Still no event.  If we're just polling for an event, then
5416 	 return to the event loop.  */
5417       if (options & TARGET_WNOHANG)
5418 	{
5419 	  status->kind = TARGET_WAITKIND_IGNORE;
5420 	  return minus_one_ptid;
5421 	}
5422 
5423       /* Otherwise do a blocking wait.  */
5424       ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5425 				  1 /* forever */);
5426     }
5427 }
5428 
5429 /* Wait until the remote machine stops, then return, storing status in
5430    STATUS just as `wait' would.  */
5431 
5432 static ptid_t
5433 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5434 {
5435   struct remote_state *rs = get_remote_state ();
5436   ptid_t event_ptid = null_ptid;
5437   char *buf;
5438   struct stop_reply *stop_reply;
5439 
5440  again:
5441 
5442   status->kind = TARGET_WAITKIND_IGNORE;
5443   status->value.integer = 0;
5444 
5445   stop_reply = queued_stop_reply (ptid);
5446   if (stop_reply != NULL)
5447     return process_stop_reply (stop_reply, status);
5448 
5449   if (rs->cached_wait_status)
5450     /* Use the cached wait status, but only once.  */
5451     rs->cached_wait_status = 0;
5452   else
5453     {
5454       int ret;
5455 
5456       if (!target_is_async_p ())
5457 	{
5458 	  ofunc = signal (SIGINT, remote_interrupt);
5459 	  /* If the user hit C-c before this packet, or between packets,
5460 	     pretend that it was hit right here.  */
5461 	  if (quit_flag)
5462 	    {
5463 	      quit_flag = 0;
5464 	      remote_interrupt (SIGINT);
5465 	    }
5466 	}
5467 
5468       /* FIXME: cagney/1999-09-27: If we're in async mode we should
5469 	 _never_ wait for ever -> test on target_is_async_p().
5470 	 However, before we do that we need to ensure that the caller
5471 	 knows how to take the target into/out of async mode.  */
5472       ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5473       if (!target_is_async_p ())
5474 	signal (SIGINT, ofunc);
5475     }
5476 
5477   buf = rs->buf;
5478 
5479   remote_stopped_by_watchpoint_p = 0;
5480 
5481   /* We got something.  */
5482   rs->waiting_for_stop_reply = 0;
5483 
5484   /* Assume that the target has acknowledged Ctrl-C unless we receive
5485      an 'F' or 'O' packet.  */
5486   if (buf[0] != 'F' && buf[0] != 'O')
5487     rs->ctrlc_pending_p = 0;
5488 
5489   switch (buf[0])
5490     {
5491     case 'E':		/* Error of some sort.	*/
5492       /* We're out of sync with the target now.  Did it continue or
5493 	 not?  Not is more likely, so report a stop.  */
5494       warning (_("Remote failure reply: %s"), buf);
5495       status->kind = TARGET_WAITKIND_STOPPED;
5496       status->value.sig = TARGET_SIGNAL_0;
5497       break;
5498     case 'F':		/* File-I/O request.  */
5499       remote_fileio_request (buf, rs->ctrlc_pending_p);
5500       rs->ctrlc_pending_p = 0;
5501       break;
5502     case 'T': case 'S': case 'X': case 'W':
5503       {
5504 	struct stop_reply *stop_reply;
5505 	struct cleanup *old_chain;
5506 
5507 	stop_reply = stop_reply_xmalloc ();
5508 	old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5509 	remote_parse_stop_reply (buf, stop_reply);
5510 	discard_cleanups (old_chain);
5511 	event_ptid = process_stop_reply (stop_reply, status);
5512 	break;
5513       }
5514     case 'O':		/* Console output.  */
5515       remote_console_output (buf + 1);
5516 
5517       /* The target didn't really stop; keep waiting.  */
5518       rs->waiting_for_stop_reply = 1;
5519 
5520       break;
5521     case '\0':
5522       if (last_sent_signal != TARGET_SIGNAL_0)
5523 	{
5524 	  /* Zero length reply means that we tried 'S' or 'C' and the
5525 	     remote system doesn't support it.  */
5526 	  target_terminal_ours_for_output ();
5527 	  printf_filtered
5528 	    ("Can't send signals to this remote system.  %s not sent.\n",
5529 	     target_signal_to_name (last_sent_signal));
5530 	  last_sent_signal = TARGET_SIGNAL_0;
5531 	  target_terminal_inferior ();
5532 
5533 	  strcpy ((char *) buf, last_sent_step ? "s" : "c");
5534 	  putpkt ((char *) buf);
5535 
5536 	  /* We just told the target to resume, so a stop reply is in
5537 	     order.  */
5538 	  rs->waiting_for_stop_reply = 1;
5539 	  break;
5540 	}
5541       /* else fallthrough */
5542     default:
5543       warning (_("Invalid remote reply: %s"), buf);
5544       /* Keep waiting.  */
5545       rs->waiting_for_stop_reply = 1;
5546       break;
5547     }
5548 
5549   if (status->kind == TARGET_WAITKIND_IGNORE)
5550     {
5551       /* Nothing interesting happened.  If we're doing a non-blocking
5552 	 poll, we're done.  Otherwise, go back to waiting.  */
5553       if (options & TARGET_WNOHANG)
5554 	return minus_one_ptid;
5555       else
5556 	goto again;
5557     }
5558   else if (status->kind != TARGET_WAITKIND_EXITED
5559 	   && status->kind != TARGET_WAITKIND_SIGNALLED)
5560     {
5561       if (!ptid_equal (event_ptid, null_ptid))
5562 	record_currthread (event_ptid);
5563       else
5564 	event_ptid = inferior_ptid;
5565     }
5566   else
5567     /* A process exit.  Invalidate our notion of current thread.  */
5568     record_currthread (minus_one_ptid);
5569 
5570   return event_ptid;
5571 }
5572 
5573 /* Wait until the remote machine stops, then return, storing status in
5574    STATUS just as `wait' would.  */
5575 
5576 static ptid_t
5577 remote_wait (struct target_ops *ops,
5578 	     ptid_t ptid, struct target_waitstatus *status, int options)
5579 {
5580   ptid_t event_ptid;
5581 
5582   if (non_stop)
5583     event_ptid = remote_wait_ns (ptid, status, options);
5584   else
5585     event_ptid = remote_wait_as (ptid, status, options);
5586 
5587   if (target_can_async_p ())
5588     {
5589       /* If there are are events left in the queue tell the event loop
5590 	 to return here.  */
5591       if (stop_reply_queue)
5592 	mark_async_event_handler (remote_async_inferior_event_token);
5593     }
5594 
5595   return event_ptid;
5596 }
5597 
5598 /* Fetch a single register using a 'p' packet.  */
5599 
5600 static int
5601 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5602 {
5603   struct remote_state *rs = get_remote_state ();
5604   char *buf, *p;
5605   char regp[MAX_REGISTER_SIZE];
5606   int i;
5607 
5608   if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5609     return 0;
5610 
5611   if (reg->pnum == -1)
5612     return 0;
5613 
5614   p = rs->buf;
5615   *p++ = 'p';
5616   p += hexnumstr (p, reg->pnum);
5617   *p++ = '\0';
5618   putpkt (rs->buf);
5619   getpkt (&rs->buf, &rs->buf_size, 0);
5620 
5621   buf = rs->buf;
5622 
5623   switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5624     {
5625     case PACKET_OK:
5626       break;
5627     case PACKET_UNKNOWN:
5628       return 0;
5629     case PACKET_ERROR:
5630       error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5631 	     gdbarch_register_name (get_regcache_arch (regcache),
5632 				    reg->regnum),
5633 	     buf);
5634     }
5635 
5636   /* If this register is unfetchable, tell the regcache.  */
5637   if (buf[0] == 'x')
5638     {
5639       regcache_raw_supply (regcache, reg->regnum, NULL);
5640       return 1;
5641     }
5642 
5643   /* Otherwise, parse and supply the value.  */
5644   p = buf;
5645   i = 0;
5646   while (p[0] != 0)
5647     {
5648       if (p[1] == 0)
5649 	error (_("fetch_register_using_p: early buf termination"));
5650 
5651       regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5652       p += 2;
5653     }
5654   regcache_raw_supply (regcache, reg->regnum, regp);
5655   return 1;
5656 }
5657 
5658 /* Fetch the registers included in the target's 'g' packet.  */
5659 
5660 static int
5661 send_g_packet (void)
5662 {
5663   struct remote_state *rs = get_remote_state ();
5664   int buf_len;
5665 
5666   sprintf (rs->buf, "g");
5667   remote_send (&rs->buf, &rs->buf_size);
5668 
5669   /* We can get out of synch in various cases.  If the first character
5670      in the buffer is not a hex character, assume that has happened
5671      and try to fetch another packet to read.  */
5672   while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5673 	 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5674 	 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5675 	 && rs->buf[0] != 'x')	/* New: unavailable register value.  */
5676     {
5677       if (remote_debug)
5678 	fprintf_unfiltered (gdb_stdlog,
5679 			    "Bad register packet; fetching a new packet\n");
5680       getpkt (&rs->buf, &rs->buf_size, 0);
5681     }
5682 
5683   buf_len = strlen (rs->buf);
5684 
5685   /* Sanity check the received packet.  */
5686   if (buf_len % 2 != 0)
5687     error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5688 
5689   return buf_len / 2;
5690 }
5691 
5692 static void
5693 process_g_packet (struct regcache *regcache)
5694 {
5695   struct gdbarch *gdbarch = get_regcache_arch (regcache);
5696   struct remote_state *rs = get_remote_state ();
5697   struct remote_arch_state *rsa = get_remote_arch_state ();
5698   int i, buf_len;
5699   char *p;
5700   char *regs;
5701 
5702   buf_len = strlen (rs->buf);
5703 
5704   /* Further sanity checks, with knowledge of the architecture.  */
5705   if (buf_len > 2 * rsa->sizeof_g_packet)
5706     error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5707 
5708   /* Save the size of the packet sent to us by the target.  It is used
5709      as a heuristic when determining the max size of packets that the
5710      target can safely receive.  */
5711   if (rsa->actual_register_packet_size == 0)
5712     rsa->actual_register_packet_size = buf_len;
5713 
5714   /* If this is smaller than we guessed the 'g' packet would be,
5715      update our records.  A 'g' reply that doesn't include a register's
5716      value implies either that the register is not available, or that
5717      the 'p' packet must be used.  */
5718   if (buf_len < 2 * rsa->sizeof_g_packet)
5719     {
5720       rsa->sizeof_g_packet = buf_len / 2;
5721 
5722       for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5723 	{
5724 	  if (rsa->regs[i].pnum == -1)
5725 	    continue;
5726 
5727 	  if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5728 	    rsa->regs[i].in_g_packet = 0;
5729 	  else
5730 	    rsa->regs[i].in_g_packet = 1;
5731 	}
5732     }
5733 
5734   regs = alloca (rsa->sizeof_g_packet);
5735 
5736   /* Unimplemented registers read as all bits zero.  */
5737   memset (regs, 0, rsa->sizeof_g_packet);
5738 
5739   /* Reply describes registers byte by byte, each byte encoded as two
5740      hex characters.  Suck them all up, then supply them to the
5741      register cacheing/storage mechanism.  */
5742 
5743   p = rs->buf;
5744   for (i = 0; i < rsa->sizeof_g_packet; i++)
5745     {
5746       if (p[0] == 0 || p[1] == 0)
5747 	/* This shouldn't happen - we adjusted sizeof_g_packet above.  */
5748 	internal_error (__FILE__, __LINE__,
5749 			_("unexpected end of 'g' packet reply"));
5750 
5751       if (p[0] == 'x' && p[1] == 'x')
5752 	regs[i] = 0;		/* 'x' */
5753       else
5754 	regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5755       p += 2;
5756     }
5757 
5758   for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5759     {
5760       struct packet_reg *r = &rsa->regs[i];
5761 
5762       if (r->in_g_packet)
5763 	{
5764 	  if (r->offset * 2 >= strlen (rs->buf))
5765 	    /* This shouldn't happen - we adjusted in_g_packet above.  */
5766 	    internal_error (__FILE__, __LINE__,
5767 			    _("unexpected end of 'g' packet reply"));
5768 	  else if (rs->buf[r->offset * 2] == 'x')
5769 	    {
5770 	      gdb_assert (r->offset * 2 < strlen (rs->buf));
5771 	      /* The register isn't available, mark it as such (at
5772 		 the same time setting the value to zero).  */
5773 	      regcache_raw_supply (regcache, r->regnum, NULL);
5774 	    }
5775 	  else
5776 	    regcache_raw_supply (regcache, r->regnum,
5777 				 regs + r->offset);
5778 	}
5779     }
5780 }
5781 
5782 static void
5783 fetch_registers_using_g (struct regcache *regcache)
5784 {
5785   send_g_packet ();
5786   process_g_packet (regcache);
5787 }
5788 
5789 /* Make the remote selected traceframe match GDB's selected
5790    traceframe.  */
5791 
5792 static void
5793 set_remote_traceframe (void)
5794 {
5795   int newnum;
5796 
5797   if (remote_traceframe_number == get_traceframe_number ())
5798     return;
5799 
5800   /* Avoid recursion, remote_trace_find calls us again.  */
5801   remote_traceframe_number = get_traceframe_number ();
5802 
5803   newnum = target_trace_find (tfind_number,
5804 			      get_traceframe_number (), 0, 0, NULL);
5805 
5806   /* Should not happen.  If it does, all bets are off.  */
5807   if (newnum != get_traceframe_number ())
5808     warning (_("could not set remote traceframe"));
5809 }
5810 
5811 static void
5812 remote_fetch_registers (struct target_ops *ops,
5813 			struct regcache *regcache, int regnum)
5814 {
5815   struct remote_arch_state *rsa = get_remote_arch_state ();
5816   int i;
5817 
5818   set_remote_traceframe ();
5819   set_general_thread (inferior_ptid);
5820 
5821   if (regnum >= 0)
5822     {
5823       struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5824 
5825       gdb_assert (reg != NULL);
5826 
5827       /* If this register might be in the 'g' packet, try that first -
5828 	 we are likely to read more than one register.  If this is the
5829 	 first 'g' packet, we might be overly optimistic about its
5830 	 contents, so fall back to 'p'.  */
5831       if (reg->in_g_packet)
5832 	{
5833 	  fetch_registers_using_g (regcache);
5834 	  if (reg->in_g_packet)
5835 	    return;
5836 	}
5837 
5838       if (fetch_register_using_p (regcache, reg))
5839 	return;
5840 
5841       /* This register is not available.  */
5842       regcache_raw_supply (regcache, reg->regnum, NULL);
5843 
5844       return;
5845     }
5846 
5847   fetch_registers_using_g (regcache);
5848 
5849   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5850     if (!rsa->regs[i].in_g_packet)
5851       if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5852 	{
5853 	  /* This register is not available.  */
5854 	  regcache_raw_supply (regcache, i, NULL);
5855 	}
5856 }
5857 
5858 /* Prepare to store registers.  Since we may send them all (using a
5859    'G' request), we have to read out the ones we don't want to change
5860    first.  */
5861 
5862 static void
5863 remote_prepare_to_store (struct regcache *regcache)
5864 {
5865   struct remote_arch_state *rsa = get_remote_arch_state ();
5866   int i;
5867   gdb_byte buf[MAX_REGISTER_SIZE];
5868 
5869   /* Make sure the entire registers array is valid.  */
5870   switch (remote_protocol_packets[PACKET_P].support)
5871     {
5872     case PACKET_DISABLE:
5873     case PACKET_SUPPORT_UNKNOWN:
5874       /* Make sure all the necessary registers are cached.  */
5875       for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5876 	if (rsa->regs[i].in_g_packet)
5877 	  regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5878       break;
5879     case PACKET_ENABLE:
5880       break;
5881     }
5882 }
5883 
5884 /* Helper: Attempt to store REGNUM using the P packet.  Return fail IFF
5885    packet was not recognized.  */
5886 
5887 static int
5888 store_register_using_P (const struct regcache *regcache,
5889 			struct packet_reg *reg)
5890 {
5891   struct gdbarch *gdbarch = get_regcache_arch (regcache);
5892   struct remote_state *rs = get_remote_state ();
5893   /* Try storing a single register.  */
5894   char *buf = rs->buf;
5895   gdb_byte regp[MAX_REGISTER_SIZE];
5896   char *p;
5897 
5898   if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5899     return 0;
5900 
5901   if (reg->pnum == -1)
5902     return 0;
5903 
5904   xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5905   p = buf + strlen (buf);
5906   regcache_raw_collect (regcache, reg->regnum, regp);
5907   bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5908   putpkt (rs->buf);
5909   getpkt (&rs->buf, &rs->buf_size, 0);
5910 
5911   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5912     {
5913     case PACKET_OK:
5914       return 1;
5915     case PACKET_ERROR:
5916       error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5917 	     gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5918     case PACKET_UNKNOWN:
5919       return 0;
5920     default:
5921       internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5922     }
5923 }
5924 
5925 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5926    contents of the register cache buffer.  FIXME: ignores errors.  */
5927 
5928 static void
5929 store_registers_using_G (const struct regcache *regcache)
5930 {
5931   struct remote_state *rs = get_remote_state ();
5932   struct remote_arch_state *rsa = get_remote_arch_state ();
5933   gdb_byte *regs;
5934   char *p;
5935 
5936   /* Extract all the registers in the regcache copying them into a
5937      local buffer.  */
5938   {
5939     int i;
5940 
5941     regs = alloca (rsa->sizeof_g_packet);
5942     memset (regs, 0, rsa->sizeof_g_packet);
5943     for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5944       {
5945 	struct packet_reg *r = &rsa->regs[i];
5946 
5947 	if (r->in_g_packet)
5948 	  regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5949       }
5950   }
5951 
5952   /* Command describes registers byte by byte,
5953      each byte encoded as two hex characters.  */
5954   p = rs->buf;
5955   *p++ = 'G';
5956   /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5957      updated.  */
5958   bin2hex (regs, p, rsa->sizeof_g_packet);
5959   putpkt (rs->buf);
5960   getpkt (&rs->buf, &rs->buf_size, 0);
5961   if (packet_check_result (rs->buf) == PACKET_ERROR)
5962     error (_("Could not write registers; remote failure reply '%s'"),
5963 	   rs->buf);
5964 }
5965 
5966 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5967    of the register cache buffer.  FIXME: ignores errors.  */
5968 
5969 static void
5970 remote_store_registers (struct target_ops *ops,
5971 			struct regcache *regcache, int regnum)
5972 {
5973   struct remote_arch_state *rsa = get_remote_arch_state ();
5974   int i;
5975 
5976   set_remote_traceframe ();
5977   set_general_thread (inferior_ptid);
5978 
5979   if (regnum >= 0)
5980     {
5981       struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5982 
5983       gdb_assert (reg != NULL);
5984 
5985       /* Always prefer to store registers using the 'P' packet if
5986 	 possible; we often change only a small number of registers.
5987 	 Sometimes we change a larger number; we'd need help from a
5988 	 higher layer to know to use 'G'.  */
5989       if (store_register_using_P (regcache, reg))
5990 	return;
5991 
5992       /* For now, don't complain if we have no way to write the
5993 	 register.  GDB loses track of unavailable registers too
5994 	 easily.  Some day, this may be an error.  We don't have
5995 	 any way to read the register, either...  */
5996       if (!reg->in_g_packet)
5997 	return;
5998 
5999       store_registers_using_G (regcache);
6000       return;
6001     }
6002 
6003   store_registers_using_G (regcache);
6004 
6005   for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6006     if (!rsa->regs[i].in_g_packet)
6007       if (!store_register_using_P (regcache, &rsa->regs[i]))
6008 	/* See above for why we do not issue an error here.  */
6009 	continue;
6010 }
6011 
6012 
6013 /* Return the number of hex digits in num.  */
6014 
6015 static int
6016 hexnumlen (ULONGEST num)
6017 {
6018   int i;
6019 
6020   for (i = 0; num != 0; i++)
6021     num >>= 4;
6022 
6023   return max (i, 1);
6024 }
6025 
6026 /* Set BUF to the minimum number of hex digits representing NUM.  */
6027 
6028 static int
6029 hexnumstr (char *buf, ULONGEST num)
6030 {
6031   int len = hexnumlen (num);
6032 
6033   return hexnumnstr (buf, num, len);
6034 }
6035 
6036 
6037 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters.  */
6038 
6039 static int
6040 hexnumnstr (char *buf, ULONGEST num, int width)
6041 {
6042   int i;
6043 
6044   buf[width] = '\0';
6045 
6046   for (i = width - 1; i >= 0; i--)
6047     {
6048       buf[i] = "0123456789abcdef"[(num & 0xf)];
6049       num >>= 4;
6050     }
6051 
6052   return width;
6053 }
6054 
6055 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits.  */
6056 
6057 static CORE_ADDR
6058 remote_address_masked (CORE_ADDR addr)
6059 {
6060   int address_size = remote_address_size;
6061 
6062   /* If "remoteaddresssize" was not set, default to target address size.  */
6063   if (!address_size)
6064     address_size = gdbarch_addr_bit (target_gdbarch);
6065 
6066   if (address_size > 0
6067       && address_size < (sizeof (ULONGEST) * 8))
6068     {
6069       /* Only create a mask when that mask can safely be constructed
6070          in a ULONGEST variable.  */
6071       ULONGEST mask = 1;
6072 
6073       mask = (mask << address_size) - 1;
6074       addr &= mask;
6075     }
6076   return addr;
6077 }
6078 
6079 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6080    binary data in OUT_BUF.  Set *OUT_LEN to the length of the data
6081    encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6082    (which may be more than *OUT_LEN due to escape characters).  The
6083    total number of bytes in the output buffer will be at most
6084    OUT_MAXLEN.  */
6085 
6086 static int
6087 remote_escape_output (const gdb_byte *buffer, int len,
6088 		      gdb_byte *out_buf, int *out_len,
6089 		      int out_maxlen)
6090 {
6091   int input_index, output_index;
6092 
6093   output_index = 0;
6094   for (input_index = 0; input_index < len; input_index++)
6095     {
6096       gdb_byte b = buffer[input_index];
6097 
6098       if (b == '$' || b == '#' || b == '}')
6099 	{
6100 	  /* These must be escaped.  */
6101 	  if (output_index + 2 > out_maxlen)
6102 	    break;
6103 	  out_buf[output_index++] = '}';
6104 	  out_buf[output_index++] = b ^ 0x20;
6105 	}
6106       else
6107 	{
6108 	  if (output_index + 1 > out_maxlen)
6109 	    break;
6110 	  out_buf[output_index++] = b;
6111 	}
6112     }
6113 
6114   *out_len = input_index;
6115   return output_index;
6116 }
6117 
6118 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6119    in OUT_BUF.  Return the number of bytes written to OUT_BUF.
