xref: /dragonfly/contrib/gdb-7/gdb/stabsread.c (revision 783d47c4)
1 /* Support routines for decoding "stabs" debugging information format.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5    2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 /* Support routines for reading and decoding debugging information in
23    the "stabs" format.  This format is used with many systems that use
24    the a.out object file format, as well as some systems that use
25    COFF or ELF where the stabs data is placed in a special section.
26    Avoid placing any object file format specific code in this file.  */
27 
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h"	/* We always use GNU stabs, not native.  */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49 
50 #include <ctype.h>
51 
52 /* Ask stabsread.h to define the vars it normally declares `extern'.  */
53 #define	EXTERN
54 /**/
55 #include "stabsread.h"		/* Our own declarations */
56 #undef	EXTERN
57 
58 extern void _initialize_stabsread (void);
59 
60 /* The routines that read and process a complete stabs for a C struct or
61    C++ class pass lists of data member fields and lists of member function
62    fields in an instance of a field_info structure, as defined below.
63    This is part of some reorganization of low level C++ support and is
64    expected to eventually go away...  (FIXME) */
65 
66 struct field_info
67   {
68     struct nextfield
69       {
70 	struct nextfield *next;
71 
72 	/* This is the raw visibility from the stab.  It is not checked
73 	   for being one of the visibilities we recognize, so code which
74 	   examines this field better be able to deal.  */
75 	int visibility;
76 
77 	struct field field;
78       }
79      *list;
80     struct next_fnfieldlist
81       {
82 	struct next_fnfieldlist *next;
83 	struct fn_fieldlist fn_fieldlist;
84       }
85      *fnlist;
86   };
87 
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 		       struct type *, struct objfile *);
91 
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93 
94 static long read_huge_number (char **, int, int *, int);
95 
96 static struct type *error_type (char **, struct objfile *);
97 
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 		   struct objfile *);
101 
102 static void fix_common_block (struct symbol *, int);
103 
104 static int read_type_number (char **, int *);
105 
106 static struct type *read_type (char **, struct objfile *);
107 
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109 
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111 
112 static struct type *read_sun_floating_type (char **, int[2],
113 					    struct objfile *);
114 
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116 
117 static struct type *rs6000_builtin_type (int, struct objfile *);
118 
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 		       struct objfile *);
122 
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 		    struct objfile *);
126 
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 		  struct objfile *);
130 
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 		   struct objfile *);
134 
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136 
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 				  struct objfile *);
139 
140 static struct type *read_struct_type (char **, struct type *,
141                                       enum type_code,
142 				      struct objfile *);
143 
144 static struct type *read_array_type (char **, struct type *,
145 				     struct objfile *);
146 
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148 
149 static void add_undefined_type (struct type *, int[2]);
150 
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 		 struct objfile *);
154 
155 static char *find_name_end (char *name);
156 
157 static int process_reference (char **string);
158 
159 void stabsread_clear_cache (void);
160 
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163 
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167   complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169 
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173   complaint (&symfile_complaints,
174 	     _("register number %d too large (max %d) in symbol %s"),
175              regnum, num_regs - 1, sym);
176 }
177 
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181   complaint (&symfile_complaints, "%s", arg1);
182 }
183 
184 /* Make a list of forward references which haven't been defined.  */
185 
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190 
191 /* Make a list of nameless types that are undefined.
192    This happens when another type is referenced by its number
193    before this type is actually defined.  For instance "t(0,1)=k(0,2)"
194    and type (0,2) is defined only later.  */
195 
196 struct nat
197 {
198   int typenums[2];
199   struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204 
205 /* Check for and handle cretinous stabs symbol name continuation!  */
206 #define STABS_CONTINUE(pp,objfile)				\
207   do {							\
208     if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209       *(pp) = next_symbol_text (objfile);	\
210   } while (0)
211 
212 
213 /* Look up a dbx type-number pair.  Return the address of the slot
214    where the type for that number-pair is stored.
215    The number-pair is in TYPENUMS.
216 
217    This can be used for finding the type associated with that pair
218    or for associating a new type with the pair.  */
219 
220 static struct type **
221 dbx_lookup_type (int typenums[2], struct objfile *objfile)
222 {
223   int filenum = typenums[0];
224   int index = typenums[1];
225   unsigned old_len;
226   int real_filenum;
227   struct header_file *f;
228   int f_orig_length;
229 
230   if (filenum == -1)		/* -1,-1 is for temporary types.  */
231     return 0;
232 
233   if (filenum < 0 || filenum >= n_this_object_header_files)
234     {
235       complaint (&symfile_complaints,
236 		 _("Invalid symbol data: type number "
237 		   "(%d,%d) out of range at symtab pos %d."),
238 		 filenum, index, symnum);
239       goto error_return;
240     }
241 
242   if (filenum == 0)
243     {
244       if (index < 0)
245 	{
246 	  /* Caller wants address of address of type.  We think
247 	     that negative (rs6k builtin) types will never appear as
248 	     "lvalues", (nor should they), so we stuff the real type
249 	     pointer into a temp, and return its address.  If referenced,
250 	     this will do the right thing.  */
251 	  static struct type *temp_type;
252 
253 	  temp_type = rs6000_builtin_type (index, objfile);
254 	  return &temp_type;
255 	}
256 
257       /* Type is defined outside of header files.
258          Find it in this object file's type vector.  */
259       if (index >= type_vector_length)
260 	{
261 	  old_len = type_vector_length;
262 	  if (old_len == 0)
263 	    {
264 	      type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
265 	      type_vector = (struct type **)
266 		xmalloc (type_vector_length * sizeof (struct type *));
267 	    }
268 	  while (index >= type_vector_length)
269 	    {
270 	      type_vector_length *= 2;
271 	    }
272 	  type_vector = (struct type **)
273 	    xrealloc ((char *) type_vector,
274 		      (type_vector_length * sizeof (struct type *)));
275 	  memset (&type_vector[old_len], 0,
276 		  (type_vector_length - old_len) * sizeof (struct type *));
277 	}
278       return (&type_vector[index]);
279     }
280   else
281     {
282       real_filenum = this_object_header_files[filenum];
283 
284       if (real_filenum >= N_HEADER_FILES (objfile))
285 	{
286 	  static struct type *temp_type;
287 
288 	  warning (_("GDB internal error: bad real_filenum"));
289 
290 	error_return:
291 	  temp_type = objfile_type (objfile)->builtin_error;
292 	  return &temp_type;
293 	}
294 
295       f = HEADER_FILES (objfile) + real_filenum;
296 
297       f_orig_length = f->length;
298       if (index >= f_orig_length)
299 	{
300 	  while (index >= f->length)
301 	    {
302 	      f->length *= 2;
303 	    }
304 	  f->vector = (struct type **)
305 	    xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
306 	  memset (&f->vector[f_orig_length], 0,
307 		  (f->length - f_orig_length) * sizeof (struct type *));
308 	}
309       return (&f->vector[index]);
310     }
311 }
312 
313 /* Make sure there is a type allocated for type numbers TYPENUMS
314    and return the type object.
315    This can create an empty (zeroed) type object.
316    TYPENUMS may be (-1, -1) to return a new type object that is not
317    put into the type vector, and so may not be referred to by number.  */
318 
319 static struct type *
320 dbx_alloc_type (int typenums[2], struct objfile *objfile)
321 {
322   struct type **type_addr;
323 
324   if (typenums[0] == -1)
325     {
326       return (alloc_type (objfile));
327     }
328 
329   type_addr = dbx_lookup_type (typenums, objfile);
330 
331   /* If we are referring to a type not known at all yet,
332      allocate an empty type for it.
333      We will fill it in later if we find out how.  */
334   if (*type_addr == 0)
335     {
336       *type_addr = alloc_type (objfile);
337     }
338 
339   return (*type_addr);
340 }
341 
342 /* for all the stabs in a given stab vector, build appropriate types
343    and fix their symbols in given symbol vector.  */
344 
345 static void
346 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
347 		   struct objfile *objfile)
348 {
349   int ii;
350   char *name;
351   char *pp;
352   struct symbol *sym;
353 
354   if (stabs)
355     {
356       /* for all the stab entries, find their corresponding symbols and
357          patch their types!  */
358 
359       for (ii = 0; ii < stabs->count; ++ii)
360 	{
361 	  name = stabs->stab[ii];
362 	  pp = (char *) strchr (name, ':');
363 	  gdb_assert (pp);	/* Must find a ':' or game's over.  */
364 	  while (pp[1] == ':')
365 	    {
366 	      pp += 2;
367 	      pp = (char *) strchr (pp, ':');
368 	    }
369 	  sym = find_symbol_in_list (symbols, name, pp - name);
370 	  if (!sym)
371 	    {
372 	      /* FIXME-maybe: it would be nice if we noticed whether
373 	         the variable was defined *anywhere*, not just whether
374 	         it is defined in this compilation unit.  But neither
375 	         xlc or GCC seem to need such a definition, and until
376 	         we do psymtabs (so that the minimal symbols from all
377 	         compilation units are available now), I'm not sure
378 	         how to get the information.  */
379 
380 	      /* On xcoff, if a global is defined and never referenced,
381 	         ld will remove it from the executable.  There is then
382 	         a N_GSYM stab for it, but no regular (C_EXT) symbol.  */
383 	      sym = (struct symbol *)
384 		obstack_alloc (&objfile->objfile_obstack,
385 			       sizeof (struct symbol));
386 
387 	      memset (sym, 0, sizeof (struct symbol));
388 	      SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 	      SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 	      SYMBOL_SET_LINKAGE_NAME
391 		(sym, obsavestring (name, pp - name,
392 				    &objfile->objfile_obstack));
393 	      pp += 2;
394 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
395 		{
396 		  /* I don't think the linker does this with functions,
397 		     so as far as I know this is never executed.
398 		     But it doesn't hurt to check.  */
399 		  SYMBOL_TYPE (sym) =
400 		    lookup_function_type (read_type (&pp, objfile));
401 		}
402 	      else
403 		{
404 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
405 		}
406 	      add_symbol_to_list (sym, &global_symbols);
407 	    }
408 	  else
409 	    {
410 	      pp += 2;
411 	      if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
412 		{
413 		  SYMBOL_TYPE (sym) =
414 		    lookup_function_type (read_type (&pp, objfile));
415 		}
416 	      else
417 		{
418 		  SYMBOL_TYPE (sym) = read_type (&pp, objfile);
419 		}
420 	    }
421 	}
422     }
423 }
424 
425 
426 /* Read a number by which a type is referred to in dbx data,
427    or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
428    Just a single number N is equivalent to (0,N).
429    Return the two numbers by storing them in the vector TYPENUMS.
430    TYPENUMS will then be used as an argument to dbx_lookup_type.
431 
432    Returns 0 for success, -1 for error.  */
433 
434 static int
435 read_type_number (char **pp, int *typenums)
436 {
437   int nbits;
438 
439   if (**pp == '(')
440     {
441       (*pp)++;
442       typenums[0] = read_huge_number (pp, ',', &nbits, 0);
443       if (nbits != 0)
444 	return -1;
445       typenums[1] = read_huge_number (pp, ')', &nbits, 0);
446       if (nbits != 0)
447 	return -1;
448     }
449   else
450     {
451       typenums[0] = 0;
452       typenums[1] = read_huge_number (pp, 0, &nbits, 0);
453       if (nbits != 0)
454 	return -1;
455     }
456   return 0;
457 }
458 
459 
460 #define VISIBILITY_PRIVATE	'0'	/* Stabs character for private field */
461 #define VISIBILITY_PROTECTED	'1'	/* Stabs character for protected fld */
462 #define VISIBILITY_PUBLIC	'2'	/* Stabs character for public field */
463 #define VISIBILITY_IGNORE	'9'	/* Optimized out or zero length */
464 
465 /* Structure for storing pointers to reference definitions for fast lookup
466    during "process_later".  */
467 
468 struct ref_map
469 {
470   char *stabs;
471   CORE_ADDR value;
472   struct symbol *sym;
473 };
474 
475 #define MAX_CHUNK_REFS 100
476 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
477 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
478 
479 static struct ref_map *ref_map;
480 
481 /* Ptr to free cell in chunk's linked list.  */
482 static int ref_count = 0;
483 
484 /* Number of chunks malloced.  */
485 static int ref_chunk = 0;
486 
487 /* This file maintains a cache of stabs aliases found in the symbol
488    table.  If the symbol table changes, this cache must be cleared
489    or we are left holding onto data in invalid obstacks.  */
490 void
491 stabsread_clear_cache (void)
492 {
493   ref_count = 0;
494   ref_chunk = 0;
495 }
496 
497 /* Create array of pointers mapping refids to symbols and stab strings.
498    Add pointers to reference definition symbols and/or their values as we
499    find them, using their reference numbers as our index.
500    These will be used later when we resolve references.  */
501 void
502 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
503 {
504   if (ref_count == 0)
505     ref_chunk = 0;
506   if (refnum >= ref_count)
507     ref_count = refnum + 1;
508   if (ref_count > ref_chunk * MAX_CHUNK_REFS)
509     {
510       int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
511       int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
512 
513       ref_map = (struct ref_map *)
514 	xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
515       memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
516 	      new_chunks * REF_CHUNK_SIZE);
517       ref_chunk += new_chunks;
518     }
519   ref_map[refnum].stabs = stabs;
520   ref_map[refnum].sym = sym;
521   ref_map[refnum].value = value;
522 }
523 
524 /* Return defined sym for the reference REFNUM.  */
525 struct symbol *
526 ref_search (int refnum)
527 {
528   if (refnum < 0 || refnum > ref_count)
529     return 0;
530   return ref_map[refnum].sym;
531 }
532 
533 /* Parse a reference id in STRING and return the resulting
534    reference number.  Move STRING beyond the reference id.  */
535 
536 static int
537 process_reference (char **string)
538 {
539   char *p;
540   int refnum = 0;
541 
542   if (**string != '#')
543     return 0;
544 
545   /* Advance beyond the initial '#'.  */
546   p = *string + 1;
547 
548   /* Read number as reference id.  */
549   while (*p && isdigit (*p))
550     {
551       refnum = refnum * 10 + *p - '0';
552       p++;
553     }
554   *string = p;
555   return refnum;
556 }
557 
558 /* If STRING defines a reference, store away a pointer to the reference
559    definition for later use.  Return the reference number.  */
560 
561 int
562 symbol_reference_defined (char **string)
563 {
564   char *p = *string;
565   int refnum = 0;
566 
567   refnum = process_reference (&p);
568 
569   /* Defining symbols end in '='.  */
570   if (*p == '=')
571     {
572       /* Symbol is being defined here.  */
573       *string = p + 1;
574       return refnum;
575     }
576   else
577     {
578       /* Must be a reference.  Either the symbol has already been defined,
579          or this is a forward reference to it.  */
580       *string = p;
581       return -1;
582     }
583 }
584 
585 static int
586 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
587 {
588   int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
589 
590   if (regno >= gdbarch_num_regs (gdbarch)
591 		+ gdbarch_num_pseudo_regs (gdbarch))
592     {
593       reg_value_complaint (regno,
594 			   gdbarch_num_regs (gdbarch)
595 			     + gdbarch_num_pseudo_regs (gdbarch),
596 			   SYMBOL_PRINT_NAME (sym));
597 
598       regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless.  */
599     }
600 
601   return regno;
602 }
603 
604 static const struct symbol_register_ops stab_register_funcs = {
605   stab_reg_to_regnum
606 };
607 
608 struct symbol *
609 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
610 	       struct objfile *objfile)
611 {
612   struct gdbarch *gdbarch = get_objfile_arch (objfile);
613   struct symbol *sym;
614   char *p = (char *) find_name_end (string);
615   int deftype;
616   int synonym = 0;
617   int i;
618   char *new_name = NULL;
619 
620   /* We would like to eliminate nameless symbols, but keep their types.
621      E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
622      to type 2, but, should not create a symbol to address that type.  Since
623      the symbol will be nameless, there is no way any user can refer to it.  */
624 
625   int nameless;
626 
627   /* Ignore syms with empty names.  */
628   if (string[0] == 0)
629     return 0;
630 
631   /* Ignore old-style symbols from cc -go.  */
632   if (p == 0)
633     return 0;
634 
635   while (p[1] == ':')
636     {
637       p += 2;
638       p = strchr (p, ':');
639       if (p == NULL)
640 	{
641 	  complaint (&symfile_complaints,
642 		     _("Bad stabs string '%s'"), string);
643 	  return NULL;
644 	}
645     }
646 
647   /* If a nameless stab entry, all we need is the type, not the symbol.
648      e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
649   nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
650 
651   current_symbol = sym = (struct symbol *)
652     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
653   memset (sym, 0, sizeof (struct symbol));
654 
655   switch (type & N_TYPE)
656     {
657     case N_TEXT:
658       SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
659       break;
660     case N_DATA:
661       SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
662       break;
663     case N_BSS:
664       SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
665       break;
666     }
667 
668   if (processing_gcc_compilation)
669     {
670       /* GCC 2.x puts the line number in desc.  SunOS apparently puts in the
671          number of bytes occupied by a type or object, which we ignore.  */
672       SYMBOL_LINE (sym) = desc;
673     }
674   else
675     {
676       SYMBOL_LINE (sym) = 0;	/* unknown */
677     }
678 
679   if (is_cplus_marker (string[0]))
680     {
681       /* Special GNU C++ names.  */
682       switch (string[1])
683 	{
684 	case 't':
685 	  SYMBOL_SET_LINKAGE_NAME (sym, "this");
686 	  break;
687 
688 	case 'v':		/* $vtbl_ptr_type */
689 	  goto normal;
690 
691 	case 'e':
692 	  SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
693 	  break;
694 
695 	case '_':
696 	  /* This was an anonymous type that was never fixed up.  */
697 	  goto normal;
698 
699 	case 'X':
700 	  /* SunPRO (3.0 at least) static variable encoding.  */
701 	  if (gdbarch_static_transform_name_p (gdbarch))
702 	    goto normal;
703 	  /* ... fall through ...  */
704 
705 	default:
706 	  complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
707 		     string);
708 	  goto normal;		/* Do *something* with it.  */
709 	}
710     }
711   else
712     {
713     normal:
714       SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
715       if (SYMBOL_LANGUAGE (sym) == language_cplus)
716 	{
717 	  char *name = alloca (p - string + 1);
718 
719 	  memcpy (name, string, p - string);
720 	  name[p - string] = '\0';
721 	  new_name = cp_canonicalize_string (name);
722 	}
723       if (new_name != NULL)
724 	{
725 	  SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
726 	  xfree (new_name);
727 	}
728       else
729 	SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
730 
731       if (SYMBOL_LANGUAGE (sym) == language_cplus)
732 	cp_scan_for_anonymous_namespaces (sym);
733 
734     }
735   p++;
736 
737   /* Determine the type of name being defined.  */
738 #if 0
739   /* Getting GDB to correctly skip the symbol on an undefined symbol
740      descriptor and not ever dump core is a very dodgy proposition if
741      we do things this way.  I say the acorn RISC machine can just
742      fix their compiler.  */
743   /* The Acorn RISC machine's compiler can put out locals that don't
744      start with "234=" or "(3,4)=", so assume anything other than the
745      deftypes we know how to handle is a local.  */
746   if (!strchr ("cfFGpPrStTvVXCR", *p))
747 #else
748   if (isdigit (*p) || *p == '(' || *p == '-')
749 #endif
750     deftype = 'l';
751   else
752     deftype = *p++;
753 
754   switch (deftype)
755     {
756     case 'c':
757       /* c is a special case, not followed by a type-number.
