xref: /dragonfly/contrib/gdb-7/gdb/stabsread.c (revision 28c26f7e)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5    2008, 2009 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* Support routines for reading and decoding debugging information in
23    the "stabs" format.  This format is used with many systems that use
24    the a.out object file format, as well as some systems that use
25    COFF or ELF where the stabs data is placed in a special section.
26    Avoid placing any object file format specific code in this file. */
27 
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49 
50 #include <ctype.h>
51 
52 /* Ask stabsread.h to define the vars it normally declares `extern'.  */
53 #define	EXTERN
54 /**/
55 #include "stabsread.h"		/* Our own declarations */
56 #undef	EXTERN
57 
58 extern void _initialize_stabsread (void);
59 
60 /* The routines that read and process a complete stabs for a C struct or
61    C++ class pass lists of data member fields and lists of member function
62    fields in an instance of a field_info structure, as defined below.
63    This is part of some reorganization of low level C++ support and is
64    expected to eventually go away... (FIXME) */
65 
66 struct field_info
67   {
68     struct nextfield
69       {
70 	struct nextfield *next;
71 
72 	/* This is the raw visibility from the stab.  It is not checked
73 	   for being one of the visibilities we recognize, so code which
74 	   examines this field better be able to deal.  */
75 	int visibility;
76 
77 	struct field field;
78       }
79      *list;
80     struct next_fnfieldlist
81       {
82 	struct next_fnfieldlist *next;
83 	struct fn_fieldlist fn_fieldlist;
84       }
85      *fnlist;
86   };
87 
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 		       struct type *, struct objfile *);
91 
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93 
94 static long read_huge_number (char **, int, int *, int);
95 
96 static struct type *error_type (char **, struct objfile *);
97 
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 		   struct objfile *);
101 
102 static void fix_common_block (struct symbol *, int);
103 
104 static int read_type_number (char **, int *);
105 
106 static struct type *read_type (char **, struct objfile *);
107 
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109 
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111 
112 static struct type *read_sun_floating_type (char **, int[2],
113 					    struct objfile *);
114 
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116 
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118 
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 		       struct objfile *);
122 
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 		    struct objfile *);
126 
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 		  struct objfile *);
130 
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 		   struct objfile *);
134 
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136 
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 				  struct objfile *);
139 
140 static struct type *read_struct_type (char **, struct type *,
141                                       enum type_code,
142 				      struct objfile *);
143 
144 static struct type *read_array_type (char **, struct type *,
145 				     struct objfile *);
146 
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148 
149 static void add_undefined_type (struct type *, int[2]);
150 
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 		 struct objfile *);
154 
155 static char *find_name_end (char *name);
156 
157 static int process_reference (char **string);
158 
159 void stabsread_clear_cache (void);
160 
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163 
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167   complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169 
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173   complaint (&symfile_complaints,
174 	     _("register number %d too large (max %d) in symbol %s"),
175              regnum, num_regs - 1, sym);
176 }
177 
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181   complaint (&symfile_complaints, "%s", arg1);
182 }
183 
184 /* Make a list of forward references which haven't been defined.  */
185 
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190 
191 /* Make a list of nameless types that are undefined.
192    This happens when another type is referenced by its number
193    before this type is actually defined. For instance "t(0,1)=k(0,2)"
194    and type (0,2) is defined only later.  */
195 
196 struct nat
197 {
198   int typenums[2];
199   struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204 
205 /* Check for and handle cretinous stabs symbol name continuation!  */
206 #define STABS_CONTINUE(pp,objfile)				\
207   do {							\
208     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209       *(pp) = next_symbol_text (objfile);	\
210   } while (0)
211 
212 
213 /* Look up a dbx type-number pair.  Return the address of the slot
214    where the type for that number-pair is stored.
215    The number-pair is in TYPENUMS.
216 
217    This can be used for finding the type associated with that pair
218    or for associating a new type with the pair.  */
219 
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223   int filenum = typenums[0];
224   int index = typenums[1];
225   unsigned old_len;
226   int real_filenum;
227   struct header_file *f;
228   int f_orig_length;
229 
230   if (filenum == -1)		/* -1,-1 is for temporary types.  */
231     return 0;
232 
233   if (filenum < 0 || filenum >= n_this_object_header_files)
234     {
235       complaint (&symfile_complaints,
236 		 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 		 filenum, index, symnum);
238       goto error_return;
239     }
240 
241   if (filenum == 0)
242     {
243       if (index < 0)
244 	{
245 	  /* Caller wants address of address of type.  We think
246 	     that negative (rs6k builtin) types will never appear as
247 	     "lvalues", (nor should they), so we stuff the real type
248 	     pointer into a temp, and return its address.  If referenced,
249 	     this will do the right thing.  */
250 	  static struct type *temp_type;
251 
252 	  temp_type = rs6000_builtin_type (index, objfile);
253 	  return &temp_type;
254 	}
255 
256       /* Type is defined outside of header files.
257          Find it in this object file's type vector.  */
258       if (index >= type_vector_length)
259 	{
260 	  old_len = type_vector_length;
261 	  if (old_len == 0)
262 	    {
263 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 	      type_vector = (struct type **)
265 		xmalloc (type_vector_length * sizeof (struct type *));
266 	    }
267 	  while (index >= type_vector_length)
268 	    {
269 	      type_vector_length *= 2;
270 	    }
271 	  type_vector = (struct type **)
272 	    xrealloc ((char *) type_vector,
273 		      (type_vector_length * sizeof (struct type *)));
274 	  memset (&type_vector[old_len], 0,
275 		  (type_vector_length - old_len) * sizeof (struct type *));
276 	}
277       return (&type_vector[index]);
278     }
279   else
280     {
281       real_filenum = this_object_header_files[filenum];
282 
283       if (real_filenum >= N_HEADER_FILES (objfile))
284 	{
285 	  static struct type *temp_type;
286 
287 	  warning (_("GDB internal error: bad real_filenum"));
288 
289 	error_return:
290 	  temp_type = objfile_type (objfile)->builtin_error;
291 	  return &temp_type;
292 	}
293 
294       f = HEADER_FILES (objfile) + real_filenum;
295 
296       f_orig_length = f->length;
297       if (index >= f_orig_length)
298 	{
299 	  while (index >= f->length)
300 	    {
301 	      f->length *= 2;
302 	    }
303 	  f->vector = (struct type **)
304 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 	  memset (&f->vector[f_orig_length], 0,
306 		  (f->length - f_orig_length) * sizeof (struct type *));
307 	}
308       return (&f->vector[index]);
309     }
310 }
311 
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313    and return the type object.
314    This can create an empty (zeroed) type object.
315    TYPENUMS may be (-1, -1) to return a new type object that is not
316    put into the type vector, and so may not be referred to by number. */
317 
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321   struct type **type_addr;
322 
323   if (typenums[0] == -1)
324     {
325       return (alloc_type (objfile));
326     }
327 
328   type_addr = dbx_lookup_type (typenums, objfile);
329 
330   /* If we are referring to a type not known at all yet,
331      allocate an empty type for it.
332      We will fill it in later if we find out how.  */
333   if (*type_addr == 0)
334     {
335       *type_addr = alloc_type (objfile);
336     }
337 
338   return (*type_addr);
339 }
340 
341 /* for all the stabs in a given stab vector, build appropriate types
342    and fix their symbols in given symbol vector. */
343 
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 		   struct objfile *objfile)
347 {
348   int ii;
349   char *name;
350   char *pp;
351   struct symbol *sym;
352 
353   if (stabs)
354     {
355 
356       /* for all the stab entries, find their corresponding symbols and
357          patch their types! */
358 
359       for (ii = 0; ii < stabs->count; ++ii)
360 	{
361 	  name = stabs->stab[ii];
362 	  pp = (char *) strchr (name, ':');
363 	  gdb_assert (pp);	/* Must find a ':' or game's over.  */
364 	  while (pp[1] == ':')
365 	    {
366 	      pp += 2;
367 	      pp = (char *) strchr (pp, ':');
368 	    }
369 	  sym = find_symbol_in_list (symbols, name, pp - name);
370 	  if (!sym)
371 	    {
372 	      /* FIXME-maybe: it would be nice if we noticed whether
373 	         the variable was defined *anywhere*, not just whether
374 	         it is defined in this compilation unit.  But neither
375 	         xlc or GCC seem to need such a definition, and until
376 	         we do psymtabs (so that the minimal symbols from all
377 	         compilation units are available now), I'm not sure
378 	         how to get the information.  */
379 
380 	      /* On xcoff, if a global is defined and never referenced,
381 	         ld will remove it from the executable.  There is then
382 	         a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
383 	      sym = (struct symbol *)
384 		obstack_alloc (&objfile->objfile_obstack,
385 			       sizeof (struct symbol));
386 
387 	      memset (sym, 0, sizeof (struct symbol));
388 	      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 	      SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 	      SYMBOL_SET_LINKAGE_NAME
391 		(sym, obsavestring (name, pp - name,
392 				    &objfile->objfile_obstack));
393 	      pp += 2;
394 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 		{
396 		  /* I don't think the linker does this with functions,
397 		     so as far as I know this is never executed.
398 		     But it doesn't hurt to check.  */
399 		  SYMBOL_TYPE (sym) =
400 		    lookup_function_type (read_type (&pp, objfile));
401 		}
402 	      else
403 		{
404 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 		}
406 	      add_symbol_to_list (sym, &global_symbols);
407 	    }
408 	  else
409 	    {
410 	      pp += 2;
411 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 		{
413 		  SYMBOL_TYPE (sym) =
414 		    lookup_function_type (read_type (&pp, objfile));
415 		}
416 	      else
417 		{
418 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 		}
420 	    }
421 	}
422     }
423 }
424 
425 
426 /* Read a number by which a type is referred to in dbx data,
427    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428    Just a single number N is equivalent to (0,N).
429    Return the two numbers by storing them in the vector TYPENUMS.
430    TYPENUMS will then be used as an argument to dbx_lookup_type.
431 
432    Returns 0 for success, -1 for error.  */
433 
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437   int nbits;
438   if (**pp == '(')
439     {
440       (*pp)++;
441       typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442       if (nbits != 0)
443 	return -1;
444       typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445       if (nbits != 0)
446 	return -1;
447     }
448   else
449     {
450       typenums[0] = 0;
451       typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452       if (nbits != 0)
453 	return -1;
454     }
455   return 0;
456 }
457 
458 
459 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
460 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
462 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
463 
464 /* Structure for storing pointers to reference definitions for fast lookup
465    during "process_later". */
466 
467 struct ref_map
468 {
469   char *stabs;
470   CORE_ADDR value;
471   struct symbol *sym;
472 };
473 
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477 
478 static struct ref_map *ref_map;
479 
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482 
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485 
486 /* This file maintains a cache of stabs aliases found in the symbol
487    table. If the symbol table changes, this cache must be cleared
488    or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492   ref_count = 0;
493   ref_chunk = 0;
494 }
495 
496 /* Create array of pointers mapping refids to symbols and stab strings.
497    Add pointers to reference definition symbols and/or their values as we
498    find them, using their reference numbers as our index.
499    These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503   if (ref_count == 0)
504     ref_chunk = 0;
505   if (refnum >= ref_count)
506     ref_count = refnum + 1;
507   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508     {
509       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511       ref_map = (struct ref_map *)
512 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
513       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
514       ref_chunk += new_chunks;
515     }
516   ref_map[refnum].stabs = stabs;
517   ref_map[refnum].sym = sym;
518   ref_map[refnum].value = value;
519 }
520 
521 /* Return defined sym for the reference REFNUM.  */
522 struct symbol *
523 ref_search (int refnum)
524 {
525   if (refnum < 0 || refnum > ref_count)
526     return 0;
527   return ref_map[refnum].sym;
528 }
529 
530 /* Parse a reference id in STRING and return the resulting
531    reference number.  Move STRING beyond the reference id.  */
532 
533 static int
534 process_reference (char **string)
535 {
536   char *p;
537   int refnum = 0;
538 
539   if (**string != '#')
540     return 0;
541 
542   /* Advance beyond the initial '#'.  */
543   p = *string + 1;
544 
545   /* Read number as reference id. */
546   while (*p && isdigit (*p))
547     {
548       refnum = refnum * 10 + *p - '0';
549       p++;
550     }
551   *string = p;
552   return refnum;
553 }
554 
555 /* If STRING defines a reference, store away a pointer to the reference
556    definition for later use.  Return the reference number.  */
557 
558 int
559 symbol_reference_defined (char **string)
560 {
561   char *p = *string;
562   int refnum = 0;
563 
564   refnum = process_reference (&p);
565 
566   /* Defining symbols end in '=' */
567   if (*p == '=')
568     {
569       /* Symbol is being defined here. */
570       *string = p + 1;
571       return refnum;
572     }
573   else
574     {
575       /* Must be a reference.   Either the symbol has already been defined,
576          or this is a forward reference to it.  */
577       *string = p;
578       return -1;
579     }
580 }
581 
582 static int
583 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
584 {
585   int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
586 
587   if (regno >= gdbarch_num_regs (gdbarch)
588 		+ gdbarch_num_pseudo_regs (gdbarch))
589     {
590       reg_value_complaint (regno,
591 			   gdbarch_num_regs (gdbarch)
592 			     + gdbarch_num_pseudo_regs (gdbarch),
593 			   SYMBOL_PRINT_NAME (sym));
594 
595       regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless */
596     }
597 
598   return regno;
599 }
600 
601 static const struct symbol_register_ops stab_register_funcs = {
602   stab_reg_to_regnum
603 };
604 
605 struct symbol *
606 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
607 	       struct objfile *objfile)
608 {
609   struct gdbarch *gdbarch = get_objfile_arch (objfile);
610   struct symbol *sym;
611   char *p = (char *) find_name_end (string);
612   int deftype;
613   int synonym = 0;
614   int i;
615   char *new_name = NULL;
616 
617   /* We would like to eliminate nameless symbols, but keep their types.
618      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
619      to type 2, but, should not create a symbol to address that type. Since
620      the symbol will be nameless, there is no way any user can refer to it. */
621 
622   int nameless;
623 
624   /* Ignore syms with empty names.  */
625   if (string[0] == 0)
626     return 0;
627 
628   /* Ignore old-style symbols from cc -go  */
629   if (p == 0)
630     return 0;
631 
632   while (p[1] == ':')
633     {
634       p += 2;
635       p = strchr (p, ':');
636     }
637 
638   /* If a nameless stab entry, all we need is the type, not the symbol.
639      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
640   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
641 
642   current_symbol = sym = (struct symbol *)
643     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
644   memset (sym, 0, sizeof (struct symbol));
645 
646   switch (type & N_TYPE)
647     {
648     case N_TEXT:
649       SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
650       break;
651     case N_DATA:
652       SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
653       break;
654     case N_BSS:
655       SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
656       break;
657     }
658 
659   if (processing_gcc_compilation)
660     {
661       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
662          number of bytes occupied by a type or object, which we ignore.  */
663       SYMBOL_LINE (sym) = desc;
664     }
665   else
666     {
667       SYMBOL_LINE (sym) = 0;	/* unknown */
668     }
669 
670   if (is_cplus_marker (string[0]))
671     {
672       /* Special GNU C++ names.  */
673       switch (string[1])
674 	{
675 	case 't':
676 	  SYMBOL_SET_LINKAGE_NAME
677 	    (sym, obsavestring ("this", strlen ("this"),
678 				&objfile->objfile_obstack));
679 	  break;
680 
681 	case 'v':		/* $vtbl_ptr_type */
682 	  goto normal;
683 
684 	case 'e':
685 	  SYMBOL_SET_LINKAGE_NAME
686 	    (sym, obsavestring ("eh_throw", strlen ("eh_throw"),
687 				&objfile->objfile_obstack));
688 	  break;
689 
690 	case '_':
691 	  /* This was an anonymous type that was never fixed up.  */
692 	  goto normal;
693 
694 	case 'X':
695 	  /* SunPRO (3.0 at least) static variable encoding.  */
696 	  if (gdbarch_static_transform_name_p (gdbarch))
697 	    goto normal;
698 	  /* ... fall through ... */
699 
700 	default:
701 	  complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
702 		     string);
703 	  goto normal;		/* Do *something* with it */
704 	}
705     }
706   else
707     {
708     normal:
709       SYMBOL_LANGUAGE (sym) = current_subfile->language;
710       if (SYMBOL_LANGUAGE (sym) == language_cplus)
711 	{
712 	  char *name = alloca (p - string + 1);
713 	  memcpy (name, string, p - string);
714 	  name[p - string] = '\0';
715 	  new_name = cp_canonicalize_string (name);
716 	  cp_scan_for_anonymous_namespaces (sym);
717 	}
718       if (new_name != NULL)
719 	{
720 	  SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), objfile);
721 	  xfree (new_name);
722 	}
723       else
724 	SYMBOL_SET_NAMES (sym, string, p - string, objfile);
725     }
726   p++;
727 
728   /* Determine the type of name being defined.  */
729 #if 0
730   /* Getting GDB to correctly skip the symbol on an undefined symbol
731      descriptor and not ever dump core is a very dodgy proposition if
732      we do things this way.  I say the acorn RISC machine can just
733      fix their compiler.  */
734   /* The Acorn RISC machine's compiler can put out locals that don't
735      start with "234=" or "(3,4)=", so assume anything other than the
736      deftypes we know how to handle is a local.  */
737   if (!strchr ("cfFGpPrStTvVXCR", *p))
738 #else
739   if (isdigit (*p) || *p == '(' || *p == '-')
740 #endif
741     deftype = 'l';
742   else
743     deftype = *p++;
744 
745   switch (deftype)
746     {
747     case 'c':
748       /* c is a special case, not followed by a type-number.