6120    Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6121 
6122    This function reverses remote_escape_output.  It allows more
6123    escaped characters than that function does, in particular because
6124    '*' must be escaped to avoid the run-length encoding processing
6125    in reading packets.  */
6126 
6127 static int
6128 remote_unescape_input (const gdb_byte *buffer, int len,
6129 		       gdb_byte *out_buf, int out_maxlen)
6130 {
6131   int input_index, output_index;
6132   int escaped;
6133 
6134   output_index = 0;
6135   escaped = 0;
6136   for (input_index = 0; input_index < len; input_index++)
6137     {
6138       gdb_byte b = buffer[input_index];
6139 
6140       if (output_index + 1 > out_maxlen)
6141 	{
6142 	  warning (_("Received too much data from remote target;"
6143 		     " ignoring overflow."));
6144 	  return output_index;
6145 	}
6146 
6147       if (escaped)
6148 	{
6149 	  out_buf[output_index++] = b ^ 0x20;
6150 	  escaped = 0;
6151 	}
6152       else if (b == '}')
6153 	escaped = 1;
6154       else
6155 	out_buf[output_index++] = b;
6156     }
6157 
6158   if (escaped)
6159     error (_("Unmatched escape character in target response."));
6160 
6161   return output_index;
6162 }
6163 
6164 /* Determine whether the remote target supports binary downloading.
6165    This is accomplished by sending a no-op memory write of zero length
6166    to the target at the specified address. It does not suffice to send
6167    the whole packet, since many stubs strip the eighth bit and
6168    subsequently compute a wrong checksum, which causes real havoc with
6169    remote_write_bytes.
6170 
6171    NOTE: This can still lose if the serial line is not eight-bit
6172    clean.  In cases like this, the user should clear "remote
6173    X-packet".  */
6174 
6175 static void
6176 check_binary_download (CORE_ADDR addr)
6177 {
6178   struct remote_state *rs = get_remote_state ();
6179 
6180   switch (remote_protocol_packets[PACKET_X].support)
6181     {
6182     case PACKET_DISABLE:
6183       break;
6184     case PACKET_ENABLE:
6185       break;
6186     case PACKET_SUPPORT_UNKNOWN:
6187       {
6188 	char *p;
6189 
6190 	p = rs->buf;
6191 	*p++ = 'X';
6192 	p += hexnumstr (p, (ULONGEST) addr);
6193 	*p++ = ',';
6194 	p += hexnumstr (p, (ULONGEST) 0);
6195 	*p++ = ':';
6196 	*p = '\0';
6197 
6198 	putpkt_binary (rs->buf, (int) (p - rs->buf));
6199 	getpkt (&rs->buf, &rs->buf_size, 0);
6200 
6201 	if (rs->buf[0] == '\0')
6202 	  {
6203 	    if (remote_debug)
6204 	      fprintf_unfiltered (gdb_stdlog,
6205 				  "binary downloading NOT "
6206 				  "supported by target\n");
6207 	    remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6208 	  }
6209 	else
6210 	  {
6211 	    if (remote_debug)
6212 	      fprintf_unfiltered (gdb_stdlog,
6213 				  "binary downloading suppported by target\n");
6214 	    remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6215 	  }
6216 	break;
6217       }
6218     }
6219 }
6220 
6221 /* Write memory data directly to the remote machine.
6222    This does not inform the data cache; the data cache uses this.
6223    HEADER is the starting part of the packet.
6224    MEMADDR is the address in the remote memory space.
6225    MYADDR is the address of the buffer in our space.
6226    LEN is the number of bytes.
6227    PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6228    should send data as binary ('X'), or hex-encoded ('M').
6229 
6230    The function creates packet of the form
6231        <HEADER><ADDRESS>,<LENGTH>:<DATA>
6232 
6233    where encoding of <DATA> is termined by PACKET_FORMAT.
6234 
6235    If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6236    are omitted.
6237 
6238    Returns the number of bytes transferred, or 0 (setting errno) for
6239    error.  Only transfer a single packet.  */
6240 
6241 static int
6242 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6243 			const gdb_byte *myaddr, int len,
6244 			char packet_format, int use_length)
6245 {
6246   struct remote_state *rs = get_remote_state ();
6247   char *p;
6248   char *plen = NULL;
6249   int plenlen = 0;
6250   int todo;
6251   int nr_bytes;
6252   int payload_size;
6253   int payload_length;
6254   int header_length;
6255 
6256   if (packet_format != 'X' && packet_format != 'M')
6257     internal_error (__FILE__, __LINE__,
6258 		    _("remote_write_bytes_aux: bad packet format"));
6259 
6260   if (len <= 0)
6261     return 0;
6262 
6263   payload_size = get_memory_write_packet_size ();
6264 
6265   /* The packet buffer will be large enough for the payload;
6266      get_memory_packet_size ensures this.  */
6267   rs->buf[0] = '\0';
6268 
6269   /* Compute the size of the actual payload by subtracting out the
6270      packet header and footer overhead: "$M<memaddr>,<len>:...#nn".  */
6271 
6272   payload_size -= strlen ("$,:#NN");
6273   if (!use_length)
6274     /* The comma won't be used.  */
6275     payload_size += 1;
6276   header_length = strlen (header);
6277   payload_size -= header_length;
6278   payload_size -= hexnumlen (memaddr);
6279 
6280   /* Construct the packet excluding the data: "<header><memaddr>,<len>:".  */
6281 
6282   strcat (rs->buf, header);
6283   p = rs->buf + strlen (header);
6284 
6285   /* Compute a best guess of the number of bytes actually transfered.  */
6286   if (packet_format == 'X')
6287     {
6288       /* Best guess at number of bytes that will fit.  */
6289       todo = min (len, payload_size);
6290       if (use_length)
6291 	payload_size -= hexnumlen (todo);
6292       todo = min (todo, payload_size);
6293     }
6294   else
6295     {
6296       /* Num bytes that will fit.  */
6297       todo = min (len, payload_size / 2);
6298       if (use_length)
6299 	payload_size -= hexnumlen (todo);
6300       todo = min (todo, payload_size / 2);
6301     }
6302 
6303   if (todo <= 0)
6304     internal_error (__FILE__, __LINE__,
6305 		    _("minumum packet size too small to write data"));
6306 
6307   /* If we already need another packet, then try to align the end
6308      of this packet to a useful boundary.  */
6309   if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6310     todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6311 
6312   /* Append "<memaddr>".  */
6313   memaddr = remote_address_masked (memaddr);
6314   p += hexnumstr (p, (ULONGEST) memaddr);
6315 
6316   if (use_length)
6317     {
6318       /* Append ",".  */
6319       *p++ = ',';
6320 
6321       /* Append <len>.  Retain the location/size of <len>.  It may need to
6322 	 be adjusted once the packet body has been created.  */
6323       plen = p;
6324       plenlen = hexnumstr (p, (ULONGEST) todo);
6325       p += plenlen;
6326     }
6327 
6328   /* Append ":".  */
6329   *p++ = ':';
6330   *p = '\0';
6331 
6332   /* Append the packet body.  */
6333   if (packet_format == 'X')
6334     {
6335       /* Binary mode.  Send target system values byte by byte, in
6336 	 increasing byte addresses.  Only escape certain critical
6337 	 characters.  */
6338       payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6339 					     payload_size);
6340 
6341       /* If not all TODO bytes fit, then we'll need another packet.  Make
6342 	 a second try to keep the end of the packet aligned.  Don't do
6343 	 this if the packet is tiny.  */
6344       if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6345 	{
6346 	  int new_nr_bytes;
6347 
6348 	  new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6349 			  - memaddr);
6350 	  if (new_nr_bytes != nr_bytes)
6351 	    payload_length = remote_escape_output (myaddr, new_nr_bytes,
6352 						   p, &nr_bytes,
6353 						   payload_size);
6354 	}
6355 
6356       p += payload_length;
6357       if (use_length && nr_bytes < todo)
6358 	{
6359 	  /* Escape chars have filled up the buffer prematurely,
6360 	     and we have actually sent fewer bytes than planned.
6361 	     Fix-up the length field of the packet.  Use the same
6362 	     number of characters as before.  */
6363 	  plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6364 	  *plen = ':';  /* overwrite \0 from hexnumnstr() */
6365 	}
6366     }
6367   else
6368     {
6369       /* Normal mode: Send target system values byte by byte, in
6370 	 increasing byte addresses.  Each byte is encoded as a two hex
6371 	 value.  */
6372       nr_bytes = bin2hex (myaddr, p, todo);
6373       p += 2 * nr_bytes;
6374     }
6375 
6376   putpkt_binary (rs->buf, (int) (p - rs->buf));
6377   getpkt (&rs->buf, &rs->buf_size, 0);
6378 
6379   if (rs->buf[0] == 'E')
6380     {
6381       /* There is no correspondance between what the remote protocol
6382 	 uses for errors and errno codes.  We would like a cleaner way
6383 	 of representing errors (big enough to include errno codes,
6384 	 bfd_error codes, and others).  But for now just return EIO.  */
6385       errno = EIO;
6386       return 0;
6387     }
6388 
6389   /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6390      fewer bytes than we'd planned.  */
6391   return nr_bytes;
6392 }
6393 
6394 /* Write memory data directly to the remote machine.
6395    This does not inform the data cache; the data cache uses this.
6396    MEMADDR is the address in the remote memory space.
6397    MYADDR is the address of the buffer in our space.
6398    LEN is the number of bytes.
6399 
6400    Returns number of bytes transferred, or 0 (setting errno) for
6401    error.  Only transfer a single packet.  */
6402 
6403 static int
6404 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6405 {
6406   char *packet_format = 0;
6407 
6408   /* Check whether the target supports binary download.  */
6409   check_binary_download (memaddr);
6410 
6411   switch (remote_protocol_packets[PACKET_X].support)
6412     {
6413     case PACKET_ENABLE:
6414       packet_format = "X";
6415       break;
6416     case PACKET_DISABLE:
6417       packet_format = "M";
6418       break;
6419     case PACKET_SUPPORT_UNKNOWN:
6420       internal_error (__FILE__, __LINE__,
6421 		      _("remote_write_bytes: bad internal state"));
6422     default:
6423       internal_error (__FILE__, __LINE__, _("bad switch"));
6424     }
6425 
6426   return remote_write_bytes_aux (packet_format,
6427 				 memaddr, myaddr, len, packet_format[0], 1);
6428 }
6429 
6430 /* Read memory data directly from the remote machine.
6431    This does not use the data cache; the data cache uses this.
6432    MEMADDR is the address in the remote memory space.
6433    MYADDR is the address of the buffer in our space.
6434    LEN is the number of bytes.
6435 
6436    Returns number of bytes transferred, or 0 for error.  */
6437 
6438 static int
6439 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6440 {
6441   struct remote_state *rs = get_remote_state ();
6442   int max_buf_size;		/* Max size of packet output buffer.  */
6443   char *p;
6444   int todo;
6445   int i;
6446 
6447   if (len <= 0)
6448     return 0;
6449 
6450   max_buf_size = get_memory_read_packet_size ();
6451   /* The packet buffer will be large enough for the payload;
6452      get_memory_packet_size ensures this.  */
6453 
6454   /* Number if bytes that will fit.  */
6455   todo = min (len, max_buf_size / 2);
6456 
6457   /* Construct "m"<memaddr>","<len>".  */
6458   memaddr = remote_address_masked (memaddr);
6459   p = rs->buf;
6460   *p++ = 'm';
6461   p += hexnumstr (p, (ULONGEST) memaddr);
6462   *p++ = ',';
6463   p += hexnumstr (p, (ULONGEST) todo);
6464   *p = '\0';
6465   putpkt (rs->buf);
6466   getpkt (&rs->buf, &rs->buf_size, 0);
6467   if (rs->buf[0] == 'E'
6468       && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6469       && rs->buf[3] == '\0')
6470     {
6471       /* There is no correspondance between what the remote protocol
6472 	 uses for errors and errno codes.  We would like a cleaner way
6473 	 of representing errors (big enough to include errno codes,
6474 	 bfd_error codes, and others).  But for now just return
6475 	 EIO.  */
6476       errno = EIO;
6477       return 0;
6478     }
6479   /* Reply describes memory byte by byte, each byte encoded as two hex
6480      characters.  */
6481   p = rs->buf;
6482   i = hex2bin (p, myaddr, todo);
6483   /* Return what we have.  Let higher layers handle partial reads.  */
6484   return i;
6485 }
6486 
6487 
6488 /* Remote notification handler.  */
6489 
6490 static void
6491 handle_notification (char *buf, size_t length)
6492 {
6493   if (strncmp (buf, "Stop:", 5) == 0)
6494     {
6495       if (pending_stop_reply)
6496 	{
6497 	  /* We've already parsed the in-flight stop-reply, but the
6498 	     stub for some reason thought we didn't, possibly due to
6499 	     timeout on its side.  Just ignore it.  */
6500 	  if (remote_debug)
6501 	    fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6502 	}
6503       else
6504 	{
6505 	  struct cleanup *old_chain;
6506 	  struct stop_reply *reply = stop_reply_xmalloc ();
6507 
6508 	  old_chain = make_cleanup (do_stop_reply_xfree, reply);
6509 
6510 	  remote_parse_stop_reply (buf + 5, reply);
6511 
6512 	  discard_cleanups (old_chain);
6513 
6514 	  /* Be careful to only set it after parsing, since an error
6515 	     may be thrown then.  */
6516 	  pending_stop_reply = reply;
6517 
6518 	  /* Notify the event loop there's a stop reply to acknowledge
6519 	     and that there may be more events to fetch.  */
6520 	  mark_async_event_handler (remote_async_get_pending_events_token);
6521 
6522 	  if (remote_debug)
6523 	    fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6524 	}
6525     }
6526   else
6527     /* We ignore notifications we don't recognize, for compatibility
6528        with newer stubs.  */
6529     ;
6530 }
6531 
6532 
6533 /* Read or write LEN bytes from inferior memory at MEMADDR,
6534    transferring to or from debugger address BUFFER.  Write to inferior
6535    if SHOULD_WRITE is nonzero.  Returns length of data written or
6536    read; 0 for error.  TARGET is unused.  */
6537 
6538 static int
6539 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6540 		    int should_write, struct mem_attrib *attrib,
6541 		    struct target_ops *target)
6542 {
6543   int res;
6544 
6545   set_remote_traceframe ();
6546   set_general_thread (inferior_ptid);
6547 
6548   if (should_write)
6549     res = remote_write_bytes (mem_addr, buffer, mem_len);
6550   else
6551     res = remote_read_bytes (mem_addr, buffer, mem_len);
6552 
6553   return res;
6554 }
6555 
6556 /* Sends a packet with content determined by the printf format string
6557    FORMAT and the remaining arguments, then gets the reply.  Returns
6558    whether the packet was a success, a failure, or unknown.  */
6559 
6560 static enum packet_result
6561 remote_send_printf (const char *format, ...)
6562 {
6563   struct remote_state *rs = get_remote_state ();
6564   int max_size = get_remote_packet_size ();
6565   va_list ap;
6566 
6567   va_start (ap, format);
6568 
6569   rs->buf[0] = '\0';
6570   if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6571     internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6572 
6573   if (putpkt (rs->buf) < 0)
6574     error (_("Communication problem with target."));
6575 
6576   rs->buf[0] = '\0';
6577   getpkt (&rs->buf, &rs->buf_size, 0);
6578 
6579   return packet_check_result (rs->buf);
6580 }
6581 
6582 static void
6583 restore_remote_timeout (void *p)
6584 {
6585   int value = *(int *)p;
6586 
6587   remote_timeout = value;
6588 }
6589 
6590 /* Flash writing can take quite some time.  We'll set
6591    effectively infinite timeout for flash operations.
6592    In future, we'll need to decide on a better approach.  */
6593 static const int remote_flash_timeout = 1000;
6594 
6595 static void
6596 remote_flash_erase (struct target_ops *ops,
6597                     ULONGEST address, LONGEST length)
6598 {
6599   int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6600   int saved_remote_timeout = remote_timeout;
6601   enum packet_result ret;
6602   struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6603                                           &saved_remote_timeout);
6604 
6605   remote_timeout = remote_flash_timeout;
6606 
6607   ret = remote_send_printf ("vFlashErase:%s,%s",
6608 			    phex (address, addr_size),
6609 			    phex (length, 4));
6610   switch (ret)
6611     {
6612     case PACKET_UNKNOWN:
6613       error (_("Remote target does not support flash erase"));
6614     case PACKET_ERROR:
6615       error (_("Error erasing flash with vFlashErase packet"));
6616     default:
6617       break;
6618     }
6619 
6620   do_cleanups (back_to);
6621 }
6622 
6623 static LONGEST
6624 remote_flash_write (struct target_ops *ops,
6625                     ULONGEST address, LONGEST length,
6626                     const gdb_byte *data)
6627 {
6628   int saved_remote_timeout = remote_timeout;
6629   int ret;
6630   struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6631                                           &saved_remote_timeout);
6632 
6633   remote_timeout = remote_flash_timeout;
6634   ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6635   do_cleanups (back_to);
6636 
6637   return ret;
6638 }
6639 
6640 static void
6641 remote_flash_done (struct target_ops *ops)
6642 {
6643   int saved_remote_timeout = remote_timeout;
6644   int ret;
6645   struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6646                                           &saved_remote_timeout);
6647 
6648   remote_timeout = remote_flash_timeout;
6649   ret = remote_send_printf ("vFlashDone");
6650   do_cleanups (back_to);
6651 
6652   switch (ret)
6653     {
6654     case PACKET_UNKNOWN:
6655       error (_("Remote target does not support vFlashDone"));
6656     case PACKET_ERROR:
6657       error (_("Error finishing flash operation"));
6658     default:
6659       break;
6660     }
6661 }
6662 
6663 static void
6664 remote_files_info (struct target_ops *ignore)
6665 {
6666   puts_filtered ("Debugging a target over a serial line.\n");
6667 }
6668 
6669 /* Stuff for dealing with the packets which are part of this protocol.
6670    See comment at top of file for details.  */
6671 
6672 /* Read a single character from the remote end.  */
6673 
6674 static int
6675 readchar (int timeout)
6676 {
6677   int ch;
6678 
6679   ch = serial_readchar (remote_desc, timeout);
6680 
6681   if (ch >= 0)
6682     return ch;
6683 
6684   switch ((enum serial_rc) ch)
6685     {
6686     case SERIAL_EOF:
6687       pop_target ();
6688       error (_("Remote connection closed"));
6689       /* no return */
6690     case SERIAL_ERROR:
6691       pop_target ();
6692       perror_with_name (_("Remote communication error.  "
6693 			  "Target disconnected."));
6694       /* no return */
6695     case SERIAL_TIMEOUT:
6696       break;
6697     }
6698   return ch;
6699 }
6700 
6701 /* Send the command in *BUF to the remote machine, and read the reply
6702    into *BUF.  Report an error if we get an error reply.  Resize
6703    *BUF using xrealloc if necessary to hold the result, and update
6704    *SIZEOF_BUF.  */
6705 
6706 static void
6707 remote_send (char **buf,
6708 	     long *sizeof_buf)
6709 {
6710   putpkt (*buf);
6711   getpkt (buf, sizeof_buf, 0);
6712 
6713   if ((*buf)[0] == 'E')
6714     error (_("Remote failure reply: %s"), *buf);
6715 }
6716 
6717 /* Return a pointer to an xmalloc'ed string representing an escaped
6718    version of BUF, of len N.  E.g. \n is converted to \\n, \t to \\t,
6719    etc.  The caller is responsible for releasing the returned
6720    memory.  */
6721 
6722 static char *
6723 escape_buffer (const char *buf, int n)
6724 {
6725   struct cleanup *old_chain;
6726   struct ui_file *stb;
6727   char *str;
6728 
6729   stb = mem_fileopen ();
6730   old_chain = make_cleanup_ui_file_delete (stb);
6731 
6732   fputstrn_unfiltered (buf, n, 0, stb);
6733   str = ui_file_xstrdup (stb, NULL);
6734   do_cleanups (old_chain);
6735   return str;
6736 }
6737 
6738 /* Display a null-terminated packet on stdout, for debugging, using C
6739    string notation.  */
6740 
6741 static void
6742 print_packet (char *buf)
6743 {
6744   puts_filtered ("\"");
6745   fputstr_filtered (buf, '"', gdb_stdout);
6746   puts_filtered ("\"");
6747 }
6748 
6749 int
6750 putpkt (char *buf)
6751 {
6752   return putpkt_binary (buf, strlen (buf));
6753 }
6754 
6755 /* Send a packet to the remote machine, with error checking.  The data
6756    of the packet is in BUF.  The string in BUF can be at most
6757    get_remote_packet_size () - 5 to account for the $, # and checksum,
6758    and for a possible /0 if we are debugging (remote_debug) and want
6759    to print the sent packet as a string.  */
6760 
6761 static int
6762 putpkt_binary (char *buf, int cnt)
6763 {
6764   struct remote_state *rs = get_remote_state ();
6765   int i;
6766   unsigned char csum = 0;
6767   char *buf2 = alloca (cnt + 6);
6768 
6769   int ch;
6770   int tcount = 0;
6771   char *p;
6772 
6773   /* Catch cases like trying to read memory or listing threads while
6774      we're waiting for a stop reply.  The remote server wouldn't be
6775      ready to handle this request, so we'd hang and timeout.  We don't
6776      have to worry about this in synchronous mode, because in that
6777      case it's not possible to issue a command while the target is
6778      running.  This is not a problem in non-stop mode, because in that
6779      case, the stub is always ready to process serial input.  */
6780   if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6781     error (_("Cannot execute this command while the target is running."));
6782 
6783   /* We're sending out a new packet.  Make sure we don't look at a
6784      stale cached response.  */
6785   rs->cached_wait_status = 0;
6786 
6787   /* Copy the packet into buffer BUF2, encapsulating it
6788      and giving it a checksum.  */
6789 
6790   p = buf2;
6791   *p++ = '$';
6792 
6793   for (i = 0; i < cnt; i++)
6794     {
6795       csum += buf[i];
6796       *p++ = buf[i];
6797     }
6798   *p++ = '#';
6799   *p++ = tohex ((csum >> 4) & 0xf);
6800   *p++ = tohex (csum & 0xf);
6801 
6802   /* Send it over and over until we get a positive ack.  */
6803 
6804   while (1)
6805     {
6806       int started_error_output = 0;
6807 
6808       if (remote_debug)
6809 	{
6810 	  struct cleanup *old_chain;
6811 	  char *str;
6812 
6813 	  *p = '\0';
6814 	  str = escape_buffer (buf2, p - buf2);
6815 	  old_chain = make_cleanup (xfree, str);
6816 	  fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6817 	  gdb_flush (gdb_stdlog);
6818 	  do_cleanups (old_chain);
6819 	}
6820       if (serial_write (remote_desc, buf2, p - buf2))
6821 	perror_with_name (_("putpkt: write failed"));
6822 
6823       /* If this is a no acks version of the remote protocol, send the
6824 	 packet and move on.  */
6825       if (rs->noack_mode)
6826         break;
6827 
6828       /* Read until either a timeout occurs (-2) or '+' is read.
