xref: /dragonfly/contrib/gdb-7/gdb/solib-svr4.c (revision 2020c8fe)
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2 
3    Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000,
4    2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5    Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 
24 #include "elf/external.h"
25 #include "elf/common.h"
26 #include "elf/mips.h"
27 
28 #include "symtab.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcore.h"
33 #include "target.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "gdbthread.h"
37 #include "observer.h"
38 
39 #include "gdb_assert.h"
40 
41 #include "solist.h"
42 #include "solib.h"
43 #include "solib-svr4.h"
44 
45 #include "bfd-target.h"
46 #include "elf-bfd.h"
47 #include "exec.h"
48 #include "auxv.h"
49 #include "exceptions.h"
50 
51 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
52 static int svr4_have_link_map_offsets (void);
53 static void svr4_relocate_main_executable (void);
54 
55 /* Link map info to include in an allocated so_list entry.  */
56 
57 struct lm_info
58   {
59     /* Pointer to copy of link map from inferior.  The type is char *
60        rather than void *, so that we may use byte offsets to find the
61        various fields without the need for a cast.  */
62     gdb_byte *lm;
63 
64     /* Amount by which addresses in the binary should be relocated to
65        match the inferior.  This could most often be taken directly
66        from lm, but when prelinking is involved and the prelink base
67        address changes, we may need a different offset, we want to
68        warn about the difference and compute it only once.  */
69     CORE_ADDR l_addr;
70 
71     /* The target location of lm.  */
72     CORE_ADDR lm_addr;
73   };
74 
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76    GDB can try to place a breakpoint to monitor shared library
77    events.
78 
79    If none of these symbols are found, or other errors occur, then
80    SVR4 systems will fall back to using a symbol as the "startup
81    mapping complete" breakpoint address.  */
82 
83 static const char * const solib_break_names[] =
84 {
85   "r_debug_state",
86   "_r_debug_state",
87   "_dl_debug_state",
88   "rtld_db_dlactivity",
89   "__dl_rtld_db_dlactivity",
90   "_rtld_debug_state",
91 
92   NULL
93 };
94 
95 static const char * const bkpt_names[] =
96 {
97   "_start",
98   "__start",
99   "main",
100   NULL
101 };
102 
103 static const  char * const main_name_list[] =
104 {
105   "main_$main",
106   NULL
107 };
108 
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110    the same shared library.  */
111 
112 static int
113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115   if (strcmp (gdb_so_name, inferior_so_name) == 0)
116     return 1;
117 
118   /* On Solaris, when starting inferior we think that dynamic linker is
119      /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120      contains /lib/ld.so.1.  Sometimes one file is a link to another, but
121      sometimes they have identical content, but are not linked to each
122      other.  We don't restrict this check for Solaris, but the chances
123      of running into this situation elsewhere are very low.  */
124   if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125       && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126     return 1;
127 
128   /* Similarly, we observed the same issue with sparc64, but with
129      different locations.  */
130   if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131       && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132     return 1;
133 
134   return 0;
135 }
136 
137 static int
138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140   return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142 
143 /* link map access functions.  */
144 
145 static CORE_ADDR
146 LM_ADDR_FROM_LINK_MAP (struct so_list *so)
147 {
148   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
149   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
150 
151   return extract_typed_address (so->lm_info->lm + lmo->l_addr_offset,
152 				ptr_type);
153 }
154 
155 static int
156 HAS_LM_DYNAMIC_FROM_LINK_MAP (void)
157 {
158   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
159 
160   return lmo->l_ld_offset >= 0;
161 }
162 
163 static CORE_ADDR
164 LM_DYNAMIC_FROM_LINK_MAP (struct so_list *so)
165 {
166   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
167   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
168 
169   return extract_typed_address (so->lm_info->lm + lmo->l_ld_offset,
170 				ptr_type);
171 }
172 
173 static CORE_ADDR
174 LM_ADDR_CHECK (struct so_list *so, bfd *abfd)
175 {
176   if (so->lm_info->l_addr == (CORE_ADDR)-1)
177     {
178       struct bfd_section *dyninfo_sect;
179       CORE_ADDR l_addr, l_dynaddr, dynaddr;
180 
181       l_addr = LM_ADDR_FROM_LINK_MAP (so);
182 
183       if (! abfd || ! HAS_LM_DYNAMIC_FROM_LINK_MAP ())
184 	goto set_addr;
185 
186       l_dynaddr = LM_DYNAMIC_FROM_LINK_MAP (so);
187 
188       dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
189       if (dyninfo_sect == NULL)
190 	goto set_addr;
191 
192       dynaddr = bfd_section_vma (abfd, dyninfo_sect);
193 
194       if (dynaddr + l_addr != l_dynaddr)
195 	{
196 	  CORE_ADDR align = 0x1000;
197 	  CORE_ADDR minpagesize = align;
198 
199 	  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
200 	    {
201 	      Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
202 	      Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
203 	      int i;
204 
205 	      align = 1;
206 
207 	      for (i = 0; i < ehdr->e_phnum; i++)
208 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
209 		  align = phdr[i].p_align;
210 
211 	      minpagesize = get_elf_backend_data (abfd)->minpagesize;
212 	    }
213 
214 	  /* Turn it into a mask.  */
215 	  align--;
216 
217 	  /* If the changes match the alignment requirements, we
218 	     assume we're using a core file that was generated by the
219 	     same binary, just prelinked with a different base offset.
220 	     If it doesn't match, we may have a different binary, the
221 	     same binary with the dynamic table loaded at an unrelated
222 	     location, or anything, really.  To avoid regressions,
223 	     don't adjust the base offset in the latter case, although
224 	     odds are that, if things really changed, debugging won't
225 	     quite work.
226 
227 	     One could expect more the condition
228 	       ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
229 	     but the one below is relaxed for PPC.  The PPC kernel supports
230 	     either 4k or 64k page sizes.  To be prepared for 64k pages,
231 	     PPC ELF files are built using an alignment requirement of 64k.
232 	     However, when running on a kernel supporting 4k pages, the memory
233 	     mapping of the library may not actually happen on a 64k boundary!
234 
235 	     (In the usual case where (l_addr & align) == 0, this check is
236 	     equivalent to the possibly expected check above.)
237 
238 	     Even on PPC it must be zero-aligned at least for MINPAGESIZE.  */
239 
240 	  if ((l_addr & (minpagesize - 1)) == 0
241 	      && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
242 	    {
243 	      l_addr = l_dynaddr - dynaddr;
244 
245 	      if (info_verbose)
246 		printf_unfiltered (_("Using PIC (Position Independent Code) "
247 				     "prelink displacement %s for \"%s\".\n"),
248 				   paddress (target_gdbarch, l_addr),
249 				   so->so_name);
250 	    }
251 	  else
252 	    warning (_(".dynamic section for \"%s\" "
253 		       "is not at the expected address "
254 		       "(wrong library or version mismatch?)"), so->so_name);
255 	}
256 
257     set_addr:
258       so->lm_info->l_addr = l_addr;
259     }
260 
261   return so->lm_info->l_addr;
262 }
263 
264 static CORE_ADDR
265 LM_NEXT (struct so_list *so)
266 {
267   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
268   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
269 
270   return extract_typed_address (so->lm_info->lm + lmo->l_next_offset,
271 				ptr_type);
272 }
273 
274 static CORE_ADDR
275 LM_PREV (struct so_list *so)
276 {
277   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
278   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
279 
280   return extract_typed_address (so->lm_info->lm + lmo->l_prev_offset,
281 				ptr_type);
282 }
283 
284 static CORE_ADDR
285 LM_NAME (struct so_list *so)
286 {
287   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
288   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
289 
290   return extract_typed_address (so->lm_info->lm + lmo->l_name_offset,
291 				ptr_type);
292 }
293 
294 static int
295 IGNORE_FIRST_LINK_MAP_ENTRY (struct so_list *so)
296 {
297   /* Assume that everything is a library if the dynamic loader was loaded
298      late by a static executable.  */
299   if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
300     return 0;
301 
302   return LM_PREV (so) == 0;
303 }
304 
305 /* Per pspace SVR4 specific data.  */
306 
307 struct svr4_info
308 {
309   CORE_ADDR debug_base;	/* Base of dynamic linker structures.  */
310 
311   /* Validity flag for debug_loader_offset.  */
312   int debug_loader_offset_p;
313 
314   /* Load address for the dynamic linker, inferred.  */
315   CORE_ADDR debug_loader_offset;
316 
317   /* Name of the dynamic linker, valid if debug_loader_offset_p.  */
318   char *debug_loader_name;
319 
320   /* Load map address for the main executable.  */
321   CORE_ADDR main_lm_addr;
322 
323   CORE_ADDR interp_text_sect_low;
324   CORE_ADDR interp_text_sect_high;
325   CORE_ADDR interp_plt_sect_low;
326   CORE_ADDR interp_plt_sect_high;
327 };
328 
329 /* Per-program-space data key.  */
330 static const struct program_space_data *solib_svr4_pspace_data;
331 
332 static void
333 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
334 {
335   struct svr4_info *info;
336 
337   info = program_space_data (pspace, solib_svr4_pspace_data);
338   xfree (info);
339 }
340 
341 /* Get the current svr4 data.  If none is found yet, add it now.  This
342    function always returns a valid object.  */
343 
344 static struct svr4_info *
345 get_svr4_info (void)
346 {
347   struct svr4_info *info;
348 
349   info = program_space_data (current_program_space, solib_svr4_pspace_data);
350   if (info != NULL)
351     return info;
352 
353   info = XZALLOC (struct svr4_info);
354   set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
355   return info;
356 }
357 
358 /* Local function prototypes */
359 
360 static int match_main (const char *);
361 
362 /*
363 
364    LOCAL FUNCTION
365 
366    bfd_lookup_symbol -- lookup the value for a specific symbol
367 
368    SYNOPSIS
369 
370    CORE_ADDR bfd_lookup_symbol (bfd *abfd, char *symname)
371 
372    DESCRIPTION
373 
374    An expensive way to lookup the value of a single symbol for
375    bfd's that are only temporary anyway.  This is used by the
376    shared library support to find the address of the debugger
377    notification routine in the shared library.