749          SYMBOL:c=iVALUE for an integer constant symbol.
750          SYMBOL:c=rVALUE for a floating constant symbol.
751          SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
752          e.g. "b:c=e6,0" for "const b = blob1"
753          (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
754       if (*p != '=')
755 	{
756 	  SYMBOL_CLASS (sym) = LOC_CONST;
757 	  SYMBOL_TYPE (sym) = error_type (&p, objfile);
758 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
759 	  add_symbol_to_list (sym, &file_symbols);
760 	  return sym;
761 	}
762       ++p;
763       switch (*p++)
764 	{
765 	case 'r':
766 	  {
767 	    double d = atof (p);
768 	    gdb_byte *dbl_valu;
769 	    struct type *dbl_type;
770 
771 	    /* FIXME-if-picky-about-floating-accuracy: Should be using
772 	       target arithmetic to get the value.  real.c in GCC
773 	       probably has the necessary code.  */
774 
775 	    dbl_type = objfile_type (objfile)->builtin_double;
776 	    dbl_valu =
777 	      obstack_alloc (&objfile->objfile_obstack,
778 			     TYPE_LENGTH (dbl_type));
779 	    store_typed_floating (dbl_valu, dbl_type, d);
780 
781 	    SYMBOL_TYPE (sym) = dbl_type;
782 	    SYMBOL_VALUE_BYTES (sym) = dbl_valu;
783 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
784 	  }
785 	  break;
786 	case 'i':
787 	  {
788 	    /* Defining integer constants this way is kind of silly,
789 	       since 'e' constants allows the compiler to give not
790 	       only the value, but the type as well.  C has at least
791 	       int, long, unsigned int, and long long as constant
792 	       types; other languages probably should have at least
793 	       unsigned as well as signed constants.  */
794 
795 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
796 	    SYMBOL_VALUE (sym) = atoi (p);
797 	    SYMBOL_CLASS (sym) = LOC_CONST;
798 	  }
799 	  break;
800 	case 'e':
801 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
802 	     can be represented as integral.
803 	     e.g. "b:c=e6,0" for "const b = blob1"
804 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
805 	  {
806 	    SYMBOL_CLASS (sym) = LOC_CONST;
807 	    SYMBOL_TYPE (sym) = read_type (&p, objfile);
808 
809 	    if (*p != ',')
810 	      {
811 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
812 		break;
813 	      }
814 	    ++p;
815 
816 	    /* If the value is too big to fit in an int (perhaps because
817 	       it is unsigned), or something like that, we silently get
818 	       a bogus value.  The type and everything else about it is
819 	       correct.  Ideally, we should be using whatever we have
820 	       available for parsing unsigned and long long values,
821 	       however.  */
822 	    SYMBOL_VALUE (sym) = atoi (p);
823 	  }
824 	  break;
825 	default:
826 	  {
827 	    SYMBOL_CLASS (sym) = LOC_CONST;
828 	    SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 	  }
830 	}
831       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
832       add_symbol_to_list (sym, &file_symbols);
833       return sym;
834 
835     case 'C':
836       /* The name of a caught exception.  */
837       SYMBOL_TYPE (sym) = read_type (&p, objfile);
838       SYMBOL_CLASS (sym) = LOC_LABEL;
839       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
840       SYMBOL_VALUE_ADDRESS (sym) = valu;
841       add_symbol_to_list (sym, &local_symbols);
842       break;
843 
844     case 'f':
845       /* A static function definition.  */
846       SYMBOL_TYPE (sym) = read_type (&p, objfile);
847       SYMBOL_CLASS (sym) = LOC_BLOCK;
848       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
849       add_symbol_to_list (sym, &file_symbols);
850       /* fall into process_function_types.  */
851 
852     process_function_types:
853       /* Function result types are described as the result type in stabs.
854          We need to convert this to the function-returning-type-X type
855          in GDB.  E.g. "int" is converted to "function returning int".  */
856       if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
857 	SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
858 
859       /* All functions in C++ have prototypes.  Stabs does not offer an
860          explicit way to identify prototyped or unprototyped functions,
861          but both GCC and Sun CC emit stabs for the "call-as" type rather
862          than the "declared-as" type for unprototyped functions, so
863          we treat all functions as if they were prototyped.  This is used
864          primarily for promotion when calling the function from GDB.  */
865       TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
866 
867       /* fall into process_prototype_types */
868 
869     process_prototype_types:
870       /* Sun acc puts declared types of arguments here.  */
871       if (*p == ';')
872 	{
873 	  struct type *ftype = SYMBOL_TYPE (sym);
874 	  int nsemi = 0;
875 	  int nparams = 0;
876 	  char *p1 = p;
877 
878 	  /* Obtain a worst case guess for the number of arguments
879 	     by counting the semicolons.  */
880 	  while (*p1)
881 	    {
882 	      if (*p1++ == ';')
883 		nsemi++;
884 	    }
885 
886 	  /* Allocate parameter information fields and fill them in. */
887 	  TYPE_FIELDS (ftype) = (struct field *)
888 	    TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
889 	  while (*p++ == ';')
890 	    {
891 	      struct type *ptype;
892 
893 	      /* A type number of zero indicates the start of varargs.
894 	         FIXME: GDB currently ignores vararg functions.  */
895 	      if (p[0] == '0' && p[1] == '\0')
896 		break;
897 	      ptype = read_type (&p, objfile);
898 
899 	      /* The Sun compilers mark integer arguments, which should
900 	         be promoted to the width of the calling conventions, with
901 	         a type which references itself. This type is turned into
902 	         a TYPE_CODE_VOID type by read_type, and we have to turn
903 	         it back into builtin_int here.
904 	         FIXME: Do we need a new builtin_promoted_int_arg ?  */
905 	      if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
906 		ptype = objfile_type (objfile)->builtin_int;
907 	      TYPE_FIELD_TYPE (ftype, nparams) = ptype;
908 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
909 	    }
910 	  TYPE_NFIELDS (ftype) = nparams;
911 	  TYPE_PROTOTYPED (ftype) = 1;
912 	}
913       break;
914 
915     case 'F':
916       /* A global function definition.  */
917       SYMBOL_TYPE (sym) = read_type (&p, objfile);
918       SYMBOL_CLASS (sym) = LOC_BLOCK;
919       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
920       add_symbol_to_list (sym, &global_symbols);
921       goto process_function_types;
922 
923     case 'G':
924       /* For a class G (global) symbol, it appears that the
925          value is not correct.  It is necessary to search for the
926          corresponding linker definition to find the value.
927          These definitions appear at the end of the namelist.  */
928       SYMBOL_TYPE (sym) = read_type (&p, objfile);
929       SYMBOL_CLASS (sym) = LOC_STATIC;
930       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931       /* Don't add symbol references to global_sym_chain.
932          Symbol references don't have valid names and wont't match up with
933          minimal symbols when the global_sym_chain is relocated.
934          We'll fixup symbol references when we fixup the defining symbol.  */
935       if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
936 	{
937 	  i = hashname (SYMBOL_LINKAGE_NAME (sym));
938 	  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
939 	  global_sym_chain[i] = sym;
940 	}
941       add_symbol_to_list (sym, &global_symbols);
942       break;
943 
944       /* This case is faked by a conditional above,
945          when there is no code letter in the dbx data.
946          Dbx data never actually contains 'l'.  */
947     case 's':
948     case 'l':
949       SYMBOL_TYPE (sym) = read_type (&p, objfile);
950       SYMBOL_CLASS (sym) = LOC_LOCAL;
951       SYMBOL_VALUE (sym) = valu;
952       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
953       add_symbol_to_list (sym, &local_symbols);
954       break;
955 
956     case 'p':
957       if (*p == 'F')
958 	/* pF is a two-letter code that means a function parameter in Fortran.
959 	   The type-number specifies the type of the return value.
960 	   Translate it into a pointer-to-function type.  */
961 	{
962 	  p++;
963 	  SYMBOL_TYPE (sym)
964 	    = lookup_pointer_type
965 	    (lookup_function_type (read_type (&p, objfile)));
966 	}
967       else
968 	SYMBOL_TYPE (sym) = read_type (&p, objfile);
969 
970       SYMBOL_CLASS (sym) = LOC_ARG;
971       SYMBOL_VALUE (sym) = valu;
972       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
973       SYMBOL_IS_ARGUMENT (sym) = 1;
974       add_symbol_to_list (sym, &local_symbols);
975 
976       if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
977 	{
978 	  /* On little-endian machines, this crud is never necessary,
979 	     and, if the extra bytes contain garbage, is harmful.  */
980 	  break;
981 	}
982 
983       /* If it's gcc-compiled, if it says `short', believe it.  */
984       if (processing_gcc_compilation
985 	  || gdbarch_believe_pcc_promotion (gdbarch))
986 	break;
987 
988       if (!gdbarch_believe_pcc_promotion (gdbarch))
989 	{
990 	  /* If PCC says a parameter is a short or a char, it is
991 	     really an int.  */
992 	  if (TYPE_LENGTH (SYMBOL_TYPE (sym))
993 	      < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
994 	      && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
995 	    {
996 	      SYMBOL_TYPE (sym) =
997 		TYPE_UNSIGNED (SYMBOL_TYPE (sym))
998 		? objfile_type (objfile)->builtin_unsigned_int
999 		: objfile_type (objfile)->builtin_int;
1000 	    }
1001 	  break;
1002 	}
1003 
1004     case 'P':
1005       /* acc seems to use P to declare the prototypes of functions that
1006          are referenced by this file.  gdb is not prepared to deal
1007          with this extra information.  FIXME, it ought to.  */
1008       if (type == N_FUN)
1009 	{
1010 	  SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 	  goto process_prototype_types;
1012 	}
1013       /*FALLTHROUGH */
1014 
1015     case 'R':
1016       /* Parameter which is in a register.  */
1017       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1018       SYMBOL_CLASS (sym) = LOC_REGISTER;
1019       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1020       SYMBOL_IS_ARGUMENT (sym) = 1;
1021       SYMBOL_VALUE (sym) = valu;
1022       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1023       add_symbol_to_list (sym, &local_symbols);
1024       break;
1025 
1026     case 'r':
1027       /* Register variable (either global or local).  */
1028       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029       SYMBOL_CLASS (sym) = LOC_REGISTER;
1030       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1031       SYMBOL_VALUE (sym) = valu;
1032       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1033       if (within_function)
1034 	{
1035 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1036 	     the same name to represent an argument passed in a
1037 	     register.  GCC uses 'P' for the same case.  So if we find
1038 	     such a symbol pair we combine it into one 'P' symbol.
1039 	     For Sun cc we need to do this regardless of
1040 	     stabs_argument_has_addr, because the compiler puts out
1041 	     the 'p' symbol even if it never saves the argument onto
1042 	     the stack.
1043 
1044 	     On most machines, we want to preserve both symbols, so
1045 	     that we can still get information about what is going on
1046 	     with the stack (VAX for computing args_printed, using
1047 	     stack slots instead of saved registers in backtraces,
1048 	     etc.).
1049 
1050 	     Note that this code illegally combines
1051 	     main(argc) struct foo argc; { register struct foo argc; }
1052 	     but this case is considered pathological and causes a warning
1053 	     from a decent compiler.  */
1054 
1055 	  if (local_symbols
1056 	      && local_symbols->nsyms > 0
1057 	      && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1058 	    {
1059 	      struct symbol *prev_sym;
1060 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1061 	      if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1062 		   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1063 		  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1064 			     SYMBOL_LINKAGE_NAME (sym)) == 0)
1065 		{
1066 		  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1067 		  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1068 		  /* Use the type from the LOC_REGISTER; that is the type
1069 		     that is actually in that register.  */
1070 		  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1071 		  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1072 		  sym = prev_sym;
1073 		  break;
1074 		}
1075 	    }
1076 	  add_symbol_to_list (sym, &local_symbols);
1077 	}
1078       else
1079 	add_symbol_to_list (sym, &file_symbols);
1080       break;
1081 
1082     case 'S':
1083       /* Static symbol at top level of file */
1084       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1085       SYMBOL_CLASS (sym) = LOC_STATIC;
1086       SYMBOL_VALUE_ADDRESS (sym) = valu;
1087       if (gdbarch_static_transform_name_p (gdbarch)
1088 	  && gdbarch_static_transform_name (gdbarch,
1089 					    SYMBOL_LINKAGE_NAME (sym))
1090 	     != SYMBOL_LINKAGE_NAME (sym))
1091 	{
1092 	  struct minimal_symbol *msym;
1093 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1094 	  if (msym != NULL)
1095 	    {
1096 	      char *new_name = gdbarch_static_transform_name
1097 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1098 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1099 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1100 	    }
1101 	}
1102       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103       add_symbol_to_list (sym, &file_symbols);
1104       break;
1105 
1106     case 't':
1107       /* In Ada, there is no distinction between typedef and non-typedef;
1108          any type declaration implicitly has the equivalent of a typedef,
1109          and thus 't' is in fact equivalent to 'Tt'.
1110 
1111          Therefore, for Ada units, we check the character immediately
1112          before the 't', and if we do not find a 'T', then make sure to
1113          create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1114          will be stored in the VAR_DOMAIN).  If the symbol was indeed
1115          defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1116          elsewhere, so we don't need to take care of that.
1117 
1118          This is important to do, because of forward references:
1119          The cleanup of undefined types stored in undef_types only uses
1120          STRUCT_DOMAIN symbols to perform the replacement.  */
1121       synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1122 
1123       /* Typedef */
1124       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125 
1126       /* For a nameless type, we don't want a create a symbol, thus we
1127          did not use `sym'. Return without further processing. */
1128       if (nameless)
1129 	return NULL;
1130 
1131       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1132       SYMBOL_VALUE (sym) = valu;
1133       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1134       /* C++ vagaries: we may have a type which is derived from
1135          a base type which did not have its name defined when the
1136          derived class was output.  We fill in the derived class's
1137          base part member's name here in that case.  */
1138       if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1139 	if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1140 	     || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1141 	    && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1142 	  {
1143 	    int j;
1144 	    for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1145 	      if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1146 		TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1147 		  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1148 	  }
1149 
1150       if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1151 	{
1152 	  /* gcc-2.6 or later (when using -fvtable-thunks)
1153 	     emits a unique named type for a vtable entry.
1154 	     Some gdb code depends on that specific name. */
1155 	  extern const char vtbl_ptr_name[];
1156 
1157 	  if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1158 	       && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1159 	      || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1160 	    {
1161 	      /* If we are giving a name to a type such as "pointer to
1162 	         foo" or "function returning foo", we better not set
1163 	         the TYPE_NAME.  If the program contains "typedef char
1164 	         *caddr_t;", we don't want all variables of type char
1165 	         * to print as caddr_t.  This is not just a
1166 	         consequence of GDB's type management; PCC and GCC (at
1167 	         least through version 2.4) both output variables of
1168 	         either type char * or caddr_t with the type number
1169 	         defined in the 't' symbol for caddr_t.  If a future
1170 	         compiler cleans this up it GDB is not ready for it
1171 	         yet, but if it becomes ready we somehow need to
1172 	         disable this check (without breaking the PCC/GCC2.4
1173 	         case).
1174 
1175 	         Sigh.
1176 
1177 	         Fortunately, this check seems not to be necessary
1178 	         for anything except pointers or functions.  */
1179               /* ezannoni: 2000-10-26. This seems to apply for
1180 		 versions of gcc older than 2.8. This was the original
1181 		 problem: with the following code gdb would tell that
1182 		 the type for name1 is caddr_t, and func is char()
1183 	         typedef char *caddr_t;
1184 		 char *name2;
1185 		 struct x
1186 		 {
1187 		 char *name1;
1188 		 } xx;
1189 		 char *func()
1190 		 {
1191 		 }
1192 		 main () {}
1193 		 */
1194 
1195 	      /* Pascal accepts names for pointer types. */
1196 	      if (current_subfile->language == language_pascal)
1197 		{
1198 		  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1199           	}
1200 	    }
1201 	  else
1202 	    TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1203 	}
1204 
1205       add_symbol_to_list (sym, &file_symbols);
1206 
1207       if (synonym)
1208         {
1209           /* Create the STRUCT_DOMAIN clone.  */
1210           struct symbol *struct_sym = (struct symbol *)
1211             obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1212 
1213           *struct_sym = *sym;
1214           SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1215           SYMBOL_VALUE (struct_sym) = valu;
1216           SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1217           if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1218             TYPE_NAME (SYMBOL_TYPE (sym))
1219               = obconcat (&objfile->objfile_obstack, "", "",
1220                           SYMBOL_LINKAGE_NAME (sym));
1221           add_symbol_to_list (struct_sym, &file_symbols);
1222         }
1223 
1224       break;
1225 
1226     case 'T':
1227       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1228          by 't' which means we are typedef'ing it as well.  */
1229       synonym = *p == 't';
1230 
1231       if (synonym)
1232 	p++;
1233 
1234       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1235 
1236       /* For a nameless type, we don't want a create a symbol, thus we
1237          did not use `sym'. Return without further processing. */
1238       if (nameless)
1239 	return NULL;
1240 
1241       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1242       SYMBOL_VALUE (sym) = valu;
1243       SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1244       if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1245 	TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1246 	  = obconcat (&objfile->objfile_obstack, "", "",
1247 		      SYMBOL_LINKAGE_NAME (sym));
1248       add_symbol_to_list (sym, &file_symbols);
1249 
1250       if (synonym)
1251 	{
1252 	  /* Clone the sym and then modify it. */
1253 	  struct symbol *typedef_sym = (struct symbol *)
1254 	  obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1255 	  *typedef_sym = *sym;
1256 	  SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1257 	  SYMBOL_VALUE (typedef_sym) = valu;
1258 	  SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1259 	  if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1260 	    TYPE_NAME (SYMBOL_TYPE (sym))
1261 	      = obconcat (&objfile->objfile_obstack, "", "",
1262 			  SYMBOL_LINKAGE_NAME (sym));
1263 	  add_symbol_to_list (typedef_sym, &file_symbols);
1264 	}
1265       break;
1266 
1267     case 'V':
1268       /* Static symbol of local scope */
1269       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1270       SYMBOL_CLASS (sym) = LOC_STATIC;
1271       SYMBOL_VALUE_ADDRESS (sym) = valu;
1272       if (gdbarch_static_transform_name_p (gdbarch)
1273 	  && gdbarch_static_transform_name (gdbarch,
1274 					    SYMBOL_LINKAGE_NAME (sym))
1275 	     != SYMBOL_LINKAGE_NAME (sym))
1276 	{
1277 	  struct minimal_symbol *msym;
1278 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, objfile);
1279 	  if (msym != NULL)
1280 	    {
1281 	      char *new_name = gdbarch_static_transform_name
1282 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1283 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1284 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1285 	    }
1286 	}
1287       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1288 	add_symbol_to_list (sym, &local_symbols);
1289       break;
1290 
1291     case 'v':
1292       /* Reference parameter */
1293       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1294       SYMBOL_CLASS (sym) = LOC_REF_ARG;
1295       SYMBOL_IS_ARGUMENT (sym) = 1;
1296       SYMBOL_VALUE (sym) = valu;
1297       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1298       add_symbol_to_list (sym, &local_symbols);
1299       break;
1300 
1301     case 'a':
1302       /* Reference parameter which is in a register.  */
1303       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1304       SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1305       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1306       SYMBOL_IS_ARGUMENT (sym) = 1;
1307       SYMBOL_VALUE (sym) = valu;
1308       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1309       add_symbol_to_list (sym, &local_symbols);
1310       break;
1311 
1312     case 'X':
1313       /* This is used by Sun FORTRAN for "function result value".