6829 	 Handle any notification that arrives in the mean time.  */
6830       while (1)
6831 	{
6832 	  ch = readchar (remote_timeout);
6833 
6834 	  if (remote_debug)
6835 	    {
6836 	      switch (ch)
6837 		{
6838 		case '+':
6839 		case '-':
6840 		case SERIAL_TIMEOUT:
6841 		case '$':
6842 		case '%':
6843 		  if (started_error_output)
6844 		    {
6845 		      putchar_unfiltered ('\n');
6846 		      started_error_output = 0;
6847 		    }
6848 		}
6849 	    }
6850 
6851 	  switch (ch)
6852 	    {
6853 	    case '+':
6854 	      if (remote_debug)
6855 		fprintf_unfiltered (gdb_stdlog, "Ack\n");
6856 	      return 1;
6857 	    case '-':
6858 	      if (remote_debug)
6859 		fprintf_unfiltered (gdb_stdlog, "Nak\n");
6860 	      /* FALLTHROUGH */
6861 	    case SERIAL_TIMEOUT:
6862 	      tcount++;
6863 	      if (tcount > 3)
6864 		return 0;
6865 	      break;		/* Retransmit buffer.  */
6866 	    case '$':
6867 	      {
6868 	        if (remote_debug)
6869 		  fprintf_unfiltered (gdb_stdlog,
6870 				      "Packet instead of Ack, ignoring it\n");
6871 		/* It's probably an old response sent because an ACK
6872 		   was lost.  Gobble up the packet and ack it so it
6873 		   doesn't get retransmitted when we resend this
6874 		   packet.  */
6875 		skip_frame ();
6876 		serial_write (remote_desc, "+", 1);
6877 		continue;	/* Now, go look for +.  */
6878 	      }
6879 
6880 	    case '%':
6881 	      {
6882 		int val;
6883 
6884 		/* If we got a notification, handle it, and go back to looking
6885 		   for an ack.  */
6886 		/* We've found the start of a notification.  Now
6887 		   collect the data.  */
6888 		val = read_frame (&rs->buf, &rs->buf_size);
6889 		if (val >= 0)
6890 		  {
6891 		    if (remote_debug)
6892 		      {
6893 			struct cleanup *old_chain;
6894 			char *str;
6895 
6896 			str = escape_buffer (rs->buf, val);
6897 			old_chain = make_cleanup (xfree, str);
6898 			fprintf_unfiltered (gdb_stdlog,
6899 					    "  Notification received: %s\n",
6900 					    str);
6901 			do_cleanups (old_chain);
6902 		      }
6903 		    handle_notification (rs->buf, val);
6904 		    /* We're in sync now, rewait for the ack.  */
6905 		    tcount = 0;
6906 		  }
6907 		else
6908 		  {
6909 		    if (remote_debug)
6910 		      {
6911 			if (!started_error_output)
6912 			  {
6913 			    started_error_output = 1;
6914 			    fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6915 			  }
6916 			fputc_unfiltered (ch & 0177, gdb_stdlog);
6917 			fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6918 		      }
6919 		  }
6920 		continue;
6921 	      }
6922 	      /* fall-through */
6923 	    default:
6924 	      if (remote_debug)
6925 		{
6926 		  if (!started_error_output)
6927 		    {
6928 		      started_error_output = 1;
6929 		      fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6930 		    }
6931 		  fputc_unfiltered (ch & 0177, gdb_stdlog);
6932 		}
6933 	      continue;
6934 	    }
6935 	  break;		/* Here to retransmit.  */
6936 	}
6937 
6938 #if 0
6939       /* This is wrong.  If doing a long backtrace, the user should be
6940          able to get out next time we call QUIT, without anything as
6941          violent as interrupt_query.  If we want to provide a way out of
6942          here without getting to the next QUIT, it should be based on
6943          hitting ^C twice as in remote_wait.  */
6944       if (quit_flag)
6945 	{
6946 	  quit_flag = 0;
6947 	  interrupt_query ();
6948 	}
6949 #endif
6950     }
6951   return 0;
6952 }
6953 
6954 /* Come here after finding the start of a frame when we expected an
6955    ack.  Do our best to discard the rest of this packet.  */
6956 
6957 static void
6958 skip_frame (void)
6959 {
6960   int c;
6961 
6962   while (1)
6963     {
6964       c = readchar (remote_timeout);
6965       switch (c)
6966 	{
6967 	case SERIAL_TIMEOUT:
6968 	  /* Nothing we can do.  */
6969 	  return;
6970 	case '#':
6971 	  /* Discard the two bytes of checksum and stop.  */
6972 	  c = readchar (remote_timeout);
6973 	  if (c >= 0)
6974 	    c = readchar (remote_timeout);
6975 
6976 	  return;
6977 	case '*':		/* Run length encoding.  */
6978 	  /* Discard the repeat count.  */
6979 	  c = readchar (remote_timeout);
6980 	  if (c < 0)
6981 	    return;
6982 	  break;
6983 	default:
6984 	  /* A regular character.  */
6985 	  break;
6986 	}
6987     }
6988 }
6989 
6990 /* Come here after finding the start of the frame.  Collect the rest
6991    into *BUF, verifying the checksum, length, and handling run-length
6992    compression.  NUL terminate the buffer.  If there is not enough room,
6993    expand *BUF using xrealloc.
6994 
6995    Returns -1 on error, number of characters in buffer (ignoring the
6996    trailing NULL) on success. (could be extended to return one of the
6997    SERIAL status indications).  */
6998 
6999 static long
7000 read_frame (char **buf_p,
7001 	    long *sizeof_buf)
7002 {
7003   unsigned char csum;
7004   long bc;
7005   int c;
7006   char *buf = *buf_p;
7007   struct remote_state *rs = get_remote_state ();
7008 
7009   csum = 0;
7010   bc = 0;
7011 
7012   while (1)
7013     {
7014       c = readchar (remote_timeout);
7015       switch (c)
7016 	{
7017 	case SERIAL_TIMEOUT:
7018 	  if (remote_debug)
7019 	    fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7020 	  return -1;
7021 	case '$':
7022 	  if (remote_debug)
7023 	    fputs_filtered ("Saw new packet start in middle of old one\n",
7024 			    gdb_stdlog);
7025 	  return -1;		/* Start a new packet, count retries.  */
7026 	case '#':
7027 	  {
7028 	    unsigned char pktcsum;
7029 	    int check_0 = 0;
7030 	    int check_1 = 0;
7031 
7032 	    buf[bc] = '\0';
7033 
7034 	    check_0 = readchar (remote_timeout);
7035 	    if (check_0 >= 0)
7036 	      check_1 = readchar (remote_timeout);
7037 
7038 	    if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7039 	      {
7040 		if (remote_debug)
7041 		  fputs_filtered ("Timeout in checksum, retrying\n",
7042 				  gdb_stdlog);
7043 		return -1;
7044 	      }
7045 	    else if (check_0 < 0 || check_1 < 0)
7046 	      {
7047 		if (remote_debug)
7048 		  fputs_filtered ("Communication error in checksum\n",
7049 				  gdb_stdlog);
7050 		return -1;
7051 	      }
7052 
7053 	    /* Don't recompute the checksum; with no ack packets we
7054 	       don't have any way to indicate a packet retransmission
7055 	       is necessary.  */
7056 	    if (rs->noack_mode)
7057 	      return bc;
7058 
7059 	    pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7060 	    if (csum == pktcsum)
7061               return bc;
7062 
7063 	    if (remote_debug)
7064 	      {
7065 		struct cleanup *old_chain;
7066 		char *str;
7067 
7068 		str = escape_buffer (buf, bc);
7069 		old_chain = make_cleanup (xfree, str);
7070 		fprintf_unfiltered (gdb_stdlog,
7071 				    "Bad checksum, sentsum=0x%x, "
7072 				    "csum=0x%x, buf=%s\n",
7073 				    pktcsum, csum, str);
7074 		do_cleanups (old_chain);
7075 	      }
7076 	    /* Number of characters in buffer ignoring trailing
7077                NULL.  */
7078 	    return -1;
7079 	  }
7080 	case '*':		/* Run length encoding.  */
7081           {
7082 	    int repeat;
7083 
7084  	    csum += c;
7085 	    c = readchar (remote_timeout);
7086 	    csum += c;
7087 	    repeat = c - ' ' + 3;	/* Compute repeat count.  */
7088 
7089 	    /* The character before ``*'' is repeated.  */
7090 
7091 	    if (repeat > 0 && repeat <= 255 && bc > 0)
7092 	      {
7093 		if (bc + repeat - 1 >= *sizeof_buf - 1)
7094 		  {
7095 		    /* Make some more room in the buffer.  */
7096 		    *sizeof_buf += repeat;
7097 		    *buf_p = xrealloc (*buf_p, *sizeof_buf);
7098 		    buf = *buf_p;
7099 		  }
7100 
7101 		memset (&buf[bc], buf[bc - 1], repeat);
7102 		bc += repeat;
7103 		continue;
7104 	      }
7105 
7106 	    buf[bc] = '\0';
7107 	    printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7108 	    return -1;
7109 	  }
7110 	default:
7111 	  if (bc >= *sizeof_buf - 1)
7112 	    {
7113 	      /* Make some more room in the buffer.  */
7114 	      *sizeof_buf *= 2;
7115 	      *buf_p = xrealloc (*buf_p, *sizeof_buf);
7116 	      buf = *buf_p;
7117 	    }
7118 
7119 	  buf[bc++] = c;
7120 	  csum += c;
7121 	  continue;
7122 	}
7123     }
7124 }
7125 
7126 /* Read a packet from the remote machine, with error checking, and
7127    store it in *BUF.  Resize *BUF using xrealloc if necessary to hold
7128    the result, and update *SIZEOF_BUF.  If FOREVER, wait forever
7129    rather than timing out; this is used (in synchronous mode) to wait
7130    for a target that is is executing user code to stop.  */
7131 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7132    don't have to change all the calls to getpkt to deal with the
7133    return value, because at the moment I don't know what the right
7134    thing to do it for those.  */
7135 void
7136 getpkt (char **buf,
7137 	long *sizeof_buf,
7138 	int forever)
7139 {
7140   int timed_out;
7141 
7142   timed_out = getpkt_sane (buf, sizeof_buf, forever);
7143 }
7144 
7145 
7146 /* Read a packet from the remote machine, with error checking, and
7147    store it in *BUF.  Resize *BUF using xrealloc if necessary to hold
7148    the result, and update *SIZEOF_BUF.  If FOREVER, wait forever
7149    rather than timing out; this is used (in synchronous mode) to wait
7150    for a target that is is executing user code to stop.  If FOREVER ==
7151    0, this function is allowed to time out gracefully and return an
7152    indication of this to the caller.  Otherwise return the number of
7153    bytes read.  If EXPECTING_NOTIF, consider receiving a notification
7154    enough reason to return to the caller.  */
7155 
7156 static int
7157 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7158 			int expecting_notif)
7159 {
7160   struct remote_state *rs = get_remote_state ();
7161   int c;
7162   int tries;
7163   int timeout;
7164   int val = -1;
7165 
7166   /* We're reading a new response.  Make sure we don't look at a
7167      previously cached response.  */
7168   rs->cached_wait_status = 0;
7169 
7170   strcpy (*buf, "timeout");
7171 
7172   if (forever)
7173     timeout = watchdog > 0 ? watchdog : -1;
7174   else if (expecting_notif)
7175     timeout = 0; /* There should already be a char in the buffer.  If
7176 		    not, bail out.  */
7177   else
7178     timeout = remote_timeout;
7179 
7180 #define MAX_TRIES 3
7181 
7182   /* Process any number of notifications, and then return when
7183      we get a packet.  */
7184   for (;;)
7185     {
7186       /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7187 	 times.  */
7188       for (tries = 1; tries <= MAX_TRIES; tries++)
7189 	{
7190 	  /* This can loop forever if the remote side sends us
7191 	     characters continuously, but if it pauses, we'll get
7192 	     SERIAL_TIMEOUT from readchar because of timeout.  Then
7193 	     we'll count that as a retry.
7194 
7195 	     Note that even when forever is set, we will only wait
7196 	     forever prior to the start of a packet.  After that, we
7197 	     expect characters to arrive at a brisk pace.  They should
7198 	     show up within remote_timeout intervals.  */
7199 	  do
7200 	    c = readchar (timeout);
7201 	  while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7202 
7203 	  if (c == SERIAL_TIMEOUT)
7204 	    {
7205 	      if (expecting_notif)
7206 		return -1; /* Don't complain, it's normal to not get
7207 			      anything in this case.  */
7208 
7209 	      if (forever)	/* Watchdog went off?  Kill the target.  */
7210 		{
7211 		  QUIT;
7212 		  pop_target ();
7213 		  error (_("Watchdog timeout has expired.  Target detached."));
7214 		}
7215 	      if (remote_debug)
7216 		fputs_filtered ("Timed out.\n", gdb_stdlog);
7217 	    }
7218 	  else
7219 	    {
7220 	      /* We've found the start of a packet or notification.
7221 		 Now collect the data.  */
7222 	      val = read_frame (buf, sizeof_buf);
7223 	      if (val >= 0)
7224 		break;
7225 	    }
7226 
7227 	  serial_write (remote_desc, "-", 1);
7228 	}
7229 
7230       if (tries > MAX_TRIES)
7231 	{
7232 	  /* We have tried hard enough, and just can't receive the
7233 	     packet/notification.  Give up.  */
7234 	  printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7235 
7236 	  /* Skip the ack char if we're in no-ack mode.  */
7237 	  if (!rs->noack_mode)
7238 	    serial_write (remote_desc, "+", 1);
7239 	  return -1;
7240 	}
7241 
7242       /* If we got an ordinary packet, return that to our caller.  */
7243       if (c == '$')
7244 	{
7245 	  if (remote_debug)
7246 	    {
7247 	     struct cleanup *old_chain;
7248 	     char *str;
7249 
7250 	     str = escape_buffer (*buf, val);
7251 	     old_chain = make_cleanup (xfree, str);
7252 	     fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7253 	     do_cleanups (old_chain);
7254 	    }
7255 
7256 	  /* Skip the ack char if we're in no-ack mode.  */
7257 	  if (!rs->noack_mode)
7258 	    serial_write (remote_desc, "+", 1);
7259 	  return val;
7260 	}
7261 
7262        /* If we got a notification, handle it, and go back to looking
7263 	 for a packet.  */
7264       else
7265 	{
7266 	  gdb_assert (c == '%');
7267 
7268 	  if (remote_debug)
7269 	    {
7270 	      struct cleanup *old_chain;
7271 	      char *str;
7272 
7273 	      str = escape_buffer (*buf, val);
7274 	      old_chain = make_cleanup (xfree, str);
7275 	      fprintf_unfiltered (gdb_stdlog,
7276 				  "  Notification received: %s\n",
7277 				  str);
7278 	      do_cleanups (old_chain);
7279 	    }
7280 
7281 	  handle_notification (*buf, val);
7282 
7283 	  /* Notifications require no acknowledgement.  */
7284 
7285 	  if (expecting_notif)
7286 	    return -1;
7287 	}
7288     }
7289 }
7290 
7291 static int
7292 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7293 {
7294   return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7295 }
7296 
7297 static int
7298 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7299 {
7300   return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7301 }
7302 
7303 
7304 static void
7305 remote_kill (struct target_ops *ops)
7306 {
7307   /* Use catch_errors so the user can quit from gdb even when we
7308      aren't on speaking terms with the remote system.  */
7309   catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7310 
7311   /* Don't wait for it to die.  I'm not really sure it matters whether
7312      we do or not.  For the existing stubs, kill is a noop.  */
7313   target_mourn_inferior ();
7314 }
7315 
7316 static int
7317 remote_vkill (int pid, struct remote_state *rs)
7318 {
7319   if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7320     return -1;
7321 
7322   /* Tell the remote target to detach.  */
7323   sprintf (rs->buf, "vKill;%x", pid);
7324   putpkt (rs->buf);
7325   getpkt (&rs->buf, &rs->buf_size, 0);
7326 
7327   if (packet_ok (rs->buf,
7328 		 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7329     return 0;
7330   else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7331     return -1;
7332   else
7333     return 1;
7334 }
7335 
7336 static void
7337 extended_remote_kill (struct target_ops *ops)
7338 {
7339   int res;
7340   int pid = ptid_get_pid (inferior_ptid);
7341   struct remote_state *rs = get_remote_state ();
7342 
7343   res = remote_vkill (pid, rs);
7344   if (res == -1 && !remote_multi_process_p (rs))
7345     {
7346       /* Don't try 'k' on a multi-process aware stub -- it has no way
7347 	 to specify the pid.  */
7348 
7349       putpkt ("k");
7350 #if 0
7351       getpkt (&rs->buf, &rs->buf_size, 0);
7352       if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7353 	res = 1;
7354 #else
7355       /* Don't wait for it to die.  I'm not really sure it matters whether
7356 	 we do or not.  For the existing stubs, kill is a noop.  */
7357       res = 0;
7358 #endif
7359     }
7360 
7361   if (res != 0)
7362     error (_("Can't kill process"));
7363 
7364   target_mourn_inferior ();
7365 }
7366 
7367 static void
7368 remote_mourn (struct target_ops *ops)
7369 {
7370   remote_mourn_1 (ops);
7371 }
7372 
7373 /* Worker function for remote_mourn.  */
7374 static void
7375 remote_mourn_1 (struct target_ops *target)
7376 {
7377   unpush_target (target);
7378 
7379   /* remote_close takes care of doing most of the clean up.  */
7380   generic_mourn_inferior ();
7381 }
7382 
7383 static void
7384 extended_remote_mourn_1 (struct target_ops *target)
7385 {
7386   struct remote_state *rs = get_remote_state ();
7387 
7388   /* In case we got here due to an error, but we're going to stay
7389      connected.  */
7390   rs->waiting_for_stop_reply = 0;
7391 
7392   /* We're no longer interested in these events.  */
7393   discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7394 
7395   /* If the current general thread belonged to the process we just
7396      detached from or has exited, the remote side current general
7397      thread becomes undefined.  Considering a case like this:
7398 
7399      - We just got here due to a detach.
7400      - The process that we're detaching from happens to immediately
7401        report a global breakpoint being hit in non-stop mode, in the
7402        same thread we had selected before.
7403      - GDB attaches to this process again.
7404      - This event happens to be the next event we handle.
7405 
7406      GDB would consider that the current general thread didn't need to
7407      be set on the stub side (with Hg), since for all it knew,
7408      GENERAL_THREAD hadn't changed.
7409 
7410      Notice that although in all-stop mode, the remote server always
7411      sets the current thread to the thread reporting the stop event,
7412      that doesn't happen in non-stop mode; in non-stop, the stub *must
7413      not* change the current thread when reporting a breakpoint hit,
7414      due to the decoupling of event reporting and event handling.
