xref: /dragonfly/contrib/gdb-7/gdb/symfile.c (revision b4f25088)
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 
3    Copyright (C) 1990-2012 Free Software Foundation, Inc.
4 
5    Contributed by Cygnus Support, using pieces from other GDB modules.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h"		/* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66 
67 #include "psymtab.h"
68 
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 					 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 			    unsigned long section_sent,
73 			    unsigned long section_size,
74 			    unsigned long total_sent,
75 			    unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78 
79 static void clear_symtab_users_cleanup (void *ignore);
80 
81 /* Global variables owned by this file.  */
82 int readnow_symbol_files;	/* Read full symbols immediately.  */
83 
84 /* External variables and functions referenced.  */
85 
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87 
88 /* Functions this file defines.  */
89 
90 static void load_command (char *, int);
91 
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93 
94 static void add_symbol_file_command (char *, int);
95 
96 bfd *symfile_bfd_open (char *);
97 
98 int get_section_index (struct objfile *, char *);
99 
100 static const struct sym_fns *find_sym_fns (bfd *);
101 
102 static void decrement_reading_symtab (void *);
103 
104 static void overlay_invalidate_all (void);
105 
106 void list_overlays_command (char *, int);
107 
108 void map_overlay_command (char *, int);
109 
110 void unmap_overlay_command (char *, int);
111 
112 static void overlay_auto_command (char *, int);
113 
114 static void overlay_manual_command (char *, int);
115 
116 static void overlay_off_command (char *, int);
117 
118 static void overlay_load_command (char *, int);
119 
120 static void overlay_command (char *, int);
121 
122 static void simple_free_overlay_table (void);
123 
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 				    enum bfd_endian);
126 
127 static int simple_read_overlay_table (void);
128 
129 static int simple_overlay_update_1 (struct obj_section *);
130 
131 static void add_filename_language (char *ext, enum language lang);
132 
133 static void info_ext_lang_command (char *args, int from_tty);
134 
135 static void init_filename_language_table (void);
136 
137 static void symfile_find_segment_sections (struct objfile *objfile);
138 
139 void _initialize_symfile (void);
140 
141 /* List of all available sym_fns.  On gdb startup, each object file reader
142    calls add_symtab_fns() to register information on each format it is
143    prepared to read.  */
144 
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147 
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149 
150 /* Flag for whether user will be reloading symbols multiple times.
151    Defaults to ON for VxWorks, otherwise OFF.  */
152 
153 #ifdef SYMBOL_RELOADING_DEFAULT
154 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
155 #else
156 int symbol_reloading = 0;
157 #endif
158 static void
159 show_symbol_reloading (struct ui_file *file, int from_tty,
160 		       struct cmd_list_element *c, const char *value)
161 {
162   fprintf_filtered (file, _("Dynamic symbol table reloading "
163 			    "multiple times in one run is %s.\n"),
164 		    value);
165 }
166 
167 /* If non-zero, shared library symbols will be added automatically
168    when the inferior is created, new libraries are loaded, or when
169    attaching to the inferior.  This is almost always what users will
170    want to have happen; but for very large programs, the startup time
171    will be excessive, and so if this is a problem, the user can clear
172    this flag and then add the shared library symbols as needed.  Note
173    that there is a potential for confusion, since if the shared
174    library symbols are not loaded, commands like "info fun" will *not*
175    report all the functions that are actually present.  */
176 
177 int auto_solib_add = 1;
178 
179 
180 /* Make a null terminated copy of the string at PTR with SIZE characters in
181    the obstack pointed to by OBSTACKP .  Returns the address of the copy.
182    Note that the string at PTR does not have to be null terminated, I.e. it
183    may be part of a larger string and we are only saving a substring.  */
184 
185 char *
186 obsavestring (const char *ptr, int size, struct obstack *obstackp)
187 {
188   char *p = (char *) obstack_alloc (obstackp, size + 1);
189   /* Open-coded memcpy--saves function call time.  These strings are usually
190      short.  FIXME: Is this really still true with a compiler that can
191      inline memcpy?  */
192   {
193     const char *p1 = ptr;
194     char *p2 = p;
195     const char *end = ptr + size;
196 
197     while (p1 != end)
198       *p2++ = *p1++;
199   }
200   p[size] = 0;
201   return p;
202 }
203 
204 /* Concatenate NULL terminated variable argument list of `const char *'
205    strings; return the new string.  Space is found in the OBSTACKP.
206    Argument list must be terminated by a sentinel expression `(char *)
207    NULL'.  */
208 
209 char *
210 obconcat (struct obstack *obstackp, ...)
211 {
212   va_list ap;
213 
214   va_start (ap, obstackp);
215   for (;;)
216     {
217       const char *s = va_arg (ap, const char *);
218 
219       if (s == NULL)
220 	break;
221 
222       obstack_grow_str (obstackp, s);
223     }
224   va_end (ap);
225   obstack_1grow (obstackp, 0);
226 
227   return obstack_finish (obstackp);
228 }
229 
230 /* True if we are reading a symbol table.  */
231 
232 int currently_reading_symtab = 0;
233 
234 static void
235 decrement_reading_symtab (void *dummy)
236 {
237   currently_reading_symtab--;
238 }
239 
240 /* Increment currently_reading_symtab and return a cleanup that can be
241    used to decrement it.  */
242 struct cleanup *
243 increment_reading_symtab (void)
244 {
245   ++currently_reading_symtab;
246   return make_cleanup (decrement_reading_symtab, NULL);
247 }
248 
249 /* Remember the lowest-addressed loadable section we've seen.
250    This function is called via bfd_map_over_sections.
251 
252    In case of equal vmas, the section with the largest size becomes the
253    lowest-addressed loadable section.
254 
255    If the vmas and sizes are equal, the last section is considered the
256    lowest-addressed loadable section.  */
257 
258 void
259 find_lowest_section (bfd *abfd, asection *sect, void *obj)
260 {
261   asection **lowest = (asection **) obj;
262 
263   if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
264     return;
265   if (!*lowest)
266     *lowest = sect;		/* First loadable section */
267   else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
268     *lowest = sect;		/* A lower loadable section */
269   else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
270 	   && (bfd_section_size (abfd, (*lowest))
271 	       <= bfd_section_size (abfd, sect)))
272     *lowest = sect;
273 }
274 
275 /* Create a new section_addr_info, with room for NUM_SECTIONS.  */
276 
277 struct section_addr_info *
278 alloc_section_addr_info (size_t num_sections)
279 {
280   struct section_addr_info *sap;
281   size_t size;
282 
283   size = (sizeof (struct section_addr_info)
284 	  +  sizeof (struct other_sections) * (num_sections - 1));
285   sap = (struct section_addr_info *) xmalloc (size);
286   memset (sap, 0, size);
287   sap->num_sections = num_sections;
288 
289   return sap;
290 }
291 
292 /* Build (allocate and populate) a section_addr_info struct from
293    an existing section table.  */
294 
295 extern struct section_addr_info *
296 build_section_addr_info_from_section_table (const struct target_section *start,
297                                             const struct target_section *end)
298 {
299   struct section_addr_info *sap;
300   const struct target_section *stp;
301   int oidx;
302 
303   sap = alloc_section_addr_info (end - start);
304 
305   for (stp = start, oidx = 0; stp != end; stp++)
306     {
307       if (bfd_get_section_flags (stp->bfd,
308 				 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
309 	  && oidx < end - start)
310 	{
311 	  sap->other[oidx].addr = stp->addr;
312 	  sap->other[oidx].name
313 	    = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
314 	  sap->other[oidx].sectindex = stp->the_bfd_section->index;
315 	  oidx++;
316 	}
317     }
318 
319   return sap;
320 }
321 
322 /* Create a section_addr_info from section offsets in ABFD.  */
323 
324 static struct section_addr_info *
325 build_section_addr_info_from_bfd (bfd *abfd)
326 {
327   struct section_addr_info *sap;
328   int i;
329   struct bfd_section *sec;
330 
331   sap = alloc_section_addr_info (bfd_count_sections (abfd));
332   for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
333     if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
334       {
335 	sap->other[i].addr = bfd_get_section_vma (abfd, sec);
336 	sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
337 	sap->other[i].sectindex = sec->index;
338 	i++;
339       }
340   return sap;
341 }
342 
343 /* Create a section_addr_info from section offsets in OBJFILE.  */
344 
345 struct section_addr_info *
346 build_section_addr_info_from_objfile (const struct objfile *objfile)
347 {
348   struct section_addr_info *sap;
349   int i;
350 
351   /* Before reread_symbols gets rewritten it is not safe to call:
352      gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
353      */
354   sap = build_section_addr_info_from_bfd (objfile->obfd);
355   for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
356     {
357       int sectindex = sap->other[i].sectindex;
358 
359       sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
360     }
361   return sap;
362 }
363 
364 /* Free all memory allocated by build_section_addr_info_from_section_table.  */
365 
366 extern void
367 free_section_addr_info (struct section_addr_info *sap)
368 {
369   int idx;
370 
371   for (idx = 0; idx < sap->num_sections; idx++)
372     if (sap->other[idx].name)
373       xfree (sap->other[idx].name);
374   xfree (sap);
375 }
376 
377 
378 /* Initialize OBJFILE's sect_index_* members.  */
379 static void
380 init_objfile_sect_indices (struct objfile *objfile)
381 {
382   asection *sect;
383   int i;
384 
385   sect = bfd_get_section_by_name (objfile->obfd, ".text");
386   if (sect)
387     objfile->sect_index_text = sect->index;
388 
389   sect = bfd_get_section_by_name (objfile->obfd, ".data");
390   if (sect)
391     objfile->sect_index_data = sect->index;
392 
393   sect = bfd_get_section_by_name (objfile->obfd, ".bss");
394   if (sect)
395     objfile->sect_index_bss = sect->index;
396 
397   sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
398   if (sect)
399     objfile->sect_index_rodata = sect->index;
400 
401   /* This is where things get really weird...  We MUST have valid
402      indices for the various sect_index_* members or gdb will abort.