758          SYMBOL:c=iVALUE for an integer constant symbol.
759          SYMBOL:c=rVALUE for a floating constant symbol.
760          SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
761          e.g. "b:c=e6,0" for "const b = blob1"
762          (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
763       if (*p != '=')
764 	{
765 	  SYMBOL_CLASS (sym) = LOC_CONST;
766 	  SYMBOL_TYPE (sym) = error_type (&p, objfile);
767 	  SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
768 	  add_symbol_to_list (sym, &file_symbols);
769 	  return sym;
770 	}
771       ++p;
772       switch (*p++)
773 	{
774 	case 'r':
775 	  {
776 	    double d = atof (p);
777 	    gdb_byte *dbl_valu;
778 	    struct type *dbl_type;
779 
780 	    /* FIXME-if-picky-about-floating-accuracy: Should be using
781 	       target arithmetic to get the value.  real.c in GCC
782 	       probably has the necessary code.  */
783 
784 	    dbl_type = objfile_type (objfile)->builtin_double;
785 	    dbl_valu =
786 	      obstack_alloc (&objfile->objfile_obstack,
787 			     TYPE_LENGTH (dbl_type));
788 	    store_typed_floating (dbl_valu, dbl_type, d);
789 
790 	    SYMBOL_TYPE (sym) = dbl_type;
791 	    SYMBOL_VALUE_BYTES (sym) = dbl_valu;
792 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
793 	  }
794 	  break;
795 	case 'i':
796 	  {
797 	    /* Defining integer constants this way is kind of silly,
798 	       since 'e' constants allows the compiler to give not
799 	       only the value, but the type as well.  C has at least
800 	       int, long, unsigned int, and long long as constant
801 	       types; other languages probably should have at least
802 	       unsigned as well as signed constants.  */
803 
804 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
805 	    SYMBOL_VALUE (sym) = atoi (p);
806 	    SYMBOL_CLASS (sym) = LOC_CONST;
807 	  }
808 	  break;
809 
810 	case 'c':
811 	  {
812 	    SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
813 	    SYMBOL_VALUE (sym) = atoi (p);
814 	    SYMBOL_CLASS (sym) = LOC_CONST;
815 	  }
816 	  break;
817 
818 	case 's':
819 	  {
820 	    struct type *range_type;
821 	    int ind = 0;
822 	    char quote = *p++;
823 	    gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
824 	    gdb_byte *string_value;
825 
826 	    if (quote != '\'' && quote != '"')
827 	      {
828 		SYMBOL_CLASS (sym) = LOC_CONST;
829 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
830 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
831 		add_symbol_to_list (sym, &file_symbols);
832 		return sym;
833 	      }
834 
835 	    /* Find matching quote, rejecting escaped quotes.  */
836 	    while (*p && *p != quote)
837 	      {
838 		if (*p == '\\' && p[1] == quote)
839 		  {
840 		    string_local[ind] = (gdb_byte) quote;
841 		    ind++;
842 		    p += 2;
843 		  }
844 		else if (*p)
845 		  {
846 		    string_local[ind] = (gdb_byte) (*p);
847 		    ind++;
848 		    p++;
849 		  }
850 	      }
851 	    if (*p != quote)
852 	      {
853 		SYMBOL_CLASS (sym) = LOC_CONST;
854 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
855 		SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
856 		add_symbol_to_list (sym, &file_symbols);
857 		return sym;
858 	      }
859 
860 	    /* NULL terminate the string.  */
861 	    string_local[ind] = 0;
862 	    range_type
863 	      = create_range_type (NULL,
864 				   objfile_type (objfile)->builtin_int,
865 				   0, ind);
866 	    SYMBOL_TYPE (sym) = create_array_type (NULL,
867 				  objfile_type (objfile)->builtin_char,
868 				  range_type);
869 	    string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
870 	    memcpy (string_value, string_local, ind + 1);
871 	    p++;
872 
873 	    SYMBOL_VALUE_BYTES (sym) = string_value;
874 	    SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
875 	  }
876 	  break;
877 
878 	case 'e':
879 	  /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
880 	     can be represented as integral.
881 	     e.g. "b:c=e6,0" for "const b = blob1"
882 	     (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;").  */
883 	  {
884 	    SYMBOL_CLASS (sym) = LOC_CONST;
885 	    SYMBOL_TYPE (sym) = read_type (&p, objfile);
886 
887 	    if (*p != ',')
888 	      {
889 		SYMBOL_TYPE (sym) = error_type (&p, objfile);
890 		break;
891 	      }
892 	    ++p;
893 
894 	    /* If the value is too big to fit in an int (perhaps because
895 	       it is unsigned), or something like that, we silently get
896 	       a bogus value.  The type and everything else about it is
897 	       correct.  Ideally, we should be using whatever we have
898 	       available for parsing unsigned and long long values,
899 	       however.  */
900 	    SYMBOL_VALUE (sym) = atoi (p);
901 	  }
902 	  break;
903 	default:
904 	  {
905 	    SYMBOL_CLASS (sym) = LOC_CONST;
906 	    SYMBOL_TYPE (sym) = error_type (&p, objfile);
907 	  }
908 	}
909       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
910       add_symbol_to_list (sym, &file_symbols);
911       return sym;
912 
913     case 'C':
914       /* The name of a caught exception.  */
915       SYMBOL_TYPE (sym) = read_type (&p, objfile);
916       SYMBOL_CLASS (sym) = LOC_LABEL;
917       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
918       SYMBOL_VALUE_ADDRESS (sym) = valu;
919       add_symbol_to_list (sym, &local_symbols);
920       break;
921 
922     case 'f':
923       /* A static function definition.  */
924       SYMBOL_TYPE (sym) = read_type (&p, objfile);
925       SYMBOL_CLASS (sym) = LOC_BLOCK;
926       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
927       add_symbol_to_list (sym, &file_symbols);
928       /* fall into process_function_types.  */
929 
930     process_function_types:
931       /* Function result types are described as the result type in stabs.
932          We need to convert this to the function-returning-type-X type
933          in GDB.  E.g. "int" is converted to "function returning int".  */
934       if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
935 	SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
936 
937       /* All functions in C++ have prototypes.  Stabs does not offer an
938          explicit way to identify prototyped or unprototyped functions,
939          but both GCC and Sun CC emit stabs for the "call-as" type rather
940          than the "declared-as" type for unprototyped functions, so
941          we treat all functions as if they were prototyped.  This is used
942          primarily for promotion when calling the function from GDB.  */
943       TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
944 
945       /* fall into process_prototype_types.  */
946 
947     process_prototype_types:
948       /* Sun acc puts declared types of arguments here.  */
949       if (*p == ';')
950 	{
951 	  struct type *ftype = SYMBOL_TYPE (sym);
952 	  int nsemi = 0;
953 	  int nparams = 0;
954 	  char *p1 = p;
955 
956 	  /* Obtain a worst case guess for the number of arguments
957 	     by counting the semicolons.  */
958 	  while (*p1)
959 	    {
960 	      if (*p1++ == ';')
961 		nsemi++;
962 	    }
963 
964 	  /* Allocate parameter information fields and fill them in.  */
965 	  TYPE_FIELDS (ftype) = (struct field *)
966 	    TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
967 	  while (*p++ == ';')
968 	    {
969 	      struct type *ptype;
970 
971 	      /* A type number of zero indicates the start of varargs.
972 	         FIXME: GDB currently ignores vararg functions.  */
973 	      if (p[0] == '0' && p[1] == '\0')
974 		break;
975 	      ptype = read_type (&p, objfile);
976 
977 	      /* The Sun compilers mark integer arguments, which should
978 	         be promoted to the width of the calling conventions, with
979 	         a type which references itself.  This type is turned into
980 	         a TYPE_CODE_VOID type by read_type, and we have to turn
981 	         it back into builtin_int here.
982 	         FIXME: Do we need a new builtin_promoted_int_arg ?  */
983 	      if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
984 		ptype = objfile_type (objfile)->builtin_int;
985 	      TYPE_FIELD_TYPE (ftype, nparams) = ptype;
986 	      TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
987 	    }
988 	  TYPE_NFIELDS (ftype) = nparams;
989 	  TYPE_PROTOTYPED (ftype) = 1;
990 	}
991       break;
992 
993     case 'F':
994       /* A global function definition.  */
995       SYMBOL_TYPE (sym) = read_type (&p, objfile);
996       SYMBOL_CLASS (sym) = LOC_BLOCK;
997       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
998       add_symbol_to_list (sym, &global_symbols);
999       goto process_function_types;
1000 
1001     case 'G':
1002       /* For a class G (global) symbol, it appears that the
1003          value is not correct.  It is necessary to search for the
1004          corresponding linker definition to find the value.
1005          These definitions appear at the end of the namelist.  */
1006       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1007       SYMBOL_CLASS (sym) = LOC_STATIC;
1008       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1009       /* Don't add symbol references to global_sym_chain.
1010          Symbol references don't have valid names and wont't match up with
1011          minimal symbols when the global_sym_chain is relocated.
1012          We'll fixup symbol references when we fixup the defining symbol.  */
1013       if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1014 	{
1015 	  i = hashname (SYMBOL_LINKAGE_NAME (sym));
1016 	  SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1017 	  global_sym_chain[i] = sym;
1018 	}
1019       add_symbol_to_list (sym, &global_symbols);
1020       break;
1021 
1022       /* This case is faked by a conditional above,
1023          when there is no code letter in the dbx data.
1024          Dbx data never actually contains 'l'.  */
1025     case 's':
1026     case 'l':
1027       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1028       SYMBOL_CLASS (sym) = LOC_LOCAL;
1029       SYMBOL_VALUE (sym) = valu;
1030       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1031       add_symbol_to_list (sym, &local_symbols);
1032       break;
1033 
1034     case 'p':
1035       if (*p == 'F')
1036 	/* pF is a two-letter code that means a function parameter in Fortran.
1037 	   The type-number specifies the type of the return value.
1038 	   Translate it into a pointer-to-function type.  */
1039 	{
1040 	  p++;
1041 	  SYMBOL_TYPE (sym)
1042 	    = lookup_pointer_type
1043 	    (lookup_function_type (read_type (&p, objfile)));
1044 	}
1045       else
1046 	SYMBOL_TYPE (sym) = read_type (&p, objfile);
1047 
1048       SYMBOL_CLASS (sym) = LOC_ARG;
1049       SYMBOL_VALUE (sym) = valu;
1050       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1051       SYMBOL_IS_ARGUMENT (sym) = 1;
1052       add_symbol_to_list (sym, &local_symbols);
1053 
1054       if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1055 	{
1056 	  /* On little-endian machines, this crud is never necessary,
1057 	     and, if the extra bytes contain garbage, is harmful.  */
1058 	  break;
1059 	}
1060 
1061       /* If it's gcc-compiled, if it says `short', believe it.  */
1062       if (processing_gcc_compilation
1063 	  || gdbarch_believe_pcc_promotion (gdbarch))
1064 	break;
1065 
1066       if (!gdbarch_believe_pcc_promotion (gdbarch))
1067 	{
1068 	  /* If PCC says a parameter is a short or a char, it is
1069 	     really an int.  */
1070 	  if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1071 	      < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1072 	      && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1073 	    {
1074 	      SYMBOL_TYPE (sym) =
1075 		TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1076 		? objfile_type (objfile)->builtin_unsigned_int
1077 		: objfile_type (objfile)->builtin_int;
1078 	    }
1079 	  break;
1080 	}
1081 
1082     case 'P':
1083       /* acc seems to use P to declare the prototypes of functions that
1084          are referenced by this file.  gdb is not prepared to deal
1085          with this extra information.  FIXME, it ought to.  */
1086       if (type == N_FUN)
1087 	{
1088 	  SYMBOL_TYPE (sym) = read_type (&p, objfile);
1089 	  goto process_prototype_types;
1090 	}
1091       /*FALLTHROUGH */
1092 
1093     case 'R':
1094       /* Parameter which is in a register.  */
1095       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1096       SYMBOL_CLASS (sym) = LOC_REGISTER;
1097       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1098       SYMBOL_IS_ARGUMENT (sym) = 1;
1099       SYMBOL_VALUE (sym) = valu;
1100       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101       add_symbol_to_list (sym, &local_symbols);
1102       break;
1103 
1104     case 'r':
1105       /* Register variable (either global or local).  */
1106       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107       SYMBOL_CLASS (sym) = LOC_REGISTER;
1108       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1109       SYMBOL_VALUE (sym) = valu;
1110       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1111       if (within_function)
1112 	{
1113 	  /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1114 	     the same name to represent an argument passed in a
1115 	     register.  GCC uses 'P' for the same case.  So if we find
1116 	     such a symbol pair we combine it into one 'P' symbol.
1117 	     For Sun cc we need to do this regardless of
1118 	     stabs_argument_has_addr, because the compiler puts out
1119 	     the 'p' symbol even if it never saves the argument onto
1120 	     the stack.
1121 
1122 	     On most machines, we want to preserve both symbols, so
1123 	     that we can still get information about what is going on
1124 	     with the stack (VAX for computing args_printed, using
1125 	     stack slots instead of saved registers in backtraces,
1126 	     etc.).
1127 
1128 	     Note that this code illegally combines
1129 	     main(argc) struct foo argc; { register struct foo argc; }
1130 	     but this case is considered pathological and causes a warning
1131 	     from a decent compiler.  */
1132 
1133 	  if (local_symbols
1134 	      && local_symbols->nsyms > 0
1135 	      && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1136 	    {
1137 	      struct symbol *prev_sym;
1138 
1139 	      prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1140 	      if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1141 		   || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1142 		  && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1143 			     SYMBOL_LINKAGE_NAME (sym)) == 0)
1144 		{
1145 		  SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1146 		  SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1147 		  /* Use the type from the LOC_REGISTER; that is the type
1148 		     that is actually in that register.  */
1149 		  SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 		  SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 		  sym = prev_sym;
1152 		  break;
1153 		}
1154 	    }
1155 	  add_symbol_to_list (sym, &local_symbols);
1156 	}
1157       else
1158 	add_symbol_to_list (sym, &file_symbols);
1159       break;
1160 
1161     case 'S':
1162       /* Static symbol at top level of file.  */
1163       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1164       SYMBOL_CLASS (sym) = LOC_STATIC;
1165       SYMBOL_VALUE_ADDRESS (sym) = valu;
1166       if (gdbarch_static_transform_name_p (gdbarch)
1167 	  && gdbarch_static_transform_name (gdbarch,
1168 					    SYMBOL_LINKAGE_NAME (sym))
1169 	     != SYMBOL_LINKAGE_NAME (sym))
1170 	{
1171 	  struct minimal_symbol *msym;
1172 
1173 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 					NULL, objfile);
1175 	  if (msym != NULL)
1176 	    {
1177 	      char *new_name = gdbarch_static_transform_name
1178 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1179 
1180 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1181 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1182 	    }
1183 	}
1184       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1185       add_symbol_to_list (sym, &file_symbols);
1186       break;
1187 
1188     case 't':
1189       /* In Ada, there is no distinction between typedef and non-typedef;
1190          any type declaration implicitly has the equivalent of a typedef,
1191          and thus 't' is in fact equivalent to 'Tt'.
1192 
1193          Therefore, for Ada units, we check the character immediately
1194          before the 't', and if we do not find a 'T', then make sure to
1195          create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196          will be stored in the VAR_DOMAIN).  If the symbol was indeed
1197          defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198          elsewhere, so we don't need to take care of that.
1199 
1200          This is important to do, because of forward references:
1201          The cleanup of undefined types stored in undef_types only uses
1202          STRUCT_DOMAIN symbols to perform the replacement.  */
1203       synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204 
1205       /* Typedef */
1206       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207 
1208       /* For a nameless type, we don't want a create a symbol, thus we
1209          did not use `sym'.  Return without further processing.  */
1210       if (nameless)
1211 	return NULL;
1212 
1213       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1214       SYMBOL_VALUE (sym) = valu;
1215       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1216       /* C++ vagaries: we may have a type which is derived from
1217          a base type which did not have its name defined when the
1218          derived class was output.  We fill in the derived class's
1219          base part member's name here in that case.  */
1220       if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 	if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 	     || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 	    && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 	  {
1225 	    int j;
1226 
1227 	    for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 	      if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 		TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 		  type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 	  }
1232 
1233       if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 	{
1235 	  /* gcc-2.6 or later (when using -fvtable-thunks)
1236 	     emits a unique named type for a vtable entry.
1237 	     Some gdb code depends on that specific name.  */
1238 	  extern const char vtbl_ptr_name[];
1239 
1240 	  if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1241 	       && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1242 	      || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 	    {
1244 	      /* If we are giving a name to a type such as "pointer to
1245 	         foo" or "function returning foo", we better not set
1246 	         the TYPE_NAME.  If the program contains "typedef char
1247 	         *caddr_t;", we don't want all variables of type char
1248 	         * to print as caddr_t.  This is not just a
1249 	         consequence of GDB's type management; PCC and GCC (at
1250 	         least through version 2.4) both output variables of
1251 	         either type char * or caddr_t with the type number
1252 	         defined in the 't' symbol for caddr_t.  If a future
1253 	         compiler cleans this up it GDB is not ready for it
1254 	         yet, but if it becomes ready we somehow need to
1255 	         disable this check (without breaking the PCC/GCC2.4
1256 	         case).
1257 
1258 	         Sigh.
1259 
1260 	         Fortunately, this check seems not to be necessary
1261 	         for anything except pointers or functions.  */
1262               /* ezannoni: 2000-10-26.  This seems to apply for
1263 		 versions of gcc older than 2.8.  This was the original
1264 		 problem: with the following code gdb would tell that
1265 		 the type for name1 is caddr_t, and func is char().