7415 
7416      To keep things simple, we always invalidate our notion of the
7417      current thread.  */
7418   record_currthread (minus_one_ptid);
7419 
7420   /* Unlike "target remote", we do not want to unpush the target; then
7421      the next time the user says "run", we won't be connected.  */
7422 
7423   /* Call common code to mark the inferior as not running.	*/
7424   generic_mourn_inferior ();
7425 
7426   if (!have_inferiors ())
7427     {
7428       if (!remote_multi_process_p (rs))
7429 	{
7430 	  /* Check whether the target is running now - some remote stubs
7431 	     automatically restart after kill.	*/
7432 	  putpkt ("?");
7433 	  getpkt (&rs->buf, &rs->buf_size, 0);
7434 
7435 	  if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7436 	    {
7437 	      /* Assume that the target has been restarted.  Set
7438 		 inferior_ptid so that bits of core GDB realizes
7439 		 there's something here, e.g., so that the user can
7440 		 say "kill" again.  */
7441 	      inferior_ptid = magic_null_ptid;
7442 	    }
7443 	}
7444     }
7445 }
7446 
7447 static void
7448 extended_remote_mourn (struct target_ops *ops)
7449 {
7450   extended_remote_mourn_1 (ops);
7451 }
7452 
7453 static int
7454 extended_remote_run (char *args)
7455 {
7456   struct remote_state *rs = get_remote_state ();
7457   int len;
7458 
7459   /* If the user has disabled vRun support, or we have detected that
7460      support is not available, do not try it.  */
7461   if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7462     return -1;
7463 
7464   strcpy (rs->buf, "vRun;");
7465   len = strlen (rs->buf);
7466 
7467   if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7468     error (_("Remote file name too long for run packet"));
7469   len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7470 
7471   gdb_assert (args != NULL);
7472   if (*args)
7473     {
7474       struct cleanup *back_to;
7475       int i;
7476       char **argv;
7477 
7478       argv = gdb_buildargv (args);
7479       back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7480       for (i = 0; argv[i] != NULL; i++)
7481 	{
7482 	  if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7483 	    error (_("Argument list too long for run packet"));
7484 	  rs->buf[len++] = ';';
7485 	  len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7486 	}
7487       do_cleanups (back_to);
7488     }
7489 
7490   rs->buf[len++] = '\0';
7491 
7492   putpkt (rs->buf);
7493   getpkt (&rs->buf, &rs->buf_size, 0);
7494 
7495   if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7496     {
7497       /* We have a wait response; we don't need it, though.  All is well.  */
7498       return 0;
7499     }
7500   else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7501     /* It wasn't disabled before, but it is now.  */
7502     return -1;
7503   else
7504     {
7505       if (remote_exec_file[0] == '\0')
7506 	error (_("Running the default executable on the remote target failed; "
7507 		 "try \"set remote exec-file\"?"));
7508       else
7509 	error (_("Running \"%s\" on the remote target failed"),
7510 	       remote_exec_file);
7511     }
7512 }
7513 
7514 /* In the extended protocol we want to be able to do things like
7515    "run" and have them basically work as expected.  So we need
7516    a special create_inferior function.  We support changing the
7517    executable file and the command line arguments, but not the
7518    environment.  */
7519 
7520 static void
7521 extended_remote_create_inferior_1 (char *exec_file, char *args,
7522 				   char **env, int from_tty)
7523 {
7524   /* If running asynchronously, register the target file descriptor
7525      with the event loop.  */
7526   if (target_can_async_p ())
7527     target_async (inferior_event_handler, 0);
7528 
7529   /* Now restart the remote server.  */
7530   if (extended_remote_run (args) == -1)
7531     {
7532       /* vRun was not supported.  Fail if we need it to do what the
7533 	 user requested.  */
7534       if (remote_exec_file[0])
7535 	error (_("Remote target does not support \"set remote exec-file\""));
7536       if (args[0])
7537 	error (_("Remote target does not support \"set args\" or run <ARGS>"));
7538 
7539       /* Fall back to "R".  */
7540       extended_remote_restart ();
7541     }
7542 
7543   if (!have_inferiors ())
7544     {
7545       /* Clean up from the last time we ran, before we mark the target
7546 	 running again.  This will mark breakpoints uninserted, and
7547 	 get_offsets may insert breakpoints.  */
7548       init_thread_list ();
7549       init_wait_for_inferior ();
7550     }
7551 
7552   /* Now mark the inferior as running before we do anything else.  */
7553   inferior_ptid = magic_null_ptid;
7554 
7555   /* Now, if we have thread information, update inferior_ptid.  */
7556   inferior_ptid = remote_current_thread (inferior_ptid);
7557 
7558   remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7559   add_thread_silent (inferior_ptid);
7560 
7561   /* Get updated offsets, if the stub uses qOffsets.  */
7562   get_offsets ();
7563 }
7564 
7565 static void
7566 extended_remote_create_inferior (struct target_ops *ops,
7567 				 char *exec_file, char *args,
7568 				 char **env, int from_tty)
7569 {
7570   extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7571 }
7572 
7573 
7574 /* Insert a breakpoint.  On targets that have software breakpoint
7575    support, we ask the remote target to do the work; on targets
7576    which don't, we insert a traditional memory breakpoint.  */
7577 
7578 static int
7579 remote_insert_breakpoint (struct gdbarch *gdbarch,
7580 			  struct bp_target_info *bp_tgt)
7581 {
7582   /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7583      If it succeeds, then set the support to PACKET_ENABLE.  If it
7584      fails, and the user has explicitly requested the Z support then
7585      report an error, otherwise, mark it disabled and go on.  */
7586 
7587   if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7588     {
7589       CORE_ADDR addr = bp_tgt->placed_address;
7590       struct remote_state *rs;
7591       char *p;
7592       int bpsize;
7593 
7594       gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7595 
7596       rs = get_remote_state ();
7597       p = rs->buf;
7598 
7599       *(p++) = 'Z';
7600       *(p++) = '0';
7601       *(p++) = ',';
7602       addr = (ULONGEST) remote_address_masked (addr);
7603       p += hexnumstr (p, addr);
7604       sprintf (p, ",%d", bpsize);
7605 
7606       putpkt (rs->buf);
7607       getpkt (&rs->buf, &rs->buf_size, 0);
7608 
7609       switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7610 	{
7611 	case PACKET_ERROR:
7612 	  return -1;
7613 	case PACKET_OK:
7614 	  bp_tgt->placed_address = addr;
7615 	  bp_tgt->placed_size = bpsize;
7616 	  return 0;
7617 	case PACKET_UNKNOWN:
7618 	  break;
7619 	}
7620     }
7621 
7622   return memory_insert_breakpoint (gdbarch, bp_tgt);
7623 }
7624 
7625 static int
7626 remote_remove_breakpoint (struct gdbarch *gdbarch,
7627 			  struct bp_target_info *bp_tgt)
7628 {
7629   CORE_ADDR addr = bp_tgt->placed_address;
7630   struct remote_state *rs = get_remote_state ();
7631 
7632   if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7633     {
7634       char *p = rs->buf;
7635 
7636       *(p++) = 'z';
7637       *(p++) = '0';
7638       *(p++) = ',';
7639 
7640       addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7641       p += hexnumstr (p, addr);
7642       sprintf (p, ",%d", bp_tgt->placed_size);
7643 
7644       putpkt (rs->buf);
7645       getpkt (&rs->buf, &rs->buf_size, 0);
7646 
7647       return (rs->buf[0] == 'E');
7648     }
7649 
7650   return memory_remove_breakpoint (gdbarch, bp_tgt);
7651 }
7652 
7653 static int
7654 watchpoint_to_Z_packet (int type)
7655 {
7656   switch (type)
7657     {
7658     case hw_write:
7659       return Z_PACKET_WRITE_WP;
7660       break;
7661     case hw_read:
7662       return Z_PACKET_READ_WP;
7663       break;
7664     case hw_access:
7665       return Z_PACKET_ACCESS_WP;
7666       break;
7667     default:
7668       internal_error (__FILE__, __LINE__,
7669 		      _("hw_bp_to_z: bad watchpoint type %d"), type);
7670     }
7671 }
7672 
7673 static int
7674 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7675 			  struct expression *cond)
7676 {
7677   struct remote_state *rs = get_remote_state ();
7678   char *p;
7679   enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7680 
7681   if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7682     return 1;
7683 
7684   sprintf (rs->buf, "Z%x,", packet);
7685   p = strchr (rs->buf, '\0');
7686   addr = remote_address_masked (addr);
7687   p += hexnumstr (p, (ULONGEST) addr);
7688   sprintf (p, ",%x", len);
7689 
7690   putpkt (rs->buf);
7691   getpkt (&rs->buf, &rs->buf_size, 0);
7692 
7693   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7694     {
7695     case PACKET_ERROR:
7696       return -1;
7697     case PACKET_UNKNOWN:
7698       return 1;
7699     case PACKET_OK:
7700       return 0;
7701     }
7702   internal_error (__FILE__, __LINE__,
7703 		  _("remote_insert_watchpoint: reached end of function"));
7704 }
7705 
7706 
7707 static int
7708 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7709 			  struct expression *cond)
7710 {
7711   struct remote_state *rs = get_remote_state ();
7712   char *p;
7713   enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7714 
7715   if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7716     return -1;
7717 
7718   sprintf (rs->buf, "z%x,", packet);
7719   p = strchr (rs->buf, '\0');
7720   addr = remote_address_masked (addr);
7721   p += hexnumstr (p, (ULONGEST) addr);
7722   sprintf (p, ",%x", len);
7723   putpkt (rs->buf);
7724   getpkt (&rs->buf, &rs->buf_size, 0);
7725 
7726   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7727     {
7728     case PACKET_ERROR:
7729     case PACKET_UNKNOWN:
7730       return -1;
7731     case PACKET_OK:
7732       return 0;
7733     }
7734   internal_error (__FILE__, __LINE__,
7735 		  _("remote_remove_watchpoint: reached end of function"));
7736 }
7737 
7738 
7739 int remote_hw_watchpoint_limit = -1;
7740 int remote_hw_breakpoint_limit = -1;
7741 
7742 static int
7743 remote_check_watch_resources (int type, int cnt, int ot)
7744 {
7745   if (type == bp_hardware_breakpoint)
7746     {
7747       if (remote_hw_breakpoint_limit == 0)
7748 	return 0;
7749       else if (remote_hw_breakpoint_limit < 0)
7750 	return 1;
7751       else if (cnt <= remote_hw_breakpoint_limit)
7752 	return 1;
7753     }
7754   else
7755     {
7756       if (remote_hw_watchpoint_limit == 0)
7757 	return 0;
7758       else if (remote_hw_watchpoint_limit < 0)
7759 	return 1;
7760       else if (ot)
7761 	return -1;
7762       else if (cnt <= remote_hw_watchpoint_limit)
7763 	return 1;
7764     }
7765   return -1;
7766 }
7767 
7768 static int
7769 remote_stopped_by_watchpoint (void)
7770 {
7771   return remote_stopped_by_watchpoint_p;
7772 }
7773 
7774 static int
7775 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7776 {
7777   int rc = 0;
7778 
7779   if (remote_stopped_by_watchpoint ())
7780     {
7781       *addr_p = remote_watch_data_address;
7782       rc = 1;
7783     }
7784 
7785   return rc;
7786 }
7787 
7788 
7789 static int
7790 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7791 			     struct bp_target_info *bp_tgt)
7792 {
7793   CORE_ADDR addr;
7794   struct remote_state *rs;
7795   char *p;
7796 
7797   /* The length field should be set to the size of a breakpoint
7798      instruction, even though we aren't inserting one ourselves.  */
7799 
7800   gdbarch_remote_breakpoint_from_pc
7801     (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7802 
7803   if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7804     return -1;
7805 
7806   rs = get_remote_state ();
7807   p = rs->buf;
7808 
7809   *(p++) = 'Z';
7810   *(p++) = '1';
7811   *(p++) = ',';
7812 
7813   addr = remote_address_masked (bp_tgt->placed_address);
7814   p += hexnumstr (p, (ULONGEST) addr);
7815   sprintf (p, ",%x", bp_tgt->placed_size);
7816 
7817   putpkt (rs->buf);
7818   getpkt (&rs->buf, &rs->buf_size, 0);
7819 
7820   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7821     {
7822     case PACKET_ERROR:
7823     case PACKET_UNKNOWN:
7824       return -1;
7825     case PACKET_OK:
7826       return 0;
7827     }
7828   internal_error (__FILE__, __LINE__,
7829 		  _("remote_insert_hw_breakpoint: reached end of function"));
7830 }
7831 
7832 
7833 static int
7834 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7835 			     struct bp_target_info *bp_tgt)
7836 {
7837   CORE_ADDR addr;
7838   struct remote_state *rs = get_remote_state ();
7839   char *p = rs->buf;
7840 
7841   if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7842     return -1;
7843 
7844   *(p++) = 'z';
7845   *(p++) = '1';
7846   *(p++) = ',';
7847 
7848   addr = remote_address_masked (bp_tgt->placed_address);
7849   p += hexnumstr (p, (ULONGEST) addr);
7850   sprintf (p, ",%x", bp_tgt->placed_size);
7851 
7852   putpkt (rs->buf);
7853   getpkt (&rs->buf, &rs->buf_size, 0);
7854 
7855   switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7856     {
7857     case PACKET_ERROR:
7858     case PACKET_UNKNOWN:
7859       return -1;
7860     case PACKET_OK:
7861       return 0;
7862     }
7863   internal_error (__FILE__, __LINE__,
7864 		  _("remote_remove_hw_breakpoint: reached end of function"));
7865 }
7866 
7867 /* Table used by the crc32 function to calcuate the checksum.  */
7868 
7869 static unsigned long crc32_table[256] =
7870 {0, 0};
7871 
7872 static unsigned long
7873 crc32 (const unsigned char *buf, int len, unsigned int crc)
7874 {
7875   if (!crc32_table[1])
7876     {
7877       /* Initialize the CRC table and the decoding table.  */
7878       int i, j;
7879       unsigned int c;
7880 
7881       for (i = 0; i < 256; i++)
7882 	{
7883 	  for (c = i << 24, j = 8; j > 0; --j)
7884 	    c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7885 	  crc32_table[i] = c;
7886 	}
7887     }
7888 
7889   while (len--)
7890     {
7891       crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7892       buf++;
7893     }
7894   return crc;
7895 }
7896 
7897 /* Verify memory using the "qCRC:" request.  */
7898 
7899 static int
7900 remote_verify_memory (struct target_ops *ops,
7901 		      const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7902 {
7903   struct remote_state *rs = get_remote_state ();
7904   unsigned long host_crc, target_crc;
7905   char *tmp;
7906 
7907   /* FIXME: assumes lma can fit into long.  */
7908   xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7909 	     (long) lma, (long) size);
7910   putpkt (rs->buf);
7911 
7912   /* Be clever; compute the host_crc before waiting for target
7913      reply.  */
7914   host_crc = crc32 (data, size, 0xffffffff);
7915 
7916   getpkt (&rs->buf, &rs->buf_size, 0);
7917   if (rs->buf[0] == 'E')
7918     return -1;
7919 
7920   if (rs->buf[0] != 'C')
7921     error (_("remote target does not support this operation"));
7922 
7923   for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7924     target_crc = target_crc * 16 + fromhex (*tmp);
7925 
7926   return (host_crc == target_crc);
7927 }
7928 
7929 /* compare-sections command
7930 
7931    With no arguments, compares each loadable section in the exec bfd
7932    with the same memory range on the target, and reports mismatches.
7933    Useful for verifying the image on the target against the exec file.  */
7934 
7935 static void
7936 compare_sections_command (char *args, int from_tty)
7937 {
7938   asection *s;
7939   struct cleanup *old_chain;
7940   char *sectdata;
7941   const char *sectname;
7942   bfd_size_type size;
7943   bfd_vma lma;
7944   int matched = 0;
7945   int mismatched = 0;
7946   int res;
7947 
7948   if (!exec_bfd)
7949     error (_("command cannot be used without an exec file"));
7950 
7951   for (s = exec_bfd->sections; s; s = s->next)
7952     {
7953       if (!(s->flags & SEC_LOAD))
7954 	continue;		/* Skip non-loadable section.  */
7955 
7956       size = bfd_get_section_size (s);
7957       if (size == 0)
7958 	continue;		/* Skip zero-length section.  */
7959 
7960       sectname = bfd_get_section_name (exec_bfd, s);
7961       if (args && strcmp (args, sectname) != 0)
7962 	continue;		/* Not the section selected by user.  */
7963 
7964       matched = 1;		/* Do this section.  */
7965       lma = s->lma;
7966 
7967       sectdata = xmalloc (size);
7968       old_chain = make_cleanup (xfree, sectdata);
7969       bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7970 
7971       res = target_verify_memory (sectdata, lma, size);
7972 
7973       if (res == -1)
7974 	error (_("target memory fault, section %s, range %s -- %s"), sectname,
7975 	       paddress (target_gdbarch, lma),
7976 	       paddress (target_gdbarch, lma + size));
7977 
7978       printf_filtered ("Section %s, range %s -- %s: ", sectname,
7979 		       paddress (target_gdbarch, lma),
7980 		       paddress (target_gdbarch, lma + size));
7981       if (res)
7982 	printf_filtered ("matched.\n");
7983       else
7984 	{
7985 	  printf_filtered ("MIS-MATCHED!\n");
7986 	  mismatched++;
7987 	}
7988 
7989       do_cleanups (old_chain);
7990     }
7991   if (mismatched > 0)
7992     warning (_("One or more sections of the remote executable does not match\n\
7993 the loaded file\n"));
7994   if (args && !matched)
7995     printf_filtered (_("No loaded section named '%s'.\n"), args);
7996 }
7997 
7998 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7999    into remote target.  The number of bytes written to the remote
8000    target is returned, or -1 for error.  */
8001 
8002 static LONGEST
8003 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8004                     const char *annex, const gdb_byte *writebuf,
8005                     ULONGEST offset, LONGEST len,
8006                     struct packet_config *packet)
8007 {
8008   int i, buf_len;
8009   ULONGEST n;
8010   struct remote_state *rs = get_remote_state ();
8011   int max_size = get_memory_write_packet_size ();
8012 
8013   if (packet->support == PACKET_DISABLE)
8014     return -1;
8015 
8016   /* Insert header.  */
8017   i = snprintf (rs->buf, max_size,
8018 		"qXfer:%s:write:%s:%s:",
8019 		object_name, annex ? annex : "",
8020 		phex_nz (offset, sizeof offset));
8021   max_size -= (i + 1);
8022 
8023   /* Escape as much data as fits into rs->buf.  */
8024   buf_len = remote_escape_output
8025     (writebuf, len, (rs->buf + i), &max_size, max_size);
8026 
8027   if (putpkt_binary (rs->buf, i + buf_len) < 0
8028       || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8029       || packet_ok (rs->buf, packet) != PACKET_OK)
8030     return -1;
8031 
8032   unpack_varlen_hex (rs->buf, &n);
8033   return n;
8034 }
8035 
8036 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8037    Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8038    number of bytes read is returned, or 0 for EOF, or -1 for error.
8039    The number of bytes read may be less than LEN without indicating an
8040    EOF.  PACKET is checked and updated to indicate whether the remote
8041    target supports this object.  */
8042 
8043 static LONGEST
8044 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8045 		   const char *annex,
8046 		   gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8047 		   struct packet_config *packet)
8048 {
8049   static char *finished_object;
8050   static char *finished_annex;
8051   static ULONGEST finished_offset;
8052 
8053   struct remote_state *rs = get_remote_state ();
8054   LONGEST i, n, packet_len;
8055 
8056   if (packet->support == PACKET_DISABLE)
8057     return -1;
8058 
8059   /* Check whether we've cached an end-of-object packet that matches
8060      this request.  */
8061   if (finished_object)
8062     {
8063       if (strcmp (object_name, finished_object) == 0
8064 	  && strcmp (annex ? annex : "", finished_annex) == 0
8065 	  && offset == finished_offset)
8066 	return 0;
8067 
8068       /* Otherwise, we're now reading something different.  Discard
8069 	 the cache.  */
8070       xfree (finished_object);
8071       xfree (finished_annex);
8072       finished_object = NULL;
8073       finished_annex = NULL;
8074     }
8075 
8076   /* Request only enough to fit in a single packet.  The actual data
8077      may not, since we don't know how much of it will need to be escaped;
8078      the target is free to respond with slightly less data.  We subtract
8079      five to account for the response type and the protocol frame.  */
8080   n = min (get_remote_packet_size () - 5, len);
8081   snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8082 	    object_name, annex ? annex : "",
8083 	    phex_nz (offset, sizeof offset),
8084 	    phex_nz (n, sizeof n));
8085   i = putpkt (rs->buf);
8086   if (i < 0)
8087     return -1;
8088 
8089   rs->buf[0] = '\0';
8090   packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8091   if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8092     return -1;
8093 
8094   if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8095     error (_("Unknown remote qXfer reply: %s"), rs->buf);
8096 
8097   /* 'm' means there is (or at least might be) more data after this
8098      batch.  That does not make sense unless there's at least one byte
8099      of data in this reply.  */
8100   if (rs->buf[0] == 'm' && packet_len == 1)
8101     error (_("Remote qXfer reply contained no data."));
8102 
8103   /* Got some data.  */
8104   i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8105 
8106   /* 'l' is an EOF marker, possibly including a final block of data,
8107      or possibly empty.  If we have the final block of a non-empty
8108      object, record this fact to bypass a subsequent partial read.  */
8109   if (rs->buf[0] == 'l' && offset + i > 0)
8110     {
8111       finished_object = xstrdup (object_name);
8112       finished_annex = xstrdup (annex ? annex : "");
8113       finished_offset = offset + i;
8114     }
8115 
8116   return i;
8117 }
8118 
8119 static LONGEST
8120 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8121 		     const char *annex, gdb_byte *readbuf,
8122 		     const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8123 {
8124   struct remote_state *rs;
8125   int i;
8126   char *p2;
8127   char query_type;
8128 
8129   set_remote_traceframe ();
8130   set_general_thread (inferior_ptid);
8131 
8132   rs = get_remote_state ();
8133 
8134   /* Handle memory using the standard memory routines.  */
8135   if (object == TARGET_OBJECT_MEMORY)
8136     {
8137       int xfered;
8138 
8139       errno = 0;
8140 
8141       /* If the remote target is connected but not running, we should
8142 	 pass this request down to a lower stratum (e.g. the executable
8143 	 file).  */
8144       if (!target_has_execution)
8145 	return 0;
8146 
8147       if (writebuf != NULL)
8148 	xfered = remote_write_bytes (offset, writebuf, len);
8149       else
8150 	xfered = remote_read_bytes (offset, readbuf, len);
8151 
8152       if (xfered > 0)
8153 	return xfered;
8154       else if (xfered == 0 && errno == 0)
8155 	return 0;
8156       else
8157 	return -1;
8158     }
8159 
8160   /* Handle SPU memory using qxfer packets.  */
8161   if (object == TARGET_OBJECT_SPU)
8162     {
8163       if (readbuf)
8164 	return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8165 				  &remote_protocol_packets
8166 				    [PACKET_qXfer_spu_read]);
8167       else
8168 	return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8169 				   &remote_protocol_packets
8170 				     [PACKET_qXfer_spu_write]);
8171     }
8172 
8173   /* Handle extra signal info using qxfer packets.  */
8174   if (object == TARGET_OBJECT_SIGNAL_INFO)
8175     {
8176       if (readbuf)
8177 	return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8178 				  &remote_protocol_packets
8179 				  [PACKET_qXfer_siginfo_read]);
8180       else
8181 	return remote_write_qxfer (ops, "siginfo", annex,
8182 				   writebuf, offset, len,
8183 				   &remote_protocol_packets
8184 				   [PACKET_qXfer_siginfo_write]);
8185     }
8186 
8187   if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8188     {
8189       if (readbuf)
8190 	return remote_read_qxfer (ops, "statictrace", annex,
8191 				  readbuf, offset, len,
8192 				  &remote_protocol_packets
8193 				  [PACKET_qXfer_statictrace_read]);
8194       else
8195 	return -1;
8196     }
8197 
8198   /* Only handle flash writes.  */
8199   if (writebuf != NULL)
8200     {
8201       LONGEST xfered;
8202 
8203       switch (object)
8204 	{
8205 	case TARGET_OBJECT_FLASH:
8206 	  xfered = remote_flash_write (ops, offset, len, writebuf);
8207 
8208 	  if (xfered > 0)
8209 	    return xfered;
8210 	  else if (xfered == 0 && errno == 0)
8211 	    return 0;
8212 	  else
8213 	    return -1;
8214 
8215 	default:
8216 	  return -1;
8217 	}
8218     }
8219 
8220   /* Map pre-existing objects onto letters.  DO NOT do this for new
8221      objects!!!  Instead specify new query packets.  */
8222   switch (object)
8223     {
8224     case TARGET_OBJECT_AVR:
8225       query_type = 'R';
8226       break;
8227 
8228     case TARGET_OBJECT_AUXV:
8229       gdb_assert (annex == NULL);
8230       return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8231 				&remote_protocol_packets[PACKET_qXfer_auxv]);
8232 
8233     case TARGET_OBJECT_AVAILABLE_FEATURES:
8234       return remote_read_qxfer
8235 	(ops, "features", annex, readbuf, offset, len,
8236 	 &remote_protocol_packets[PACKET_qXfer_features]);
8237 
8238     case TARGET_OBJECT_LIBRARIES:
8239       return remote_read_qxfer
8240 	(ops, "libraries", annex, readbuf, offset, len,
8241 	 &remote_protocol_packets[PACKET_qXfer_libraries]);
8242 
8243     case TARGET_OBJECT_MEMORY_MAP:
8244       gdb_assert (annex == NULL);
8245       return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8246 				&remote_protocol_packets[PACKET_qXfer_memory_map]);
8247 
8248     case TARGET_OBJECT_OSDATA:
8249       /* Should only get here if we're connected.  */
8250       gdb_assert (remote_desc);
8251       return remote_read_qxfer
8252        (ops, "osdata", annex, readbuf, offset, len,
8253         &remote_protocol_packets[PACKET_qXfer_osdata]);
8254 
8255     case TARGET_OBJECT_THREADS:
8256       gdb_assert (annex == NULL);
8257       return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8258 				&remote_protocol_packets[PACKET_qXfer_threads]);
8259 
8260     case TARGET_OBJECT_TRACEFRAME_INFO:
8261       gdb_assert (annex == NULL);
8262       return remote_read_qxfer
8263 	(ops, "traceframe-info", annex, readbuf, offset, len,
8264 	 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8265     default:
8266       return -1;
8267     }
8268 
8269   /* Note: a zero OFFSET and LEN can be used to query the minimum
8270      buffer size.  */
8271   if (offset == 0 && len == 0)
8272     return (get_remote_packet_size ());
8273   /* Minimum outbuf size is get_remote_packet_size ().  If LEN is not
8274      large enough let the caller deal with it.  */
8275   if (len < get_remote_packet_size ())
8276     return -1;
8277   len = get_remote_packet_size ();
8278 
8279   /* Except for querying the minimum buffer size, target must be open.  */
8280   if (!remote_desc)
8281     error (_("remote query is only available after target open"));
8282 
8283   gdb_assert (annex != NULL);
8284   gdb_assert (readbuf != NULL);
8285 
8286   p2 = rs->buf;
8287   *p2++ = 'q';
8288   *p2++ = query_type;
8289 
8290   /* We used one buffer char for the remote protocol q command and
8291      another for the query type.  As the remote protocol encapsulation
8292      uses 4 chars plus one extra in case we are debugging
8293      (remote_debug), we have PBUFZIZ - 7 left to pack the query
8294      string.  */
8295   i = 0;
8296   while (annex[i] && (i < (get_remote_packet_size () - 8)))
8297     {
8298       /* Bad caller may have sent forbidden characters.  */
8299       gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8300       *p2++ = annex[i];
8301       i++;
8302     }
8303   *p2 = '\0';
8304   gdb_assert (annex[i] == '\0');
8305 
8306   i = putpkt (rs->buf);
8307   if (i < 0)
8308     return i;
8309 
8310   getpkt (&rs->buf, &rs->buf_size, 0);
8311   strcpy ((char *) readbuf, rs->buf);
8312 
8313   return strlen ((char *) readbuf);
8314 }
8315 
8316 static int
8317 remote_search_memory (struct target_ops* ops,
8318 		      CORE_ADDR start_addr, ULONGEST search_space_len,
8319 		      const gdb_byte *pattern, ULONGEST pattern_len,
8320 		      CORE_ADDR *found_addrp)
8321 {
8322   int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8323   struct remote_state *rs = get_remote_state ();
8324   int max_size = get_memory_write_packet_size ();
8325   struct packet_config *packet =
8326     &remote_protocol_packets[PACKET_qSearch_memory];
8327   /* Number of packet bytes used to encode the pattern;
8328      this could be more than PATTERN_LEN due to escape characters.  */
8329   int escaped_pattern_len;
8330   /* Amount of pattern that was encodable in the packet.  */
8331   int used_pattern_len;
8332   int i;
8333   int found;
8334   ULONGEST found_addr;
8335 
8336   /* Don't go to the target if we don't have to.