403      So if for example, there is no ".text" section, we have to
404      accomodate that.  First, check for a file with the standard
405      one or two segments.  */
406 
407   symfile_find_segment_sections (objfile);
408 
409   /* Except when explicitly adding symbol files at some address,
410      section_offsets contains nothing but zeros, so it doesn't matter
411      which slot in section_offsets the individual sect_index_* members
412      index into.  So if they are all zero, it is safe to just point
413      all the currently uninitialized indices to the first slot.  But
414      beware: if this is the main executable, it may be relocated
415      later, e.g. by the remote qOffsets packet, and then this will
416      be wrong!  That's why we try segments first.  */
417 
418   for (i = 0; i < objfile->num_sections; i++)
419     {
420       if (ANOFFSET (objfile->section_offsets, i) != 0)
421 	{
422 	  break;
423 	}
424     }
425   if (i == objfile->num_sections)
426     {
427       if (objfile->sect_index_text == -1)
428 	objfile->sect_index_text = 0;
429       if (objfile->sect_index_data == -1)
430 	objfile->sect_index_data = 0;
431       if (objfile->sect_index_bss == -1)
432 	objfile->sect_index_bss = 0;
433       if (objfile->sect_index_rodata == -1)
434 	objfile->sect_index_rodata = 0;
435     }
436 }
437 
438 /* The arguments to place_section.  */
439 
440 struct place_section_arg
441 {
442   struct section_offsets *offsets;
443   CORE_ADDR lowest;
444 };
445 
446 /* Find a unique offset to use for loadable section SECT if
447    the user did not provide an offset.  */
448 
449 static void
450 place_section (bfd *abfd, asection *sect, void *obj)
451 {
452   struct place_section_arg *arg = obj;
453   CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
454   int done;
455   ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
456 
457   /* We are only interested in allocated sections.  */
458   if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
459     return;
460 
461   /* If the user specified an offset, honor it.  */
462   if (offsets[sect->index] != 0)
463     return;
464 
465   /* Otherwise, let's try to find a place for the section.  */
466   start_addr = (arg->lowest + align - 1) & -align;
467 
468   do {
469     asection *cur_sec;
470 
471     done = 1;
472 
473     for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
474       {
475 	int indx = cur_sec->index;
476 
477 	/* We don't need to compare against ourself.  */
478 	if (cur_sec == sect)
479 	  continue;
480 
481 	/* We can only conflict with allocated sections.  */
482 	if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
483 	  continue;
484 
485 	/* If the section offset is 0, either the section has not been placed
486 	   yet, or it was the lowest section placed (in which case LOWEST
487 	   will be past its end).  */
488 	if (offsets[indx] == 0)
489 	  continue;
490 
491 	/* If this section would overlap us, then we must move up.  */
492 	if (start_addr + bfd_get_section_size (sect) > offsets[indx]
493 	    && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
494 	  {
495 	    start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
496 	    start_addr = (start_addr + align - 1) & -align;
497 	    done = 0;
498 	    break;
499 	  }
500 
501 	/* Otherwise, we appear to be OK.  So far.  */
502       }
503     }
504   while (!done);
505 
506   offsets[sect->index] = start_addr;
507   arg->lowest = start_addr + bfd_get_section_size (sect);
508 }
509 
510 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
511    filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
512    entries.  */
513 
514 void
515 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
516 				       int num_sections,
517 				       struct section_addr_info *addrs)
518 {
519   int i;
520 
521   memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
522 
523   /* Now calculate offsets for section that were specified by the caller.  */
524   for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
525     {
526       struct other_sections *osp;
527 
528       osp = &addrs->other[i];
529       if (osp->sectindex == -1)
530   	continue;
531 
532       /* Record all sections in offsets.  */
533       /* The section_offsets in the objfile are here filled in using
534          the BFD index.  */
535       section_offsets->offsets[osp->sectindex] = osp->addr;
536     }
537 }
538 
539 /* Transform section name S for a name comparison.  prelink can split section
540    `.bss' into two sections `.dynbss' and `.bss' (in this order).  Similarly
541    prelink can split `.sbss' into `.sdynbss' and `.sbss'.  Use virtual address
542    of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
543    (`.sbss') section has invalid (increased) virtual address.  */
544 
545 static const char *
546 addr_section_name (const char *s)
547 {
548   if (strcmp (s, ".dynbss") == 0)
549     return ".bss";
550   if (strcmp (s, ".sdynbss") == 0)
551     return ".sbss";
552 
553   return s;
554 }
555 
556 /* qsort comparator for addrs_section_sort.  Sort entries in ascending order by
557    their (name, sectindex) pair.  sectindex makes the sort by name stable.  */
558 
559 static int
560 addrs_section_compar (const void *ap, const void *bp)
561 {
562   const struct other_sections *a = *((struct other_sections **) ap);
563   const struct other_sections *b = *((struct other_sections **) bp);
564   int retval, a_idx, b_idx;
565 
566   retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
567   if (retval)
568     return retval;
569 
570   return a->sectindex - b->sectindex;
571 }
572 
573 /* Provide sorted array of pointers to sections of ADDRS.  The array is
574    terminated by NULL.  Caller is responsible to call xfree for it.  */
575 
576 static struct other_sections **
577 addrs_section_sort (struct section_addr_info *addrs)
578 {
579   struct other_sections **array;
580   int i;
581 
582   /* `+ 1' for the NULL terminator.  */
583   array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
584   for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
585     array[i] = &addrs->other[i];
586   array[i] = NULL;
587 
588   qsort (array, i, sizeof (*array), addrs_section_compar);
589 
590   return array;
591 }
592 
593 /* Relativize absolute addresses in ADDRS into offsets based on ABFD.  Fill-in
594    also SECTINDEXes specific to ABFD there.  This function can be used to
595    rebase ADDRS to start referencing different BFD than before.  */
596 
597 void
598 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
599 {
600   asection *lower_sect;
601   CORE_ADDR lower_offset;
602   int i;
603   struct cleanup *my_cleanup;
604   struct section_addr_info *abfd_addrs;
605   struct other_sections **addrs_sorted, **abfd_addrs_sorted;
606   struct other_sections **addrs_to_abfd_addrs;
607 
608   /* Find lowest loadable section to be used as starting point for
609      continguous sections.  */
610   lower_sect = NULL;
611   bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
612   if (lower_sect == NULL)
613     {
614       warning (_("no loadable sections found in added symbol-file %s"),
615 	       bfd_get_filename (abfd));
616       lower_offset = 0;
617     }
618   else
619     lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
620 
621   /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
622      in ABFD.  Section names are not unique - there can be multiple sections of
623      the same name.  Also the sections of the same name do not have to be
624      adjacent to each other.  Some sections may be present only in one of the
625      files.  Even sections present in both files do not have to be in the same
626      order.
627 
628      Use stable sort by name for the sections in both files.  Then linearly
629      scan both lists matching as most of the entries as possible.  */
630 
631   addrs_sorted = addrs_section_sort (addrs);
632   my_cleanup = make_cleanup (xfree, addrs_sorted);
633 
634   abfd_addrs = build_section_addr_info_from_bfd (abfd);
635   make_cleanup_free_section_addr_info (abfd_addrs);
636   abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
637   make_cleanup (xfree, abfd_addrs_sorted);
638 
639   /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
640      ABFD_ADDRS_SORTED.  */
641 
642   addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
643 				 * addrs->num_sections);
644   make_cleanup (xfree, addrs_to_abfd_addrs);
645 
646   while (*addrs_sorted)
647     {
648       const char *sect_name = addr_section_name ((*addrs_sorted)->name);
649 
650       while (*abfd_addrs_sorted
651 	     && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
652 			sect_name) < 0)
653 	abfd_addrs_sorted++;
654 
655       if (*abfd_addrs_sorted
656 	  && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
657 		     sect_name) == 0)
658 	{
659 	  int index_in_addrs;
660 
661 	  /* Make the found item directly addressable from ADDRS.  */
662 	  index_in_addrs = *addrs_sorted - addrs->other;
663 	  gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
664 	  addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
665 
666 	  /* Never use the same ABFD entry twice.  */
667 	  abfd_addrs_sorted++;
668 	}
669 
670       addrs_sorted++;
671     }
672 
673   /* Calculate offsets for the loadable sections.
674      FIXME! Sections must be in order of increasing loadable section
675      so that contiguous sections can use the lower-offset!!!
676 
677      Adjust offsets if the segments are not contiguous.
678      If the section is contiguous, its offset should be set to
679      the offset of the highest loadable section lower than it
680      (the loadable section directly below it in memory).
681      this_offset = lower_offset = lower_addr - lower_orig_addr */
682 
683   for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
684     {
685       struct other_sections *sect = addrs_to_abfd_addrs[i];
686 
687       if (sect)
688 	{
689 	  /* This is the index used by BFD.  */
690 	  addrs->other[i].sectindex = sect->sectindex;
691 
692 	  if (addrs->other[i].addr != 0)
693 	    {
694 	      addrs->other[i].addr -= sect->addr;
695 	      lower_offset = addrs->other[i].addr;
696 	    }
697 	  else
698 	    addrs->other[i].addr = lower_offset;
699 	}
700       else
701 	{
702 	  /* addr_section_name transformation is not used for SECT_NAME.  */
703 	  const char *sect_name = addrs->other[i].name;
704 
705 	  /* This section does not exist in ABFD, which is normally
706 	     unexpected and we want to issue a warning.
707 
708 	     However, the ELF prelinker does create a few sections which are
709 	     marked in the main executable as loadable (they are loaded in
710 	     memory from the DYNAMIC segment) and yet are not present in
711 	     separate debug info files.  This is fine, and should not cause
712 	     a warning.  Shared libraries contain just the section
713 	     ".gnu.liblist" but it is not marked as loadable there.  There is
714 	     no other way to identify them than by their name as the sections
715 	     created by prelink have no special flags.
716 
717 	     For the sections `.bss' and `.sbss' see addr_section_name.  */
718 
719 	  if (!(strcmp (sect_name, ".gnu.liblist") == 0
720 		|| strcmp (sect_name, ".gnu.conflict") == 0
721 		|| (strcmp (sect_name, ".bss") == 0
722 		    && i > 0
723 		    && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
724 		    && addrs_to_abfd_addrs[i - 1] != NULL)
725 		|| (strcmp (sect_name, ".sbss") == 0
726 		    && i > 0
727 		    && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
728 		    && addrs_to_abfd_addrs[i - 1] != NULL)))
729 	    warning (_("section %s not found in %s"), sect_name,
730 		     bfd_get_filename (abfd));
731 
732 	  addrs->other[i].addr = 0;
733 	  addrs->other[i].sectindex = -1;
734 	}
735     }
736 
737   do_cleanups (my_cleanup);
738 }
739 
740 /* Parse the user's idea of an offset for dynamic linking, into our idea
741    of how to represent it for fast symbol reading.  This is the default
742    version of the sym_fns.sym_offsets function for symbol readers that
743    don't need to do anything special.  It allocates a section_offsets table
744    for the objectfile OBJFILE and stuffs ADDR into all of the offsets.  */
745 
746 void
747 default_symfile_offsets (struct objfile *objfile,
748 			 struct section_addr_info *addrs)
749 {
750   objfile->num_sections = bfd_count_sections (objfile->obfd);
751   objfile->section_offsets = (struct section_offsets *)
752     obstack_alloc (&objfile->objfile_obstack,
753 		   SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
754   relative_addr_info_to_section_offsets (objfile->section_offsets,
755 					 objfile->num_sections, addrs);
756 
757   /* For relocatable files, all loadable sections will start at zero.
