1 /* Generic symbol file reading for the GNU debugger, GDB. 2 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 5 Free Software Foundation, Inc. 6 7 Contributed by Cygnus Support, using pieces from other GDB modules. 8 9 This file is part of GDB. 10 11 This program is free software; you can redistribute it and/or modify 12 it under the terms of the GNU General Public License as published by 13 the Free Software Foundation; either version 3 of the License, or 14 (at your option) any later version. 15 16 This program is distributed in the hope that it will be useful, 17 but WITHOUT ANY WARRANTY; without even the implied warranty of 18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 GNU General Public License for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 23 24 #include "defs.h" 25 #include "arch-utils.h" 26 #include "bfdlink.h" 27 #include "symtab.h" 28 #include "gdbtypes.h" 29 #include "gdbcore.h" 30 #include "frame.h" 31 #include "target.h" 32 #include "value.h" 33 #include "symfile.h" 34 #include "objfiles.h" 35 #include "source.h" 36 #include "gdbcmd.h" 37 #include "breakpoint.h" 38 #include "language.h" 39 #include "complaints.h" 40 #include "demangle.h" 41 #include "inferior.h" 42 #include "regcache.h" 43 #include "filenames.h" /* for DOSish file names */ 44 #include "gdb-stabs.h" 45 #include "gdb_obstack.h" 46 #include "completer.h" 47 #include "bcache.h" 48 #include "hashtab.h" 49 #include "readline/readline.h" 50 #include "gdb_assert.h" 51 #include "block.h" 52 #include "observer.h" 53 #include "exec.h" 54 #include "parser-defs.h" 55 #include "varobj.h" 56 #include "elf-bfd.h" 57 #include "solib.h" 58 #include "remote.h" 59 60 #include <sys/types.h> 61 #include <fcntl.h> 62 #include "gdb_string.h" 63 #include "gdb_stat.h" 64 #include <ctype.h> 65 #include <time.h> 66 #include <sys/time.h> 67 68 69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num); 70 void (*deprecated_show_load_progress) (const char *section, 71 unsigned long section_sent, 72 unsigned long section_size, 73 unsigned long total_sent, 74 unsigned long total_size); 75 void (*deprecated_pre_add_symbol_hook) (const char *); 76 void (*deprecated_post_add_symbol_hook) (void); 77 78 static void clear_symtab_users_cleanup (void *ignore); 79 80 /* Global variables owned by this file */ 81 int readnow_symbol_files; /* Read full symbols immediately */ 82 83 /* External variables and functions referenced. */ 84 85 extern void report_transfer_performance (unsigned long, time_t, time_t); 86 87 /* Functions this file defines */ 88 89 #if 0 90 static int simple_read_overlay_region_table (void); 91 static void simple_free_overlay_region_table (void); 92 #endif 93 94 static void load_command (char *, int); 95 96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags); 97 98 static void add_symbol_file_command (char *, int); 99 100 static void reread_separate_symbols (struct objfile *objfile); 101 102 static void cashier_psymtab (struct partial_symtab *); 103 104 bfd *symfile_bfd_open (char *); 105 106 int get_section_index (struct objfile *, char *); 107 108 static struct sym_fns *find_sym_fns (bfd *); 109 110 static void decrement_reading_symtab (void *); 111 112 static void overlay_invalidate_all (void); 113 114 void list_overlays_command (char *, int); 115 116 void map_overlay_command (char *, int); 117 118 void unmap_overlay_command (char *, int); 119 120 static void overlay_auto_command (char *, int); 121 122 static void overlay_manual_command (char *, int); 123 124 static void overlay_off_command (char *, int); 125 126 static void overlay_load_command (char *, int); 127 128 static void overlay_command (char *, int); 129 130 static void simple_free_overlay_table (void); 131 132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int, 133 enum bfd_endian); 134 135 static int simple_read_overlay_table (void); 136 137 static int simple_overlay_update_1 (struct obj_section *); 138 139 static void add_filename_language (char *ext, enum language lang); 140 141 static void info_ext_lang_command (char *args, int from_tty); 142 143 static char *find_separate_debug_file (struct objfile *objfile); 144 145 static void init_filename_language_table (void); 146 147 static void symfile_find_segment_sections (struct objfile *objfile); 148 149 void _initialize_symfile (void); 150 151 /* List of all available sym_fns. On gdb startup, each object file reader 152 calls add_symtab_fns() to register information on each format it is 153 prepared to read. */ 154 155 static struct sym_fns *symtab_fns = NULL; 156 157 /* Flag for whether user will be reloading symbols multiple times. 158 Defaults to ON for VxWorks, otherwise OFF. */ 159 160 #ifdef SYMBOL_RELOADING_DEFAULT 161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT; 162 #else 163 int symbol_reloading = 0; 164 #endif 165 static void 166 show_symbol_reloading (struct ui_file *file, int from_tty, 167 struct cmd_list_element *c, const char *value) 168 { 169 fprintf_filtered (file, _("\ 170 Dynamic symbol table reloading multiple times in one run is %s.\n"), 171 value); 172 } 173 174 /* If non-zero, shared library symbols will be added automatically 175 when the inferior is created, new libraries are loaded, or when 176 attaching to the inferior. This is almost always what users will 177 want to have happen; but for very large programs, the startup time 178 will be excessive, and so if this is a problem, the user can clear 179 this flag and then add the shared library symbols as needed. Note 180 that there is a potential for confusion, since if the shared 181 library symbols are not loaded, commands like "info fun" will *not* 182 report all the functions that are actually present. */ 183 184 int auto_solib_add = 1; 185 186 /* For systems that support it, a threshold size in megabytes. If 187 automatically adding a new library's symbol table to those already 188 known to the debugger would cause the total shared library symbol 189 size to exceed this threshhold, then the shlib's symbols are not 190 added. The threshold is ignored if the user explicitly asks for a 191 shlib to be added, such as when using the "sharedlibrary" 192 command. */ 193 194 int auto_solib_limit; 195 196 197 /* This compares two partial symbols by names, using strcmp_iw_ordered 198 for the comparison. */ 199 200 static int 201 compare_psymbols (const void *s1p, const void *s2p) 202 { 203 struct partial_symbol *const *s1 = s1p; 204 struct partial_symbol *const *s2 = s2p; 205 206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1), 207 SYMBOL_SEARCH_NAME (*s2)); 208 } 209 210 void 211 sort_pst_symbols (struct partial_symtab *pst) 212 { 213 /* Sort the global list; don't sort the static list */ 214 215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset, 216 pst->n_global_syms, sizeof (struct partial_symbol *), 217 compare_psymbols); 218 } 219 220 /* Make a null terminated copy of the string at PTR with SIZE characters in 221 the obstack pointed to by OBSTACKP . Returns the address of the copy. 222 Note that the string at PTR does not have to be null terminated, I.E. it 223 may be part of a larger string and we are only saving a substring. */ 224 225 char * 226 obsavestring (const char *ptr, int size, struct obstack *obstackp) 227 { 228 char *p = (char *) obstack_alloc (obstackp, size + 1); 229 /* Open-coded memcpy--saves function call time. These strings are usually 230 short. FIXME: Is this really still true with a compiler that can 231 inline memcpy? */ 232 { 233 const char *p1 = ptr; 234 char *p2 = p; 235 const char *end = ptr + size; 236 while (p1 != end) 237 *p2++ = *p1++; 238 } 239 p[size] = 0; 240 return p; 241 } 242 243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found 244 in the obstack pointed to by OBSTACKP. */ 245 246 char * 247 obconcat (struct obstack *obstackp, const char *s1, const char *s2, 248 const char *s3) 249 { 250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1; 251 char *val = (char *) obstack_alloc (obstackp, len); 252 strcpy (val, s1); 253 strcat (val, s2); 254 strcat (val, s3); 255 return val; 256 } 257 258 /* True if we are nested inside psymtab_to_symtab. */ 259 260 int currently_reading_symtab = 0; 261 262 static void 263 decrement_reading_symtab (void *dummy) 264 { 265 currently_reading_symtab--; 266 } 267 268 /* Get the symbol table that corresponds to a partial_symtab. 269 This is fast after the first time you do it. In fact, there 270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast 271 case inline. */ 272 273 struct symtab * 274 psymtab_to_symtab (struct partial_symtab *pst) 275 { 276 /* If it's been looked up before, return it. */ 277 if (pst->symtab) 278 return pst->symtab; 279 280 /* If it has not yet been read in, read it. */ 281 if (!pst->readin) 282 { 283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL); 284 currently_reading_symtab++; 285 (*pst->read_symtab) (pst); 286 do_cleanups (back_to); 287 } 288 289 return pst->symtab; 290 } 291 292 /* Remember the lowest-addressed loadable section we've seen. 293 This function is called via bfd_map_over_sections. 294 295 In case of equal vmas, the section with the largest size becomes the 296 lowest-addressed loadable section. 297 298 If the vmas and sizes are equal, the last section is considered the 299 lowest-addressed loadable section. */ 300 301 void 302 find_lowest_section (bfd *abfd, asection *sect, void *obj) 303 { 304 asection **lowest = (asection **) obj; 305 306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD)) 307 return; 308 if (!*lowest) 309 *lowest = sect; /* First loadable section */ 310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect)) 311 *lowest = sect; /* A lower loadable section */ 312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect) 313 && (bfd_section_size (abfd, (*lowest)) 314 <= bfd_section_size (abfd, sect))) 315 *lowest = sect; 316 } 317 318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */ 319 320 struct section_addr_info * 321 alloc_section_addr_info (size_t num_sections) 322 { 323 struct section_addr_info *sap; 324 size_t size; 325 326 size = (sizeof (struct section_addr_info) 327 + sizeof (struct other_sections) * (num_sections - 1)); 328 sap = (struct section_addr_info *) xmalloc (size); 329 memset (sap, 0, size); 330 sap->num_sections = num_sections; 331 332 return sap; 333 } 334 335 336 /* Return a freshly allocated copy of ADDRS. The section names, if 337 any, are also freshly allocated copies of those in ADDRS. */ 338 struct section_addr_info * 339 copy_section_addr_info (struct section_addr_info *addrs) 340 { 341 struct section_addr_info *copy 342 = alloc_section_addr_info (addrs->num_sections); 343 int i; 344 345 copy->num_sections = addrs->num_sections; 346 for (i = 0; i < addrs->num_sections; i++) 347 { 348 copy->other[i].addr = addrs->other[i].addr; 349 if (addrs->other[i].name) 350 copy->other[i].name = xstrdup (addrs->other[i].name); 351 else 352 copy->other[i].name = NULL; 353 copy->other[i].sectindex = addrs->other[i].sectindex; 354 } 355 356 return copy; 357 } 358 359 360 361 /* Build (allocate and populate) a section_addr_info struct from 362 an existing section table. */ 363 364 extern struct section_addr_info * 365 build_section_addr_info_from_section_table (const struct target_section *start, 366 const struct target_section *end) 367 { 368 struct section_addr_info *sap; 369 const struct target_section *stp; 370 int oidx; 371 372 sap = alloc_section_addr_info (end - start); 373 374 for (stp = start, oidx = 0; stp != end; stp++) 375 { 376 if (bfd_get_section_flags (stp->bfd, 377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD) 378 && oidx < end - start) 379 { 380 sap->other[oidx].addr = stp->addr; 381 sap->other[oidx].name 382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section)); 383 sap->other[oidx].sectindex = stp->the_bfd_section->index; 384 oidx++; 385 } 386 } 387 388 return sap; 389 } 390 391 392 /* Free all memory allocated by build_section_addr_info_from_section_table. */ 393 394 extern void 395 free_section_addr_info (struct section_addr_info *sap) 396 { 397 int idx; 398 399 for (idx = 0; idx < sap->num_sections; idx++) 400 if (sap->other[idx].name) 401 xfree (sap->other[idx].name); 402 xfree (sap); 403 } 404 405 406 /* Initialize OBJFILE's sect_index_* members. */ 407 static void 408 init_objfile_sect_indices (struct objfile *objfile) 409 { 410 asection *sect; 411 int i; 412 413 sect = bfd_get_section_by_name (objfile->obfd, ".text"); 414 if (sect) 415 objfile->sect_index_text = sect->index; 416 417 sect = bfd_get_section_by_name (objfile->obfd, ".data"); 418 if (sect) 419 objfile->sect_index_data = sect->index; 420 421 sect = bfd_get_section_by_name (objfile->obfd, ".bss"); 422 if (sect) 423 objfile->sect_index_bss = sect->index; 424 425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata"); 426 if (sect) 427 objfile->sect_index_rodata = sect->index; 428 429 /* This is where things get really weird... We MUST have valid 430 indices for the various sect_index_* members or gdb will abort. 431 So if for example, there is no ".text" section, we have to 432 accomodate that. First, check for a file with the standard 433 one or two segments. */ 434 435 symfile_find_segment_sections (objfile); 436 437 /* Except when explicitly adding symbol files at some address, 438 section_offsets contains nothing but zeros, so it doesn't matter 439 which slot in section_offsets the individual sect_index_* members 440 index into. So if they are all zero, it is safe to just point 441 all the currently uninitialized indices to the first slot. But 442 beware: if this is the main executable, it may be relocated 443 later, e.g. by the remote qOffsets packet, and then this will 444 be wrong! That's why we try segments first. */ 445 446 for (i = 0; i < objfile->num_sections; i++) 447 { 448 if (ANOFFSET (objfile->section_offsets, i) != 0) 449 { 450 break; 451 } 452 } 453 if (i == objfile->num_sections) 454 { 455 if (objfile->sect_index_text == -1) 456 objfile->sect_index_text = 0; 457 if (objfile->sect_index_data == -1) 458 objfile->sect_index_data = 0; 459 if (objfile->sect_index_bss == -1) 460 objfile->sect_index_bss = 0; 461 if (objfile->sect_index_rodata == -1) 462 objfile->sect_index_rodata = 0; 463 } 464 } 465 466 /* The arguments to place_section. */ 467 468 struct place_section_arg 469 { 470 struct section_offsets *offsets; 471 CORE_ADDR lowest; 472 }; 473 474 /* Find a unique offset to use for loadable section SECT if 475 the user did not provide an offset. */ 476 477 static void 478 place_section (bfd *abfd, asection *sect, void *obj) 479 { 480 struct place_section_arg *arg = obj; 481 CORE_ADDR *offsets = arg->offsets->offsets, start_addr; 482 int done; 483 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect); 484 485 /* We are only interested in allocated sections. */ 486 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) 487 return; 488 489 /* If the user specified an offset, honor it. */ 490 if (offsets[sect->index] != 0) 491 return; 492 493 /* Otherwise, let's try to find a place for the section. */ 494 start_addr = (arg->lowest + align - 1) & -align; 495 496 do { 497 asection *cur_sec; 498 499 done = 1; 500 501 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next) 502 { 503 int indx = cur_sec->index; 504 CORE_ADDR cur_offset; 505 506 /* We don't need to compare against ourself. */ 507 if (cur_sec == sect) 508 continue; 509 510 /* We can only conflict with allocated sections. */ 511 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0) 512 continue; 513 514 /* If the section offset is 0, either the section has not been placed 515 yet, or it was the lowest section placed (in which case LOWEST 516 will be past its end). */ 517 if (offsets[indx] == 0) 518 continue; 519 520 /* If this section would overlap us, then we must move up. */ 521 if (start_addr + bfd_get_section_size (sect) > offsets[indx] 522 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec)) 523 { 524 start_addr = offsets[indx] + bfd_get_section_size (cur_sec); 525 start_addr = (start_addr + align - 1) & -align; 526 done = 0; 527 break; 528 } 529 530 /* Otherwise, we appear to be OK. So far. */ 531 } 532 } 533 while (!done); 534 535 offsets[sect->index] = start_addr; 536 arg->lowest = start_addr + bfd_get_section_size (sect); 537 } 538 539 /* Parse the user's idea of an offset for dynamic linking, into our idea 540 of how to represent it for fast symbol reading. This is the default 541 version of the sym_fns.sym_offsets function for symbol readers that 542 don't need to do anything special. It allocates a section_offsets table 543 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */ 544 545 void 546 default_symfile_offsets (struct objfile *objfile, 547 struct section_addr_info *addrs) 548 { 549 int i; 550 551 objfile->num_sections = bfd_count_sections (objfile->obfd); 552 objfile->section_offsets = (struct section_offsets *) 553 obstack_alloc (&objfile->objfile_obstack, 554 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); 555 memset (objfile->section_offsets, 0, 556 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)); 557 558 /* Now calculate offsets for section that were specified by the 559 caller. */ 560 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++) 561 { 562 struct other_sections *osp ; 563 564 osp = &addrs->other[i] ; 565 if (osp->addr == 0) 566 continue; 567 568 /* Record all sections in offsets */ 569 /* The section_offsets in the objfile are here filled in using 570 the BFD index. */ 571 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr; 572 } 573 574 /* For relocatable files, all loadable sections will start at zero. 575 The zero is meaningless, so try to pick arbitrary addresses such 576 that no loadable sections overlap. This algorithm is quadratic, 577 but the number of sections in a single object file is generally 578 small. */ 579 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0) 580 { 581 struct place_section_arg arg; 582 bfd *abfd = objfile->obfd; 583 asection *cur_sec; 584 CORE_ADDR lowest = 0; 585 586 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next) 587 /* We do not expect this to happen; just skip this step if the 588 relocatable file has a section with an assigned VMA. */ 589 if (bfd_section_vma (abfd, cur_sec) != 0) 590 break; 591 592 if (cur_sec == NULL) 593 { 594 CORE_ADDR *offsets = objfile->section_offsets->offsets; 595 596 /* Pick non-overlapping offsets for sections the user did not 597 place explicitly. */ 598 arg.offsets = objfile->section_offsets; 599 arg.lowest = 0; 600 bfd_map_over_sections (objfile->obfd, place_section, &arg); 601 602 /* Correctly filling in the section offsets is not quite 603 enough. Relocatable files have two properties that 604 (most) shared objects do not: 605 606 - Their debug information will contain relocations. Some 607 shared libraries do also, but many do not, so this can not 608 be assumed. 