378 
379    The returned symbol may be in a code or data section; functions
380    will normally be in a code section, but may be in a data section
381    if this architecture uses function descriptors.
382 
383    Note that 0 is specifically allowed as an error return (no
384    such symbol).
385  */
386 
387 static CORE_ADDR
388 bfd_lookup_symbol (bfd *abfd, const char *symname)
389 {
390   long storage_needed;
391   asymbol *sym;
392   asymbol **symbol_table;
393   unsigned int number_of_symbols;
394   unsigned int i;
395   struct cleanup *back_to;
396   CORE_ADDR symaddr = 0;
397 
398   storage_needed = bfd_get_symtab_upper_bound (abfd);
399 
400   if (storage_needed > 0)
401     {
402       symbol_table = (asymbol **) xmalloc (storage_needed);
403       back_to = make_cleanup (xfree, symbol_table);
404       number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
405 
406       for (i = 0; i < number_of_symbols; i++)
407 	{
408 	  sym = *symbol_table++;
409 	  if (strcmp (sym->name, symname) == 0
410               && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
411 	    {
412 	      /* BFD symbols are section relative.  */
413 	      symaddr = sym->value + sym->section->vma;
414 	      break;
415 	    }
416 	}
417       do_cleanups (back_to);
418     }
419 
420   if (symaddr)
421     return symaddr;
422 
423   /* On FreeBSD, the dynamic linker is stripped by default.  So we'll
424      have to check the dynamic string table too.  */
425 
426   storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
427 
428   if (storage_needed > 0)
429     {
430       symbol_table = (asymbol **) xmalloc (storage_needed);
431       back_to = make_cleanup (xfree, symbol_table);
432       number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, symbol_table);
433 
434       for (i = 0; i < number_of_symbols; i++)
435 	{
436 	  sym = *symbol_table++;
437 
438 	  if (strcmp (sym->name, symname) == 0
439               && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0)
440 	    {
441 	      /* BFD symbols are section relative.  */
442 	      symaddr = sym->value + sym->section->vma;
443 	      break;
444 	    }
445 	}
446       do_cleanups (back_to);
447     }
448 
449   return symaddr;
450 }
451 
452 
453 /* Read program header TYPE from inferior memory.  The header is found
454    by scanning the OS auxillary vector.
455 
456    If TYPE == -1, return the program headers instead of the contents of
457    one program header.
458 
459    Return a pointer to allocated memory holding the program header contents,
460    or NULL on failure.  If sucessful, and unless P_SECT_SIZE is NULL, the
461    size of those contents is returned to P_SECT_SIZE.  Likewise, the target
462    architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE.  */
463 
464 static gdb_byte *
465 read_program_header (int type, int *p_sect_size, int *p_arch_size)
466 {
467   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
468   CORE_ADDR at_phdr, at_phent, at_phnum;
469   int arch_size, sect_size;
470   CORE_ADDR sect_addr;
471   gdb_byte *buf;
472 
473   /* Get required auxv elements from target.  */
474   if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
475     return 0;
476   if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
477     return 0;
478   if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
479     return 0;
480   if (!at_phdr || !at_phnum)
481     return 0;
482 
483   /* Determine ELF architecture type.  */
484   if (at_phent == sizeof (Elf32_External_Phdr))
485     arch_size = 32;
486   else if (at_phent == sizeof (Elf64_External_Phdr))
487     arch_size = 64;
488   else
489     return 0;
490 
491   /* Find the requested segment.  */
492   if (type == -1)
493     {
494       sect_addr = at_phdr;
495       sect_size = at_phent * at_phnum;
496     }
497   else if (arch_size == 32)
498     {
499       Elf32_External_Phdr phdr;
500       int i;
501 
502       /* Search for requested PHDR.  */
503       for (i = 0; i < at_phnum; i++)
504 	{
505 	  if (target_read_memory (at_phdr + i * sizeof (phdr),
506 				  (gdb_byte *)&phdr, sizeof (phdr)))
507 	    return 0;
508 
509 	  if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
510 					4, byte_order) == type)
511 	    break;
512 	}
513 
514       if (i == at_phnum)
515 	return 0;
516 
517       /* Retrieve address and size.  */
518       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
519 					    4, byte_order);
520       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
521 					    4, byte_order);
522     }
523   else
524     {
525       Elf64_External_Phdr phdr;
526       int i;
527 
528       /* Search for requested PHDR.  */
529       for (i = 0; i < at_phnum; i++)
530 	{
531 	  if (target_read_memory (at_phdr + i * sizeof (phdr),
532 				  (gdb_byte *)&phdr, sizeof (phdr)))
533 	    return 0;
534 
535 	  if (extract_unsigned_integer ((gdb_byte *)phdr.p_type,
536 					4, byte_order) == type)
537 	    break;
538 	}
539 
540       if (i == at_phnum)
541 	return 0;
542 
543       /* Retrieve address and size.  */
544       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
545 					    8, byte_order);
546       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
547 					    8, byte_order);
548     }
549 
550   /* Read in requested program header.  */
551   buf = xmalloc (sect_size);
552   if (target_read_memory (sect_addr, buf, sect_size))
553     {
554       xfree (buf);
555       return NULL;
556     }
557 
558   if (p_arch_size)
559     *p_arch_size = arch_size;
560   if (p_sect_size)
561     *p_sect_size = sect_size;
562 
563   return buf;
564 }
565 
566 
567 /* Return program interpreter string.  */
568 static gdb_byte *
569 find_program_interpreter (void)
570 {
571   gdb_byte *buf = NULL;
572 
573   /* If we have an exec_bfd, use its section table.  */
574   if (exec_bfd
575       && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
576    {
577      struct bfd_section *interp_sect;
578 
579      interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
580      if (interp_sect != NULL)
581       {
582 	int sect_size = bfd_section_size (exec_bfd, interp_sect);
583 
584 	buf = xmalloc (sect_size);
585 	bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
586       }
587    }
588 
589   /* If we didn't find it, use the target auxillary vector.  */
590   if (!buf)
591     buf = read_program_header (PT_INTERP, NULL, NULL);
592 
593   return buf;
594 }
595 
596 
597 /* Scan for DYNTAG in .dynamic section of ABFD.  If DYNTAG is found 1 is
598    returned and the corresponding PTR is set.  */
599 
600 static int
601 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
602 {
603   int arch_size, step, sect_size;
604   long dyn_tag;
605   CORE_ADDR dyn_ptr, dyn_addr;
606   gdb_byte *bufend, *bufstart, *buf;
607   Elf32_External_Dyn *x_dynp_32;
608   Elf64_External_Dyn *x_dynp_64;
609   struct bfd_section *sect;
610   struct target_section *target_section;
611 
612   if (abfd == NULL)
613     return 0;
614 
615   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
616     return 0;
617 
618   arch_size = bfd_get_arch_size (abfd);
619   if (arch_size == -1)
620     return 0;
621 
622   /* Find the start address of the .dynamic section.  */
623   sect = bfd_get_section_by_name (abfd, ".dynamic");
624   if (sect == NULL)
625     return 0;
626 
627   for (target_section = current_target_sections->sections;
628        target_section < current_target_sections->sections_end;
629        target_section++)
630     if (sect == target_section->the_bfd_section)
631       break;
632   if (target_section < current_target_sections->sections_end)
633     dyn_addr = target_section->addr;
634   else
635     {
636       /* ABFD may come from OBJFILE acting only as a symbol file without being
637 	 loaded into the target (see add_symbol_file_command).  This case is
638 	 such fallback to the file VMA address without the possibility of
639 	 having the section relocated to its actual in-memory address.  */
640 
641       dyn_addr = bfd_section_vma (abfd, sect);
642     }
643 
644   /* Read in .dynamic from the BFD.  We will get the actual value
645      from memory later.  */
646   sect_size = bfd_section_size (abfd, sect);
647   buf = bufstart = alloca (sect_size);
648   if (!bfd_get_section_contents (abfd, sect,
649 				 buf, 0, sect_size))
650     return 0;
651 
652   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
653   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
654 			   : sizeof (Elf64_External_Dyn);
655   for (bufend = buf + sect_size;
656        buf < bufend;
657        buf += step)
658   {
659     if (arch_size == 32)
660       {
661 	x_dynp_32 = (Elf32_External_Dyn *) buf;
662 	dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
663 	dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
664       }
665     else
666       {
667 	x_dynp_64 = (Elf64_External_Dyn *) buf;
668 	dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
669 	dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
670       }
671      if (dyn_tag == DT_NULL)
672        return 0;
673      if (dyn_tag == dyntag)
674        {
675 	 /* If requested, try to read the runtime value of this .dynamic
676 	    entry.  */
677 	 if (ptr)
678 	   {
679 	     struct type *ptr_type;
680 	     gdb_byte ptr_buf[8];
681 	     CORE_ADDR ptr_addr;
682 
683 	     ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
684 	     ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
685 	     if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
686 	       dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
687 	     *ptr = dyn_ptr;
688 	   }
689 	 return 1;
690        }
691   }
692 
693   return 0;
694 }
695 
696 /* Scan for DYNTAG in .dynamic section of the target's main executable,
697    found by consulting the OS auxillary vector.  If DYNTAG is found 1 is
698    returned and the corresponding PTR is set.  */
699 
700 static int
701 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
702 {
703   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
704   int sect_size, arch_size, step;
705   long dyn_tag;
706   CORE_ADDR dyn_ptr;
707   gdb_byte *bufend, *bufstart, *buf;
708 
709   /* Read in .dynamic section.  */
710   buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
711   if (!buf)
712     return 0;
713 
714   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
715   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
716 			   : sizeof (Elf64_External_Dyn);
717   for (bufend = buf + sect_size;
718        buf < bufend;
719        buf += step)
720   {
721     if (arch_size == 32)
722       {
723 	Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
724 
725 	dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
726 					    4, byte_order);
727 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
728 					    4, byte_order);
729       }
730     else
731       {
732 	Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
733 
734 	dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
735 					    8, byte_order);
736 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 					    8, byte_order);
738       }
739     if (dyn_tag == DT_NULL)
740       break;
741 
742     if (dyn_tag == dyntag)
743       {
744 	if (ptr)
745 	  *ptr = dyn_ptr;
746 
747 	xfree (bufstart);
748 	return 1;
749       }
750   }
751 
752   xfree (bufstart);
753   return 0;
754 }
755 
756 
757 /*
758 
759    LOCAL FUNCTION
760 
761    elf_locate_base -- locate the base address of dynamic linker structs
762    for SVR4 elf targets.