1266 
1267 	         typedef char *caddr_t;
1268 		 char *name2;
1269 		 struct x
1270 		 {
1271 		   char *name1;
1272 		 } xx;
1273 		 char *func()
1274 		 {
1275 		 }
1276 		 main () {}
1277 		 */
1278 
1279 	      /* Pascal accepts names for pointer types.  */
1280 	      if (current_subfile->language == language_pascal)
1281 		{
1282 		  TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1283           	}
1284 	    }
1285 	  else
1286 	    TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1287 	}
1288 
1289       add_symbol_to_list (sym, &file_symbols);
1290 
1291       if (synonym)
1292         {
1293           /* Create the STRUCT_DOMAIN clone.  */
1294           struct symbol *struct_sym = (struct symbol *)
1295             obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1296 
1297           *struct_sym = *sym;
1298           SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1299           SYMBOL_VALUE (struct_sym) = valu;
1300           SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301           if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1302             TYPE_NAME (SYMBOL_TYPE (sym))
1303 	      = obconcat (&objfile->objfile_obstack,
1304 			  SYMBOL_LINKAGE_NAME (sym),
1305 			  (char *) NULL);
1306           add_symbol_to_list (struct_sym, &file_symbols);
1307         }
1308 
1309       break;
1310 
1311     case 'T':
1312       /* Struct, union, or enum tag.  For GNU C++, this can be be followed
1313          by 't' which means we are typedef'ing it as well.  */
1314       synonym = *p == 't';
1315 
1316       if (synonym)
1317 	p++;
1318 
1319       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1320 
1321       /* For a nameless type, we don't want a create a symbol, thus we
1322          did not use `sym'.  Return without further processing.  */
1323       if (nameless)
1324 	return NULL;
1325 
1326       SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1327       SYMBOL_VALUE (sym) = valu;
1328       SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1329       if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1330 	TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 	  = obconcat (&objfile->objfile_obstack,
1332 		      SYMBOL_LINKAGE_NAME (sym),
1333 		      (char *) NULL);
1334       add_symbol_to_list (sym, &file_symbols);
1335 
1336       if (synonym)
1337 	{
1338 	  /* Clone the sym and then modify it.  */
1339 	  struct symbol *typedef_sym = (struct symbol *)
1340 	    obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1341 
1342 	  *typedef_sym = *sym;
1343 	  SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1344 	  SYMBOL_VALUE (typedef_sym) = valu;
1345 	  SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1346 	  if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1347 	    TYPE_NAME (SYMBOL_TYPE (sym))
1348 	      = obconcat (&objfile->objfile_obstack,
1349 			  SYMBOL_LINKAGE_NAME (sym),
1350 			  (char *) NULL);
1351 	  add_symbol_to_list (typedef_sym, &file_symbols);
1352 	}
1353       break;
1354 
1355     case 'V':
1356       /* Static symbol of local scope.  */
1357       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1358       SYMBOL_CLASS (sym) = LOC_STATIC;
1359       SYMBOL_VALUE_ADDRESS (sym) = valu;
1360       if (gdbarch_static_transform_name_p (gdbarch)
1361 	  && gdbarch_static_transform_name (gdbarch,
1362 					    SYMBOL_LINKAGE_NAME (sym))
1363 	     != SYMBOL_LINKAGE_NAME (sym))
1364 	{
1365 	  struct minimal_symbol *msym;
1366 
1367 	  msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1368 					NULL, objfile);
1369 	  if (msym != NULL)
1370 	    {
1371 	      char *new_name = gdbarch_static_transform_name
1372 		(gdbarch, SYMBOL_LINKAGE_NAME (sym));
1373 
1374 	      SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1375 	      SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1376 	    }
1377 	}
1378       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1379 	add_symbol_to_list (sym, &local_symbols);
1380       break;
1381 
1382     case 'v':
1383       /* Reference parameter */
1384       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1385       SYMBOL_CLASS (sym) = LOC_REF_ARG;
1386       SYMBOL_IS_ARGUMENT (sym) = 1;
1387       SYMBOL_VALUE (sym) = valu;
1388       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1389       add_symbol_to_list (sym, &local_symbols);
1390       break;
1391 
1392     case 'a':
1393       /* Reference parameter which is in a register.  */
1394       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1395       SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1396       SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1397       SYMBOL_IS_ARGUMENT (sym) = 1;
1398       SYMBOL_VALUE (sym) = valu;
1399       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1400       add_symbol_to_list (sym, &local_symbols);
1401       break;
1402 
1403     case 'X':
1404       /* This is used by Sun FORTRAN for "function result value".
1405          Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1406          that Pascal uses it too, but when I tried it Pascal used
1407          "x:3" (local symbol) instead.  */
1408       SYMBOL_TYPE (sym) = read_type (&p, objfile);
1409       SYMBOL_CLASS (sym) = LOC_LOCAL;
1410       SYMBOL_VALUE (sym) = valu;
1411       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1412       add_symbol_to_list (sym, &local_symbols);
1413       break;
1414 
1415     default:
1416       SYMBOL_TYPE (sym) = error_type (&p, objfile);
1417       SYMBOL_CLASS (sym) = LOC_CONST;
1418       SYMBOL_VALUE (sym) = 0;
1419       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1420       add_symbol_to_list (sym, &file_symbols);
1421       break;
1422     }
1423 
1424   /* Some systems pass variables of certain types by reference instead
1425      of by value, i.e. they will pass the address of a structure (in a
1426      register or on the stack) instead of the structure itself.  */
1427 
1428   if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1429       && SYMBOL_IS_ARGUMENT (sym))
1430     {
1431       /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1432          variables passed in a register).  */
1433       if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1434 	SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1435       /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1436 	 and subsequent arguments on SPARC, for example).  */
1437       else if (SYMBOL_CLASS (sym) == LOC_ARG)
1438 	SYMBOL_CLASS (sym) = LOC_REF_ARG;
1439     }
1440 
1441   return sym;
1442 }
1443 
1444 /* Skip rest of this symbol and return an error type.
1445 
1446    General notes on error recovery:  error_type always skips to the
1447    end of the symbol (modulo cretinous dbx symbol name continuation).
1448    Thus code like this:
1449 
1450    if (*(*pp)++ != ';')
1451    return error_type (pp, objfile);
1452 
1453    is wrong because if *pp starts out pointing at '\0' (typically as the
1454    result of an earlier error), it will be incremented to point to the
1455    start of the next symbol, which might produce strange results, at least
1456    if you run off the end of the string table.  Instead use
1457 
1458    if (**pp != ';')
1459    return error_type (pp, objfile);
1460    ++*pp;
1461 
1462    or
1463 
1464    if (**pp != ';')
1465    foo = error_type (pp, objfile);
1466    else
1467    ++*pp;
1468 
1469    And in case it isn't obvious, the point of all this hair is so the compiler
1470    can define new types and new syntaxes, and old versions of the
1471    debugger will be able to read the new symbol tables.  */
1472 
1473 static struct type *
1474 error_type (char **pp, struct objfile *objfile)
1475 {
1476   complaint (&symfile_complaints,
1477 	     _("couldn't parse type; debugger out of date?"));
1478   while (1)
1479     {
1480       /* Skip to end of symbol.  */
1481       while (**pp != '\0')
1482 	{
1483 	  (*pp)++;
1484 	}
1485 
1486       /* Check for and handle cretinous dbx symbol name continuation!  */
1487       if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1488 	{
1489 	  *pp = next_symbol_text (objfile);
1490 	}
1491       else
1492 	{
1493 	  break;
1494 	}
1495     }
1496   return objfile_type (objfile)->builtin_error;
1497 }
1498 
1499 
1500 /* Read type information or a type definition; return the type.  Even
1501    though this routine accepts either type information or a type
1502    definition, the distinction is relevant--some parts of stabsread.c
1503    assume that type information starts with a digit, '-', or '(' in
1504    deciding whether to call read_type.  */
1505 
1506 static struct type *
1507 read_type (char **pp, struct objfile *objfile)
1508 {
1509   struct type *type = 0;
1510   struct type *type1;
1511   int typenums[2];
1512   char type_descriptor;
1513 
1514   /* Size in bits of type if specified by a type attribute, or -1 if
1515      there is no size attribute.  */
1516   int type_size = -1;
1517 
1518   /* Used to distinguish string and bitstring from char-array and set.  */
1519   int is_string = 0;
1520 
1521   /* Used to distinguish vector from array.  */
1522   int is_vector = 0;
1523 
1524   /* Read type number if present.  The type number may be omitted.
1525      for instance in a two-dimensional array declared with type
1526      "ar1;1;10;ar1;1;10;4".  */
1527   if ((**pp >= '0' && **pp <= '9')
1528       || **pp == '('
1529       || **pp == '-')
1530     {
1531       if (read_type_number (pp, typenums) != 0)
1532 	return error_type (pp, objfile);
1533 
1534       if (**pp != '=')
1535         {
1536           /* Type is not being defined here.  Either it already
1537              exists, or this is a forward reference to it.
1538              dbx_alloc_type handles both cases.  */
1539           type = dbx_alloc_type (typenums, objfile);
1540 
1541           /* If this is a forward reference, arrange to complain if it
1542              doesn't get patched up by the time we're done
1543              reading.  */
1544           if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1545             add_undefined_type (type, typenums);
1546 
1547           return type;
1548         }
1549 
1550       /* Type is being defined here.  */
1551       /* Skip the '='.
1552          Also skip the type descriptor - we get it below with (*pp)[-1].  */
1553       (*pp) += 2;
1554     }
1555   else
1556     {
1557       /* 'typenums=' not present, type is anonymous.  Read and return
1558          the definition, but don't put it in the type vector.  */
1559       typenums[0] = typenums[1] = -1;
1560       (*pp)++;
1561     }
1562 
1563 again:
1564   type_descriptor = (*pp)[-1];
1565   switch (type_descriptor)
1566     {
1567     case 'x':
1568       {
1569 	enum type_code code;
1570 
1571 	/* Used to index through file_symbols.  */
1572 	struct pending *ppt;
1573 	int i;
1574 
1575 	/* Name including "struct", etc.  */
1576 	char *type_name;
1577 
1578 	{
1579 	  char *from, *to, *p, *q1, *q2;
1580 
1581 	  /* Set the type code according to the following letter.  */
1582 	  switch ((*pp)[0])
1583 	    {
1584 	    case 's':
1585 	      code = TYPE_CODE_STRUCT;
1586 	      break;
1587 	    case 'u':
1588 	      code = TYPE_CODE_UNION;
1589 	      break;
1590 	    case 'e':
1591 	      code = TYPE_CODE_ENUM;
1592 	      break;
1593 	    default:
1594 	      {
1595 		/* Complain and keep going, so compilers can invent new
1596 		   cross-reference types.  */
1597 		complaint (&symfile_complaints,
1598 			   _("Unrecognized cross-reference type `%c'"),
1599 			   (*pp)[0]);
1600 		code = TYPE_CODE_STRUCT;
1601 		break;
1602 	      }
1603 	    }
1604 
1605 	  q1 = strchr (*pp, '<');
1606 	  p = strchr (*pp, ':');
1607 	  if (p == NULL)
1608 	    return error_type (pp, objfile);
1609 	  if (q1 && p > q1 && p[1] == ':')
1610 	    {
1611 	      int nesting_level = 0;
1612 
1613 	      for (q2 = q1; *q2; q2++)
1614 		{
1615 		  if (*q2 == '<')
1616 		    nesting_level++;
1617 		  else if (*q2 == '>')
1618 		    nesting_level--;
1619 		  else if (*q2 == ':' && nesting_level == 0)
1620 		    break;
1621 		}
1622 	      p = q2;
1623 	      if (*p != ':')
1624 		return error_type (pp, objfile);
1625 	    }
1626 	  type_name = NULL;
1627 	  if (current_subfile->language == language_cplus)
1628 	    {
1629 	      char *new_name, *name = alloca (p - *pp + 1);
1630 
1631 	      memcpy (name, *pp, p - *pp);
1632 	      name[p - *pp] = '\0';
1633 	      new_name = cp_canonicalize_string (name);
1634 	      if (new_name != NULL)
1635 		{
1636 		  type_name = obsavestring (new_name, strlen (new_name),
1637 					    &objfile->objfile_obstack);
1638 		  xfree (new_name);
1639 		}
1640 	    }
1641 	  if (type_name == NULL)
1642 	    {
1643 	      to = type_name = (char *)
1644 		obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1645 
1646 	      /* Copy the name.  */
1647 	      from = *pp + 1;
1648 	      while (from < p)
1649 		*to++ = *from++;
1650 	      *to = '\0';
1651 	    }
1652 
1653 	  /* Set the pointer ahead of the name which we just read, and
1654 	     the colon.  */
1655 	  *pp = p + 1;
1656 	}
1657 
1658         /* If this type has already been declared, then reuse the same
1659            type, rather than allocating a new one.  This saves some
1660            memory.  */
1661 
1662 	for (ppt = file_symbols; ppt; ppt = ppt->next)
1663 	  for (i = 0; i < ppt->nsyms; i++)
1664 	    {
1665 	      struct symbol *sym = ppt->symbol[i];
1666 
1667 	      if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1668 		  && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1669 		  && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1670 		  && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1671 		{
1672 		  obstack_free (&objfile->objfile_obstack, type_name);
1673 		  type = SYMBOL_TYPE (sym);
1674 	          if (typenums[0] != -1)
1675 	            *dbx_lookup_type (typenums, objfile) = type;
1676 		  return type;
1677 		}
1678 	    }
1679 
1680 	/* Didn't find the type to which this refers, so we must
1681 	   be dealing with a forward reference.  Allocate a type
1682 	   structure for it, and keep track of it so we can
1683 	   fill in the rest of the fields when we get the full
1684 	   type.  */
1685 	type = dbx_alloc_type (typenums, objfile);
1686 	TYPE_CODE (type) = code;
1687 	TYPE_TAG_NAME (type) = type_name;
1688 	INIT_CPLUS_SPECIFIC (type);
1689 	TYPE_STUB (type) = 1;
1690 
1691 	add_undefined_type (type, typenums);
1692 	return type;
1693       }
1694 
1695     case '-':			/* RS/6000 built-in type */
1696     case '0':
1697     case '1':
1698     case '2':
1699     case '3':
1700     case '4':
1701     case '5':
1702     case '6':
1703     case '7':
1704     case '8':
1705     case '9':
1706     case '(':
1707       (*pp)--;
1708 
1709       /* We deal with something like t(1,2)=(3,4)=... which
1710          the Lucid compiler and recent gcc versions (post 2.7.3) use.  */
1711 
1712       /* Allocate and enter the typedef type first.
1713          This handles recursive types.  */
1714       type = dbx_alloc_type (typenums, objfile);
1715       TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1716       {
1717 	struct type *xtype = read_type (pp, objfile);
1718 
1719 	if (type == xtype)
1720 	  {
1721 	    /* It's being defined as itself.  That means it is "void".  */
1722 	    TYPE_CODE (type) = TYPE_CODE_VOID;
1723 	    TYPE_LENGTH (type) = 1;
1724 	  }
1725 	else if (type_size >= 0 || is_string)
1726 	  {
1727 	    /* This is the absolute wrong way to construct types.  Every
1728 	       other debug format has found a way around this problem and
1729 	       the related problems with unnecessarily stubbed types;
1730 	       someone motivated should attempt to clean up the issue
1731 	       here as well.  Once a type pointed to has been created it
1732 	       should not be modified.
1733 
1734                Well, it's not *absolutely* wrong.  Constructing recursive
1735                types (trees, linked lists) necessarily entails modifying
1736                types after creating them.  Constructing any loop structure
1737                entails side effects.  The Dwarf 2 reader does handle this
1738                more gracefully (it never constructs more than once
1739                instance of a type object, so it doesn't have to copy type
1740                objects wholesale), but it still mutates type objects after
1741                other folks have references to them.
1742 
1743                Keep in mind that this circularity/mutation issue shows up
1744                at the source language level, too: C's "incomplete types",
1745                for example.  So the proper cleanup, I think, would be to
1746                limit GDB's type smashing to match exactly those required
1747                by the source language.  So GDB could have a
1748                "complete_this_type" function, but never create unnecessary
1749                copies of a type otherwise.  */
1750 	    replace_type (type, xtype);
1751 	    TYPE_NAME (type) = NULL;
1752 	    TYPE_TAG_NAME (type) = NULL;
1753 	  }
1754 	else
1755 	  {
1756 	    TYPE_TARGET_STUB (type) = 1;
1757 	    TYPE_TARGET_TYPE (type) = xtype;
1758 	  }
1759       }
1760       break;
1761 
1762       /* In the following types, we must be sure to overwrite any existing
1763          type that the typenums refer to, rather than allocating a new one
1764          and making the typenums point to the new one.  This is because there
1765          may already be pointers to the existing type (if it had been
1766          forward-referenced), and we must change it to a pointer, function,
1767          reference, or whatever, *in-place*.  */
1768 
1769     case '*':			/* Pointer to another type */
1770       type1 = read_type (pp, objfile);
1771       type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1772       break;
1773 
1774     case '&':			/* Reference to another type */
1775       type1 = read_type (pp, objfile);
1776       type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1777       break;
1778 
1779     case 'f':			/* Function returning another type */
1780       type1 = read_type (pp, objfile);
1781       type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1782       break;
1783 
1784     case 'g':                   /* Prototyped function.  (Sun)  */
1785       {
1786         /* Unresolved questions:
1787 
1788            - According to Sun's ``STABS Interface Manual'', for 'f'
1789            and 'F' symbol descriptors, a `0' in the argument type list
1790            indicates a varargs function.  But it doesn't say how 'g'
1791            type descriptors represent that info.  Someone with access
1792            to Sun's toolchain should try it out.