8337      This is done before checking packet->support to avoid the possibility that
8338      a success for this edge case means the facility works in general.  */
8339   if (pattern_len > search_space_len)
8340     return 0;
8341   if (pattern_len == 0)
8342     {
8343       *found_addrp = start_addr;
8344       return 1;
8345     }
8346 
8347   /* If we already know the packet isn't supported, fall back to the simple
8348      way of searching memory.  */
8349 
8350   if (packet->support == PACKET_DISABLE)
8351     {
8352       /* Target doesn't provided special support, fall back and use the
8353 	 standard support (copy memory and do the search here).  */
8354       return simple_search_memory (ops, start_addr, search_space_len,
8355 				   pattern, pattern_len, found_addrp);
8356     }
8357 
8358   /* Insert header.  */
8359   i = snprintf (rs->buf, max_size,
8360 		"qSearch:memory:%s;%s;",
8361 		phex_nz (start_addr, addr_size),
8362 		phex_nz (search_space_len, sizeof (search_space_len)));
8363   max_size -= (i + 1);
8364 
8365   /* Escape as much data as fits into rs->buf.  */
8366   escaped_pattern_len =
8367     remote_escape_output (pattern, pattern_len, (rs->buf + i),
8368 			  &used_pattern_len, max_size);
8369 
8370   /* Bail if the pattern is too large.  */
8371   if (used_pattern_len != pattern_len)
8372     error (_("Pattern is too large to transmit to remote target."));
8373 
8374   if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8375       || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8376       || packet_ok (rs->buf, packet) != PACKET_OK)
8377     {
8378       /* The request may not have worked because the command is not
8379 	 supported.  If so, fall back to the simple way.  */
8380       if (packet->support == PACKET_DISABLE)
8381 	{
8382 	  return simple_search_memory (ops, start_addr, search_space_len,
8383 				       pattern, pattern_len, found_addrp);
8384 	}
8385       return -1;
8386     }
8387 
8388   if (rs->buf[0] == '0')
8389     found = 0;
8390   else if (rs->buf[0] == '1')
8391     {
8392       found = 1;
8393       if (rs->buf[1] != ',')
8394 	error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8395       unpack_varlen_hex (rs->buf + 2, &found_addr);
8396       *found_addrp = found_addr;
8397     }
8398   else
8399     error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8400 
8401   return found;
8402 }
8403 
8404 static void
8405 remote_rcmd (char *command,
8406 	     struct ui_file *outbuf)
8407 {
8408   struct remote_state *rs = get_remote_state ();
8409   char *p = rs->buf;
8410 
8411   if (!remote_desc)
8412     error (_("remote rcmd is only available after target open"));
8413 
8414   /* Send a NULL command across as an empty command.  */
8415   if (command == NULL)
8416     command = "";
8417 
8418   /* The query prefix.  */
8419   strcpy (rs->buf, "qRcmd,");
8420   p = strchr (rs->buf, '\0');
8421 
8422   if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8423       > get_remote_packet_size ())
8424     error (_("\"monitor\" command ``%s'' is too long."), command);
8425 
8426   /* Encode the actual command.  */
8427   bin2hex ((gdb_byte *) command, p, 0);
8428 
8429   if (putpkt (rs->buf) < 0)
8430     error (_("Communication problem with target."));
8431 
8432   /* get/display the response */
8433   while (1)
8434     {
8435       char *buf;
8436 
8437       /* XXX - see also remote_get_noisy_reply().  */
8438       rs->buf[0] = '\0';
8439       getpkt (&rs->buf, &rs->buf_size, 0);
8440       buf = rs->buf;
8441       if (buf[0] == '\0')
8442 	error (_("Target does not support this command."));
8443       if (buf[0] == 'O' && buf[1] != 'K')
8444 	{
8445 	  remote_console_output (buf + 1); /* 'O' message from stub.  */
8446 	  continue;
8447 	}
8448       if (strcmp (buf, "OK") == 0)
8449 	break;
8450       if (strlen (buf) == 3 && buf[0] == 'E'
8451 	  && isdigit (buf[1]) && isdigit (buf[2]))
8452 	{
8453 	  error (_("Protocol error with Rcmd"));
8454 	}
8455       for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8456 	{
8457 	  char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8458 
8459 	  fputc_unfiltered (c, outbuf);
8460 	}
8461       break;
8462     }
8463 }
8464 
8465 static VEC(mem_region_s) *
8466 remote_memory_map (struct target_ops *ops)
8467 {
8468   VEC(mem_region_s) *result = NULL;
8469   char *text = target_read_stralloc (&current_target,
8470 				     TARGET_OBJECT_MEMORY_MAP, NULL);
8471 
8472   if (text)
8473     {
8474       struct cleanup *back_to = make_cleanup (xfree, text);
8475 
8476       result = parse_memory_map (text);
8477       do_cleanups (back_to);
8478     }
8479 
8480   return result;
8481 }
8482 
8483 static void
8484 packet_command (char *args, int from_tty)
8485 {
8486   struct remote_state *rs = get_remote_state ();
8487 
8488   if (!remote_desc)
8489     error (_("command can only be used with remote target"));
8490 
8491   if (!args)
8492     error (_("remote-packet command requires packet text as argument"));
8493 
8494   puts_filtered ("sending: ");
8495   print_packet (args);
8496   puts_filtered ("\n");
8497   putpkt (args);
8498 
8499   getpkt (&rs->buf, &rs->buf_size, 0);
8500   puts_filtered ("received: ");
8501   print_packet (rs->buf);
8502   puts_filtered ("\n");
8503 }
8504 
8505 #if 0
8506 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8507 
8508 static void display_thread_info (struct gdb_ext_thread_info *info);
8509 
8510 static void threadset_test_cmd (char *cmd, int tty);
8511 
8512 static void threadalive_test (char *cmd, int tty);
8513 
8514 static void threadlist_test_cmd (char *cmd, int tty);
8515 
8516 int get_and_display_threadinfo (threadref *ref);
8517 
8518 static void threadinfo_test_cmd (char *cmd, int tty);
8519 
8520 static int thread_display_step (threadref *ref, void *context);
8521 
8522 static void threadlist_update_test_cmd (char *cmd, int tty);
8523 
8524 static void init_remote_threadtests (void);
8525 
8526 #define SAMPLE_THREAD  0x05060708	/* Truncated 64 bit threadid.  */
8527 
8528 static void
8529 threadset_test_cmd (char *cmd, int tty)
8530 {
8531   int sample_thread = SAMPLE_THREAD;
8532 
8533   printf_filtered (_("Remote threadset test\n"));
8534   set_general_thread (sample_thread);
8535 }
8536 
8537 
8538 static void
8539 threadalive_test (char *cmd, int tty)
8540 {
8541   int sample_thread = SAMPLE_THREAD;
8542   int pid = ptid_get_pid (inferior_ptid);
8543   ptid_t ptid = ptid_build (pid, 0, sample_thread);
8544 
8545   if (remote_thread_alive (ptid))
8546     printf_filtered ("PASS: Thread alive test\n");
8547   else
8548     printf_filtered ("FAIL: Thread alive test\n");
8549 }
8550 
8551 void output_threadid (char *title, threadref *ref);
8552 
8553 void
8554 output_threadid (char *title, threadref *ref)
8555 {
8556   char hexid[20];
8557 
8558   pack_threadid (&hexid[0], ref);	/* Convert threead id into hex.  */
8559   hexid[16] = 0;
8560   printf_filtered ("%s  %s\n", title, (&hexid[0]));
8561 }
8562 
8563 static void
8564 threadlist_test_cmd (char *cmd, int tty)
8565 {
8566   int startflag = 1;
8567   threadref nextthread;
8568   int done, result_count;
8569   threadref threadlist[3];
8570 
8571   printf_filtered ("Remote Threadlist test\n");
8572   if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8573 			      &result_count, &threadlist[0]))
8574     printf_filtered ("FAIL: threadlist test\n");
8575   else
8576     {
8577       threadref *scan = threadlist;
8578       threadref *limit = scan + result_count;
8579 
8580       while (scan < limit)
8581 	output_threadid (" thread ", scan++);
8582     }
8583 }
8584 
8585 void
8586 display_thread_info (struct gdb_ext_thread_info *info)
8587 {
8588   output_threadid ("Threadid: ", &info->threadid);
8589   printf_filtered ("Name: %s\n ", info->shortname);
8590   printf_filtered ("State: %s\n", info->display);
8591   printf_filtered ("other: %s\n\n", info->more_display);
8592 }
8593 
8594 int
8595 get_and_display_threadinfo (threadref *ref)
8596 {
8597   int result;
8598   int set;
8599   struct gdb_ext_thread_info threadinfo;
8600 
8601   set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8602     | TAG_MOREDISPLAY | TAG_DISPLAY;
8603   if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8604     display_thread_info (&threadinfo);
8605   return result;
8606 }
8607 
8608 static void
8609 threadinfo_test_cmd (char *cmd, int tty)
8610 {
8611   int athread = SAMPLE_THREAD;
8612   threadref thread;
8613   int set;
8614 
8615   int_to_threadref (&thread, athread);
8616   printf_filtered ("Remote Threadinfo test\n");
8617   if (!get_and_display_threadinfo (&thread))
8618     printf_filtered ("FAIL cannot get thread info\n");
8619 }
8620 
8621 static int
8622 thread_display_step (threadref *ref, void *context)
8623 {
8624   /* output_threadid(" threadstep ",ref); *//* simple test */
8625   return get_and_display_threadinfo (ref);
8626 }
8627 
8628 static void
8629 threadlist_update_test_cmd (char *cmd, int tty)
8630 {
8631   printf_filtered ("Remote Threadlist update test\n");
8632   remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8633 }
8634 
8635 static void
8636 init_remote_threadtests (void)
8637 {
8638   add_com ("tlist", class_obscure, threadlist_test_cmd,
8639 	   _("Fetch and print the remote list of "
8640 	     "thread identifiers, one pkt only"));
8641   add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8642 	   _("Fetch and display info about one thread"));
8643   add_com ("tset", class_obscure, threadset_test_cmd,
8644 	   _("Test setting to a different thread"));
8645   add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8646 	   _("Iterate through updating all remote thread info"));
8647   add_com ("talive", class_obscure, threadalive_test,
8648 	   _(" Remote thread alive test "));
8649 }
8650 
8651 #endif /* 0 */
8652 
8653 /* Convert a thread ID to a string.  Returns the string in a static
8654    buffer.  */
8655 
8656 static char *
8657 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8658 {
8659   static char buf[64];
8660   struct remote_state *rs = get_remote_state ();
8661 
8662   if (ptid_is_pid (ptid))
8663     {
8664       /* Printing an inferior target id.  */
8665 
8666       /* When multi-process extensions are off, there's no way in the
8667 	 remote protocol to know the remote process id, if there's any
8668 	 at all.  There's one exception --- when we're connected with
8669 	 target extended-remote, and we manually attached to a process
8670 	 with "attach PID".  We don't record anywhere a flag that
8671 	 allows us to distinguish that case from the case of
8672 	 connecting with extended-remote and the stub already being
8673 	 attached to a process, and reporting yes to qAttached, hence
8674 	 no smart special casing here.  */
8675       if (!remote_multi_process_p (rs))
8676 	{
8677 	  xsnprintf (buf, sizeof buf, "Remote target");
8678 	  return buf;
8679 	}
8680 
8681       return normal_pid_to_str (ptid);
8682     }
8683   else
8684     {
8685       if (ptid_equal (magic_null_ptid, ptid))
8686 	xsnprintf (buf, sizeof buf, "Thread <main>");
8687       else if (remote_multi_process_p (rs))
8688 	xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8689 		   ptid_get_pid (ptid), ptid_get_tid (ptid));
8690       else
8691 	xsnprintf (buf, sizeof buf, "Thread %ld",
8692 		   ptid_get_tid (ptid));
8693       return buf;
8694     }
8695 }
8696 
8697 /* Get the address of the thread local variable in OBJFILE which is
8698    stored at OFFSET within the thread local storage for thread PTID.  */
8699 
8700 static CORE_ADDR
8701 remote_get_thread_local_address (struct target_ops *ops,
8702 				 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8703 {
8704   if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8705     {
8706       struct remote_state *rs = get_remote_state ();
8707       char *p = rs->buf;
8708       char *endp = rs->buf + get_remote_packet_size ();
8709       enum packet_result result;
8710 
8711       strcpy (p, "qGetTLSAddr:");
8712       p += strlen (p);
8713       p = write_ptid (p, endp, ptid);
8714       *p++ = ',';
8715       p += hexnumstr (p, offset);
8716       *p++ = ',';
8717       p += hexnumstr (p, lm);
8718       *p++ = '\0';
8719 
8720       putpkt (rs->buf);
8721       getpkt (&rs->buf, &rs->buf_size, 0);
8722       result = packet_ok (rs->buf,
8723 			  &remote_protocol_packets[PACKET_qGetTLSAddr]);
8724       if (result == PACKET_OK)
8725 	{
8726 	  ULONGEST result;
8727 
8728 	  unpack_varlen_hex (rs->buf, &result);
8729 	  return result;
8730 	}
8731       else if (result == PACKET_UNKNOWN)
8732 	throw_error (TLS_GENERIC_ERROR,
8733 		     _("Remote target doesn't support qGetTLSAddr packet"));
8734       else
8735 	throw_error (TLS_GENERIC_ERROR,
8736 		     _("Remote target failed to process qGetTLSAddr request"));
8737     }
8738   else
8739     throw_error (TLS_GENERIC_ERROR,
8740 		 _("TLS not supported or disabled on this target"));
8741   /* Not reached.  */
8742   return 0;
8743 }
8744 
8745 /* Provide thread local base, i.e. Thread Information Block address.
8746    Returns 1 if ptid is found and thread_local_base is non zero.  */
8747 
8748 int
8749 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8750 {
8751   if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8752     {
8753       struct remote_state *rs = get_remote_state ();
8754       char *p = rs->buf;
8755       char *endp = rs->buf + get_remote_packet_size ();
8756       enum packet_result result;
8757 
8758       strcpy (p, "qGetTIBAddr:");
8759       p += strlen (p);
8760       p = write_ptid (p, endp, ptid);
8761       *p++ = '\0';
8762 
8763       putpkt (rs->buf);
8764       getpkt (&rs->buf, &rs->buf_size, 0);
8765       result = packet_ok (rs->buf,
8766 			  &remote_protocol_packets[PACKET_qGetTIBAddr]);
8767       if (result == PACKET_OK)
8768 	{
8769 	  ULONGEST result;
8770 
8771 	  unpack_varlen_hex (rs->buf, &result);
8772 	  if (addr)
8773 	    *addr = (CORE_ADDR) result;
8774 	  return 1;
8775 	}
8776       else if (result == PACKET_UNKNOWN)
8777 	error (_("Remote target doesn't support qGetTIBAddr packet"));
8778       else
8779 	error (_("Remote target failed to process qGetTIBAddr request"));
8780     }
8781   else
8782     error (_("qGetTIBAddr not supported or disabled on this target"));
8783   /* Not reached.  */
8784   return 0;
8785 }
8786 
8787 /* Support for inferring a target description based on the current
8788    architecture and the size of a 'g' packet.  While the 'g' packet
8789    can have any size (since optional registers can be left off the
8790    end), some sizes are easily recognizable given knowledge of the
8791    approximate architecture.  */
8792 
8793 struct remote_g_packet_guess
8794 {
8795   int bytes;
8796   const struct target_desc *tdesc;
8797 };
8798 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8799 DEF_VEC_O(remote_g_packet_guess_s);
8800 
8801 struct remote_g_packet_data
8802 {
8803   VEC(remote_g_packet_guess_s) *guesses;
8804 };
8805 
8806 static struct gdbarch_data *remote_g_packet_data_handle;
8807 
8808 static void *
8809 remote_g_packet_data_init (struct obstack *obstack)
8810 {
8811   return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8812 }
8813 
8814 void
8815 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8816 				const struct target_desc *tdesc)
8817 {
8818   struct remote_g_packet_data *data
8819     = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8820   struct remote_g_packet_guess new_guess, *guess;
8821   int ix;
8822 
8823   gdb_assert (tdesc != NULL);
8824 
8825   for (ix = 0;
8826        VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8827        ix++)
8828     if (guess->bytes == bytes)
8829       internal_error (__FILE__, __LINE__,
8830 		      _("Duplicate g packet description added for size %d"),
8831 		      bytes);
8832 
8833   new_guess.bytes = bytes;
8834   new_guess.tdesc = tdesc;
8835   VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8836 }
8837 
8838 /* Return 1 if remote_read_description would do anything on this target
8839    and architecture, 0 otherwise.  */
8840 
8841 static int
8842 remote_read_description_p (struct target_ops *target)
8843 {
8844   struct remote_g_packet_data *data
8845     = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8846 
8847   if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8848     return 1;
8849 
8850   return 0;
8851 }
8852 
8853 static const struct target_desc *
8854 remote_read_description (struct target_ops *target)
8855 {
8856   struct remote_g_packet_data *data
8857     = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8858 
8859   /* Do not try this during initial connection, when we do not know
8860      whether there is a running but stopped thread.  */
8861   if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8862     return NULL;
8863 
8864   if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8865     {
8866       struct remote_g_packet_guess *guess;
8867       int ix;
8868       int bytes = send_g_packet ();
8869 
8870       for (ix = 0;
8871 	   VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8872 	   ix++)
8873 	if (guess->bytes == bytes)
8874 	  return guess->tdesc;
8875 
8876       /* We discard the g packet.  A minor optimization would be to
8877 	 hold on to it, and fill the register cache once we have selected
8878 	 an architecture, but it's too tricky to do safely.  */
8879     }
8880 
8881   return NULL;
8882 }
8883 
8884 /* Remote file transfer support.  This is host-initiated I/O, not
8885    target-initiated; for target-initiated, see remote-fileio.c.  */
8886 
8887 /* If *LEFT is at least the length of STRING, copy STRING to
8888    *BUFFER, update *BUFFER to point to the new end of the buffer, and
8889    decrease *LEFT.  Otherwise raise an error.  */
8890 
8891 static void
8892 remote_buffer_add_string (char **buffer, int *left, char *string)
8893 {
8894   int len = strlen (string);
8895 
8896   if (len > *left)
8897     error (_("Packet too long for target."));
8898 
8899   memcpy (*buffer, string, len);
8900   *buffer += len;
8901   *left -= len;
8902 
8903   /* NUL-terminate the buffer as a convenience, if there is
8904      room.  */
8905   if (*left)
8906     **buffer = '\0';
8907 }
8908 
8909 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8910    *BUFFER, update *BUFFER to point to the new end of the buffer, and
8911    decrease *LEFT.  Otherwise raise an error.  */
8912 
8913 static void
8914 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8915 			 int len)
8916 {
8917   if (2 * len > *left)
8918     error (_("Packet too long for target."));
8919 
8920   bin2hex (bytes, *buffer, len);
8921   *buffer += 2 * len;
8922   *left -= 2 * len;
8923 
8924   /* NUL-terminate the buffer as a convenience, if there is
8925      room.  */
8926   if (*left)
8927     **buffer = '\0';
8928 }
8929 
8930 /* If *LEFT is large enough, convert VALUE to hex and add it to
8931    *BUFFER, update *BUFFER to point to the new end of the buffer, and
8932    decrease *LEFT.  Otherwise raise an error.  */
8933 
8934 static void
8935 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8936 {
8937   int len = hexnumlen (value);
8938 
8939   if (len > *left)
8940     error (_("Packet too long for target."));
8941 
8942   hexnumstr (*buffer, value);
8943   *buffer += len;
8944   *left -= len;
8945 
8946   /* NUL-terminate the buffer as a convenience, if there is
8947      room.  */
8948   if (*left)
8949     **buffer = '\0';
8950 }
8951 
8952 /* Parse an I/O result packet from BUFFER.  Set RETCODE to the return
8953    value, *REMOTE_ERRNO to the remote error number or zero if none
8954    was included, and *ATTACHMENT to point to the start of the annex
8955    if any.  The length of the packet isn't needed here; there may
8956    be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8957 
8958    Return 0 if the packet could be parsed, -1 if it could not.  If
8959    -1 is returned, the other variables may not be initialized.  */
8960 
8961 static int
8962 remote_hostio_parse_result (char *buffer, int *retcode,
8963 			    int *remote_errno, char **attachment)
8964 {
8965   char *p, *p2;
8966 
8967   *remote_errno = 0;
8968   *attachment = NULL;
8969 
8970   if (buffer[0] != 'F')
8971     return -1;
8972 
8973   errno = 0;
8974   *retcode = strtol (&buffer[1], &p, 16);
8975   if (errno != 0 || p == &buffer[1])
8976     return -1;
8977 
8978   /* Check for ",errno".  */
8979   if (*p == ',')
8980     {
8981       errno = 0;
8982       *remote_errno = strtol (p + 1, &p2, 16);
8983       if (errno != 0 || p + 1 == p2)
8984 	return -1;
8985       p = p2;
8986     }
8987 
8988   /* Check for ";attachment".  If there is no attachment, the
8989      packet should end here.  */
8990   if (*p == ';')
8991     {
8992       *attachment = p + 1;
8993       return 0;
8994     }
8995   else if (*p == '\0')
8996     return 0;
8997   else
8998     return -1;
8999 }
9000 
9001 /* Send a prepared I/O packet to the target and read its response.