763 
764    SYNOPSIS
765 
766    CORE_ADDR elf_locate_base (void)
767 
768    DESCRIPTION
769 
770    For SVR4 elf targets the address of the dynamic linker's runtime
771    structure is contained within the dynamic info section in the
772    executable file.  The dynamic section is also mapped into the
773    inferior address space.  Because the runtime loader fills in the
774    real address before starting the inferior, we have to read in the
775    dynamic info section from the inferior address space.
776    If there are any errors while trying to find the address, we
777    silently return 0, otherwise the found address is returned.
778 
779  */
780 
781 static CORE_ADDR
782 elf_locate_base (void)
783 {
784   struct minimal_symbol *msymbol;
785   CORE_ADDR dyn_ptr;
786 
787   /* Look for DT_MIPS_RLD_MAP first.  MIPS executables use this
788      instead of DT_DEBUG, although they sometimes contain an unused
789      DT_DEBUG.  */
790   if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
791       || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
792     {
793       struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
794       gdb_byte *pbuf;
795       int pbuf_size = TYPE_LENGTH (ptr_type);
796 
797       pbuf = alloca (pbuf_size);
798       /* DT_MIPS_RLD_MAP contains a pointer to the address
799 	 of the dynamic link structure.  */
800       if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
801 	return 0;
802       return extract_typed_address (pbuf, ptr_type);
803     }
804 
805   /* Find DT_DEBUG.  */
806   if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
807       || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
808     return dyn_ptr;
809 
810   /* This may be a static executable.  Look for the symbol
811      conventionally named _r_debug, as a last resort.  */
812   msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
813   if (msymbol != NULL)
814     return SYMBOL_VALUE_ADDRESS (msymbol);
815 
816   /* DT_DEBUG entry not found.  */
817   return 0;
818 }
819 
820 /*
821 
822    LOCAL FUNCTION
823 
824    locate_base -- locate the base address of dynamic linker structs
825 
826    SYNOPSIS
827 
828    CORE_ADDR locate_base (struct svr4_info *)
829 
830    DESCRIPTION
831 
832    For both the SunOS and SVR4 shared library implementations, if the
833    inferior executable has been linked dynamically, there is a single
834    address somewhere in the inferior's data space which is the key to
835    locating all of the dynamic linker's runtime structures.  This
836    address is the value of the debug base symbol.  The job of this
837    function is to find and return that address, or to return 0 if there
838    is no such address (the executable is statically linked for example).
839 
840    For SunOS, the job is almost trivial, since the dynamic linker and
841    all of it's structures are statically linked to the executable at
842    link time.  Thus the symbol for the address we are looking for has
843    already been added to the minimal symbol table for the executable's
844    objfile at the time the symbol file's symbols were read, and all we
845    have to do is look it up there.  Note that we explicitly do NOT want
846    to find the copies in the shared library.
847 
848    The SVR4 version is a bit more complicated because the address
849    is contained somewhere in the dynamic info section.  We have to go
850    to a lot more work to discover the address of the debug base symbol.
851    Because of this complexity, we cache the value we find and return that
852    value on subsequent invocations.  Note there is no copy in the
853    executable symbol tables.
854 
855  */
856 
857 static CORE_ADDR
858 locate_base (struct svr4_info *info)
859 {
860   /* Check to see if we have a currently valid address, and if so, avoid
861      doing all this work again and just return the cached address.  If
862      we have no cached address, try to locate it in the dynamic info
863      section for ELF executables.  There's no point in doing any of this
864      though if we don't have some link map offsets to work with.  */
865 
866   if (info->debug_base == 0 && svr4_have_link_map_offsets ())
867     info->debug_base = elf_locate_base ();
868   return info->debug_base;
869 }
870 
871 /* Find the first element in the inferior's dynamic link map, and
872    return its address in the inferior.  Return zero if the address
873    could not be determined.
874 
875    FIXME: Perhaps we should validate the info somehow, perhaps by
876    checking r_version for a known version number, or r_state for
877    RT_CONSISTENT.  */
878 
879 static CORE_ADDR
880 solib_svr4_r_map (struct svr4_info *info)
881 {
882   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
883   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
884   CORE_ADDR addr = 0;
885   volatile struct gdb_exception ex;
886 
887   TRY_CATCH (ex, RETURN_MASK_ERROR)
888     {
889       addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
890                                         ptr_type);
891     }
892   exception_print (gdb_stderr, ex);
893   return addr;
894 }
895 
896 /* Find r_brk from the inferior's debug base.  */
897 
898 static CORE_ADDR
899 solib_svr4_r_brk (struct svr4_info *info)
900 {
901   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
902   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
903 
904   return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
905 				    ptr_type);
906 }
907 
908 /* Find the link map for the dynamic linker (if it is not in the
909    normal list of loaded shared objects).  */
910 
911 static CORE_ADDR
912 solib_svr4_r_ldsomap (struct svr4_info *info)
913 {
914   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
915   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
916   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
917   ULONGEST version;
918 
919   /* Check version, and return zero if `struct r_debug' doesn't have
920      the r_ldsomap member.  */
921   version
922     = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
923 				    lmo->r_version_size, byte_order);
924   if (version < 2 || lmo->r_ldsomap_offset == -1)
925     return 0;
926 
927   return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
928 				    ptr_type);
929 }
930 
931 /* On Solaris systems with some versions of the dynamic linker,
932    ld.so's l_name pointer points to the SONAME in the string table
933    rather than into writable memory.  So that GDB can find shared
934    libraries when loading a core file generated by gcore, ensure that
935    memory areas containing the l_name string are saved in the core
936    file.  */
937 
938 static int
939 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
940 {
941   struct svr4_info *info;
942   CORE_ADDR ldsomap;
943   struct so_list *new;
944   struct cleanup *old_chain;
945   struct link_map_offsets *lmo;
946   CORE_ADDR lm_name;
947 
948   info = get_svr4_info ();
949 
950   info->debug_base = 0;
951   locate_base (info);
952   if (!info->debug_base)
953     return 0;
954 
955   ldsomap = solib_svr4_r_ldsomap (info);
956   if (!ldsomap)
957     return 0;
958 
959   lmo = svr4_fetch_link_map_offsets ();
960   new = XZALLOC (struct so_list);
961   old_chain = make_cleanup (xfree, new);
962   new->lm_info = xmalloc (sizeof (struct lm_info));
963   make_cleanup (xfree, new->lm_info);
964   new->lm_info->l_addr = (CORE_ADDR)-1;
965   new->lm_info->lm_addr = ldsomap;
966   new->lm_info->lm = xzalloc (lmo->link_map_size);
967   make_cleanup (xfree, new->lm_info->lm);
968   read_memory (ldsomap, new->lm_info->lm, lmo->link_map_size);
969   lm_name = LM_NAME (new);
970   do_cleanups (old_chain);
971 
972   return (lm_name >= vaddr && lm_name < vaddr + size);
973 }
974 
975 /*
976 
977   LOCAL FUNCTION
978 
979   open_symbol_file_object
980 
981   SYNOPSIS
982 
983   void open_symbol_file_object (void *from_tty)
984 
985   DESCRIPTION
986 
987   If no open symbol file, attempt to locate and open the main symbol
988   file.  On SVR4 systems, this is the first link map entry.  If its
989   name is here, we can open it.  Useful when attaching to a process
990   without first loading its symbol file.