1793 
1794            - According to the comment in define_symbol (search for
1795            `process_prototype_types:'), Sun emits integer arguments as
1796            types which ref themselves --- like `void' types.  Do we
1797            have to deal with that here, too?  Again, someone with
1798            access to Sun's toolchain should try it out and let us
1799            know.  */
1800 
1801         const char *type_start = (*pp) - 1;
1802         struct type *return_type = read_type (pp, objfile);
1803         struct type *func_type
1804           = make_function_type (return_type,
1805 				dbx_lookup_type (typenums, objfile));
1806         struct type_list {
1807           struct type *type;
1808           struct type_list *next;
1809         } *arg_types = 0;
1810         int num_args = 0;
1811 
1812         while (**pp && **pp != '#')
1813           {
1814             struct type *arg_type = read_type (pp, objfile);
1815             struct type_list *new = alloca (sizeof (*new));
1816             new->type = arg_type;
1817             new->next = arg_types;
1818             arg_types = new;
1819             num_args++;
1820           }
1821         if (**pp == '#')
1822           ++*pp;
1823         else
1824           {
1825 	    complaint (&symfile_complaints,
1826 		       _("Prototyped function type didn't "
1827 			 "end arguments with `#':\n%s"),
1828 		       type_start);
1829           }
1830 
1831         /* If there is just one argument whose type is `void', then
1832            that's just an empty argument list.  */
1833         if (arg_types
1834             && ! arg_types->next
1835             && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1836           num_args = 0;
1837 
1838         TYPE_FIELDS (func_type)
1839           = (struct field *) TYPE_ALLOC (func_type,
1840                                          num_args * sizeof (struct field));
1841         memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1842         {
1843           int i;
1844           struct type_list *t;
1845 
1846           /* We stuck each argument type onto the front of the list
1847              when we read it, so the list is reversed.  Build the
1848              fields array right-to-left.  */
1849           for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1850             TYPE_FIELD_TYPE (func_type, i) = t->type;
1851         }
1852         TYPE_NFIELDS (func_type) = num_args;
1853         TYPE_PROTOTYPED (func_type) = 1;
1854 
1855         type = func_type;
1856         break;
1857       }
1858 
1859     case 'k':			/* Const qualifier on some type (Sun) */
1860       type = read_type (pp, objfile);
1861       type = make_cv_type (1, TYPE_VOLATILE (type), type,
1862 			   dbx_lookup_type (typenums, objfile));
1863       break;
1864 
1865     case 'B':			/* Volatile qual on some type (Sun) */
1866       type = read_type (pp, objfile);
1867       type = make_cv_type (TYPE_CONST (type), 1, type,
1868 			   dbx_lookup_type (typenums, objfile));
1869       break;
1870 
1871     case '@':
1872       if (isdigit (**pp) || **pp == '(' || **pp == '-')
1873 	{			/* Member (class & variable) type */
1874 	  /* FIXME -- we should be doing smash_to_XXX types here.  */
1875 
1876 	  struct type *domain = read_type (pp, objfile);
1877 	  struct type *memtype;
1878 
1879 	  if (**pp != ',')
1880 	    /* Invalid member type data format.  */
1881 	    return error_type (pp, objfile);
1882 	  ++*pp;
1883 
1884 	  memtype = read_type (pp, objfile);
1885 	  type = dbx_alloc_type (typenums, objfile);
1886 	  smash_to_memberptr_type (type, domain, memtype);
1887 	}
1888       else
1889 	/* type attribute */
1890 	{
1891 	  char *attr = *pp;
1892 
1893 	  /* Skip to the semicolon.  */
1894 	  while (**pp != ';' && **pp != '\0')
1895 	    ++(*pp);
1896 	  if (**pp == '\0')
1897 	    return error_type (pp, objfile);
1898 	  else
1899 	    ++ * pp;		/* Skip the semicolon.  */
1900 
1901 	  switch (*attr)
1902 	    {
1903 	    case 's':		/* Size attribute */
1904 	      type_size = atoi (attr + 1);
1905 	      if (type_size <= 0)
1906 		type_size = -1;
1907 	      break;
1908 
1909 	    case 'S':		/* String attribute */
1910 	      /* FIXME: check to see if following type is array?  */
1911 	      is_string = 1;
1912 	      break;
1913 
1914 	    case 'V':		/* Vector attribute */
1915 	      /* FIXME: check to see if following type is array?  */
1916 	      is_vector = 1;
1917 	      break;
1918 
1919 	    default:
1920 	      /* Ignore unrecognized type attributes, so future compilers
1921 	         can invent new ones.  */
1922 	      break;
1923 	    }
1924 	  ++*pp;
1925 	  goto again;
1926 	}
1927       break;
1928 
1929     case '#':			/* Method (class & fn) type */
1930       if ((*pp)[0] == '#')
1931 	{
1932 	  /* We'll get the parameter types from the name.  */
1933 	  struct type *return_type;
1934 
1935 	  (*pp)++;
1936 	  return_type = read_type (pp, objfile);
1937 	  if (*(*pp)++ != ';')
1938 	    complaint (&symfile_complaints,
1939 		       _("invalid (minimal) member type "
1940 			 "data format at symtab pos %d."),
1941 		       symnum);
1942 	  type = allocate_stub_method (return_type);
1943 	  if (typenums[0] != -1)
1944 	    *dbx_lookup_type (typenums, objfile) = type;
1945 	}
1946       else
1947 	{
1948 	  struct type *domain = read_type (pp, objfile);
1949 	  struct type *return_type;
1950 	  struct field *args;
1951 	  int nargs, varargs;
1952 
1953 	  if (**pp != ',')
1954 	    /* Invalid member type data format.  */
1955 	    return error_type (pp, objfile);
1956 	  else
1957 	    ++(*pp);
1958 
1959 	  return_type = read_type (pp, objfile);
1960 	  args = read_args (pp, ';', objfile, &nargs, &varargs);
1961 	  if (args == NULL)
1962 	    return error_type (pp, objfile);
1963 	  type = dbx_alloc_type (typenums, objfile);
1964 	  smash_to_method_type (type, domain, return_type, args,
1965 				nargs, varargs);
1966 	}
1967       break;
1968 
1969     case 'r':			/* Range type */
1970       type = read_range_type (pp, typenums, type_size, objfile);
1971       if (typenums[0] != -1)
1972 	*dbx_lookup_type (typenums, objfile) = type;
1973       break;
1974 
1975     case 'b':
1976 	{
1977 	  /* Sun ACC builtin int type */
1978 	  type = read_sun_builtin_type (pp, typenums, objfile);
1979 	  if (typenums[0] != -1)
1980 	    *dbx_lookup_type (typenums, objfile) = type;
1981 	}
1982       break;
1983 
1984     case 'R':			/* Sun ACC builtin float type */
1985       type = read_sun_floating_type (pp, typenums, objfile);
1986       if (typenums[0] != -1)
1987 	*dbx_lookup_type (typenums, objfile) = type;
1988       break;
1989 
1990     case 'e':			/* Enumeration type */
1991       type = dbx_alloc_type (typenums, objfile);
1992       type = read_enum_type (pp, type, objfile);
1993       if (typenums[0] != -1)
1994 	*dbx_lookup_type (typenums, objfile) = type;
1995       break;
1996 
1997     case 's':			/* Struct type */
1998     case 'u':			/* Union type */
1999       {
2000         enum type_code type_code = TYPE_CODE_UNDEF;
2001         type = dbx_alloc_type (typenums, objfile);
2002         switch (type_descriptor)
2003           {
2004           case 's':
2005             type_code = TYPE_CODE_STRUCT;
2006             break;
2007           case 'u':
2008             type_code = TYPE_CODE_UNION;
2009             break;
2010           }
2011         type = read_struct_type (pp, type, type_code, objfile);
2012         break;
2013       }
2014 
2015     case 'a':			/* Array type */
2016       if (**pp != 'r')
2017 	return error_type (pp, objfile);
2018       ++*pp;
2019 
2020       type = dbx_alloc_type (typenums, objfile);
2021       type = read_array_type (pp, type, objfile);
2022       if (is_string)
2023 	TYPE_CODE (type) = TYPE_CODE_STRING;
2024       if (is_vector)
2025 	make_vector_type (type);
2026       break;
2027 
2028     case 'S':			/* Set or bitstring  type */
2029       type1 = read_type (pp, objfile);
2030       type = create_set_type ((struct type *) NULL, type1);
2031       if (is_string)
2032 	TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2033       if (typenums[0] != -1)
2034 	*dbx_lookup_type (typenums, objfile) = type;
2035       break;
2036 
2037     default:
2038       --*pp;			/* Go back to the symbol in error.  */
2039       /* Particularly important if it was \0!  */
2040       return error_type (pp, objfile);
2041     }
2042 
2043   if (type == 0)
2044     {
2045       warning (_("GDB internal error, type is NULL in stabsread.c."));
2046       return error_type (pp, objfile);
2047     }
2048 
2049   /* Size specified in a type attribute overrides any other size.  */
2050   if (type_size != -1)
2051     TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2052 
2053   return type;
2054 }
2055 
2056 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2057    Return the proper type node for a given builtin type number.  */
2058 
2059 static const struct objfile_data *rs6000_builtin_type_data;
2060 
2061 static struct type *
2062 rs6000_builtin_type (int typenum, struct objfile *objfile)
2063 {
2064   struct type **negative_types = objfile_data (objfile,
2065 					       rs6000_builtin_type_data);
2066 
2067   /* We recognize types numbered from -NUMBER_RECOGNIZED to -1.  */
2068 #define NUMBER_RECOGNIZED 34
2069   struct type *rettype = NULL;
2070 
2071   if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2072     {
2073       complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2074       return objfile_type (objfile)->builtin_error;
2075     }
2076 
2077   if (!negative_types)
2078     {
2079       /* This includes an empty slot for type number -0.  */
2080       negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2081 				       NUMBER_RECOGNIZED + 1, struct type *);
2082       set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2083     }
2084 
2085   if (negative_types[-typenum] != NULL)
2086     return negative_types[-typenum];
2087 
2088 #if TARGET_CHAR_BIT != 8
2089 #error This code wrong for TARGET_CHAR_BIT not 8
2090   /* These definitions all assume that TARGET_CHAR_BIT is 8.  I think
2091      that if that ever becomes not true, the correct fix will be to
2092      make the size in the struct type to be in bits, not in units of
2093      TARGET_CHAR_BIT.  */
2094 #endif
2095 
2096   switch (-typenum)
2097     {
2098     case 1:
2099       /* The size of this and all the other types are fixed, defined
2100          by the debugging format.  If there is a type called "int" which
2101          is other than 32 bits, then it should use a new negative type
2102          number (or avoid negative type numbers for that case).
2103          See stabs.texinfo.  */
2104       rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2105       break;
2106     case 2:
2107       rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2108       break;
2109     case 3:
2110       rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2111       break;
2112     case 4:
2113       rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2114       break;
2115     case 5:
2116       rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2117 			   "unsigned char", objfile);
2118       break;
2119     case 6:
2120       rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2121       break;
2122     case 7:
2123       rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2124 			   "unsigned short", objfile);
2125       break;
2126     case 8:
2127       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2128 			   "unsigned int", objfile);
2129       break;
2130     case 9:
2131       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2132 			   "unsigned", objfile);
2133       break;
2134     case 10:
2135       rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2136 			   "unsigned long", objfile);
2137       break;
2138     case 11:
2139       rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2140       break;
2141     case 12:
2142       /* IEEE single precision (32 bit).  */
2143       rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2144       break;
2145     case 13:
2146       /* IEEE double precision (64 bit).  */
2147       rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2148       break;
2149     case 14:
2150       /* This is an IEEE double on the RS/6000, and different machines with
2151          different sizes for "long double" should use different negative
2152          type numbers.  See stabs.texinfo.  */
2153       rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2154       break;
2155     case 15:
2156       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2157       break;
2158     case 16:
2159       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2160 			   "boolean", objfile);
2161       break;
2162     case 17:
2163       rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2164       break;
2165     case 18:
2166       rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2167       break;
2168     case 19:
2169       rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2170       break;
2171     case 20:
2172       rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2173 			   "character", objfile);
2174       break;
2175     case 21:
2176       rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2177 			   "logical*1", objfile);
2178       break;
2179     case 22:
2180       rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2181 			   "logical*2", objfile);
2182       break;
2183     case 23:
2184       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2185 			   "logical*4", objfile);
2186       break;
2187     case 24:
2188       rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2189 			   "logical", objfile);
2190       break;
2191     case 25:
2192       /* Complex type consisting of two IEEE single precision values.  */
2193       rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2194       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2195 					      objfile);
2196       break;
2197     case 26:
2198       /* Complex type consisting of two IEEE double precision values.  */
2199       rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2200       TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2201 					      objfile);
2202       break;
2203     case 27:
2204       rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2205       break;
2206     case 28:
2207       rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2208       break;
2209     case 29:
2210       rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2211       break;
2212     case 30:
2213       rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2214       break;
2215     case 31:
2216       rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2217       break;
2218     case 32:
2219       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2220 			   "unsigned long long", objfile);
2221       break;
2222     case 33:
2223       rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2224 			   "logical*8", objfile);
2225       break;
2226     case 34:
2227       rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2228       break;
2229     }
2230   negative_types[-typenum] = rettype;
2231   return rettype;
2232 }
2233 
2234 /* This page contains subroutines of read_type.  */
2235 
2236 /* Replace *OLD_NAME with the method name portion of PHYSNAME.  */
2237 
2238 static void
2239 update_method_name_from_physname (char **old_name, char *physname)
2240 {
2241   char *method_name;
2242 
2243   method_name = method_name_from_physname (physname);
2244 
2245   if (method_name == NULL)
2246     {
2247       complaint (&symfile_complaints,
2248 		 _("Method has bad physname %s\n"), physname);
2249       return;
2250     }
2251 
2252   if (strcmp (*old_name, method_name) != 0)
2253     {
2254       xfree (*old_name);
2255       *old_name = method_name;
2256     }
2257   else
2258     xfree (method_name);
2259 }
2260 
2261 /* Read member function stabs info for C++ classes.  The form of each member
2262    function data is:
2263 
2264    NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2265 
2266    An example with two member functions is:
2267 
2268    afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2269 
2270    For the case of overloaded operators, the format is op$::*.funcs, where
2271    $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2272    name (such as `+=') and `.' marks the end of the operator name.
2273 
2274    Returns 1 for success, 0 for failure.  */
2275 
2276 static int
2277 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2278 		       struct objfile *objfile)
2279 {
2280   int nfn_fields = 0;
2281   int length = 0;
2282   /* Total number of member functions defined in this class.  If the class
2283      defines two `f' functions, and one `g' function, then this will have
2284      the value 3.  */
2285   int total_length = 0;
2286   int i;
2287   struct next_fnfield
2288     {
2289       struct next_fnfield *next;
2290       struct fn_field fn_field;
2291     }
2292    *sublist;
2293   struct type *look_ahead_type;
2294   struct next_fnfieldlist *new_fnlist;
2295   struct next_fnfield *new_sublist;
2296   char *main_fn_name;
2297   char *p;
2298 
2299   /* Process each list until we find something that is not a member function
2300      or find the end of the functions.  */
2301 
2302   while (**pp != ';')
2303     {
2304       /* We should be positioned at the start of the function name.
2305          Scan forward to find the first ':' and if it is not the
2306          first of a "::" delimiter, then this is not a member function.  */
2307       p = *pp;
2308       while (*p != ':')
2309 	{
2310 	  p++;
2311 	}
2312       if (p[1] != ':')
2313 	{
2314 	  break;
2315 	}
2316 
2317       sublist = NULL;
2318       look_ahead_type = NULL;
2319       length = 0;
2320 
2321       new_fnlist = (struct next_fnfieldlist *)
2322 	xmalloc (sizeof (struct next_fnfieldlist));
2323       make_cleanup (xfree, new_fnlist);
2324       memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2325 
2326       if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2327 	{
2328 	  /* This is a completely wierd case.  In order to stuff in the
2329 	     names that might contain colons (the usual name delimiter),
2330 	     Mike Tiemann defined a different name format which is
2331 	     signalled if the identifier is "op$".  In that case, the
2332 	     format is "op$::XXXX." where XXXX is the name.  This is
2333 	     used for names like "+" or "=".  YUUUUUUUK!  FIXME!  */
2334 	  /* This lets the user type "break operator+".
2335 	     We could just put in "+" as the name, but that wouldn't
2336 	     work for "*".  */
2337 	  static char opname[32] = "op$";
2338 	  char *o = opname + 3;
2339 
2340 	  /* Skip past '::'.  */
2341 	  *pp = p + 2;
2342 
2343 	  STABS_CONTINUE (pp, objfile);
2344 	  p = *pp;
2345 	  while (*p != '.')
2346 	    {
2347 	      *o++ = *p++;
2348 	    }
2349 	  main_fn_name = savestring (opname, o - opname);
2350 	  /* Skip past '.'  */
2351 	  *pp = p + 1;
2352 	}
2353       else
2354 	{
2355 	  main_fn_name = savestring (*pp, p - *pp);
2356 	  /* Skip past '::'.  */
2357 	  *pp = p + 2;
2358 	}
2359       new_fnlist->fn_fieldlist.name = main_fn_name;
2360 
2361       do
2362 	{
2363 	  new_sublist =
2364 	    (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2365 	  make_cleanup (xfree, new_sublist);
2366 	  memset (new_sublist, 0, sizeof (struct next_fnfield));
2367 
2368 	  /* Check for and handle cretinous dbx symbol name continuation!  */
2369 	  if (look_ahead_type == NULL)
2370 	    {
2371 	      /* Normal case.  */
2372 	      STABS_CONTINUE (pp, objfile);
2373 
2374 	      new_sublist->fn_field.type = read_type (pp, objfile);
2375 	      if (**pp != ':')
2376 		{
2377 		  /* Invalid symtab info for member function.  */
2378 		  return 0;
2379 		}
2380 	    }
2381 	  else
2382 	    {
2383 	      /* g++ version 1 kludge */
2384 	      new_sublist->fn_field.type = look_ahead_type;
2385 	      look_ahead_type = NULL;
2386 	    }
2387 
2388 	  (*pp)++;
2389 	  p = *pp;
2390 	  while (*p != ';')
2391 	    {
2392 	      p++;
2393 	    }
2394 
2395 	  /* If this is just a stub, then we don't have the real name here.  */
2396 
2397 	  if (TYPE_STUB (new_sublist->fn_field.type))
2398 	    {
2399 	      if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2400 		TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2401 	      new_sublist->fn_field.is_stub = 1;
2402 	    }
2403 	  new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2404 	  *pp = p + 1;
2405 
2406 	  /* Set this member function's visibility fields.  */
2407 	  switch (*(*pp)++)
2408 	    {
2409 	    case VISIBILITY_PRIVATE:
2410 	      new_sublist->fn_field.is_private = 1;
2411 	      break;
2412 	    case VISIBILITY_PROTECTED:
2413 	      new_sublist->fn_field.is_protected = 1;
2414 	      break;
2415 	    }
2416 
2417 	  STABS_CONTINUE (pp, objfile);
2418 	  switch (**pp)
2419 	    {
2420 	    case 'A':		/* Normal functions.  */
2421 	      new_sublist->fn_field.is_const = 0;
2422 	      new_sublist->fn_field.is_volatile = 0;
2423 	      (*pp)++;
2424 	      break;
2425 	    case 'B':		/* `const' member functions.  */
2426 	      new_sublist->fn_field.is_const = 1;
2427 	      new_sublist->fn_field.is_volatile = 0;
2428 	      (*pp)++;
2429 	      break;
2430 	    case 'C':		/* `volatile' member function.  */
2431 	      new_sublist->fn_field.is_const = 0;
2432 	      new_sublist->fn_field.is_volatile = 1;
2433 	      (*pp)++;
2434 	      break;
2435 	    case 'D':		/* `const volatile' member function.  */
2436 	      new_sublist->fn_field.is_const = 1;
2437 	      new_sublist->fn_field.is_volatile = 1;
2438 	      (*pp)++;
2439 	      break;
2440 	    case '*':		/* File compiled with g++ version 1 --
2441 				   no info.  */
2442 	    case '?':
2443 	    case '.':
2444 	      break;
2445 	    default:
2446 	      complaint (&symfile_complaints,
2447 			 _("const/volatile indicator missing, got '%c'"),
2448 			 **pp);
2449 	      break;
2450 	    }
2451 
2452 	  switch (*(*pp)++)
2453 	    {
2454 	    case '*':
2455 	      {
2456 		int nbits;
2457 		/* virtual member function, followed by index.
2458 		   The sign bit is set to distinguish pointers-to-methods
2459 		   from virtual function indicies.  Since the array is
2460 		   in words, the quantity must be shifted left by 1
2461 		   on 16 bit machine, and by 2 on 32 bit machine, forcing
2462 		   the sign bit out, and usable as a valid index into
2463 		   the array.  Remove the sign bit here.  */
2464 		new_sublist->fn_field.voffset =
2465 		  (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2466 		if (nbits != 0)
2467 		  return 0;
2468 
2469 		STABS_CONTINUE (pp, objfile);
2470 		if (**pp == ';' || **pp == '\0')
2471 		  {
2472 		    /* Must be g++ version 1.  */
2473 		    new_sublist->fn_field.fcontext = 0;
2474 		  }
2475 		else
2476 		  {
2477 		    /* Figure out from whence this virtual function came.