1314          Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1315          that Pascal uses it too, but when I tried it Pascal used
1316          "x:3" (local symbol) instead.  */
1317       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1318       SYMBOL_CLASS (sym) = LOC_LOCAL;
1319       SYMBOL_VALUE (sym) = valu;
1320       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1321       add_symbol_to_list (sym, &local_symbols);
1322       break;
1323 
1324     default:
1325       SYMBOL_TYPE (sym) = error_type (&p, objfile);
1326       SYMBOL_CLASS (sym) = LOC_CONST;
1327       SYMBOL_VALUE (sym) = 0;
1328       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1329       add_symbol_to_list (sym, &file_symbols);
1330       break;
1331     }
1332 
1333   /* Some systems pass variables of certain types by reference instead
1334      of by value, i.e. they will pass the address of a structure (in a
1335      register or on the stack) instead of the structure itself.  */
1336 
1337   if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1338       && SYMBOL_IS_ARGUMENT (sym))
1339     {
1340       /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1341          variables passed in a register).  */
1342       if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1343 	SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1344       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1345 	 and subsequent arguments on SPARC, for example).  */
1346       else if (SYMBOL_CLASS (sym) == LOC_ARG)
1347 	SYMBOL_CLASS (sym) = LOC_REF_ARG;
1348     }
1349 
1350   return sym;
1351 }
1352 
1353 /* Skip rest of this symbol and return an error type.
1354 
1355    General notes on error recovery:  error_type always skips to the
1356    end of the symbol (modulo cretinous dbx symbol name continuation).
1357    Thus code like this:
1358 
1359    if (*(*pp)++ != ';')
1360    return error_type (pp, objfile);
1361 
1362    is wrong because if *pp starts out pointing at '\0' (typically as the
1363    result of an earlier error), it will be incremented to point to the
1364    start of the next symbol, which might produce strange results, at least
1365    if you run off the end of the string table.  Instead use
1366 
1367    if (**pp != ';')
1368    return error_type (pp, objfile);
1369    ++*pp;
1370 
1371    or
1372 
1373    if (**pp != ';')
1374    foo = error_type (pp, objfile);
1375    else
1376    ++*pp;
1377 
1378    And in case it isn't obvious, the point of all this hair is so the compiler
1379    can define new types and new syntaxes, and old versions of the
1380    debugger will be able to read the new symbol tables.  */
1381 
1382 static struct type *
1383 error_type (char **pp, struct objfile *objfile)
1384 {
1385   complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1386   while (1)
1387     {
1388       /* Skip to end of symbol.  */
1389       while (**pp != '\0')
1390 	{
1391 	  (*pp)++;
1392 	}
1393 
1394       /* Check for and handle cretinous dbx symbol name continuation!  */
1395       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1396 	{
1397 	  *pp = next_symbol_text (objfile);
1398 	}
1399       else
1400 	{
1401 	  break;
1402 	}
1403     }
1404   return objfile_type (objfile)->builtin_error;
1405 }
1406 
1407 
1408 /* Read type information or a type definition; return the type.  Even
1409    though this routine accepts either type information or a type
1410    definition, the distinction is relevant--some parts of stabsread.c
1411    assume that type information starts with a digit, '-', or '(' in
1412    deciding whether to call read_type.  */
1413 
1414 static struct type *
1415 read_type (char **pp, struct objfile *objfile)
1416 {
1417   struct type *type = 0;
1418   struct type *type1;
1419   int typenums[2];
1420   char type_descriptor;
1421 
1422   /* Size in bits of type if specified by a type attribute, or -1 if
1423      there is no size attribute.  */
1424   int type_size = -1;
1425 
1426   /* Used to distinguish string and bitstring from char-array and set. */
1427   int is_string = 0;
1428 
1429   /* Used to distinguish vector from array. */
1430   int is_vector = 0;
1431 
1432   /* Read type number if present.  The type number may be omitted.
1433      for instance in a two-dimensional array declared with type
1434      "ar1;1;10;ar1;1;10;4".  */
1435   if ((**pp >= '0' && **pp <= '9')
1436       || **pp == '('
1437       || **pp == '-')
1438     {
1439       if (read_type_number (pp, typenums) != 0)
1440 	return error_type (pp, objfile);
1441 
1442       if (**pp != '=')
1443         {
1444           /* Type is not being defined here.  Either it already
1445              exists, or this is a forward reference to it.
1446              dbx_alloc_type handles both cases.  */
1447           type = dbx_alloc_type (typenums, objfile);
1448 
1449           /* If this is a forward reference, arrange to complain if it
1450              doesn't get patched up by the time we're done
1451              reading.  */
1452           if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1453             add_undefined_type (type, typenums);
1454 
1455           return type;
1456         }
1457 
1458       /* Type is being defined here.  */
1459       /* Skip the '='.
1460          Also skip the type descriptor - we get it below with (*pp)[-1].  */
1461       (*pp) += 2;
1462     }
1463   else
1464     {
1465       /* 'typenums=' not present, type is anonymous.  Read and return
1466          the definition, but don't put it in the type vector.  */
1467       typenums[0] = typenums[1] = -1;
1468       (*pp)++;
1469     }
1470 
1471 again:
1472   type_descriptor = (*pp)[-1];
1473   switch (type_descriptor)
1474     {
1475     case 'x':
1476       {
1477 	enum type_code code;
1478 
1479 	/* Used to index through file_symbols.  */
1480 	struct pending *ppt;
1481 	int i;
1482 
1483 	/* Name including "struct", etc.  */
1484 	char *type_name;
1485 
1486 	{
1487 	  char *from, *to, *p, *q1, *q2;
1488 
1489 	  /* Set the type code according to the following letter.  */
1490 	  switch ((*pp)[0])
1491 	    {
1492 	    case 's':
1493 	      code = TYPE_CODE_STRUCT;
1494 	      break;
1495 	    case 'u':
1496 	      code = TYPE_CODE_UNION;
1497 	      break;
1498 	    case 'e':
1499 	      code = TYPE_CODE_ENUM;
1500 	      break;
1501 	    default:
1502 	      {
1503 		/* Complain and keep going, so compilers can invent new
1504 		   cross-reference types.  */
1505 		complaint (&symfile_complaints,
1506 			   _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1507 		code = TYPE_CODE_STRUCT;
1508 		break;
1509 	      }
1510 	    }
1511 
1512 	  q1 = strchr (*pp, '<');
1513 	  p = strchr (*pp, ':');
1514 	  if (p == NULL)
1515 	    return error_type (pp, objfile);
1516 	  if (q1 && p > q1 && p[1] == ':')
1517 	    {
1518 	      int nesting_level = 0;
1519 	      for (q2 = q1; *q2; q2++)
1520 		{
1521 		  if (*q2 == '<')
1522 		    nesting_level++;
1523 		  else if (*q2 == '>')
1524 		    nesting_level--;
1525 		  else if (*q2 == ':' && nesting_level == 0)
1526 		    break;
1527 		}
1528 	      p = q2;
1529 	      if (*p != ':')
1530 		return error_type (pp, objfile);
1531 	    }
1532 	  type_name = NULL;
1533 	  if (current_subfile->language == language_cplus)
1534 	    {
1535 	      char *new_name, *name = alloca (p - *pp + 1);
1536 	      memcpy (name, *pp, p - *pp);
1537 	      name[p - *pp] = '\0';
1538 	      new_name = cp_canonicalize_string (name);
1539 	      if (new_name != NULL)
1540 		{
1541 		  type_name = obsavestring (new_name, strlen (new_name),
1542 					    &objfile->objfile_obstack);
1543 		  xfree (new_name);
1544 		}
1545 	    }
1546 	  if (type_name == NULL)
1547 	    {
1548 	      to = type_name =
1549 		(char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1550 
1551 	      /* Copy the name.  */
1552 	      from = *pp + 1;
1553 	      while (from < p)
1554 		*to++ = *from++;
1555 	      *to = '\0';
1556 	    }
1557 
1558 	  /* Set the pointer ahead of the name which we just read, and
1559 	     the colon.  */
1560 	  *pp = p + 1;
1561 	}
1562 
1563         /* If this type has already been declared, then reuse the same
1564            type, rather than allocating a new one.  This saves some
1565            memory.  */
1566 
1567 	for (ppt = file_symbols; ppt; ppt = ppt->next)
1568 	  for (i = 0; i < ppt->nsyms; i++)
1569 	    {
1570 	      struct symbol *sym = ppt->symbol[i];
1571 
1572 	      if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1573 		  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1574 		  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1575 		  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1576 		{
1577 		  obstack_free (&objfile->objfile_obstack, type_name);
1578 		  type = SYMBOL_TYPE (sym);
1579 	          if (typenums[0] != -1)
1580 	            *dbx_lookup_type (typenums, objfile) = type;
1581 		  return type;
1582 		}
1583 	    }
1584 
1585 	/* Didn't find the type to which this refers, so we must
1586 	   be dealing with a forward reference.  Allocate a type
1587 	   structure for it, and keep track of it so we can
1588 	   fill in the rest of the fields when we get the full
1589 	   type.  */
1590 	type = dbx_alloc_type (typenums, objfile);
1591 	TYPE_CODE (type) = code;
1592 	TYPE_TAG_NAME (type) = type_name;
1593 	INIT_CPLUS_SPECIFIC (type);
1594 	TYPE_STUB (type) = 1;
1595 
1596 	add_undefined_type (type, typenums);
1597 	return type;
1598       }
1599 
1600     case '-':			/* RS/6000 built-in type */
1601     case '0':
1602     case '1':
1603     case '2':
1604     case '3':
1605     case '4':
1606     case '5':
1607     case '6':
1608     case '7':
1609     case '8':
1610     case '9':
1611     case '(':
1612       (*pp)--;
1613 
1614       /* We deal with something like t(1,2)=(3,4)=... which
1615          the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1616 
1617       /* Allocate and enter the typedef type first.
1618          This handles recursive types. */
1619       type = dbx_alloc_type (typenums, objfile);
1620       TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1621       {
1622 	struct type *xtype = read_type (pp, objfile);
1623 	if (type == xtype)
1624 	  {
1625 	    /* It's being defined as itself.  That means it is "void".  */
1626 	    TYPE_CODE (type) = TYPE_CODE_VOID;
1627 	    TYPE_LENGTH (type) = 1;
1628 	  }
1629 	else if (type_size >= 0 || is_string)
1630 	  {
1631 	    /* This is the absolute wrong way to construct types.  Every
1632 	       other debug format has found a way around this problem and
1633 	       the related problems with unnecessarily stubbed types;
1634 	       someone motivated should attempt to clean up the issue
1635 	       here as well.  Once a type pointed to has been created it
1636 	       should not be modified.
1637 
1638                Well, it's not *absolutely* wrong.  Constructing recursive
1639                types (trees, linked lists) necessarily entails modifying
1640                types after creating them.  Constructing any loop structure
1641                entails side effects.  The Dwarf 2 reader does handle this
1642                more gracefully (it never constructs more than once
1643                instance of a type object, so it doesn't have to copy type
1644                objects wholesale), but it still mutates type objects after
1645                other folks have references to them.
1646 
1647                Keep in mind that this circularity/mutation issue shows up
1648                at the source language level, too: C's "incomplete types",
1649                for example.  So the proper cleanup, I think, would be to
1650                limit GDB's type smashing to match exactly those required
1651                by the source language.  So GDB could have a
1652                "complete_this_type" function, but never create unnecessary
1653                copies of a type otherwise.  */
1654 	    replace_type (type, xtype);
1655 	    TYPE_NAME (type) = NULL;
1656 	    TYPE_TAG_NAME (type) = NULL;
1657 	  }
1658 	else
1659 	  {
1660 	    TYPE_TARGET_STUB (type) = 1;
1661 	    TYPE_TARGET_TYPE (type) = xtype;
1662 	  }
1663       }
1664       break;
1665 
1666       /* In the following types, we must be sure to overwrite any existing
1667          type that the typenums refer to, rather than allocating a new one
1668          and making the typenums point to the new one.  This is because there
1669          may already be pointers to the existing type (if it had been
1670          forward-referenced), and we must change it to a pointer, function,
1671          reference, or whatever, *in-place*.  */
1672 
1673     case '*':			/* Pointer to another type */
1674       type1 = read_type (pp, objfile);
1675       type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1676       break;
1677 
1678     case '&':			/* Reference to another type */
1679       type1 = read_type (pp, objfile);
1680       type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1681       break;
1682 
1683     case 'f':			/* Function returning another type */
1684       type1 = read_type (pp, objfile);
1685       type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1686       break;
1687 
1688     case 'g':                   /* Prototyped function.  (Sun)  */
1689       {
1690         /* Unresolved questions:
1691 
1692            - According to Sun's ``STABS Interface Manual'', for 'f'
1693            and 'F' symbol descriptors, a `0' in the argument type list
1694            indicates a varargs function.  But it doesn't say how 'g'
1695            type descriptors represent that info.  Someone with access
1696            to Sun's toolchain should try it out.