609 610 - If there are multiple code sections they will be loaded 611 at different relative addresses in memory than they are 612 in the objfile, since all sections in the file will start 613 at address zero. 614 615 Because GDB has very limited ability to map from an 616 address in debug info to the correct code section, 617 it relies on adding SECT_OFF_TEXT to things which might be 618 code. If we clear all the section offsets, and set the 619 section VMAs instead, then symfile_relocate_debug_section 620 will return meaningful debug information pointing at the 621 correct sections. 622 623 GDB has too many different data structures for section 624 addresses - a bfd, objfile, and so_list all have section 625 tables, as does exec_ops. Some of these could probably 626 be eliminated. */ 627 628 for (cur_sec = abfd->sections; cur_sec != NULL; 629 cur_sec = cur_sec->next) 630 { 631 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0) 632 continue; 633 634 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]); 635 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index, 636 offsets[cur_sec->index]); 637 offsets[cur_sec->index] = 0; 638 } 639 } 640 } 641 642 /* Remember the bfd indexes for the .text, .data, .bss and 643 .rodata sections. */ 644 init_objfile_sect_indices (objfile); 645 } 646 647 648 /* Divide the file into segments, which are individual relocatable units. 649 This is the default version of the sym_fns.sym_segments function for 650 symbol readers that do not have an explicit representation of segments. 651 It assumes that object files do not have segments, and fully linked 652 files have a single segment. */ 653 654 struct symfile_segment_data * 655 default_symfile_segments (bfd *abfd) 656 { 657 int num_sections, i; 658 asection *sect; 659 struct symfile_segment_data *data; 660 CORE_ADDR low, high; 661 662 /* Relocatable files contain enough information to position each 663 loadable section independently; they should not be relocated 664 in segments. */ 665 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0) 666 return NULL; 667 668 /* Make sure there is at least one loadable section in the file. */ 669 for (sect = abfd->sections; sect != NULL; sect = sect->next) 670 { 671 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) 672 continue; 673 674 break; 675 } 676 if (sect == NULL) 677 return NULL; 678 679 low = bfd_get_section_vma (abfd, sect); 680 high = low + bfd_get_section_size (sect); 681 682 data = XZALLOC (struct symfile_segment_data); 683 data->num_segments = 1; 684 data->segment_bases = XCALLOC (1, CORE_ADDR); 685 data->segment_sizes = XCALLOC (1, CORE_ADDR); 686 687 num_sections = bfd_count_sections (abfd); 688 data->segment_info = XCALLOC (num_sections, int); 689 690 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 691 { 692 CORE_ADDR vma; 693 694 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0) 695 continue; 696 697 vma = bfd_get_section_vma (abfd, sect); 698 if (vma < low) 699 low = vma; 700 if (vma + bfd_get_section_size (sect) > high) 701 high = vma + bfd_get_section_size (sect); 702 703 data->segment_info[i] = 1; 704 } 705 706 data->segment_bases[0] = low; 707 data->segment_sizes[0] = high - low; 708 709 return data; 710 } 711 712 /* Process a symbol file, as either the main file or as a dynamically 713 loaded file. 714 715 OBJFILE is where the symbols are to be read from. 716 717 ADDRS is the list of section load addresses. If the user has given 718 an 'add-symbol-file' command, then this is the list of offsets and 719 addresses he or she provided as arguments to the command; or, if 720 we're handling a shared library, these are the actual addresses the 721 sections are loaded at, according to the inferior's dynamic linker 722 (as gleaned by GDB's shared library code). We convert each address 723 into an offset from the section VMA's as it appears in the object 724 file, and then call the file's sym_offsets function to convert this 725 into a format-specific offset table --- a `struct section_offsets'. 726 If ADDRS is non-zero, OFFSETS must be zero. 727 728 OFFSETS is a table of section offsets already in the right 729 format-specific representation. NUM_OFFSETS is the number of 730 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we 731 assume this is the proper table the call to sym_offsets described 732 above would produce. Instead of calling sym_offsets, we just dump 733 it right into objfile->section_offsets. (When we're re-reading 734 symbols from an objfile, we don't have the original load address 735 list any more; all we have is the section offset table.) If 736 OFFSETS is non-zero, ADDRS must be zero. 737 738 ADD_FLAGS encodes verbosity level, whether this is main symbol or 739 an extra symbol file such as dynamically loaded code, and wether 740 breakpoint reset should be deferred. */ 741 742 void 743 syms_from_objfile (struct objfile *objfile, 744 struct section_addr_info *addrs, 745 struct section_offsets *offsets, 746 int num_offsets, 747 int add_flags) 748 { 749 struct section_addr_info *local_addr = NULL; 750 struct cleanup *old_chain; 751 const int mainline = add_flags & SYMFILE_MAINLINE; 752 753 gdb_assert (! (addrs && offsets)); 754 755 init_entry_point_info (objfile); 756 objfile->sf = find_sym_fns (objfile->obfd); 757 758 if (objfile->sf == NULL) 759 return; /* No symbols. */ 760 761 /* Make sure that partially constructed symbol tables will be cleaned up 762 if an error occurs during symbol reading. */ 763 old_chain = make_cleanup_free_objfile (objfile); 764 765 /* If ADDRS and OFFSETS are both NULL, put together a dummy address 766 list. We now establish the convention that an addr of zero means 767 no load address was specified. */ 768 if (! addrs && ! offsets) 769 { 770 local_addr 771 = alloc_section_addr_info (bfd_count_sections (objfile->obfd)); 772 make_cleanup (xfree, local_addr); 773 addrs = local_addr; 774 } 775 776 /* Now either addrs or offsets is non-zero. */ 777 778 if (mainline) 779 { 780 /* We will modify the main symbol table, make sure that all its users 781 will be cleaned up if an error occurs during symbol reading. */ 782 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/); 783 784 /* Since no error yet, throw away the old symbol table. */ 785 786 if (symfile_objfile != NULL) 787 { 788 free_objfile (symfile_objfile); 789 gdb_assert (symfile_objfile == NULL); 790 } 791 792 /* Currently we keep symbols from the add-symbol-file command. 793 If the user wants to get rid of them, they should do "symbol-file" 794 without arguments first. Not sure this is the best behavior 795 (PR 2207). */ 796 797 (*objfile->sf->sym_new_init) (objfile); 798 } 799 800 /* Convert addr into an offset rather than an absolute address. 801 We find the lowest address of a loaded segment in the objfile, 802 and assume that <addr> is where that got loaded. 803 804 We no longer warn if the lowest section is not a text segment (as 805 happens for the PA64 port. */ 806 if (!mainline && addrs && addrs->other[0].name) 807 { 808 asection *lower_sect; 809 asection *sect; 810 CORE_ADDR lower_offset; 811 int i; 812 813 /* Find lowest loadable section to be used as starting point for 814 continguous sections. FIXME!! won't work without call to find 815 .text first, but this assumes text is lowest section. */ 816 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text"); 817 if (lower_sect == NULL) 818 bfd_map_over_sections (objfile->obfd, find_lowest_section, 819 &lower_sect); 820 if (lower_sect == NULL) 821 { 822 warning (_("no loadable sections found in added symbol-file %s"), 823 objfile->name); 824 lower_offset = 0; 825 } 826 else 827 lower_offset = bfd_section_vma (objfile->obfd, lower_sect); 828 829 /* Calculate offsets for the loadable sections. 830 FIXME! Sections must be in order of increasing loadable section 831 so that contiguous sections can use the lower-offset!!! 832 833 Adjust offsets if the segments are not contiguous. 834 If the section is contiguous, its offset should be set to 835 the offset of the highest loadable section lower than it 836 (the loadable section directly below it in memory). 837 this_offset = lower_offset = lower_addr - lower_orig_addr */ 838 839 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++) 840 { 841 if (addrs->other[i].addr != 0) 842 { 843 sect = bfd_get_section_by_name (objfile->obfd, 844 addrs->other[i].name); 845 if (sect) 846 { 847 addrs->other[i].addr 848 -= bfd_section_vma (objfile->obfd, sect); 849 lower_offset = addrs->other[i].addr; 850 /* This is the index used by BFD. */ 851 addrs->other[i].sectindex = sect->index ; 852 } 853 else 854 { 855 warning (_("section %s not found in %s"), 856 addrs->other[i].name, 857 objfile->name); 858 addrs->other[i].addr = 0; 859 } 860 } 861 else 862 addrs->other[i].addr = lower_offset; 863 } 864 } 865 866 /* Initialize symbol reading routines for this objfile, allow complaints to 867 appear for this new file, and record how verbose to be, then do the 868 initial symbol reading for this file. */ 869 870 (*objfile->sf->sym_init) (objfile); 871 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE); 872 873 if (addrs) 874 (*objfile->sf->sym_offsets) (objfile, addrs); 875 else 876 { 877 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets); 878 879 /* Just copy in the offset table directly as given to us. */ 880 objfile->num_sections = num_offsets; 881 objfile->section_offsets 882 = ((struct section_offsets *) 883 obstack_alloc (&objfile->objfile_obstack, size)); 884 memcpy (objfile->section_offsets, offsets, size); 885 886 init_objfile_sect_indices (objfile); 887 } 888 889 (*objfile->sf->sym_read) (objfile, mainline); 890 891 /* Discard cleanups as symbol reading was successful. */ 892 893 discard_cleanups (old_chain); 894 xfree (local_addr); 895 } 896 897 /* Perform required actions after either reading in the initial 898 symbols for a new objfile, or mapping in the symbols from a reusable 899 objfile. */ 900 901 void 902 new_symfile_objfile (struct objfile *objfile, int add_flags) 903 { 904 905 /* If this is the main symbol file we have to clean up all users of the 906 old main symbol file. Otherwise it is sufficient to fixup all the 907 breakpoints that may have been redefined by this symbol file. */ 908 if (add_flags & SYMFILE_MAINLINE) 909 { 910 /* OK, make it the "real" symbol file. */ 911 symfile_objfile = objfile; 912 913 clear_symtab_users (); 914 } 915 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0) 916 { 917 breakpoint_re_set (); 918 } 919 920 /* We're done reading the symbol file; finish off complaints. */ 921 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE); 922 } 923 924 /* Process a symbol file, as either the main file or as a dynamically 925 loaded file. 926 927 ABFD is a BFD already open on the file, as from symfile_bfd_open. 928 This BFD will be closed on error, and is always consumed by this function. 929 930 ADD_FLAGS encodes verbosity, whether this is main symbol file or 931 extra, such as dynamically loaded code, and what to do with breakpoins. 932 933 ADDRS, OFFSETS, and NUM_OFFSETS are as described for 934 syms_from_objfile, above. 935 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS. 936 937 Upon success, returns a pointer to the objfile that was added. 938 Upon failure, jumps back to command level (never returns). */ 939 940 static struct objfile * 941 symbol_file_add_with_addrs_or_offsets (bfd *abfd, 942 int add_flags, 943 struct section_addr_info *addrs, 944 struct section_offsets *offsets, 945 int num_offsets, 946 int flags) 947 { 948 struct objfile *objfile; 949 struct partial_symtab *psymtab; 950 char *debugfile = NULL; 951 struct section_addr_info *orig_addrs = NULL; 952 struct cleanup *my_cleanups; 953 const char *name = bfd_get_filename (abfd); 954 const int from_tty = add_flags & SYMFILE_VERBOSE; 955 956 my_cleanups = make_cleanup_bfd_close (abfd); 957 958 /* Give user a chance to burp if we'd be 959 interactively wiping out any existing symbols. */ 960 961 if ((have_full_symbols () || have_partial_symbols ()) 962 && (add_flags & SYMFILE_MAINLINE) 963 && from_tty 964 && !query (_("Load new symbol table from \"%s\"? "), name)) 965 error (_("Not confirmed.")); 966 967 objfile = allocate_objfile (abfd, flags); 968 discard_cleanups (my_cleanups); 969 970 if (addrs) 971 { 972 orig_addrs = copy_section_addr_info (addrs); 973 make_cleanup_free_section_addr_info (orig_addrs); 974 } 975 976 /* We either created a new mapped symbol table, mapped an existing 977 symbol table file which has not had initial symbol reading 978 performed, or need to read an unmapped symbol table. */ 979 if (from_tty || info_verbose) 980 { 981 if (deprecated_pre_add_symbol_hook) 982 deprecated_pre_add_symbol_hook (name); 983 else 984 { 985 printf_unfiltered (_("Reading symbols from %s..."), name); 986 wrap_here (""); 987 gdb_flush (gdb_stdout); 988 } 989 } 990 syms_from_objfile (objfile, addrs, offsets, num_offsets, 991 add_flags); 992 993 /* We now have at least a partial symbol table. Check to see if the 994 user requested that all symbols be read on initial access via either 995 the gdb startup command line or on a per symbol file basis. Expand 996 all partial symbol tables for this objfile if so. */ 997 998 if ((flags & OBJF_READNOW) || readnow_symbol_files) 999 { 1000 if (from_tty || info_verbose) 1001 { 1002 printf_unfiltered (_("expanding to full symbols...")); 1003 wrap_here (""); 1004 gdb_flush (gdb_stdout); 1005 } 1006 1007 for (psymtab = objfile->psymtabs; 1008 psymtab != NULL; 1009 psymtab = psymtab->next) 1010 { 1011 psymtab_to_symtab (psymtab); 1012 } 1013 } 1014 1015 /* If the file has its own symbol tables it has no separate debug info. 1016 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS. 1017 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */ 1018 if (objfile->psymtabs == NULL) 1019 debugfile = find_separate_debug_file (objfile); 1020 if (debugfile) 1021 { 1022 if (addrs != NULL) 1023 { 1024 objfile->separate_debug_objfile 1025 = symbol_file_add (debugfile, add_flags, orig_addrs, flags); 1026 } 1027 else 1028 { 1029 objfile->separate_debug_objfile 1030 = symbol_file_add (debugfile, add_flags, NULL, flags); 1031 } 1032 objfile->separate_debug_objfile->separate_debug_objfile_backlink 1033 = objfile; 1034 1035 /* Put the separate debug object before the normal one, this is so that 1036 usage of the ALL_OBJFILES_SAFE macro will stay safe. */ 1037 put_objfile_before (objfile->separate_debug_objfile, objfile); 1038 1039 xfree (debugfile); 1040 } 1041 1042 if ((from_tty || info_verbose) 1043 && !objfile_has_partial_symbols (objfile) 1044 && !objfile_has_full_symbols (objfile)) 1045 { 1046 wrap_here (""); 1047 printf_unfiltered (_("(no debugging symbols found)...")); 1048 wrap_here (""); 1049 } 1050 1051 if (from_tty || info_verbose) 1052 { 1053 if (deprecated_post_add_symbol_hook) 1054 deprecated_post_add_symbol_hook (); 1055 else 1056 printf_unfiltered (_("done.