2478 		       It may belong to virtual function table of
2479 		       one of its baseclasses.  */
2480 		    look_ahead_type = read_type (pp, objfile);
2481 		    if (**pp == ':')
2482 		      {
2483 			/* g++ version 1 overloaded methods.  */
2484 		      }
2485 		    else
2486 		      {
2487 			new_sublist->fn_field.fcontext = look_ahead_type;
2488 			if (**pp != ';')
2489 			  {
2490 			    return 0;
2491 			  }
2492 			else
2493 			  {
2494 			    ++*pp;
2495 			  }
2496 			look_ahead_type = NULL;
2497 		      }
2498 		  }
2499 		break;
2500 	      }
2501 	    case '?':
2502 	      /* static member function.  */
2503 	      {
2504 		int slen = strlen (main_fn_name);
2505 
2506 		new_sublist->fn_field.voffset = VOFFSET_STATIC;
2507 
2508 		/* For static member functions, we can't tell if they
2509 		   are stubbed, as they are put out as functions, and not as
2510 		   methods.
2511 		   GCC v2 emits the fully mangled name if
2512 		   dbxout.c:flag_minimal_debug is not set, so we have to
2513 		   detect a fully mangled physname here and set is_stub
2514 		   accordingly.  Fully mangled physnames in v2 start with
2515 		   the member function name, followed by two underscores.
2516 		   GCC v3 currently always emits stubbed member functions,
2517 		   but with fully mangled physnames, which start with _Z.  */
2518 		if (!(strncmp (new_sublist->fn_field.physname,
2519 			       main_fn_name, slen) == 0
2520 		      && new_sublist->fn_field.physname[slen] == '_'
2521 		      && new_sublist->fn_field.physname[slen + 1] == '_'))
2522 		  {
2523 		    new_sublist->fn_field.is_stub = 1;
2524 		  }
2525 		break;
2526 	      }
2527 
2528 	    default:
2529 	      /* error */
2530 	      complaint (&symfile_complaints,
2531 			 _("member function type missing, got '%c'"),
2532 			 (*pp)[-1]);
2533 	      /* Fall through into normal member function.  */
2534 
2535 	    case '.':
2536 	      /* normal member function.  */
2537 	      new_sublist->fn_field.voffset = 0;
2538 	      new_sublist->fn_field.fcontext = 0;
2539 	      break;
2540 	    }
2541 
2542 	  new_sublist->next = sublist;
2543 	  sublist = new_sublist;
2544 	  length++;
2545 	  STABS_CONTINUE (pp, objfile);
2546 	}
2547       while (**pp != ';' && **pp != '\0');
2548 
2549       (*pp)++;
2550       STABS_CONTINUE (pp, objfile);
2551 
2552       /* Skip GCC 3.X member functions which are duplicates of the callable
2553 	 constructor/destructor.  */
2554       if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2555 	  || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2556 	  || strcmp (main_fn_name, "__deleting_dtor") == 0)
2557 	{
2558 	  xfree (main_fn_name);
2559 	}
2560       else
2561 	{
2562 	  int has_stub = 0;
2563 	  int has_destructor = 0, has_other = 0;
2564 	  int is_v3 = 0;
2565 	  struct next_fnfield *tmp_sublist;
2566 
2567 	  /* Various versions of GCC emit various mostly-useless
2568 	     strings in the name field for special member functions.
2569 
2570 	     For stub methods, we need to defer correcting the name
2571 	     until we are ready to unstub the method, because the current
2572 	     name string is used by gdb_mangle_name.  The only stub methods
2573 	     of concern here are GNU v2 operators; other methods have their
2574 	     names correct (see caveat below).
2575 
2576 	     For non-stub methods, in GNU v3, we have a complete physname.
2577 	     Therefore we can safely correct the name now.  This primarily
2578 	     affects constructors and destructors, whose name will be
2579 	     __comp_ctor or __comp_dtor instead of Foo or ~Foo.  Cast
2580 	     operators will also have incorrect names; for instance,
2581 	     "operator int" will be named "operator i" (i.e. the type is
2582 	     mangled).
2583 
2584 	     For non-stub methods in GNU v2, we have no easy way to
2585 	     know if we have a complete physname or not.  For most
2586 	     methods the result depends on the platform (if CPLUS_MARKER
2587 	     can be `$' or `.', it will use minimal debug information, or
2588 	     otherwise the full physname will be included).
2589 
2590 	     Rather than dealing with this, we take a different approach.
2591 	     For v3 mangled names, we can use the full physname; for v2,
2592 	     we use cplus_demangle_opname (which is actually v2 specific),
2593 	     because the only interesting names are all operators - once again
2594 	     barring the caveat below.  Skip this process if any method in the
2595 	     group is a stub, to prevent our fouling up the workings of
2596 	     gdb_mangle_name.
2597 
2598 	     The caveat: GCC 2.95.x (and earlier?) put constructors and
2599 	     destructors in the same method group.  We need to split this
2600 	     into two groups, because they should have different names.
2601 	     So for each method group we check whether it contains both
2602 	     routines whose physname appears to be a destructor (the physnames
2603 	     for and destructors are always provided, due to quirks in v2
2604 	     mangling) and routines whose physname does not appear to be a
2605 	     destructor.  If so then we break up the list into two halves.
2606 	     Even if the constructors and destructors aren't in the same group
2607 	     the destructor will still lack the leading tilde, so that also
2608 	     needs to be fixed.
2609 
2610 	     So, to summarize what we expect and handle here:
2611 
2612 	        Given         Given          Real         Real       Action
2613 	     method name     physname      physname   method name
2614 
2615 	     __opi            [none]     __opi__3Foo  operator int    opname
2616 	                                                         [now or later]
2617 	     Foo              _._3Foo       _._3Foo      ~Foo      separate and
2618 	                                                               rename
2619 	     operator i     _ZN3FoocviEv _ZN3FoocviEv operator int    demangle
2620 	     __comp_ctor  _ZN3FooC1ERKS_ _ZN3FooC1ERKS_   Foo         demangle
2621 	  */
2622 
2623 	  tmp_sublist = sublist;
2624 	  while (tmp_sublist != NULL)
2625 	    {
2626 	      if (tmp_sublist->fn_field.is_stub)
2627 		has_stub = 1;
2628 	      if (tmp_sublist->fn_field.physname[0] == '_'
2629 		  && tmp_sublist->fn_field.physname[1] == 'Z')
2630 		is_v3 = 1;
2631 
2632 	      if (is_destructor_name (tmp_sublist->fn_field.physname))
2633 		has_destructor++;
2634 	      else
2635 		has_other++;
2636 
2637 	      tmp_sublist = tmp_sublist->next;
2638 	    }
2639 
2640 	  if (has_destructor && has_other)
2641 	    {
2642 	      struct next_fnfieldlist *destr_fnlist;
2643 	      struct next_fnfield *last_sublist;
2644 
2645 	      /* Create a new fn_fieldlist for the destructors.  */
2646 
2647 	      destr_fnlist = (struct next_fnfieldlist *)
2648 		xmalloc (sizeof (struct next_fnfieldlist));
2649 	      make_cleanup (xfree, destr_fnlist);
2650 	      memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2651 	      destr_fnlist->fn_fieldlist.name
2652 		= obconcat (&objfile->objfile_obstack, "~",
2653 			    new_fnlist->fn_fieldlist.name, (char *) NULL);
2654 
2655 	      destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2656 		obstack_alloc (&objfile->objfile_obstack,
2657 			       sizeof (struct fn_field) * has_destructor);
2658 	      memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2659 		  sizeof (struct fn_field) * has_destructor);
2660 	      tmp_sublist = sublist;
2661 	      last_sublist = NULL;
2662 	      i = 0;
2663 	      while (tmp_sublist != NULL)
2664 		{
2665 		  if (!is_destructor_name (tmp_sublist->fn_field.physname))
2666 		    {
2667 		      tmp_sublist = tmp_sublist->next;
2668 		      continue;
2669 		    }
2670 
2671 		  destr_fnlist->fn_fieldlist.fn_fields[i++]
2672 		    = tmp_sublist->fn_field;
2673 		  if (last_sublist)
2674 		    last_sublist->next = tmp_sublist->next;
2675 		  else
2676 		    sublist = tmp_sublist->next;
2677 		  last_sublist = tmp_sublist;
2678 		  tmp_sublist = tmp_sublist->next;
2679 		}
2680 
2681 	      destr_fnlist->fn_fieldlist.length = has_destructor;
2682 	      destr_fnlist->next = fip->fnlist;
2683 	      fip->fnlist = destr_fnlist;
2684 	      nfn_fields++;
2685 	      total_length += has_destructor;
2686 	      length -= has_destructor;
2687 	    }
2688 	  else if (is_v3)
2689 	    {
2690 	      /* v3 mangling prevents the use of abbreviated physnames,
2691 		 so we can do this here.  There are stubbed methods in v3
2692 		 only:
2693 		 - in -gstabs instead of -gstabs+
2694 		 - or for static methods, which are output as a function type
2695 		   instead of a method type.  */
2696 
2697 	      update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2698 						sublist->fn_field.physname);
2699 	    }
2700 	  else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2701 	    {
2702 	      new_fnlist->fn_fieldlist.name =
2703 		concat ("~", main_fn_name, (char *)NULL);
2704 	      xfree (main_fn_name);
2705 	    }
2706 	  else if (!has_stub)
2707 	    {
2708 	      char dem_opname[256];
2709 	      int ret;
2710 
2711 	      ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2712 					      dem_opname, DMGL_ANSI);
2713 	      if (!ret)
2714 		ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2715 					     dem_opname, 0);
2716 	      if (ret)
2717 		new_fnlist->fn_fieldlist.name
2718 		  = obsavestring (dem_opname, strlen (dem_opname),
2719 				  &objfile->objfile_obstack);
2720 	    }
2721 
2722 	  new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2723 	    obstack_alloc (&objfile->objfile_obstack,
2724 			   sizeof (struct fn_field) * length);
2725 	  memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2726 		  sizeof (struct fn_field) * length);
2727 	  for (i = length; (i--, sublist); sublist = sublist->next)
2728 	    {
2729 	      new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2730 	    }
2731 
2732 	  new_fnlist->fn_fieldlist.length = length;
2733 	  new_fnlist->next = fip->fnlist;
2734 	  fip->fnlist = new_fnlist;
2735 	  nfn_fields++;
2736 	  total_length += length;
2737 	}
2738     }
2739 
2740   if (nfn_fields)
2741     {
2742       ALLOCATE_CPLUS_STRUCT_TYPE (type);
2743       TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2744 	TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2745       memset (TYPE_FN_FIELDLISTS (type), 0,
2746 	      sizeof (struct fn_fieldlist) * nfn_fields);
2747       TYPE_NFN_FIELDS (type) = nfn_fields;
2748       TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2749     }
2750 
2751   return 1;
2752 }
2753 
2754 /* Special GNU C++ name.
2755 
2756    Returns 1 for success, 0 for failure.  "failure" means that we can't
2757    keep parsing and it's time for error_type().  */
2758 
2759 static int
2760 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2761 		 struct objfile *objfile)
2762 {
2763   char *p;
2764   char *name;
2765   char cpp_abbrev;
2766   struct type *context;
2767 
2768   p = *pp;
2769   if (*++p == 'v')
2770     {
2771       name = NULL;
2772       cpp_abbrev = *++p;
2773 
2774       *pp = p + 1;
2775 
2776       /* At this point, *pp points to something like "22:23=*22...",
2777          where the type number before the ':' is the "context" and
2778          everything after is a regular type definition.  Lookup the
2779          type, find it's name, and construct the field name.  */
2780 
2781       context = read_type (pp, objfile);
2782 
2783       switch (cpp_abbrev)
2784 	{
2785 	case 'f':		/* $vf -- a virtual function table pointer */
2786 	  name = type_name_no_tag (context);
2787 	  if (name == NULL)
2788 	    {
2789 	      name = "";
2790 	    }
2791 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2792 					    vptr_name, name, (char *) NULL);
2793 	  break;
2794 
2795 	case 'b':		/* $vb -- a virtual bsomethingorother */
2796 	  name = type_name_no_tag (context);
2797 	  if (name == NULL)
2798 	    {
2799 	      complaint (&symfile_complaints,
2800 			 _("C++ abbreviated type name "
2801 			   "unknown at symtab pos %d"),
2802 			 symnum);
2803 	      name = "FOO";
2804 	    }
2805 	  fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2806 					    name, (char *) NULL);
2807 	  break;
2808 
2809 	default:
2810 	  invalid_cpp_abbrev_complaint (*pp);
2811 	  fip->list->field.name = obconcat (&objfile->objfile_obstack,
2812 					    "INVALID_CPLUSPLUS_ABBREV",
2813 					    (char *) NULL);
2814 	  break;
2815 	}
2816 
2817       /* At this point, *pp points to the ':'.  Skip it and read the
2818          field type.  */
2819 
2820       p = ++(*pp);
2821       if (p[-1] != ':')
2822 	{
2823 	  invalid_cpp_abbrev_complaint (*pp);
2824 	  return 0;
2825 	}
2826       fip->list->field.type = read_type (pp, objfile);
2827       if (**pp == ',')
2828 	(*pp)++;		/* Skip the comma.  */
2829       else
2830 	return 0;
2831 
2832       {
2833 	int nbits;
2834 
2835 	FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2836                                                             0);
2837 	if (nbits != 0)
2838 	  return 0;
2839       }
2840       /* This field is unpacked.  */
2841       FIELD_BITSIZE (fip->list->field) = 0;
2842       fip->list->visibility = VISIBILITY_PRIVATE;
2843     }
2844   else
2845     {
2846       invalid_cpp_abbrev_complaint (*pp);
2847       /* We have no idea what syntax an unrecognized abbrev would have, so
2848          better return 0.  If we returned 1, we would need to at least advance
2849          *pp to avoid an infinite loop.  */
2850       return 0;
2851     }
2852   return 1;
2853 }
2854 
2855 static void
2856 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2857 		       struct type *type, struct objfile *objfile)
2858 {
2859   struct gdbarch *gdbarch = get_objfile_arch (objfile);
2860 
2861   fip->list->field.name =
2862     obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2863   *pp = p + 1;
2864 
2865   /* This means we have a visibility for a field coming.  */
2866   if (**pp == '/')
2867     {
2868       (*pp)++;
2869       fip->list->visibility = *(*pp)++;
2870     }
2871   else
2872     {
2873       /* normal dbx-style format, no explicit visibility */
2874       fip->list->visibility = VISIBILITY_PUBLIC;
2875     }
2876 
2877   fip->list->field.type = read_type (pp, objfile);
2878   if (**pp == ':')
2879     {
2880       p = ++(*pp);
2881 #if 0
2882       /* Possible future hook for nested types.  */
2883       if (**pp == '!')
2884 	{
2885 	  fip->list->field.bitpos = (long) -2;	/* nested type */
2886 	  p = ++(*pp);
2887 	}
2888       else
2889 	...;
2890 #endif
2891       while (*p != ';')
2892 	{
2893 	  p++;
2894 	}
2895       /* Static class member.  */
2896       SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2897       *pp = p + 1;
2898       return;
2899     }
2900   else if (**pp != ',')
2901     {
2902       /* Bad structure-type format.  */
2903       stabs_general_complaint ("bad structure-type format");
2904       return;
2905     }
2906 
2907   (*pp)++;			/* Skip the comma.  */
2908 
2909   {
2910     int nbits;
2911 
2912     FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2913     if (nbits != 0)
2914       {
2915 	stabs_general_complaint ("bad structure-type format");
2916 	return;
2917       }
2918     FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2919     if (nbits != 0)
2920       {
2921 	stabs_general_complaint ("bad structure-type format");
2922 	return;
2923       }
2924   }
2925 
2926   if (FIELD_BITPOS (fip->list->field) == 0
2927       && FIELD_BITSIZE (fip->list->field) == 0)
2928     {
2929       /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2930          it is a field which has been optimized out.  The correct stab for
2931          this case is to use VISIBILITY_IGNORE, but that is a recent
2932          invention.  (2) It is a 0-size array.  For example
2933          union { int num; char str[0]; } foo.  Printing _("<no value>" for
2934          str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935          will continue to work, and a 0-size array as a whole doesn't
2936          have any contents to print.
2937 
2938          I suspect this probably could also happen with gcc -gstabs (not
2939          -gstabs+) for static fields, and perhaps other C++ extensions.
2940          Hopefully few people use -gstabs with gdb, since it is intended
2941          for dbx compatibility.  */
2942 
2943       /* Ignore this field.  */
2944       fip->list->visibility = VISIBILITY_IGNORE;
2945     }
2946   else
2947     {
2948       /* Detect an unpacked field and mark it as such.
2949          dbx gives a bit size for all fields.
2950          Note that forward refs cannot be packed,
2951          and treat enums as if they had the width of ints.  */
2952 
2953       struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2954 
2955       if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 	  && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 	  && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 	  && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2959 	{
2960 	  FIELD_BITSIZE (fip->list->field) = 0;
2961 	}
2962       if ((FIELD_BITSIZE (fip->list->field)
2963 	   == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 	   || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2965 	       && FIELD_BITSIZE (fip->list->field)
2966 		  == gdbarch_int_bit (gdbarch))
2967 	  )
2968 	  &&
2969 	  FIELD_BITPOS (fip->list->field) % 8 == 0)
2970 	{
2971 	  FIELD_BITSIZE (fip->list->field) = 0;
2972 	}
2973     }
2974 }
2975 
2976 
2977 /* Read struct or class data fields.  They have the form:
2978 
2979    NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2980 
2981    At the end, we see a semicolon instead of a field.
2982 
2983    In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984    a static field.
2985 
2986    The optional VISIBILITY is one of:
2987 
2988    '/0' (VISIBILITY_PRIVATE)
2989    '/1' (VISIBILITY_PROTECTED)
2990    '/2' (VISIBILITY_PUBLIC)
2991    '/9' (VISIBILITY_IGNORE)
2992 
2993    or nothing, for C style fields with public visibility.
2994 
2995    Returns 1 for success, 0 for failure.  */
2996 
2997 static int
2998 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2999 		    struct objfile *objfile)
3000 {
3001   char *p;
3002   struct nextfield *new;
3003 
3004   /* We better set p right now, in case there are no fields at all...    */
3005 
3006   p = *pp;
3007 
3008   /* Read each data member type until we find the terminating ';' at the end of
3009      the data member list, or break for some other reason such as finding the
3010      start of the member function list.  */
3011   /* Stab string for structure/union does not end with two ';' in
3012      SUN C compiler 5.3 i.e. F6U2, hence check for end of string.  */
3013 
3014   while (**pp != ';' && **pp != '\0')
3015     {
3016       STABS_CONTINUE (pp, objfile);
3017       /* Get space to record the next field's data.  */
3018       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3019       make_cleanup (xfree, new);
3020       memset (new, 0, sizeof (struct nextfield));
3021       new->next = fip->list;
3022       fip->list = new;
3023 
3024       /* Get the field name.  */
3025       p = *pp;
3026 
3027       /* If is starts with CPLUS_MARKER it is a special abbreviation,
3028          unless the CPLUS_MARKER is followed by an underscore, in
3029          which case it is just the name of an anonymous type, which we
3030          should handle like any other type name.  */
3031 
3032       if (is_cplus_marker (p[0]) && p[1] != '_')
3033 	{
3034 	  if (!read_cpp_abbrev (fip, pp, type, objfile))
3035 	    return 0;
3036 	  continue;
3037 	}
3038 
3039       /* Look for the ':' that separates the field name from the field
3040          values.  Data members are delimited by a single ':', while member
3041          functions are delimited by a pair of ':'s.  When we hit the member
3042          functions (if any), terminate scan loop and return.  */
3043 
3044       while (*p != ':' && *p != '\0')
3045 	{
3046 	  p++;
3047 	}
3048       if (*p == '\0')
3049 	return 0;
3050 
3051       /* Check to see if we have hit the member functions yet.  */
3052       if (p[1] == ':')
3053 	{
3054 	  break;
3055 	}
3056       read_one_struct_field (fip, pp, p, type, objfile);
3057     }
3058   if (p[0] == ':' && p[1] == ':')
3059     {
3060       /* (the deleted) chill the list of fields: the last entry (at
3061          the head) is a partially constructed entry which we now
3062          scrub.  */
3063       fip->list = fip->list->next;
3064     }
3065   return 1;
3066 }
3067 /* *INDENT-OFF* */
3068 /* The stabs for C++ derived classes contain baseclass information which
3069    is marked by a '!' character after the total size.  This function is
3070    called when we encounter the baseclass marker, and slurps up all the
3071    baseclass information.