991 
992   If FROM_TTYP dereferences to a non-zero integer, allow messages to
993   be printed.  This parameter is a pointer rather than an int because
994   open_symbol_file_object() is called via catch_errors() and
995   catch_errors() requires a pointer argument.  */
996 
997 static int
998 open_symbol_file_object (void *from_ttyp)
999 {
1000   CORE_ADDR lm, l_name;
1001   char *filename;
1002   int errcode;
1003   int from_tty = *(int *)from_ttyp;
1004   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1005   struct type *ptr_type = builtin_type (target_gdbarch)->builtin_data_ptr;
1006   int l_name_size = TYPE_LENGTH (ptr_type);
1007   gdb_byte *l_name_buf = xmalloc (l_name_size);
1008   struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
1009   struct svr4_info *info = get_svr4_info ();
1010 
1011   if (symfile_objfile)
1012     if (!query (_("Attempt to reload symbols from process? ")))
1013       return 0;
1014 
1015   /* Always locate the debug struct, in case it has moved.  */
1016   info->debug_base = 0;
1017   if (locate_base (info) == 0)
1018     return 0;	/* failed somehow...  */
1019 
1020   /* First link map member should be the executable.  */
1021   lm = solib_svr4_r_map (info);
1022   if (lm == 0)
1023     return 0;	/* failed somehow...  */
1024 
1025   /* Read address of name from target memory to GDB.  */
1026   read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
1027 
1028   /* Convert the address to host format.  */
1029   l_name = extract_typed_address (l_name_buf, ptr_type);
1030 
1031   /* Free l_name_buf.  */
1032   do_cleanups (cleanups);
1033 
1034   if (l_name == 0)
1035     return 0;		/* No filename.  */
1036 
1037   /* Now fetch the filename from target memory.  */
1038   target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1039   make_cleanup (xfree, filename);
1040 
1041   if (errcode)
1042     {
1043       warning (_("failed to read exec filename from attached file: %s"),
1044 	       safe_strerror (errcode));
1045       return 0;
1046     }
1047 
1048   /* Have a pathname: read the symbol file.  */
1049   symbol_file_add_main (filename, from_tty);
1050 
1051   return 1;
1052 }
1053 
1054 /* If no shared library information is available from the dynamic
1055    linker, build a fallback list from other sources.  */
1056 
1057 static struct so_list *
1058 svr4_default_sos (void)
1059 {
1060   struct svr4_info *info = get_svr4_info ();
1061 
1062   struct so_list *head = NULL;
1063   struct so_list **link_ptr = &head;
1064 
1065   if (info->debug_loader_offset_p)
1066     {
1067       struct so_list *new = XZALLOC (struct so_list);
1068 
1069       new->lm_info = xmalloc (sizeof (struct lm_info));
1070 
1071       /* Nothing will ever check the cached copy of the link
1072 	 map if we set l_addr.  */
1073       new->lm_info->l_addr = info->debug_loader_offset;
1074       new->lm_info->lm_addr = 0;
1075       new->lm_info->lm = NULL;
1076 
1077       strncpy (new->so_name, info->debug_loader_name,
1078 	       SO_NAME_MAX_PATH_SIZE - 1);
1079       new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1080       strcpy (new->so_original_name, new->so_name);
1081 
1082       *link_ptr = new;
1083       link_ptr = &new->next;
1084     }
1085 
1086   return head;
1087 }
1088 
1089 /* LOCAL FUNCTION
1090 
1091    current_sos -- build a list of currently loaded shared objects
1092 
1093    SYNOPSIS
1094 
1095    struct so_list *current_sos ()
1096 
1097    DESCRIPTION
1098 
1099    Build a list of `struct so_list' objects describing the shared
1100    objects currently loaded in the inferior.  This list does not
1101    include an entry for the main executable file.
1102 
1103    Note that we only gather information directly available from the
1104    inferior --- we don't examine any of the shared library files
1105    themselves.  The declaration of `struct so_list' says which fields
1106    we provide values for.  */
1107 
1108 static struct so_list *
1109 svr4_current_sos (void)
1110 {
1111   CORE_ADDR lm, prev_lm;
1112   struct so_list *head = 0;
1113   struct so_list **link_ptr = &head;
1114   CORE_ADDR ldsomap = 0;
1115   struct svr4_info *info;
1116 
1117   info = get_svr4_info ();
1118 
1119   /* Always locate the debug struct, in case it has moved.  */
1120   info->debug_base = 0;
1121   locate_base (info);
1122 
1123   /* If we can't find the dynamic linker's base structure, this
1124      must not be a dynamically linked executable.  Hmm.  */
1125   if (! info->debug_base)
1126     return svr4_default_sos ();
1127 
1128   /* Walk the inferior's link map list, and build our list of
1129      `struct so_list' nodes.  */
1130   prev_lm = 0;
1131   lm = solib_svr4_r_map (info);
1132 
1133   while (lm)
1134     {
1135       struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
1136       struct so_list *new = XZALLOC (struct so_list);
1137       struct cleanup *old_chain = make_cleanup (xfree, new);
1138       CORE_ADDR next_lm;
1139 
1140       new->lm_info = xmalloc (sizeof (struct lm_info));
1141       make_cleanup (xfree, new->lm_info);
1142 
1143       new->lm_info->l_addr = (CORE_ADDR)-1;
1144       new->lm_info->lm_addr = lm;
1145       new->lm_info->lm = xzalloc (lmo->link_map_size);
1146       make_cleanup (xfree, new->lm_info->lm);
1147 
1148       read_memory (lm, new->lm_info->lm, lmo->link_map_size);
1149 
1150       next_lm = LM_NEXT (new);
1151 
1152       if (LM_PREV (new) != prev_lm)
1153 	{
1154 	  warning (_("Corrupted shared library list"));
1155 	  free_so (new);
1156 	  next_lm = 0;
1157 	}
1158 
1159       /* For SVR4 versions, the first entry in the link map is for the
1160          inferior executable, so we must ignore it.  For some versions of
1161          SVR4, it has no name.  For others (Solaris 2.3 for example), it
1162          does have a name, so we can no longer use a missing name to
1163          decide when to ignore it.  */
1164       else if (IGNORE_FIRST_LINK_MAP_ENTRY (new) && ldsomap == 0)
1165 	{
1166 	  info->main_lm_addr = new->lm_info->lm_addr;
1167 	  free_so (new);
1168 	}
1169       else
1170 	{
1171 	  int errcode;
1172 	  char *buffer;
1173 
1174 	  /* Extract this shared object's name.  */
1175 	  target_read_string (LM_NAME (new), &buffer,
1176 			      SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1177 	  if (errcode != 0)
1178 	    warning (_("Can't read pathname for load map: %s."),
1179 		     safe_strerror (errcode));
1180 	  else
1181 	    {
1182 	      strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1183 	      new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1184 	      strcpy (new->so_original_name, new->so_name);
1185 	    }
1186 	  xfree (buffer);
1187 
1188 	  /* If this entry has no name, or its name matches the name
1189 	     for the main executable, don't include it in the list.  */
1190 	  if (! new->so_name[0]
1191 	      || match_main (new->so_name))
1192 	    free_so (new);
1193 	  else
1194 	    {
1195 	      new->next = 0;
1196 	      *link_ptr = new;
1197 	      link_ptr = &new->next;
1198 	    }
1199 	}
1200 
1201       prev_lm = lm;
1202       lm = next_lm;
1203 
1204       /* On Solaris, the dynamic linker is not in the normal list of
1205 	 shared objects, so make sure we pick it up too.  Having
1206 	 symbol information for the dynamic linker is quite crucial
1207 	 for skipping dynamic linker resolver code.  */
1208       if (lm == 0 && ldsomap == 0)
1209 	{
1210 	  lm = ldsomap = solib_svr4_r_ldsomap (info);
1211 	  prev_lm = 0;
1212 	}
1213 
1214       discard_cleanups (old_chain);
1215     }
1216 
1217   if (head == NULL)
1218     return svr4_default_sos ();
1219 
1220   return head;
1221 }
1222 
1223 /* Get the address of the link_map for a given OBJFILE.  */
1224 
1225 CORE_ADDR
1226 svr4_fetch_objfile_link_map (struct objfile *objfile)
1227 {
1228   struct so_list *so;
1229   struct svr4_info *info = get_svr4_info ();
1230 
1231   /* Cause svr4_current_sos() to be run if it hasn't been already.  */
1232   if (info->main_lm_addr == 0)
1233     solib_add (NULL, 0, &current_target, auto_solib_add);
1234 
1235   /* svr4_current_sos() will set main_lm_addr for the main executable.  */
1236   if (objfile == symfile_objfile)
1237     return info->main_lm_addr;
1238 
1239   /* The other link map addresses may be found by examining the list
1240      of shared libraries.  */
1241   for (so = master_so_list (); so; so = so->next)
1242     if (so->objfile == objfile)
1243       return so->lm_info->lm_addr;
1244 
1245   /* Not found!  */
1246   return 0;
1247 }
1248 
1249 /* On some systems, the only way to recognize the link map entry for
1250    the main executable file is by looking at its name.  Return
1251    non-zero iff SONAME matches one of the known main executable names.  */
1252 
1253 static int
1254 match_main (const char *soname)
1255 {
1256   const char * const *mainp;
1257 
1258   for (mainp = main_name_list; *mainp != NULL; mainp++)
1259     {
1260       if (strcmp (soname, *mainp) == 0)
1261 	return (1);
1262     }
1263 
1264   return (0);
1265 }
1266 
1267 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1268    SVR4 run time loader.  */
1269 
1270 int
1271 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1272 {
1273   struct svr4_info *info = get_svr4_info ();
1274 
1275   return ((pc >= info->interp_text_sect_low
1276 	   && pc < info->interp_text_sect_high)
1277 	  || (pc >= info->interp_plt_sect_low
1278 	      && pc < info->interp_plt_sect_high)
1279 	  || in_plt_section (pc, NULL)
1280 	  || in_gnu_ifunc_stub (pc));
1281 }
1282 
1283 /* Given an executable's ABFD and target, compute the entry-point
1284    address.  */
1285 
1286 static CORE_ADDR
1287 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1288 {
1289   /* KevinB wrote ... for most targets, the address returned by
1290      bfd_get_start_address() is the entry point for the start
1291      function.  But, for some targets, bfd_get_start_address() returns
1292      the address of a function descriptor from which the entry point
1293      address may be extracted.  This address is extracted by
1294      gdbarch_convert_from_func_ptr_addr().  The method
1295      gdbarch_convert_from_func_ptr_addr() is the merely the identify
1296      function for targets which don't use function descriptors.  */
1297   return gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1298 					     bfd_get_start_address (abfd),
1299 					     targ);
1300 }
1301 
1302 /*
1303 
1304    LOCAL FUNCTION
1305 
1306    enable_break -- arrange for dynamic linker to hit breakpoint
1307 
1308    SYNOPSIS
1309 
1310    int enable_break (void)
1311 
1312    DESCRIPTION
1313 
1314    Both the SunOS and the SVR4 dynamic linkers have, as part of their
1315    debugger interface, support for arranging for the inferior to hit
1316    a breakpoint after mapping in the shared libraries.  This function
1317    enables that breakpoint.