758      The zero is meaningless, so try to pick arbitrary addresses such
759      that no loadable sections overlap.  This algorithm is quadratic,
760      but the number of sections in a single object file is generally
761      small.  */
762   if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
763     {
764       struct place_section_arg arg;
765       bfd *abfd = objfile->obfd;
766       asection *cur_sec;
767 
768       for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
769 	/* We do not expect this to happen; just skip this step if the
770 	   relocatable file has a section with an assigned VMA.  */
771 	if (bfd_section_vma (abfd, cur_sec) != 0)
772 	  break;
773 
774       if (cur_sec == NULL)
775 	{
776 	  CORE_ADDR *offsets = objfile->section_offsets->offsets;
777 
778 	  /* Pick non-overlapping offsets for sections the user did not
779 	     place explicitly.  */
780 	  arg.offsets = objfile->section_offsets;
781 	  arg.lowest = 0;
782 	  bfd_map_over_sections (objfile->obfd, place_section, &arg);
783 
784 	  /* Correctly filling in the section offsets is not quite
785 	     enough.  Relocatable files have two properties that
786 	     (most) shared objects do not:
787 
788 	     - Their debug information will contain relocations.  Some
789 	     shared libraries do also, but many do not, so this can not
790 	     be assumed.
791 
792 	     - If there are multiple code sections they will be loaded
793 	     at different relative addresses in memory than they are
794 	     in the objfile, since all sections in the file will start
795 	     at address zero.
796 
797 	     Because GDB has very limited ability to map from an
798 	     address in debug info to the correct code section,
799 	     it relies on adding SECT_OFF_TEXT to things which might be
800 	     code.  If we clear all the section offsets, and set the
801 	     section VMAs instead, then symfile_relocate_debug_section
802 	     will return meaningful debug information pointing at the
803 	     correct sections.
804 
805 	     GDB has too many different data structures for section
806 	     addresses - a bfd, objfile, and so_list all have section
807 	     tables, as does exec_ops.  Some of these could probably
808 	     be eliminated.  */
809 
810 	  for (cur_sec = abfd->sections; cur_sec != NULL;
811 	       cur_sec = cur_sec->next)
812 	    {
813 	      if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
814 		continue;
815 
816 	      bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
817 	      exec_set_section_address (bfd_get_filename (abfd),
818 					cur_sec->index,
819 					offsets[cur_sec->index]);
820 	      offsets[cur_sec->index] = 0;
821 	    }
822 	}
823     }
824 
825   /* Remember the bfd indexes for the .text, .data, .bss and
826      .rodata sections.  */
827   init_objfile_sect_indices (objfile);
828 }
829 
830 
831 /* Divide the file into segments, which are individual relocatable units.
832    This is the default version of the sym_fns.sym_segments function for
833    symbol readers that do not have an explicit representation of segments.
834    It assumes that object files do not have segments, and fully linked
835    files have a single segment.  */
836 
837 struct symfile_segment_data *
838 default_symfile_segments (bfd *abfd)
839 {
840   int num_sections, i;
841   asection *sect;
842   struct symfile_segment_data *data;
843   CORE_ADDR low, high;
844 
845   /* Relocatable files contain enough information to position each
846      loadable section independently; they should not be relocated
847      in segments.  */
848   if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
849     return NULL;
850 
851   /* Make sure there is at least one loadable section in the file.  */
852   for (sect = abfd->sections; sect != NULL; sect = sect->next)
853     {
854       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
855 	continue;
856 
857       break;
858     }
859   if (sect == NULL)
860     return NULL;
861 
862   low = bfd_get_section_vma (abfd, sect);
863   high = low + bfd_get_section_size (sect);
864 
865   data = XZALLOC (struct symfile_segment_data);
866   data->num_segments = 1;
867   data->segment_bases = XCALLOC (1, CORE_ADDR);
868   data->segment_sizes = XCALLOC (1, CORE_ADDR);
869 
870   num_sections = bfd_count_sections (abfd);
871   data->segment_info = XCALLOC (num_sections, int);
872 
873   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
874     {
875       CORE_ADDR vma;
876 
877       if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
878 	continue;
879 
880       vma = bfd_get_section_vma (abfd, sect);
881       if (vma < low)
882 	low = vma;
883       if (vma + bfd_get_section_size (sect) > high)
884 	high = vma + bfd_get_section_size (sect);
885 
886       data->segment_info[i] = 1;
887     }
888 
889   data->segment_bases[0] = low;
890   data->segment_sizes[0] = high - low;
891 
892   return data;
893 }
894 
895 /* Process a symbol file, as either the main file or as a dynamically
896    loaded file.
897 
898    OBJFILE is where the symbols are to be read from.
899 
900    ADDRS is the list of section load addresses.  If the user has given
901    an 'add-symbol-file' command, then this is the list of offsets and
902    addresses he or she provided as arguments to the command; or, if
903    we're handling a shared library, these are the actual addresses the
904    sections are loaded at, according to the inferior's dynamic linker
905    (as gleaned by GDB's shared library code).  We convert each address
906    into an offset from the section VMA's as it appears in the object
907    file, and then call the file's sym_offsets function to convert this
908    into a format-specific offset table --- a `struct section_offsets'.
909    If ADDRS is non-zero, OFFSETS must be zero.
910 
911    OFFSETS is a table of section offsets already in the right
912    format-specific representation.  NUM_OFFSETS is the number of
913    elements present in OFFSETS->offsets.  If OFFSETS is non-zero, we
914    assume this is the proper table the call to sym_offsets described
915    above would produce.  Instead of calling sym_offsets, we just dump
916    it right into objfile->section_offsets.  (When we're re-reading
917    symbols from an objfile, we don't have the original load address
918    list any more; all we have is the section offset table.)  If
919    OFFSETS is non-zero, ADDRS must be zero.
920 
921    ADD_FLAGS encodes verbosity level, whether this is main symbol or
922    an extra symbol file such as dynamically loaded code, and wether
923    breakpoint reset should be deferred.  */
924 
925 void
926 syms_from_objfile (struct objfile *objfile,
927                    struct section_addr_info *addrs,
928                    struct section_offsets *offsets,
929                    int num_offsets,
930 		   int add_flags)
931 {
932   struct section_addr_info *local_addr = NULL;
933   struct cleanup *old_chain;
934   const int mainline = add_flags & SYMFILE_MAINLINE;
935 
936   gdb_assert (! (addrs && offsets));
937 
938   init_entry_point_info (objfile);
939   objfile->sf = find_sym_fns (objfile->obfd);
940 
941   if (objfile->sf == NULL)
942     return;	/* No symbols.  */
943 
944   /* Make sure that partially constructed symbol tables will be cleaned up
945      if an error occurs during symbol reading.  */
946   old_chain = make_cleanup_free_objfile (objfile);
947 
948   /* If ADDRS and OFFSETS are both NULL, put together a dummy address
949      list.  We now establish the convention that an addr of zero means
950      no load address was specified.  */
951   if (! addrs && ! offsets)
952     {
953       local_addr
954 	= alloc_section_addr_info (bfd_count_sections (objfile->obfd));
955       make_cleanup (xfree, local_addr);
956       addrs = local_addr;
957     }
958 
959   /* Now either addrs or offsets is non-zero.  */
960 
961   if (mainline)
962     {
963       /* We will modify the main symbol table, make sure that all its users
964          will be cleaned up if an error occurs during symbol reading.  */
965       make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
966 
967       /* Since no error yet, throw away the old symbol table.  */
968 
969       if (symfile_objfile != NULL)
970 	{
971 	  free_objfile (symfile_objfile);
972 	  gdb_assert (symfile_objfile == NULL);
973 	}
974 
975       /* Currently we keep symbols from the add-symbol-file command.
976          If the user wants to get rid of them, they should do "symbol-file"
977          without arguments first.  Not sure this is the best behavior
978          (PR 2207).  */
979 
980       (*objfile->sf->sym_new_init) (objfile);
981     }
982 
983   /* Convert addr into an offset rather than an absolute address.
984      We find the lowest address of a loaded segment in the objfile,
985      and assume that <addr> is where that got loaded.
986 
987      We no longer warn if the lowest section is not a text segment (as
988      happens for the PA64 port.  */
989   if (addrs && addrs->other[0].name)
990     addr_info_make_relative (addrs, objfile->obfd);
991 
992   /* Initialize symbol reading routines for this objfile, allow complaints to
993      appear for this new file, and record how verbose to be, then do the
994      initial symbol reading for this file.  */
995 
996   (*objfile->sf->sym_init) (objfile);
997   clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
998 
999   if (addrs)
1000     (*objfile->sf->sym_offsets) (objfile, addrs);
1001   else
1002     {
1003       size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1004 
1005       /* Just copy in the offset table directly as given to us.  */
1006       objfile->num_sections = num_offsets;
1007       objfile->section_offsets
1008         = ((struct section_offsets *)
1009            obstack_alloc (&objfile->objfile_obstack, size));
1010       memcpy (objfile->section_offsets, offsets, size);
1011 
1012       init_objfile_sect_indices (objfile);
1013     }
1014 
1015   (*objfile->sf->sym_read) (objfile, add_flags);
1016 
1017   if ((add_flags & SYMFILE_NO_READ) == 0)
1018     require_partial_symbols (objfile, 0);
1019 
1020   /* Discard cleanups as symbol reading was successful.  */
1021 
1022   discard_cleanups (old_chain);
1023   xfree (local_addr);
1024 }
1025 
1026 /* Perform required actions after either reading in the initial
1027    symbols for a new objfile, or mapping in the symbols from a reusable
1028    objfile.  ADD_FLAGS is a bitmask of enum symfile_add_flags.  */
1029 
1030 void
1031 new_symfile_objfile (struct objfile *objfile, int add_flags)
1032 {
1033   /* If this is the main symbol file we have to clean up all users of the
1034      old main symbol file.  Otherwise it is sufficient to fixup all the
1035      breakpoints that may have been redefined by this symbol file.  */
1036   if (add_flags & SYMFILE_MAINLINE)
1037     {
1038       /* OK, make it the "real" symbol file.  */
1039       symfile_objfile = objfile;
1040 
1041       clear_symtab_users (add_flags);
1042     }
1043   else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1044     {
1045       breakpoint_re_set ();
1046     }
1047 
1048   /* We're done reading the symbol file; finish off complaints.  */
1049   clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1050 }
1051 
1052 /* Process a symbol file, as either the main file or as a dynamically
1053    loaded file.
1054 
1055    ABFD is a BFD already open on the file, as from symfile_bfd_open.
1056    This BFD will be closed on error, and is always consumed by this function.
1057 
1058    ADD_FLAGS encodes verbosity, whether this is main symbol file or
1059    extra, such as dynamically loaded code, and what to do with breakpoins.
1060 
1061    ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1062    syms_from_objfile, above.