\n")); 1057 } 1058 1059 /* We print some messages regardless of whether 'from_tty || 1060 info_verbose' is true, so make sure they go out at the right 1061 time. */ 1062 gdb_flush (gdb_stdout); 1063 1064 do_cleanups (my_cleanups); 1065 1066 if (objfile->sf == NULL) 1067 { 1068 observer_notify_new_objfile (objfile); 1069 return objfile; /* No symbols. */ 1070 } 1071 1072 new_symfile_objfile (objfile, add_flags); 1073 1074 observer_notify_new_objfile (objfile); 1075 1076 bfd_cache_close_all (); 1077 return (objfile); 1078 } 1079 1080 1081 /* Process the symbol file ABFD, as either the main file or as a 1082 dynamically loaded file. 1083 1084 See symbol_file_add_with_addrs_or_offsets's comments for 1085 details. */ 1086 struct objfile * 1087 symbol_file_add_from_bfd (bfd *abfd, int add_flags, 1088 struct section_addr_info *addrs, 1089 int flags) 1090 { 1091 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0, 1092 flags); 1093 } 1094 1095 1096 /* Process a symbol file, as either the main file or as a dynamically 1097 loaded file. See symbol_file_add_with_addrs_or_offsets's comments 1098 for details. */ 1099 struct objfile * 1100 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs, 1101 int flags) 1102 { 1103 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs, 1104 flags); 1105 } 1106 1107 1108 /* Call symbol_file_add() with default values and update whatever is 1109 affected by the loading of a new main(). 1110 Used when the file is supplied in the gdb command line 1111 and by some targets with special loading requirements. 1112 The auxiliary function, symbol_file_add_main_1(), has the flags 1113 argument for the switches that can only be specified in the symbol_file 1114 command itself. */ 1115 1116 void 1117 symbol_file_add_main (char *args, int from_tty) 1118 { 1119 symbol_file_add_main_1 (args, from_tty, 0); 1120 } 1121 1122 static void 1123 symbol_file_add_main_1 (char *args, int from_tty, int flags) 1124 { 1125 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0); 1126 symbol_file_add (args, add_flags, NULL, flags); 1127 1128 /* Getting new symbols may change our opinion about 1129 what is frameless. */ 1130 reinit_frame_cache (); 1131 1132 set_initial_language (); 1133 } 1134 1135 void 1136 symbol_file_clear (int from_tty) 1137 { 1138 if ((have_full_symbols () || have_partial_symbols ()) 1139 && from_tty 1140 && (symfile_objfile 1141 ? !query (_("Discard symbol table from `%s'? "), 1142 symfile_objfile->name) 1143 : !query (_("Discard symbol table? ")))) 1144 error (_("Not confirmed.")); 1145 1146 free_all_objfiles (); 1147 1148 /* solib descriptors may have handles to objfiles. Since their 1149 storage has just been released, we'd better wipe the solib 1150 descriptors as well. */ 1151 no_shared_libraries (NULL, from_tty); 1152 1153 gdb_assert (symfile_objfile == NULL); 1154 if (from_tty) 1155 printf_unfiltered (_("No symbol file now.\n")); 1156 } 1157 1158 struct build_id 1159 { 1160 size_t size; 1161 gdb_byte data[1]; 1162 }; 1163 1164 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */ 1165 1166 static struct build_id * 1167 build_id_bfd_get (bfd *abfd) 1168 { 1169 struct build_id *retval; 1170 1171 if (!bfd_check_format (abfd, bfd_object) 1172 || bfd_get_flavour (abfd) != bfd_target_elf_flavour 1173 || elf_tdata (abfd)->build_id == NULL) 1174 return NULL; 1175 1176 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size); 1177 retval->size = elf_tdata (abfd)->build_id_size; 1178 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size); 1179 1180 return retval; 1181 } 1182 1183 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */ 1184 1185 static int 1186 build_id_verify (const char *filename, struct build_id *check) 1187 { 1188 bfd *abfd; 1189 struct build_id *found = NULL; 1190 int retval = 0; 1191 1192 /* We expect to be silent on the non-existing files. */ 1193 if (remote_filename_p (filename)) 1194 abfd = remote_bfd_open (filename, gnutarget); 1195 else 1196 abfd = bfd_openr (filename, gnutarget); 1197 if (abfd == NULL) 1198 return 0; 1199 1200 found = build_id_bfd_get (abfd); 1201 1202 if (found == NULL) 1203 warning (_("File \"%s\" has no build-id, file skipped"), filename); 1204 else if (found->size != check->size 1205 || memcmp (found->data, check->data, found->size) != 0) 1206 warning (_("File \"%s\" has a different build-id, file skipped"), filename); 1207 else 1208 retval = 1; 1209 1210 if (!bfd_close (abfd)) 1211 warning (_("cannot close \"%s\": %s"), filename, 1212 bfd_errmsg (bfd_get_error ())); 1213 1214 xfree (found); 1215 1216 return retval; 1217 } 1218 1219 static char * 1220 build_id_to_debug_filename (struct build_id *build_id) 1221 { 1222 char *link, *s, *retval = NULL; 1223 gdb_byte *data = build_id->data; 1224 size_t size = build_id->size; 1225 1226 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */ 1227 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1 1228 + 2 * size + (sizeof ".debug" - 1) + 1); 1229 s = link + sprintf (link, "%s/.build-id/", debug_file_directory); 1230 if (size > 0) 1231 { 1232 size--; 1233 s += sprintf (s, "%02x", (unsigned) *data++); 1234 } 1235 if (size > 0) 1236 *s++ = '/'; 1237 while (size-- > 0) 1238 s += sprintf (s, "%02x", (unsigned) *data++); 1239 strcpy (s, ".debug"); 1240 1241 /* lrealpath() is expensive even for the usually non-existent files. */ 1242 if (access (link, F_OK) == 0) 1243 retval = lrealpath (link); 1244 xfree (link); 1245 1246 if (retval != NULL && !build_id_verify (retval, build_id)) 1247 { 1248 xfree (retval); 1249 retval = NULL; 1250 } 1251 1252 return retval; 1253 } 1254 1255 static char * 1256 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out) 1257 { 1258 asection *sect; 1259 bfd_size_type debuglink_size; 1260 unsigned long crc32; 1261 char *contents; 1262 int crc_offset; 1263 unsigned char *p; 1264 1265 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink"); 1266 1267 if (sect == NULL) 1268 return NULL; 1269 1270 debuglink_size = bfd_section_size (objfile->obfd, sect); 1271 1272 contents = xmalloc (debuglink_size); 1273 bfd_get_section_contents (objfile->obfd, sect, contents, 1274 (file_ptr)0, (bfd_size_type)debuglink_size); 1275 1276 /* Crc value is stored after the filename, aligned up to 4 bytes. */ 1277 crc_offset = strlen (contents) + 1; 1278 crc_offset = (crc_offset + 3) & ~3; 1279 1280 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset)); 1281 1282 *crc32_out = crc32; 1283 return contents; 1284 } 1285 1286 static int 1287 separate_debug_file_exists (const char *name, unsigned long crc) 1288 { 1289 unsigned long file_crc = 0; 1290 bfd *abfd; 1291 gdb_byte buffer[8*1024]; 1292 int count; 1293 1294 if (remote_filename_p (name)) 1295 abfd = remote_bfd_open (name, gnutarget); 1296 else 1297 abfd = bfd_openr (name, gnutarget); 1298 1299 if (!abfd) 1300 return 0; 1301 1302 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0) 1303 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count); 1304 1305 bfd_close (abfd); 1306 1307 return crc == file_crc; 1308 } 1309 1310 char *debug_file_directory = NULL; 1311 static void 1312 show_debug_file_directory (struct ui_file *file, int from_tty, 1313 struct cmd_list_element *c, const char *value) 1314 { 1315 fprintf_filtered (file, _("\ 1316 The directory where separate debug symbols are searched for is \"%s\".\n"), 1317 value); 1318 } 1319 1320 #if ! defined (DEBUG_SUBDIRECTORY) 1321 #define DEBUG_SUBDIRECTORY ".debug" 1322 #endif 1323 1324 static char * 1325 find_separate_debug_file (struct objfile *objfile) 1326 { 1327 asection *sect; 1328 char *basename; 1329 char *dir; 1330 char *debugfile; 1331 char *name_copy; 1332 char *canon_name; 1333 bfd_size_type debuglink_size; 1334 unsigned long crc32; 1335 int i; 1336 struct build_id *build_id; 1337 1338 build_id = build_id_bfd_get (objfile->obfd); 1339 if (build_id != NULL) 1340 { 1341 char *build_id_name; 1342 1343 build_id_name = build_id_to_debug_filename (build_id); 1344 xfree (build_id); 1345 /* Prevent looping on a stripped .debug file. */ 1346 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0) 1347 { 1348 warning (_("\"%s\": separate debug info file has no debug info"), 1349 build_id_name); 1350 xfree (build_id_name); 1351 } 1352 else if (build_id_name != NULL) 1353 return build_id_name; 1354 } 1355 1356 basename = get_debug_link_info (objfile, &crc32); 1357 1358 if (basename == NULL) 1359 return NULL; 1360 1361 dir = xstrdup (objfile->name); 1362 1363 /* Strip off the final filename part, leaving the directory name, 1364 followed by a slash. Objfile names should always be absolute and 1365 tilde-expanded, so there should always be a slash in there 1366 somewhere. */ 1367 for (i = strlen(dir) - 1; i >= 0; i--) 1368 { 1369 if (IS_DIR_SEPARATOR (dir[i])) 1370 break; 1371 } 1372 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i])); 1373 dir[i+1] = '\0'; 1374 1375 /* Set I to max (strlen (canon_name), strlen (dir)). */ 1376 canon_name = lrealpath (dir); 1377 i = strlen (dir); 1378 if (canon_name && strlen (canon_name) > i) 1379 i = strlen (canon_name); 1380 1381 debugfile = alloca (strlen (debug_file_directory) + 1 1382 + i 1383 + strlen (DEBUG_SUBDIRECTORY) 1384 + strlen ("/") 1385 + strlen (basename) 1386 + 1); 1387 1388 /* First try in the same directory as the original file. */ 1389 strcpy (debugfile, dir); 1390 strcat (debugfile, basename); 1391 1392 if (separate_debug_file_exists (debugfile, crc32)) 1393 { 1394 xfree (basename); 1395 xfree (dir); 1396 xfree (canon_name); 1397 return xstrdup (debugfile); 1398 } 1399 1400 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */ 1401 strcpy (debugfile, dir); 1402 strcat (debugfile, DEBUG_SUBDIRECTORY); 1403 strcat (debugfile, "/"); 1404 strcat (debugfile, basename); 1405 1406 if (separate_debug_file_exists (debugfile, crc32)) 1407 { 1408 xfree (basename); 1409 xfree (dir); 1410 xfree (canon_name); 1411 return xstrdup (debugfile); 1412 } 1413 1414 /* Then try in the global debugfile directory. */ 1415 strcpy (debugfile, debug_file_directory); 1416 strcat (debugfile, "/"); 1417 strcat (debugfile, dir); 1418 strcat (debugfile, basename); 1419 1420 if (separate_debug_file_exists (debugfile, crc32)) 1421 { 1422 xfree (basename); 1423 xfree (dir); 1424 xfree (canon_name); 1425 return xstrdup (debugfile); 1426 } 1427 1428 /* If the file is in the sysroot, try using its base path in the 1429 global debugfile directory. */ 1430 if (canon_name 1431 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0 1432 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)])) 1433 { 1434 strcpy (debugfile, debug_file_directory); 1435 strcat (debugfile, canon_name + strlen (gdb_sysroot)); 1436 strcat (debugfile, "/"); 1437 strcat (debugfile, basename); 1438 1439 if (separate_debug_file_exists (debugfile, crc32)) 1440 { 1441 xfree (canon_name); 1442 xfree (basename); 1443 xfree (dir); 1444 return xstrdup (debugfile); 1445 } 1446 } 1447 1448 if (canon_name) 1449 xfree (canon_name); 1450 1451 xfree (basename); 1452 xfree (dir); 1453 return NULL; 1454 } 1455 1456 1457 /* This is the symbol-file command. Read the file, analyze its 1458 symbols, and add a struct symtab to a symtab list. The syntax of 1459 the command is rather bizarre: 1460 1461 1. The function buildargv implements various quoting conventions 1462 which are undocumented and have little or nothing in common with 1463 the way things are quoted (or not quoted) elsewhere in GDB. 1464 1465 2. Options are used, which are not generally used in GDB (perhaps 1466 "set mapped on", "set readnow on" would be better) 1467 1468 3. The order of options matters, which is contrary to GNU 1469 conventions (because it is confusing and inconvenient). */ 1470 1471 void 1472 symbol_file_command (char *args, int from_tty) 1473 { 1474 dont_repeat (); 1475 1476 if (args == NULL) 1477 { 1478 symbol_file_clear (from_tty); 1479 } 1480 else 1481 { 1482 char **argv = gdb_buildargv (args); 1483 int flags = OBJF_USERLOADED; 1484 struct cleanup *cleanups; 1485 char *name = NULL; 1486 1487 cleanups = make_cleanup_freeargv (argv); 1488 while (*argv != NULL) 1489 { 1490 if (strcmp (*argv, "-readnow") == 0) 1491 flags |= OBJF_READNOW; 1492 else if (**argv == '-') 1493 error (_("unknown option `%s'"), *argv); 1494 else 1495 { 1496 symbol_file_add_main_1 (*argv, from_tty, flags); 1497 name = *argv; 1498 } 1499 1500 argv++; 1501 } 1502 1503 if (name == NULL) 1504 error (_("no symbol file name was specified")); 1505 1506 do_cleanups (cleanups); 1507 } 1508 } 1509 1510 /* Set the initial language. 1511 1512 FIXME: A better solution would be to record the language in the 1513 psymtab when reading partial symbols, and then use it (if known) to 1514 set the language. This would be a win for formats that encode the 1515 language in an easily discoverable place, such as DWARF. For 1516 stabs, we can jump through hoops looking for specially named 1517 symbols or try to intuit the language from the specific type of 1518 stabs we find, but we can't do that until later when we read in 1519 full symbols. */ 1520 1521 void 1522 set_initial_language (void) 1523 { 1524 struct partial_symtab *pst; 1525 enum language lang = language_unknown; 1526 1527 pst = find_main_psymtab (); 1528 if (pst != NULL) 1529 { 1530 if (pst->filename != NULL) 1531 lang = deduce_language_from_filename (pst->filename); 1532 1533 if (lang == language_unknown) 1534 { 1535 /* Make C the default language */ 1536 lang = language_c; 1537 } 1538 1539 set_language (lang); 1540 expected_language = current_language; /* Don't warn the user. */ 1541 } 1542 } 1543 1544 /* Open the file specified by NAME and hand it off to BFD for 1545 preliminary analysis. Return a newly initialized bfd *, which 1546 includes a newly malloc'd` copy of NAME (tilde-expanded and made 1547 absolute). In case of trouble, error() is called. */ 1548 1549 bfd * 1550 symfile_bfd_open (char *name) 1551 { 1552 bfd *sym_bfd; 1553 int desc; 1554 char *absolute_name; 1555 1556 if (remote_filename_p (name)) 1557 { 1558 name = xstrdup (name); 1559 sym_bfd = remote_bfd_open (name, gnutarget); 1560 if (!sym_bfd) 1561 { 1562 make_cleanup (xfree, name); 1563 error (_("`%s': can't open to read symbols: %s."), name, 1564 bfd_errmsg (bfd_get_error ())); 1565 } 1566 1567 if (!bfd_check_format (sym_bfd, bfd_object)) 1568 { 1569 bfd_close (sym_bfd); 1570 make_cleanup (xfree, name); 1571 error (_("`%s': can't read symbols: %s."), name, 1572 bfd_errmsg (bfd_get_error ())); 1573 } 1574 1575 return sym_bfd; 1576 } 1577 1578 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */ 1579 1580 /* Look down path for it, allocate 2nd new malloc'd copy. */ 1581 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, 1582 O_RDONLY | O_BINARY, &absolute_name); 1583 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__) 1584 if (desc < 0) 1585 { 1586 char *exename = alloca (strlen (name) + 5); 1587 strcat (strcpy (exename, name), ".exe"); 1588 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename, 1589 O_RDONLY | O_BINARY, &absolute_name); 1590 } 1591 #endif 1592 if (desc < 0) 1593 { 1594 make_cleanup (xfree, name); 1595 perror_with_name (name); 1596 } 1597 1598 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in 1599 bfd. It'll be freed in free_objfile(). */ 1600 xfree (name); 1601 name = absolute_name; 1602 1603 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc); 1604 if (!sym_bfd) 1605 { 1606 close (desc); 1607 make_cleanup (xfree, name); 1608 error (_("`%s': can't open to read symbols: %s."), name, 1609 bfd_errmsg (bfd_get_error ())); 1610 } 1611 bfd_set_cacheable (sym_bfd, 1); 1612 1613 if (!bfd_check_format (sym_bfd, bfd_object)) 1614 { 1615 /* FIXME: should be checking for errors from bfd_close (for one 1616 thing, on error it does not free all the storage associated 1617 with the bfd). */ 1618 bfd_close (sym_bfd); /* This also closes desc. */ 1619 make_cleanup (xfree, name); 1620 error (_("`%s': can't read symbols: %s."), name, 1621 bfd_errmsg (bfd_get_error ())); 1622 } 1623 1624 /* bfd_usrdata exists for applications and libbfd must not touch it. */ 1625 gdb_assert (bfd_usrdata (sym_bfd) == NULL); 1626 1627 return sym_bfd; 1628 } 1629 1630 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if 1631 the section was not found. */ 1632 1633 int 1634 get_section_index (struct objfile *objfile, char *section_name) 1635 { 1636 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name); 1637 1638 if (sect) 1639 return sect->index; 1640 else 1641 return -1; 1642 } 1643 1644 /* Link SF into the global symtab_fns list. Called on startup by the 1645 _initialize routine in each object file format reader, to register 1646 information about each format the the reader is prepared to 1647 handle. */ 1648 1649 void 1650 add_symtab_fns (struct sym_fns *sf) 1651 { 1652 sf->next = symtab_fns; 1653 symtab_fns = sf; 1654 } 1655 1656 /* Initialize OBJFILE to read symbols from its associated BFD. It 1657 either returns or calls error(). The result is an initialized 1658 struct sym_fns in the objfile structure, that contains cached 1659 information about the symbol file. */ 1660 1661 static struct sym_fns * 1662 find_sym_fns (bfd *abfd) 1663 { 1664 struct sym_fns *sf; 1665 enum bfd_flavour our_flavour = bfd_get_flavour (abfd); 1666 1667 if (our_flavour == bfd_target_srec_flavour 1668 || our_flavour == bfd_target_ihex_flavour 1669 || our_flavour == bfd_target_tekhex_flavour) 1670 return NULL; /* No symbols. */ 1671 1672 for (sf = symtab_fns; sf != NULL; sf = sf->next) 1673 if (our_flavour == sf->sym_flavour) 1674 return sf; 1675 1676 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."), 1677 bfd_get_target (abfd)); 1678 } 1679 1680 1681 /* This function runs the load command of our current target. */ 1682 1683 static void 1684 load_command (char *arg, int from_tty) 1685 { 1686 /* The user might be reloading because the binary has changed. Take 1687 this opportunity to check. */ 1688 reopen_exec_file (); 1689 reread_symbols (); 1690 1691 if (arg == NULL) 1692 { 1693 char *parg; 1694 int count = 0; 1695 1696 parg = arg = get_exec_file (1); 1697 1698 /* Count how many \ " ' tab space there are in the name. */ 1699 while ((parg = strpbrk (parg, "\\\"'\t "))) 1700 { 1701 parg++; 1702 count++; 1703 } 1704 1705 if (count) 1706 { 1707 /* We need to quote this string so buildargv can pull it apart. */ 1708 char *temp = xmalloc (strlen (arg) + count + 1 ); 1709 char *ptemp = temp; 1710 char *prev; 1711 1712 make_cleanup (xfree, temp); 1713 1714 prev = parg = arg; 1715 while ((parg = strpbrk (parg, "\\\"'\t "))) 1716 { 1717 strncpy (ptemp, prev, parg - prev); 1718 ptemp += parg - prev; 1719 prev = parg++; 1720 *ptemp++ = '\\'; 1721 } 1722 strcpy (ptemp, prev); 1723 1724 arg = temp; 1725 } 1726 } 1727 1728 target_load (arg, from_tty); 1729 1730 /* After re-loading the executable, we don't really know which 1731 overlays are mapped any more. */ 1732 overlay_cache_invalid = 1; 1733 } 1734 1735 /* This version of "load" should be usable for any target. Currently 1736 it is just used for remote targets, not inftarg.c or core files, 1737 on the theory that only in that case is it useful. 