1318 
1319    For SunOS, there is a special flag location (in_debugger) which we
1320    set to 1.  When the dynamic linker sees this flag set, it will set
1321    a breakpoint at a location known only to itself, after saving the
1322    original contents of that place and the breakpoint address itself,
1323    in it's own internal structures.  When we resume the inferior, it
1324    will eventually take a SIGTRAP when it runs into the breakpoint.
1325    We handle this (in a different place) by restoring the contents of
1326    the breakpointed location (which is only known after it stops),
1327    chasing around to locate the shared libraries that have been
1328    loaded, then resuming.
1329 
1330    For SVR4, the debugger interface structure contains a member (r_brk)
1331    which is statically initialized at the time the shared library is
1332    built, to the offset of a function (_r_debug_state) which is guaran-
1333    teed to be called once before mapping in a library, and again when
1334    the mapping is complete.  At the time we are examining this member,
1335    it contains only the unrelocated offset of the function, so we have
1336    to do our own relocation.  Later, when the dynamic linker actually
1337    runs, it relocates r_brk to be the actual address of _r_debug_state().
1338 
1339    The debugger interface structure also contains an enumeration which
1340    is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1341    depending upon whether or not the library is being mapped or unmapped,
1342    and then set to RT_CONSISTENT after the library is mapped/unmapped.
1343  */
1344 
1345 static int
1346 enable_break (struct svr4_info *info, int from_tty)
1347 {
1348   struct minimal_symbol *msymbol;
1349   const char * const *bkpt_namep;
1350   asection *interp_sect;
1351   gdb_byte *interp_name;
1352   CORE_ADDR sym_addr;
1353 
1354   info->interp_text_sect_low = info->interp_text_sect_high = 0;
1355   info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1356 
1357   /* If we already have a shared library list in the target, and
1358      r_debug contains r_brk, set the breakpoint there - this should
1359      mean r_brk has already been relocated.  Assume the dynamic linker
1360      is the object containing r_brk.  */
1361 
1362   solib_add (NULL, from_tty, &current_target, auto_solib_add);
1363   sym_addr = 0;
1364   if (info->debug_base && solib_svr4_r_map (info) != 0)
1365     sym_addr = solib_svr4_r_brk (info);
1366 
1367   if (sym_addr != 0)
1368     {
1369       struct obj_section *os;
1370 
1371       sym_addr = gdbarch_addr_bits_remove
1372 	(target_gdbarch, gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1373 							     sym_addr,
1374 							     &current_target));
1375 
1376       /* On at least some versions of Solaris there's a dynamic relocation
1377 	 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1378 	 we get control before the dynamic linker has self-relocated.
1379 	 Check if SYM_ADDR is in a known section, if it is assume we can
1380 	 trust its value.  This is just a heuristic though, it could go away
1381 	 or be replaced if it's getting in the way.
1382 
1383 	 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1384 	 however it's spelled in your particular system) is ARM or Thumb.
1385 	 That knowledge is encoded in the address, if it's Thumb the low bit
1386 	 is 1.  However, we've stripped that info above and it's not clear
1387 	 what all the consequences are of passing a non-addr_bits_remove'd
1388 	 address to create_solib_event_breakpoint.  The call to
1389 	 find_pc_section verifies we know about the address and have some
1390 	 hope of computing the right kind of breakpoint to use (via
1391 	 symbol info).  It does mean that GDB needs to be pointed at a
1392 	 non-stripped version of the dynamic linker in order to obtain
1393 	 information it already knows about.  Sigh.  */
1394 
1395       os = find_pc_section (sym_addr);
1396       if (os != NULL)
1397 	{
1398 	  /* Record the relocated start and end address of the dynamic linker
1399 	     text and plt section for svr4_in_dynsym_resolve_code.  */
1400 	  bfd *tmp_bfd;
1401 	  CORE_ADDR load_addr;
1402 
1403 	  tmp_bfd = os->objfile->obfd;
1404 	  load_addr = ANOFFSET (os->objfile->section_offsets,
1405 				os->objfile->sect_index_text);
1406 
1407 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1408 	  if (interp_sect)
1409 	    {
1410 	      info->interp_text_sect_low =
1411 		bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1412 	      info->interp_text_sect_high =
1413 		info->interp_text_sect_low
1414 		+ bfd_section_size (tmp_bfd, interp_sect);
1415 	    }
1416 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1417 	  if (interp_sect)
1418 	    {
1419 	      info->interp_plt_sect_low =
1420 		bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1421 	      info->interp_plt_sect_high =
1422 		info->interp_plt_sect_low
1423 		+ bfd_section_size (tmp_bfd, interp_sect);
1424 	    }
1425 
1426 	  create_solib_event_breakpoint (target_gdbarch, sym_addr);
1427 	  return 1;
1428 	}
1429     }
1430 
1431   /* Find the program interpreter; if not found, warn the user and drop
1432      into the old breakpoint at symbol code.  */
1433   interp_name = find_program_interpreter ();
1434   if (interp_name)
1435     {
1436       CORE_ADDR load_addr = 0;
1437       int load_addr_found = 0;
1438       int loader_found_in_list = 0;
1439       struct so_list *so;
1440       bfd *tmp_bfd = NULL;
1441       struct target_ops *tmp_bfd_target;
1442       volatile struct gdb_exception ex;
1443 
1444       sym_addr = 0;
1445 
1446       /* Now we need to figure out where the dynamic linker was
1447          loaded so that we can load its symbols and place a breakpoint
1448          in the dynamic linker itself.
1449 
1450          This address is stored on the stack.  However, I've been unable
1451          to find any magic formula to find it for Solaris (appears to
1452          be trivial on GNU/Linux).  Therefore, we have to try an alternate
1453          mechanism to find the dynamic linker's base address.  */
1454 
1455       TRY_CATCH (ex, RETURN_MASK_ALL)
1456         {
1457 	  tmp_bfd = solib_bfd_open (interp_name);
1458 	}
1459       if (tmp_bfd == NULL)
1460 	goto bkpt_at_symbol;
1461 
1462       /* Now convert the TMP_BFD into a target.  That way target, as
1463          well as BFD operations can be used.  Note that closing the
1464          target will also close the underlying bfd.  */
1465       tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1466 
1467       /* On a running target, we can get the dynamic linker's base
1468          address from the shared library table.  */
1469       so = master_so_list ();
1470       while (so)
1471 	{
1472 	  if (svr4_same_1 (interp_name, so->so_original_name))
1473 	    {
1474 	      load_addr_found = 1;
1475 	      loader_found_in_list = 1;
1476 	      load_addr = LM_ADDR_CHECK (so, tmp_bfd);
1477 	      break;
1478 	    }
1479 	  so = so->next;
1480 	}
1481 
1482       /* If we were not able to find the base address of the loader
1483          from our so_list, then try using the AT_BASE auxilliary entry.  */
1484       if (!load_addr_found)
1485         if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1486 	  {
1487 	    int addr_bit = gdbarch_addr_bit (target_gdbarch);
1488 
1489 	    /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1490 	       that `+ load_addr' will overflow CORE_ADDR width not creating
1491 	       invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1492 	       GDB.  */
1493 
1494 	    if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1495 	      {
1496 		CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1497 		CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1498 							      tmp_bfd_target);
1499 
1500 		gdb_assert (load_addr < space_size);
1501 
1502 		/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1503 		   64bit ld.so with 32bit executable, it should not happen.  */
1504 
1505 		if (tmp_entry_point < space_size
1506 		    && tmp_entry_point + load_addr >= space_size)
1507 		  load_addr -= space_size;
1508 	      }
1509 
1510 	    load_addr_found = 1;
1511 	  }
1512 
1513       /* Otherwise we find the dynamic linker's base address by examining
1514 	 the current pc (which should point at the entry point for the
1515 	 dynamic linker) and subtracting the offset of the entry point.
1516 
1517          This is more fragile than the previous approaches, but is a good
1518          fallback method because it has actually been working well in
1519          most cases.  */
1520       if (!load_addr_found)
1521 	{
1522 	  struct regcache *regcache
1523 	    = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1524 
1525 	  load_addr = (regcache_read_pc (regcache)
1526 		       - exec_entry_point (tmp_bfd, tmp_bfd_target));
1527 	}
1528 
1529       if (!loader_found_in_list)
1530 	{
1531 	  info->debug_loader_name = xstrdup (interp_name);
1532 	  info->debug_loader_offset_p = 1;
1533 	  info->debug_loader_offset = load_addr;
1534 	  solib_add (NULL, from_tty, &current_target, auto_solib_add);
1535 	}
1536 
1537       /* Record the relocated start and end address of the dynamic linker
1538          text and plt section for svr4_in_dynsym_resolve_code.  */
1539       interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1540       if (interp_sect)
1541 	{
1542 	  info->interp_text_sect_low =
1543 	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1544 	  info->interp_text_sect_high =
1545 	    info->interp_text_sect_low
1546 	    + bfd_section_size (tmp_bfd, interp_sect);
1547 	}
1548       interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1549       if (interp_sect)
1550 	{
1551 	  info->interp_plt_sect_low =
1552 	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1553 	  info->interp_plt_sect_high =
1554 	    info->interp_plt_sect_low
1555 	    + bfd_section_size (tmp_bfd, interp_sect);
1556 	}
1557 
1558       /* Now try to set a breakpoint in the dynamic linker.  */
1559       for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1560 	{
1561 	  sym_addr = bfd_lookup_symbol (tmp_bfd, *bkpt_namep);
1562 	  if (sym_addr != 0)
1563 	    break;
1564 	}
1565 
1566       if (sym_addr != 0)
1567 	/* Convert 'sym_addr' from a function pointer to an address.