9002    The prepared packet is in the global RS->BUF before this function
9003    is called, and the answer is there when we return.
9004 
9005    COMMAND_BYTES is the length of the request to send, which may include
9006    binary data.  WHICH_PACKET is the packet configuration to check
9007    before attempting a packet.  If an error occurs, *REMOTE_ERRNO
9008    is set to the error number and -1 is returned.  Otherwise the value
9009    returned by the function is returned.
9010 
9011    ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9012    attachment is expected; an error will be reported if there's a
9013    mismatch.  If one is found, *ATTACHMENT will be set to point into
9014    the packet buffer and *ATTACHMENT_LEN will be set to the
9015    attachment's length.  */
9016 
9017 static int
9018 remote_hostio_send_command (int command_bytes, int which_packet,
9019 			    int *remote_errno, char **attachment,
9020 			    int *attachment_len)
9021 {
9022   struct remote_state *rs = get_remote_state ();
9023   int ret, bytes_read;
9024   char *attachment_tmp;
9025 
9026   if (!remote_desc
9027       || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9028     {
9029       *remote_errno = FILEIO_ENOSYS;
9030       return -1;
9031     }
9032 
9033   putpkt_binary (rs->buf, command_bytes);
9034   bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9035 
9036   /* If it timed out, something is wrong.  Don't try to parse the
9037      buffer.  */
9038   if (bytes_read < 0)
9039     {
9040       *remote_errno = FILEIO_EINVAL;
9041       return -1;
9042     }
9043 
9044   switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9045     {
9046     case PACKET_ERROR:
9047       *remote_errno = FILEIO_EINVAL;
9048       return -1;
9049     case PACKET_UNKNOWN:
9050       *remote_errno = FILEIO_ENOSYS;
9051       return -1;
9052     case PACKET_OK:
9053       break;
9054     }
9055 
9056   if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9057 				  &attachment_tmp))
9058     {
9059       *remote_errno = FILEIO_EINVAL;
9060       return -1;
9061     }
9062 
9063   /* Make sure we saw an attachment if and only if we expected one.  */
9064   if ((attachment_tmp == NULL && attachment != NULL)
9065       || (attachment_tmp != NULL && attachment == NULL))
9066     {
9067       *remote_errno = FILEIO_EINVAL;
9068       return -1;
9069     }
9070 
9071   /* If an attachment was found, it must point into the packet buffer;
9072      work out how many bytes there were.  */
9073   if (attachment_tmp != NULL)
9074     {
9075       *attachment = attachment_tmp;
9076       *attachment_len = bytes_read - (*attachment - rs->buf);
9077     }
9078 
9079   return ret;
9080 }
9081 
9082 /* Open FILENAME on the remote target, using FLAGS and MODE.  Return a
9083    remote file descriptor, or -1 if an error occurs (and set
9084    *REMOTE_ERRNO).  */
9085 
9086 static int
9087 remote_hostio_open (const char *filename, int flags, int mode,
9088 		    int *remote_errno)
9089 {
9090   struct remote_state *rs = get_remote_state ();
9091   char *p = rs->buf;
9092   int left = get_remote_packet_size () - 1;
9093 
9094   remote_buffer_add_string (&p, &left, "vFile:open:");
9095 
9096   remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9097 			   strlen (filename));
9098   remote_buffer_add_string (&p, &left, ",");
9099 
9100   remote_buffer_add_int (&p, &left, flags);
9101   remote_buffer_add_string (&p, &left, ",");
9102 
9103   remote_buffer_add_int (&p, &left, mode);
9104 
9105   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9106 				     remote_errno, NULL, NULL);
9107 }
9108 
9109 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9110    Return the number of bytes written, or -1 if an error occurs (and
9111    set *REMOTE_ERRNO).  */
9112 
9113 static int
9114 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9115 		      ULONGEST offset, int *remote_errno)
9116 {
9117   struct remote_state *rs = get_remote_state ();
9118   char *p = rs->buf;
9119   int left = get_remote_packet_size ();
9120   int out_len;
9121 
9122   remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9123 
9124   remote_buffer_add_int (&p, &left, fd);
9125   remote_buffer_add_string (&p, &left, ",");
9126 
9127   remote_buffer_add_int (&p, &left, offset);
9128   remote_buffer_add_string (&p, &left, ",");
9129 
9130   p += remote_escape_output (write_buf, len, p, &out_len,
9131 			     get_remote_packet_size () - (p - rs->buf));
9132 
9133   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9134 				     remote_errno, NULL, NULL);
9135 }
9136 
9137 /* Read up to LEN bytes FD on the remote target into READ_BUF
9138    Return the number of bytes read, or -1 if an error occurs (and
9139    set *REMOTE_ERRNO).  */
9140 
9141 static int
9142 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9143 		     ULONGEST offset, int *remote_errno)
9144 {
9145   struct remote_state *rs = get_remote_state ();
9146   char *p = rs->buf;
9147   char *attachment;
9148   int left = get_remote_packet_size ();
9149   int ret, attachment_len;
9150   int read_len;
9151 
9152   remote_buffer_add_string (&p, &left, "vFile:pread:");
9153 
9154   remote_buffer_add_int (&p, &left, fd);
9155   remote_buffer_add_string (&p, &left, ",");
9156 
9157   remote_buffer_add_int (&p, &left, len);
9158   remote_buffer_add_string (&p, &left, ",");
9159 
9160   remote_buffer_add_int (&p, &left, offset);
9161 
9162   ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9163 				    remote_errno, &attachment,
9164 				    &attachment_len);
9165 
9166   if (ret < 0)
9167     return ret;
9168 
9169   read_len = remote_unescape_input (attachment, attachment_len,
9170 				    read_buf, len);
9171   if (read_len != ret)
9172     error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9173 
9174   return ret;
9175 }
9176 
9177 /* Close FD on the remote target.  Return 0, or -1 if an error occurs
9178    (and set *REMOTE_ERRNO).  */
9179 
9180 static int
9181 remote_hostio_close (int fd, int *remote_errno)
9182 {
9183   struct remote_state *rs = get_remote_state ();
9184   char *p = rs->buf;
9185   int left = get_remote_packet_size () - 1;
9186 
9187   remote_buffer_add_string (&p, &left, "vFile:close:");
9188 
9189   remote_buffer_add_int (&p, &left, fd);
9190 
9191   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9192 				     remote_errno, NULL, NULL);
9193 }
9194 
9195 /* Unlink FILENAME on the remote target.  Return 0, or -1 if an error
9196    occurs (and set *REMOTE_ERRNO).  */
9197 
9198 static int
9199 remote_hostio_unlink (const char *filename, int *remote_errno)
9200 {
9201   struct remote_state *rs = get_remote_state ();
9202   char *p = rs->buf;
9203   int left = get_remote_packet_size () - 1;
9204 
9205   remote_buffer_add_string (&p, &left, "vFile:unlink:");
9206 
9207   remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9208 			   strlen (filename));
9209 
9210   return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9211 				     remote_errno, NULL, NULL);
9212 }
9213 
9214 static int
9215 remote_fileio_errno_to_host (int errnum)
9216 {
9217   switch (errnum)
9218     {
9219       case FILEIO_EPERM:
9220         return EPERM;
9221       case FILEIO_ENOENT:
9222         return ENOENT;
9223       case FILEIO_EINTR:
9224         return EINTR;
9225       case FILEIO_EIO:
9226         return EIO;
9227       case FILEIO_EBADF:
9228         return EBADF;
9229       case FILEIO_EACCES:
9230         return EACCES;
9231       case FILEIO_EFAULT:
9232         return EFAULT;
9233       case FILEIO_EBUSY:
9234         return EBUSY;
9235       case FILEIO_EEXIST:
9236         return EEXIST;
9237       case FILEIO_ENODEV:
9238         return ENODEV;
9239       case FILEIO_ENOTDIR:
9240         return ENOTDIR;
9241       case FILEIO_EISDIR:
9242         return EISDIR;
9243       case FILEIO_EINVAL:
9244         return EINVAL;
9245       case FILEIO_ENFILE:
9246         return ENFILE;
9247       case FILEIO_EMFILE:
9248         return EMFILE;
9249       case FILEIO_EFBIG:
9250         return EFBIG;
9251       case FILEIO_ENOSPC:
9252         return ENOSPC;
9253       case FILEIO_ESPIPE:
9254         return ESPIPE;
9255       case FILEIO_EROFS:
9256         return EROFS;
9257       case FILEIO_ENOSYS:
9258         return ENOSYS;
9259       case FILEIO_ENAMETOOLONG:
9260         return ENAMETOOLONG;
9261     }
9262   return -1;
9263 }
9264 
9265 static char *
9266 remote_hostio_error (int errnum)
9267 {
9268   int host_error = remote_fileio_errno_to_host (errnum);
9269 
9270   if (host_error == -1)
9271     error (_("Unknown remote I/O error %d"), errnum);
9272   else
9273     error (_("Remote I/O error: %s"), safe_strerror (host_error));
9274 }
9275 
9276 static void
9277 remote_hostio_close_cleanup (void *opaque)
9278 {
9279   int fd = *(int *) opaque;
9280   int remote_errno;
9281 
9282   remote_hostio_close (fd, &remote_errno);
9283 }
9284 
9285 
9286 static void *
9287 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9288 {
9289   const char *filename = bfd_get_filename (abfd);
9290   int fd, remote_errno;
9291   int *stream;
9292 
9293   gdb_assert (remote_filename_p (filename));
9294 
9295   fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9296   if (fd == -1)
9297     {
9298       errno = remote_fileio_errno_to_host (remote_errno);
9299       bfd_set_error (bfd_error_system_call);
9300       return NULL;
9301     }
9302 
9303   stream = xmalloc (sizeof (int));
9304   *stream = fd;
9305   return stream;
9306 }
9307 
9308 static int
9309 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9310 {
9311   int fd = *(int *)stream;
9312   int remote_errno;
9313 
9314   xfree (stream);
9315 
9316   /* Ignore errors on close; these may happen if the remote
9317      connection was already torn down.  */
9318   remote_hostio_close (fd, &remote_errno);
9319 
9320   return 1;
9321 }
9322 
9323 static file_ptr
9324 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9325 			file_ptr nbytes, file_ptr offset)
9326 {
9327   int fd = *(int *)stream;
9328   int remote_errno;
9329   file_ptr pos, bytes;
9330 
9331   pos = 0;
9332   while (nbytes > pos)
9333     {
9334       bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9335 				   offset + pos, &remote_errno);
9336       if (bytes == 0)
9337         /* Success, but no bytes, means end-of-file.  */
9338         break;
9339       if (bytes == -1)
9340 	{
9341 	  errno = remote_fileio_errno_to_host (remote_errno);
9342 	  bfd_set_error (bfd_error_system_call);
9343 	  return -1;
9344 	}
9345 
9346       pos += bytes;
9347     }
9348 
9349   return pos;
9350 }
9351 
9352 static int
9353 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9354 {
9355   /* FIXME: We should probably implement remote_hostio_stat.  */
9356   sb->st_size = INT_MAX;
9357   return 0;
9358 }
9359 
9360 int
9361 remote_filename_p (const char *filename)
9362 {
9363   return strncmp (filename, "remote:", 7) == 0;
9364 }
9365 
9366 bfd *
9367 remote_bfd_open (const char *remote_file, const char *target)
9368 {
9369   return bfd_openr_iovec (remote_file, target,
9370 			  remote_bfd_iovec_open, NULL,
9371 			  remote_bfd_iovec_pread,
9372 			  remote_bfd_iovec_close,
9373 			  remote_bfd_iovec_stat);
9374 }
9375 
9376 void
9377 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9378 {
9379   struct cleanup *back_to, *close_cleanup;
9380   int retcode, fd, remote_errno, bytes, io_size;
9381   FILE *file;
9382   gdb_byte *buffer;
9383   int bytes_in_buffer;
9384   int saw_eof;
9385   ULONGEST offset;
9386 
9387   if (!remote_desc)
9388     error (_("command can only be used with remote target"));
9389 
9390   file = fopen (local_file, "rb");
9391   if (file == NULL)
9392     perror_with_name (local_file);
9393   back_to = make_cleanup_fclose (file);
9394 
9395   fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9396 					 | FILEIO_O_TRUNC),
9397 			   0700, &remote_errno);
9398   if (fd == -1)
9399     remote_hostio_error (remote_errno);
9400 
9401   /* Send up to this many bytes at once.  They won't all fit in the
9402      remote packet limit, so we'll transfer slightly fewer.  */
9403   io_size = get_remote_packet_size ();
9404   buffer = xmalloc (io_size);
9405   make_cleanup (xfree, buffer);
9406 
9407   close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9408 
9409   bytes_in_buffer = 0;
9410   saw_eof = 0;
9411   offset = 0;
9412   while (bytes_in_buffer || !saw_eof)
9413     {
9414       if (!saw_eof)
9415 	{
9416 	  bytes = fread (buffer + bytes_in_buffer, 1,
9417 			 io_size - bytes_in_buffer,
9418 			 file);
9419 	  if (bytes == 0)
9420 	    {
9421 	      if (ferror (file))
9422 		error (_("Error reading %s."), local_file);
9423 	      else
9424 		{
9425 		  /* EOF.  Unless there is something still in the
9426 		     buffer from the last iteration, we are done.  */
9427 		  saw_eof = 1;
9428 		  if (bytes_in_buffer == 0)
9429 		    break;
9430 		}
9431 	    }
9432 	}
9433       else
9434 	bytes = 0;
9435 
9436       bytes += bytes_in_buffer;
9437       bytes_in_buffer = 0;
9438 
9439       retcode = remote_hostio_pwrite (fd, buffer, bytes,
9440 				      offset, &remote_errno);
9441 
9442       if (retcode < 0)
9443 	remote_hostio_error (remote_errno);
9444       else if (retcode == 0)
9445 	error (_("Remote write of %d bytes returned 0!"), bytes);
9446       else if (retcode < bytes)
9447 	{
9448 	  /* Short write.  Save the rest of the read data for the next
9449 	     write.  */
9450 	  bytes_in_buffer = bytes - retcode;
9451 	  memmove (buffer, buffer + retcode, bytes_in_buffer);
9452 	}
9453 
9454       offset += retcode;
9455     }
9456 
9457   discard_cleanups (close_cleanup);
9458   if (remote_hostio_close (fd, &remote_errno))
9459     remote_hostio_error (remote_errno);
9460 
9461   if (from_tty)
9462     printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9463   do_cleanups (back_to);
9464 }
9465 
9466 void
9467 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9468 {
9469   struct cleanup *back_to, *close_cleanup;
9470   int fd, remote_errno, bytes, io_size;
9471   FILE *file;
9472   gdb_byte *buffer;
9473   ULONGEST offset;
9474 
9475   if (!remote_desc)
9476     error (_("command can only be used with remote target"));
9477 
9478   fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9479   if (fd == -1)
9480     remote_hostio_error (remote_errno);
9481 
9482   file = fopen (local_file, "wb");
9483   if (file == NULL)
9484     perror_with_name (local_file);
9485   back_to = make_cleanup_fclose (file);
9486 
9487   /* Send up to this many bytes at once.  They won't all fit in the
9488      remote packet limit, so we'll transfer slightly fewer.  */
9489   io_size = get_remote_packet_size ();
9490   buffer = xmalloc (io_size);
9491   make_cleanup (xfree, buffer);
9492 
9493   close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9494 
9495   offset = 0;
9496   while (1)
9497     {
9498       bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9499       if (bytes == 0)
9500 	/* Success, but no bytes, means end-of-file.  */
9501 	break;
9502       if (bytes == -1)
9503 	remote_hostio_error (remote_errno);
9504 
9505       offset += bytes;
9506 
9507       bytes = fwrite (buffer, 1, bytes, file);
9508       if (bytes == 0)
9509 	perror_with_name (local_file);
9510     }
9511 
9512   discard_cleanups (close_cleanup);
9513   if (remote_hostio_close (fd, &remote_errno))
9514     remote_hostio_error (remote_errno);
9515 
9516   if (from_tty)
9517     printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9518   do_cleanups (back_to);
9519 }
9520 
9521 void
9522 remote_file_delete (const char *remote_file, int from_tty)
9523 {
9524   int retcode, remote_errno;
9525 
9526   if (!remote_desc)
9527     error (_("command can only be used with remote target"));
9528 
9529   retcode = remote_hostio_unlink (remote_file, &remote_errno);
9530   if (retcode == -1)
9531     remote_hostio_error (remote_errno);
9532 
9533   if (from_tty)
9534     printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9535 }
9536 
9537 static void
9538 remote_put_command (char *args, int from_tty)
9539 {
9540   struct cleanup *back_to;
9541   char **argv;
9542 
9543   if (args == NULL)
9544     error_no_arg (_("file to put"));
9545 
9546   argv = gdb_buildargv (args);
9547   back_to = make_cleanup_freeargv (argv);
9548   if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9549     error (_("Invalid parameters to remote put"));
9550 
9551   remote_file_put (argv[0], argv[1], from_tty);
9552 
9553   do_cleanups (back_to);
9554 }
9555 
9556 static void
9557 remote_get_command (char *args, int from_tty)
9558 {
9559   struct cleanup *back_to;
9560   char **argv;
9561 
9562   if (args == NULL)
9563     error_no_arg (_("file to get"));
9564 
9565   argv = gdb_buildargv (args);
9566   back_to = make_cleanup_freeargv (argv);
9567   if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9568     error (_("Invalid parameters to remote get"));
9569 
9570   remote_file_get (argv[0], argv[1], from_tty);
9571 
9572   do_cleanups (back_to);
9573 }
9574 
9575 static void
9576 remote_delete_command (char *args, int from_tty)
9577 {
9578   struct cleanup *back_to;
9579   char **argv;
9580 
9581   if (args == NULL)
9582     error_no_arg (_("file to delete"));
9583 
9584   argv = gdb_buildargv (args);
9585   back_to = make_cleanup_freeargv (argv);
9586   if (argv[0] == NULL || argv[1] != NULL)
9587     error (_("Invalid parameters to remote delete"));
9588 
9589   remote_file_delete (argv[0], from_tty);
9590 
9591   do_cleanups (back_to);
9592 }
9593 
9594 static void
9595 remote_command (char *args, int from_tty)
9596 {
9597   help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9598 }
9599 
9600 static int
9601 remote_can_execute_reverse (void)
9602 {
9603   if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9604       || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9605     return 1;
9606   else
9607     return 0;
9608 }
9609 
9610 static int
9611 remote_supports_non_stop (void)
9612 {
9613   return 1;
9614 }
9615 
9616 static int
9617 remote_supports_multi_process (void)
9618 {
9619   struct remote_state *rs = get_remote_state ();
9620 
9621   return remote_multi_process_p (rs);
9622 }
9623 
9624 int
9625 remote_supports_cond_tracepoints (void)
9626 {
9627   struct remote_state *rs = get_remote_state ();
9628 
9629   return rs->cond_tracepoints;
9630 }
9631 
9632 int
9633 remote_supports_fast_tracepoints (void)
9634 {
9635   struct remote_state *rs = get_remote_state ();
9636 
9637   return rs->fast_tracepoints;
9638 }
9639 
9640 static int
9641 remote_supports_static_tracepoints (void)
9642 {
9643   struct remote_state *rs = get_remote_state ();
9644 
9645   return rs->static_tracepoints;
9646 }
9647 
9648 static void
9649 remote_trace_init (void)
9650 {
9651   putpkt ("QTinit");
9652   remote_get_noisy_reply (&target_buf, &target_buf_size);
9653   if (strcmp (target_buf, "OK") != 0)
9654     error (_("Target does not support this command."));
9655 }
9656 
9657 static void free_actions_list (char **actions_list);
9658 static void free_actions_list_cleanup_wrapper (void *);
9659 static void
9660 free_actions_list_cleanup_wrapper (void *al)
9661 {
9662   free_actions_list (al);
9663 }
9664 
9665 static void
9666 free_actions_list (char **actions_list)
9667 {
9668   int ndx;
9669 
9670   if (actions_list == 0)
9671     return;
9672 
9673   for (ndx = 0; actions_list[ndx]; ndx++)
9674     xfree (actions_list[ndx]);
9675 
9676   xfree (actions_list);
9677 }
9678 
9679 /* Recursive routine to walk through command list including loops, and
9680    download packets for each command.  */
9681 
9682 static void
9683 remote_download_command_source (int num, ULONGEST addr,
9684 				struct command_line *cmds)
9685 {
9686   struct remote_state *rs = get_remote_state ();
9687   struct command_line *cmd;
9688 
9689   for (cmd = cmds; cmd; cmd = cmd->next)
9690     {
9691       QUIT;	/* Allow user to bail out with ^C.  */
9692       strcpy (rs->buf, "QTDPsrc:");
9693       encode_source_string (num, addr, "cmd", cmd->line,
9694 			    rs->buf + strlen (rs->buf),
9695 			    rs->buf_size - strlen (rs->buf));
9696       putpkt (rs->buf);
9697       remote_get_noisy_reply (&target_buf, &target_buf_size);
9698       if (strcmp (target_buf, "OK"))
9699 	warning (_("Target does not support source download."));
9700 
9701       if (cmd->control_type == while_control
9702 	  || cmd->control_type == while_stepping_control)
9703 	{
9704 	  remote_download_command_source (num, addr, *cmd->body_list);
9705 
9706 	  QUIT;	/* Allow user to bail out with ^C.  */
9707 	  strcpy (rs->buf, "QTDPsrc:");
9708 	  encode_source_string (num, addr, "cmd", "end",
9709 				rs->buf + strlen (rs->buf),
9710 				rs->buf_size - strlen (rs->buf));
9711 	  putpkt (rs->buf);
9712 	  remote_get_noisy_reply (&target_buf, &target_buf_size);
9713 	  if (strcmp (target_buf, "OK"))
9714 	    warning (_("Target does not support source download."));
9715 	}
9716     }
9717 }
9718 
9719 static void
9720 remote_download_tracepoint (struct breakpoint *t)
9721 {
9722   struct bp_location *loc;
9723   CORE_ADDR tpaddr;
9724   char addrbuf[40];
9725   char buf[2048];
9726   char **tdp_actions;
9727   char **stepping_actions;
9728   int ndx;
9729   struct cleanup *old_chain = NULL;
9730   struct agent_expr *aexpr;
9731   struct cleanup *aexpr_chain = NULL;
9732   char *pkt;
9733 
9734   /* Iterate over all the tracepoint locations.  It's up to the target to
9735      notice multiple tracepoint packets with the same number but different
9736      addresses, and treat them as multiple locations.  */
9737   for (loc = t->loc; loc; loc = loc->next)
9738     {
9739       encode_actions (t, loc, &tdp_actions, &stepping_actions);
9740       old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9741 				tdp_actions);
9742       (void) make_cleanup (free_actions_list_cleanup_wrapper,
9743 			   stepping_actions);
9744 
9745       tpaddr = loc->address;
9746       sprintf_vma (addrbuf, tpaddr);