1738 1739 Avoiding xmodem and the like seems like a win (a) because we don't have 1740 to worry about finding it, and (b) On VMS, fork() is very slow and so 1741 we don't want to run a subprocess. On the other hand, I'm not sure how 1742 performance compares. */ 1743 1744 static int validate_download = 0; 1745 1746 /* Callback service function for generic_load (bfd_map_over_sections). */ 1747 1748 static void 1749 add_section_size_callback (bfd *abfd, asection *asec, void *data) 1750 { 1751 bfd_size_type *sum = data; 1752 1753 *sum += bfd_get_section_size (asec); 1754 } 1755 1756 /* Opaque data for load_section_callback. */ 1757 struct load_section_data { 1758 unsigned long load_offset; 1759 struct load_progress_data *progress_data; 1760 VEC(memory_write_request_s) *requests; 1761 }; 1762 1763 /* Opaque data for load_progress. */ 1764 struct load_progress_data { 1765 /* Cumulative data. */ 1766 unsigned long write_count; 1767 unsigned long data_count; 1768 bfd_size_type total_size; 1769 }; 1770 1771 /* Opaque data for load_progress for a single section. */ 1772 struct load_progress_section_data { 1773 struct load_progress_data *cumulative; 1774 1775 /* Per-section data. */ 1776 const char *section_name; 1777 ULONGEST section_sent; 1778 ULONGEST section_size; 1779 CORE_ADDR lma; 1780 gdb_byte *buffer; 1781 }; 1782 1783 /* Target write callback routine for progress reporting. */ 1784 1785 static void 1786 load_progress (ULONGEST bytes, void *untyped_arg) 1787 { 1788 struct load_progress_section_data *args = untyped_arg; 1789 struct load_progress_data *totals; 1790 1791 if (args == NULL) 1792 /* Writing padding data. No easy way to get at the cumulative 1793 stats, so just ignore this. */ 1794 return; 1795 1796 totals = args->cumulative; 1797 1798 if (bytes == 0 && args->section_sent == 0) 1799 { 1800 /* The write is just starting. Let the user know we've started 1801 this section. */ 1802 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n", 1803 args->section_name, hex_string (args->section_size), 1804 paddress (target_gdbarch, args->lma)); 1805 return; 1806 } 1807 1808 if (validate_download) 1809 { 1810 /* Broken memories and broken monitors manifest themselves here 1811 when bring new computers to life. This doubles already slow 1812 downloads. */ 1813 /* NOTE: cagney/1999-10-18: A more efficient implementation 1814 might add a verify_memory() method to the target vector and 1815 then use that. remote.c could implement that method using 1816 the ``qCRC'' packet. */ 1817 gdb_byte *check = xmalloc (bytes); 1818 struct cleanup *verify_cleanups = make_cleanup (xfree, check); 1819 1820 if (target_read_memory (args->lma, check, bytes) != 0) 1821 error (_("Download verify read failed at %s"), 1822 paddress (target_gdbarch, args->lma)); 1823 if (memcmp (args->buffer, check, bytes) != 0) 1824 error (_("Download verify compare failed at %s"), 1825 paddress (target_gdbarch, args->lma)); 1826 do_cleanups (verify_cleanups); 1827 } 1828 totals->data_count += bytes; 1829 args->lma += bytes; 1830 args->buffer += bytes; 1831 totals->write_count += 1; 1832 args->section_sent += bytes; 1833 if (quit_flag 1834 || (deprecated_ui_load_progress_hook != NULL 1835 && deprecated_ui_load_progress_hook (args->section_name, 1836 args->section_sent))) 1837 error (_("Canceled the download")); 1838 1839 if (deprecated_show_load_progress != NULL) 1840 deprecated_show_load_progress (args->section_name, 1841 args->section_sent, 1842 args->section_size, 1843 totals->data_count, 1844 totals->total_size); 1845 } 1846 1847 /* Callback service function for generic_load (bfd_map_over_sections). */ 1848 1849 static void 1850 load_section_callback (bfd *abfd, asection *asec, void *data) 1851 { 1852 struct memory_write_request *new_request; 1853 struct load_section_data *args = data; 1854 struct load_progress_section_data *section_data; 1855 bfd_size_type size = bfd_get_section_size (asec); 1856 gdb_byte *buffer; 1857 const char *sect_name = bfd_get_section_name (abfd, asec); 1858 1859 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0) 1860 return; 1861 1862 if (size == 0) 1863 return; 1864 1865 new_request = VEC_safe_push (memory_write_request_s, 1866 args->requests, NULL); 1867 memset (new_request, 0, sizeof (struct memory_write_request)); 1868 section_data = xcalloc (1, sizeof (struct load_progress_section_data)); 1869 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset; 1870 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */ 1871 new_request->data = xmalloc (size); 1872 new_request->baton = section_data; 1873 1874 buffer = new_request->data; 1875 1876 section_data->cumulative = args->progress_data; 1877 section_data->section_name = sect_name; 1878 section_data->section_size = size; 1879 section_data->lma = new_request->begin; 1880 section_data->buffer = buffer; 1881 1882 bfd_get_section_contents (abfd, asec, buffer, 0, size); 1883 } 1884 1885 /* Clean up an entire memory request vector, including load 1886 data and progress records. */ 1887 1888 static void 1889 clear_memory_write_data (void *arg) 1890 { 1891 VEC(memory_write_request_s) **vec_p = arg; 1892 VEC(memory_write_request_s) *vec = *vec_p; 1893 int i; 1894 struct memory_write_request *mr; 1895 1896 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i) 1897 { 1898 xfree (mr->data); 1899 xfree (mr->baton); 1900 } 1901 VEC_free (memory_write_request_s, vec); 1902 } 1903 1904 void 1905 generic_load (char *args, int from_tty) 1906 { 1907 bfd *loadfile_bfd; 1908 struct timeval start_time, end_time; 1909 char *filename; 1910 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0); 1911 struct load_section_data cbdata; 1912 struct load_progress_data total_progress; 1913 1914 CORE_ADDR entry; 1915 char **argv; 1916 1917 memset (&cbdata, 0, sizeof (cbdata)); 1918 memset (&total_progress, 0, sizeof (total_progress)); 1919 cbdata.progress_data = &total_progress; 1920 1921 make_cleanup (clear_memory_write_data, &cbdata.requests); 1922 1923 if (args == NULL) 1924 error_no_arg (_("file to load")); 1925 1926 argv = gdb_buildargv (args); 1927 make_cleanup_freeargv (argv); 1928 1929 filename = tilde_expand (argv[0]); 1930 make_cleanup (xfree, filename); 1931 1932 if (argv[1] != NULL) 1933 { 1934 char *endptr; 1935 1936 cbdata.load_offset = strtoul (argv[1], &endptr, 0); 1937 1938 /* If the last word was not a valid number then 1939 treat it as a file name with spaces in. */ 1940 if (argv[1] == endptr) 1941 error (_("Invalid download offset:%s."), argv[1]); 1942 1943 if (argv[2] != NULL) 1944 error (_("Too many parameters.")); 1945 } 1946 1947 /* Open the file for loading. */ 1948 loadfile_bfd = bfd_openr (filename, gnutarget); 1949 if (loadfile_bfd == NULL) 1950 { 1951 perror_with_name (filename); 1952 return; 1953 } 1954 1955 /* FIXME: should be checking for errors from bfd_close (for one thing, 1956 on error it does not free all the storage associated with the 1957 bfd). */ 1958 make_cleanup_bfd_close (loadfile_bfd); 1959 1960 if (!bfd_check_format (loadfile_bfd, bfd_object)) 1961 { 1962 error (_("\"%s\" is not an object file: %s"), filename, 1963 bfd_errmsg (bfd_get_error ())); 1964 } 1965 1966 bfd_map_over_sections (loadfile_bfd, add_section_size_callback, 1967 (void *) &total_progress.total_size); 1968 1969 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata); 1970 1971 gettimeofday (&start_time, NULL); 1972 1973 if (target_write_memory_blocks (cbdata.requests, flash_discard, 1974 load_progress) != 0) 1975 error (_("Load failed")); 1976 1977 gettimeofday (&end_time, NULL); 1978 1979 entry = bfd_get_start_address (loadfile_bfd); 1980 ui_out_text (uiout, "Start address "); 1981 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry)); 1982 ui_out_text (uiout, ", load size "); 1983 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count); 1984 ui_out_text (uiout, "\n"); 1985 /* We were doing this in remote-mips.c, I suspect it is right 1986 for other targets too. */ 1987 regcache_write_pc (get_current_regcache (), entry); 1988 1989 /* FIXME: are we supposed to call symbol_file_add or not? According 1990 to a comment from remote-mips.c (where a call to symbol_file_add 1991 was commented out), making the call confuses GDB if more than one 1992 file is loaded in. Some targets do (e.g., remote-vx.c) but 1993 others don't (or didn't - perhaps they have all been deleted). */ 1994 1995 print_transfer_performance (gdb_stdout, total_progress.data_count, 1996 total_progress.write_count, 1997 &start_time, &end_time); 1998 1999 do_cleanups (old_cleanups); 2000 } 2001 2002 /* Report how fast the transfer went. */ 2003 2004 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being 2005 replaced by print_transfer_performance (with a very different 2006 function signature). */ 2007 2008 void 2009 report_transfer_performance (unsigned long data_count, time_t start_time, 2010 time_t end_time) 2011 { 2012 struct timeval start, end; 2013 2014 start.tv_sec = start_time; 2015 start.tv_usec = 0; 2016 end.tv_sec = end_time; 2017 end.tv_usec = 0; 2018 2019 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end); 2020 } 2021 2022 void 2023 print_transfer_performance (struct ui_file *stream, 2024 unsigned long data_count, 2025 unsigned long write_count, 2026 const struct timeval *start_time, 2027 const struct timeval *end_time) 2028 { 2029 ULONGEST time_count; 2030 2031 /* Compute the elapsed time in milliseconds, as a tradeoff between 2032 accuracy and overflow. */ 2033 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000; 2034 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000; 2035 2036 ui_out_text (uiout, "Transfer rate: "); 2037 if (time_count > 0) 2038 { 2039 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count; 2040 2041 if (ui_out_is_mi_like_p (uiout)) 2042 { 2043 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8); 2044 ui_out_text (uiout, " bits/sec"); 2045 } 2046 else if (rate < 1024) 2047 { 2048 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate); 2049 ui_out_text (uiout, " bytes/sec"); 2050 } 2051 else 2052 { 2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024); 2054 ui_out_text (uiout, " KB/sec"); 2055 } 2056 } 2057 else 2058 { 2059 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8)); 2060 ui_out_text (uiout, " bits in <1 sec"); 2061 } 2062 if (write_count > 0) 2063 { 2064 ui_out_text (uiout, ", "); 2065 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count); 2066 ui_out_text (uiout, " bytes/write"); 2067 } 2068 ui_out_text (uiout, ".\n"); 2069 } 2070 2071 /* This function allows the addition of incrementally linked object files. 2072 It does not modify any state in the target, only in the debugger. */ 2073 /* Note: ezannoni 2000-04-13 This function/command used to have a 2074 special case syntax for the rombug target (Rombug is the boot 2075 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the 2076 rombug case, the user doesn't need to supply a text address, 2077 instead a call to target_link() (in target.c) would supply the 2078 value to use. We are now discontinuing this type of ad hoc syntax. */ 2079 2080 static void 2081 add_symbol_file_command (char *args, int from_tty) 2082 { 2083 struct gdbarch *gdbarch = get_current_arch (); 2084 char *filename = NULL; 2085 int flags = OBJF_USERLOADED; 2086 char *arg; 2087 int expecting_option = 0; 2088 int section_index = 0; 2089 int argcnt = 0; 2090 int sec_num = 0; 2091 int i; 2092 int expecting_sec_name = 0; 2093 int expecting_sec_addr = 0; 2094 char **argv; 2095 2096 struct sect_opt 2097 { 2098 char *name; 2099 char *value; 2100 }; 2101 2102 struct section_addr_info *section_addrs; 2103 struct sect_opt *sect_opts = NULL; 2104 size_t num_sect_opts = 0; 2105 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL); 2106 2107 num_sect_opts = 16; 2108 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts 2109 * sizeof (struct sect_opt)); 2110 2111 dont_repeat (); 2112 2113 if (args == NULL) 2114 error (_("add-symbol-file takes a file name and an address")); 2115 2116 argv = gdb_buildargv (args); 2117 make_cleanup_freeargv (argv); 2118 2119 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt]) 2120 { 2121 /* Process the argument. */ 2122 if (argcnt == 0) 2123 { 2124 /* The first argument is the file name. */ 2125 filename = tilde_expand (arg); 2126 make_cleanup (xfree, filename); 2127 } 2128 else 2129 if (argcnt == 1) 2130 { 2131 /* The second argument is always the text address at which 2132 to load the program. */ 2133 sect_opts[section_index].name = ".text"; 2134 sect_opts[section_index].value = arg; 2135 if (++section_index >= num_sect_opts) 2136 { 2137 num_sect_opts *= 2; 2138 sect_opts = ((struct sect_opt *) 2139 xrealloc (sect_opts, 2140 num_sect_opts 2141 * sizeof (struct sect_opt))); 2142 } 2143 } 2144 else 2145 { 2146 /* It's an option (starting with '-') or it's an argument 2147 to an option */ 2148 2149 if (*arg == '-') 2150 { 2151 if (strcmp (arg, "-readnow") == 0) 2152 flags |= OBJF_READNOW; 2153 else if (strcmp (arg, "-s") == 0) 2154 { 2155 expecting_sec_name = 1; 2156 expecting_sec_addr = 1; 2157 } 2158 } 2159 else 2160 { 2161 if (expecting_sec_name) 2162 { 2163 sect_opts[section_index].name = arg; 2164 expecting_sec_name = 0; 2165 } 2166 else 2167 if (expecting_sec_addr) 2168 { 2169 sect_opts[section_index].value = arg; 2170 expecting_sec_addr = 0; 2171 if (++section_index >= num_sect_opts) 2172 { 2173 num_sect_opts *= 2; 2174 sect_opts = ((struct sect_opt *) 2175 xrealloc (sect_opts, 2176 num_sect_opts 2177 * sizeof (struct sect_opt))); 2178 } 2179 } 2180 else 2181 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*")); 2182 } 2183 } 2184 } 2185 2186 /* This command takes at least two arguments. The first one is a 2187 filename, and the second is the address where this file has been 2188 loaded. Abort now if this address hasn't been provided by the 2189 user. */ 2190 if (section_index < 1) 2191 error (_("The address where %s has been loaded is missing"), filename); 2192 2193 /* Print the prompt for the query below. And save the arguments into 2194 a sect_addr_info structure to be passed around to other 2195 functions. We have to split this up into separate print 2196 statements because hex_string returns a local static 2197 string. */ 2198 2199 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename); 2200 section_addrs = alloc_section_addr_info (section_index); 2201 make_cleanup (xfree, section_addrs); 2202 for (i = 0; i < section_index; i++) 2203 { 2204 CORE_ADDR addr; 2205 char *val = sect_opts[i].value; 2206 char *sec = sect_opts[i].name; 2207 2208 addr = parse_and_eval_address (val); 2209 2210 /* Here we store the section offsets in the order they were 2211 entered on the command line. */ 2212 section_addrs->other[sec_num].name = sec; 2213 section_addrs->other[sec_num].addr = addr; 2214 printf_unfiltered ("\t%s_addr = %s\n", sec, 2215 paddress (gdbarch, addr)); 2216 sec_num++; 2217 2218 /* The object's sections are initialized when a 2219 call is made to build_objfile_section_table (objfile). 