3072 
3073    Immediately following the '!' marker is the number of base classes that
3074    the class is derived from, followed by information for each base class.
3075    For each base class, there are two visibility specifiers, a bit offset
3076    to the base class information within the derived class, a reference to
3077    the type for the base class, and a terminating semicolon.
3078 
3079    A typical example, with two base classes, would be "!2,020,19;0264,21;".
3080    						       ^^ ^ ^ ^  ^ ^  ^
3081 	Baseclass information marker __________________|| | | |  | |  |
3082 	Number of baseclasses __________________________| | | |  | |  |
3083 	Visibility specifiers (2) ________________________| | |  | |  |
3084 	Offset in bits from start of class _________________| |  | |  |
3085 	Type number for base class ___________________________|  | |  |
3086 	Visibility specifiers (2) _______________________________| |  |
3087 	Offset in bits from start of class ________________________|  |
3088 	Type number of base class ____________________________________|
3089 
3090   Return 1 for success, 0 for (error-type-inducing) failure.  */
3091 /* *INDENT-ON* */
3092 
3093 
3094 
3095 static int
3096 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3097 		  struct objfile *objfile)
3098 {
3099   int i;
3100   struct nextfield *new;
3101 
3102   if (**pp != '!')
3103     {
3104       return 1;
3105     }
3106   else
3107     {
3108       /* Skip the '!' baseclass information marker.  */
3109       (*pp)++;
3110     }
3111 
3112   ALLOCATE_CPLUS_STRUCT_TYPE (type);
3113   {
3114     int nbits;
3115 
3116     TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3117     if (nbits != 0)
3118       return 0;
3119   }
3120 
3121 #if 0
3122   /* Some stupid compilers have trouble with the following, so break
3123      it up into simpler expressions.  */
3124   TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125     TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126 #else
3127   {
3128     int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129     char *pointer;
3130 
3131     pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132     TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3133   }
3134 #endif /* 0 */
3135 
3136   B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3137 
3138   for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3139     {
3140       new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3141       make_cleanup (xfree, new);
3142       memset (new, 0, sizeof (struct nextfield));
3143       new->next = fip->list;
3144       fip->list = new;
3145       FIELD_BITSIZE (new->field) = 0;	/* This should be an unpacked
3146 					   field!  */
3147 
3148       STABS_CONTINUE (pp, objfile);
3149       switch (**pp)
3150 	{
3151 	case '0':
3152 	  /* Nothing to do.  */
3153 	  break;
3154 	case '1':
3155 	  SET_TYPE_FIELD_VIRTUAL (type, i);
3156 	  break;
3157 	default:
3158 	  /* Unknown character.  Complain and treat it as non-virtual.  */
3159 	  {
3160 	    complaint (&symfile_complaints,
3161 		       _("Unknown virtual character `%c' for baseclass"),
3162 		       **pp);
3163 	  }
3164 	}
3165       ++(*pp);
3166 
3167       new->visibility = *(*pp)++;
3168       switch (new->visibility)
3169 	{
3170 	case VISIBILITY_PRIVATE:
3171 	case VISIBILITY_PROTECTED:
3172 	case VISIBILITY_PUBLIC:
3173 	  break;
3174 	default:
3175 	  /* Bad visibility format.  Complain and treat it as
3176 	     public.  */
3177 	  {
3178 	    complaint (&symfile_complaints,
3179 		       _("Unknown visibility `%c' for baseclass"),
3180 		       new->visibility);
3181 	    new->visibility = VISIBILITY_PUBLIC;
3182 	  }
3183 	}
3184 
3185       {
3186 	int nbits;
3187 
3188 	/* The remaining value is the bit offset of the portion of the object
3189 	   corresponding to this baseclass.  Always zero in the absence of
3190 	   multiple inheritance.  */
3191 
3192 	FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3193 	if (nbits != 0)
3194 	  return 0;
3195       }
3196 
3197       /* The last piece of baseclass information is the type of the
3198          base class.  Read it, and remember it's type name as this
3199          field's name.  */
3200 
3201       new->field.type = read_type (pp, objfile);
3202       new->field.name = type_name_no_tag (new->field.type);
3203 
3204       /* Skip trailing ';' and bump count of number of fields seen.  */
3205       if (**pp == ';')
3206 	(*pp)++;
3207       else
3208 	return 0;
3209     }
3210   return 1;
3211 }
3212 
3213 /* The tail end of stabs for C++ classes that contain a virtual function
3214    pointer contains a tilde, a %, and a type number.
3215    The type number refers to the base class (possibly this class itself) which
3216    contains the vtable pointer for the current class.
3217 
3218    This function is called when we have parsed all the method declarations,
3219    so we can look for the vptr base class info.  */
3220 
3221 static int
3222 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3223 		   struct objfile *objfile)
3224 {
3225   char *p;
3226 
3227   STABS_CONTINUE (pp, objfile);
3228 
3229   /* If we are positioned at a ';', then skip it.  */
3230   if (**pp == ';')
3231     {
3232       (*pp)++;
3233     }
3234 
3235   if (**pp == '~')
3236     {
3237       (*pp)++;
3238 
3239       if (**pp == '=' || **pp == '+' || **pp == '-')
3240 	{
3241 	  /* Obsolete flags that used to indicate the presence
3242 	     of constructors and/or destructors.  */
3243 	  (*pp)++;
3244 	}
3245 
3246       /* Read either a '%' or the final ';'.  */
3247       if (*(*pp)++ == '%')
3248 	{
3249 	  /* The next number is the type number of the base class
3250 	     (possibly our own class) which supplies the vtable for
3251 	     this class.  Parse it out, and search that class to find
3252 	     its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3253 	     and TYPE_VPTR_FIELDNO.  */
3254 
3255 	  struct type *t;
3256 	  int i;
3257 
3258 	  t = read_type (pp, objfile);
3259 	  p = (*pp)++;
3260 	  while (*p != '\0' && *p != ';')
3261 	    {
3262 	      p++;
3263 	    }
3264 	  if (*p == '\0')
3265 	    {
3266 	      /* Premature end of symbol.  */
3267 	      return 0;
3268 	    }
3269 
3270 	  TYPE_VPTR_BASETYPE (type) = t;
3271 	  if (type == t)	/* Our own class provides vtbl ptr.  */
3272 	    {
3273 	      for (i = TYPE_NFIELDS (t) - 1;
3274 		   i >= TYPE_N_BASECLASSES (t);
3275 		   --i)
3276 		{
3277 		  char *name = TYPE_FIELD_NAME (t, i);
3278 
3279 		  if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3280 		      && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3281 		    {
3282 		      TYPE_VPTR_FIELDNO (type) = i;
3283 		      goto gotit;
3284 		    }
3285 		}
3286 	      /* Virtual function table field not found.  */
3287 	      complaint (&symfile_complaints,
3288 			 _("virtual function table pointer "
3289 			   "not found when defining class `%s'"),
3290 			 TYPE_NAME (type));
3291 	      return 0;
3292 	    }
3293 	  else
3294 	    {
3295 	      TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3296 	    }
3297 
3298 	gotit:
3299 	  *pp = p + 1;
3300 	}
3301     }
3302   return 1;
3303 }
3304 
3305 static int
3306 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3307 {
3308   int n;
3309 
3310   for (n = TYPE_NFN_FIELDS (type);
3311        fip->fnlist != NULL;
3312        fip->fnlist = fip->fnlist->next)
3313     {
3314       --n;			/* Circumvent Sun3 compiler bug.  */
3315       TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3316     }
3317   return 1;
3318 }
3319 
3320 /* Create the vector of fields, and record how big it is.
3321    We need this info to record proper virtual function table information
3322    for this class's virtual functions.  */
3323 
3324 static int
3325 attach_fields_to_type (struct field_info *fip, struct type *type,
3326 		       struct objfile *objfile)
3327 {
3328   int nfields = 0;
3329   int non_public_fields = 0;
3330   struct nextfield *scan;
3331 
3332   /* Count up the number of fields that we have, as well as taking note of
3333      whether or not there are any non-public fields, which requires us to
3334      allocate and build the private_field_bits and protected_field_bits
3335      bitfields.  */
3336 
3337   for (scan = fip->list; scan != NULL; scan = scan->next)
3338     {
3339       nfields++;
3340       if (scan->visibility != VISIBILITY_PUBLIC)
3341 	{
3342 	  non_public_fields++;
3343 	}
3344     }
3345 
3346   /* Now we know how many fields there are, and whether or not there are any
3347      non-public fields.  Record the field count, allocate space for the
3348      array of fields, and create blank visibility bitfields if necessary.  */
3349 
3350   TYPE_NFIELDS (type) = nfields;
3351   TYPE_FIELDS (type) = (struct field *)
3352     TYPE_ALLOC (type, sizeof (struct field) * nfields);
3353   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3354 
3355   if (non_public_fields)
3356     {
3357       ALLOCATE_CPLUS_STRUCT_TYPE (type);
3358 
3359       TYPE_FIELD_PRIVATE_BITS (type) =
3360 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361       B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3362 
3363       TYPE_FIELD_PROTECTED_BITS (type) =
3364 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3365       B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3366 
3367       TYPE_FIELD_IGNORE_BITS (type) =
3368 	(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3369       B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3370     }
3371 
3372   /* Copy the saved-up fields into the field vector.  Start from the
3373      head of the list, adding to the tail of the field array, so that
3374      they end up in the same order in the array in which they were
3375      added to the list.  */
3376 
3377   while (nfields-- > 0)
3378     {
3379       TYPE_FIELD (type, nfields) = fip->list->field;
3380       switch (fip->list->visibility)
3381 	{
3382 	case VISIBILITY_PRIVATE:
3383 	  SET_TYPE_FIELD_PRIVATE (type, nfields);
3384 	  break;
3385 
3386 	case VISIBILITY_PROTECTED:
3387 	  SET_TYPE_FIELD_PROTECTED (type, nfields);
3388 	  break;
3389 
3390 	case VISIBILITY_IGNORE:
3391 	  SET_TYPE_FIELD_IGNORE (type, nfields);
3392 	  break;
3393 
3394 	case VISIBILITY_PUBLIC:
3395 	  break;
3396 
3397 	default:
3398 	  /* Unknown visibility.  Complain and treat it as public.  */
3399 	  {
3400 	    complaint (&symfile_complaints,
3401 		       _("Unknown visibility `%c' for field"),
3402 		       fip->list->visibility);
3403 	  }
3404 	  break;
3405 	}
3406       fip->list = fip->list->next;
3407     }
3408   return 1;
3409 }
3410 
3411 
3412 /* Complain that the compiler has emitted more than one definition for the
3413    structure type TYPE.  */
3414 static void
3415 complain_about_struct_wipeout (struct type *type)
3416 {
3417   char *name = "";
3418   char *kind = "";
3419 
3420   if (TYPE_TAG_NAME (type))
3421     {
3422       name = TYPE_TAG_NAME (type);
3423       switch (TYPE_CODE (type))
3424         {
3425         case TYPE_CODE_STRUCT: kind = "struct "; break;
3426         case TYPE_CODE_UNION:  kind = "union ";  break;
3427         case TYPE_CODE_ENUM:   kind = "enum ";   break;
3428         default: kind = "";
3429         }
3430     }
3431   else if (TYPE_NAME (type))
3432     {
3433       name = TYPE_NAME (type);
3434       kind = "";
3435     }
3436   else
3437     {
3438       name = "<unknown>";
3439       kind = "";
3440     }
3441 
3442   complaint (&symfile_complaints,
3443 	     _("struct/union type gets multiply defined: %s%s"), kind, name);
3444 }
3445 
3446 /* Set the length for all variants of a same main_type, which are
3447    connected in the closed chain.
3448 
3449    This is something that needs to be done when a type is defined *after*
3450    some cross references to this type have already been read.  Consider
3451    for instance the following scenario where we have the following two
3452    stabs entries:
3453 
3454         .stabs  "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3455         .stabs  "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3456 
3457    A stubbed version of type dummy is created while processing the first
3458    stabs entry.  The length of that type is initially set to zero, since
3459    it is unknown at this point.  Also, a "constant" variation of type
3460    "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3461    the stabs line).
3462 
3463    The second stabs entry allows us to replace the stubbed definition
3464    with the real definition.  However, we still need to adjust the length
3465    of the "constant" variation of that type, as its length was left
3466    untouched during the main type replacement...  */
3467 
3468 static void
3469 set_length_in_type_chain (struct type *type)
3470 {
3471   struct type *ntype = TYPE_CHAIN (type);
3472 
3473   while (ntype != type)
3474     {
3475       if (TYPE_LENGTH(ntype) == 0)
3476 	TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3477       else
3478         complain_about_struct_wipeout (ntype);
3479       ntype = TYPE_CHAIN (ntype);
3480     }
3481 }
3482 
3483 /* Read the description of a structure (or union type) and return an object
3484    describing the type.
3485 
3486    PP points to a character pointer that points to the next unconsumed token
3487    in the stabs string.  For example, given stabs "A:T4=s4a:1,0,32;;",
3488    *PP will point to "4a:1,0,32;;".
3489 
3490    TYPE points to an incomplete type that needs to be filled in.
3491 
3492    OBJFILE points to the current objfile from which the stabs information is
3493    being read.  (Note that it is redundant in that TYPE also contains a pointer
3494    to this same objfile, so it might be a good idea to eliminate it.  FIXME).
3495  */
3496 
3497 static struct type *
3498 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3499                   struct objfile *objfile)
3500 {
3501   struct cleanup *back_to;
3502   struct field_info fi;
3503 
3504   fi.list = NULL;
3505   fi.fnlist = NULL;
3506 
3507   /* When describing struct/union/class types in stabs, G++ always drops
3508      all qualifications from the name.  So if you've got:
3509        struct A { ... struct B { ... }; ... };
3510      then G++ will emit stabs for `struct A::B' that call it simply
3511      `struct B'.  Obviously, if you've got a real top-level definition for
3512      `struct B', or other nested definitions, this is going to cause
3513      problems.
3514 
3515      Obviously, GDB can't fix this by itself, but it can at least avoid
3516      scribbling on existing structure type objects when new definitions
3517      appear.  */
3518   if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3519          || TYPE_STUB (type)))
3520     {
3521       complain_about_struct_wipeout (type);
3522 
3523       /* It's probably best to return the type unchanged.  */
3524       return type;
3525     }
3526 
3527   back_to = make_cleanup (null_cleanup, 0);
3528 
3529   INIT_CPLUS_SPECIFIC (type);
3530   TYPE_CODE (type) = type_code;
3531   TYPE_STUB (type) = 0;
3532 
3533   /* First comes the total size in bytes.  */
3534 
3535   {
3536     int nbits;
3537 
3538     TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3539     if (nbits != 0)
3540       return error_type (pp, objfile);
3541     set_length_in_type_chain (type);
3542   }
3543 
3544   /* Now read the baseclasses, if any, read the regular C struct or C++
3545      class member fields, attach the fields to the type, read the C++
3546      member functions, attach them to the type, and then read any tilde
3547      field (baseclass specifier for the class holding the main vtable).  */
3548 
3549   if (!read_baseclasses (&fi, pp, type, objfile)
3550       || !read_struct_fields (&fi, pp, type, objfile)
3551       || !attach_fields_to_type (&fi, type, objfile)
3552       || !read_member_functions (&fi, pp, type, objfile)
3553       || !attach_fn_fields_to_type (&fi, type)
3554       || !read_tilde_fields (&fi, pp, type, objfile))
3555     {
3556       type = error_type (pp, objfile);
3557     }
3558 
3559   do_cleanups (back_to);
3560   return (type);
3561 }
3562 
3563 /* Read a definition of an array type,
3564    and create and return a suitable type object.
3565    Also creates a range type which represents the bounds of that
3566    array.  */
3567 
3568 static struct type *
3569 read_array_type (char **pp, struct type *type,
3570 		 struct objfile *objfile)
3571 {
3572   struct type *index_type, *element_type, *range_type;
3573   int lower, upper;
3574   int adjustable = 0;
3575   int nbits;
3576 
3577   /* Format of an array type:
3578      "ar<index type>;lower;upper;<array_contents_type>".
3579      OS9000: "arlower,upper;<array_contents_type>".
3580 
3581      Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3582      for these, produce a type like float[][].  */
3583 
3584     {
3585       index_type = read_type (pp, objfile);
3586       if (**pp != ';')
3587 	/* Improper format of array type decl.  */
3588 	return error_type (pp, objfile);
3589       ++*pp;
3590     }
3591 
3592   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3593     {
3594       (*pp)++;
3595       adjustable = 1;
3596     }
3597   lower = read_huge_number (pp, ';', &nbits, 0);
3598 
3599   if (nbits != 0)
3600     return error_type (pp, objfile);
3601 
3602   if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3603     {
3604       (*pp)++;
3605       adjustable = 1;
3606     }
3607   upper = read_huge_number (pp, ';', &nbits, 0);
3608   if (nbits != 0)
3609     return error_type (pp, objfile);
3610 
3611   element_type = read_type (pp, objfile);
3612 
3613   if (adjustable)
3614     {
3615       lower = 0;
3616       upper = -1;
3617     }
3618 
3619   range_type =
3620     create_range_type ((struct type *) NULL, index_type, lower, upper);
3621   type = create_array_type (type, element_type, range_type);
3622 
3623   return type;
3624 }
3625 
3626 
3627 /* Read a definition of an enumeration type,
3628    and create and return a suitable type object.
3629    Also defines the symbols that represent the values of the type.  */
3630 
3631 static struct type *
3632 read_enum_type (char **pp, struct type *type,
3633 		struct objfile *objfile)
3634 {
3635   struct gdbarch *gdbarch = get_objfile_arch (objfile);
3636   char *p;
3637   char *name;
3638   long n;
3639   struct symbol *sym;
3640   int nsyms = 0;
3641   struct pending **symlist;
3642   struct pending *osyms, *syms;
3643   int o_nsyms;
3644   int nbits;
3645   int unsigned_enum = 1;
3646 
3647 #if 0
3648   /* FIXME!  The stabs produced by Sun CC merrily define things that ought
3649      to be file-scope, between N_FN entries, using N_LSYM.  What's a mother
3650      to do?  For now, force all enum values to file scope.  */
3651   if (within_function)
3652     symlist = &local_symbols;
3653   else
3654 #endif
3655     symlist = &file_symbols;
3656   osyms = *symlist;
3657   o_nsyms = osyms ? osyms->nsyms : 0;
3658 
3659   /* The aix4 compiler emits an extra field before the enum members;
3660      my guess is it's a type of some sort.  Just ignore it.  */
3661   if (**pp == '-')
3662     {
3663       /* Skip over the type.  */
3664       while (**pp != ':')
3665 	(*pp)++;
3666 
3667       /* Skip over the colon.  */
3668       (*pp)++;
3669     }
3670 
3671   /* Read the value-names and their values.