9747       sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9748 	       addrbuf, /* address */
9749 	       (t->enable_state == bp_enabled ? 'E' : 'D'),
9750 	       t->step_count, t->pass_count);
9751       /* Fast tracepoints are mostly handled by the target, but we can
9752 	 tell the target how big of an instruction block should be moved
9753 	 around.  */
9754       if (t->type == bp_fast_tracepoint)
9755 	{
9756 	  /* Only test for support at download time; we may not know
9757 	     target capabilities at definition time.  */
9758 	  if (remote_supports_fast_tracepoints ())
9759 	    {
9760 	      int isize;
9761 
9762 	      if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9763 						    tpaddr, &isize, NULL))
9764 		sprintf (buf + strlen (buf), ":F%x", isize);
9765 	      else
9766 		/* If it passed validation at definition but fails now,
9767 		   something is very wrong.  */
9768 		internal_error (__FILE__, __LINE__,
9769 				_("Fast tracepoint not "
9770 				  "valid during download"));
9771 	    }
9772 	  else
9773 	    /* Fast tracepoints are functionally identical to regular
9774 	       tracepoints, so don't take lack of support as a reason to
9775 	       give up on the trace run.  */
9776 	    warning (_("Target does not support fast tracepoints, "
9777 		       "downloading %d as regular tracepoint"), t->number);
9778 	}
9779       else if (t->type == bp_static_tracepoint)
9780 	{
9781 	  /* Only test for support at download time; we may not know
9782 	     target capabilities at definition time.  */
9783 	  if (remote_supports_static_tracepoints ())
9784 	    {
9785 	      struct static_tracepoint_marker marker;
9786 
9787 	      if (target_static_tracepoint_marker_at (tpaddr, &marker))
9788 		strcat (buf, ":S");
9789 	      else
9790 		error (_("Static tracepoint not valid during download"));
9791 	    }
9792 	  else
9793 	    /* Fast tracepoints are functionally identical to regular
9794 	       tracepoints, so don't take lack of support as a reason
9795 	       to give up on the trace run.  */
9796 	    error (_("Target does not support static tracepoints"));
9797 	}
9798       /* If the tracepoint has a conditional, make it into an agent
9799 	 expression and append to the definition.  */
9800       if (loc->cond)
9801 	{
9802 	  /* Only test support at download time, we may not know target
9803 	     capabilities at definition time.  */
9804 	  if (remote_supports_cond_tracepoints ())
9805 	    {
9806 	      aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9807 	      aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9808 	      sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9809 	      pkt = buf + strlen (buf);
9810 	      for (ndx = 0; ndx < aexpr->len; ++ndx)
9811 		pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9812 	      *pkt = '\0';
9813 	      do_cleanups (aexpr_chain);
9814 	    }
9815 	  else
9816 	    warning (_("Target does not support conditional tracepoints, "
9817 		       "ignoring tp %d cond"), t->number);
9818 	}
9819 
9820   if (t->commands || *default_collect)
9821 	strcat (buf, "-");
9822       putpkt (buf);
9823       remote_get_noisy_reply (&target_buf, &target_buf_size);
9824       if (strcmp (target_buf, "OK"))
9825 	error (_("Target does not support tracepoints."));
9826 
9827       /* do_single_steps (t); */
9828       if (tdp_actions)
9829 	{
9830 	  for (ndx = 0; tdp_actions[ndx]; ndx++)
9831 	    {
9832 	      QUIT;	/* Allow user to bail out with ^C.  */
9833 	      sprintf (buf, "QTDP:-%x:%s:%s%c",
9834 		       t->number, addrbuf, /* address */
9835 		       tdp_actions[ndx],
9836 		       ((tdp_actions[ndx + 1] || stepping_actions)
9837 			? '-' : 0));
9838 	      putpkt (buf);
9839 	      remote_get_noisy_reply (&target_buf,
9840 				      &target_buf_size);
9841 	      if (strcmp (target_buf, "OK"))
9842 		error (_("Error on target while setting tracepoints."));
9843 	    }
9844 	}
9845       if (stepping_actions)
9846 	{
9847 	  for (ndx = 0; stepping_actions[ndx]; ndx++)
9848 	    {
9849 	      QUIT;	/* Allow user to bail out with ^C.  */
9850 	      sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9851 		       t->number, addrbuf, /* address */
9852 		       ((ndx == 0) ? "S" : ""),
9853 		       stepping_actions[ndx],
9854 		       (stepping_actions[ndx + 1] ? "-" : ""));
9855 	      putpkt (buf);
9856 	      remote_get_noisy_reply (&target_buf,
9857 				      &target_buf_size);
9858 	      if (strcmp (target_buf, "OK"))
9859 		error (_("Error on target while setting tracepoints."));
9860 	    }
9861 	}
9862 
9863       if (remote_protocol_packets[PACKET_TracepointSource].support
9864 	  == PACKET_ENABLE)
9865 	{
9866 	  if (t->addr_string)
9867 	    {
9868 	      strcpy (buf, "QTDPsrc:");
9869 	      encode_source_string (t->number, loc->address,
9870 				    "at", t->addr_string, buf + strlen (buf),
9871 				    2048 - strlen (buf));
9872 
9873 	      putpkt (buf);
9874 	      remote_get_noisy_reply (&target_buf, &target_buf_size);
9875 	      if (strcmp (target_buf, "OK"))
9876 		warning (_("Target does not support source download."));
9877 	    }
9878 	  if (t->cond_string)
9879 	    {
9880 	      strcpy (buf, "QTDPsrc:");
9881 	      encode_source_string (t->number, loc->address,
9882 				    "cond", t->cond_string, buf + strlen (buf),
9883 				    2048 - strlen (buf));
9884 	      putpkt (buf);
9885 	      remote_get_noisy_reply (&target_buf, &target_buf_size);
9886 	      if (strcmp (target_buf, "OK"))
9887 		warning (_("Target does not support source download."));
9888 	    }
9889 	  remote_download_command_source (t->number, loc->address,
9890 					  breakpoint_commands (t));
9891 	}
9892 
9893       do_cleanups (old_chain);
9894     }
9895 }
9896 
9897 static void
9898 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9899 {
9900   struct remote_state *rs = get_remote_state ();
9901   char *p;
9902 
9903   sprintf (rs->buf, "QTDV:%x:%s:%x:",
9904 	   tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9905   p = rs->buf + strlen (rs->buf);
9906   if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9907     error (_("Trace state variable name too long for tsv definition packet"));
9908   p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9909   *p++ = '\0';
9910   putpkt (rs->buf);
9911   remote_get_noisy_reply (&target_buf, &target_buf_size);
9912   if (*target_buf == '\0')
9913     error (_("Target does not support this command."));
9914   if (strcmp (target_buf, "OK") != 0)
9915     error (_("Error on target while downloading trace state variable."));
9916 }
9917 
9918 static void
9919 remote_trace_set_readonly_regions (void)
9920 {
9921   asection *s;
9922   bfd_size_type size;
9923   bfd_vma vma;
9924   int anysecs = 0;
9925   int offset = 0;
9926 
9927   if (!exec_bfd)
9928     return;			/* No information to give.  */
9929 
9930   strcpy (target_buf, "QTro");
9931   for (s = exec_bfd->sections; s; s = s->next)
9932     {
9933       char tmp1[40], tmp2[40];
9934       int sec_length;
9935 
9936       if ((s->flags & SEC_LOAD) == 0 ||
9937       /*  (s->flags & SEC_CODE) == 0 || */
9938 	  (s->flags & SEC_READONLY) == 0)
9939 	continue;
9940 
9941       anysecs = 1;
9942       vma = bfd_get_section_vma (,s);
9943       size = bfd_get_section_size (s);
9944       sprintf_vma (tmp1, vma);
9945       sprintf_vma (tmp2, vma + size);
9946       sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
9947       if (offset + sec_length + 1 > target_buf_size)
9948 	{
9949 	  if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
9950 	      != PACKET_ENABLE)
9951 	    warning (_("\
9952 Too many sections for read-only sections definition packet."));
9953 	  break;
9954 	}
9955       sprintf (target_buf + offset, ":%s,%s", tmp1, tmp2);
9956       offset += sec_length;
9957     }
9958   if (anysecs)
9959     {
9960       putpkt (target_buf);
9961       getpkt (&target_buf, &target_buf_size, 0);
9962     }
9963 }
9964 
9965 static void
9966 remote_trace_start (void)
9967 {
9968   putpkt ("QTStart");
9969   remote_get_noisy_reply (&target_buf, &target_buf_size);
9970   if (*target_buf == '\0')
9971     error (_("Target does not support this command."));
9972   if (strcmp (target_buf, "OK") != 0)
9973     error (_("Bogus reply from target: %s"), target_buf);
9974 }
9975 
9976 static int
9977 remote_get_trace_status (struct trace_status *ts)
9978 {
9979   /* Initialize it just to avoid a GCC false warning.  */
9980   char *p = NULL;
9981   /* FIXME we need to get register block size some other way.  */
9982   extern int trace_regblock_size;
9983   volatile struct gdb_exception ex;
9984 
9985   trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9986 
9987   putpkt ("qTStatus");
9988 
9989   TRY_CATCH (ex, RETURN_MASK_ERROR)
9990     {
9991       p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9992     }
9993   if (ex.reason < 0)
9994     {
9995       exception_fprintf (gdb_stderr, ex, "qTStatus: ");
9996       return -1;
9997     }
9998 
9999   /* If the remote target doesn't do tracing, flag it.  */
10000   if (*p == '\0')
10001     return -1;
10002 
10003   /* We're working with a live target.  */
10004   ts->from_file = 0;
10005 
10006   /* Set some defaults.  */
10007   ts->running_known = 0;
10008   ts->stop_reason = trace_stop_reason_unknown;
10009   ts->traceframe_count = -1;
10010   ts->buffer_free = 0;
10011 
10012   if (*p++ != 'T')
10013     error (_("Bogus trace status reply from target: %s"), target_buf);
10014 
10015   parse_trace_status (p, ts);
10016 
10017   return ts->running;
10018 }
10019 
10020 static void
10021 remote_trace_stop (void)
10022 {
10023   putpkt ("QTStop");
10024   remote_get_noisy_reply (&target_buf, &target_buf_size);
10025   if (*target_buf == '\0')
10026     error (_("Target does not support this command."));
10027   if (strcmp (target_buf, "OK") != 0)
10028     error (_("Bogus reply from target: %s"), target_buf);
10029 }
10030 
10031 static int
10032 remote_trace_find (enum trace_find_type type, int num,
10033 		   ULONGEST addr1, ULONGEST addr2,
10034 		   int *tpp)
10035 {
10036   struct remote_state *rs = get_remote_state ();
10037   char *p, *reply;
10038   int target_frameno = -1, target_tracept = -1;
10039 
10040   /* Lookups other than by absolute frame number depend on the current
10041      trace selected, so make sure it is correct on the remote end
10042      first.  */
10043   if (type != tfind_number)
10044     set_remote_traceframe ();
10045 
10046   p = rs->buf;
10047   strcpy (p, "QTFrame:");
10048   p = strchr (p, '\0');
10049   switch (type)
10050     {
10051     case tfind_number:
10052       sprintf (p, "%x", num);
10053       break;
10054     case tfind_pc:
10055       sprintf (p, "pc:%s", phex_nz (addr1, 0));
10056       break;
10057     case tfind_tp:
10058       sprintf (p, "tdp:%x", num);
10059       break;
10060     case tfind_range:
10061       sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10062       break;
10063     case tfind_outside:
10064       sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10065       break;
10066     default:
10067       error (_("Unknown trace find type %d"), type);
10068     }
10069 
10070   putpkt (rs->buf);
10071   reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10072   if (*reply == '\0')
10073     error (_("Target does not support this command."));
10074 
10075   while (reply && *reply)
10076     switch (*reply)
10077       {
10078       case 'F':
10079 	p = ++reply;
10080 	target_frameno = (int) strtol (p, &reply, 16);
10081 	if (reply == p)
10082 	  error (_("Unable to parse trace frame number"));
10083 	/* Don't update our remote traceframe number cache on failure
10084 	   to select a remote traceframe.  */
10085 	if (target_frameno == -1)
10086 	  return -1;
10087 	break;
10088       case 'T':
10089 	p = ++reply;
10090 	target_tracept = (int) strtol (p, &reply, 16);
10091 	if (reply == p)
10092 	  error (_("Unable to parse tracepoint number"));
10093 	break;
10094       case 'O':		/* "OK"? */
10095 	if (reply[1] == 'K' && reply[2] == '\0')
10096 	  reply += 2;
10097 	else
10098 	  error (_("Bogus reply from target: %s"), reply);
10099 	break;
10100       default:
10101 	error (_("Bogus reply from target: %s"), reply);
10102       }
10103   if (tpp)
10104     *tpp = target_tracept;
10105 
10106   remote_traceframe_number = target_frameno;
10107   return target_frameno;
10108 }
10109 
10110 static int
10111 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10112 {
10113   struct remote_state *rs = get_remote_state ();
10114   char *reply;
10115   ULONGEST uval;
10116 
10117   set_remote_traceframe ();
10118 
10119   sprintf (rs->buf, "qTV:%x", tsvnum);
10120   putpkt (rs->buf);
10121   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10122   if (reply && *reply)
10123     {
10124       if (*reply == 'V')
10125 	{
10126 	  unpack_varlen_hex (reply + 1, &uval);
10127 	  *val = (LONGEST) uval;
10128 	  return 1;
10129 	}
10130     }
10131   return 0;
10132 }
10133 
10134 static int
10135 remote_save_trace_data (const char *filename)
10136 {
10137   struct remote_state *rs = get_remote_state ();
10138   char *p, *reply;
10139 
10140   p = rs->buf;
10141   strcpy (p, "QTSave:");
10142   p += strlen (p);
10143   if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10144     error (_("Remote file name too long for trace save packet"));
10145   p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10146   *p++ = '\0';
10147   putpkt (rs->buf);
10148   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10149   if (*reply != '\0')
10150     error (_("Target does not support this command."));
10151   if (strcmp (reply, "OK") != 0)
10152     error (_("Bogus reply from target: %s"), reply);
10153   return 0;
10154 }
10155 
10156 /* This is basically a memory transfer, but needs to be its own packet
10157    because we don't know how the target actually organizes its trace
10158    memory, plus we want to be able to ask for as much as possible, but
10159    not be unhappy if we don't get as much as we ask for.  */
10160 
10161 static LONGEST
10162 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10163 {
10164   struct remote_state *rs = get_remote_state ();
10165   char *reply;
10166   char *p;
10167   int rslt;
10168 
10169   p = rs->buf;
10170   strcpy (p, "qTBuffer:");
10171   p += strlen (p);
10172   p += hexnumstr (p, offset);
10173   *p++ = ',';
10174   p += hexnumstr (p, len);
10175   *p++ = '\0';
10176 
10177   putpkt (rs->buf);
10178   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10179   if (reply && *reply)
10180     {
10181       /* 'l' by itself means we're at the end of the buffer and
10182 	 there is nothing more to get.  */
10183       if (*reply == 'l')
10184 	return 0;
10185 
10186       /* Convert the reply into binary.  Limit the number of bytes to
10187 	 convert according to our passed-in buffer size, rather than
10188 	 what was returned in the packet; if the target is
10189 	 unexpectedly generous and gives us a bigger reply than we
10190 	 asked for, we don't want to crash.  */
10191       rslt = hex2bin (target_buf, buf, len);
10192       return rslt;
10193     }
10194 
10195   /* Something went wrong, flag as an error.  */
10196   return -1;
10197 }
10198 
10199 static void
10200 remote_set_disconnected_tracing (int val)
10201 {
10202   struct remote_state *rs = get_remote_state ();
10203 
10204   if (rs->disconnected_tracing)
10205     {
10206       char *reply;
10207 
10208       sprintf (rs->buf, "QTDisconnected:%x", val);
10209       putpkt (rs->buf);
10210       reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10211       if (*reply == '\0')
10212 	error (_("Target does not support this command."));
10213       if (strcmp (reply, "OK") != 0)
10214         error (_("Bogus reply from target: %s"), reply);
10215     }
10216   else if (val)
10217     warning (_("Target does not support disconnected tracing."));
10218 }
10219 
10220 static int
10221 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10222 {
10223   struct thread_info *info = find_thread_ptid (ptid);
10224 
10225   if (info && info->private)
10226     return info->private->core;
10227   return -1;
10228 }
10229 
10230 static void
10231 remote_set_circular_trace_buffer (int val)
10232 {
10233   struct remote_state *rs = get_remote_state ();
10234   char *reply;
10235 
10236   sprintf (rs->buf, "QTBuffer:circular:%x", val);
10237   putpkt (rs->buf);
10238   reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10239   if (*reply == '\0')
10240     error (_("Target does not support this command."));
10241   if (strcmp (reply, "OK") != 0)
10242     error (_("Bogus reply from target: %s"), reply);
10243 }
10244 
10245 static struct traceframe_info *
10246 remote_traceframe_info (void)
10247 {
10248   char *text;
10249 
10250   text = target_read_stralloc (&current_target,
10251 			       TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10252   if (text != NULL)
10253     {
10254       struct traceframe_info *info;
10255       struct cleanup *back_to = make_cleanup (xfree, text);
10256 
10257       info = parse_traceframe_info (text);
10258       do_cleanups (back_to);
10259       return info;
10260     }
10261 
10262   return NULL;
10263 }
10264 
10265 static void
10266 init_remote_ops (void)
10267 {
10268   remote_ops.to_shortname = "remote";
10269   remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10270   remote_ops.to_doc =
10271     "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10272 Specify the serial device it is connected to\n\
10273 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10274   remote_ops.to_open = remote_open;
10275   remote_ops.to_close = remote_close;
10276   remote_ops.to_detach = remote_detach;
10277   remote_ops.to_disconnect = remote_disconnect;
10278   remote_ops.to_resume = remote_resume;
10279   remote_ops.to_wait = remote_wait;
10280   remote_ops.to_fetch_registers = remote_fetch_registers;
10281   remote_ops.to_store_registers = remote_store_registers;
10282   remote_ops.to_prepare_to_store = remote_prepare_to_store;
10283   remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10284   remote_ops.to_files_info = remote_files_info;
10285   remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10286   remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10287   remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10288   remote_ops.to_stopped_data_address = remote_stopped_data_address;
10289   remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10290   remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10291   remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10292   remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10293   remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10294   remote_ops.to_kill = remote_kill;
10295   remote_ops.to_load = generic_load;
10296   remote_ops.to_mourn_inferior = remote_mourn;
10297   remote_ops.to_notice_signals = remote_notice_signals;
10298   remote_ops.to_thread_alive = remote_thread_alive;
10299   remote_ops.to_find_new_threads = remote_threads_info;
10300   remote_ops.to_pid_to_str = remote_pid_to_str;
10301   remote_ops.to_extra_thread_info = remote_threads_extra_info;
10302   remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10303   remote_ops.to_stop = remote_stop;
10304   remote_ops.to_xfer_partial = remote_xfer_partial;
10305   remote_ops.to_rcmd = remote_rcmd;
10306   remote_ops.to_log_command = serial_log_command;
10307   remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10308   remote_ops.to_stratum = process_stratum;
10309   remote_ops.to_has_all_memory = default_child_has_all_memory;
10310   remote_ops.to_has_memory = default_child_has_memory;
10311   remote_ops.to_has_stack = default_child_has_stack;
10312   remote_ops.to_has_registers = default_child_has_registers;
10313   remote_ops.to_has_execution = default_child_has_execution;
10314   remote_ops.to_has_thread_control = tc_schedlock;    /* can lock scheduler */
10315   remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10316   remote_ops.to_magic = OPS_MAGIC;
10317   remote_ops.to_memory_map = remote_memory_map;
10318   remote_ops.to_flash_erase = remote_flash_erase;
10319   remote_ops.to_flash_done = remote_flash_done;
10320   remote_ops.to_read_description = remote_read_description;
10321   remote_ops.to_search_memory = remote_search_memory;
10322   remote_ops.to_can_async_p = remote_can_async_p;
10323   remote_ops.to_is_async_p = remote_is_async_p;
10324   remote_ops.to_async = remote_async;
10325   remote_ops.to_async_mask = remote_async_mask;
10326   remote_ops.to_terminal_inferior = remote_terminal_inferior;
10327   remote_ops.to_terminal_ours = remote_terminal_ours;
10328   remote_ops.to_supports_non_stop = remote_supports_non_stop;
10329   remote_ops.to_supports_multi_process = remote_supports_multi_process;
10330   remote_ops.to_trace_init = remote_trace_init;
10331   remote_ops.to_download_tracepoint = remote_download_tracepoint;
10332   remote_ops.to_download_trace_state_variable
10333     = remote_download_trace_state_variable;
10334   remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10335   remote_ops.to_trace_start = remote_trace_start;
10336   remote_ops.to_get_trace_status = remote_get_trace_status;
10337   remote_ops.to_trace_stop = remote_trace_stop;
10338   remote_ops.to_trace_find = remote_trace_find;
10339   remote_ops.to_get_trace_state_variable_value
10340     = remote_get_trace_state_variable_value;
10341   remote_ops.to_save_trace_data = remote_save_trace_data;
10342   remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10343   remote_ops.to_upload_trace_state_variables
10344     = remote_upload_trace_state_variables;
10345   remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10346   remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10347   remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10348   remote_ops.to_core_of_thread = remote_core_of_thread;