1568 	   Because we pass tmp_bfd_target instead of the current
1569 	   target, this will always produce an unrelocated value.  */
1570 	sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1571 						       sym_addr,
1572 						       tmp_bfd_target);
1573 
1574       /* We're done with both the temporary bfd and target.  Remember,
1575          closing the target closes the underlying bfd.  */
1576       target_close (tmp_bfd_target, 0);
1577 
1578       if (sym_addr != 0)
1579 	{
1580 	  create_solib_event_breakpoint (target_gdbarch, load_addr + sym_addr);
1581 	  xfree (interp_name);
1582 	  return 1;
1583 	}
1584 
1585       /* For whatever reason we couldn't set a breakpoint in the dynamic
1586          linker.  Warn and drop into the old code.  */
1587     bkpt_at_symbol:
1588       xfree (interp_name);
1589       warning (_("Unable to find dynamic linker breakpoint function.\n"
1590                "GDB will be unable to debug shared library initializers\n"
1591                "and track explicitly loaded dynamic code."));
1592     }
1593 
1594   /* Scan through the lists of symbols, trying to look up the symbol and
1595      set a breakpoint there.  Terminate loop when we/if we succeed.  */
1596 
1597   for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1598     {
1599       msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1600       if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1601 	{
1602 	  sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1603 	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1604 							 sym_addr,
1605 							 &current_target);
1606 	  create_solib_event_breakpoint (target_gdbarch, sym_addr);
1607 	  return 1;
1608 	}
1609     }
1610 
1611   if (!current_inferior ()->attach_flag)
1612     {
1613       for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1614 	{
1615 	  msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1616 	  if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1617 	    {
1618 	      sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1619 	      sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
1620 							     sym_addr,
1621 							     &current_target);
1622 	      create_solib_event_breakpoint (target_gdbarch, sym_addr);
1623 	      return 1;
1624 	    }
1625 	}
1626     }
1627   return 0;
1628 }
1629 
1630 /*
1631 
1632    LOCAL FUNCTION
1633 
1634    special_symbol_handling -- additional shared library symbol handling
1635 
1636    SYNOPSIS
1637 
1638    void special_symbol_handling ()
1639 
1640    DESCRIPTION
1641 
1642    Once the symbols from a shared object have been loaded in the usual
1643    way, we are called to do any system specific symbol handling that
1644    is needed.
1645 
1646    For SunOS4, this consisted of grunging around in the dynamic
1647    linkers structures to find symbol definitions for "common" symbols
1648    and adding them to the minimal symbol table for the runtime common
1649    objfile.
1650 
1651    However, for SVR4, there's nothing to do.
1652 
1653  */
1654 
1655 static void
1656 svr4_special_symbol_handling (void)
1657 {
1658 }
1659 
1660 /* Read the ELF program headers from ABFD.  Return the contents and
1661    set *PHDRS_SIZE to the size of the program headers.  */
1662 
1663 static gdb_byte *
1664 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1665 {
1666   Elf_Internal_Ehdr *ehdr;
1667   gdb_byte *buf;
1668 
1669   ehdr = elf_elfheader (abfd);
1670 
1671   *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1672   if (*phdrs_size == 0)
1673     return NULL;
1674 
1675   buf = xmalloc (*phdrs_size);
1676   if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1677       || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1678     {
1679       xfree (buf);
1680       return NULL;
1681     }
1682 
1683   return buf;
1684 }
1685 
1686 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1687    exec_bfd.  Otherwise return 0.
1688 
1689    We relocate all of the sections by the same amount.  This
1690    behavior is mandated by recent editions of the System V ABI.
1691    According to the System V Application Binary Interface,
1692    Edition 4.1, page 5-5:
1693 
1694      ...  Though the system chooses virtual addresses for
1695      individual processes, it maintains the segments' relative
1696      positions.  Because position-independent code uses relative
1697      addressesing between segments, the difference between
1698      virtual addresses in memory must match the difference
1699      between virtual addresses in the file.  The difference
1700      between the virtual address of any segment in memory and
1701      the corresponding virtual address in the file is thus a
1702      single constant value for any one executable or shared
1703      object in a given process.  This difference is the base
1704      address.  One use of the base address is to relocate the
1705      memory image of the program during dynamic linking.
1706 
1707    The same language also appears in Edition 4.0 of the System V
1708    ABI and is left unspecified in some of the earlier editions.
1709 
1710    Decide if the objfile needs to be relocated.  As indicated above, we will
1711    only be here when execution is stopped.  But during attachment PC can be at
1712    arbitrary address therefore regcache_read_pc can be misleading (contrary to
1713    the auxv AT_ENTRY value).  Moreover for executable with interpreter section
1714    regcache_read_pc would point to the interpreter and not the main executable.
1715 
1716    So, to summarize, relocations are necessary when the start address obtained
1717    from the executable is different from the address in auxv AT_ENTRY entry.
1718 
1719    [ The astute reader will note that we also test to make sure that
1720      the executable in question has the DYNAMIC flag set.  It is my
1721      opinion that this test is unnecessary (undesirable even).  It
1722      was added to avoid inadvertent relocation of an executable
1723      whose e_type member in the ELF header is not ET_DYN.  There may
1724      be a time in the future when it is desirable to do relocations
1725      on other types of files as well in which case this condition
1726      should either be removed or modified to accomodate the new file
1727      type.  - Kevin, Nov 2000. ]  */
1728 
1729 static int
1730 svr4_exec_displacement (CORE_ADDR *displacementp)
1731 {
1732   /* ENTRY_POINT is a possible function descriptor - before
1733      a call to gdbarch_convert_from_func_ptr_addr.  */
1734   CORE_ADDR entry_point, displacement;
1735 
1736   if (exec_bfd == NULL)
1737     return 0;
1738 
1739   /* Therefore for ELF it is ET_EXEC and not ET_DYN.  Both shared libraries
1740      being executed themselves and PIE (Position Independent Executable)
1741      executables are ET_DYN.  */
1742 
1743   if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1744     return 0;
1745 
1746   if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1747     return 0;
1748 
1749   displacement = entry_point - bfd_get_start_address (exec_bfd);
1750 
1751   /* Verify the DISPLACEMENT candidate complies with the required page
1752      alignment.  It is cheaper than the program headers comparison below.  */
1753 
1754   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1755     {
1756       const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1757 
1758       /* p_align of PT_LOAD segments does not specify any alignment but
1759 	 only congruency of addresses:
1760 	   p_offset % p_align == p_vaddr % p_align
1761 	 Kernel is free to load the executable with lower alignment.  */
1762 
1763       if ((displacement & (elf->minpagesize - 1)) != 0)
1764 	return 0;
1765     }
1766 
1767   /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1768      comparing their program headers.  If the program headers in the auxilliary
1769      vector do not match the program headers in the executable, then we are
1770      looking at a different file than the one used by the kernel - for
1771      instance, "gdb program" connected to "gdbserver :PORT ld.so program".  */
1772 
1773   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1774     {
1775       /* Be optimistic and clear OK only if GDB was able to verify the headers
1776 	 really do not match.  */
1777       int phdrs_size, phdrs2_size, ok = 1;
1778       gdb_byte *buf, *buf2;
1779       int arch_size;
1780 
1781       buf = read_program_header (-1, &phdrs_size, &arch_size);
1782       buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1783       if (buf != NULL && buf2 != NULL)
1784 	{
1785 	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
1786 
1787 	  /* We are dealing with three different addresses.  EXEC_BFD
1788 	     represents current address in on-disk file.  target memory content
1789 	     may be different from EXEC_BFD as the file may have been prelinked
1790 	     to a different address after the executable has been loaded.
1791 	     Moreover the address of placement in target memory can be
1792 	     different from what the program headers in target memory say -
1793 	     this is the goal of PIE.