1063    ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1064 
1065    PARENT is the original objfile if ABFD is a separate debug info file.
1066    Otherwise PARENT is NULL.
1067 
1068    Upon success, returns a pointer to the objfile that was added.
1069    Upon failure, jumps back to command level (never returns).  */
1070 
1071 static struct objfile *
1072 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1073                                        int add_flags,
1074                                        struct section_addr_info *addrs,
1075                                        struct section_offsets *offsets,
1076                                        int num_offsets,
1077                                        int flags, struct objfile *parent)
1078 {
1079   struct objfile *objfile;
1080   struct cleanup *my_cleanups;
1081   const char *name = bfd_get_filename (abfd);
1082   const int from_tty = add_flags & SYMFILE_VERBOSE;
1083   const int mainline = add_flags & SYMFILE_MAINLINE;
1084   const int should_print = ((from_tty || info_verbose)
1085 			    && (readnow_symbol_files
1086 				|| (add_flags & SYMFILE_NO_READ) == 0));
1087 
1088   if (readnow_symbol_files)
1089     {
1090       flags |= OBJF_READNOW;
1091       add_flags &= ~SYMFILE_NO_READ;
1092     }
1093 
1094   my_cleanups = make_cleanup_bfd_close (abfd);
1095 
1096   /* Give user a chance to burp if we'd be
1097      interactively wiping out any existing symbols.  */
1098 
1099   if ((have_full_symbols () || have_partial_symbols ())
1100       && mainline
1101       && from_tty
1102       && !query (_("Load new symbol table from \"%s\"? "), name))
1103     error (_("Not confirmed."));
1104 
1105   objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1106   discard_cleanups (my_cleanups);
1107 
1108   if (parent)
1109     add_separate_debug_objfile (objfile, parent);
1110 
1111   /* We either created a new mapped symbol table, mapped an existing
1112      symbol table file which has not had initial symbol reading
1113      performed, or need to read an unmapped symbol table.  */
1114   if (should_print)
1115     {
1116       if (deprecated_pre_add_symbol_hook)
1117 	deprecated_pre_add_symbol_hook (name);
1118       else
1119 	{
1120 	  printf_unfiltered (_("Reading symbols from %s..."), name);
1121 	  wrap_here ("");
1122 	  gdb_flush (gdb_stdout);
1123 	}
1124     }
1125   syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 		     add_flags);
1127 
1128   /* We now have at least a partial symbol table.  Check to see if the
1129      user requested that all symbols be read on initial access via either
1130      the gdb startup command line or on a per symbol file basis.  Expand
1131      all partial symbol tables for this objfile if so.  */
1132 
1133   if ((flags & OBJF_READNOW))
1134     {
1135       if (should_print)
1136 	{
1137 	  printf_unfiltered (_("expanding to full symbols..."));
1138 	  wrap_here ("");
1139 	  gdb_flush (gdb_stdout);
1140 	}
1141 
1142       if (objfile->sf)
1143 	objfile->sf->qf->expand_all_symtabs (objfile);
1144     }
1145 
1146   if (should_print && !objfile_has_symbols (objfile))
1147     {
1148       wrap_here ("");
1149       printf_unfiltered (_("(no debugging symbols found)..."));
1150       wrap_here ("");
1151     }
1152 
1153   if (should_print)
1154     {
1155       if (deprecated_post_add_symbol_hook)
1156 	deprecated_post_add_symbol_hook ();
1157       else
1158 	printf_unfiltered (_("done.\n"));
1159     }
1160 
1161   /* We print some messages regardless of whether 'from_tty ||
1162      info_verbose' is true, so make sure they go out at the right
1163      time.  */
1164   gdb_flush (gdb_stdout);
1165 
1166   if (objfile->sf == NULL)
1167     {
1168       observer_notify_new_objfile (objfile);
1169       return objfile;	/* No symbols.  */
1170     }
1171 
1172   new_symfile_objfile (objfile, add_flags);
1173 
1174   observer_notify_new_objfile (objfile);
1175 
1176   bfd_cache_close_all ();
1177   return (objfile);
1178 }
1179 
1180 /* Add BFD as a separate debug file for OBJFILE.  */
1181 
1182 void
1183 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1184 {
1185   struct objfile *new_objfile;
1186   struct section_addr_info *sap;
1187   struct cleanup *my_cleanup;
1188 
1189   /* Create section_addr_info.  We can't directly use offsets from OBJFILE
1190      because sections of BFD may not match sections of OBJFILE and because
1191      vma may have been modified by tools such as prelink.  */
1192   sap = build_section_addr_info_from_objfile (objfile);
1193   my_cleanup = make_cleanup_free_section_addr_info (sap);
1194 
1195   new_objfile = symbol_file_add_with_addrs_or_offsets
1196     (bfd, symfile_flags,
1197      sap, NULL, 0,
1198      objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1199 		       | OBJF_USERLOADED),
1200      objfile);
1201 
1202   do_cleanups (my_cleanup);
1203 }
1204 
1205 /* Process the symbol file ABFD, as either the main file or as a
1206    dynamically loaded file.
1207 
1208    See symbol_file_add_with_addrs_or_offsets's comments for
1209    details.  */
1210 struct objfile *
1211 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1212                           struct section_addr_info *addrs,
1213                           int flags, struct objfile *parent)
1214 {
1215   return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1216                                                 flags, parent);
1217 }
1218 
1219 
1220 /* Process a symbol file, as either the main file or as a dynamically
1221    loaded file.  See symbol_file_add_with_addrs_or_offsets's comments
1222    for details.  */
1223 struct objfile *
1224 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1225 		 int flags)
1226 {
1227   return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1228                                    flags, NULL);
1229 }
1230 
1231 
1232 /* Call symbol_file_add() with default values and update whatever is
1233    affected by the loading of a new main().
1234    Used when the file is supplied in the gdb command line
1235    and by some targets with special loading requirements.
1236    The auxiliary function, symbol_file_add_main_1(), has the flags
1237    argument for the switches that can only be specified in the symbol_file
1238    command itself.  */
1239 
1240 void
1241 symbol_file_add_main (char *args, int from_tty)
1242 {
1243   symbol_file_add_main_1 (args, from_tty, 0);
1244 }
1245 
1246 static void
1247 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1248 {
1249   const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1250   symbol_file_add (args, add_flags, NULL, flags);
1251 
1252   /* Getting new symbols may change our opinion about
1253      what is frameless.  */
1254   reinit_frame_cache ();
1255 
1256   set_initial_language ();
1257 }
1258 
1259 void
1260 symbol_file_clear (int from_tty)
1261 {
1262   if ((have_full_symbols () || have_partial_symbols ())
1263       && from_tty
1264       && (symfile_objfile
1265 	  ? !query (_("Discard symbol table from `%s'? "),
1266 		    symfile_objfile->name)
1267 	  : !query (_("Discard symbol table? "))))
1268     error (_("Not confirmed."));
1269 
1270   /* solib descriptors may have handles to objfiles.  Wipe them before their
1271      objfiles get stale by free_all_objfiles.  */
1272   no_shared_libraries (NULL, from_tty);
1273 
1274   free_all_objfiles ();
1275 
1276   gdb_assert (symfile_objfile == NULL);
1277   if (from_tty)
1278     printf_unfiltered (_("No symbol file now.\n"));
1279 }
1280 
1281 static char *
1282 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1283 {
1284   asection *sect;
1285   bfd_size_type debuglink_size;
1286   unsigned long crc32;
1287   char *contents;
1288   int crc_offset;
1289 
1290   sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1291 
1292   if (sect == NULL)
1293     return NULL;
1294 
1295   debuglink_size = bfd_section_size (objfile->obfd, sect);
1296 
1297   contents = xmalloc (debuglink_size);
1298   bfd_get_section_contents (objfile->obfd, sect, contents,
1299 			    (file_ptr)0, (bfd_size_type)debuglink_size);
1300 
1301   /* Crc value is stored after the filename, aligned up to 4 bytes.  */
1302   crc_offset = strlen (contents) + 1;
1303   crc_offset = (crc_offset + 3) & ~3;
1304 
1305   crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1306 
1307   *crc32_out = crc32;
1308   return contents;
1309 }
1310 
1311 /* Return 32-bit CRC for ABFD.  If successful store it to *FILE_CRC_RETURN and
1312    return 1.  Otherwise print a warning and return 0.  ABFD seek position is
1313    not preserved.  */
1314 
1315 static int
1316 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1317 {
1318   unsigned long file_crc = 0;
1319 
1320   if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1321     {
1322       warning (_("Problem reading \"%s\" for CRC: %s"),
1323 	       bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324       return 0;
1325     }
1326 
1327   for (;;)
1328     {
1329       gdb_byte buffer[8 * 1024];
1330       bfd_size_type count;
1331 
1332       count = bfd_bread (buffer, sizeof (buffer), abfd);
1333       if (count == (bfd_size_type) -1)
1334 	{
1335 	  warning (_("Problem reading \"%s\" for CRC: %s"),
1336 		   bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1337 	  return 0;
1338 	}
1339       if (count == 0)
1340 	break;
1341       file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1342     }
1343 
1344   *file_crc_return = file_crc;
1345   return 1;
1346 }
1347 
1348 static int
1349 separate_debug_file_exists (const char *name, unsigned long crc,
1350 			    struct objfile *parent_objfile)
1351 {
1352   unsigned long file_crc;
1353   int file_crc_p;
1354   bfd *abfd;
1355   struct stat parent_stat, abfd_stat;
1356   int verified_as_different;
1357 
1358   /* Find a separate debug info file as if symbols would be present in
1359      PARENT_OBJFILE itself this function would not be called.  .gnu_debuglink
1360      section can contain just the basename of PARENT_OBJFILE without any
1361      ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1362      the separate debug infos with the same basename can exist.  */
1363 
1364   if (filename_cmp (name, parent_objfile->name) == 0)
1365     return 0;
1366 
1367   abfd = bfd_open_maybe_remote (name);
1368 
1369   if (!abfd)
1370     return 0;
1371 
1372   /* Verify symlinks were not the cause of filename_cmp name difference above.