3672      The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3673      A semicolon or comma instead of a NAME means the end.  */
3674   while (**pp && **pp != ';' && **pp != ',')
3675     {
3676       STABS_CONTINUE (pp, objfile);
3677       p = *pp;
3678       while (*p != ':')
3679 	p++;
3680       name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3681       *pp = p + 1;
3682       n = read_huge_number (pp, ',', &nbits, 0);
3683       if (nbits != 0)
3684 	return error_type (pp, objfile);
3685 
3686       sym = (struct symbol *)
3687 	obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3688       memset (sym, 0, sizeof (struct symbol));
3689       SYMBOL_SET_LINKAGE_NAME (sym, name);
3690       SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3691       SYMBOL_CLASS (sym) = LOC_CONST;
3692       SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3693       SYMBOL_VALUE (sym) = n;
3694       if (n < 0)
3695 	unsigned_enum = 0;
3696       add_symbol_to_list (sym, symlist);
3697       nsyms++;
3698     }
3699 
3700   if (**pp == ';')
3701     (*pp)++;			/* Skip the semicolon.  */
3702 
3703   /* Now fill in the fields of the type-structure.  */
3704 
3705   TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3706   set_length_in_type_chain (type);
3707   TYPE_CODE (type) = TYPE_CODE_ENUM;
3708   TYPE_STUB (type) = 0;
3709   if (unsigned_enum)
3710     TYPE_UNSIGNED (type) = 1;
3711   TYPE_NFIELDS (type) = nsyms;
3712   TYPE_FIELDS (type) = (struct field *)
3713     TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3714   memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3715 
3716   /* Find the symbols for the values and put them into the type.
3717      The symbols can be found in the symlist that we put them on
3718      to cause them to be defined.  osyms contains the old value
3719      of that symlist; everything up to there was defined by us.  */
3720   /* Note that we preserve the order of the enum constants, so
3721      that in something like "enum {FOO, LAST_THING=FOO}" we print
3722      FOO, not LAST_THING.  */
3723 
3724   for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3725     {
3726       int last = syms == osyms ? o_nsyms : 0;
3727       int j = syms->nsyms;
3728 
3729       for (; --j >= last; --n)
3730 	{
3731 	  struct symbol *xsym = syms->symbol[j];
3732 
3733 	  SYMBOL_TYPE (xsym) = type;
3734 	  TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3735 	  TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3736 	  TYPE_FIELD_BITSIZE (type, n) = 0;
3737 	}
3738       if (syms == osyms)
3739 	break;
3740     }
3741 
3742   return type;
3743 }
3744 
3745 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3746    typedefs in every file (for int, long, etc):
3747 
3748    type = b <signed> <width> <format type>; <offset>; <nbits>
3749    signed = u or s.
3750    optional format type = c or b for char or boolean.
3751    offset = offset from high order bit to start bit of type.
3752    width is # bytes in object of this type, nbits is # bits in type.
3753 
3754    The width/offset stuff appears to be for small objects stored in
3755    larger ones (e.g. `shorts' in `int' registers).  We ignore it for now,
3756    FIXME.  */
3757 
3758 static struct type *
3759 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3760 {
3761   int type_bits;
3762   int nbits;
3763   int signed_type;
3764   enum type_code code = TYPE_CODE_INT;
3765 
3766   switch (**pp)
3767     {
3768     case 's':
3769       signed_type = 1;
3770       break;
3771     case 'u':
3772       signed_type = 0;
3773       break;
3774     default:
3775       return error_type (pp, objfile);
3776     }
3777   (*pp)++;
3778 
3779   /* For some odd reason, all forms of char put a c here.  This is strange
3780      because no other type has this honor.  We can safely ignore this because
3781      we actually determine 'char'acterness by the number of bits specified in
3782      the descriptor.
3783      Boolean forms, e.g Fortran logical*X, put a b here.  */
3784 
3785   if (**pp == 'c')
3786     (*pp)++;
3787   else if (**pp == 'b')
3788     {
3789       code = TYPE_CODE_BOOL;
3790       (*pp)++;
3791     }
3792 
3793   /* The first number appears to be the number of bytes occupied
3794      by this type, except that unsigned short is 4 instead of 2.
3795      Since this information is redundant with the third number,
3796      we will ignore it.  */
3797   read_huge_number (pp, ';', &nbits, 0);
3798   if (nbits != 0)
3799     return error_type (pp, objfile);
3800 
3801   /* The second number is always 0, so ignore it too.  */
3802   read_huge_number (pp, ';', &nbits, 0);
3803   if (nbits != 0)
3804     return error_type (pp, objfile);
3805 
3806   /* The third number is the number of bits for this type.  */
3807   type_bits = read_huge_number (pp, 0, &nbits, 0);
3808   if (nbits != 0)
3809     return error_type (pp, objfile);
3810   /* The type *should* end with a semicolon.  If it are embedded
3811      in a larger type the semicolon may be the only way to know where
3812      the type ends.  If this type is at the end of the stabstring we
3813      can deal with the omitted semicolon (but we don't have to like
3814      it).  Don't bother to complain(), Sun's compiler omits the semicolon
3815      for "void".  */
3816   if (**pp == ';')
3817     ++(*pp);
3818 
3819   if (type_bits == 0)
3820     return init_type (TYPE_CODE_VOID, 1,
3821 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3822 		      objfile);
3823   else
3824     return init_type (code,
3825 		      type_bits / TARGET_CHAR_BIT,
3826 		      signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3827 		      objfile);
3828 }
3829 
3830 static struct type *
3831 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3832 {
3833   int nbits;
3834   int details;
3835   int nbytes;
3836   struct type *rettype;
3837 
3838   /* The first number has more details about the type, for example
3839      FN_COMPLEX.  */
3840   details = read_huge_number (pp, ';', &nbits, 0);
3841   if (nbits != 0)
3842     return error_type (pp, objfile);
3843 
3844   /* The second number is the number of bytes occupied by this type.  */
3845   nbytes = read_huge_number (pp, ';', &nbits, 0);
3846   if (nbits != 0)
3847     return error_type (pp, objfile);
3848 
3849   if (details == NF_COMPLEX || details == NF_COMPLEX16
3850       || details == NF_COMPLEX32)
3851     {
3852       rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3853       TYPE_TARGET_TYPE (rettype)
3854 	= init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3855       return rettype;
3856     }
3857 
3858   return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3859 }
3860 
3861 /* Read a number from the string pointed to by *PP.
3862    The value of *PP is advanced over the number.
3863    If END is nonzero, the character that ends the
3864    number must match END, or an error happens;
3865    and that character is skipped if it does match.
3866    If END is zero, *PP is left pointing to that character.
3867 
3868    If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3869    the number is represented in an octal representation, assume that
3870    it is represented in a 2's complement representation with a size of
3871    TWOS_COMPLEMENT_BITS.
3872 
3873    If the number fits in a long, set *BITS to 0 and return the value.
3874    If not, set *BITS to be the number of bits in the number and return 0.
3875 
3876    If encounter garbage, set *BITS to -1 and return 0.  */
3877 
3878 static long
3879 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3880 {
3881   char *p = *pp;
3882   int sign = 1;
3883   int sign_bit = 0;
3884   long n = 0;
3885   int radix = 10;
3886   char overflow = 0;
3887   int nbits = 0;
3888   int c;
3889   long upper_limit;
3890   int twos_complement_representation = 0;
3891 
3892   if (*p == '-')
3893     {
3894       sign = -1;
3895       p++;
3896     }
3897 
3898   /* Leading zero means octal.  GCC uses this to output values larger
3899      than an int (because that would be hard in decimal).  */
3900   if (*p == '0')
3901     {
3902       radix = 8;
3903       p++;
3904     }
3905 
3906   /* Skip extra zeros.  */
3907   while (*p == '0')
3908     p++;
3909 
3910   if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3911     {
3912       /* Octal, possibly signed.  Check if we have enough chars for a
3913 	 negative number.  */
3914 
3915       size_t len;
3916       char *p1 = p;
3917 
3918       while ((c = *p1) >= '0' && c < '8')
3919 	p1++;
3920 
3921       len = p1 - p;
3922       if (len > twos_complement_bits / 3
3923 	  || (twos_complement_bits % 3 == 0
3924 	      && len == twos_complement_bits / 3))
3925 	{
3926 	  /* Ok, we have enough characters for a signed value, check
3927 	     for signness by testing if the sign bit is set.  */
3928 	  sign_bit = (twos_complement_bits % 3 + 2) % 3;
3929 	  c = *p - '0';
3930 	  if (c & (1 << sign_bit))
3931 	    {
3932 	      /* Definitely signed.  */
3933 	      twos_complement_representation = 1;
3934 	      sign = -1;
3935 	    }
3936 	}
3937     }
3938 
3939   upper_limit = LONG_MAX / radix;
3940 
3941   while ((c = *p++) >= '0' && c < ('0' + radix))
3942     {
3943       if (n <= upper_limit)
3944         {
3945           if (twos_complement_representation)
3946             {
3947 	      /* Octal, signed, twos complement representation.  In
3948 		 this case, n is the corresponding absolute value.  */
3949 	      if (n == 0)
3950 		{
3951 		  long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3952 
3953 		  n = -sn;
3954 		}
3955               else
3956                 {
3957                   n *= radix;
3958                   n -= c - '0';
3959                 }
3960             }
3961           else
3962             {
3963               /* unsigned representation */
3964               n *= radix;
3965               n += c - '0';		/* FIXME this overflows anyway.  */
3966             }
3967         }
3968       else
3969         overflow = 1;
3970 
3971       /* This depends on large values being output in octal, which is
3972          what GCC does.  */
3973       if (radix == 8)
3974 	{
3975 	  if (nbits == 0)
3976 	    {
3977 	      if (c == '0')
3978 		/* Ignore leading zeroes.  */
3979 		;
3980 	      else if (c == '1')
3981 		nbits = 1;
3982 	      else if (c == '2' || c == '3')
3983 		nbits = 2;
3984 	      else
3985 		nbits = 3;
3986 	    }
3987 	  else
3988 	    nbits += 3;
3989 	}
3990     }
3991   if (end)
3992     {
3993       if (c && c != end)
3994 	{
3995 	  if (bits != NULL)
3996 	    *bits = -1;
3997 	  return 0;
3998 	}
3999     }
4000   else
4001     --p;
4002 
4003   if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4004     {
4005       /* We were supposed to parse a number with maximum
4006 	 TWOS_COMPLEMENT_BITS bits, but something went wrong.  */
4007       if (bits != NULL)
4008 	*bits = -1;
4009       return 0;
4010     }
4011 
4012   *pp = p;
4013   if (overflow)
4014     {
4015       if (nbits == 0)
4016 	{
4017 	  /* Large decimal constants are an error (because it is hard to
4018 	     count how many bits are in them).  */
4019 	  if (bits != NULL)
4020 	    *bits = -1;
4021 	  return 0;
4022 	}
4023 
4024       /* -0x7f is the same as 0x80.  So deal with it by adding one to
4025          the number of bits.  Two's complement represention octals
4026          can't have a '-' in front.  */
4027       if (sign == -1 && !twos_complement_representation)
4028 	++nbits;
4029       if (bits)
4030 	*bits = nbits;
4031     }
4032   else
4033     {
4034       if (bits)
4035 	*bits = 0;
4036       return n * sign;
4037     }
4038   /* It's *BITS which has the interesting information.  */
4039   return 0;
4040 }
4041 
4042 static struct type *
4043 read_range_type (char **pp, int typenums[2], int type_size,
4044                  struct objfile *objfile)
4045 {
4046   struct gdbarch *gdbarch = get_objfile_arch (objfile);
4047   char *orig_pp = *pp;
4048   int rangenums[2];
4049   long n2, n3;
4050   int n2bits, n3bits;
4051   int self_subrange;
4052   struct type *result_type;
4053   struct type *index_type = NULL;
4054 
4055   /* First comes a type we are a subrange of.
4056      In C it is usually 0, 1 or the type being defined.  */
4057   if (read_type_number (pp, rangenums) != 0)
4058     return error_type (pp, objfile);
4059   self_subrange = (rangenums[0] == typenums[0] &&
4060 		   rangenums[1] == typenums[1]);
4061 
4062   if (**pp == '=')
4063     {
4064       *pp = orig_pp;
4065       index_type = read_type (pp, objfile);
4066     }
4067 
4068   /* A semicolon should now follow; skip it.  */
4069   if (**pp == ';')
4070     (*pp)++;
4071 
4072   /* The remaining two operands are usually lower and upper bounds
4073      of the range.  But in some special cases they mean something else.  */
4074   n2 = read_huge_number (pp, ';', &n2bits, type_size);
4075   n3 = read_huge_number (pp, ';', &n3bits, type_size);
4076 
4077   if (n2bits == -1 || n3bits == -1)
4078     return error_type (pp, objfile);
4079 
4080   if (index_type)
4081     goto handle_true_range;
4082 
4083   /* If limits are huge, must be large integral type.  */
4084   if (n2bits != 0 || n3bits != 0)
4085     {
4086       char got_signed = 0;
4087       char got_unsigned = 0;
4088       /* Number of bits in the type.  */
4089       int nbits = 0;
4090 
4091       /* If a type size attribute has been specified, the bounds of
4092          the range should fit in this size.  If the lower bounds needs
4093          more bits than the upper bound, then the type is signed.  */
4094       if (n2bits <= type_size && n3bits <= type_size)
4095         {
4096           if (n2bits == type_size && n2bits > n3bits)
4097             got_signed = 1;
4098           else
4099             got_unsigned = 1;
4100           nbits = type_size;
4101         }
4102       /* Range from 0 to <large number> is an unsigned large integral type.  */
4103       else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4104 	{
4105 	  got_unsigned = 1;
4106 	  nbits = n3bits;
4107 	}
4108       /* Range from <large number> to <large number>-1 is a large signed
4109          integral type.  Take care of the case where <large number> doesn't
4110          fit in a long but <large number>-1 does.  */
4111       else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4112 	       || (n2bits != 0 && n3bits == 0
4113 		   && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4114 		   && n3 == LONG_MAX))
4115 	{
4116 	  got_signed = 1;
4117 	  nbits = n2bits;
4118 	}
4119 
4120       if (got_signed || got_unsigned)
4121 	{
4122 	  return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4123 			    got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4124 			    objfile);
4125 	}
4126       else
4127 	return error_type (pp, objfile);
4128     }
4129 
4130   /* A type defined as a subrange of itself, with bounds both 0, is void.  */
4131   if (self_subrange && n2 == 0 && n3 == 0)
4132     return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4133 
4134   /* If n3 is zero and n2 is positive, we want a floating type, and n2
4135      is the width in bytes.
4136 
4137      Fortran programs appear to use this for complex types also.  To
4138      distinguish between floats and complex, g77 (and others?)  seem
4139      to use self-subranges for the complexes, and subranges of int for
4140      the floats.