10349   remote_ops.to_verify_memory = remote_verify_memory;
10350   remote_ops.to_get_tib_address = remote_get_tib_address;
10351   remote_ops.to_set_permissions = remote_set_permissions;
10352   remote_ops.to_static_tracepoint_marker_at
10353     = remote_static_tracepoint_marker_at;
10354   remote_ops.to_static_tracepoint_markers_by_strid
10355     = remote_static_tracepoint_markers_by_strid;
10356   remote_ops.to_traceframe_info = remote_traceframe_info;
10357 }
10358 
10359 /* Set up the extended remote vector by making a copy of the standard
10360    remote vector and adding to it.  */
10361 
10362 static void
10363 init_extended_remote_ops (void)
10364 {
10365   extended_remote_ops = remote_ops;
10366 
10367   extended_remote_ops.to_shortname = "extended-remote";
10368   extended_remote_ops.to_longname =
10369     "Extended remote serial target in gdb-specific protocol";
10370   extended_remote_ops.to_doc =
10371     "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10372 Specify the serial device it is connected to (e.g. /dev/ttya).";
10373   extended_remote_ops.to_open = extended_remote_open;
10374   extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10375   extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10376   extended_remote_ops.to_detach = extended_remote_detach;
10377   extended_remote_ops.to_attach = extended_remote_attach;
10378   extended_remote_ops.to_kill = extended_remote_kill;
10379 }
10380 
10381 static int
10382 remote_can_async_p (void)
10383 {
10384   if (!target_async_permitted)
10385     /* We only enable async when the user specifically asks for it.  */
10386     return 0;
10387 
10388   /* We're async whenever the serial device is.  */
10389   return remote_async_mask_value && serial_can_async_p (remote_desc);
10390 }
10391 
10392 static int
10393 remote_is_async_p (void)
10394 {
10395   if (!target_async_permitted)
10396     /* We only enable async when the user specifically asks for it.  */
10397     return 0;
10398 
10399   /* We're async whenever the serial device is.  */
10400   return remote_async_mask_value && serial_is_async_p (remote_desc);
10401 }
10402 
10403 /* Pass the SERIAL event on and up to the client.  One day this code
10404    will be able to delay notifying the client of an event until the
10405    point where an entire packet has been received.  */
10406 
10407 static void (*async_client_callback) (enum inferior_event_type event_type,
10408 				      void *context);
10409 static void *async_client_context;
10410 static serial_event_ftype remote_async_serial_handler;
10411 
10412 static void
10413 remote_async_serial_handler (struct serial *scb, void *context)
10414 {
10415   /* Don't propogate error information up to the client.  Instead let
10416      the client find out about the error by querying the target.  */
10417   async_client_callback (INF_REG_EVENT, async_client_context);
10418 }
10419 
10420 static void
10421 remote_async_inferior_event_handler (gdb_client_data data)
10422 {
10423   inferior_event_handler (INF_REG_EVENT, NULL);
10424 }
10425 
10426 static void
10427 remote_async_get_pending_events_handler (gdb_client_data data)
10428 {
10429   remote_get_pending_stop_replies ();
10430 }
10431 
10432 static void
10433 remote_async (void (*callback) (enum inferior_event_type event_type,
10434 				void *context), void *context)
10435 {
10436   if (remote_async_mask_value == 0)
10437     internal_error (__FILE__, __LINE__,
10438 		    _("Calling remote_async when async is masked"));
10439 
10440   if (callback != NULL)
10441     {
10442       serial_async (remote_desc, remote_async_serial_handler, NULL);
10443       async_client_callback = callback;
10444       async_client_context = context;
10445     }
10446   else
10447     serial_async (remote_desc, NULL, NULL);
10448 }
10449 
10450 static int
10451 remote_async_mask (int new_mask)
10452 {
10453   int curr_mask = remote_async_mask_value;
10454 
10455   remote_async_mask_value = new_mask;
10456   return curr_mask;
10457 }
10458 
10459 static void
10460 set_remote_cmd (char *args, int from_tty)
10461 {
10462   help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10463 }
10464 
10465 static void
10466 show_remote_cmd (char *args, int from_tty)
10467 {
10468   /* We can't just use cmd_show_list here, because we want to skip
10469      the redundant "show remote Z-packet" and the legacy aliases.  */
10470   struct cleanup *showlist_chain;
10471   struct cmd_list_element *list = remote_show_cmdlist;
10472 
10473   showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10474   for (; list != NULL; list = list->next)
10475     if (strcmp (list->name, "Z-packet") == 0)
10476       continue;
10477     else if (list->type == not_set_cmd)
10478       /* Alias commands are exactly like the original, except they
10479 	 don't have the normal type.  */
10480       continue;
10481     else
10482       {
10483 	struct cleanup *option_chain
10484 	  = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10485 
10486 	ui_out_field_string (uiout, "name", list->name);
10487 	ui_out_text (uiout, ":  ");
10488 	if (list->type == show_cmd)
10489 	  do_setshow_command ((char *) NULL, from_tty, list);
10490 	else
10491 	  cmd_func (list, NULL, from_tty);
10492 	/* Close the tuple.  */
10493 	do_cleanups (option_chain);
10494       }
10495 
10496   /* Close the tuple.  */
10497   do_cleanups (showlist_chain);
10498 }
10499 
10500 
10501 /* Function to be called whenever a new objfile (shlib) is detected.  */
10502 static void
10503 remote_new_objfile (struct objfile *objfile)
10504 {
10505   if (remote_desc != 0)		/* Have a remote connection.  */
10506     remote_check_symbols (objfile);
10507 }
10508 
10509 /* Pull all the tracepoints defined on the target and create local
10510    data structures representing them.  We don't want to create real
10511    tracepoints yet, we don't want to mess up the user's existing
10512    collection.  */
10513 
10514 static int
10515 remote_upload_tracepoints (struct uploaded_tp **utpp)
10516 {
10517   struct remote_state *rs = get_remote_state ();
10518   char *p;
10519 
10520   /* Ask for a first packet of tracepoint definition.  */
10521   putpkt ("qTfP");
10522   getpkt (&rs->buf, &rs->buf_size, 0);
10523   p = rs->buf;
10524   while (*p && *p != 'l')
10525     {
10526       parse_tracepoint_definition (p, utpp);
10527       /* Ask for another packet of tracepoint definition.  */
10528       putpkt ("qTsP");
10529       getpkt (&rs->buf, &rs->buf_size, 0);
10530       p = rs->buf;
10531     }
10532   return 0;
10533 }
10534 
10535 static int
10536 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10537 {
10538   struct remote_state *rs = get_remote_state ();
10539   char *p;
10540 
10541   /* Ask for a first packet of variable definition.  */
10542   putpkt ("qTfV");
10543   getpkt (&rs->buf, &rs->buf_size, 0);
10544   p = rs->buf;
10545   while (*p && *p != 'l')
10546     {
10547       parse_tsv_definition (p, utsvp);
10548       /* Ask for another packet of variable definition.  */
10549       putpkt ("qTsV");
10550       getpkt (&rs->buf, &rs->buf_size, 0);
10551       p = rs->buf;
10552     }
10553   return 0;
10554 }
10555 
10556 void
10557 _initialize_remote (void)
10558 {
10559   struct remote_state *rs;
10560   struct cmd_list_element *cmd;
10561   char *cmd_name;
10562 
10563   /* architecture specific data */
10564   remote_gdbarch_data_handle =
10565     gdbarch_data_register_post_init (init_remote_state);
10566   remote_g_packet_data_handle =
10567     gdbarch_data_register_pre_init (remote_g_packet_data_init);
10568 
10569   /* Initialize the per-target state.  At the moment there is only one
10570      of these, not one per target.  Only one target is active at a
10571      time.  The default buffer size is unimportant; it will be expanded
10572      whenever a larger buffer is needed.  */
10573   rs = get_remote_state_raw ();
10574   rs->buf_size = 400;
10575   rs->buf = xmalloc (rs->buf_size);
10576 
10577   init_remote_ops ();
10578   add_target (&remote_ops);
10579 
10580   init_extended_remote_ops ();
10581   add_target (&extended_remote_ops);
10582 
10583   /* Hook into new objfile notification.  */
10584   observer_attach_new_objfile (remote_new_objfile);
10585 
10586   /* Set up signal handlers.  */
10587   sigint_remote_token =
10588     create_async_signal_handler (async_remote_interrupt, NULL);
10589   sigint_remote_twice_token =
10590     create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10591 
10592 #if 0
10593   init_remote_threadtests ();
10594 #endif
10595 
10596   /* set/show remote ...  */
10597 
10598   add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10599 Remote protocol specific variables\n\
10600 Configure various remote-protocol specific variables such as\n\
10601 the packets being used"),
10602 		  &remote_set_cmdlist, "set remote ",
10603 		  0 /* allow-unknown */, &setlist);
10604   add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10605 Remote protocol specific variables\n\
10606 Configure various remote-protocol specific variables such as\n\
10607 the packets being used"),
10608 		  &remote_show_cmdlist, "show remote ",
10609 		  0 /* allow-unknown */, &showlist);
10610 
10611   add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10612 Compare section data on target to the exec file.\n\
10613 Argument is a single section name (default: all loaded sections)."),
10614 	   &cmdlist);
10615 
10616   add_cmd ("packet", class_maintenance, packet_command, _("\
10617 Send an arbitrary packet to a remote target.\n\
10618    maintenance packet TEXT\n\
10619 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10620 this command sends the string TEXT to the inferior, and displays the\n\
10621 response packet.  GDB supplies the initial `$' character, and the\n\
10622 terminating `#' character and checksum."),
10623 	   &maintenancelist);
10624 
10625   add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10626 Set whether to send break if interrupted."), _("\
10627 Show whether to send break if interrupted."), _("\
10628 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10629 			   set_remotebreak, show_remotebreak,
10630 			   &setlist, &showlist);
10631   cmd_name = "remotebreak";
10632   cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10633   deprecate_cmd (cmd, "set remote interrupt-sequence");
10634   cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10635   cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10636   deprecate_cmd (cmd, "show remote interrupt-sequence");
10637 
10638   add_setshow_enum_cmd ("interrupt-sequence", class_support,
10639 			interrupt_sequence_modes, &interrupt_sequence_mode,
10640 			_("\
10641 Set interrupt sequence to remote target."), _("\
10642 Show interrupt sequence to remote target."), _("\
10643 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10644 			NULL, show_interrupt_sequence,
10645 			&remote_set_cmdlist,
10646 			&remote_show_cmdlist);
10647 
10648   add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10649 			   &interrupt_on_connect, _("\
10650 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("		\
10651 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("		\
10652 If set, interrupt sequence is sent to remote target."),
10653 			   NULL, NULL,
10654 			   &remote_set_cmdlist, &remote_show_cmdlist);
10655 
10656   /* Install commands for configuring memory read/write packets.  */
10657 
10658   add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10659 Set the maximum number of bytes per memory write packet (deprecated)."),
10660 	   &setlist);
10661   add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10662 Show the maximum number of bytes per memory write packet (deprecated)."),
10663 	   &showlist);
10664   add_cmd ("memory-write-packet-size", no_class,
10665 	   set_memory_write_packet_size, _("\
10666 Set the maximum number of bytes per memory-write packet.\n\
10667 Specify the number of bytes in a packet or 0 (zero) for the\n\
10668 default packet size.  The actual limit is further reduced\n\
10669 dependent on the target.  Specify ``fixed'' to disable the\n\
10670 further restriction and ``limit'' to enable that restriction."),
10671 	   &remote_set_cmdlist);
10672   add_cmd ("memory-read-packet-size", no_class,
10673 	   set_memory_read_packet_size, _("\
10674 Set the maximum number of bytes per memory-read packet.\n\
10675 Specify the number of bytes in a packet or 0 (zero) for the\n\
10676 default packet size.  The actual limit is further reduced\n\
10677 dependent on the target.  Specify ``fixed'' to disable the\n\
10678 further restriction and ``limit'' to enable that restriction."),
10679 	   &remote_set_cmdlist);
10680   add_cmd ("memory-write-packet-size", no_class,
10681 	   show_memory_write_packet_size,
10682 	   _("Show the maximum number of bytes per memory-write packet."),
10683 	   &remote_show_cmdlist);
10684   add_cmd ("memory-read-packet-size", no_class,
10685 	   show_memory_read_packet_size,
10686 	   _("Show the maximum number of bytes per memory-read packet."),
10687 	   &remote_show_cmdlist);
10688 
10689   add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10690 			    &remote_hw_watchpoint_limit, _("\
10691 Set the maximum number of target hardware watchpoints."), _("\
10692 Show the maximum number of target hardware watchpoints."), _("\
10693 Specify a negative limit for unlimited."),
10694 			    NULL, NULL, /* FIXME: i18n: The maximum
10695 					   number of target hardware
10696 					   watchpoints is %s.  */
10697 			    &remote_set_cmdlist, &remote_show_cmdlist);
10698   add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10699 			    &remote_hw_breakpoint_limit, _("\
10700 Set the maximum number of target hardware breakpoints."), _("\
10701 Show the maximum number of target hardware breakpoints."), _("\
10702 Specify a negative limit for unlimited."),
10703 			    NULL, NULL, /* FIXME: i18n: The maximum
10704 					   number of target hardware
10705 					   breakpoints is %s.  */
10706 			    &remote_set_cmdlist, &remote_show_cmdlist);
10707 
10708   add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10709 			   &remote_address_size, _("\
10710 Set the maximum size of the address (in bits) in a memory packet."), _("\
10711 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10712 			   NULL,
10713 			   NULL, /* FIXME: i18n: */
10714 			   &setlist, &showlist);
10715 
10716   add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10717 			 "X", "binary-download", 1);
10718 
10719   add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10720 			 "vCont", "verbose-resume", 0);
10721 
10722   add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10723 			 "QPassSignals", "pass-signals", 0);
10724 
10725   add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10726 			 "qSymbol", "symbol-lookup", 0);
10727 
10728   add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10729 			 "P", "set-register", 1);
10730 
10731   add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10732 			 "p", "fetch-register", 1);
10733 
10734   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10735 			 "Z0", "software-breakpoint", 0);
10736 
10737   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10738 			 "Z1", "hardware-breakpoint", 0);
10739 
10740   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10741 			 "Z2", "write-watchpoint", 0);
10742 
10743   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10744 			 "Z3", "read-watchpoint", 0);
10745 
10746   add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10747 			 "Z4", "access-watchpoint", 0);
10748 
10749   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10750 			 "qXfer:auxv:read", "read-aux-vector", 0);
10751 
10752   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10753 			 "qXfer:features:read", "target-features", 0);
10754 
10755   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10756 			 "qXfer:libraries:read", "library-info", 0);
10757 
10758   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10759 			 "qXfer:memory-map:read", "memory-map", 0);
10760 
10761   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10762                          "qXfer:spu:read", "read-spu-object", 0);
10763 
10764   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10765                          "qXfer:spu:write", "write-spu-object", 0);
10766 
10767   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10768                         "qXfer:osdata:read", "osdata", 0);
10769 
10770   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10771 			 "qXfer:threads:read", "threads", 0);
10772 
10773   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10774                          "qXfer:siginfo:read", "read-siginfo-object", 0);
10775 
10776   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10777                          "qXfer:siginfo:write", "write-siginfo-object", 0);
10778 
10779   add_packet_config_cmd
10780     (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10781      "qXfer:trace-frame-info:read", "traceframe-info", 0);
10782 
10783   add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10784 			 "qGetTLSAddr", "get-thread-local-storage-address",
10785 			 0);
10786 
10787   add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10788 			 "qGetTIBAddr", "get-thread-information-block-address",
10789 			 0);
10790 
10791   add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10792 			 "bc", "reverse-continue", 0);
10793 
10794   add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10795 			 "bs", "reverse-step", 0);
10796 
10797   add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10798 			 "qSupported", "supported-packets", 0);
10799 
10800   add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10801 			 "qSearch:memory", "search-memory", 0);
10802 
10803   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10804 			 "vFile:open", "hostio-open", 0);
10805 
10806   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10807 			 "vFile:pread", "hostio-pread", 0);
10808 
10809   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10810 			 "vFile:pwrite", "hostio-pwrite", 0);
10811 
10812   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10813 			 "vFile:close", "hostio-close", 0);
10814 
10815   add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10816 			 "vFile:unlink", "hostio-unlink", 0);
10817 
10818   add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10819 			 "vAttach", "attach", 0);
10820 
10821   add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10822 			 "vRun", "run", 0);
10823 
10824   add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10825 			 "QStartNoAckMode", "noack", 0);
10826 
10827   add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10828 			 "vKill", "kill", 0);
10829 
10830   add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10831 			 "qAttached", "query-attached", 0);
10832 
10833   add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10834 			 "ConditionalTracepoints",
10835 			 "conditional-tracepoints", 0);
10836   add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10837 			 "FastTracepoints", "fast-tracepoints", 0);
10838 
10839   add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10840 			 "TracepointSource", "TracepointSource", 0);
10841 
10842   add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10843 			 "QAllow", "allow", 0);
10844 
10845   add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10846 			 "StaticTracepoints", "static-tracepoints", 0);
10847 
10848   add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10849                          "qXfer:statictrace:read", "read-sdata-object", 0);
10850 
10851   /* Keep the old ``set remote Z-packet ...'' working.  Each individual
10852      Z sub-packet has its own set and show commands, but users may
10853      have sets to this variable in their .gdbinit files (or in their
10854      documentation).  */
10855   add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10856 				&remote_Z_packet_detect, _("\
10857 Set use of remote protocol `Z' packets"), _("\
10858 Show use of remote protocol `Z' packets "), _("\
10859 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10860 packets."),
10861 				set_remote_protocol_Z_packet_cmd,
10862 				show_remote_protocol_Z_packet_cmd,
10863 				/* FIXME: i18n: Use of remote protocol
10864 				   `Z' packets is %s.  */
10865 				&remote_set_cmdlist, &remote_show_cmdlist);
10866 
10867   add_prefix_cmd ("remote", class_files, remote_command, _("\
10868 Manipulate files on the remote system\n\
10869 Transfer files to and from the remote target system."),
10870 		  &remote_cmdlist, "remote ",
10871 		  0 /* allow-unknown */, &cmdlist);
10872 
10873   add_cmd ("put", class_files, remote_put_command,
10874 	   _("Copy a local file to the remote system."),
10875 	   &remote_cmdlist);
10876 
10877   add_cmd ("get", class_files, remote_get_command,
10878 	   _("Copy a remote file to the local system."),
10879 	   &remote_cmdlist);
10880 
10881   add_cmd ("delete", class_files, remote_delete_command,
10882 	   _("Delete a remote file."),
10883 	   &remote_cmdlist);
10884 
10885   remote_exec_file = xstrdup ("");
10886   add_setshow_string_noescape_cmd ("exec-file", class_files,
10887 				   &remote_exec_file, _("\
10888 Set the remote pathname for \"run\""), _("\
10889 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10890 				   &remote_set_cmdlist, &remote_show_cmdlist);
10891 
10892   /* Eventually initialize fileio.  See fileio.c */
10893   initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10894 
10895   /* Take advantage of the fact that the LWP field is not used, to tag
10896      special ptids with it set to != 0.  */
10897   magic_null_ptid = ptid_build (42000, 1, -1);
10898   not_sent_ptid = ptid_build (42000, 1, -2);
10899   any_thread_ptid = ptid_build (42000, 1, 0);
10900 
10901   target_buf_size = 2048;
10902   target_buf = xmalloc (target_buf_size);
10903 }
10904 
10905