1373 
1374      Some operating systems, e.g. Windows, do not provide a meaningful
1375      st_ino; they always set it to zero.  (Windows does provide a
1376      meaningful st_dev.)  Do not indicate a duplicate library in that
1377      case.  While there is no guarantee that a system that provides
1378      meaningful inode numbers will never set st_ino to zero, this is
1379      merely an optimization, so we do not need to worry about false
1380      negatives.  */
1381 
1382   if (bfd_stat (abfd, &abfd_stat) == 0
1383       && abfd_stat.st_ino != 0
1384       && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1385     {
1386       if (abfd_stat.st_dev == parent_stat.st_dev
1387 	  && abfd_stat.st_ino == parent_stat.st_ino)
1388 	{
1389 	  bfd_close (abfd);
1390 	  return 0;
1391 	}
1392       verified_as_different = 1;
1393     }
1394   else
1395     verified_as_different = 0;
1396 
1397   file_crc_p = get_file_crc (abfd, &file_crc);
1398 
1399   bfd_close (abfd);
1400 
1401   if (!file_crc_p)
1402     return 0;
1403 
1404   if (crc != file_crc)
1405     {
1406       /* If one (or both) the files are accessed for example the via "remote:"
1407 	 gdbserver way it does not support the bfd_stat operation.  Verify
1408 	 whether those two files are not the same manually.  */
1409 
1410       if (!verified_as_different && !parent_objfile->crc32_p)
1411 	{
1412 	  parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1413 						  &parent_objfile->crc32);
1414 	  if (!parent_objfile->crc32_p)
1415 	    return 0;
1416 	}
1417 
1418       if (verified_as_different || parent_objfile->crc32 != file_crc)
1419 	warning (_("the debug information found in \"%s\""
1420 		   " does not match \"%s\" (CRC mismatch).\n"),
1421 		 name, parent_objfile->name);
1422 
1423       return 0;
1424     }
1425 
1426   return 1;
1427 }
1428 
1429 char *debug_file_directory = NULL;
1430 static void
1431 show_debug_file_directory (struct ui_file *file, int from_tty,
1432 			   struct cmd_list_element *c, const char *value)
1433 {
1434   fprintf_filtered (file,
1435 		    _("The directory where separate debug "
1436 		      "symbols are searched for is \"%s\".\n"),
1437 		    value);
1438 }
1439 
1440 #if ! defined (DEBUG_SUBDIRECTORY)
1441 #define DEBUG_SUBDIRECTORY ".debug"
1442 #endif
1443 
1444 char *
1445 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1446 {
1447   char *basename, *debugdir;
1448   char *dir = NULL;
1449   char *debugfile = NULL;
1450   char *canon_name = NULL;
1451   unsigned long crc32;
1452   int i;
1453 
1454   basename = get_debug_link_info (objfile, &crc32);
1455 
1456   if (basename == NULL)
1457     /* There's no separate debug info, hence there's no way we could
1458        load it => no warning.  */
1459     goto cleanup_return_debugfile;
1460 
1461   dir = xstrdup (objfile->name);
1462 
1463   /* Strip off the final filename part, leaving the directory name,
1464      followed by a slash.  The directory can be relative or absolute.  */
1465   for (i = strlen(dir) - 1; i >= 0; i--)
1466     {
1467       if (IS_DIR_SEPARATOR (dir[i]))
1468 	break;
1469     }
1470   /* If I is -1 then no directory is present there and DIR will be "".  */
1471   dir[i+1] = '\0';
1472 
1473   /* Set I to max (strlen (canon_name), strlen (dir)).  */
1474   canon_name = lrealpath (dir);
1475   i = strlen (dir);
1476   if (canon_name && strlen (canon_name) > i)
1477     i = strlen (canon_name);
1478 
1479   debugfile = xmalloc (strlen (debug_file_directory) + 1
1480 		       + i
1481 		       + strlen (DEBUG_SUBDIRECTORY)
1482 		       + strlen ("/")
1483 		       + strlen (basename)
1484 		       + 1);
1485 
1486   /* First try in the same directory as the original file.  */
1487   strcpy (debugfile, dir);
1488   strcat (debugfile, basename);
1489 
1490   if (separate_debug_file_exists (debugfile, crc32, objfile))
1491     goto cleanup_return_debugfile;
1492 
1493   /* Then try in the subdirectory named DEBUG_SUBDIRECTORY.  */
1494   strcpy (debugfile, dir);
1495   strcat (debugfile, DEBUG_SUBDIRECTORY);
1496   strcat (debugfile, "/");
1497   strcat (debugfile, basename);
1498 
1499   if (separate_debug_file_exists (debugfile, crc32, objfile))
1500     goto cleanup_return_debugfile;
1501 
1502   /* Then try in the global debugfile directories.
1503 
1504      Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1505      cause "/..." lookups.  */
1506 
1507   debugdir = debug_file_directory;
1508   do
1509     {
1510       char *debugdir_end;
1511 
1512       while (*debugdir == DIRNAME_SEPARATOR)
1513 	debugdir++;
1514 
1515       debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1516       if (debugdir_end == NULL)
1517 	debugdir_end = &debugdir[strlen (debugdir)];
1518 
1519       memcpy (debugfile, debugdir, debugdir_end - debugdir);
1520       debugfile[debugdir_end - debugdir] = 0;
1521       strcat (debugfile, "/");
1522       strcat (debugfile, dir);
1523       strcat (debugfile, basename);
1524 
1525       if (separate_debug_file_exists (debugfile, crc32, objfile))
1526 	goto cleanup_return_debugfile;
1527 
1528       /* If the file is in the sysroot, try using its base path in the
1529 	 global debugfile directory.  */
1530       if (canon_name
1531 	  && filename_ncmp (canon_name, gdb_sysroot,
1532 			    strlen (gdb_sysroot)) == 0
1533 	  && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1534 	{
1535 	  memcpy (debugfile, debugdir, debugdir_end - debugdir);
1536 	  debugfile[debugdir_end - debugdir] = 0;
1537 	  strcat (debugfile, canon_name + strlen (gdb_sysroot));
1538 	  strcat (debugfile, "/");
1539 	  strcat (debugfile, basename);
1540 
1541 	  if (separate_debug_file_exists (debugfile, crc32, objfile))
1542 	    goto cleanup_return_debugfile;
1543 	}
1544 
1545       debugdir = debugdir_end;
1546     }
1547   while (*debugdir != 0);
1548 
1549   xfree (debugfile);
1550   debugfile = NULL;
1551 
1552 cleanup_return_debugfile:
1553   xfree (canon_name);
1554   xfree (basename);
1555   xfree (dir);
1556   return debugfile;
1557 }
1558 
1559 
1560 /* This is the symbol-file command.  Read the file, analyze its
1561    symbols, and add a struct symtab to a symtab list.  The syntax of
1562    the command is rather bizarre:
1563 
1564    1. The function buildargv implements various quoting conventions
1565    which are undocumented and have little or nothing in common with
1566    the way things are quoted (or not quoted) elsewhere in GDB.
1567 
1568    2. Options are used, which are not generally used in GDB (perhaps
1569    "set mapped on", "set readnow on" would be better)
1570 
1571    3. The order of options matters, which is contrary to GNU
1572    conventions (because it is confusing and inconvenient).  */
1573 
1574 void
1575 symbol_file_command (char *args, int from_tty)
1576 {
1577   dont_repeat ();
1578 
1579   if (args == NULL)
1580     {
1581       symbol_file_clear (from_tty);
1582     }
1583   else
1584     {
1585       char **argv = gdb_buildargv (args);
1586       int flags = OBJF_USERLOADED;
1587       struct cleanup *cleanups;
1588       char *name = NULL;
1589 
1590       cleanups = make_cleanup_freeargv (argv);
1591       while (*argv != NULL)
1592 	{
1593 	  if (strcmp (*argv, "-readnow") == 0)
1594 	    flags |= OBJF_READNOW;
1595 	  else if (**argv == '-')
1596 	    error (_("unknown option `%s'"), *argv);
1597 	  else
1598 	    {
1599 	      symbol_file_add_main_1 (*argv, from_tty, flags);
1600 	      name = *argv;
1601 	    }
1602 
1603 	  argv++;
1604 	}
1605 
1606       if (name == NULL)
1607 	error (_("no symbol file name was specified"));
1608 
1609       do_cleanups (cleanups);
1610     }
1611 }
1612 
1613 /* Set the initial language.
1614 
1615    FIXME: A better solution would be to record the language in the
1616    psymtab when reading partial symbols, and then use it (if known) to
1617    set the language.  This would be a win for formats that encode the
1618    language in an easily discoverable place, such as DWARF.  For
1619    stabs, we can jump through hoops looking for specially named
1620    symbols or try to intuit the language from the specific type of
1621    stabs we find, but we can't do that until later when we read in
1622    full symbols.  */
1623 
1624 void
1625 set_initial_language (void)
1626 {
1627   enum language lang = language_unknown;
1628 
1629   if (language_of_main != language_unknown)
1630     lang = language_of_main;
1631   else
1632     {
1633       const char *filename;
1634 
1635       filename = find_main_filename ();
1636       if (filename != NULL)
1637 	lang = deduce_language_from_filename (filename);
1638     }
1639 
1640   if (lang == language_unknown)
1641     {
1642       /* Make C the default language */
1643       lang = language_c;
1644     }
1645 
1646   set_language (lang);
1647   expected_language = current_language; /* Don't warn the user.  */
1648 }
1649 
1650 /* If NAME is a remote name open the file using remote protocol, otherwise
1651    open it normally.  */
1652 
1653 bfd *
1654 bfd_open_maybe_remote (const char *name)
1655 {
1656   if (remote_filename_p (name))
1657     return remote_bfd_open (name, gnutarget);
1658   else
1659     return bfd_openr (name, gnutarget);
1660 }
1661 
1662 
1663 /* Open the file specified by NAME and hand it off to BFD for
1664    preliminary analysis.  Return a newly initialized bfd *, which
1665    includes a newly malloc'd` copy of NAME (tilde-expanded and made
1666    absolute).  In case of trouble, error() is called.  */
1667 
1668 bfd *
1669 symfile_bfd_open (char *name)
1670 {
1671   bfd *sym_bfd;
1672   int desc;
1673   char *absolute_name;
1674 
1675   if (remote_filename_p (name))
1676     {
1677       name = xstrdup (name);
1678       sym_bfd = remote_bfd_open (name, gnutarget);
1679       if (!sym_bfd)
1680 	{
1681 	  make_cleanup (xfree, name);
1682 	  error (_("`%s': can't open to read symbols: %s."), name,
1683 		 bfd_errmsg (bfd_get_error ()));
1684 	}
1685 
1686       if (!bfd_check_format (sym_bfd, bfd_object))
1687 	{
1688 	  bfd_close (sym_bfd);
1689 	  make_cleanup (xfree, name);
1690 	  error (_("`%s': can't read symbols: %s."), name,
1691 		 bfd_errmsg (bfd_get_error ()));
1692 	}
1693 
1694       return sym_bfd;
1695     }
1696 
1697   name = tilde_expand (name);	/* Returns 1st new malloc'd copy.  */
1698 
1699   /* Look down path for it, allocate 2nd new malloc'd copy.  */
1700   desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1701 		O_RDONLY | O_BINARY, &absolute_name);
1702 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1703   if (desc < 0)
1704     {
1705       char *exename = alloca (strlen (name) + 5);
1706 
1707       strcat (strcpy (exename, name), ".exe");
1708       desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1709 		    O_RDONLY | O_BINARY, &absolute_name);
1710     }
1711 #endif
1712   if (desc < 0)
1713     {
1714       make_cleanup (xfree, name);
1715       perror_with_name (name);
1716     }
1717 
1718   /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1719      bfd.  It'll be freed in free_objfile().  */
1720   xfree (name);
1721   name = absolute_name;
1722 