2220 This happens in reread_symbols. 2221 At this point, we don't know what file type this is, 2222 so we can't determine what section names are valid. */ 2223 } 2224 2225 if (from_tty && (!query ("%s", ""))) 2226 error (_("Not confirmed.")); 2227 2228 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0, 2229 section_addrs, flags); 2230 2231 /* Getting new symbols may change our opinion about what is 2232 frameless. */ 2233 reinit_frame_cache (); 2234 do_cleanups (my_cleanups); 2235 } 2236 2237 2238 /* Re-read symbols if a symbol-file has changed. */ 2239 void 2240 reread_symbols (void) 2241 { 2242 struct objfile *objfile; 2243 long new_modtime; 2244 int reread_one = 0; 2245 struct stat new_statbuf; 2246 int res; 2247 2248 /* With the addition of shared libraries, this should be modified, 2249 the load time should be saved in the partial symbol tables, since 2250 different tables may come from different source files. FIXME. 2251 This routine should then walk down each partial symbol table 2252 and see if the symbol table that it originates from has been changed */ 2253 2254 for (objfile = object_files; objfile; objfile = objfile->next) 2255 { 2256 if (objfile->obfd) 2257 { 2258 #ifdef DEPRECATED_IBM6000_TARGET 2259 /* If this object is from a shared library, then you should 2260 stat on the library name, not member name. */ 2261 2262 if (objfile->obfd->my_archive) 2263 res = stat (objfile->obfd->my_archive->filename, &new_statbuf); 2264 else 2265 #endif 2266 res = stat (objfile->name, &new_statbuf); 2267 if (res != 0) 2268 { 2269 /* FIXME, should use print_sys_errmsg but it's not filtered. */ 2270 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"), 2271 objfile->name); 2272 continue; 2273 } 2274 new_modtime = new_statbuf.st_mtime; 2275 if (new_modtime != objfile->mtime) 2276 { 2277 struct cleanup *old_cleanups; 2278 struct section_offsets *offsets; 2279 int num_offsets; 2280 char *obfd_filename; 2281 2282 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"), 2283 objfile->name); 2284 2285 /* There are various functions like symbol_file_add, 2286 symfile_bfd_open, syms_from_objfile, etc., which might 2287 appear to do what we want. But they have various other 2288 effects which we *don't* want. So we just do stuff 2289 ourselves. We don't worry about mapped files (for one thing, 2290 any mapped file will be out of date). */ 2291 2292 /* If we get an error, blow away this objfile (not sure if 2293 that is the correct response for things like shared 2294 libraries). */ 2295 old_cleanups = make_cleanup_free_objfile (objfile); 2296 /* We need to do this whenever any symbols go away. */ 2297 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/); 2298 2299 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd), 2300 bfd_get_filename (exec_bfd)) == 0) 2301 { 2302 /* Reload EXEC_BFD without asking anything. */ 2303 2304 exec_file_attach (bfd_get_filename (objfile->obfd), 0); 2305 } 2306 2307 /* Clean up any state BFD has sitting around. We don't need 2308 to close the descriptor but BFD lacks a way of closing the 2309 BFD without closing the descriptor. */ 2310 obfd_filename = bfd_get_filename (objfile->obfd); 2311 if (!bfd_close (objfile->obfd)) 2312 error (_("Can't close BFD for %s: %s"), objfile->name, 2313 bfd_errmsg (bfd_get_error ())); 2314 if (remote_filename_p (obfd_filename)) 2315 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget); 2316 else 2317 objfile->obfd = bfd_openr (obfd_filename, gnutarget); 2318 if (objfile->obfd == NULL) 2319 error (_("Can't open %s to read symbols."), objfile->name); 2320 else 2321 objfile->obfd = gdb_bfd_ref (objfile->obfd); 2322 /* bfd_openr sets cacheable to true, which is what we want. */ 2323 if (!bfd_check_format (objfile->obfd, bfd_object)) 2324 error (_("Can't read symbols from %s: %s."), objfile->name, 2325 bfd_errmsg (bfd_get_error ())); 2326 2327 /* Save the offsets, we will nuke them with the rest of the 2328 objfile_obstack. */ 2329 num_offsets = objfile->num_sections; 2330 offsets = ((struct section_offsets *) 2331 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets))); 2332 memcpy (offsets, objfile->section_offsets, 2333 SIZEOF_N_SECTION_OFFSETS (num_offsets)); 2334 2335 /* Remove any references to this objfile in the global 2336 value lists. */ 2337 preserve_values (objfile); 2338 2339 /* Nuke all the state that we will re-read. Much of the following 2340 code which sets things to NULL really is necessary to tell 2341 other parts of GDB that there is nothing currently there. 2342 2343 Try to keep the freeing order compatible with free_objfile. */ 2344 2345 if (objfile->sf != NULL) 2346 { 2347 (*objfile->sf->sym_finish) (objfile); 2348 } 2349 2350 clear_objfile_data (objfile); 2351 2352 /* FIXME: Do we have to free a whole linked list, or is this 2353 enough? */ 2354 if (objfile->global_psymbols.list) 2355 xfree (objfile->global_psymbols.list); 2356 memset (&objfile->global_psymbols, 0, 2357 sizeof (objfile->global_psymbols)); 2358 if (objfile->static_psymbols.list) 2359 xfree (objfile->static_psymbols.list); 2360 memset (&objfile->static_psymbols, 0, 2361 sizeof (objfile->static_psymbols)); 2362 2363 /* Free the obstacks for non-reusable objfiles */ 2364 bcache_xfree (objfile->psymbol_cache); 2365 objfile->psymbol_cache = bcache_xmalloc (); 2366 bcache_xfree (objfile->macro_cache); 2367 objfile->macro_cache = bcache_xmalloc (); 2368 if (objfile->demangled_names_hash != NULL) 2369 { 2370 htab_delete (objfile->demangled_names_hash); 2371 objfile->demangled_names_hash = NULL; 2372 } 2373 obstack_free (&objfile->objfile_obstack, 0); 2374 objfile->sections = NULL; 2375 objfile->symtabs = NULL; 2376 objfile->psymtabs = NULL; 2377 objfile->psymtabs_addrmap = NULL; 2378 objfile->free_psymtabs = NULL; 2379 objfile->cp_namespace_symtab = NULL; 2380 objfile->msymbols = NULL; 2381 objfile->deprecated_sym_private = NULL; 2382 objfile->minimal_symbol_count = 0; 2383 memset (&objfile->msymbol_hash, 0, 2384 sizeof (objfile->msymbol_hash)); 2385 memset (&objfile->msymbol_demangled_hash, 0, 2386 sizeof (objfile->msymbol_demangled_hash)); 2387 2388 objfile->psymbol_cache = bcache_xmalloc (); 2389 objfile->macro_cache = bcache_xmalloc (); 2390 /* obstack_init also initializes the obstack so it is 2391 empty. We could use obstack_specify_allocation but 2392 gdb_obstack.h specifies the alloc/dealloc 2393 functions. */ 2394 obstack_init (&objfile->objfile_obstack); 2395 if (build_objfile_section_table (objfile)) 2396 { 2397 error (_("Can't find the file sections in `%s': %s"), 2398 objfile->name, bfd_errmsg (bfd_get_error ())); 2399 } 2400 terminate_minimal_symbol_table (objfile); 2401 2402 /* We use the same section offsets as from last time. I'm not 2403 sure whether that is always correct for shared libraries. */ 2404 objfile->section_offsets = (struct section_offsets *) 2405 obstack_alloc (&objfile->objfile_obstack, 2406 SIZEOF_N_SECTION_OFFSETS (num_offsets)); 2407 memcpy (objfile->section_offsets, offsets, 2408 SIZEOF_N_SECTION_OFFSETS (num_offsets)); 2409 objfile->num_sections = num_offsets; 2410 2411 /* What the hell is sym_new_init for, anyway? The concept of 2412 distinguishing between the main file and additional files 2413 in this way seems rather dubious. */ 2414 if (objfile == symfile_objfile) 2415 { 2416 (*objfile->sf->sym_new_init) (objfile); 2417 } 2418 2419 (*objfile->sf->sym_init) (objfile); 2420 clear_complaints (&symfile_complaints, 1, 1); 2421 /* The "mainline" parameter is a hideous hack; I think leaving it 2422 zero is OK since dbxread.c also does what it needs to do if 2423 objfile->global_psymbols.size is 0. */ 2424 (*objfile->sf->sym_read) (objfile, 0); 2425 if (!objfile_has_partial_symbols (objfile) 2426 && !objfile_has_full_symbols (objfile)) 2427 { 2428 wrap_here (""); 2429 printf_unfiltered (_("(no debugging symbols found)\n")); 2430 wrap_here (""); 2431 } 2432 2433 /* We're done reading the symbol file; finish off complaints. */ 2434 clear_complaints (&symfile_complaints, 0, 1); 2435 2436 /* Getting new symbols may change our opinion about what is 2437 frameless. */ 2438 2439 reinit_frame_cache (); 2440 2441 /* Discard cleanups as symbol reading was successful. */ 2442 discard_cleanups (old_cleanups); 2443 2444 /* If the mtime has changed between the time we set new_modtime 2445 and now, we *want* this to be out of date, so don't call stat 2446 again now. */ 2447 objfile->mtime = new_modtime; 2448 reread_one = 1; 2449 reread_separate_symbols (objfile); 2450 init_entry_point_info (objfile); 2451 } 2452 } 2453 } 2454 2455 if (reread_one) 2456 { 2457 /* Notify objfiles that we've modified objfile sections. */ 2458 objfiles_changed (); 2459 2460 clear_symtab_users (); 2461 /* At least one objfile has changed, so we can consider that 2462 the executable we're debugging has changed too. */ 2463 observer_notify_executable_changed (); 2464 } 2465 } 2466 2467 2468 /* Handle separate debug info for OBJFILE, which has just been 2469 re-read: 2470 - If we had separate debug info before, but now we don't, get rid 2471 of the separated objfile. 2472 - If we didn't have separated debug info before, but now we do, 2473 read in the new separated debug info file. 2474 - If the debug link points to a different file, toss the old one 2475 and read the new one. 2476 This function does *not* handle the case where objfile is still 2477 using the same separate debug info file, but that file's timestamp 2478 has changed. That case should be handled by the loop in 2479 reread_symbols already. */ 2480 static void 2481 reread_separate_symbols (struct objfile *objfile) 2482 { 2483 char *debug_file; 2484 unsigned long crc32; 2485 2486 /* Does the updated objfile's debug info live in a 2487 separate file? */ 2488 debug_file = find_separate_debug_file (objfile); 2489 2490 if (objfile->separate_debug_objfile) 2491 { 2492 /* There are two cases where we need to get rid of 2493 the old separated debug info objfile: 2494 - if the new primary objfile doesn't have 2495 separated debug info, or 2496 - if the new primary objfile has separate debug 2497 info, but it's under a different filename. 2498 2499 If the old and new objfiles both have separate 2500 debug info, under the same filename, then we're 2501 okay --- if the separated file's contents have 2502 changed, we will have caught that when we 2503 visited it in this function's outermost 2504 loop. */ 2505 if (! debug_file 2506 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0) 2507 free_objfile (objfile->separate_debug_objfile); 2508 } 2509 2510 /* If the new objfile has separate debug info, and we 2511 haven't loaded it already, do so now. */ 2512 if (debug_file 2513 && ! objfile->separate_debug_objfile) 2514 { 2515 /* Use the same section offset table as objfile itself. 2516 Preserve the flags from objfile that make sense. */ 2517 objfile->separate_debug_objfile 2518 = (symbol_file_add_with_addrs_or_offsets 2519 (symfile_bfd_open (debug_file), 2520 info_verbose ? SYMFILE_VERBOSE : 0, 2521 0, /* No addr table. */ 2522 objfile->section_offsets, objfile->num_sections, 2523 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW 2524 | OBJF_USERLOADED))); 2525 objfile->separate_debug_objfile->separate_debug_objfile_backlink 2526 = objfile; 2527 } 2528 if (debug_file) 2529 xfree (debug_file); 2530 } 2531 2532 2533 2534 2535 2536 typedef struct 2537 { 2538 char *ext; 2539 enum language lang; 2540 } 2541 filename_language; 2542 2543 static filename_language *filename_language_table; 2544 static int fl_table_size, fl_table_next; 2545 2546 static void 2547 add_filename_language (char *ext, enum language lang) 2548 { 2549 if (fl_table_next >= fl_table_size) 2550 { 2551 fl_table_size += 10; 2552 filename_language_table = 2553 xrealloc (filename_language_table, 2554 fl_table_size * sizeof (*filename_language_table)); 2555 } 2556 2557 filename_language_table[fl_table_next].ext = xstrdup (ext); 2558 filename_language_table[fl_table_next].lang = lang; 2559 fl_table_next++; 2560 } 2561 2562 static char *ext_args; 2563 static void 2564 show_ext_args (struct ui_file *file, int from_tty, 2565 struct cmd_list_element *c, const char *value) 2566 { 2567 fprintf_filtered (file, _("\ 2568 Mapping between filename extension and source language is \"%s\".\n"), 2569 value); 2570 } 2571 2572 static void 2573 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e) 2574 { 2575 int i; 2576 char *cp = ext_args; 2577 enum language lang; 2578 2579 /* First arg is filename extension, starting with '.' */ 2580 if (*cp != '.') 2581 error (_("'%s': Filename extension must begin with '.'"), ext_args); 2582 2583 /* Find end of first arg. */ 2584 while (*cp && !isspace (*cp)) 2585 cp++; 2586 2587 if (*cp == '\0') 2588 error (_("'%s': two arguments required -- filename extension and language"), 2589 ext_args); 2590 2591 /* Null-terminate first arg */ 2592 *cp++ = '\0'; 2593 2594 /* Find beginning of second arg, which should be a source language. */ 2595 while (*cp && isspace (*cp)) 2596 cp++; 2597 2598 if (*cp == '\0') 2599 error (_("'%s': two arguments required -- filename extension and language"), 2600 ext_args); 2601 2602 /* Lookup the language from among those we know. */ 2603 lang = language_enum (cp); 2604 2605 /* Now lookup the filename extension: do we already know it? */ 2606 for (i = 0; i < fl_table_next; i++) 2607 if (0 == strcmp (ext_args, filename_language_table[i].ext)) 2608 break; 2609 2610 if (i >= fl_table_next) 2611 { 2612 /* new file extension */ 2613 add_filename_language (ext_args, lang); 2614 } 2615 else 2616 { 2617 /* redefining a previously known filename extension */ 2618 2619 /* if (from_tty) */ 2620 /* query ("Really make files of type %s '%s'?", */ 2621 /* ext_args, language_str (lang)); */ 2622 2623 xfree (filename_language_table[i].ext); 2624 filename_language_table[i].ext = xstrdup (ext_args); 2625 filename_language_table[i].lang = lang; 2626 } 2627 } 2628 2629 static void 2630 info_ext_lang_command (char *args, int from_tty) 2631 { 2632 int i; 2633 2634 printf_filtered (_("Filename extensions and the languages they represent:")); 2635 printf_filtered ("\n\n"); 2636 for (i = 0; i < fl_table_next; i++) 2637 printf_filtered ("\t%s\t- %s\n", 2638 filename_language_table[i].ext, 2639 language_str (filename_language_table[i].lang)); 2640 } 2641 2642 static void 2643 init_filename_language_table (void) 2644 { 2645 if (fl_table_size == 0) /* protect against repetition */ 2646 { 2647 fl_table_size = 20; 2648 fl_table_next = 0; 2649 filename_language_table = 2650 xmalloc (fl_table_size * sizeof (*filename_language_table)); 2651 add_filename_language (".c", language_c); 2652 add_filename_language (".C", language_cplus); 2653 add_filename_language (".cc", language_cplus); 2654 add_filename_language (".cp", language_cplus); 2655 add_filename_language (".cpp", language_cplus); 2656 add_filename_language (".cxx", language_cplus); 2657 add_filename_language (".c++", language_cplus); 2658 add_filename_language (".java", language_java); 2659 add_filename_language (".class", language_java); 2660 add_filename_language (".m", language_objc); 2661 add_filename_language (".f", language_fortran); 2662 add_filename_language (".F", language_fortran); 2663 add_filename_language (".s", language_asm); 2664 add_filename_language (".sx", language_asm); 2665 add_filename_language (".S", language_asm); 2666 add_filename_language (".pas", language_pascal); 2667 add_filename_language (".p", language_pascal); 2668 add_filename_language (".pp", language_pascal); 2669 add_filename_language (".adb", language_ada); 2670 add_filename_language (".ads", language_ada); 2671 add_filename_language (".a", language_ada); 2672 add_filename_language (".ada", language_ada); 2673 } 2674 } 2675 2676 enum language 2677 deduce_language_from_filename (char *filename) 2678 { 2679 int i; 2680 char *cp; 2681 2682 if (filename != NULL) 2683 if ((cp = strrchr (filename, '.')) != NULL) 2684 for (i = 0; i < fl_table_next; i++) 2685 if (strcmp (cp, filename_language_table[i].ext) == 0) 2686 return filename_language_table[i].lang; 2687 2688 return language_unknown; 2689 } 2690 2691 /* allocate_symtab: 2692 2693 Allocate and partly initialize a new symbol table. Return a pointer 2694 to it. error() if no space. 