1794 
1795 	     Detected DISPLACEMENT covers both the offsets of PIE placement and
1796 	     possible new prelink performed after start of the program.  Here
1797 	     relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1798 	     content offset for the verification purpose.  */
1799 
1800 	  if (phdrs_size != phdrs2_size
1801 	      || bfd_get_arch_size (exec_bfd) != arch_size)
1802 	    ok = 0;
1803 	  else if (arch_size == 32
1804 		   && phdrs_size >= sizeof (Elf32_External_Phdr)
1805 	           && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1806 	    {
1807 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1808 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1809 	      CORE_ADDR displacement = 0;
1810 	      int i;
1811 
1812 	      /* DISPLACEMENT could be found more easily by the difference of
1813 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
1814 		 already have enough information to compute that displacement
1815 		 with what we've read.  */
1816 
1817 	      for (i = 0; i < ehdr2->e_phnum; i++)
1818 		if (phdr2[i].p_type == PT_LOAD)
1819 		  {
1820 		    Elf32_External_Phdr *phdrp;
1821 		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
1822 		    CORE_ADDR vaddr, paddr;
1823 		    CORE_ADDR displacement_vaddr = 0;
1824 		    CORE_ADDR displacement_paddr = 0;
1825 
1826 		    phdrp = &((Elf32_External_Phdr *) buf)[i];
1827 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1828 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1829 
1830 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1831 						      byte_order);
1832 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1833 
1834 		    paddr = extract_unsigned_integer (buf_paddr_p, 4,
1835 						      byte_order);
1836 		    displacement_paddr = paddr - phdr2[i].p_paddr;
1837 
1838 		    if (displacement_vaddr == displacement_paddr)
1839 		      displacement = displacement_vaddr;
1840 
1841 		    break;
1842 		  }
1843 
1844 	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */
1845 
1846 	      for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1847 		{
1848 		  Elf32_External_Phdr *phdrp;
1849 		  Elf32_External_Phdr *phdr2p;
1850 		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
1851 		  CORE_ADDR vaddr, paddr;
1852 		  asection *plt2_asect;
1853 
1854 		  phdrp = &((Elf32_External_Phdr *) buf)[i];
1855 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1856 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1857 		  phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1858 
1859 		  /* PT_GNU_STACK is an exception by being never relocated by
1860 		     prelink as its addresses are always zero.  */
1861 
1862 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1863 		    continue;
1864 
1865 		  /* Check also other adjustment combinations - PR 11786.  */
1866 
1867 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1868 						    byte_order);
1869 		  vaddr -= displacement;
1870 		  store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1871 
1872 		  paddr = extract_unsigned_integer (buf_paddr_p, 4,
1873 						    byte_order);
1874 		  paddr -= displacement;
1875 		  store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1876 
1877 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1878 		    continue;
1879 
1880 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
1881 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1882 		  if (plt2_asect)
1883 		    {
1884 		      int content2;
1885 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1886 		      CORE_ADDR filesz;
1887 
1888 		      content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1889 				  & SEC_HAS_CONTENTS) != 0;
1890 
1891 		      filesz = extract_unsigned_integer (buf_filesz_p, 4,
1892 							 byte_order);
1893 
1894 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
1895 			 FILESZ is from the in-memory image.  */
1896 		      if (content2)
1897 			filesz += bfd_get_section_size (plt2_asect);
1898 		      else
1899 			filesz -= bfd_get_section_size (plt2_asect);
1900 
1901 		      store_unsigned_integer (buf_filesz_p, 4, byte_order,
1902 					      filesz);
1903 
1904 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1905 			continue;
1906 		    }
1907 
1908 		  ok = 0;
1909 		  break;
1910 		}
1911 	    }
1912 	  else if (arch_size == 64
1913 		   && phdrs_size >= sizeof (Elf64_External_Phdr)
1914 	           && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1915 	    {
1916 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1917 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1918 	      CORE_ADDR displacement = 0;
1919 	      int i;
1920 
1921 	      /* DISPLACEMENT could be found more easily by the difference of
1922 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
1923 		 already have enough information to compute that displacement
1924 		 with what we've read.  */
1925 
1926 	      for (i = 0; i < ehdr2->e_phnum; i++)
1927 		if (phdr2[i].p_type == PT_LOAD)
1928 		  {
1929 		    Elf64_External_Phdr *phdrp;
1930 		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
1931 		    CORE_ADDR vaddr, paddr;
1932 		    CORE_ADDR displacement_vaddr = 0;
1933 		    CORE_ADDR displacement_paddr = 0;
1934 
1935 		    phdrp = &((Elf64_External_Phdr *) buf)[i];
1936 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1937 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1938 
1939 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1940 						      byte_order);
1941 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1942 
1943 		    paddr = extract_unsigned_integer (buf_paddr_p, 8,
1944 						      byte_order);
1945 		    displacement_paddr = paddr - phdr2[i].p_paddr;
1946 
1947 		    if (displacement_vaddr == displacement_paddr)
1948 		      displacement = displacement_vaddr;
1949 
1950 		    break;
1951 		  }
1952 
1953 	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */
1954 
1955 	      for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
1956 		{
1957 		  Elf64_External_Phdr *phdrp;
1958 		  Elf64_External_Phdr *phdr2p;
1959 		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
1960 		  CORE_ADDR vaddr, paddr;
1961 		  asection *plt2_asect;
1962 
1963 		  phdrp = &((Elf64_External_Phdr *) buf)[i];
1964 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1965 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1966 		  phdr2p = &((Elf64_External_Phdr *) buf2)[i];
1967 
1968 		  /* PT_GNU_STACK is an exception by being never relocated by
1969 		     prelink as its addresses are always zero.  */
1970 
1971 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1972 		    continue;
1973 
1974 		  /* Check also other adjustment combinations - PR 11786.  */
1975 
1976 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
1977 						    byte_order);
1978 		  vaddr -= displacement;
1979 		  store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
1980 
1981 		  paddr = extract_unsigned_integer (buf_paddr_p, 8,
1982 						    byte_order);
1983 		  paddr -= displacement;
1984 		  store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
1985 
1986 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1987 		    continue;
1988 
1989 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
1990 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1991 		  if (plt2_asect)
1992 		    {
1993 		      int content2;
1994 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1995 		      CORE_ADDR filesz;
1996 
1997 		      content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1998 				  & SEC_HAS_CONTENTS) != 0;
1999 
2000 		      filesz = extract_unsigned_integer (buf_filesz_p, 8,
2001 							 byte_order);
2002 
2003 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
2004 			 FILESZ is from the in-memory image.  */
2005 		      if (content2)
2006 			filesz += bfd_get_section_size (plt2_asect);
2007 		      else
2008 			filesz -= bfd_get_section_size (plt2_asect);
2009 
2010 		      store_unsigned_integer (buf_filesz_p, 8, byte_order,
2011 					      filesz);
2012 
2013 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2014 			continue;
2015 		    }
2016 
2017 		  ok = 0;
2018 		  break;
2019 		}
2020 	    }
2021 	  else
2022 	    ok = 0;
2023 	}
2024 
2025       xfree (buf);
2026       xfree (buf2);
2027 
2028       if (!ok)
2029 	return 0;
2030     }
2031 
2032   if (info_verbose)
2033     {
2034       /* It can be printed repeatedly as there is no easy way to check
2035 	 the executable symbols/file has been already relocated to
2036 	 displacement.  */
2037 
2038       printf_unfiltered (_("Using PIE (Position Independent Executable) "
2039 			   "displacement %s for \"%s\".\n"),
2040 			 paddress (target_gdbarch, displacement),
2041 			 bfd_get_filename (exec_bfd));
2042     }
2043 
2044   *displacementp = displacement;
2045   return 1;
2046 }
2047 
2048 /* Relocate the main executable.  This function should be called upon
2049    stopping the inferior process at the entry point to the program.
2050    The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2051    different, the main executable is relocated by the proper amount.  */
2052 
2053 static void
2054 svr4_relocate_main_executable (void)
2055 {
2056   CORE_ADDR displacement;
2057 
2058   /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2059      probably contains the offsets computed using the PIE displacement
2060      from the previous run, which of course are irrelevant for this run.
2061      So we need to determine the new PIE displacement and recompute the
2062      section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2063      already contains pre-computed offsets.
2064 
2065      If we cannot compute the PIE displacement, either:
2066 
2067        - The executable is not PIE.
2068 
2069        - SYMFILE_OBJFILE does not match the executable started in the target.
2070 	 This can happen for main executable symbols loaded at the host while
2071 	 `ld.so --ld-args main-executable' is loaded in the target.
2072 
2073      Then we leave the section offsets untouched and use them as is for
2074      this run.  Either:
2075 
2076        - These section offsets were properly reset earlier, and thus
2077 	 already contain the correct values.  This can happen for instance
2078 	 when reconnecting via the remote protocol to a target that supports
2079 	 the `qOffsets' packet.
2080 
2081        - The section offsets were not reset earlier, and the best we can
2082 	 hope is that the old offsets are still applicable to the new run.  */
2083 
2084   if (! svr4_exec_displacement (&displacement))
2085     return;
2086 
2087   /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2088      addresses.  */
2089 
2090   if (symfile_objfile)
2091     {
2092       struct section_offsets *new_offsets;
2093       int i;
2094 
2095       new_offsets = alloca (symfile_objfile->num_sections
2096 			    * sizeof (*new_offsets));
2097 
2098       for (i = 0; i < symfile_objfile->num_sections; i++)
2099 	new_offsets->offsets[i] = displacement;
2100 
2101       objfile_relocate (symfile_objfile, new_offsets);
2102     }
2103   else if (exec_bfd)
2104     {
2105       asection *asect;
2106 
2107       for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2108 	exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2109 				  (bfd_section_vma (exec_bfd, asect)
2110 				   + displacement));
2111     }
2112 }
2113 
2114 /*
2115 
2116    GLOBAL FUNCTION
2117 
2118    svr4_solib_create_inferior_hook -- shared library startup support
2119 
2120    SYNOPSIS
2121 
2122    void svr4_solib_create_inferior_hook (int from_tty)
2123 
2124    DESCRIPTION
2125 
2126    When gdb starts up the inferior, it nurses it along (through the
2127    shell) until it is ready to execute it's first instruction.  At this
2128    point, this function gets called via expansion of the macro
2129    SOLIB_CREATE_INFERIOR_HOOK.
2130 
2131    For SunOS executables, this first instruction is typically the
2132    one at "_start", or a similar text label, regardless of whether
2133    the executable is statically or dynamically linked.  The runtime
2134    startup code takes care of dynamically linking in any shared
2135    libraries, once gdb allows the inferior to continue.
2136 
2137    For SVR4 executables, this first instruction is either the first
2138    instruction in the dynamic linker (for dynamically linked
2139    executables) or the instruction at "start" for statically linked
2140    executables.  For dynamically linked executables, the system
2141    first exec's /lib/libc.so.N, which contains the dynamic linker,
2142    and starts it running.  The dynamic linker maps in any needed
2143    shared libraries, maps in the actual user executable, and then
2144    jumps to "start" in the user executable.
2145 
2146    For both SunOS shared libraries, and SVR4 shared libraries, we
2147    can arrange to cooperate with the dynamic linker to discover the
2148    names of shared libraries that are dynamically linked, and the
2149    base addresses to which they are linked.
2150 
2151    This function is responsible for discovering those names and
2152    addresses, and saving sufficient information about them to allow
2153    their symbols to be read at a later time.