1697 
1698            - According to the comment in define_symbol (search for
1699            `process_prototype_types:'), Sun emits integer arguments as
1700            types which ref themselves --- like `void' types.  Do we
1701            have to deal with that here, too?  Again, someone with
1702            access to Sun's toolchain should try it out and let us
1703            know.  */
1704 
1705         const char *type_start = (*pp) - 1;
1706         struct type *return_type = read_type (pp, objfile);
1707         struct type *func_type
1708           = make_function_type (return_type,
1709 				dbx_lookup_type (typenums, objfile));
1710         struct type_list {
1711           struct type *type;
1712           struct type_list *next;
1713         } *arg_types = 0;
1714         int num_args = 0;
1715 
1716         while (**pp && **pp != '#')
1717           {
1718             struct type *arg_type = read_type (pp, objfile);
1719             struct type_list *new = alloca (sizeof (*new));
1720             new->type = arg_type;
1721             new->next = arg_types;
1722             arg_types = new;
1723             num_args++;
1724           }
1725         if (**pp == '#')
1726           ++*pp;
1727         else
1728           {
1729 	    complaint (&symfile_complaints,
1730 		       _("Prototyped function type didn't end arguments with `#':\n%s"),
1731 		       type_start);
1732           }
1733 
1734         /* If there is just one argument whose type is `void', then
1735            that's just an empty argument list.  */
1736         if (arg_types
1737             && ! arg_types->next
1738             && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1739           num_args = 0;
1740 
1741         TYPE_FIELDS (func_type)
1742           = (struct field *) TYPE_ALLOC (func_type,
1743                                          num_args * sizeof (struct field));
1744         memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1745         {
1746           int i;
1747           struct type_list *t;
1748 
1749           /* We stuck each argument type onto the front of the list
1750              when we read it, so the list is reversed.  Build the
1751              fields array right-to-left.  */
1752           for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1753             TYPE_FIELD_TYPE (func_type, i) = t->type;
1754         }
1755         TYPE_NFIELDS (func_type) = num_args;
1756         TYPE_PROTOTYPED (func_type) = 1;
1757 
1758         type = func_type;
1759         break;
1760       }
1761 
1762     case 'k':			/* Const qualifier on some type (Sun) */
1763       type = read_type (pp, objfile);
1764       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1765 			   dbx_lookup_type (typenums, objfile));
1766       break;
1767 
1768     case 'B':			/* Volatile qual on some type (Sun) */
1769       type = read_type (pp, objfile);
1770       type = make_cv_type (TYPE_CONST (type), 1, type,
1771 			   dbx_lookup_type (typenums, objfile));
1772       break;
1773 
1774     case '@':
1775       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1776 	{			/* Member (class & variable) type */
1777 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1778 
1779 	  struct type *domain = read_type (pp, objfile);
1780 	  struct type *memtype;
1781 
1782 	  if (**pp != ',')
1783 	    /* Invalid member type data format.  */
1784 	    return error_type (pp, objfile);
1785 	  ++*pp;
1786 
1787 	  memtype = read_type (pp, objfile);
1788 	  type = dbx_alloc_type (typenums, objfile);
1789 	  smash_to_memberptr_type (type, domain, memtype);
1790 	}
1791       else
1792 	/* type attribute */
1793 	{
1794 	  char *attr = *pp;
1795 	  /* Skip to the semicolon.  */
1796 	  while (**pp != ';' && **pp != '\0')
1797 	    ++(*pp);
1798 	  if (**pp == '\0')
1799 	    return error_type (pp, objfile);
1800 	  else
1801 	    ++ * pp;		/* Skip the semicolon.  */
1802 
1803 	  switch (*attr)
1804 	    {
1805 	    case 's':		/* Size attribute */
1806 	      type_size = atoi (attr + 1);
1807 	      if (type_size <= 0)
1808 		type_size = -1;
1809 	      break;
1810 
1811 	    case 'S':		/* String attribute */
1812 	      /* FIXME: check to see if following type is array? */
1813 	      is_string = 1;
1814 	      break;
1815 
1816 	    case 'V':		/* Vector attribute */
1817 	      /* FIXME: check to see if following type is array? */
1818 	      is_vector = 1;
1819 	      break;
1820 
1821 	    default:
1822 	      /* Ignore unrecognized type attributes, so future compilers
1823 	         can invent new ones.  */
1824 	      break;
1825 	    }
1826 	  ++*pp;
1827 	  goto again;
1828 	}
1829       break;
1830 
1831     case '#':			/* Method (class & fn) type */
1832       if ((*pp)[0] == '#')
1833 	{
1834 	  /* We'll get the parameter types from the name.  */
1835 	  struct type *return_type;
1836 
1837 	  (*pp)++;
1838 	  return_type = read_type (pp, objfile);
1839 	  if (*(*pp)++ != ';')
1840 	    complaint (&symfile_complaints,
1841 		       _("invalid (minimal) member type data format at symtab pos %d."),
1842 		       symnum);
1843 	  type = allocate_stub_method (return_type);
1844 	  if (typenums[0] != -1)
1845 	    *dbx_lookup_type (typenums, objfile) = type;
1846 	}
1847       else
1848 	{
1849 	  struct type *domain = read_type (pp, objfile);
1850 	  struct type *return_type;
1851 	  struct field *args;
1852 	  int nargs, varargs;
1853 
1854 	  if (**pp != ',')
1855 	    /* Invalid member type data format.  */
1856 	    return error_type (pp, objfile);
1857 	  else
1858 	    ++(*pp);
1859 
1860 	  return_type = read_type (pp, objfile);
1861 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1862 	  if (args == NULL)
1863 	    return error_type (pp, objfile);
1864 	  type = dbx_alloc_type (typenums, objfile);
1865 	  smash_to_method_type (type, domain, return_type, args,
1866 				nargs, varargs);
1867 	}
1868       break;
1869 
1870     case 'r':			/* Range type */
1871       type = read_range_type (pp, typenums, type_size, objfile);
1872       if (typenums[0] != -1)
1873 	*dbx_lookup_type (typenums, objfile) = type;
1874       break;
1875 
1876     case 'b':
1877 	{
1878 	  /* Sun ACC builtin int type */
1879 	  type = read_sun_builtin_type (pp, typenums, objfile);
1880 	  if (typenums[0] != -1)
1881 	    *dbx_lookup_type (typenums, objfile) = type;
1882 	}
1883       break;
1884 
1885     case 'R':			/* Sun ACC builtin float type */
1886       type = read_sun_floating_type (pp, typenums, objfile);
1887       if (typenums[0] != -1)
1888 	*dbx_lookup_type (typenums, objfile) = type;
1889       break;
1890 
1891     case 'e':			/* Enumeration type */
1892       type = dbx_alloc_type (typenums, objfile);
1893       type = read_enum_type (pp, type, objfile);
1894       if (typenums[0] != -1)
1895 	*dbx_lookup_type (typenums, objfile) = type;
1896       break;
1897 
1898     case 's':			/* Struct type */
1899     case 'u':			/* Union type */
1900       {
1901         enum type_code type_code = TYPE_CODE_UNDEF;
1902         type = dbx_alloc_type (typenums, objfile);
1903         switch (type_descriptor)
1904           {
1905           case 's':
1906             type_code = TYPE_CODE_STRUCT;
1907             break;
1908           case 'u':
1909             type_code = TYPE_CODE_UNION;
1910             break;
1911           }
1912         type = read_struct_type (pp, type, type_code, objfile);
1913         break;
1914       }
1915 
1916     case 'a':			/* Array type */
1917       if (**pp != 'r')
1918 	return error_type (pp, objfile);
1919       ++*pp;
1920 
1921       type = dbx_alloc_type (typenums, objfile);
1922       type = read_array_type (pp, type, objfile);
1923       if (is_string)
1924 	TYPE_CODE (type) = TYPE_CODE_STRING;
1925       if (is_vector)
1926 	make_vector_type (type);
1927       break;
1928 
1929     case 'S':			/* Set or bitstring  type */
1930       type1 = read_type (pp, objfile);
1931       type = create_set_type ((struct type *) NULL, type1);
1932       if (is_string)
1933 	TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1934       if (typenums[0] != -1)
1935 	*dbx_lookup_type (typenums, objfile) = type;
1936       break;
1937 
1938     default:
1939       --*pp;			/* Go back to the symbol in error */
1940       /* Particularly important if it was \0! */
1941       return error_type (pp, objfile);
1942     }
1943 
1944   if (type == 0)
1945     {
1946       warning (_("GDB internal error, type is NULL in stabsread.c."));
1947       return error_type (pp, objfile);
1948     }
1949 
1950   /* Size specified in a type attribute overrides any other size.  */
1951   if (type_size != -1)
1952     TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1953 
1954   return type;
1955 }
1956 
1957 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1958    Return the proper type node for a given builtin type number. */
1959 
1960 static const struct objfile_data *rs6000_builtin_type_data;
1961 
1962 static struct type *
1963 rs6000_builtin_type (int typenum, struct objfile *objfile)
1964 {
1965   struct type **negative_types = objfile_data (objfile, rs6000_builtin_type_data);
1966 
1967   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
1968 #define NUMBER_RECOGNIZED 34
1969   struct type *rettype = NULL;
1970 
1971   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1972     {
1973       complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1974       return objfile_type (objfile)->builtin_error;
1975     }
1976 
1977   if (!negative_types)
1978     {
1979       /* This includes an empty slot for type number -0.  */
1980       negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
1981 				       NUMBER_RECOGNIZED + 1, struct type *);
1982       set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
1983     }
1984 
1985   if (negative_types[-typenum] != NULL)
1986     return negative_types[-typenum];
1987 
1988 #if TARGET_CHAR_BIT != 8
1989 #error This code wrong for TARGET_CHAR_BIT not 8
1990   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
1991      that if that ever becomes not true, the correct fix will be to
1992      make the size in the struct type to be in bits, not in units of
1993      TARGET_CHAR_BIT.  */
1994 #endif
1995 
1996   switch (-typenum)
1997     {
1998     case 1:
1999       /* The size of this and all the other types are fixed, defined
2000          by the debugging format.  If there is a type called "int" which
2001          is other than 32 bits, then it should use a new negative type
2002          number (or avoid negative type numbers for that case).
2003          See stabs.texinfo.  */
2004       rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2005       break;
2006     case 2:
2007       rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2008       break;
2009     case 3:
2010       rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2011       break;
2012     case 4:
2013       rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2014       break;
2015     case 5:
2016       rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2017 			   "unsigned char", objfile);
2018       break;
2019     case 6:
2020       rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2021       break;
2022     case 7:
2023       rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2024 			   "unsigned short", objfile);
2025       break;
2026     case 8:
2027       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2028 			   "unsigned int", objfile);
2029       break;
2030     case 9:
2031       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2032 			   "unsigned", objfile);
2033     case 10:
2034       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2035 			   "unsigned long", objfile);
2036       break;
2037     case 11:
2038       rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2039       break;
2040     case 12:
2041       /* IEEE single precision (32 bit).  */
2042       rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2043       break;
2044     case 13:
2045       /* IEEE double precision (64 bit).  */
2046       rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2047       break;
2048     case 14:
2049       /* This is an IEEE double on the RS/6000, and different machines with
2050          different sizes for "long double" should use different negative
2051          type numbers.  See stabs.texinfo.  */
2052       rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2053       break;
2054     case 15:
2055       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2056       break;
2057     case 16:
2058       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2059 			   "boolean", objfile);
2060       break;
2061     case 17:
2062       rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2063       break;
2064     case 18:
2065       rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2066       break;
2067     case 19:
2068       rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2069       break;
2070     case 20:
2071       rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2072 			   "character", objfile);
2073       break;
2074     case 21:
2075       rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2076 			   "logical*1", objfile);
2077       break;
2078     case 22:
2079       rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2080 			   "logical*2", objfile);
2081       break;
2082     case 23:
2083       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2084 			   "logical*4", objfile);
2085       break;
2086     case 24:
2087       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2088 			   "logical", objfile);
2089       break;
2090     case 25:
2091       /* Complex type consisting of two IEEE single precision values.  */
2092       rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2093       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2094 					      objfile);
2095       break;
2096     case 26:
2097       /* Complex type consisting of two IEEE double precision values.  */
2098       rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2099       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2100 					      objfile);
2101       break;
2102     case 27:
2103       rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2104       break;
2105     case 28:
2106       rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2107       break;
2108     case 29:
2109       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2110       break;
2111     case 30:
2112       rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2113       break;
2114     case 31:
2115       rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2116       break;
2117     case 32:
2118       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2119 			   "unsigned long long", objfile);
2120       break;
2121     case 33:
2122       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2123 			   "logical*8", objfile);
2124       break;
2125     case 34:
2126       rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2127       break;
2128     }
2129   negative_types[-typenum] = rettype;
2130   return rettype;
2131 }
2132 
2133 /* This page contains subroutines of read_type.  */
2134 
2135 /* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
2136 
2137 static void
2138 update_method_name_from_physname (char **old_name, char *physname)
2139 {
2140   char *method_name;
2141 
2142   method_name = method_name_from_physname (physname);
2143 
2144   if (method_name == NULL)
2145     {
2146       complaint (&symfile_complaints,
2147 		 _("Method has bad physname %s\n"), physname);
2148       return;
2149     }
2150 
2151   if (strcmp (*old_name, method_name) != 0)
2152     {
2153       xfree (*old_name);
2154       *old_name = method_name;
2155     }
2156   else
2157     xfree (method_name);
2158 }
2159 
2160 /* Read member function stabs info for C++ classes.  The form of each member
2161    function data is:
2162 
2163    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2164 
2165    An example with two member functions is:
2166 
2167    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2168 
2169    For the case of overloaded operators, the format is op$::*.funcs, where
2170    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2171    name (such as `+=') and `.' marks the end of the operator name.
2172 
2173    Returns 1 for success, 0 for failure.  */
2174 
2175 static int
2176 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2177 		       struct objfile *objfile)
2178 {
2179   int nfn_fields = 0;
2180   int length = 0;
2181   /* Total number of member functions defined in this class.  If the class
2182      defines two `f' functions, and one `g' function, then this will have
2183      the value 3.  */
2184   int total_length = 0;
2185   int i;
2186   struct next_fnfield
2187     {
2188       struct next_fnfield *next;
2189       struct fn_field fn_field;
2190     }
2191    *sublist;
2192   struct type *look_ahead_type;
2193   struct next_fnfieldlist *new_fnlist;
2194   struct next_fnfield *new_sublist;
2195   char *main_fn_name;
2196   char *p;
2197 
2198   /* Process each list until we find something that is not a member function
2199      or find the end of the functions. */
2200 
2201   while (**pp != ';')
2202     {
2203       /* We should be positioned at the start of the function name.
2204          Scan forward to find the first ':' and if it is not the
2205          first of a "::" delimiter, then this is not a member function. */
2206       p = *pp;
2207       while (*p != ':')
2208 	{
2209 	  p++;
2210 	}
2211       if (p[1] != ':')
2212 	{
2213 	  break;
2214 	}
2215 
2216       sublist = NULL;
2217       look_ahead_type = NULL;
2218       length = 0;
2219 
2220       new_fnlist = (struct next_fnfieldlist *)
2221 	xmalloc (sizeof (struct next_fnfieldlist));
2222       make_cleanup (xfree, new_fnlist);
2223       memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2224 
2225       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2226 	{
2227 	  /* This is a completely wierd case.  In order to stuff in the
2228 	     names that might contain colons (the usual name delimiter),
2229 	     Mike Tiemann defined a different name format which is
2230 	     signalled if the identifier is "op$".  In that case, the
2231 	     format is "op$::XXXX." where XXXX is the name.  This is
2232 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2233 	  /* This lets the user type "break operator+".
2234 	     We could just put in "+" as the name, but that wouldn't
2235 	     work for "*".  */
2236 	  static char opname[32] = "op$";
2237 	  char *o = opname + 3;
2238 
2239 	  /* Skip past '::'.  */
2240 	  *pp = p + 2;
2241 
2242 	  STABS_CONTINUE (pp, objfile);
2243 	  p = *pp;
2244 	  while (*p != '.')
2245 	    {
2246 	      *o++ = *p++;
2247 	    }
2248 	  main_fn_name = savestring (opname, o - opname);
2249 	  /* Skip past '.'  */
2250 	  *pp = p + 1;
2251 	}
2252       else
2253 	{
2254 	  main_fn_name = savestring (*pp, p - *pp);
2255 	  /* Skip past '::'.  */
2256 	  *pp = p + 2;
2257 	}
2258       new_fnlist->fn_fieldlist.name = main_fn_name;
2259 
2260       do
2261 	{
2262 	  new_sublist =
2263 	    (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2264 	  make_cleanup (xfree, new_sublist);
2265 	  memset (new_sublist, 0, sizeof (struct next_fnfield));
2266 
2267 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2268 	  if (look_ahead_type == NULL)
2269 	    {
2270 	      /* Normal case. */
2271 	      STABS_CONTINUE (pp, objfile);
2272 
2273 	      new_sublist->fn_field.type = read_type (pp, objfile);
2274 	      if (**pp != ':')
2275 		{
2276 		  /* Invalid symtab info for member function.  */
2277 		  return 0;
2278 		}
2279 	    }
2280 	  else
2281 	    {
2282 	      /* g++ version 1 kludge */
2283 	      new_sublist->fn_field.type = look_ahead_type;
2284 	      look_ahead_type = NULL;
2285 	    }
2286 
2287 	  (*pp)++;
2288 	  p = *pp;
2289 	  while (*p != ';')
2290 	    {
2291 	      p++;
2292 	    }
2293 
2294 	  /* If this is just a stub, then we don't have the real name here. */
2295 
2296 	  if (TYPE_STUB (new_sublist->fn_field.type))
2297 	    {
2298 	      if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2299 		TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2300 	      new_sublist->fn_field.is_stub = 1;
2301 	    }
2302 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2303 	  *pp = p + 1;
2304 
2305 	  /* Set this member function's visibility fields.  */
2306 	  switch (*(*pp)++)
2307 	    {
2308 	    case VISIBILITY_PRIVATE:
2309 	      new_sublist->fn_field.is_private = 1;
2310 	      break;
2311 	    case VISIBILITY_PROTECTED:
2312 	      new_sublist->fn_field.is_protected = 1;
2313 	      break;
2314 	    }
2315 
2316 	  STABS_CONTINUE (pp, objfile);
2317 	  switch (**pp)
2318 	    {
2319 	    case 'A':		/* Normal functions. */
2320 	      new_sublist->fn_field.is_const = 0;
2321 	      new_sublist->fn_field.is_volatile = 0;
2322 	      (*pp)++;
2323 	      break;
2324 	    case 'B':		/* `const' member functions. */
2325 	      new_sublist->fn_field.is_const = 1;
2326 	      new_sublist->fn_field.is_volatile = 0;
2327 	      (*pp)++;
2328 	      break;
2329 	    case 'C':		/* `volatile' member function. */
2330 	      new_sublist->fn_field.is_const = 0;
2331 	      new_sublist->fn_field.is_volatile = 1;
2332 	      (*pp)++;
2333 	      break;
2334 	    case 'D':		/* `const volatile' member function. */
2335 	      new_sublist->fn_field.is_const = 1;
2336 	      new_sublist->fn_field.is_volatile = 1;
2337 	      (*pp)++;
2338 	      break;
2339 	    case '*':		/* File compiled with g++ version 1 -- no info */
2340 	    case '?':
2341 	    case '.':
2342 	      break;
2343 	    default:
2344 	      complaint (&symfile_complaints,
2345 			 _("const/volatile indicator missing, got '%c'"), **pp);
2346 	      break;
2347 	    }
2348 
2349 	  switch (*(*pp)++)
2350 	    {
2351 	    case '*':
2352 	      {
2353 		int nbits;
2354 		/* virtual member function, followed by index.
2355 		   The sign bit is set to distinguish pointers-to-methods
2356 		   from virtual function indicies.  Since the array is
2357 		   in words, the quantity must be shifted left by 1
2358 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2359 		   the sign bit out, and usable as a valid index into
2360 		   the array.  Remove the sign bit here.  */
2361 		new_sublist->fn_field.voffset =
2362 		  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2363 		if (nbits != 0)
2364 		  return 0;
2365 
2366 		STABS_CONTINUE (pp, objfile);
2367 		if (**pp == ';' || **pp == '\0')
2368 		  {
2369 		    /* Must be g++ version 1.  */
2370 		    new_sublist->fn_field.fcontext = 0;
2371 		  }
2372 		else
2373 		  {
2374 		    /* Figure out from whence this virtual function came.
2375 		       It may belong to virtual function table of
2376 		       one of its baseclasses.  */
2377 		    look_ahead_type = read_type (pp, objfile);
2378 		    if (**pp == ':')
2379 		      {
2380 			/* g++ version 1 overloaded methods. */
2381 		      }
2382 		    else
2383 		      {
2384 			new_sublist->fn_field.fcontext = look_ahead_type;
2385 			if (**pp != ';')
2386 			  {
2387 			    return 0;
2388 			  }
2389 			else
2390 			  {
2391 			    ++*pp;
2392 			  }
2393 			look_ahead_type = NULL;
2394 		      }
2395 		  }
2396 		break;
2397 	      }
2398 	    case '?':
2399 	      /* static member function.  */
2400 	      {
2401 		int slen = strlen (main_fn_name);
2402 
2403 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2404 
2405 		/* For static member functions, we can't tell if they
2406 		   are stubbed, as they are put out as functions, and not as
2407 		   methods.