2695 2696 Caller must set these fields: 2697 LINETABLE(symtab) 2698 symtab->blockvector 2699 symtab->dirname 2700 symtab->free_code 2701 symtab->free_ptr 2702 possibly free_named_symtabs (symtab->filename); 2703 */ 2704 2705 struct symtab * 2706 allocate_symtab (char *filename, struct objfile *objfile) 2707 { 2708 struct symtab *symtab; 2709 2710 symtab = (struct symtab *) 2711 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab)); 2712 memset (symtab, 0, sizeof (*symtab)); 2713 symtab->filename = obsavestring (filename, strlen (filename), 2714 &objfile->objfile_obstack); 2715 symtab->fullname = NULL; 2716 symtab->language = deduce_language_from_filename (filename); 2717 symtab->debugformat = obsavestring ("unknown", 7, 2718 &objfile->objfile_obstack); 2719 2720 /* Hook it to the objfile it comes from */ 2721 2722 symtab->objfile = objfile; 2723 symtab->next = objfile->symtabs; 2724 objfile->symtabs = symtab; 2725 2726 return (symtab); 2727 } 2728 2729 struct partial_symtab * 2730 allocate_psymtab (char *filename, struct objfile *objfile) 2731 { 2732 struct partial_symtab *psymtab; 2733 2734 if (objfile->free_psymtabs) 2735 { 2736 psymtab = objfile->free_psymtabs; 2737 objfile->free_psymtabs = psymtab->next; 2738 } 2739 else 2740 psymtab = (struct partial_symtab *) 2741 obstack_alloc (&objfile->objfile_obstack, 2742 sizeof (struct partial_symtab)); 2743 2744 memset (psymtab, 0, sizeof (struct partial_symtab)); 2745 psymtab->filename = obsavestring (filename, strlen (filename), 2746 &objfile->objfile_obstack); 2747 psymtab->symtab = NULL; 2748 2749 /* Prepend it to the psymtab list for the objfile it belongs to. 2750 Psymtabs are searched in most recent inserted -> least recent 2751 inserted order. */ 2752 2753 psymtab->objfile = objfile; 2754 psymtab->next = objfile->psymtabs; 2755 objfile->psymtabs = psymtab; 2756 #if 0 2757 { 2758 struct partial_symtab **prev_pst; 2759 psymtab->objfile = objfile; 2760 psymtab->next = NULL; 2761 prev_pst = &(objfile->psymtabs); 2762 while ((*prev_pst) != NULL) 2763 prev_pst = &((*prev_pst)->next); 2764 (*prev_pst) = psymtab; 2765 } 2766 #endif 2767 2768 return (psymtab); 2769 } 2770 2771 void 2772 discard_psymtab (struct partial_symtab *pst) 2773 { 2774 struct partial_symtab **prev_pst; 2775 2776 /* From dbxread.c: 2777 Empty psymtabs happen as a result of header files which don't 2778 have any symbols in them. There can be a lot of them. But this 2779 check is wrong, in that a psymtab with N_SLINE entries but 2780 nothing else is not empty, but we don't realize that. Fixing 2781 that without slowing things down might be tricky. */ 2782 2783 /* First, snip it out of the psymtab chain */ 2784 2785 prev_pst = &(pst->objfile->psymtabs); 2786 while ((*prev_pst) != pst) 2787 prev_pst = &((*prev_pst)->next); 2788 (*prev_pst) = pst->next; 2789 2790 /* Next, put it on a free list for recycling */ 2791 2792 pst->next = pst->objfile->free_psymtabs; 2793 pst->objfile->free_psymtabs = pst; 2794 } 2795 2796 2797 /* Reset all data structures in gdb which may contain references to symbol 2798 table data. */ 2799 2800 void 2801 clear_symtab_users (void) 2802 { 2803 /* Someday, we should do better than this, by only blowing away 2804 the things that really need to be blown. */ 2805 2806 /* Clear the "current" symtab first, because it is no longer valid. 2807 breakpoint_re_set may try to access the current symtab. */ 2808 clear_current_source_symtab_and_line (); 2809 2810 clear_displays (); 2811 breakpoint_re_set (); 2812 set_default_breakpoint (0, 0, 0, 0); 2813 clear_pc_function_cache (); 2814 observer_notify_new_objfile (NULL); 2815 2816 /* Clear globals which might have pointed into a removed objfile. 2817 FIXME: It's not clear which of these are supposed to persist 2818 between expressions and which ought to be reset each time. */ 2819 expression_context_block = NULL; 2820 innermost_block = NULL; 2821 2822 /* Varobj may refer to old symbols, perform a cleanup. */ 2823 varobj_invalidate (); 2824 2825 } 2826 2827 static void 2828 clear_symtab_users_cleanup (void *ignore) 2829 { 2830 clear_symtab_users (); 2831 } 2832 2833 /* clear_symtab_users_once: 2834 2835 This function is run after symbol reading, or from a cleanup. 2836 If an old symbol table was obsoleted, the old symbol table 2837 has been blown away, but the other GDB data structures that may 2838 reference it have not yet been cleared or re-directed. (The old 2839 symtab was zapped, and the cleanup queued, in free_named_symtab() 2840 below.) 2841 2842 This function can be queued N times as a cleanup, or called 2843 directly; it will do all the work the first time, and then will be a 2844 no-op until the next time it is queued. This works by bumping a 2845 counter at queueing time. Much later when the cleanup is run, or at 2846 the end of symbol processing (in case the cleanup is discarded), if 2847 the queued count is greater than the "done-count", we do the work 2848 and set the done-count to the queued count. If the queued count is 2849 less than or equal to the done-count, we just ignore the call. This 2850 is needed because reading a single .o file will often replace many 2851 symtabs (one per .h file, for example), and we don't want to reset 2852 the breakpoints N times in the user's face. 2853 2854 The reason we both queue a cleanup, and call it directly after symbol 2855 reading, is because the cleanup protects us in case of errors, but is 2856 discarded if symbol reading is successful. */ 2857 2858 #if 0 2859 /* FIXME: As free_named_symtabs is currently a big noop this function 2860 is no longer needed. */ 2861 static void clear_symtab_users_once (void); 2862 2863 static int clear_symtab_users_queued; 2864 static int clear_symtab_users_done; 2865 2866 static void 2867 clear_symtab_users_once (void) 2868 { 2869 /* Enforce once-per-`do_cleanups'-semantics */ 2870 if (clear_symtab_users_queued <= clear_symtab_users_done) 2871 return; 2872 clear_symtab_users_done = clear_symtab_users_queued; 2873 2874 clear_symtab_users (); 2875 } 2876 #endif 2877 2878 /* Delete the specified psymtab, and any others that reference it. */ 2879 2880 static void 2881 cashier_psymtab (struct partial_symtab *pst) 2882 { 2883 struct partial_symtab *ps, *pprev = NULL; 2884 int i; 2885 2886 /* Find its previous psymtab in the chain */ 2887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) 2888 { 2889 if (ps == pst) 2890 break; 2891 pprev = ps; 2892 } 2893 2894 if (ps) 2895 { 2896 /* Unhook it from the chain. */ 2897 if (ps == pst->objfile->psymtabs) 2898 pst->objfile->psymtabs = ps->next; 2899 else 2900 pprev->next = ps->next; 2901 2902 /* FIXME, we can't conveniently deallocate the entries in the 2903 partial_symbol lists (global_psymbols/static_psymbols) that 2904 this psymtab points to. These just take up space until all 2905 the psymtabs are reclaimed. Ditto the dependencies list and 2906 filename, which are all in the objfile_obstack. */ 2907 2908 /* We need to cashier any psymtab that has this one as a dependency... */ 2909 again: 2910 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) 2911 { 2912 for (i = 0; i < ps->number_of_dependencies; i++) 2913 { 2914 if (ps->dependencies[i] == pst) 2915 { 2916 cashier_psymtab (ps); 2917 goto again; /* Must restart, chain has been munged. */ 2918 } 2919 } 2920 } 2921 } 2922 } 2923 2924 /* If a symtab or psymtab for filename NAME is found, free it along 2925 with any dependent breakpoints, displays, etc. 2926 Used when loading new versions of object modules with the "add-file" 2927 command. This is only called on the top-level symtab or psymtab's name; 2928 it is not called for subsidiary files such as .h files. 2929 2930 Return value is 1 if we blew away the environment, 0 if not. 2931 FIXME. The return value appears to never be used. 2932 2933 FIXME. I think this is not the best way to do this. We should 2934 work on being gentler to the environment while still cleaning up 2935 all stray pointers into the freed symtab. */ 2936 2937 int 2938 free_named_symtabs (char *name) 2939 { 2940 #if 0 2941 /* FIXME: With the new method of each objfile having it's own 2942 psymtab list, this function needs serious rethinking. In particular, 2943 why was it ever necessary to toss psymtabs with specific compilation 2944 unit filenames, as opposed to all psymtabs from a particular symbol 2945 file? -- fnf 2946 Well, the answer is that some systems permit reloading of particular 2947 compilation units. We want to blow away any old info about these 2948 compilation units, regardless of which objfiles they arrived in. --gnu. */ 2949 2950 struct symtab *s; 2951 struct symtab *prev; 2952 struct partial_symtab *ps; 2953 struct blockvector *bv; 2954 int blewit = 0; 2955 2956 /* We only wack things if the symbol-reload switch is set. */ 2957 if (!symbol_reloading) 2958 return 0; 2959 2960 /* Some symbol formats have trouble providing file names... */ 2961 if (name == 0 || *name == '\0') 2962 return 0; 2963 2964 /* Look for a psymtab with the specified name. */ 2965 2966 again2: 2967 for (ps = partial_symtab_list; ps; ps = ps->next) 2968 { 2969 if (strcmp (name, ps->filename) == 0) 2970 { 2971 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */ 2972 goto again2; /* Must restart, chain has been munged */ 2973 } 2974 } 2975 2976 /* Look for a symtab with the specified name. */ 2977 2978 for (s = symtab_list; s; s = s->next) 2979 { 2980 if (strcmp (name, s->filename) == 0) 2981 break; 2982 prev = s; 2983 } 2984 2985 if (s) 2986 { 2987 if (s == symtab_list) 2988 symtab_list = s->next; 2989 else 2990 prev->next = s->next; 2991 2992 /* For now, queue a delete for all breakpoints, displays, etc., whether 2993 or not they depend on the symtab being freed. This should be 2994 changed so that only those data structures affected are deleted. */ 2995 2996 /* But don't delete anything if the symtab is empty. 2997 This test is necessary due to a bug in "dbxread.c" that 2998 causes empty symtabs to be created for N_SO symbols that 2999 contain the pathname of the object file. (This problem 3000 has been fixed in GDB 3.9x). */ 3001 3002 bv = BLOCKVECTOR (s); 3003 if (BLOCKVECTOR_NBLOCKS (bv) > 2 3004 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK)) 3005 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK))) 3006 { 3007 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"), 3008 name); 3009 clear_symtab_users_queued++; 3010 make_cleanup (clear_symtab_users_once, 0); 3011 blewit = 1; 3012 } 3013 else 3014 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"), 3015 name); 3016 3017 free_symtab (s); 3018 } 3019 else 3020 { 3021 /* It is still possible that some breakpoints will be affected 3022 even though no symtab was found, since the file might have 3023 been compiled without debugging, and hence not be associated 3024 with a symtab. In order to handle this correctly, we would need 3025 to keep a list of text address ranges for undebuggable files. 3026 For now, we do nothing, since this is a fairly obscure case. */ 3027 ; 3028 } 3029 3030 /* FIXME, what about the minimal symbol table? */ 3031 return blewit; 3032 #else 3033 return (0); 3034 #endif 3035 } 3036 3037 /* Allocate and partially fill a partial symtab. It will be 3038 completely filled at the end of the symbol list. 3039 3040 FILENAME is the name of the symbol-file we are reading from. */ 3041 3042 struct partial_symtab * 3043 start_psymtab_common (struct objfile *objfile, 3044 struct section_offsets *section_offsets, char *filename, 3045 CORE_ADDR textlow, struct partial_symbol **global_syms, 3046 struct partial_symbol **static_syms) 3047 { 3048 struct partial_symtab *psymtab; 3049 3050 psymtab = allocate_psymtab (filename, objfile); 3051 psymtab->section_offsets = section_offsets; 3052 psymtab->textlow = textlow; 3053 psymtab->texthigh = psymtab->textlow; /* default */ 3054 psymtab->globals_offset = global_syms - objfile->global_psymbols.list; 3055 psymtab->statics_offset = static_syms - objfile->static_psymbols.list; 3056 return (psymtab); 3057 } 3058 3059 /* Helper function, initialises partial symbol structure and stashes 3060 it into objfile's bcache. Note that our caching mechanism will 3061 use all fields of struct partial_symbol to determine hash value of the 3062 structure. In other words, having two symbols with the same name but 3063 different domain (or address) is possible and correct. */ 3064 3065 static const struct partial_symbol * 3066 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain, 3067 enum address_class class, 3068 long val, /* Value as a long */ 3069 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */ 3070 enum language language, struct objfile *objfile, 3071 int *added) 3072 { 3073 char *buf = name; 3074 /* psymbol is static so that there will be no uninitialized gaps in the 3075 structure which might contain random data, causing cache misses in 3076 bcache. */ 3077 static struct partial_symbol psymbol; 3078 3079 if (name[namelength] != '\0') 3080 { 3081 buf = alloca (namelength + 1); 3082 /* Create local copy of the partial symbol */ 3083 memcpy (buf, name, namelength); 3084 buf[namelength] = '\0'; 3085 } 3086 /* val and coreaddr are mutually exclusive, one of them *will* be zero */ 3087 if (val != 0) 3088 { 3089 SYMBOL_VALUE (&psymbol) = val; 3090 } 3091 else 3092 { 3093 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr; 3094 } 3095 SYMBOL_SECTION (&psymbol) = 0; 3096 SYMBOL_LANGUAGE (&psymbol) = language; 3097 PSYMBOL_DOMAIN (&psymbol) = domain; 3098 PSYMBOL_CLASS (&psymbol) = class; 3099 3100 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile); 3101 3102 /* Stash the partial symbol away in the cache */ 3103 return bcache_full (&psymbol, sizeof (struct partial_symbol), 3104 objfile->psymbol_cache, added); 3105 } 3106 3107 /* Helper function, adds partial symbol to the given partial symbol 3108 list. */ 3109 3110 static void 3111 append_psymbol_to_list (struct psymbol_allocation_list *list, 3112 const struct partial_symbol *psym, 3113 struct objfile *objfile) 3114 { 3115 if (list->next >= list->list + list->size) 3116 extend_psymbol_list (list, objfile); 3117 *list->next++ = (struct partial_symbol *) psym; 3118 OBJSTAT (objfile, n_psyms++); 3119 } 3120 3121 /* Add a symbol with a long value to a psymtab. 3122 Since one arg is a struct, we pass in a ptr and deref it (sigh). 3123 Return the partial symbol that has been added. */ 3124 3125 /* NOTE: carlton/2003-09-11: The reason why we return the partial 3126 symbol is so that callers can get access to the symbol's demangled 3127 name, which they don't have any cheap way to determine otherwise. 3128 (Currenly, dwarf2read.c is the only file who uses that information, 3129 though it's possible that other readers might in the future.) 3130 Elena wasn't thrilled about that, and I don't blame her, but we 3131 couldn't come up with a better way to get that information. If 3132 it's needed in other situations, we could consider breaking up 3133 SYMBOL_SET_NAMES to provide access to the demangled name lookup 3134 cache. */ 3135 3136 const struct partial_symbol * 3137 add_psymbol_to_list (char *name, int namelength, domain_enum domain, 3138 enum address_class class, 3139 struct psymbol_allocation_list *list, 3140 long val, /* Value as a long */ 3141 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */ 3142 enum language language, struct objfile *objfile) 3143 { 3144 const struct partial_symbol *psym; 3145 3146 int added; 3147 3148 /* Stash the partial symbol away in the cache */ 3149 psym = add_psymbol_to_bcache (name, namelength, domain, class, 3150 val, coreaddr, language, objfile, &added); 3151 3152 /* Do not duplicate global partial symbols. */ 3153 if (list == &objfile->global_psymbols 3154 && !added) 3155 return psym; 3156 3157 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */ 3158 append_psymbol_to_list (list, psym, objfile); 3159 return psym; 3160 } 3161 3162 /* Initialize storage for partial symbols. */ 3163 3164 void 3165 init_psymbol_list (struct objfile *objfile, int total_symbols) 3166 { 3167 /* Free any previously allocated psymbol lists. */ 3168 3169 if (objfile->global_psymbols.list) 3170 { 3171 xfree (objfile->global_psymbols.list); 3172 } 3173 if (objfile->static_psymbols.list) 3174 { 3175 xfree (objfile->static_psymbols.list); 3176 } 3177 3178 /* Current best guess is that approximately a twentieth 3179 of the total symbols (in a debugging file) are global or static 3180 oriented symbols */ 3181 3182 objfile->global_psymbols.size = total_symbols / 10; 3183 objfile->static_psymbols.size = total_symbols / 10; 3184 3185 if (objfile->global_psymbols.size > 0) 3186 { 3187 objfile->global_psymbols.next = 3188 objfile->global_psymbols.list = (struct partial_symbol **) 3189 xmalloc ((objfile->global_psymbols.size 3190 * sizeof (struct partial_symbol *))); 3191 } 3192 if (objfile->static_psymbols.size > 0) 3193 { 3194 objfile->static_psymbols.next = 3195 objfile->static_psymbols.list = (struct partial_symbol **) 3196 xmalloc ((objfile->static_psymbols.size 3197 * sizeof (struct partial_symbol *))); 3198 } 3199 } 3200 3201 /* OVERLAYS: 3202 The following code implements an abstraction for debugging overlay sections. 3203 3204 The target model is as follows: 3205 1) The gnu linker will permit multiple sections to be mapped into the 3206 same VMA, each with its own unique LMA (or load address). 3207 2) It is assumed that some runtime mechanism exists for mapping the 3208 sections, one by one, from the load address into the VMA address. 3209 3) This code provides a mechanism for gdb to keep track of which 3210 sections should be considered to be mapped from the VMA to the LMA. 3211 This information is used for symbol lookup, and memory read/write. 