2154 
2155    FIXME
2156 
2157    Between enable_break() and disable_break(), this code does not
2158    properly handle hitting breakpoints which the user might have
2159    set in the startup code or in the dynamic linker itself.  Proper
2160    handling will probably have to wait until the implementation is
2161    changed to use the "breakpoint handler function" method.
2162 
2163    Also, what if child has exit()ed?  Must exit loop somehow.
2164  */
2165 
2166 static void
2167 svr4_solib_create_inferior_hook (int from_tty)
2168 {
2169 #if defined(_SCO_DS)
2170   struct inferior *inf;
2171   struct thread_info *tp;
2172 #endif /* defined(_SCO_DS) */
2173   struct svr4_info *info;
2174 
2175   info = get_svr4_info ();
2176 
2177   /* Relocate the main executable if necessary.  */
2178   svr4_relocate_main_executable ();
2179 
2180   /* No point setting a breakpoint in the dynamic linker if we can't
2181      hit it (e.g., a core file, or a trace file).  */
2182   if (!target_has_execution)
2183     return;
2184 
2185   if (!svr4_have_link_map_offsets ())
2186     return;
2187 
2188   if (!enable_break (info, from_tty))
2189     return;
2190 
2191 #if defined(_SCO_DS)
2192   /* SCO needs the loop below, other systems should be using the
2193      special shared library breakpoints and the shared library breakpoint
2194      service routine.
2195 
2196      Now run the target.  It will eventually hit the breakpoint, at
2197      which point all of the libraries will have been mapped in and we
2198      can go groveling around in the dynamic linker structures to find
2199      out what we need to know about them.  */
2200 
2201   inf = current_inferior ();
2202   tp = inferior_thread ();
2203 
2204   clear_proceed_status ();
2205   inf->control.stop_soon = STOP_QUIETLY;
2206   tp->suspend.stop_signal = TARGET_SIGNAL_0;
2207   do
2208     {
2209       target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
2210       wait_for_inferior (0);
2211     }
2212   while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
2213   inf->control.stop_soon = NO_STOP_QUIETLY;
2214 #endif /* defined(_SCO_DS) */
2215 }
2216 
2217 static void
2218 svr4_clear_solib (void)
2219 {
2220   struct svr4_info *info;
2221 
2222   info = get_svr4_info ();
2223   info->debug_base = 0;
2224   info->debug_loader_offset_p = 0;
2225   info->debug_loader_offset = 0;
2226   xfree (info->debug_loader_name);
2227   info->debug_loader_name = NULL;
2228 }
2229 
2230 static void
2231 svr4_free_so (struct so_list *so)
2232 {
2233   xfree (so->lm_info->lm);
2234   xfree (so->lm_info);
2235 }
2236 
2237 
2238 /* Clear any bits of ADDR that wouldn't fit in a target-format
2239    data pointer.  "Data pointer" here refers to whatever sort of
2240    address the dynamic linker uses to manage its sections.  At the
2241    moment, we don't support shared libraries on any processors where
2242    code and data pointers are different sizes.
2243 
2244    This isn't really the right solution.  What we really need here is
2245    a way to do arithmetic on CORE_ADDR values that respects the
2246    natural pointer/address correspondence.  (For example, on the MIPS,
2247    converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2248    sign-extend the value.  There, simply truncating the bits above
2249    gdbarch_ptr_bit, as we do below, is no good.)  This should probably
2250    be a new gdbarch method or something.  */
2251 static CORE_ADDR
2252 svr4_truncate_ptr (CORE_ADDR addr)
2253 {
2254   if (gdbarch_ptr_bit (target_gdbarch) == sizeof (CORE_ADDR) * 8)
2255     /* We don't need to truncate anything, and the bit twiddling below
2256        will fail due to overflow problems.  */
2257     return addr;
2258   else
2259     return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch)) - 1);
2260 }
2261 
2262 
2263 static void
2264 svr4_relocate_section_addresses (struct so_list *so,
2265                                  struct target_section *sec)
2266 {
2267   sec->addr    = svr4_truncate_ptr (sec->addr    + LM_ADDR_CHECK (so,
2268 								  sec->bfd));
2269   sec->endaddr = svr4_truncate_ptr (sec->endaddr + LM_ADDR_CHECK (so,
2270 								  sec->bfd));
2271 }
2272 
2273 
2274 /* Architecture-specific operations.  */
2275 
2276 /* Per-architecture data key.  */
2277 static struct gdbarch_data *solib_svr4_data;
2278 
2279 struct solib_svr4_ops
2280 {
2281   /* Return a description of the layout of `struct link_map'.  */
2282   struct link_map_offsets *(*fetch_link_map_offsets)(void);
2283 };
2284 
2285 /* Return a default for the architecture-specific operations.  */
2286 
2287 static void *
2288 solib_svr4_init (struct obstack *obstack)
2289 {
2290   struct solib_svr4_ops *ops;
2291 
2292   ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2293   ops->fetch_link_map_offsets = NULL;
2294   return ops;
2295 }
2296 
2297 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2298    GDBARCH to FLMO.  Also, install SVR4 solib_ops into GDBARCH.  */
2299 
2300 void
2301 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2302                                        struct link_map_offsets *(*flmo) (void))
2303 {
2304   struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2305 
2306   ops->fetch_link_map_offsets = flmo;
2307 
2308   set_solib_ops (gdbarch, &svr4_so_ops);
2309 }
2310 
2311 /* Fetch a link_map_offsets structure using the architecture-specific
2312    `struct link_map_offsets' fetcher.  */
2313 
2314 static struct link_map_offsets *
2315 svr4_fetch_link_map_offsets (void)
2316 {
2317   struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2318 
2319   gdb_assert (ops->fetch_link_map_offsets);
2320   return ops->fetch_link_map_offsets ();
2321 }
2322 
2323 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */
2324 
2325 static int
2326 svr4_have_link_map_offsets (void)
2327 {
2328   struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch, solib_svr4_data);
2329 
2330   return (ops->fetch_link_map_offsets != NULL);
2331 }
2332 
2333 
2334 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2335    `struct r_debug' and a `struct link_map' that are binary compatible
2336    with the origional SVR4 implementation.  */
2337 
2338 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2339    for an ILP32 SVR4 system.  */
2340 
2341 struct link_map_offsets *
2342 svr4_ilp32_fetch_link_map_offsets (void)
2343 {
2344   static struct link_map_offsets lmo;
2345   static struct link_map_offsets *lmp = NULL;
2346 
2347   if (lmp == NULL)
2348     {
2349       lmp = &lmo;
2350 
2351       lmo.r_version_offset = 0;
2352       lmo.r_version_size = 4;
2353       lmo.r_map_offset = 4;
2354       lmo.r_brk_offset = 8;
2355       lmo.r_ldsomap_offset = 20;
2356 
2357       /* Everything we need is in the first 20 bytes.  */
2358       lmo.link_map_size = 20;
2359       lmo.l_addr_offset = 0;
2360       lmo.l_name_offset = 4;
2361       lmo.l_ld_offset = 8;
2362       lmo.l_next_offset = 12;
2363       lmo.l_prev_offset = 16;
2364     }
2365 
2366   return lmp;
2367 }
2368 
2369 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2370    for an LP64 SVR4 system.  */
2371 
2372 struct link_map_offsets *
2373 svr4_lp64_fetch_link_map_offsets (void)
2374 {
2375   static struct link_map_offsets lmo;
2376   static struct link_map_offsets *lmp = NULL;
2377 
2378   if (lmp == NULL)
2379     {
2380       lmp = &lmo;
2381 
2382       lmo.r_version_offset = 0;
2383       lmo.r_version_size = 4;
2384       lmo.r_map_offset = 8;
2385       lmo.r_brk_offset = 16;
2386       lmo.r_ldsomap_offset = 40;
2387 
2388       /* Everything we need is in the first 40 bytes.  */
2389       lmo.link_map_size = 40;
2390       lmo.l_addr_offset = 0;
2391       lmo.l_name_offset = 8;
2392       lmo.l_ld_offset = 16;
2393       lmo.l_next_offset = 24;
2394       lmo.l_prev_offset = 32;
2395     }
2396 
2397   return lmp;
2398 }
2399 
2400 
2401 struct target_so_ops svr4_so_ops;
2402 
2403 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic.  Those DSOs have a
2404    different rule for symbol lookup.  The lookup begins here in the DSO, not in
2405    the main executable.  */
2406 
2407 static struct symbol *
2408 elf_lookup_lib_symbol (const struct objfile *objfile,
2409 		       const char *name,
2410 		       const domain_enum domain)
2411 {
2412   bfd *abfd;
2413 
2414   if (objfile == symfile_objfile)
2415     abfd = exec_bfd;
2416   else
2417     {
2418       /* OBJFILE should have been passed as the non-debug one.  */
2419       gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2420 
2421       abfd = objfile->obfd;
2422     }
2423 
2424   if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2425     return NULL;
2426 
2427   return lookup_global_symbol_from_objfile (objfile, name, domain);
2428 }
2429 
2430 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2431 
2432 void
2433 _initialize_svr4_solib (void)
2434 {
2435   solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2436   solib_svr4_pspace_data
2437     = register_program_space_data_with_cleanup (svr4_pspace_data_cleanup);
2438 
2439   svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2440   svr4_so_ops.free_so = svr4_free_so;
2441   svr4_so_ops.clear_solib = svr4_clear_solib;
2442   svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2443   svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2444   svr4_so_ops.current_sos = svr4_current_sos;
2445   svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2446   svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2447   svr4_so_ops.bfd_open = solib_bfd_open;
2448   svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2449   svr4_so_ops.same = svr4_same;
2450   svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2451 }
2452