4141 
4142      Also note that for complexes, g77 sets n2 to the size of one of
4143      the member floats, not the whole complex beast.  My guess is that
4144      this was to work well with pre-COMPLEX versions of gdb.  */
4145 
4146   if (n3 == 0 && n2 > 0)
4147     {
4148       struct type *float_type
4149 	= init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4150 
4151       if (self_subrange)
4152 	{
4153 	  struct type *complex_type =
4154 	    init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4155 
4156 	  TYPE_TARGET_TYPE (complex_type) = float_type;
4157 	  return complex_type;
4158 	}
4159       else
4160 	return float_type;
4161     }
4162 
4163   /* If the upper bound is -1, it must really be an unsigned integral.  */
4164 
4165   else if (n2 == 0 && n3 == -1)
4166     {
4167       int bits = type_size;
4168 
4169       if (bits <= 0)
4170 	{
4171 	  /* We don't know its size.  It is unsigned int or unsigned
4172 	     long.  GCC 2.3.3 uses this for long long too, but that is
4173 	     just a GDB 3.5 compatibility hack.  */
4174 	  bits = gdbarch_int_bit (gdbarch);
4175 	}
4176 
4177       return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4178 			TYPE_FLAG_UNSIGNED, NULL, objfile);
4179     }
4180 
4181   /* Special case: char is defined (Who knows why) as a subrange of
4182      itself with range 0-127.  */
4183   else if (self_subrange && n2 == 0 && n3 == 127)
4184     return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4185 
4186   /* We used to do this only for subrange of self or subrange of int.  */
4187   else if (n2 == 0)
4188     {
4189       /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4190          "unsigned long", and we already checked for that,
4191          so don't need to test for it here.  */
4192 
4193       if (n3 < 0)
4194 	/* n3 actually gives the size.  */
4195 	return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4196 			  NULL, objfile);
4197 
4198       /* Is n3 == 2**(8n)-1 for some integer n?  Then it's an
4199          unsigned n-byte integer.  But do require n to be a power of
4200          two; we don't want 3- and 5-byte integers flying around.  */
4201       {
4202 	int bytes;
4203 	unsigned long bits;
4204 
4205 	bits = n3;
4206 	for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4207 	  bits >>= 8;
4208 	if (bits == 0
4209 	    && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4210 	  return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4211 			    objfile);
4212       }
4213     }
4214   /* I think this is for Convex "long long".  Since I don't know whether
4215      Convex sets self_subrange, I also accept that particular size regardless
4216      of self_subrange.  */
4217   else if (n3 == 0 && n2 < 0
4218 	   && (self_subrange
4219 	       || n2 == -gdbarch_long_long_bit
4220 			  (gdbarch) / TARGET_CHAR_BIT))
4221     return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4222   else if (n2 == -n3 - 1)
4223     {
4224       if (n3 == 0x7f)
4225 	return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4226       if (n3 == 0x7fff)
4227 	return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4228       if (n3 == 0x7fffffff)
4229 	return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4230     }
4231 
4232   /* We have a real range type on our hands.  Allocate space and
4233      return a real pointer.  */
4234 handle_true_range:
4235 
4236   if (self_subrange)
4237     index_type = objfile_type (objfile)->builtin_int;
4238   else
4239     index_type = *dbx_lookup_type (rangenums, objfile);
4240   if (index_type == NULL)
4241     {
4242       /* Does this actually ever happen?  Is that why we are worrying
4243          about dealing with it rather than just calling error_type?  */
4244 
4245       complaint (&symfile_complaints,
4246 		 _("base type %d of range type is not defined"), rangenums[1]);
4247 
4248       index_type = objfile_type (objfile)->builtin_int;
4249     }
4250 
4251   result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4252   return (result_type);
4253 }
4254 
4255 /* Read in an argument list.  This is a list of types, separated by commas
4256    and terminated with END.  Return the list of types read in, or NULL
4257    if there is an error.  */
4258 
4259 static struct field *
4260 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4261 	   int *varargsp)
4262 {
4263   /* FIXME!  Remove this arbitrary limit!  */
4264   struct type *types[1024];	/* Allow for fns of 1023 parameters.  */
4265   int n = 0, i;
4266   struct field *rval;
4267 
4268   while (**pp != end)
4269     {
4270       if (**pp != ',')
4271 	/* Invalid argument list: no ','.  */
4272 	return NULL;
4273       (*pp)++;
4274       STABS_CONTINUE (pp, objfile);
4275       types[n++] = read_type (pp, objfile);
4276     }
4277   (*pp)++;			/* get past `end' (the ':' character).  */
4278 
4279   if (n == 0)
4280     {
4281       /* We should read at least the THIS parameter here.  Some broken stabs
4282 	 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4283 	 have been present ";-16,(0,43)" reference instead.  This way the
4284 	 excessive ";" marker prematurely stops the parameters parsing.  */
4285 
4286       complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4287       *varargsp = 0;
4288     }
4289   else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4290     *varargsp = 1;
4291   else
4292     {
4293       n--;
4294       *varargsp = 0;
4295     }
4296 
4297   rval = (struct field *) xmalloc (n * sizeof (struct field));
4298   memset (rval, 0, n * sizeof (struct field));
4299   for (i = 0; i < n; i++)
4300     rval[i].type = types[i];
4301   *nargsp = n;
4302   return rval;
4303 }
4304 
4305 /* Common block handling.  */
4306 
4307 /* List of symbols declared since the last BCOMM.  This list is a tail
4308    of local_symbols.  When ECOMM is seen, the symbols on the list
4309    are noted so their proper addresses can be filled in later,
4310    using the common block base address gotten from the assembler
4311    stabs.  */
4312 
4313 static struct pending *common_block;
4314 static int common_block_i;
4315 
4316 /* Name of the current common block.  We get it from the BCOMM instead of the
4317    ECOMM to match IBM documentation (even though IBM puts the name both places
4318    like everyone else).  */
4319 static char *common_block_name;
4320 
4321 /* Process a N_BCOMM symbol.  The storage for NAME is not guaranteed
4322    to remain after this function returns.  */
4323 
4324 void
4325 common_block_start (char *name, struct objfile *objfile)
4326 {
4327   if (common_block_name != NULL)
4328     {
4329       complaint (&symfile_complaints,
4330 		 _("Invalid symbol data: common block within common block"));
4331     }
4332   common_block = local_symbols;
4333   common_block_i = local_symbols ? local_symbols->nsyms : 0;
4334   common_block_name = obsavestring (name, strlen (name),
4335 				    &objfile->objfile_obstack);
4336 }
4337 
4338 /* Process a N_ECOMM symbol.  */
4339 
4340 void
4341 common_block_end (struct objfile *objfile)
4342 {
4343   /* Symbols declared since the BCOMM are to have the common block
4344      start address added in when we know it.  common_block and
4345      common_block_i point to the first symbol after the BCOMM in
4346      the local_symbols list; copy the list and hang it off the
4347      symbol for the common block name for later fixup.  */
4348   int i;
4349   struct symbol *sym;
4350   struct pending *new = 0;
4351   struct pending *next;
4352   int j;
4353 
4354   if (common_block_name == NULL)
4355     {
4356       complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4357       return;
4358     }
4359 
4360   sym = (struct symbol *)
4361     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4362   memset (sym, 0, sizeof (struct symbol));
4363   /* Note: common_block_name already saved on objfile_obstack.  */
4364   SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4365   SYMBOL_CLASS (sym) = LOC_BLOCK;
4366 
4367   /* Now we copy all the symbols which have been defined since the BCOMM.  */
4368 
4369   /* Copy all the struct pendings before common_block.  */
4370   for (next = local_symbols;
4371        next != NULL && next != common_block;
4372        next = next->next)
4373     {
4374       for (j = 0; j < next->nsyms; j++)
4375 	add_symbol_to_list (next->symbol[j], &new);
4376     }
4377 
4378   /* Copy however much of COMMON_BLOCK we need.  If COMMON_BLOCK is
4379      NULL, it means copy all the local symbols (which we already did
4380      above).  */
4381 
4382   if (common_block != NULL)
4383     for (j = common_block_i; j < common_block->nsyms; j++)
4384       add_symbol_to_list (common_block->symbol[j], &new);
4385 
4386   SYMBOL_TYPE (sym) = (struct type *) new;
4387 
4388   /* Should we be putting local_symbols back to what it was?
4389      Does it matter?  */
4390 
4391   i = hashname (SYMBOL_LINKAGE_NAME (sym));
4392   SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4393   global_sym_chain[i] = sym;
4394   common_block_name = NULL;
4395 }
4396 
4397 /* Add a common block's start address to the offset of each symbol
4398    declared to be in it (by being between a BCOMM/ECOMM pair that uses
4399    the common block name).  */
4400 
4401 static void
4402 fix_common_block (struct symbol *sym, int valu)
4403 {
4404   struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4405 
4406   for (; next; next = next->next)
4407     {
4408       int j;
4409 
4410       for (j = next->nsyms - 1; j >= 0; j--)
4411 	SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4412     }
4413 }
4414 
4415 
4416 
4417 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4418    See add_undefined_type for more details.  */
4419 
4420 static void
4421 add_undefined_type_noname (struct type *type, int typenums[2])
4422 {
4423   struct nat nat;
4424 
4425   nat.typenums[0] = typenums [0];
4426   nat.typenums[1] = typenums [1];
4427   nat.type = type;
4428 
4429   if (noname_undefs_length == noname_undefs_allocated)
4430     {
4431       noname_undefs_allocated *= 2;
4432       noname_undefs = (struct nat *)
4433 	xrealloc ((char *) noname_undefs,
4434 		  noname_undefs_allocated * sizeof (struct nat));
4435     }
4436   noname_undefs[noname_undefs_length++] = nat;
4437 }
4438 
4439 /* Add TYPE to the UNDEF_TYPES vector.
4440    See add_undefined_type for more details.  */
4441 
4442 static void
4443 add_undefined_type_1 (struct type *type)
4444 {
4445   if (undef_types_length == undef_types_allocated)
4446     {
4447       undef_types_allocated *= 2;
4448       undef_types = (struct type **)
4449 	xrealloc ((char *) undef_types,
4450 		  undef_types_allocated * sizeof (struct type *));
4451     }
4452   undef_types[undef_types_length++] = type;
4453 }
4454 
4455 /* What about types defined as forward references inside of a small lexical
4456    scope?  */
4457 /* Add a type to the list of undefined types to be checked through
4458    once this file has been read in.
4459 
4460    In practice, we actually maintain two such lists: The first list
4461    (UNDEF_TYPES) is used for types whose name has been provided, and
4462    concerns forward references (eg 'xs' or 'xu' forward references);
4463    the second list (NONAME_UNDEFS) is used for types whose name is
4464    unknown at creation time, because they were referenced through
4465    their type number before the actual type was declared.
4466    This function actually adds the given type to the proper list.  */
4467 
4468 static void
4469 add_undefined_type (struct type *type, int typenums[2])
4470 {
4471   if (TYPE_TAG_NAME (type) == NULL)
4472     add_undefined_type_noname (type, typenums);
4473   else
4474     add_undefined_type_1 (type);
4475 }
4476 
4477 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector.  */
4478 
4479 static void
4480 cleanup_undefined_types_noname (struct objfile *objfile)
4481 {
4482   int i;
4483 
4484   for (i = 0; i < noname_undefs_length; i++)
4485     {
4486       struct nat nat = noname_undefs[i];
4487       struct type **type;
4488 
4489       type = dbx_lookup_type (nat.typenums, objfile);
4490       if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4491         {
4492           /* The instance flags of the undefined type are still unset,
4493              and needs to be copied over from the reference type.
4494              Since replace_type expects them to be identical, we need
4495              to set these flags manually before hand.  */
4496           TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4497           replace_type (nat.type, *type);
4498         }
4499     }
4500 
4501   noname_undefs_length = 0;
4502 }
4503 
4504 /* Go through each undefined type, see if it's still undefined, and fix it
4505    up if possible.  We have two kinds of undefined types:
4506 
4507    TYPE_CODE_ARRAY:  Array whose target type wasn't defined yet.
4508    Fix:  update array length using the element bounds
4509    and the target type's length.
4510    TYPE_CODE_STRUCT, TYPE_CODE_UNION:  Structure whose fields were not
4511    yet defined at the time a pointer to it was made.
4512    Fix:  Do a full lookup on the struct/union tag.  */
4513 
4514 static void
4515 cleanup_undefined_types_1 (void)
4516 {
4517   struct type **type;
4518 
4519   /* Iterate over every undefined type, and look for a symbol whose type
4520      matches our undefined type.  The symbol matches if:
4521        1. It is a typedef in the STRUCT domain;
4522        2. It has the same name, and same type code;
4523        3. The instance flags are identical.
4524 
4525      It is important to check the instance flags, because we have seen
4526      examples where the debug info contained definitions such as:
4527 
4528          "foo_t:t30=B31=xefoo_t:"
4529 
4530      In this case, we have created an undefined type named "foo_t" whose
4531      instance flags is null (when processing "xefoo_t"), and then created
4532      another type with the same name, but with different instance flags
4533      ('B' means volatile).  I think that the definition above is wrong,
4534      since the same type cannot be volatile and non-volatile at the same
4535      time, but we need to be able to cope with it when it happens.  The
4536      approach taken here is to treat these two types as different.  */
4537 
4538   for (type = undef_types; type < undef_types + undef_types_length; type++)
4539     {
4540       switch (TYPE_CODE (*type))
4541 	{
4542 
4543 	case TYPE_CODE_STRUCT:
4544 	case TYPE_CODE_UNION:
4545 	case TYPE_CODE_ENUM:
4546 	  {
4547 	    /* Check if it has been defined since.  Need to do this here
4548 	       as well as in check_typedef to deal with the (legitimate in
4549 	       C though not C++) case of several types with the same name
4550 	       in different source files.  */
4551 	    if (TYPE_STUB (*type))
4552 	      {
4553 		struct pending *ppt;
4554 		int i;
4555 		/* Name of the type, without "struct" or "union".  */
4556 		char *typename = TYPE_TAG_NAME (*type);
4557 
4558 		if (typename == NULL)
4559 		  {
4560 		    complaint (&symfile_complaints, _("need a type name"));
4561 		    break;
4562 		  }
4563 		for (ppt = file_symbols; ppt; ppt = ppt->next)
4564 		  {
4565 		    for (i = 0; i < ppt->nsyms; i++)
4566 		      {
4567 			struct symbol *sym = ppt->symbol[i];
4568 
4569 			if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4570 			    && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4571 			    && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4572 				TYPE_CODE (*type))
4573 			    && (TYPE_INSTANCE_FLAGS (*type) ==
4574 				TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4575 			    && strcmp (SYMBOL_LINKAGE_NAME (sym),
4576 				       typename) == 0)
4577                           replace_type (*type, SYMBOL_TYPE (sym));
4578 		      }
4579 		  }
4580 	      }
4581 	  }
4582 	  break;
4583 
4584 	default:
4585 	  {
4586 	    complaint (&symfile_complaints,
4587 		       _("forward-referenced types left unresolved, "
4588                        "type code %d."),
4589 		       TYPE_CODE (*type));
4590 	  }
4591 	  break;
4592 	}
4593     }
4594 
4595   undef_types_length = 0;
4596 }
4597 
4598 /* Try to fix all the undefined types we ecountered while processing
4599    this unit.  */
4600 
4601 void
4602 cleanup_undefined_types (struct objfile *objfile)
4603 {
4604   cleanup_undefined_types_1 ();
4605   cleanup_undefined_types_noname (objfile);
4606 }
4607 
4608 /* Scan through all of the global symbols defined in the object file,
4609    assigning values to the debugging symbols that need to be assigned
4610    to.  Get these symbols from the minimal symbol table.  */
4611 
4612 void
4613 scan_file_globals (struct objfile *objfile)
4614 {
4615   int hash;
4616   struct minimal_symbol *msymbol;
4617   struct symbol *sym, *prev;
4618   struct objfile *resolve_objfile;
4619 
4620   /* SVR4 based linkers copy referenced global symbols from shared
4621      libraries to the main executable.
4622      If we are scanning the symbols for a shared library, try to resolve
4623      them from the minimal symbols of the main executable first.  */
4624 
4625   if (symfile_objfile && objfile != symfile_objfile)
4626     resolve_objfile = symfile_objfile;
4627   else
4628     resolve_objfile = objfile;
4629 
4630   while (1)
4631     {
4632       /* Avoid expensive loop through all minimal symbols if there are
4633          no unresolved symbols.  */
4634       for (hash = 0; hash < HASHSIZE; hash++)
4635 	{
4636 	  if (global_sym_chain[hash])
4637 	    break;
4638 	}
4639       if (hash >= HASHSIZE)
4640 	return;
4641 
4642       ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4643 	{
4644 	  QUIT;
4645 
4646 	  /* Skip static symbols.  */
4647 	  switch (MSYMBOL_TYPE (msymbol))
4648 	    {
4649 	    case mst_file_text:
4650 	    case mst_file_data:
4651 	    case mst_file_bss:
4652 	      continue;
4653 	    default:
4654 	      break;
4655 	    }
4656 
4657 	  prev = NULL;
4658 
4659 	  /* Get the hash index and check all the symbols
4660 	     under that hash index.  */
4661 
4662 	  hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4663 
4664 	  for (sym = global_sym_chain[hash]; sym;)
4665 	    {
4666 	      if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4667 			  SYMBOL_LINKAGE_NAME (sym)) == 0)
4668 		{
4669 		  /* Splice this symbol out of the hash chain and
4670 		     assign the value we have to it.  */
4671 		  if (prev)
4672 		    {
4673 		      SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4674 		    }
4675 		  else
4676 		    {
4677 		      global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4678 		    }
4679 
4680 		  /* Check to see whether we need to fix up a common block.  */
4681 		  /* Note: this code might be executed several times for
4682 		     the same symbol if there are multiple references.  */
4683 		  if (sym)
4684 		    {
4685 		      if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4686 			{
4687 			  fix_common_block (sym,
4688 					    SYMBOL_VALUE_ADDRESS (msymbol));
4689 			}
4690 		      else
4691 			{
4692 			  SYMBOL_VALUE_ADDRESS (sym)
4693 			    = SYMBOL_VALUE_ADDRESS (msymbol);
4694 			}
4695 		      SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4696 		    }
4697 
4698 		  if (prev)
4699 		    {
4700 		      sym = SYMBOL_VALUE_CHAIN (prev);
4701 		    }
4702 		  else
4703 		    {
4704 		      sym = global_sym_chain[hash];
4705 		    }
4706 		}
4707 	      else
4708 		{
4709 		  prev = sym;
4710 		  sym = SYMBOL_VALUE_CHAIN (sym);
4711 		}
4712 	    }
4713 	}
4714       if (resolve_objfile == objfile)
4715 	break;
4716       resolve_objfile = objfile;
4717     }
4718 
4719   /* Change the storage class of any remaining unresolved globals to
4720      LOC_UNRESOLVED and remove them from the chain.  */
4721   for (hash = 0; hash < HASHSIZE; hash++)
4722     {
4723       sym = global_sym_chain[hash];
4724       while (sym)
4725 	{
4726 	  prev = sym;
4727 	  sym = SYMBOL_VALUE_CHAIN (sym);
4728 
4729 	  /* Change the symbol address from the misleading chain value
4730 	     to address zero.  */
4731 	  SYMBOL_VALUE_ADDRESS (prev) = 0;
4732 
4733 	  /* Complain about unresolved common block symbols.  */
4734 	  if (SYMBOL_CLASS (prev) == LOC_STATIC)
4735 	    SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4736 	  else
4737 	    complaint (&symfile_complaints,
4738 		       _("%s: common block `%s' from "
4739 			 "global_sym_chain unresolved"),
4740 		       objfile->name, SYMBOL_PRINT_NAME (prev));
4741 	}
4742     }
4743   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4744 }
4745 
4746 /* Initialize anything that needs initializing when starting to read
4747    a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4748    to a psymtab.  */
4749 
4750 void
4751 stabsread_init (void)
4752 {
4753 }
4754 
4755 /* Initialize anything that needs initializing when a completely new
4756    symbol file is specified (not just adding some symbols from another
4757    file, e.g. a shared library).  */
4758 
4759 void
4760 stabsread_new_init (void)
4761 {
4762   /* Empty the hash table of global syms looking for values.  */
4763   memset (global_sym_chain, 0, sizeof (global_sym_chain));
4764 }
4765 
4766 /* Initialize anything that needs initializing at the same time as
4767    start_symtab() is called.  */
4768 
4769 void
4770 start_stabs (void)
4771 {
4772   global_stabs = NULL;		/* AIX COFF */
4773   /* Leave FILENUM of 0 free for builtin types and this file's types.  */
4774   n_this_object_header_files = 1;
4775   type_vector_length = 0;
4776   type_vector = (struct type **) 0;
4777 
4778   /* FIXME: If common_block_name is not already NULL, we should complain().  */
4779   common_block_name = NULL;
4780 }
4781 
4782 /* Call after end_symtab().  */
4783 
4784 void
4785 end_stabs (void)
4786 {
4787   if (type_vector)
4788     {
4789       xfree (type_vector);
4790     }
4791   type_vector = 0;
4792   type_vector_length = 0;
4793   previous_stab_code = 0;
4794 }
4795 
4796 void
4797 finish_global_stabs (struct objfile *objfile)
4798 {
4799   if (global_stabs)
4800     {
4801       patch_block_stabs (global_symbols, global_stabs, objfile);
4802       xfree (global_stabs);
4803       global_stabs = NULL;
4804     }
4805 }
4806 
4807 /* Find the end of the name, delimited by a ':', but don't match
4808    ObjC symbols which look like -[Foo bar::]:bla.  */
4809 static char *
4810 find_name_end (char *name)
4811 {
4812   char *s = name;
4813 
4814   if (s[0] == '-' || *s == '+')
4815     {
4816       /* Must be an ObjC method symbol.  */
4817       if (s[1] != '[')
4818 	{
4819 	  error (_("invalid symbol name \"%s\""), name);
4820 	}
4821       s = strchr (s, ']');
4822       if (s == NULL)
4823 	{
4824 	  error (_("invalid symbol name \"%s\""), name);
4825 	}
4826       return strchr (s, ':');
4827     }
4828   else
4829     {
4830       return strchr (s, ':');
4831     }
4832 }
4833 
4834 /* Initializer for this module.  */
4835 
4836 void
4837 _initialize_stabsread (void)
4838 {
4839   rs6000_builtin_type_data = register_objfile_data ();
4840 
4841   undef_types_allocated = 20;
4842   undef_types_length = 0;
4843   undef_types = (struct type **)
4844     xmalloc (undef_types_allocated * sizeof (struct type *));
4845 
4846   noname_undefs_allocated = 20;
4847   noname_undefs_length = 0;
4848   noname_undefs = (struct nat *)
4849     xmalloc (noname_undefs_allocated * sizeof (struct nat));
4850 }
4851