2408 		   GCC v2 emits the fully mangled name if
2409 		   dbxout.c:flag_minimal_debug is not set, so we have to
2410 		   detect a fully mangled physname here and set is_stub
2411 		   accordingly.  Fully mangled physnames in v2 start with
2412 		   the member function name, followed by two underscores.
2413 		   GCC v3 currently always emits stubbed member functions,
2414 		   but with fully mangled physnames, which start with _Z.  */
2415 		if (!(strncmp (new_sublist->fn_field.physname,
2416 			       main_fn_name, slen) == 0
2417 		      && new_sublist->fn_field.physname[slen] == '_'
2418 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2419 		  {
2420 		    new_sublist->fn_field.is_stub = 1;
2421 		  }
2422 		break;
2423 	      }
2424 
2425 	    default:
2426 	      /* error */
2427 	      complaint (&symfile_complaints,
2428 			 _("member function type missing, got '%c'"), (*pp)[-1]);
2429 	      /* Fall through into normal member function.  */
2430 
2431 	    case '.':
2432 	      /* normal member function.  */
2433 	      new_sublist->fn_field.voffset = 0;
2434 	      new_sublist->fn_field.fcontext = 0;
2435 	      break;
2436 	    }
2437 
2438 	  new_sublist->next = sublist;
2439 	  sublist = new_sublist;
2440 	  length++;
2441 	  STABS_CONTINUE (pp, objfile);
2442 	}
2443       while (**pp != ';' && **pp != '\0');
2444 
2445       (*pp)++;
2446       STABS_CONTINUE (pp, objfile);
2447 
2448       /* Skip GCC 3.X member functions which are duplicates of the callable
2449 	 constructor/destructor.  */
2450       if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2451 	  || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2452 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2453 	{
2454 	  xfree (main_fn_name);
2455 	}
2456       else
2457 	{
2458 	  int has_stub = 0;
2459 	  int has_destructor = 0, has_other = 0;
2460 	  int is_v3 = 0;
2461 	  struct next_fnfield *tmp_sublist;
2462 
2463 	  /* Various versions of GCC emit various mostly-useless
2464 	     strings in the name field for special member functions.
2465 
2466 	     For stub methods, we need to defer correcting the name
2467 	     until we are ready to unstub the method, because the current
2468 	     name string is used by gdb_mangle_name.  The only stub methods
2469 	     of concern here are GNU v2 operators; other methods have their
2470 	     names correct (see caveat below).
2471 
2472 	     For non-stub methods, in GNU v3, we have a complete physname.
2473 	     Therefore we can safely correct the name now.  This primarily
2474 	     affects constructors and destructors, whose name will be
2475 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2476 	     operators will also have incorrect names; for instance,
2477 	     "operator int" will be named "operator i" (i.e. the type is
2478 	     mangled).
2479 
2480 	     For non-stub methods in GNU v2, we have no easy way to
2481 	     know if we have a complete physname or not.  For most
2482 	     methods the result depends on the platform (if CPLUS_MARKER
2483 	     can be `$' or `.', it will use minimal debug information, or
2484 	     otherwise the full physname will be included).
2485 
2486 	     Rather than dealing with this, we take a different approach.
2487 	     For v3 mangled names, we can use the full physname; for v2,
2488 	     we use cplus_demangle_opname (which is actually v2 specific),
2489 	     because the only interesting names are all operators - once again
2490 	     barring the caveat below.  Skip this process if any method in the
2491 	     group is a stub, to prevent our fouling up the workings of
2492 	     gdb_mangle_name.
2493 
2494 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2495 	     destructors in the same method group.  We need to split this
2496 	     into two groups, because they should have different names.
2497 	     So for each method group we check whether it contains both
2498 	     routines whose physname appears to be a destructor (the physnames
2499 	     for and destructors are always provided, due to quirks in v2
2500 	     mangling) and routines whose physname does not appear to be a
2501 	     destructor.  If so then we break up the list into two halves.
2502 	     Even if the constructors and destructors aren't in the same group
2503 	     the destructor will still lack the leading tilde, so that also
2504 	     needs to be fixed.
2505 
2506 	     So, to summarize what we expect and handle here:
2507 
2508 	        Given         Given          Real         Real       Action
2509 	     method name     physname      physname   method name
2510 
2511 	     __opi            [none]     __opi__3Foo  operator int    opname
2512 	                                                           [now or later]
2513 	     Foo              _._3Foo       _._3Foo      ~Foo       separate and
2514 	                                                               rename
2515 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2516 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2517 	  */
2518 
2519 	  tmp_sublist = sublist;
2520 	  while (tmp_sublist != NULL)
2521 	    {
2522 	      if (tmp_sublist->fn_field.is_stub)
2523 		has_stub = 1;
2524 	      if (tmp_sublist->fn_field.physname[0] == '_'
2525 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2526 		is_v3 = 1;
2527 
2528 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2529 		has_destructor++;
2530 	      else
2531 		has_other++;
2532 
2533 	      tmp_sublist = tmp_sublist->next;
2534 	    }
2535 
2536 	  if (has_destructor && has_other)
2537 	    {
2538 	      struct next_fnfieldlist *destr_fnlist;
2539 	      struct next_fnfield *last_sublist;
2540 
2541 	      /* Create a new fn_fieldlist for the destructors.  */
2542 
2543 	      destr_fnlist = (struct next_fnfieldlist *)
2544 		xmalloc (sizeof (struct next_fnfieldlist));
2545 	      make_cleanup (xfree, destr_fnlist);
2546 	      memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2547 	      destr_fnlist->fn_fieldlist.name
2548 		= obconcat (&objfile->objfile_obstack, "", "~",
2549 			    new_fnlist->fn_fieldlist.name);
2550 
2551 	      destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2552 		obstack_alloc (&objfile->objfile_obstack,
2553 			       sizeof (struct fn_field) * has_destructor);
2554 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2555 		  sizeof (struct fn_field) * has_destructor);
2556 	      tmp_sublist = sublist;
2557 	      last_sublist = NULL;
2558 	      i = 0;
2559 	      while (tmp_sublist != NULL)
2560 		{
2561 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2562 		    {
2563 		      tmp_sublist = tmp_sublist->next;
2564 		      continue;
2565 		    }
2566 
2567 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2568 		    = tmp_sublist->fn_field;
2569 		  if (last_sublist)
2570 		    last_sublist->next = tmp_sublist->next;
2571 		  else
2572 		    sublist = tmp_sublist->next;
2573 		  last_sublist = tmp_sublist;
2574 		  tmp_sublist = tmp_sublist->next;
2575 		}
2576 
2577 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2578 	      destr_fnlist->next = fip->fnlist;
2579 	      fip->fnlist = destr_fnlist;
2580 	      nfn_fields++;
2581 	      total_length += has_destructor;
2582 	      length -= has_destructor;
2583 	    }
2584 	  else if (is_v3)
2585 	    {
2586 	      /* v3 mangling prevents the use of abbreviated physnames,
2587 		 so we can do this here.  There are stubbed methods in v3
2588 		 only:
2589 		 - in -gstabs instead of -gstabs+
2590 		 - or for static methods, which are output as a function type
2591 		   instead of a method type.  */
2592 
2593 	      update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2594 						sublist->fn_field.physname);
2595 	    }
2596 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2597 	    {
2598 	      new_fnlist->fn_fieldlist.name =
2599 		concat ("~", main_fn_name, (char *)NULL);
2600 	      xfree (main_fn_name);
2601 	    }
2602 	  else if (!has_stub)
2603 	    {
2604 	      char dem_opname[256];
2605 	      int ret;
2606 	      ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2607 					      dem_opname, DMGL_ANSI);
2608 	      if (!ret)
2609 		ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2610 					     dem_opname, 0);
2611 	      if (ret)
2612 		new_fnlist->fn_fieldlist.name
2613 		  = obsavestring (dem_opname, strlen (dem_opname),
2614 				  &objfile->objfile_obstack);
2615 	    }
2616 
2617 	  new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2618 	    obstack_alloc (&objfile->objfile_obstack,
2619 			   sizeof (struct fn_field) * length);
2620 	  memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2621 		  sizeof (struct fn_field) * length);
2622 	  for (i = length; (i--, sublist); sublist = sublist->next)
2623 	    {
2624 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2625 	    }
2626 
2627 	  new_fnlist->fn_fieldlist.length = length;
2628 	  new_fnlist->next = fip->fnlist;
2629 	  fip->fnlist = new_fnlist;
2630 	  nfn_fields++;
2631 	  total_length += length;
2632 	}
2633     }
2634 
2635   if (nfn_fields)
2636     {
2637       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2638       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2639 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2640       memset (TYPE_FN_FIELDLISTS (type), 0,
2641 	      sizeof (struct fn_fieldlist) * nfn_fields);
2642       TYPE_NFN_FIELDS (type) = nfn_fields;
2643       TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2644     }
2645 
2646   return 1;
2647 }
2648 
2649 /* Special GNU C++ name.
2650 
2651    Returns 1 for success, 0 for failure.  "failure" means that we can't
2652    keep parsing and it's time for error_type().  */
2653 
2654 static int
2655 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2656 		 struct objfile *objfile)
2657 {
2658   char *p;
2659   char *name;
2660   char cpp_abbrev;
2661   struct type *context;
2662 
2663   p = *pp;
2664   if (*++p == 'v')
2665     {
2666       name = NULL;
2667       cpp_abbrev = *++p;
2668 
2669       *pp = p + 1;
2670 
2671       /* At this point, *pp points to something like "22:23=*22...",
2672          where the type number before the ':' is the "context" and
2673          everything after is a regular type definition.  Lookup the
2674          type, find it's name, and construct the field name. */
2675 
2676       context = read_type (pp, objfile);
2677 
2678       switch (cpp_abbrev)
2679 	{
2680 	case 'f':		/* $vf -- a virtual function table pointer */
2681 	  name = type_name_no_tag (context);
2682 	  if (name == NULL)
2683 	  {
2684 		  name = "";
2685 	  }
2686 	  fip->list->field.name =
2687 	    obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2688 	  break;
2689 
2690 	case 'b':		/* $vb -- a virtual bsomethingorother */
2691 	  name = type_name_no_tag (context);
2692 	  if (name == NULL)
2693 	    {
2694 	      complaint (&symfile_complaints,
2695 			 _("C++ abbreviated type name unknown at symtab pos %d"),
2696 			 symnum);
2697 	      name = "FOO";
2698 	    }
2699 	  fip->list->field.name =
2700 	    obconcat (&objfile->objfile_obstack, vb_name, name, "");
2701 	  break;
2702 
2703 	default:
2704 	  invalid_cpp_abbrev_complaint (*pp);
2705 	  fip->list->field.name =
2706 	    obconcat (&objfile->objfile_obstack,
2707 		      "INVALID_CPLUSPLUS_ABBREV", "", "");
2708 	  break;
2709 	}
2710 
2711       /* At this point, *pp points to the ':'.  Skip it and read the
2712          field type. */
2713 
2714       p = ++(*pp);
2715       if (p[-1] != ':')
2716 	{
2717 	  invalid_cpp_abbrev_complaint (*pp);
2718 	  return 0;
2719 	}
2720       fip->list->field.type = read_type (pp, objfile);
2721       if (**pp == ',')
2722 	(*pp)++;		/* Skip the comma.  */
2723       else
2724 	return 0;
2725 
2726       {
2727 	int nbits;
2728 	FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2729                                                             0);
2730 	if (nbits != 0)
2731 	  return 0;
2732       }
2733       /* This field is unpacked.  */
2734       FIELD_BITSIZE (fip->list->field) = 0;
2735       fip->list->visibility = VISIBILITY_PRIVATE;
2736     }
2737   else
2738     {
2739       invalid_cpp_abbrev_complaint (*pp);
2740       /* We have no idea what syntax an unrecognized abbrev would have, so
2741          better return 0.  If we returned 1, we would need to at least advance
2742          *pp to avoid an infinite loop.  */
2743       return 0;
2744     }
2745   return 1;
2746 }
2747 
2748 static void
2749 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2750 		       struct type *type, struct objfile *objfile)
2751 {
2752   struct gdbarch *gdbarch = get_objfile_arch (objfile);
2753 
2754   fip->list->field.name =
2755     obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2756   *pp = p + 1;
2757 
2758   /* This means we have a visibility for a field coming. */
2759   if (**pp == '/')
2760     {
2761       (*pp)++;
2762       fip->list->visibility = *(*pp)++;
2763     }
2764   else
2765     {
2766       /* normal dbx-style format, no explicit visibility */
2767       fip->list->visibility = VISIBILITY_PUBLIC;
2768     }
2769 
2770   fip->list->field.type = read_type (pp, objfile);
2771   if (**pp == ':')
2772     {
2773       p = ++(*pp);
2774 #if 0
2775       /* Possible future hook for nested types. */
2776       if (**pp == '!')
2777 	{
2778 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2779 	  p = ++(*pp);
2780 	}
2781       else
2782 	...;
2783 #endif
2784       while (*p != ';')
2785 	{
2786 	  p++;
2787 	}
2788       /* Static class member.  */
2789       SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2790       *pp = p + 1;
2791       return;
2792     }
2793   else if (**pp != ',')
2794     {
2795       /* Bad structure-type format.  */
2796       stabs_general_complaint ("bad structure-type format");
2797       return;
2798     }
2799 
2800   (*pp)++;			/* Skip the comma.  */
2801 
2802   {
2803     int nbits;
2804     FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2805     if (nbits != 0)
2806       {
2807 	stabs_general_complaint ("bad structure-type format");
2808 	return;
2809       }
2810     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2811     if (nbits != 0)
2812       {
2813 	stabs_general_complaint ("bad structure-type format");
2814 	return;
2815       }
2816   }
2817 
2818   if (FIELD_BITPOS (fip->list->field) == 0
2819       && FIELD_BITSIZE (fip->list->field) == 0)
2820     {
2821       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2822          it is a field which has been optimized out.  The correct stab for
2823          this case is to use VISIBILITY_IGNORE, but that is a recent
2824          invention.  (2) It is a 0-size array.  For example
2825          union { int num; char str[0]; } foo.  Printing _("<no value>" for
2826          str in "p foo" is OK, since foo.str (and thus foo.str[3])
2827          will continue to work, and a 0-size array as a whole doesn't
2828          have any contents to print.
2829 
2830          I suspect this probably could also happen with gcc -gstabs (not
2831          -gstabs+) for static fields, and perhaps other C++ extensions.
2832          Hopefully few people use -gstabs with gdb, since it is intended
2833          for dbx compatibility.  */
2834 
2835       /* Ignore this field.  */
2836       fip->list->visibility = VISIBILITY_IGNORE;
2837     }
2838   else
2839     {
2840       /* Detect an unpacked field and mark it as such.
2841          dbx gives a bit size for all fields.
2842          Note that forward refs cannot be packed,
2843          and treat enums as if they had the width of ints.  */
2844 
2845       struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2846 
2847       if (TYPE_CODE (field_type) != TYPE_CODE_INT
2848 	  && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2849 	  && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2850 	  && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2851 	{
2852 	  FIELD_BITSIZE (fip->list->field) = 0;
2853 	}
2854       if ((FIELD_BITSIZE (fip->list->field)
2855 	   == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2856 	   || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2857 	       && FIELD_BITSIZE (fip->list->field)
2858 		  == gdbarch_int_bit (gdbarch))
2859 	  )
2860 	  &&
2861 	  FIELD_BITPOS (fip->list->field) % 8 == 0)
2862 	{
2863 	  FIELD_BITSIZE (fip->list->field) = 0;
2864 	}
2865     }
2866 }
2867 
2868 
2869 /* Read struct or class data fields.  They have the form:
2870 
2871    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2872 
2873    At the end, we see a semicolon instead of a field.
2874 
2875    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2876    a static field.
2877 
2878    The optional VISIBILITY is one of:
2879 
2880    '/0' (VISIBILITY_PRIVATE)
2881    '/1' (VISIBILITY_PROTECTED)
2882    '/2' (VISIBILITY_PUBLIC)
2883    '/9' (VISIBILITY_IGNORE)
2884 
2885    or nothing, for C style fields with public visibility.
2886 
2887    Returns 1 for success, 0 for failure.  */
2888 
2889 static int
2890 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2891 		    struct objfile *objfile)
2892 {
2893   char *p;
2894   struct nextfield *new;
2895 
2896   /* We better set p right now, in case there are no fields at all...    */
2897 
2898   p = *pp;
2899 
2900   /* Read each data member type until we find the terminating ';' at the end of
2901      the data member list, or break for some other reason such as finding the
2902      start of the member function list. */
2903   /* Stab string for structure/union does not end with two ';' in
2904      SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2905 
2906   while (**pp != ';' && **pp != '\0')
2907     {
2908       STABS_CONTINUE (pp, objfile);
2909       /* Get space to record the next field's data.  */
2910       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2911       make_cleanup (xfree, new);
2912       memset (new, 0, sizeof (struct nextfield));
2913       new->next = fip->list;
2914       fip->list = new;
2915 
2916       /* Get the field name.  */
2917       p = *pp;
2918 
2919       /* If is starts with CPLUS_MARKER it is a special abbreviation,
2920          unless the CPLUS_MARKER is followed by an underscore, in
2921          which case it is just the name of an anonymous type, which we
2922          should handle like any other type name.  */
2923 
2924       if (is_cplus_marker (p[0]) && p[1] != '_')
2925 	{
2926 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
2927 	    return 0;
2928 	  continue;
2929 	}
2930 
2931       /* Look for the ':' that separates the field name from the field
2932          values.  Data members are delimited by a single ':', while member
2933          functions are delimited by a pair of ':'s.  When we hit the member
2934          functions (if any), terminate scan loop and return. */
2935 
2936       while (*p != ':' && *p != '\0')
2937 	{
2938 	  p++;
2939 	}
2940       if (*p == '\0')
2941 	return 0;
2942 
2943       /* Check to see if we have hit the member functions yet.  */
2944       if (p[1] == ':')
2945 	{
2946 	  break;
2947 	}
2948       read_one_struct_field (fip, pp, p, type, objfile);
2949     }
2950   if (p[0] == ':' && p[1] == ':')
2951     {
2952       /* (the deleted) chill the list of fields: the last entry (at
2953          the head) is a partially constructed entry which we now
2954          scrub. */
2955       fip->list = fip->list->next;
2956     }
2957   return 1;
2958 }
2959 /* *INDENT-OFF* */
2960 /* The stabs for C++ derived classes contain baseclass information which
2961    is marked by a '!' character after the total size.  This function is
2962    called when we encounter the baseclass marker, and slurps up all the
2963    baseclass information.