1723   sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1724   if (!sym_bfd)
1725     {
1726       close (desc);
1727       make_cleanup (xfree, name);
1728       error (_("`%s': can't open to read symbols: %s."), name,
1729 	     bfd_errmsg (bfd_get_error ()));
1730     }
1731   bfd_set_cacheable (sym_bfd, 1);
1732 
1733   if (!bfd_check_format (sym_bfd, bfd_object))
1734     {
1735       /* FIXME: should be checking for errors from bfd_close (for one
1736          thing, on error it does not free all the storage associated
1737          with the bfd).  */
1738       bfd_close (sym_bfd);	/* This also closes desc.  */
1739       make_cleanup (xfree, name);
1740       error (_("`%s': can't read symbols: %s."), name,
1741 	     bfd_errmsg (bfd_get_error ()));
1742     }
1743 
1744   /* bfd_usrdata exists for applications and libbfd must not touch it.  */
1745   gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1746 
1747   return sym_bfd;
1748 }
1749 
1750 /* Return the section index for SECTION_NAME on OBJFILE.  Return -1 if
1751    the section was not found.  */
1752 
1753 int
1754 get_section_index (struct objfile *objfile, char *section_name)
1755 {
1756   asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1757 
1758   if (sect)
1759     return sect->index;
1760   else
1761     return -1;
1762 }
1763 
1764 /* Link SF into the global symtab_fns list.  Called on startup by the
1765    _initialize routine in each object file format reader, to register
1766    information about each format the reader is prepared to handle.  */
1767 
1768 void
1769 add_symtab_fns (const struct sym_fns *sf)
1770 {
1771   VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1772 }
1773 
1774 /* Initialize OBJFILE to read symbols from its associated BFD.  It
1775    either returns or calls error().  The result is an initialized
1776    struct sym_fns in the objfile structure, that contains cached
1777    information about the symbol file.  */
1778 
1779 static const struct sym_fns *
1780 find_sym_fns (bfd *abfd)
1781 {
1782   const struct sym_fns *sf;
1783   enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1784   int i;
1785 
1786   if (our_flavour == bfd_target_srec_flavour
1787       || our_flavour == bfd_target_ihex_flavour
1788       || our_flavour == bfd_target_tekhex_flavour)
1789     return NULL;	/* No symbols.  */
1790 
1791   for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1792     if (our_flavour == sf->sym_flavour)
1793       return sf;
1794 
1795   error (_("I'm sorry, Dave, I can't do that.  Symbol format `%s' unknown."),
1796 	 bfd_get_target (abfd));
1797 }
1798 
1799 
1800 /* This function runs the load command of our current target.  */
1801 
1802 static void
1803 load_command (char *arg, int from_tty)
1804 {
1805   dont_repeat ();
1806 
1807   /* The user might be reloading because the binary has changed.  Take
1808      this opportunity to check.  */
1809   reopen_exec_file ();
1810   reread_symbols ();
1811 
1812   if (arg == NULL)
1813     {
1814       char *parg;
1815       int count = 0;
1816 
1817       parg = arg = get_exec_file (1);
1818 
1819       /* Count how many \ " ' tab space there are in the name.  */
1820       while ((parg = strpbrk (parg, "\\\"'\t ")))
1821 	{
1822 	  parg++;
1823 	  count++;
1824 	}
1825 
1826       if (count)
1827 	{
1828 	  /* We need to quote this string so buildargv can pull it apart.  */
1829 	  char *temp = xmalloc (strlen (arg) + count + 1 );
1830 	  char *ptemp = temp;
1831 	  char *prev;
1832 
1833 	  make_cleanup (xfree, temp);
1834 
1835 	  prev = parg = arg;
1836 	  while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 	    {
1838 	      strncpy (ptemp, prev, parg - prev);
1839 	      ptemp += parg - prev;
1840 	      prev = parg++;
1841 	      *ptemp++ = '\\';
1842 	    }
1843 	  strcpy (ptemp, prev);
1844 
1845 	  arg = temp;
1846 	}
1847     }
1848 
1849   target_load (arg, from_tty);
1850 
1851   /* After re-loading the executable, we don't really know which
1852      overlays are mapped any more.  */
1853   overlay_cache_invalid = 1;
1854 }
1855 
1856 /* This version of "load" should be usable for any target.  Currently
1857    it is just used for remote targets, not inftarg.c or core files,
1858    on the theory that only in that case is it useful.
1859 
1860    Avoiding xmodem and the like seems like a win (a) because we don't have
1861    to worry about finding it, and (b) On VMS, fork() is very slow and so
1862    we don't want to run a subprocess.  On the other hand, I'm not sure how
1863    performance compares.  */
1864 
1865 static int validate_download = 0;
1866 
1867 /* Callback service function for generic_load (bfd_map_over_sections).  */
1868 
1869 static void
1870 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1871 {
1872   bfd_size_type *sum = data;
1873 
1874   *sum += bfd_get_section_size (asec);
1875 }
1876 
1877 /* Opaque data for load_section_callback.  */
1878 struct load_section_data {
1879   unsigned long load_offset;
1880   struct load_progress_data *progress_data;
1881   VEC(memory_write_request_s) *requests;
1882 };
1883 
1884 /* Opaque data for load_progress.  */
1885 struct load_progress_data {
1886   /* Cumulative data.  */
1887   unsigned long write_count;
1888   unsigned long data_count;
1889   bfd_size_type total_size;
1890 };
1891 
1892 /* Opaque data for load_progress for a single section.  */
1893 struct load_progress_section_data {
1894   struct load_progress_data *cumulative;
1895 
1896   /* Per-section data.  */
1897   const char *section_name;
1898   ULONGEST section_sent;
1899   ULONGEST section_size;
1900   CORE_ADDR lma;
1901   gdb_byte *buffer;
1902 };
1903 
1904 /* Target write callback routine for progress reporting.  */
1905 
1906 static void
1907 load_progress (ULONGEST bytes, void *untyped_arg)
1908 {
1909   struct load_progress_section_data *args = untyped_arg;
1910   struct load_progress_data *totals;
1911 
1912   if (args == NULL)
1913     /* Writing padding data.  No easy way to get at the cumulative
1914        stats, so just ignore this.  */
1915     return;
1916 
1917   totals = args->cumulative;
1918 
1919   if (bytes == 0 && args->section_sent == 0)
1920     {
1921       /* The write is just starting.  Let the user know we've started
1922 	 this section.  */
1923       ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1924 		      args->section_name, hex_string (args->section_size),
1925 		      paddress (target_gdbarch, args->lma));
1926       return;
1927     }
1928 
1929   if (validate_download)
1930     {
1931       /* Broken memories and broken monitors manifest themselves here
1932 	 when bring new computers to life.  This doubles already slow
1933 	 downloads.  */
1934       /* NOTE: cagney/1999-10-18: A more efficient implementation
1935 	 might add a verify_memory() method to the target vector and
1936 	 then use that.  remote.c could implement that method using
1937 	 the ``qCRC'' packet.  */
1938       gdb_byte *check = xmalloc (bytes);
1939       struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1940 
1941       if (target_read_memory (args->lma, check, bytes) != 0)
1942 	error (_("Download verify read failed at %s"),
1943 	       paddress (target_gdbarch, args->lma));
1944       if (memcmp (args->buffer, check, bytes) != 0)
1945 	error (_("Download verify compare failed at %s"),
1946 	       paddress (target_gdbarch, args->lma));
1947       do_cleanups (verify_cleanups);
1948     }
1949   totals->data_count += bytes;
1950   args->lma += bytes;
1951   args->buffer += bytes;
1952   totals->write_count += 1;
1953   args->section_sent += bytes;
1954   if (quit_flag
1955       || (deprecated_ui_load_progress_hook != NULL
1956 	  && deprecated_ui_load_progress_hook (args->section_name,
1957 					       args->section_sent)))
1958     error (_("Canceled the download"));
1959 
1960   if (deprecated_show_load_progress != NULL)
1961     deprecated_show_load_progress (args->section_name,
1962 				   args->section_sent,
1963 				   args->section_size,
1964 				   totals->data_count,
1965 				   totals->total_size);
1966 }
1967 
1968 /* Callback service function for generic_load (bfd_map_over_sections).  */
1969 
1970 static void
1971 load_section_callback (bfd *abfd, asection *asec, void *data)
1972 {
1973   struct memory_write_request *new_request;
1974   struct load_section_data *args = data;
1975   struct load_progress_section_data *section_data;
1976   bfd_size_type size = bfd_get_section_size (asec);
1977   gdb_byte *buffer;
1978   const char *sect_name = bfd_get_section_name (abfd, asec);
1979 
1980   if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1981     return;
1982 
1983   if (size == 0)
1984     return;
1985 
1986   new_request = VEC_safe_push (memory_write_request_s,
1987 			       args->requests, NULL);
1988   memset (new_request, 0, sizeof (struct memory_write_request));
1989   section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1990   new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1991   new_request->end = new_request->begin + size; /* FIXME Should size
1992 						   be in instead?  */
1993   new_request->data = xmalloc (size);
1994   new_request->baton = section_data;
1995 
1996   buffer = new_request->data;
1997 
1998   section_data->cumulative = args->progress_data;
1999   section_data->section_name = sect_name;
2000   section_data->section_size = size;
2001   section_data->lma = new_request->begin;
2002   section_data->buffer = buffer;
2003 
2004   bfd_get_section_contents (abfd, asec, buffer, 0, size);
2005 }
2006 
2007 /* Clean up an entire memory request vector, including load
2008    data and progress records.  */
2009 
2010 static void
2011 clear_memory_write_data (void *arg)
2012 {
2013   VEC(memory_write_request_s) **vec_p = arg;
2014   VEC(memory_write_request_s) *vec = *vec_p;
2015   int i;
2016   struct memory_write_request *mr;
2017 
2018   for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2019     {
2020       xfree (mr->data);
2021       xfree (mr->baton);
2022     }
2023   VEC_free (memory_write_request_s, vec);
2024 }
2025 
2026 void
2027 generic_load (char *args, int from_tty)
2028 {
2029   bfd *loadfile_bfd;
2030   struct timeval start_time, end_time;
2031   char *filename;
2032   struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2033   struct load_section_data cbdata;
2034   struct load_progress_data total_progress;
2035   struct ui_out *uiout = current_uiout;
2036 
2037   CORE_ADDR entry;
2038   char **argv;
2039 
2040   memset (&cbdata, 0, sizeof (cbdata));
2041   memset (&total_progress, 0, sizeof (total_progress));
2042   cbdata.progress_data = &total_progress;
2043 
2044   make_cleanup (clear_memory_write_data, &cbdata.requests);
2045 
2046   if (args == NULL)
2047     error_no_arg (_("file to load"));
2048 
2049   argv = gdb_buildargv (args);
2050   make_cleanup_freeargv (argv);
2051 
2052   filename = tilde_expand (argv[0]);
2053   make_cleanup (xfree, filename);
2054 
2055   if (argv[1] != NULL)
2056     {
2057       char *endptr;
2058 
2059       cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2060 