3212 For instance, if a section has been mapped then its contents 3213 should be read from the VMA, otherwise from the LMA. 3214 3215 Two levels of debugger support for overlays are available. One is 3216 "manual", in which the debugger relies on the user to tell it which 3217 overlays are currently mapped. This level of support is 3218 implemented entirely in the core debugger, and the information about 3219 whether a section is mapped is kept in the objfile->obj_section table. 3220 3221 The second level of support is "automatic", and is only available if 3222 the target-specific code provides functionality to read the target's 3223 overlay mapping table, and translate its contents for the debugger 3224 (by updating the mapped state information in the obj_section tables). 3225 3226 The interface is as follows: 3227 User commands: 3228 overlay map <name> -- tell gdb to consider this section mapped 3229 overlay unmap <name> -- tell gdb to consider this section unmapped 3230 overlay list -- list the sections that GDB thinks are mapped 3231 overlay read-target -- get the target's state of what's mapped 3232 overlay off/manual/auto -- set overlay debugging state 3233 Functional interface: 3234 find_pc_mapped_section(pc): if the pc is in the range of a mapped 3235 section, return that section. 3236 find_pc_overlay(pc): find any overlay section that contains 3237 the pc, either in its VMA or its LMA 3238 section_is_mapped(sect): true if overlay is marked as mapped 3239 section_is_overlay(sect): true if section's VMA != LMA 3240 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA 3241 pc_in_unmapped_range(...): true if pc belongs to section's LMA 3242 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap 3243 overlay_mapped_address(...): map an address from section's LMA to VMA 3244 overlay_unmapped_address(...): map an address from section's VMA to LMA 3245 symbol_overlayed_address(...): Return a "current" address for symbol: 3246 either in VMA or LMA depending on whether 3247 the symbol's section is currently mapped 3248 */ 3249 3250 /* Overlay debugging state: */ 3251 3252 enum overlay_debugging_state overlay_debugging = ovly_off; 3253 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */ 3254 3255 /* Function: section_is_overlay (SECTION) 3256 Returns true if SECTION has VMA not equal to LMA, ie. 3257 SECTION is loaded at an address different from where it will "run". */ 3258 3259 int 3260 section_is_overlay (struct obj_section *section) 3261 { 3262 if (overlay_debugging && section) 3263 { 3264 bfd *abfd = section->objfile->obfd; 3265 asection *bfd_section = section->the_bfd_section; 3266 3267 if (bfd_section_lma (abfd, bfd_section) != 0 3268 && bfd_section_lma (abfd, bfd_section) 3269 != bfd_section_vma (abfd, bfd_section)) 3270 return 1; 3271 } 3272 3273 return 0; 3274 } 3275 3276 /* Function: overlay_invalidate_all (void) 3277 Invalidate the mapped state of all overlay sections (mark it as stale). */ 3278 3279 static void 3280 overlay_invalidate_all (void) 3281 { 3282 struct objfile *objfile; 3283 struct obj_section *sect; 3284 3285 ALL_OBJSECTIONS (objfile, sect) 3286 if (section_is_overlay (sect)) 3287 sect->ovly_mapped = -1; 3288 } 3289 3290 /* Function: section_is_mapped (SECTION) 3291 Returns true if section is an overlay, and is currently mapped. 3292 3293 Access to the ovly_mapped flag is restricted to this function, so 3294 that we can do automatic update. If the global flag 3295 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call 3296 overlay_invalidate_all. If the mapped state of the particular 3297 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */ 3298 3299 int 3300 section_is_mapped (struct obj_section *osect) 3301 { 3302 struct gdbarch *gdbarch; 3303 3304 if (osect == 0 || !section_is_overlay (osect)) 3305 return 0; 3306 3307 switch (overlay_debugging) 3308 { 3309 default: 3310 case ovly_off: 3311 return 0; /* overlay debugging off */ 3312 case ovly_auto: /* overlay debugging automatic */ 3313 /* Unles there is a gdbarch_overlay_update function, 3314 there's really nothing useful to do here (can't really go auto) */ 3315 gdbarch = get_objfile_arch (osect->objfile); 3316 if (gdbarch_overlay_update_p (gdbarch)) 3317 { 3318 if (overlay_cache_invalid) 3319 { 3320 overlay_invalidate_all (); 3321 overlay_cache_invalid = 0; 3322 } 3323 if (osect->ovly_mapped == -1) 3324 gdbarch_overlay_update (gdbarch, osect); 3325 } 3326 /* fall thru to manual case */ 3327 case ovly_on: /* overlay debugging manual */ 3328 return osect->ovly_mapped == 1; 3329 } 3330 } 3331 3332 /* Function: pc_in_unmapped_range 3333 If PC falls into the lma range of SECTION, return true, else false. */ 3334 3335 CORE_ADDR 3336 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section) 3337 { 3338 if (section_is_overlay (section)) 3339 { 3340 bfd *abfd = section->objfile->obfd; 3341 asection *bfd_section = section->the_bfd_section; 3342 3343 /* We assume the LMA is relocated by the same offset as the VMA. */ 3344 bfd_vma size = bfd_get_section_size (bfd_section); 3345 CORE_ADDR offset = obj_section_offset (section); 3346 3347 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc 3348 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size) 3349 return 1; 3350 } 3351 3352 return 0; 3353 } 3354 3355 /* Function: pc_in_mapped_range 3356 If PC falls into the vma range of SECTION, return true, else false. */ 3357 3358 CORE_ADDR 3359 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section) 3360 { 3361 if (section_is_overlay (section)) 3362 { 3363 if (obj_section_addr (section) <= pc 3364 && pc < obj_section_endaddr (section)) 3365 return 1; 3366 } 3367 3368 return 0; 3369 } 3370 3371 3372 /* Return true if the mapped ranges of sections A and B overlap, false 3373 otherwise. */ 3374 static int 3375 sections_overlap (struct obj_section *a, struct obj_section *b) 3376 { 3377 CORE_ADDR a_start = obj_section_addr (a); 3378 CORE_ADDR a_end = obj_section_endaddr (a); 3379 CORE_ADDR b_start = obj_section_addr (b); 3380 CORE_ADDR b_end = obj_section_endaddr (b); 3381 3382 return (a_start < b_end && b_start < a_end); 3383 } 3384 3385 /* Function: overlay_unmapped_address (PC, SECTION) 3386 Returns the address corresponding to PC in the unmapped (load) range. 3387 May be the same as PC. */ 3388 3389 CORE_ADDR 3390 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section) 3391 { 3392 if (section_is_overlay (section) && pc_in_mapped_range (pc, section)) 3393 { 3394 bfd *abfd = section->objfile->obfd; 3395 asection *bfd_section = section->the_bfd_section; 3396 3397 return pc + bfd_section_lma (abfd, bfd_section) 3398 - bfd_section_vma (abfd, bfd_section); 3399 } 3400 3401 return pc; 3402 } 3403 3404 /* Function: overlay_mapped_address (PC, SECTION) 3405 Returns the address corresponding to PC in the mapped (runtime) range. 3406 May be the same as PC. */ 3407 3408 CORE_ADDR 3409 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section) 3410 { 3411 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section)) 3412 { 3413 bfd *abfd = section->objfile->obfd; 3414 asection *bfd_section = section->the_bfd_section; 3415 3416 return pc + bfd_section_vma (abfd, bfd_section) 3417 - bfd_section_lma (abfd, bfd_section); 3418 } 3419 3420 return pc; 3421 } 3422 3423 3424 /* Function: symbol_overlayed_address 3425 Return one of two addresses (relative to the VMA or to the LMA), 3426 depending on whether the section is mapped or not. */ 3427 3428 CORE_ADDR 3429 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section) 3430 { 3431 if (overlay_debugging) 3432 { 3433 /* If the symbol has no section, just return its regular address. */ 3434 if (section == 0) 3435 return address; 3436 /* If the symbol's section is not an overlay, just return its address */ 3437 if (!section_is_overlay (section)) 3438 return address; 3439 /* If the symbol's section is mapped, just return its address */ 3440 if (section_is_mapped (section)) 3441 return address; 3442 /* 3443 * HOWEVER: if the symbol is in an overlay section which is NOT mapped, 3444 * then return its LOADED address rather than its vma address!! 3445 */ 3446 return overlay_unmapped_address (address, section); 3447 } 3448 return address; 3449 } 3450 3451 /* Function: find_pc_overlay (PC) 3452 Return the best-match overlay section for PC: 3453 If PC matches a mapped overlay section's VMA, return that section. 3454 Else if PC matches an unmapped section's VMA, return that section. 3455 Else if PC matches an unmapped section's LMA, return that section. */ 3456 3457 struct obj_section * 3458 find_pc_overlay (CORE_ADDR pc) 3459 { 3460 struct objfile *objfile; 3461 struct obj_section *osect, *best_match = NULL; 3462 3463 if (overlay_debugging) 3464 ALL_OBJSECTIONS (objfile, osect) 3465 if (section_is_overlay (osect)) 3466 { 3467 if (pc_in_mapped_range (pc, osect)) 3468 { 3469 if (section_is_mapped (osect)) 3470 return osect; 3471 else 3472 best_match = osect; 3473 } 3474 else if (pc_in_unmapped_range (pc, osect)) 3475 best_match = osect; 3476 } 3477 return best_match; 3478 } 3479 3480 /* Function: find_pc_mapped_section (PC) 3481 If PC falls into the VMA address range of an overlay section that is 3482 currently marked as MAPPED, return that section. Else return NULL. */ 3483 3484 struct obj_section * 3485 find_pc_mapped_section (CORE_ADDR pc) 3486 { 3487 struct objfile *objfile; 3488 struct obj_section *osect; 3489 3490 if (overlay_debugging) 3491 ALL_OBJSECTIONS (objfile, osect) 3492 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect)) 3493 return osect; 3494 3495 return NULL; 3496 } 3497 3498 /* Function: list_overlays_command 3499 Print a list of mapped sections and their PC ranges */ 3500 3501 void 3502 list_overlays_command (char *args, int from_tty) 3503 { 3504 int nmapped = 0; 3505 struct objfile *objfile; 3506 struct obj_section *osect; 3507 3508 if (overlay_debugging) 3509 ALL_OBJSECTIONS (objfile, osect) 3510 if (section_is_mapped (osect)) 3511 { 3512 struct gdbarch *gdbarch = get_objfile_arch (objfile); 3513 const char *name; 3514 bfd_vma lma, vma; 3515 int size; 3516 3517 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section); 3518 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section); 3519 size = bfd_get_section_size (osect->the_bfd_section); 3520 name = bfd_section_name (objfile->obfd, osect->the_bfd_section); 3521 3522 printf_filtered ("Section %s, loaded at ", name); 3523 fputs_filtered (paddress (gdbarch, lma), gdb_stdout); 3524 puts_filtered (" - "); 3525 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout); 3526 printf_filtered (", mapped at "); 3527 fputs_filtered (paddress (gdbarch, vma), gdb_stdout); 3528 puts_filtered (" - "); 3529 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout); 3530 puts_filtered ("\n"); 3531 3532 nmapped++; 3533 } 3534 if (nmapped == 0) 3535 printf_filtered (_("No sections are mapped.\n")); 3536 } 3537 3538 /* Function: map_overlay_command 3539 Mark the named section as mapped (ie. residing at its VMA address). */ 3540 3541 void 3542 map_overlay_command (char *args, int from_tty) 3543 { 3544 struct objfile *objfile, *objfile2; 3545 struct obj_section *sec, *sec2; 3546 3547 if (!overlay_debugging) 3548 error (_("\ 3549 Overlay debugging not enabled. Use either the 'overlay auto' or\n\ 3550 the 'overlay manual' command.")); 3551 3552 if (args == 0 || *args == 0) 3553 error (_("Argument required: name of an overlay section")); 3554 3555 /* First, find a section matching the user supplied argument */ 3556 ALL_OBJSECTIONS (objfile, sec) 3557 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) 3558 { 3559 /* Now, check to see if the section is an overlay. */ 3560 if (!section_is_overlay (sec)) 3561 continue; /* not an overlay section */ 3562 3563 /* Mark the overlay as "mapped" */ 3564 sec->ovly_mapped = 1; 3565 3566 /* Next, make a pass and unmap any sections that are 3567 overlapped by this new section: */ 3568 ALL_OBJSECTIONS (objfile2, sec2) 3569 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2)) 3570 { 3571 if (info_verbose) 3572 printf_unfiltered (_("Note: section %s unmapped by overlap\n"), 3573 bfd_section_name (objfile->obfd, 3574 sec2->the_bfd_section)); 3575 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */ 3576 } 3577 return; 3578 } 3579 error (_("No overlay section called %s"), args); 3580 } 3581 3582 /* Function: unmap_overlay_command 3583 Mark the overlay section as unmapped 3584 (ie. resident in its LMA address range, rather than the VMA range). */ 3585 3586 void 3587 unmap_overlay_command (char *args, int from_tty) 3588 { 3589 struct objfile *objfile; 3590 struct obj_section *sec; 3591 3592 if (!overlay_debugging) 3593 error (_("\ 3594 Overlay debugging not enabled. Use either the 'overlay auto' or\n\ 3595 the 'overlay manual' command.")); 3596 3597 if (args == 0 || *args == 0) 3598 error (_("Argument required: name of an overlay section")); 3599 3600 /* First, find a section matching the user supplied argument */ 3601 ALL_OBJSECTIONS (objfile, sec) 3602 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args)) 3603 { 3604 if (!sec->ovly_mapped) 3605 error (_("Section %s is not mapped"), args); 3606 sec->ovly_mapped = 0; 3607 return; 3608 } 3609 error (_("No overlay section called %s"), args); 3610 } 3611 3612 /* Function: overlay_auto_command 3613 A utility command to turn on overlay debugging. 3614 Possibly this should be done via a set/show command. */ 3615 3616 static void 3617 overlay_auto_command (char *args, int from_tty) 3618 { 3619 overlay_debugging = ovly_auto; 3620 enable_overlay_breakpoints (); 3621 if (info_verbose) 3622 printf_unfiltered (_("Automatic overlay debugging enabled.")); 3623 } 3624 3625 /* Function: overlay_manual_command 3626 A utility command to turn on overlay debugging. 3627 Possibly this should be done via a set/show command. */ 3628 3629 static void 3630 overlay_manual_command (char *args, int from_tty) 3631 { 3632 overlay_debugging = ovly_on; 3633 disable_overlay_breakpoints (); 3634 if (info_verbose) 3635 printf_unfiltered (_("Overlay debugging enabled.")); 3636 } 3637 3638 /* Function: overlay_off_command 3639 A utility command to turn on overlay debugging. 3640 Possibly this should be done via a set/show command. */ 3641 3642 static void 3643 overlay_off_command (char *args, int from_tty) 3644 { 3645 overlay_debugging = ovly_off; 3646 disable_overlay_breakpoints (); 3647 if (info_verbose) 3648 printf_unfiltered (_("Overlay debugging disabled.")); 3649 } 3650 3651 static void 3652 overlay_load_command (char *args, int from_tty) 3653 { 3654 struct gdbarch *gdbarch = get_current_arch (); 3655 3656 if (gdbarch_overlay_update_p (gdbarch)) 3657 gdbarch_overlay_update (gdbarch, NULL); 3658 else 3659 error (_("This target does not know how to read its overlay state.")); 3660 } 3661 3662 /* Function: overlay_command 3663 A place-holder for a mis-typed command */ 3664 3665 /* Command list chain containing all defined "overlay" subcommands. */ 3666 struct cmd_list_element *overlaylist; 3667 3668 static void 3669 overlay_command (char *args, int from_tty) 3670 { 3671 printf_unfiltered 3672 ("\"overlay\" must be followed by the name of an overlay command.\n"); 3673 help_list (overlaylist, "overlay ", -1, gdb_stdout); 3674 } 3675 3676 3677 /* Target Overlays for the "Simplest" overlay manager: 3678 3679 This is GDB's default target overlay layer. It works with the 3680 minimal overlay manager supplied as an example by Cygnus. The 3681 entry point is via a function pointer "gdbarch_overlay_update", 3682 so targets that use a different runtime overlay manager can 3683 substitute their own overlay_update function and take over the 3684 function pointer. 3685 3686 The overlay_update function pokes around in the target's data structures 3687 to see what overlays are mapped, and updates GDB's overlay mapping with 3688 this information. 3689 3690 In this simple implementation, the target data structures are as follows: 3691 unsigned _novlys; /# number of overlay sections #/ 3692 unsigned _ovly_table[_novlys][4] = { 3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/ 3694 {..., ..., ..., ...}, 3695 } 3696 unsigned _novly_regions; /# number of overlay regions #/ 3697 unsigned _ovly_region_table[_novly_regions][3] = { 3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/ 3699 {..., ..., ...}, 3700 } 3701 These functions will attempt to update GDB's mappedness state in the 3702 symbol section table, based on the target's mappedness state. 3703 3704 To do this, we keep a cached copy of the target's _ovly_table, and 3705 attempt to detect when the cached copy is invalidated. The main 3706 entry point is "simple_overlay_update(SECT), which looks up SECT in 3707 the cached table and re-reads only the entry for that section from 3708 the target (whenever possible). 