2964 
2965    Immediately following the '!' marker is the number of base classes that
2966    the class is derived from, followed by information for each base class.
2967    For each base class, there are two visibility specifiers, a bit offset
2968    to the base class information within the derived class, a reference to
2969    the type for the base class, and a terminating semicolon.
2970 
2971    A typical example, with two base classes, would be "!2,020,19;0264,21;".
2972    						       ^^ ^ ^ ^  ^ ^  ^
2973 	Baseclass information marker __________________|| | | |  | |  |
2974 	Number of baseclasses __________________________| | | |  | |  |
2975 	Visibility specifiers (2) ________________________| | |  | |  |
2976 	Offset in bits from start of class _________________| |  | |  |
2977 	Type number for base class ___________________________|  | |  |
2978 	Visibility specifiers (2) _______________________________| |  |
2979 	Offset in bits from start of class ________________________|  |
2980 	Type number of base class ____________________________________|
2981 
2982   Return 1 for success, 0 for (error-type-inducing) failure.  */
2983 /* *INDENT-ON* */
2984 
2985 
2986 
2987 static int
2988 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2989 		  struct objfile *objfile)
2990 {
2991   int i;
2992   struct nextfield *new;
2993 
2994   if (**pp != '!')
2995     {
2996       return 1;
2997     }
2998   else
2999     {
3000       /* Skip the '!' baseclass information marker. */
3001       (*pp)++;
3002     }
3003 
3004   ALLOCATE_CPLUS_STRUCT_TYPE (type);
3005   {
3006     int nbits;
3007     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3008     if (nbits != 0)
3009       return 0;
3010   }
3011 
3012 #if 0
3013   /* Some stupid compilers have trouble with the following, so break
3014      it up into simpler expressions.  */
3015   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3016     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3017 #else
3018   {
3019     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3020     char *pointer;
3021 
3022     pointer = (char *) TYPE_ALLOC (type, num_bytes);
3023     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3024   }
3025 #endif /* 0 */
3026 
3027   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3028 
3029   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3030     {
3031       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3032       make_cleanup (xfree, new);
3033       memset (new, 0, sizeof (struct nextfield));
3034       new->next = fip->list;
3035       fip->list = new;
3036       FIELD_BITSIZE (new->field) = 0;	/* this should be an unpacked field! */
3037 
3038       STABS_CONTINUE (pp, objfile);
3039       switch (**pp)
3040 	{
3041 	case '0':
3042 	  /* Nothing to do. */
3043 	  break;
3044 	case '1':
3045 	  SET_TYPE_FIELD_VIRTUAL (type, i);
3046 	  break;
3047 	default:
3048 	  /* Unknown character.  Complain and treat it as non-virtual.  */
3049 	  {
3050 	    complaint (&symfile_complaints,
3051 		       _("Unknown virtual character `%c' for baseclass"), **pp);
3052 	  }
3053 	}
3054       ++(*pp);
3055 
3056       new->visibility = *(*pp)++;
3057       switch (new->visibility)
3058 	{
3059 	case VISIBILITY_PRIVATE:
3060 	case VISIBILITY_PROTECTED:
3061 	case VISIBILITY_PUBLIC:
3062 	  break;
3063 	default:
3064 	  /* Bad visibility format.  Complain and treat it as
3065 	     public.  */
3066 	  {
3067 	    complaint (&symfile_complaints,
3068 		       _("Unknown visibility `%c' for baseclass"),
3069 		       new->visibility);
3070 	    new->visibility = VISIBILITY_PUBLIC;
3071 	  }
3072 	}
3073 
3074       {
3075 	int nbits;
3076 
3077 	/* The remaining value is the bit offset of the portion of the object
3078 	   corresponding to this baseclass.  Always zero in the absence of
3079 	   multiple inheritance.  */
3080 
3081 	FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3082 	if (nbits != 0)
3083 	  return 0;
3084       }
3085 
3086       /* The last piece of baseclass information is the type of the
3087          base class.  Read it, and remember it's type name as this
3088          field's name. */
3089 
3090       new->field.type = read_type (pp, objfile);
3091       new->field.name = type_name_no_tag (new->field.type);
3092 
3093       /* skip trailing ';' and bump count of number of fields seen */
3094       if (**pp == ';')
3095 	(*pp)++;
3096       else
3097 	return 0;
3098     }
3099   return 1;
3100 }
3101 
3102 /* The tail end of stabs for C++ classes that contain a virtual function
3103    pointer contains a tilde, a %, and a type number.
3104    The type number refers to the base class (possibly this class itself) which
3105    contains the vtable pointer for the current class.
3106 
3107    This function is called when we have parsed all the method declarations,
3108    so we can look for the vptr base class info.  */
3109 
3110 static int
3111 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3112 		   struct objfile *objfile)
3113 {
3114   char *p;
3115 
3116   STABS_CONTINUE (pp, objfile);
3117 
3118   /* If we are positioned at a ';', then skip it. */
3119   if (**pp == ';')
3120     {
3121       (*pp)++;
3122     }
3123 
3124   if (**pp == '~')
3125     {
3126       (*pp)++;
3127 
3128       if (**pp == '=' || **pp == '+' || **pp == '-')
3129 	{
3130 	  /* Obsolete flags that used to indicate the presence
3131 	     of constructors and/or destructors. */
3132 	  (*pp)++;
3133 	}
3134 
3135       /* Read either a '%' or the final ';'.  */
3136       if (*(*pp)++ == '%')
3137 	{
3138 	  /* The next number is the type number of the base class
3139 	     (possibly our own class) which supplies the vtable for
3140 	     this class.  Parse it out, and search that class to find
3141 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3142 	     and TYPE_VPTR_FIELDNO.  */
3143 
3144 	  struct type *t;
3145 	  int i;
3146 
3147 	  t = read_type (pp, objfile);
3148 	  p = (*pp)++;
3149 	  while (*p != '\0' && *p != ';')
3150 	    {
3151 	      p++;
3152 	    }
3153 	  if (*p == '\0')
3154 	    {
3155 	      /* Premature end of symbol.  */
3156 	      return 0;
3157 	    }
3158 
3159 	  TYPE_VPTR_BASETYPE (type) = t;
3160 	  if (type == t)	/* Our own class provides vtbl ptr */
3161 	    {
3162 	      for (i = TYPE_NFIELDS (t) - 1;
3163 		   i >= TYPE_N_BASECLASSES (t);
3164 		   --i)
3165 		{
3166 		  char *name = TYPE_FIELD_NAME (t, i);
3167 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3168 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3169 		    {
3170 		      TYPE_VPTR_FIELDNO (type) = i;
3171 		      goto gotit;
3172 		    }
3173 		}
3174 	      /* Virtual function table field not found.  */
3175 	      complaint (&symfile_complaints,
3176 			 _("virtual function table pointer not found when defining class `%s'"),
3177 			 TYPE_NAME (type));
3178 	      return 0;
3179 	    }
3180 	  else
3181 	    {
3182 	      TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3183 	    }
3184 
3185 	gotit:
3186 	  *pp = p + 1;
3187 	}
3188     }
3189   return 1;
3190 }
3191 
3192 static int
3193 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3194 {
3195   int n;
3196 
3197   for (n = TYPE_NFN_FIELDS (type);
3198        fip->fnlist != NULL;
3199        fip->fnlist = fip->fnlist->next)
3200     {
3201       --n;			/* Circumvent Sun3 compiler bug */
3202       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3203     }
3204   return 1;
3205 }
3206 
3207 /* Create the vector of fields, and record how big it is.
3208    We need this info to record proper virtual function table information
3209    for this class's virtual functions.  */
3210 
3211 static int
3212 attach_fields_to_type (struct field_info *fip, struct type *type,
3213 		       struct objfile *objfile)
3214 {
3215   int nfields = 0;
3216   int non_public_fields = 0;
3217   struct nextfield *scan;
3218 
3219   /* Count up the number of fields that we have, as well as taking note of
3220      whether or not there are any non-public fields, which requires us to
3221      allocate and build the private_field_bits and protected_field_bits
3222      bitfields. */
3223 
3224   for (scan = fip->list; scan != NULL; scan = scan->next)
3225     {
3226       nfields++;
3227       if (scan->visibility != VISIBILITY_PUBLIC)
3228 	{
3229 	  non_public_fields++;
3230 	}
3231     }
3232 
3233   /* Now we know how many fields there are, and whether or not there are any
3234      non-public fields.  Record the field count, allocate space for the
3235      array of fields, and create blank visibility bitfields if necessary. */
3236 
3237   TYPE_NFIELDS (type) = nfields;
3238   TYPE_FIELDS (type) = (struct field *)
3239     TYPE_ALLOC (type, sizeof (struct field) * nfields);
3240   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3241 
3242   if (non_public_fields)
3243     {
3244       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3245 
3246       TYPE_FIELD_PRIVATE_BITS (type) =
3247 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3248       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3249 
3250       TYPE_FIELD_PROTECTED_BITS (type) =
3251 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3252       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3253 
3254       TYPE_FIELD_IGNORE_BITS (type) =
3255 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3256       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3257     }
3258 
3259   /* Copy the saved-up fields into the field vector.  Start from the head
3260      of the list, adding to the tail of the field array, so that they end
3261      up in the same order in the array in which they were added to the list. */
3262 
3263   while (nfields-- > 0)
3264     {
3265       TYPE_FIELD (type, nfields) = fip->list->field;
3266       switch (fip->list->visibility)
3267 	{
3268 	case VISIBILITY_PRIVATE:
3269 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3270 	  break;
3271 
3272 	case VISIBILITY_PROTECTED:
3273 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3274 	  break;
3275 
3276 	case VISIBILITY_IGNORE:
3277 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3278 	  break;
3279 
3280 	case VISIBILITY_PUBLIC:
3281 	  break;
3282 
3283 	default:
3284 	  /* Unknown visibility.  Complain and treat it as public.  */
3285 	  {
3286 	    complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3287 		       fip->list->visibility);
3288 	  }
3289 	  break;
3290 	}
3291       fip->list = fip->list->next;
3292     }
3293   return 1;
3294 }
3295 
3296 
3297 /* Complain that the compiler has emitted more than one definition for the
3298    structure type TYPE.  */
3299 static void
3300 complain_about_struct_wipeout (struct type *type)
3301 {
3302   char *name = "";
3303   char *kind = "";
3304 
3305   if (TYPE_TAG_NAME (type))
3306     {
3307       name = TYPE_TAG_NAME (type);
3308       switch (TYPE_CODE (type))
3309         {
3310         case TYPE_CODE_STRUCT: kind = "struct "; break;
3311         case TYPE_CODE_UNION:  kind = "union ";  break;
3312         case TYPE_CODE_ENUM:   kind = "enum ";   break;
3313         default: kind = "";
3314         }
3315     }
3316   else if (TYPE_NAME (type))
3317     {
3318       name = TYPE_NAME (type);
3319       kind = "";
3320     }
3321   else
3322     {
3323       name = "<unknown>";
3324       kind = "";
3325     }
3326 
3327   complaint (&symfile_complaints,
3328 	     _("struct/union type gets multiply defined: %s%s"), kind, name);
3329 }
3330 
3331 
3332 /* Read the description of a structure (or union type) and return an object
3333    describing the type.
3334 
3335    PP points to a character pointer that points to the next unconsumed token
3336    in the the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3337    *PP will point to "4a:1,0,32;;".
3338 
3339    TYPE points to an incomplete type that needs to be filled in.
3340 
3341    OBJFILE points to the current objfile from which the stabs information is
3342    being read.  (Note that it is redundant in that TYPE also contains a pointer
3343    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3344  */
3345 
3346 static struct type *
3347 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3348                   struct objfile *objfile)
3349 {
3350   struct cleanup *back_to;
3351   struct field_info fi;
3352 
3353   fi.list = NULL;
3354   fi.fnlist = NULL;
3355 
3356   /* When describing struct/union/class types in stabs, G++ always drops
3357      all qualifications from the name.  So if you've got:
3358        struct A { ... struct B { ... }; ... };
3359      then G++ will emit stabs for `struct A::B' that call it simply
3360      `struct B'.  Obviously, if you've got a real top-level definition for
3361      `struct B', or other nested definitions, this is going to cause
3362      problems.
3363 
3364      Obviously, GDB can't fix this by itself, but it can at least avoid
3365      scribbling on existing structure type objects when new definitions
3366      appear.  */
3367   if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3368          || TYPE_STUB (type)))
3369     {
3370       complain_about_struct_wipeout (type);
3371 
3372       /* It's probably best to return the type unchanged.  */
3373       return type;
3374     }
3375 
3376   back_to = make_cleanup (null_cleanup, 0);
3377 
3378   INIT_CPLUS_SPECIFIC (type);
3379   TYPE_CODE (type) = type_code;
3380   TYPE_STUB (type) = 0;
3381 
3382   /* First comes the total size in bytes.  */
3383 
3384   {
3385     int nbits;
3386     TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3387     if (nbits != 0)
3388       return error_type (pp, objfile);
3389   }
3390 
3391   /* Now read the baseclasses, if any, read the regular C struct or C++
3392      class member fields, attach the fields to the type, read the C++
3393      member functions, attach them to the type, and then read any tilde
3394      field (baseclass specifier for the class holding the main vtable). */
3395 
3396   if (!read_baseclasses (&fi, pp, type, objfile)
3397       || !read_struct_fields (&fi, pp, type, objfile)
3398       || !attach_fields_to_type (&fi, type, objfile)
3399       || !read_member_functions (&fi, pp, type, objfile)
3400       || !attach_fn_fields_to_type (&fi, type)
3401       || !read_tilde_fields (&fi, pp, type, objfile))
3402     {
3403       type = error_type (pp, objfile);
3404     }
3405 
3406   do_cleanups (back_to);
3407   return (type);
3408 }
3409 
3410 /* Read a definition of an array type,
3411    and create and return a suitable type object.
3412    Also creates a range type which represents the bounds of that
3413    array.  */
3414 
3415 static struct type *
3416 read_array_type (char **pp, struct type *type,
3417 		 struct objfile *objfile)
3418 {
3419   struct type *index_type, *element_type, *range_type;
3420   int lower, upper;
3421   int adjustable = 0;
3422   int nbits;
3423 
3424   /* Format of an array type:
3425      "ar<index type>;lower;upper;<array_contents_type>".
3426      OS9000: "arlower,upper;<array_contents_type>".
3427 
3428      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3429      for these, produce a type like float[][].  */
3430 
3431     {
3432       index_type = read_type (pp, objfile);
3433       if (**pp != ';')
3434 	/* Improper format of array type decl.  */
3435 	return error_type (pp, objfile);
3436       ++*pp;
3437     }
3438 
3439   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3440     {
3441       (*pp)++;
3442       adjustable = 1;
3443     }
3444   lower = read_huge_number (pp, ';', &nbits, 0);
3445 
3446   if (nbits != 0)
3447     return error_type (pp, objfile);
3448 
3449   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3450     {
3451       (*pp)++;
3452       adjustable = 1;
3453     }
3454   upper = read_huge_number (pp, ';', &nbits, 0);
3455   if (nbits != 0)
3456     return error_type (pp, objfile);
3457 
3458   element_type = read_type (pp, objfile);
3459 
3460   if (adjustable)
3461     {
3462       lower = 0;
3463       upper = -1;
3464     }
3465 
3466   range_type =
3467     create_range_type ((struct type *) NULL, index_type, lower, upper);
3468   type = create_array_type (type, element_type, range_type);
3469 
3470   return type;
3471 }
3472 
3473 
3474 /* Read a definition of an enumeration type,
3475    and create and return a suitable type object.
3476    Also defines the symbols that represent the values of the type.  */
3477 
3478 static struct type *
3479 read_enum_type (char **pp, struct type *type,
3480 		struct objfile *objfile)
3481 {
3482   struct gdbarch *gdbarch = get_objfile_arch (objfile);
3483   char *p;
3484   char *name;
3485   long n;
3486   struct symbol *sym;
3487   int nsyms = 0;
3488   struct pending **symlist;
3489   struct pending *osyms, *syms;
3490   int o_nsyms;
3491   int nbits;
3492   int unsigned_enum = 1;
3493 
3494 #if 0
3495   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3496      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3497      to do?  For now, force all enum values to file scope.  */
3498   if (within_function)
3499     symlist = &local_symbols;
3500   else
3501 #endif
3502     symlist = &file_symbols;
3503   osyms = *symlist;
3504   o_nsyms = osyms ? osyms->nsyms : 0;
3505 
3506   /* The aix4 compiler emits an extra field before the enum members;
3507      my guess is it's a type of some sort.  Just ignore it.  */
3508   if (**pp == '-')
3509     {
3510       /* Skip over the type.  */
3511       while (**pp != ':')
3512 	(*pp)++;
3513 
3514       /* Skip over the colon.  */
3515       (*pp)++;
3516     }
3517 
3518   /* Read the value-names and their values.