2061       /* If the last word was not a valid number then
2062          treat it as a file name with spaces in.  */
2063       if (argv[1] == endptr)
2064         error (_("Invalid download offset:%s."), argv[1]);
2065 
2066       if (argv[2] != NULL)
2067 	error (_("Too many parameters."));
2068     }
2069 
2070   /* Open the file for loading.  */
2071   loadfile_bfd = bfd_openr (filename, gnutarget);
2072   if (loadfile_bfd == NULL)
2073     {
2074       perror_with_name (filename);
2075       return;
2076     }
2077 
2078   /* FIXME: should be checking for errors from bfd_close (for one thing,
2079      on error it does not free all the storage associated with the
2080      bfd).  */
2081   make_cleanup_bfd_close (loadfile_bfd);
2082 
2083   if (!bfd_check_format (loadfile_bfd, bfd_object))
2084     {
2085       error (_("\"%s\" is not an object file: %s"), filename,
2086 	     bfd_errmsg (bfd_get_error ()));
2087     }
2088 
2089   bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2090 			 (void *) &total_progress.total_size);
2091 
2092   bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2093 
2094   gettimeofday (&start_time, NULL);
2095 
2096   if (target_write_memory_blocks (cbdata.requests, flash_discard,
2097 				  load_progress) != 0)
2098     error (_("Load failed"));
2099 
2100   gettimeofday (&end_time, NULL);
2101 
2102   entry = bfd_get_start_address (loadfile_bfd);
2103   ui_out_text (uiout, "Start address ");
2104   ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2105   ui_out_text (uiout, ", load size ");
2106   ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2107   ui_out_text (uiout, "\n");
2108   /* We were doing this in remote-mips.c, I suspect it is right
2109      for other targets too.  */
2110   regcache_write_pc (get_current_regcache (), entry);
2111 
2112   /* Reset breakpoints, now that we have changed the load image.  For
2113      instance, breakpoints may have been set (or reset, by
2114      post_create_inferior) while connected to the target but before we
2115      loaded the program.  In that case, the prologue analyzer could
2116      have read instructions from the target to find the right
2117      breakpoint locations.  Loading has changed the contents of that
2118      memory.  */
2119 
2120   breakpoint_re_set ();
2121 
2122   /* FIXME: are we supposed to call symbol_file_add or not?  According
2123      to a comment from remote-mips.c (where a call to symbol_file_add
2124      was commented out), making the call confuses GDB if more than one
2125      file is loaded in.  Some targets do (e.g., remote-vx.c) but
2126      others don't (or didn't - perhaps they have all been deleted).  */
2127 
2128   print_transfer_performance (gdb_stdout, total_progress.data_count,
2129 			      total_progress.write_count,
2130 			      &start_time, &end_time);
2131 
2132   do_cleanups (old_cleanups);
2133 }
2134 
2135 /* Report how fast the transfer went.  */
2136 
2137 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2138    replaced by print_transfer_performance (with a very different
2139    function signature).  */
2140 
2141 void
2142 report_transfer_performance (unsigned long data_count, time_t start_time,
2143 			     time_t end_time)
2144 {
2145   struct timeval start, end;
2146 
2147   start.tv_sec = start_time;
2148   start.tv_usec = 0;
2149   end.tv_sec = end_time;
2150   end.tv_usec = 0;
2151 
2152   print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2153 }
2154 
2155 void
2156 print_transfer_performance (struct ui_file *stream,
2157 			    unsigned long data_count,
2158 			    unsigned long write_count,
2159 			    const struct timeval *start_time,
2160 			    const struct timeval *end_time)
2161 {
2162   ULONGEST time_count;
2163   struct ui_out *uiout = current_uiout;
2164 
2165   /* Compute the elapsed time in milliseconds, as a tradeoff between
2166      accuracy and overflow.  */
2167   time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2168   time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2169 
2170   ui_out_text (uiout, "Transfer rate: ");
2171   if (time_count > 0)
2172     {
2173       unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2174 
2175       if (ui_out_is_mi_like_p (uiout))
2176 	{
2177 	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2178 	  ui_out_text (uiout, " bits/sec");
2179 	}
2180       else if (rate < 1024)
2181 	{
2182 	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2183 	  ui_out_text (uiout, " bytes/sec");
2184 	}
2185       else
2186 	{
2187 	  ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2188 	  ui_out_text (uiout, " KB/sec");
2189 	}
2190     }
2191   else
2192     {
2193       ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2194       ui_out_text (uiout, " bits in <1 sec");
2195     }
2196   if (write_count > 0)
2197     {
2198       ui_out_text (uiout, ", ");
2199       ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2200       ui_out_text (uiout, " bytes/write");
2201     }
2202   ui_out_text (uiout, ".\n");
2203 }
2204 
2205 /* This function allows the addition of incrementally linked object files.
2206    It does not modify any state in the target, only in the debugger.  */
2207 /* Note: ezannoni 2000-04-13 This function/command used to have a
2208    special case syntax for the rombug target (Rombug is the boot
2209    monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2210    rombug case, the user doesn't need to supply a text address,
2211    instead a call to target_link() (in target.c) would supply the
2212    value to use.  We are now discontinuing this type of ad hoc syntax.  */
2213 
2214 static void
2215 add_symbol_file_command (char *args, int from_tty)
2216 {
2217   struct gdbarch *gdbarch = get_current_arch ();
2218   char *filename = NULL;
2219   int flags = OBJF_USERLOADED;
2220   char *arg;
2221   int section_index = 0;
2222   int argcnt = 0;
2223   int sec_num = 0;
2224   int i;
2225   int expecting_sec_name = 0;
2226   int expecting_sec_addr = 0;
2227   char **argv;
2228 
2229   struct sect_opt
2230   {
2231     char *name;
2232     char *value;
2233   };
2234 
2235   struct section_addr_info *section_addrs;
2236   struct sect_opt *sect_opts = NULL;
2237   size_t num_sect_opts = 0;
2238   struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2239 
2240   num_sect_opts = 16;
2241   sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2242 					   * sizeof (struct sect_opt));
2243 
2244   dont_repeat ();
2245 
2246   if (args == NULL)
2247     error (_("add-symbol-file takes a file name and an address"));
2248 
2249   argv = gdb_buildargv (args);
2250   make_cleanup_freeargv (argv);
2251 
2252   for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2253     {
2254       /* Process the argument.  */
2255       if (argcnt == 0)
2256 	{
2257 	  /* The first argument is the file name.  */
2258 	  filename = tilde_expand (arg);
2259 	  make_cleanup (xfree, filename);
2260 	}
2261       else
2262 	if (argcnt == 1)
2263 	  {
2264 	    /* The second argument is always the text address at which
2265                to load the program.  */
2266 	    sect_opts[section_index].name = ".text";
2267 	    sect_opts[section_index].value = arg;
2268 	    if (++section_index >= num_sect_opts)
2269 	      {
2270 		num_sect_opts *= 2;
2271 		sect_opts = ((struct sect_opt *)
2272 			     xrealloc (sect_opts,
2273 				       num_sect_opts
2274 				       * sizeof (struct sect_opt)));
2275 	      }
2276 	  }
2277 	else
2278 	  {
2279 	    /* It's an option (starting with '-') or it's an argument
2280 	       to an option.  */
2281 
2282 	    if (*arg == '-')
2283 	      {
2284 		if (strcmp (arg, "-readnow") == 0)
2285 		  flags |= OBJF_READNOW;
2286 		else if (strcmp (arg, "-s") == 0)
2287 		  {
2288 		    expecting_sec_name = 1;
2289 		    expecting_sec_addr = 1;
2290 		  }
2291 	      }
2292 	    else
2293 	      {
2294 		if (expecting_sec_name)
2295 		  {
2296 		    sect_opts[section_index].name = arg;
2297 		    expecting_sec_name = 0;
2298 		  }
2299 		else
2300 		  if (expecting_sec_addr)
2301 		    {
2302 		      sect_opts[section_index].value = arg;
2303 		      expecting_sec_addr = 0;
2304 		      if (++section_index >= num_sect_opts)
2305 			{
2306 			  num_sect_opts *= 2;
2307 			  sect_opts = ((struct sect_opt *)
2308 				       xrealloc (sect_opts,
2309 						 num_sect_opts
2310 						 * sizeof (struct sect_opt)));
2311 			}
2312 		    }
2313 		  else
2314 		    error (_("USAGE: add-symbol-file <filename> <textaddress>"
2315 			     " [-readnow] [-s <secname> <addr>]*"));
2316 	      }
2317 	  }
2318     }
2319 
2320   /* This command takes at least two arguments.  The first one is a
2321      filename, and the second is the address where this file has been
2322      loaded.  Abort now if this address hasn't been provided by the
2323      user.  */
2324   if (section_index < 1)
2325     error (_("The address where %s has been loaded is missing"), filename);
2326 
2327   /* Print the prompt for the query below.  And save the arguments into
2328      a sect_addr_info structure to be passed around to other
2329      functions.  We have to split this up into separate print
2330      statements because hex_string returns a local static
2331      string.  */
2332 
2333   printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2334   section_addrs = alloc_section_addr_info (section_index);
2335   make_cleanup (xfree, section_addrs);
2336   for (i = 0; i < section_index; i++)
2337     {
2338       CORE_ADDR addr;
2339       char *val = sect_opts[i].value;
2340       char *sec = sect_opts[i].name;
2341 
2342       addr = parse_and_eval_address (val);
2343 
2344       /* Here we store the section offsets in the order they were
2345          entered on the command line.  */
2346       section_addrs->other[sec_num].name = sec;
2347       section_addrs->other[sec_num].addr = addr;
2348       printf_unfiltered ("\t%s_addr = %s\n", sec,
2349 			 paddress (gdbarch, addr));
2350       sec_num++;
2351 
2352       /* The object's sections are initialized when a
2353 	 call is made to build_objfile_section_table (objfile).
2354 	 This happens in reread_symbols.
2355 	 At this point, we don't know what file type this is,
2356 	 so we can't determine what section names are valid.  */
2357     }
2358 
2359   if (from_tty && (!query ("%s", "")))
2360     error (_("Not confirmed."));
2361 
2362   symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2363                    section_addrs, flags);
2364 
2365   /* Getting new symbols may change our opinion about what is
2366      frameless.  */
2367   reinit_frame_cache ();
2368   do_cleanups (my_cleanups);
2369 }
2370 
2371 
2372 /* Re-read symbols if a symbol-file has changed.  */
2373 void
2374 reread_symbols (void)
2375 {
2376   struct objfile *objfile;
2377   long new_modtime;
2378   int reread_one = 0;
2379   struct stat new_statbuf;
2380   int res;
2381 
2382   /* With the addition of shared libraries, this should be modified,
2383      the load time should be saved in the partial symbol tables, since
2384      different tables may come from different source files.  FIXME.