3709 */ 3710 3711 /* Cached, dynamically allocated copies of the target data structures: */ 3712 static unsigned (*cache_ovly_table)[4] = 0; 3713 #if 0 3714 static unsigned (*cache_ovly_region_table)[3] = 0; 3715 #endif 3716 static unsigned cache_novlys = 0; 3717 #if 0 3718 static unsigned cache_novly_regions = 0; 3719 #endif 3720 static CORE_ADDR cache_ovly_table_base = 0; 3721 #if 0 3722 static CORE_ADDR cache_ovly_region_table_base = 0; 3723 #endif 3724 enum ovly_index 3725 { 3726 VMA, SIZE, LMA, MAPPED 3727 }; 3728 3729 /* Throw away the cached copy of _ovly_table */ 3730 static void 3731 simple_free_overlay_table (void) 3732 { 3733 if (cache_ovly_table) 3734 xfree (cache_ovly_table); 3735 cache_novlys = 0; 3736 cache_ovly_table = NULL; 3737 cache_ovly_table_base = 0; 3738 } 3739 3740 #if 0 3741 /* Throw away the cached copy of _ovly_region_table */ 3742 static void 3743 simple_free_overlay_region_table (void) 3744 { 3745 if (cache_ovly_region_table) 3746 xfree (cache_ovly_region_table); 3747 cache_novly_regions = 0; 3748 cache_ovly_region_table = NULL; 3749 cache_ovly_region_table_base = 0; 3750 } 3751 #endif 3752 3753 /* Read an array of ints of size SIZE from the target into a local buffer. 3754 Convert to host order. int LEN is number of ints */ 3755 static void 3756 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, 3757 int len, int size, enum bfd_endian byte_order) 3758 { 3759 /* FIXME (alloca): Not safe if array is very large. */ 3760 gdb_byte *buf = alloca (len * size); 3761 int i; 3762 3763 read_memory (memaddr, buf, len * size); 3764 for (i = 0; i < len; i++) 3765 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order); 3766 } 3767 3768 /* Find and grab a copy of the target _ovly_table 3769 (and _novlys, which is needed for the table's size) */ 3770 static int 3771 simple_read_overlay_table (void) 3772 { 3773 struct minimal_symbol *novlys_msym, *ovly_table_msym; 3774 struct gdbarch *gdbarch; 3775 int word_size; 3776 enum bfd_endian byte_order; 3777 3778 simple_free_overlay_table (); 3779 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL); 3780 if (! novlys_msym) 3781 { 3782 error (_("Error reading inferior's overlay table: " 3783 "couldn't find `_novlys' variable\n" 3784 "in inferior. Use `overlay manual' mode.")); 3785 return 0; 3786 } 3787 3788 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL); 3789 if (! ovly_table_msym) 3790 { 3791 error (_("Error reading inferior's overlay table: couldn't find " 3792 "`_ovly_table' array\n" 3793 "in inferior. Use `overlay manual' mode.")); 3794 return 0; 3795 } 3796 3797 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym)); 3798 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; 3799 byte_order = gdbarch_byte_order (gdbarch); 3800 3801 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 3802 4, byte_order); 3803 cache_ovly_table 3804 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table)); 3805 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym); 3806 read_target_long_array (cache_ovly_table_base, 3807 (unsigned int *) cache_ovly_table, 3808 cache_novlys * 4, word_size, byte_order); 3809 3810 return 1; /* SUCCESS */ 3811 } 3812 3813 #if 0 3814 /* Find and grab a copy of the target _ovly_region_table 3815 (and _novly_regions, which is needed for the table's size) */ 3816 static int 3817 simple_read_overlay_region_table (void) 3818 { 3819 struct minimal_symbol *msym; 3820 struct gdbarch *gdbarch; 3821 int word_size; 3822 enum bfd_endian byte_order; 3823 3824 simple_free_overlay_region_table (); 3825 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL); 3826 if (msym == NULL) 3827 return 0; /* failure */ 3828 3829 gdbarch = get_objfile_arch (msymbol_objfile (msym)); 3830 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; 3831 byte_order = gdbarch_byte_order (gdbarch); 3832 3833 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 3834 4, byte_order); 3835 3836 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12); 3837 if (cache_ovly_region_table != NULL) 3838 { 3839 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL); 3840 if (msym != NULL) 3841 { 3842 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym); 3843 read_target_long_array (cache_ovly_region_table_base, 3844 (unsigned int *) cache_ovly_region_table, 3845 cache_novly_regions * 3, 3846 word_size, byte_order); 3847 } 3848 else 3849 return 0; /* failure */ 3850 } 3851 else 3852 return 0; /* failure */ 3853 return 1; /* SUCCESS */ 3854 } 3855 #endif 3856 3857 /* Function: simple_overlay_update_1 3858 A helper function for simple_overlay_update. Assuming a cached copy 3859 of _ovly_table exists, look through it to find an entry whose vma, 3860 lma and size match those of OSECT. Re-read the entry and make sure 3861 it still matches OSECT (else the table may no longer be valid). 3862 Set OSECT's mapped state to match the entry. Return: 1 for 3863 success, 0 for failure. */ 3864 3865 static int 3866 simple_overlay_update_1 (struct obj_section *osect) 3867 { 3868 int i, size; 3869 bfd *obfd = osect->objfile->obfd; 3870 asection *bsect = osect->the_bfd_section; 3871 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile); 3872 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT; 3873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 3874 3875 size = bfd_get_section_size (osect->the_bfd_section); 3876 for (i = 0; i < cache_novlys; i++) 3877 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect) 3878 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect) 3879 /* && cache_ovly_table[i][SIZE] == size */ ) 3880 { 3881 read_target_long_array (cache_ovly_table_base + i * word_size, 3882 (unsigned int *) cache_ovly_table[i], 3883 4, word_size, byte_order); 3884 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect) 3885 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect) 3886 /* && cache_ovly_table[i][SIZE] == size */ ) 3887 { 3888 osect->ovly_mapped = cache_ovly_table[i][MAPPED]; 3889 return 1; 3890 } 3891 else /* Warning! Warning! Target's ovly table has changed! */ 3892 return 0; 3893 } 3894 return 0; 3895 } 3896 3897 /* Function: simple_overlay_update 3898 If OSECT is NULL, then update all sections' mapped state 3899 (after re-reading the entire target _ovly_table). 3900 If OSECT is non-NULL, then try to find a matching entry in the 3901 cached ovly_table and update only OSECT's mapped state. 3902 If a cached entry can't be found or the cache isn't valid, then 3903 re-read the entire cache, and go ahead and update all sections. */ 3904 3905 void 3906 simple_overlay_update (struct obj_section *osect) 3907 { 3908 struct objfile *objfile; 3909 3910 /* Were we given an osect to look up? NULL means do all of them. */ 3911 if (osect) 3912 /* Have we got a cached copy of the target's overlay table? */ 3913 if (cache_ovly_table != NULL) 3914 /* Does its cached location match what's currently in the symtab? */ 3915 if (cache_ovly_table_base == 3916 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL))) 3917 /* Then go ahead and try to look up this single section in the cache */ 3918 if (simple_overlay_update_1 (osect)) 3919 /* Found it! We're done. */ 3920 return; 3921 3922 /* Cached table no good: need to read the entire table anew. 3923 Or else we want all the sections, in which case it's actually 3924 more efficient to read the whole table in one block anyway. */ 3925 3926 if (! simple_read_overlay_table ()) 3927 return; 3928 3929 /* Now may as well update all sections, even if only one was requested. */ 3930 ALL_OBJSECTIONS (objfile, osect) 3931 if (section_is_overlay (osect)) 3932 { 3933 int i, size; 3934 bfd *obfd = osect->objfile->obfd; 3935 asection *bsect = osect->the_bfd_section; 3936 3937 size = bfd_get_section_size (bsect); 3938 for (i = 0; i < cache_novlys; i++) 3939 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect) 3940 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect) 3941 /* && cache_ovly_table[i][SIZE] == size */ ) 3942 { /* obj_section matches i'th entry in ovly_table */ 3943 osect->ovly_mapped = cache_ovly_table[i][MAPPED]; 3944 break; /* finished with inner for loop: break out */ 3945 } 3946 } 3947 } 3948 3949 /* Set the output sections and output offsets for section SECTP in 3950 ABFD. The relocation code in BFD will read these offsets, so we 3951 need to be sure they're initialized. We map each section to itself, 3952 with no offset; this means that SECTP->vma will be honored. */ 3953 3954 static void 3955 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy) 3956 { 3957 sectp->output_section = sectp; 3958 sectp->output_offset = 0; 3959 } 3960 3961 /* Relocate the contents of a debug section SECTP in ABFD. The 3962 contents are stored in BUF if it is non-NULL, or returned in a 3963 malloc'd buffer otherwise. 3964 3965 For some platforms and debug info formats, shared libraries contain 3966 relocations against the debug sections (particularly for DWARF-2; 3967 one affected platform is PowerPC GNU/Linux, although it depends on 3968 the version of the linker in use). Also, ELF object files naturally 3969 have unresolved relocations for their debug sections. We need to apply 3970 the relocations in order to get the locations of symbols correct. 3971 Another example that may require relocation processing, is the 3972 DWARF-2 .eh_frame section in .o files, although it isn't strictly a 3973 debug section. */ 3974 3975 bfd_byte * 3976 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf) 3977 { 3978 /* We're only interested in sections with relocation 3979 information. */ 3980 if ((sectp->flags & SEC_RELOC) == 0) 3981 return NULL; 3982 3983 /* We will handle section offsets properly elsewhere, so relocate as if 3984 all sections begin at 0. */ 3985 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL); 3986 3987 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL); 3988 } 3989 3990 struct symfile_segment_data * 3991 get_symfile_segment_data (bfd *abfd) 3992 { 3993 struct sym_fns *sf = find_sym_fns (abfd); 3994 3995 if (sf == NULL) 3996 return NULL; 3997 3998 return sf->sym_segments (abfd); 3999 } 4000 4001 void 4002 free_symfile_segment_data (struct symfile_segment_data *data) 4003 { 4004 xfree (data->segment_bases); 4005 xfree (data->segment_sizes); 4006 xfree (data->segment_info); 4007 xfree (data); 4008 } 4009 4010 4011 /* Given: 4012 - DATA, containing segment addresses from the object file ABFD, and 4013 the mapping from ABFD's sections onto the segments that own them, 4014 and 4015 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual 4016 segment addresses reported by the target, 4017 store the appropriate offsets for each section in OFFSETS. 4018 4019 If there are fewer entries in SEGMENT_BASES than there are segments 4020 in DATA, then apply SEGMENT_BASES' last entry to all the segments. 4021 4022 If there are more entries, then ignore the extra. The target may 4023 not be able to distinguish between an empty data segment and a 4024 missing data segment; a missing text segment is less plausible. */ 4025 int 4026 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data, 4027 struct section_offsets *offsets, 4028 int num_segment_bases, 4029 const CORE_ADDR *segment_bases) 4030 { 4031 int i; 4032 asection *sect; 4033 4034 /* It doesn't make sense to call this function unless you have some 4035 segment base addresses. */ 4036 gdb_assert (segment_bases > 0); 4037 4038 /* If we do not have segment mappings for the object file, we 4039 can not relocate it by segments. */ 4040 gdb_assert (data != NULL); 4041 gdb_assert (data->num_segments > 0); 4042 4043 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 4044 { 4045 int which = data->segment_info[i]; 4046 4047 gdb_assert (0 <= which && which <= data->num_segments); 4048 4049 /* Don't bother computing offsets for sections that aren't 4050 loaded as part of any segment. */ 4051 if (! which) 4052 continue; 4053 4054 /* Use the last SEGMENT_BASES entry as the address of any extra 4055 segments mentioned in DATA->segment_info. */ 4056 if (which > num_segment_bases) 4057 which = num_segment_bases; 4058 4059 offsets->offsets[i] = (segment_bases[which - 1] 4060 - data->segment_bases[which - 1]); 4061 } 4062 4063 return 1; 4064 } 4065 4066 static void 4067 symfile_find_segment_sections (struct objfile *objfile) 4068 { 4069 bfd *abfd = objfile->obfd; 4070 int i; 4071 asection *sect; 4072 struct symfile_segment_data *data; 4073 4074 data = get_symfile_segment_data (objfile->obfd); 4075 if (data == NULL) 4076 return; 4077 4078 if (data->num_segments != 1 && data->num_segments != 2) 4079 { 4080 free_symfile_segment_data (data); 4081 return; 4082 } 4083 4084 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next) 4085 { 4086 CORE_ADDR vma; 4087 int which = data->segment_info[i]; 4088 4089 if (which == 1) 4090 { 4091 if (objfile->sect_index_text == -1) 4092 objfile->sect_index_text = sect->index; 4093 4094 if (objfile->sect_index_rodata == -1) 4095 objfile->sect_index_rodata = sect->index; 4096 } 4097 else if (which == 2) 4098 { 4099 if (objfile->sect_index_data == -1) 4100 objfile->sect_index_data = sect->index; 4101 4102 if (objfile->sect_index_bss == -1) 4103 objfile->sect_index_bss = sect->index; 4104 } 4105 } 4106 4107 free_symfile_segment_data (data); 4108 } 4109 4110 void 4111 _initialize_symfile (void) 4112 { 4113 struct cmd_list_element *c; 4114 4115 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\ 4116 Load symbol table from executable file FILE.\n\ 4117 The `file' command can also load symbol tables, as well as setting the file\n\ 4118 to execute."), &cmdlist); 4119 set_cmd_completer (c, filename_completer); 4120 4121 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\ 4122 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\ 4123 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\ 4124 ADDR is the starting address of the file's text.\n\ 4125 The optional arguments are section-name section-address pairs and\n\ 4126 should be specified if the data and bss segments are not contiguous\n\ 4127 with the text. SECT is a section name to be loaded at SECT_ADDR."), 4128 &cmdlist); 4129 set_cmd_completer (c, filename_completer); 4130 4131 c = add_cmd ("load", class_files, load_command, _("\ 4132 Dynamically load FILE into the running program, and record its symbols\n\ 4133 for access from GDB.\n\ 4134 A load OFFSET may also be given."), &cmdlist); 4135 set_cmd_completer (c, filename_completer); 4136 4137 add_setshow_boolean_cmd ("symbol-reloading", class_support, 4138 &symbol_reloading, _("\ 4139 Set dynamic symbol table reloading multiple times in one run."), _("\ 4140 Show dynamic symbol table reloading multiple times in one run."), NULL, 4141 NULL, 4142 show_symbol_reloading, 4143 &setlist, &showlist); 4144 4145 add_prefix_cmd ("overlay", class_support, overlay_command, 4146 _("Commands for debugging overlays."), &overlaylist, 4147 "overlay ", 0, &cmdlist); 4148 4149 add_com_alias ("ovly", "overlay", class_alias, 1); 4150 add_com_alias ("ov", "overlay", class_alias, 1); 4151 4152 add_cmd ("map-overlay", class_support, map_overlay_command, 4153 _("Assert that an overlay section is mapped."), &overlaylist); 4154 4155 add_cmd ("unmap-overlay", class_support, unmap_overlay_command, 4156 _("Assert that an overlay section is unmapped."), &overlaylist); 4157 4158 add_cmd ("list-overlays", class_support, list_overlays_command, 4159 _("List mappings of overlay sections."), &overlaylist); 4160 4161 add_cmd ("manual", class_support, overlay_manual_command, 4162 _("Enable overlay debugging."), &overlaylist); 4163 add_cmd ("off", class_support, overlay_off_command, 4164 _("Disable overlay debugging."), &overlaylist); 4165 add_cmd ("auto", class_support, overlay_auto_command, 4166 _("Enable automatic overlay debugging."), &overlaylist); 4167 add_cmd ("load-target", class_support, overlay_load_command, 4168 _("Read the overlay mapping state from the target."), &overlaylist); 4169 4170 /* Filename extension to source language lookup table: */ 4171 init_filename_language_table (); 4172 add_setshow_string_noescape_cmd ("extension-language", class_files, 4173 &ext_args, _("\ 4174 Set mapping between filename extension and source language."), _("\ 4175 Show mapping between filename extension and source language."), _("\ 4176 Usage: set extension-language .foo bar"), 4177 set_ext_lang_command, 4178 show_ext_args, 4179 &setlist, &showlist); 4180 4181 add_info ("extensions", info_ext_lang_command, 4182 _("All filename extensions associated with a source language.")); 4183 4184 add_setshow_optional_filename_cmd ("debug-file-directory", class_support, 4185 &debug_file_directory, _("\ 4186 Set the directory where separate debug symbols are searched for."), _("\ 4187 Show the directory where separate debug symbols are searched for."), _("\ 4188 Separate debug symbols are first searched for in the same\n\ 4189 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\ 4190 and lastly at the path of the directory of the binary with\n\ 4191 the global debug-file directory prepended."), 4192 NULL, 4193 show_debug_file_directory, 4194 &setlist, &showlist); 4195 } 4196