3519      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3520      A semicolon or comma instead of a NAME means the end.  */
3521   while (**pp && **pp != ';' && **pp != ',')
3522     {
3523       STABS_CONTINUE (pp, objfile);
3524       p = *pp;
3525       while (*p != ':')
3526 	p++;
3527       name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3528       *pp = p + 1;
3529       n = read_huge_number (pp, ',', &nbits, 0);
3530       if (nbits != 0)
3531 	return error_type (pp, objfile);
3532 
3533       sym = (struct symbol *)
3534 	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3535       memset (sym, 0, sizeof (struct symbol));
3536       SYMBOL_SET_LINKAGE_NAME (sym, name);
3537       SYMBOL_LANGUAGE (sym) = current_subfile->language;
3538       SYMBOL_CLASS (sym) = LOC_CONST;
3539       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3540       SYMBOL_VALUE (sym) = n;
3541       if (n < 0)
3542 	unsigned_enum = 0;
3543       add_symbol_to_list (sym, symlist);
3544       nsyms++;
3545     }
3546 
3547   if (**pp == ';')
3548     (*pp)++;			/* Skip the semicolon.  */
3549 
3550   /* Now fill in the fields of the type-structure.  */
3551 
3552   TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3553   TYPE_CODE (type) = TYPE_CODE_ENUM;
3554   TYPE_STUB (type) = 0;
3555   if (unsigned_enum)
3556     TYPE_UNSIGNED (type) = 1;
3557   TYPE_NFIELDS (type) = nsyms;
3558   TYPE_FIELDS (type) = (struct field *)
3559     TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3560   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3561 
3562   /* Find the symbols for the values and put them into the type.
3563      The symbols can be found in the symlist that we put them on
3564      to cause them to be defined.  osyms contains the old value
3565      of that symlist; everything up to there was defined by us.  */
3566   /* Note that we preserve the order of the enum constants, so
3567      that in something like "enum {FOO, LAST_THING=FOO}" we print
3568      FOO, not LAST_THING.  */
3569 
3570   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3571     {
3572       int last = syms == osyms ? o_nsyms : 0;
3573       int j = syms->nsyms;
3574       for (; --j >= last; --n)
3575 	{
3576 	  struct symbol *xsym = syms->symbol[j];
3577 	  SYMBOL_TYPE (xsym) = type;
3578 	  TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3579 	  TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3580 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3581 	}
3582       if (syms == osyms)
3583 	break;
3584     }
3585 
3586   return type;
3587 }
3588 
3589 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3590    typedefs in every file (for int, long, etc):
3591 
3592    type = b <signed> <width> <format type>; <offset>; <nbits>
3593    signed = u or s.
3594    optional format type = c or b for char or boolean.
3595    offset = offset from high order bit to start bit of type.
3596    width is # bytes in object of this type, nbits is # bits in type.
3597 
3598    The width/offset stuff appears to be for small objects stored in
3599    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3600    FIXME.  */
3601 
3602 static struct type *
3603 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3604 {
3605   int type_bits;
3606   int nbits;
3607   int signed_type;
3608   enum type_code code = TYPE_CODE_INT;
3609 
3610   switch (**pp)
3611     {
3612     case 's':
3613       signed_type = 1;
3614       break;
3615     case 'u':
3616       signed_type = 0;
3617       break;
3618     default:
3619       return error_type (pp, objfile);
3620     }
3621   (*pp)++;
3622 
3623   /* For some odd reason, all forms of char put a c here.  This is strange
3624      because no other type has this honor.  We can safely ignore this because
3625      we actually determine 'char'acterness by the number of bits specified in
3626      the descriptor.
3627      Boolean forms, e.g Fortran logical*X, put a b here.  */
3628 
3629   if (**pp == 'c')
3630     (*pp)++;
3631   else if (**pp == 'b')
3632     {
3633       code = TYPE_CODE_BOOL;
3634       (*pp)++;
3635     }
3636 
3637   /* The first number appears to be the number of bytes occupied
3638      by this type, except that unsigned short is 4 instead of 2.
3639      Since this information is redundant with the third number,
3640      we will ignore it.  */
3641   read_huge_number (pp, ';', &nbits, 0);
3642   if (nbits != 0)
3643     return error_type (pp, objfile);
3644 
3645   /* The second number is always 0, so ignore it too. */
3646   read_huge_number (pp, ';', &nbits, 0);
3647   if (nbits != 0)
3648     return error_type (pp, objfile);
3649 
3650   /* The third number is the number of bits for this type. */
3651   type_bits = read_huge_number (pp, 0, &nbits, 0);
3652   if (nbits != 0)
3653     return error_type (pp, objfile);
3654   /* The type *should* end with a semicolon.  If it are embedded
3655      in a larger type the semicolon may be the only way to know where
3656      the type ends.  If this type is at the end of the stabstring we
3657      can deal with the omitted semicolon (but we don't have to like
3658      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3659      for "void".  */
3660   if (**pp == ';')
3661     ++(*pp);
3662 
3663   if (type_bits == 0)
3664     return init_type (TYPE_CODE_VOID, 1,
3665 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3666 		      objfile);
3667   else
3668     return init_type (code,
3669 		      type_bits / TARGET_CHAR_BIT,
3670 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3671 		      objfile);
3672 }
3673 
3674 static struct type *
3675 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3676 {
3677   int nbits;
3678   int details;
3679   int nbytes;
3680   struct type *rettype;
3681 
3682   /* The first number has more details about the type, for example
3683      FN_COMPLEX.  */
3684   details = read_huge_number (pp, ';', &nbits, 0);
3685   if (nbits != 0)
3686     return error_type (pp, objfile);
3687 
3688   /* The second number is the number of bytes occupied by this type */
3689   nbytes = read_huge_number (pp, ';', &nbits, 0);
3690   if (nbits != 0)
3691     return error_type (pp, objfile);
3692 
3693   if (details == NF_COMPLEX || details == NF_COMPLEX16
3694       || details == NF_COMPLEX32)
3695     {
3696       rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3697       TYPE_TARGET_TYPE (rettype)
3698 	= init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3699       return rettype;
3700     }
3701 
3702   return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3703 }
3704 
3705 /* Read a number from the string pointed to by *PP.
3706    The value of *PP is advanced over the number.
3707    If END is nonzero, the character that ends the
3708    number must match END, or an error happens;
3709    and that character is skipped if it does match.
3710    If END is zero, *PP is left pointing to that character.
3711 
3712    If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3713    the number is represented in an octal representation, assume that
3714    it is represented in a 2's complement representation with a size of
3715    TWOS_COMPLEMENT_BITS.
3716 
3717    If the number fits in a long, set *BITS to 0 and return the value.
3718    If not, set *BITS to be the number of bits in the number and return 0.
3719 
3720    If encounter garbage, set *BITS to -1 and return 0.  */
3721 
3722 static long
3723 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3724 {
3725   char *p = *pp;
3726   int sign = 1;
3727   int sign_bit = 0;
3728   long n = 0;
3729   int radix = 10;
3730   char overflow = 0;
3731   int nbits = 0;
3732   int c;
3733   long upper_limit;
3734   int twos_complement_representation = 0;
3735 
3736   if (*p == '-')
3737     {
3738       sign = -1;
3739       p++;
3740     }
3741 
3742   /* Leading zero means octal.  GCC uses this to output values larger
3743      than an int (because that would be hard in decimal).  */
3744   if (*p == '0')
3745     {
3746       radix = 8;
3747       p++;
3748     }
3749 
3750   /* Skip extra zeros.  */
3751   while (*p == '0')
3752     p++;
3753 
3754   if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3755     {
3756       /* Octal, possibly signed.  Check if we have enough chars for a
3757 	 negative number.  */
3758 
3759       size_t len;
3760       char *p1 = p;
3761       while ((c = *p1) >= '0' && c < '8')
3762 	p1++;
3763 
3764       len = p1 - p;
3765       if (len > twos_complement_bits / 3
3766 	  || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3767 	{
3768 	  /* Ok, we have enough characters for a signed value, check
3769 	     for signness by testing if the sign bit is set.  */
3770 	  sign_bit = (twos_complement_bits % 3 + 2) % 3;
3771 	  c = *p - '0';
3772 	  if (c & (1 << sign_bit))
3773 	    {
3774 	      /* Definitely signed.  */
3775 	      twos_complement_representation = 1;
3776 	      sign = -1;
3777 	    }
3778 	}
3779     }
3780 
3781   upper_limit = LONG_MAX / radix;
3782 
3783   while ((c = *p++) >= '0' && c < ('0' + radix))
3784     {
3785       if (n <= upper_limit)
3786         {
3787           if (twos_complement_representation)
3788             {
3789 	      /* Octal, signed, twos complement representation.  In
3790 		 this case, n is the corresponding absolute value.  */
3791 	      if (n == 0)
3792 		{
3793 		  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3794 		  n = -sn;
3795 		}
3796               else
3797                 {
3798                   n *= radix;
3799                   n -= c - '0';
3800                 }
3801             }
3802           else
3803             {
3804               /* unsigned representation */
3805               n *= radix;
3806               n += c - '0';		/* FIXME this overflows anyway */
3807             }
3808         }
3809       else
3810         overflow = 1;
3811 
3812       /* This depends on large values being output in octal, which is
3813          what GCC does. */
3814       if (radix == 8)
3815 	{
3816 	  if (nbits == 0)
3817 	    {
3818 	      if (c == '0')
3819 		/* Ignore leading zeroes.  */
3820 		;
3821 	      else if (c == '1')
3822 		nbits = 1;
3823 	      else if (c == '2' || c == '3')
3824 		nbits = 2;
3825 	      else
3826 		nbits = 3;
3827 	    }
3828 	  else
3829 	    nbits += 3;
3830 	}
3831     }
3832   if (end)
3833     {
3834       if (c && c != end)
3835 	{
3836 	  if (bits != NULL)
3837 	    *bits = -1;
3838 	  return 0;
3839 	}
3840     }
3841   else
3842     --p;
3843 
3844   if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3845     {
3846       /* We were supposed to parse a number with maximum
3847 	 TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
3848       if (bits != NULL)
3849 	*bits = -1;
3850       return 0;
3851     }
3852 
3853   *pp = p;
3854   if (overflow)
3855     {
3856       if (nbits == 0)
3857 	{
3858 	  /* Large decimal constants are an error (because it is hard to
3859 	     count how many bits are in them).  */
3860 	  if (bits != NULL)
3861 	    *bits = -1;
3862 	  return 0;
3863 	}
3864 
3865       /* -0x7f is the same as 0x80.  So deal with it by adding one to
3866          the number of bits.  Two's complement represention octals
3867          can't have a '-' in front.  */
3868       if (sign == -1 && !twos_complement_representation)
3869 	++nbits;
3870       if (bits)
3871 	*bits = nbits;
3872     }
3873   else
3874     {
3875       if (bits)
3876 	*bits = 0;
3877       return n * sign;
3878     }
3879   /* It's *BITS which has the interesting information.  */
3880   return 0;
3881 }
3882 
3883 static struct type *
3884 read_range_type (char **pp, int typenums[2], int type_size,
3885                  struct objfile *objfile)
3886 {
3887   struct gdbarch *gdbarch = get_objfile_arch (objfile);
3888   char *orig_pp = *pp;
3889   int rangenums[2];
3890   long n2, n3;
3891   int n2bits, n3bits;
3892   int self_subrange;
3893   struct type *result_type;
3894   struct type *index_type = NULL;
3895 
3896   /* First comes a type we are a subrange of.
3897      In C it is usually 0, 1 or the type being defined.  */
3898   if (read_type_number (pp, rangenums) != 0)
3899     return error_type (pp, objfile);
3900   self_subrange = (rangenums[0] == typenums[0] &&
3901 		   rangenums[1] == typenums[1]);
3902 
3903   if (**pp == '=')
3904     {
3905       *pp = orig_pp;
3906       index_type = read_type (pp, objfile);
3907     }
3908 
3909   /* A semicolon should now follow; skip it.  */
3910   if (**pp == ';')
3911     (*pp)++;
3912 
3913   /* The remaining two operands are usually lower and upper bounds
3914      of the range.  But in some special cases they mean something else.  */
3915   n2 = read_huge_number (pp, ';', &n2bits, type_size);
3916   n3 = read_huge_number (pp, ';', &n3bits, type_size);
3917 
3918   if (n2bits == -1 || n3bits == -1)
3919     return error_type (pp, objfile);
3920 
3921   if (index_type)
3922     goto handle_true_range;
3923 
3924   /* If limits are huge, must be large integral type.  */
3925   if (n2bits != 0 || n3bits != 0)
3926     {
3927       char got_signed = 0;
3928       char got_unsigned = 0;
3929       /* Number of bits in the type.  */
3930       int nbits = 0;
3931 
3932       /* If a type size attribute has been specified, the bounds of
3933          the range should fit in this size. If the lower bounds needs
3934          more bits than the upper bound, then the type is signed.  */
3935       if (n2bits <= type_size && n3bits <= type_size)
3936         {
3937           if (n2bits == type_size && n2bits > n3bits)
3938             got_signed = 1;
3939           else
3940             got_unsigned = 1;
3941           nbits = type_size;
3942         }
3943       /* Range from 0 to <large number> is an unsigned large integral type.  */
3944       else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3945 	{
3946 	  got_unsigned = 1;
3947 	  nbits = n3bits;
3948 	}
3949       /* Range from <large number> to <large number>-1 is a large signed
3950          integral type.  Take care of the case where <large number> doesn't
3951          fit in a long but <large number>-1 does.  */
3952       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3953 	       || (n2bits != 0 && n3bits == 0
3954 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3955 		   && n3 == LONG_MAX))
3956 	{
3957 	  got_signed = 1;
3958 	  nbits = n2bits;
3959 	}
3960 
3961       if (got_signed || got_unsigned)
3962 	{
3963 	  return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3964 			    got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3965 			    objfile);
3966 	}
3967       else
3968 	return error_type (pp, objfile);
3969     }
3970 
3971   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
3972   if (self_subrange && n2 == 0 && n3 == 0)
3973     return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3974 
3975   /* If n3 is zero and n2 is positive, we want a floating type, and n2
3976      is the width in bytes.
3977 
3978      Fortran programs appear to use this for complex types also.  To
3979      distinguish between floats and complex, g77 (and others?)  seem
3980      to use self-subranges for the complexes, and subranges of int for
3981      the floats.
3982 
3983      Also note that for complexes, g77 sets n2 to the size of one of
3984      the member floats, not the whole complex beast.  My guess is that
3985      this was to work well with pre-COMPLEX versions of gdb. */
3986 
3987   if (n3 == 0 && n2 > 0)
3988     {
3989       struct type *float_type
3990 	= init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3991 
3992       if (self_subrange)
3993 	{
3994 	  struct type *complex_type =
3995 	    init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3996 	  TYPE_TARGET_TYPE (complex_type) = float_type;
3997 	  return complex_type;
3998 	}
3999       else
4000 	return float_type;
4001     }
4002 
4003   /* If the upper bound is -1, it must really be an unsigned integral.  */
4004 
4005   else if (n2 == 0 && n3 == -1)
4006     {
4007       int bits = type_size;
4008       if (bits <= 0)
4009 	{
4010 	  /* We don't know its size.  It is unsigned int or unsigned
4011 	     long.  GCC 2.3.3 uses this for long long too, but that is
4012 	     just a GDB 3.5 compatibility hack.  */
4013 	  bits = gdbarch_int_bit (gdbarch);
4014 	}
4015 
4016       return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4017 			TYPE_FLAG_UNSIGNED, NULL, objfile);
4018     }
4019 
4020   /* Special case: char is defined (Who knows why) as a subrange of
4021      itself with range 0-127.  */
4022   else if (self_subrange && n2 == 0 && n3 == 127)
4023     return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4024 
4025   /* We used to do this only for subrange of self or subrange of int.  */
4026   else if (n2 == 0)
4027     {
4028       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4029          "unsigned long", and we already checked for that,
4030          so don't need to test for it here.  */
4031 
4032       if (n3 < 0)
4033 	/* n3 actually gives the size.  */
4034 	return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4035 			  NULL, objfile);
4036 
4037       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
4038          unsigned n-byte integer.  But do require n to be a power of
4039          two; we don't want 3- and 5-byte integers flying around.  */
4040       {
4041 	int bytes;
4042 	unsigned long bits;
4043 
4044 	bits = n3;
4045 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4046 	  bits >>= 8;
4047 	if (bits == 0
4048 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4049 	  return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4050 			    objfile);
4051       }
4052     }
4053   /* I think this is for Convex "long long".  Since I don't know whether
4054      Convex sets self_subrange, I also accept that particular size regardless
4055      of self_subrange.  */
4056   else if (n3 == 0 && n2 < 0
4057 	   && (self_subrange
4058 	       || n2 == -gdbarch_long_long_bit
4059 			  (gdbarch) / TARGET_CHAR_BIT))
4060     return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4061   else if (n2 == -n3 - 1)
4062     {
4063       if (n3 == 0x7f)
4064 	return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4065       if (n3 == 0x7fff)
4066 	return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4067       if (n3 == 0x7fffffff)
4068 	return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4069     }
4070 
4071   /* We have a real range type on our hands.  Allocate space and
4072      return a real pointer.  */
4073 handle_true_range:
4074 
4075   if (self_subrange)
4076     index_type = objfile_type (objfile)->builtin_int;
4077   else
4078     index_type = *dbx_lookup_type (rangenums, objfile);
4079   if (index_type == NULL)
4080     {
4081       /* Does this actually ever happen?  Is that why we are worrying
4082          about dealing with it rather than just calling error_type?  */
4083 
4084       complaint (&symfile_complaints,
4085 		 _("base type %d of range type is not defined"), rangenums[1]);
4086 
4087       index_type = objfile_type (objfile)->builtin_int;
4088     }
4089 
4090   result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4091   return (result_type);
4092 }
4093 
4094 /* Read in an argument list.  This is a list of types, separated by commas
4095    and terminated with END.  Return the list of types read in, or NULL
4096    if there is an error.  */
4097 
4098 static struct field *
4099 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4100 	   int *varargsp)
4101 {
4102   /* FIXME!  Remove this arbitrary limit!  */
4103   struct type *types[1024];	/* allow for fns of 1023 parameters */
4104   int n = 0, i;
4105   struct field *rval;
4106 
4107   while (**pp != end)
4108     {
4109       if (**pp != ',')
4110 	/* Invalid argument list: no ','.  */
4111 	return NULL;
4112       (*pp)++;
4113       STABS_CONTINUE (pp, objfile);
4114       types[n++] = read_type (pp, objfile);
4115     }
4116   (*pp)++;			/* get past `end' (the ':' character) */
4117 
4118   if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4119     *varargsp = 1;
4120   else
4121     {
4122       n--;
4123       *varargsp = 0;
4124     }
4125 
4126   rval = (struct field *) xmalloc (n * sizeof (struct field));
4127   memset (rval, 0, n * sizeof (struct field));
4128   for (i = 0; i < n; i++)
4129     rval[i].type = types[i];
4130   *nargsp = n;
4131   return rval;
4132 }
4133 
4134 /* Common block handling.  */
4135 
4136 /* List of symbols declared since the last BCOMM.  This list is a tail
4137    of local_symbols.  When ECOMM is seen, the symbols on the list
4138    are noted so their proper addresses can be filled in later,
4139    using the common block base address gotten from the assembler
4140    stabs.  */
4141 
4142 static struct pending *common_block;
4143 static int common_block_i;
4144 
4145 /* Name of the current common block.  We get it from the BCOMM instead of the
4146    ECOMM to match IBM documentation (even though IBM puts the name both places
4147    like everyone else).  */
4148 static char *common_block_name;
4149 
4150 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
4151    to remain after this function returns.  */
4152 
4153 void
4154 common_block_start (char *name, struct objfile *objfile)
4155 {
4156   if (common_block_name != NULL)
4157     {
4158       complaint (&symfile_complaints,
4159 		 _("Invalid symbol data: common block within common block"));
4160     }
4161   common_block = local_symbols;
4162   common_block_i = local_symbols ? local_symbols->nsyms : 0;
4163   common_block_name = obsavestring (name, strlen (name),
4164 				    &objfile->objfile_obstack);
4165 }
4166 
4167 /* Process a N_ECOMM symbol.  */
4168 
4169 void
4170 common_block_end (struct objfile *objfile)
4171 {
4172   /* Symbols declared since the BCOMM are to have the common block
4173      start address added in when we know it.  common_block and
4174      common_block_i point to the first symbol after the BCOMM in
4175      the local_symbols list; copy the list and hang it off the
4176      symbol for the common block name for later fixup.  */
4177   int i;
4178   struct symbol *sym;
4179   struct pending *new = 0;
4180   struct pending *next;
4181   int j;
4182 
4183   if (common_block_name == NULL)
4184     {
4185       complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4186       return;
4187     }
4188 
4189   sym = (struct symbol *)
4190     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4191   memset (sym, 0, sizeof (struct symbol));
4192   /* Note: common_block_name already saved on objfile_obstack */
4193   SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4194   SYMBOL_CLASS (sym) = LOC_BLOCK;
4195 
4196   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4197 
4198   /* Copy all the struct pendings before common_block.  */
4199   for (next = local_symbols;
4200        next != NULL && next != common_block;
4201        next = next->next)
4202     {
4203       for (j = 0; j < next->nsyms; j++)
4204 	add_symbol_to_list (next->symbol[j], &new);
4205     }
4206 
4207   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4208      NULL, it means copy all the local symbols (which we already did
4209      above).  */
4210 
4211   if (common_block != NULL)
4212     for (j = common_block_i; j < common_block->nsyms; j++)
4213       add_symbol_to_list (common_block->symbol[j], &new);
4214 
4215   SYMBOL_TYPE (sym) = (struct type *) new;
4216 
4217   /* Should we be putting local_symbols back to what it was?
4218      Does it matter?  */
4219 
4220   i = hashname (SYMBOL_LINKAGE_NAME (sym));
4221   SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4222   global_sym_chain[i] = sym;
4223   common_block_name = NULL;
4224 }
4225 
4226 /* Add a common block's start address to the offset of each symbol
4227    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4228    the common block name).  */
4229 
4230 static void
4231 fix_common_block (struct symbol *sym, int valu)
4232 {
4233   struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4234   for (; next; next = next->next)
4235     {
4236       int j;
4237       for (j = next->nsyms - 1; j >= 0; j--)
4238 	SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4239     }
4240 }
4241 
4242 
4243 
4244 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4245    See add_undefined_type for more details.  */
4246 
4247 static void
4248 add_undefined_type_noname (struct type *type, int typenums[2])
4249 {
4250   struct nat nat;
4251 
4252   nat.typenums[0] = typenums [0];
4253   nat.typenums[1] = typenums [1];
4254   nat.type = type;
4255 
4256   if (noname_undefs_length == noname_undefs_allocated)
4257     {
4258       noname_undefs_allocated *= 2;
4259       noname_undefs = (struct nat *)
4260 	xrealloc ((char *) noname_undefs,
4261 		  noname_undefs_allocated * sizeof (struct nat));
4262     }
4263   noname_undefs[noname_undefs_length++] = nat;
4264 }
4265 
4266 /* Add TYPE to the UNDEF_TYPES vector.
4267    See add_undefined_type for more details.  */
4268 
4269 static void
4270 add_undefined_type_1 (struct type *type)
4271 {
4272   if (undef_types_length == undef_types_allocated)
4273     {
4274       undef_types_allocated *= 2;
4275       undef_types = (struct type **)
4276 	xrealloc ((char *) undef_types,
4277 		  undef_types_allocated * sizeof (struct type *));
4278     }
4279   undef_types[undef_types_length++] = type;
4280 }
4281 
4282 /* What about types defined as forward references inside of a small lexical
4283    scope?  */
4284 /* Add a type to the list of undefined types to be checked through
4285    once this file has been read in.
4286 
4287    In practice, we actually maintain two such lists: The first list
4288    (UNDEF_TYPES) is used for types whose name has been provided, and
4289    concerns forward references (eg 'xs' or 'xu' forward references);
4290    the second list (NONAME_UNDEFS) is used for types whose name is
4291    unknown at creation time, because they were referenced through
4292    their type number before the actual type was declared.
4293    This function actually adds the given type to the proper list.  */
4294 
4295 static void
4296 add_undefined_type (struct type *type, int typenums[2])
4297 {
4298   if (TYPE_TAG_NAME (type) == NULL)
4299     add_undefined_type_noname (type, typenums);
4300   else
4301     add_undefined_type_1 (type);
4302 }
4303 
4304 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
4305 
4306 static void
4307 cleanup_undefined_types_noname (struct objfile *objfile)
4308 {
4309   int i;
4310 
4311   for (i = 0; i < noname_undefs_length; i++)
4312     {
4313       struct nat nat = noname_undefs[i];
4314       struct type **type;
4315 
4316       type = dbx_lookup_type (nat.typenums, objfile);
4317       if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4318         {
4319           /* The instance flags of the undefined type are still unset,
4320              and needs to be copied over from the reference type.
4321              Since replace_type expects them to be identical, we need
4322              to set these flags manually before hand.  */
4323           TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4324           replace_type (nat.type, *type);
4325         }
4326     }
4327 
4328   noname_undefs_length = 0;
4329 }
4330 
4331 /* Go through each undefined type, see if it's still undefined, and fix it
4332    up if possible.  We have two kinds of undefined types:
4333 
4334    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4335    Fix:  update array length using the element bounds
4336    and the target type's length.
4337    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4338    yet defined at the time a pointer to it was made.
4339    Fix:  Do a full lookup on the struct/union tag.  */
4340 
4341 static void
4342 cleanup_undefined_types_1 (void)
4343 {
4344   struct type **type;
4345 
4346   /* Iterate over every undefined type, and look for a symbol whose type
4347      matches our undefined type.  The symbol matches if:
4348        1. It is a typedef in the STRUCT domain;
4349        2. It has the same name, and same type code;
4350        3. The instance flags are identical.
4351 
4352      It is important to check the instance flags, because we have seen
4353      examples where the debug info contained definitions such as:
4354 
4355          "foo_t:t30=B31=xefoo_t:"
4356 
4357      In this case, we have created an undefined type named "foo_t" whose
4358      instance flags is null (when processing "xefoo_t"), and then created
4359      another type with the same name, but with different instance flags
4360      ('B' means volatile).  I think that the definition above is wrong,
4361      since the same type cannot be volatile and non-volatile at the same
4362      time, but we need to be able to cope with it when it happens.  The
4363      approach taken here is to treat these two types as different.  */
4364 
4365   for (type = undef_types; type < undef_types + undef_types_length; type++)
4366     {
4367       switch (TYPE_CODE (*type))
4368 	{
4369 
4370 	case TYPE_CODE_STRUCT:
4371 	case TYPE_CODE_UNION:
4372 	case TYPE_CODE_ENUM:
4373 	  {
4374 	    /* Check if it has been defined since.  Need to do this here
4375 	       as well as in check_typedef to deal with the (legitimate in
4376 	       C though not C++) case of several types with the same name
4377 	       in different source files.  */
4378 	    if (TYPE_STUB (*type))
4379 	      {
4380 		struct pending *ppt;
4381 		int i;
4382 		/* Name of the type, without "struct" or "union" */
4383 		char *typename = TYPE_TAG_NAME (*type);
4384 
4385 		if (typename == NULL)
4386 		  {
4387 		    complaint (&symfile_complaints, _("need a type name"));
4388 		    break;
4389 		  }
4390 		for (ppt = file_symbols; ppt; ppt = ppt->next)
4391 		  {
4392 		    for (i = 0; i < ppt->nsyms; i++)
4393 		      {
4394 			struct symbol *sym = ppt->symbol[i];
4395 
4396 			if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4397 			    && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4398 			    && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4399 				TYPE_CODE (*type))
4400 			    && (TYPE_INSTANCE_FLAGS (*type) ==
4401 				TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4402 			    && strcmp (SYMBOL_LINKAGE_NAME (sym),
4403 				       typename) == 0)
4404                           replace_type (*type, SYMBOL_TYPE (sym));
4405 		      }
4406 		  }
4407 	      }
4408 	  }
4409 	  break;
4410 
4411 	default:
4412 	  {
4413 	    complaint (&symfile_complaints,
4414 		       _("forward-referenced types left unresolved, "
4415                        "type code %d."),
4416 		       TYPE_CODE (*type));
4417 	  }
4418 	  break;
4419 	}
4420     }
4421 
4422   undef_types_length = 0;
4423 }
4424 
4425 /* Try to fix all the undefined types we ecountered while processing
4426    this unit.  */
4427 
4428 void
4429 cleanup_undefined_types (struct objfile *objfile)
4430 {
4431   cleanup_undefined_types_1 ();
4432   cleanup_undefined_types_noname (objfile);
4433 }
4434 
4435 /* Scan through all of the global symbols defined in the object file,
4436    assigning values to the debugging symbols that need to be assigned
4437    to.  Get these symbols from the minimal symbol table.  */
4438 
4439 void
4440 scan_file_globals (struct objfile *objfile)
4441 {
4442   int hash;
4443   struct minimal_symbol *msymbol;
4444   struct symbol *sym, *prev;
4445   struct objfile *resolve_objfile;
4446 
4447   /* SVR4 based linkers copy referenced global symbols from shared
4448      libraries to the main executable.
4449      If we are scanning the symbols for a shared library, try to resolve
4450      them from the minimal symbols of the main executable first.  */
4451 
4452   if (symfile_objfile && objfile != symfile_objfile)
4453     resolve_objfile = symfile_objfile;
4454   else
4455     resolve_objfile = objfile;
4456 
4457   while (1)
4458     {
4459       /* Avoid expensive loop through all minimal symbols if there are
4460          no unresolved symbols.  */
4461       for (hash = 0; hash < HASHSIZE; hash++)
4462 	{
4463 	  if (global_sym_chain[hash])
4464 	    break;
4465 	}
4466       if (hash >= HASHSIZE)
4467 	return;
4468 
4469       ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4470 	{
4471 	  QUIT;
4472 
4473 	  /* Skip static symbols.  */
4474 	  switch (MSYMBOL_TYPE (msymbol))
4475 	    {
4476 	    case mst_file_text:
4477 	    case mst_file_data:
4478 	    case mst_file_bss:
4479 	      continue;
4480 	    default:
4481 	      break;
4482 	    }
4483 
4484 	  prev = NULL;
4485 
4486 	  /* Get the hash index and check all the symbols
4487 	     under that hash index. */
4488 
4489 	  hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4490 
4491 	  for (sym = global_sym_chain[hash]; sym;)
4492 	    {
4493 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4494 			  SYMBOL_LINKAGE_NAME (sym)) == 0)
4495 		{
4496 		  /* Splice this symbol out of the hash chain and
4497 		     assign the value we have to it. */
4498 		  if (prev)
4499 		    {
4500 		      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4501 		    }
4502 		  else
4503 		    {
4504 		      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4505 		    }
4506 
4507 		  /* Check to see whether we need to fix up a common block.  */
4508 		  /* Note: this code might be executed several times for
4509 		     the same symbol if there are multiple references.  */
4510 		  if (sym)
4511 		    {
4512 		      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4513 			{
4514 			  fix_common_block (sym,
4515 					    SYMBOL_VALUE_ADDRESS (msymbol));
4516 			}
4517 		      else
4518 			{
4519 			  SYMBOL_VALUE_ADDRESS (sym)
4520 			    = SYMBOL_VALUE_ADDRESS (msymbol);
4521 			}
4522 		      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4523 		    }
4524 
4525 		  if (prev)
4526 		    {
4527 		      sym = SYMBOL_VALUE_CHAIN (prev);
4528 		    }
4529 		  else
4530 		    {
4531 		      sym = global_sym_chain[hash];
4532 		    }
4533 		}
4534 	      else
4535 		{
4536 		  prev = sym;
4537 		  sym = SYMBOL_VALUE_CHAIN (sym);
4538 		}
4539 	    }
4540 	}
4541       if (resolve_objfile == objfile)
4542 	break;
4543       resolve_objfile = objfile;
4544     }
4545 
4546   /* Change the storage class of any remaining unresolved globals to
4547      LOC_UNRESOLVED and remove them from the chain.  */
4548   for (hash = 0; hash < HASHSIZE; hash++)
4549     {
4550       sym = global_sym_chain[hash];
4551       while (sym)
4552 	{
4553 	  prev = sym;
4554 	  sym = SYMBOL_VALUE_CHAIN (sym);
4555 
4556 	  /* Change the symbol address from the misleading chain value
4557 	     to address zero.  */
4558 	  SYMBOL_VALUE_ADDRESS (prev) = 0;
4559 
4560 	  /* Complain about unresolved common block symbols.  */
4561 	  if (SYMBOL_CLASS (prev) == LOC_STATIC)
4562 	    SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4563 	  else
4564 	    complaint (&symfile_complaints,
4565 		       _("%s: common block `%s' from global_sym_chain unresolved"),
4566 		       objfile->name, SYMBOL_PRINT_NAME (prev));
4567 	}
4568     }
4569   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4570 }
4571 
4572 /* Initialize anything that needs initializing when starting to read
4573    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4574    to a psymtab.  */
4575 
4576 void
4577 stabsread_init (void)
4578 {
4579 }
4580 
4581 /* Initialize anything that needs initializing when a completely new
4582    symbol file is specified (not just adding some symbols from another
4583    file, e.g. a shared library).  */
4584 
4585 void
4586 stabsread_new_init (void)
4587 {
4588   /* Empty the hash table of global syms looking for values.  */
4589   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4590 }
4591 
4592 /* Initialize anything that needs initializing at the same time as
4593    start_symtab() is called. */
4594 
4595 void
4596 start_stabs (void)
4597 {
4598   global_stabs = NULL;		/* AIX COFF */
4599   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4600   n_this_object_header_files = 1;
4601   type_vector_length = 0;
4602   type_vector = (struct type **) 0;
4603 
4604   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4605   common_block_name = NULL;
4606 }
4607 
4608 /* Call after end_symtab() */
4609 
4610 void
4611 end_stabs (void)
4612 {
4613   if (type_vector)
4614     {
4615       xfree (type_vector);
4616     }
4617   type_vector = 0;
4618   type_vector_length = 0;
4619   previous_stab_code = 0;
4620 }
4621 
4622 void
4623 finish_global_stabs (struct objfile *objfile)
4624 {
4625   if (global_stabs)
4626     {
4627       patch_block_stabs (global_symbols, global_stabs, objfile);
4628       xfree (global_stabs);
4629       global_stabs = NULL;
4630     }
4631 }
4632 
4633 /* Find the end of the name, delimited by a ':', but don't match
4634    ObjC symbols which look like -[Foo bar::]:bla.  */
4635 static char *
4636 find_name_end (char *name)
4637 {
4638   char *s = name;
4639   if (s[0] == '-' || *s == '+')
4640     {
4641       /* Must be an ObjC method symbol.  */
4642       if (s[1] != '[')
4643 	{
4644 	  error (_("invalid symbol name \"%s\""), name);
4645 	}
4646       s = strchr (s, ']');
4647       if (s == NULL)
4648 	{
4649 	  error (_("invalid symbol name \"%s\""), name);
4650 	}
4651       return strchr (s, ':');
4652     }
4653   else
4654     {
4655       return strchr (s, ':');
4656     }
4657 }
4658 
4659 /* Initializer for this module */
4660 
4661 void
4662 _initialize_stabsread (void)
4663 {
4664   rs6000_builtin_type_data = register_objfile_data ();
4665 
4666   undef_types_allocated = 20;
4667   undef_types_length = 0;
4668   undef_types = (struct type **)
4669     xmalloc (undef_types_allocated * sizeof (struct type *));
4670 
4671   noname_undefs_allocated = 20;
4672   noname_undefs_length = 0;
4673   noname_undefs = (struct nat *)
4674     xmalloc (noname_undefs_allocated * sizeof (struct nat));
4675 }
4676