2385      This routine should then walk down each partial symbol table
2386      and see if the symbol table that it originates from has been changed.  */
2387 
2388   for (objfile = object_files; objfile; objfile = objfile->next)
2389     {
2390       /* solib-sunos.c creates one objfile with obfd.  */
2391       if (objfile->obfd == NULL)
2392 	continue;
2393 
2394       /* Separate debug objfiles are handled in the main objfile.  */
2395       if (objfile->separate_debug_objfile_backlink)
2396 	continue;
2397 
2398       /* If this object is from an archive (what you usually create with
2399 	 `ar', often called a `static library' on most systems, though
2400 	 a `shared library' on AIX is also an archive), then you should
2401 	 stat on the archive name, not member name.  */
2402       if (objfile->obfd->my_archive)
2403 	res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2404       else
2405 	res = stat (objfile->name, &new_statbuf);
2406       if (res != 0)
2407 	{
2408 	  /* FIXME, should use print_sys_errmsg but it's not filtered.  */
2409 	  printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2410 			     objfile->name);
2411 	  continue;
2412 	}
2413       new_modtime = new_statbuf.st_mtime;
2414       if (new_modtime != objfile->mtime)
2415 	{
2416 	  struct cleanup *old_cleanups;
2417 	  struct section_offsets *offsets;
2418 	  int num_offsets;
2419 	  char *obfd_filename;
2420 
2421 	  printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2422 			     objfile->name);
2423 
2424 	  /* There are various functions like symbol_file_add,
2425 	     symfile_bfd_open, syms_from_objfile, etc., which might
2426 	     appear to do what we want.  But they have various other
2427 	     effects which we *don't* want.  So we just do stuff
2428 	     ourselves.  We don't worry about mapped files (for one thing,
2429 	     any mapped file will be out of date).  */
2430 
2431 	  /* If we get an error, blow away this objfile (not sure if
2432 	     that is the correct response for things like shared
2433 	     libraries).  */
2434 	  old_cleanups = make_cleanup_free_objfile (objfile);
2435 	  /* We need to do this whenever any symbols go away.  */
2436 	  make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2437 
2438 	  if (exec_bfd != NULL
2439 	      && filename_cmp (bfd_get_filename (objfile->obfd),
2440 			       bfd_get_filename (exec_bfd)) == 0)
2441 	    {
2442 	      /* Reload EXEC_BFD without asking anything.  */
2443 
2444 	      exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2445 	    }
2446 
2447 	  /* Keep the calls order approx. the same as in free_objfile.  */
2448 
2449 	  /* Free the separate debug objfiles.  It will be
2450 	     automatically recreated by sym_read.  */
2451 	  free_objfile_separate_debug (objfile);
2452 
2453 	  /* Remove any references to this objfile in the global
2454 	     value lists.  */
2455 	  preserve_values (objfile);
2456 
2457 	  /* Nuke all the state that we will re-read.  Much of the following
2458 	     code which sets things to NULL really is necessary to tell
2459 	     other parts of GDB that there is nothing currently there.
2460 
2461 	     Try to keep the freeing order compatible with free_objfile.  */
2462 
2463 	  if (objfile->sf != NULL)
2464 	    {
2465 	      (*objfile->sf->sym_finish) (objfile);
2466 	    }
2467 
2468 	  clear_objfile_data (objfile);
2469 
2470 	  /* Clean up any state BFD has sitting around.  We don't need
2471 	     to close the descriptor but BFD lacks a way of closing the
2472 	     BFD without closing the descriptor.  */
2473 	  obfd_filename = bfd_get_filename (objfile->obfd);
2474 	  if (!bfd_close (objfile->obfd))
2475 	    error (_("Can't close BFD for %s: %s"), objfile->name,
2476 		   bfd_errmsg (bfd_get_error ()));
2477 	  objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2478 	  if (objfile->obfd == NULL)
2479 	    error (_("Can't open %s to read symbols."), objfile->name);
2480 	  else
2481 	    objfile->obfd = gdb_bfd_ref (objfile->obfd);
2482 	  /* bfd_openr sets cacheable to true, which is what we want.  */
2483 	  if (!bfd_check_format (objfile->obfd, bfd_object))
2484 	    error (_("Can't read symbols from %s: %s."), objfile->name,
2485 		   bfd_errmsg (bfd_get_error ()));
2486 
2487 	  /* Save the offsets, we will nuke them with the rest of the
2488 	     objfile_obstack.  */
2489 	  num_offsets = objfile->num_sections;
2490 	  offsets = ((struct section_offsets *)
2491 		     alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2492 	  memcpy (offsets, objfile->section_offsets,
2493 		  SIZEOF_N_SECTION_OFFSETS (num_offsets));
2494 
2495 	  /* FIXME: Do we have to free a whole linked list, or is this
2496 	     enough?  */
2497 	  if (objfile->global_psymbols.list)
2498 	    xfree (objfile->global_psymbols.list);
2499 	  memset (&objfile->global_psymbols, 0,
2500 		  sizeof (objfile->global_psymbols));
2501 	  if (objfile->static_psymbols.list)
2502 	    xfree (objfile->static_psymbols.list);
2503 	  memset (&objfile->static_psymbols, 0,
2504 		  sizeof (objfile->static_psymbols));
2505 
2506 	  /* Free the obstacks for non-reusable objfiles.  */
2507 	  psymbol_bcache_free (objfile->psymbol_cache);
2508 	  objfile->psymbol_cache = psymbol_bcache_init ();
2509 	  bcache_xfree (objfile->macro_cache);
2510 	  objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2511 	  bcache_xfree (objfile->filename_cache);
2512 	  objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2513 	  if (objfile->demangled_names_hash != NULL)
2514 	    {
2515 	      htab_delete (objfile->demangled_names_hash);
2516 	      objfile->demangled_names_hash = NULL;
2517 	    }
2518 	  obstack_free (&objfile->objfile_obstack, 0);
2519 	  objfile->sections = NULL;
2520 	  objfile->symtabs = NULL;
2521 	  objfile->psymtabs = NULL;
2522 	  objfile->psymtabs_addrmap = NULL;
2523 	  objfile->free_psymtabs = NULL;
2524 	  objfile->template_symbols = NULL;
2525 	  objfile->msymbols = NULL;
2526 	  objfile->deprecated_sym_private = NULL;
2527 	  objfile->minimal_symbol_count = 0;
2528 	  memset (&objfile->msymbol_hash, 0,
2529 		  sizeof (objfile->msymbol_hash));
2530 	  memset (&objfile->msymbol_demangled_hash, 0,
2531 		  sizeof (objfile->msymbol_demangled_hash));
2532 
2533 	  /* obstack_init also initializes the obstack so it is
2534 	     empty.  We could use obstack_specify_allocation but
2535 	     gdb_obstack.h specifies the alloc/dealloc
2536 	     functions.  */
2537 	  obstack_init (&objfile->objfile_obstack);
2538 	  if (build_objfile_section_table (objfile))
2539 	    {
2540 	      error (_("Can't find the file sections in `%s': %s"),
2541 		     objfile->name, bfd_errmsg (bfd_get_error ()));
2542 	    }
2543 	  terminate_minimal_symbol_table (objfile);
2544 
2545 	  /* We use the same section offsets as from last time.  I'm not
2546 	     sure whether that is always correct for shared libraries.  */
2547 	  objfile->section_offsets = (struct section_offsets *)
2548 	    obstack_alloc (&objfile->objfile_obstack,
2549 			   SIZEOF_N_SECTION_OFFSETS (num_offsets));
2550 	  memcpy (objfile->section_offsets, offsets,
2551 		  SIZEOF_N_SECTION_OFFSETS (num_offsets));
2552 	  objfile->num_sections = num_offsets;
2553 
2554 	  /* What the hell is sym_new_init for, anyway?  The concept of
2555 	     distinguishing between the main file and additional files
2556 	     in this way seems rather dubious.  */
2557 	  if (objfile == symfile_objfile)
2558 	    {
2559 	      (*objfile->sf->sym_new_init) (objfile);
2560 	    }
2561 
2562 	  (*objfile->sf->sym_init) (objfile);
2563 	  clear_complaints (&symfile_complaints, 1, 1);
2564 	  /* Do not set flags as this is safe and we don't want to be
2565              verbose.  */
2566 	  (*objfile->sf->sym_read) (objfile, 0);
2567 	  if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2568 	    {
2569 	      objfile->flags &= ~OBJF_PSYMTABS_READ;
2570 	      require_partial_symbols (objfile, 0);
2571 	    }
2572 
2573 	  if (!objfile_has_symbols (objfile))
2574 	    {
2575 	      wrap_here ("");
2576 	      printf_unfiltered (_("(no debugging symbols found)\n"));
2577 	      wrap_here ("");
2578 	    }
2579 
2580 	  /* We're done reading the symbol file; finish off complaints.  */
2581 	  clear_complaints (&symfile_complaints, 0, 1);
2582 
2583 	  /* Getting new symbols may change our opinion about what is
2584 	     frameless.  */
2585 
2586 	  reinit_frame_cache ();
2587 
2588 	  /* Discard cleanups as symbol reading was successful.  */
2589 	  discard_cleanups (old_cleanups);
2590 
2591 	  /* If the mtime has changed between the time we set new_modtime
2592 	     and now, we *want* this to be out of date, so don't call stat
2593 	     again now.  */
2594 	  objfile->mtime = new_modtime;
2595 	  reread_one = 1;
2596 	  init_entry_point_info (objfile);
2597 	}
2598     }
2599 
2600   if (reread_one)
2601     {
2602       /* Notify objfiles that we've modified objfile sections.  */
2603       objfiles_changed ();
2604 
2605       clear_symtab_users (0);
2606       /* At least one objfile has changed, so we can consider that
2607          the executable we're debugging has changed too.  */
2608       observer_notify_executable_changed ();
2609     }
2610 }
2611 
2612 
2613 
2614 typedef struct
2615 {
2616   char *ext;
2617   enum language lang;
2618 }
2619 filename_language;
2620 
2621 static filename_language *filename_language_table;
2622 static int fl_table_size, fl_table_next;
2623 
2624 static void
2625 add_filename_language (char *ext, enum language lang)
2626 {
2627   if (fl_table_next >= fl_table_size)
2628     {
2629       fl_table_size += 10;
2630       filename_language_table =
2631 	xrealloc (filename_language_table,
2632 		  fl_table_size * sizeof (*filename_language_table));
2633     }
2634 
2635   filename_language_table[fl_table_next].ext = xstrdup (ext);
2636   filename_language_table[fl_table_next].lang = lang;
2637   fl_table_next++;
2638 }
2639 
2640 static char *ext_args;
2641 static void
2642 show_ext_args (struct ui_file *file, int from_tty,
2643 	       struct cmd_list_element *c, const char *value)
2644 {
2645   fprintf_filtered (file,
2646 		    _("Mapping between filename extension "
2647 		      "and source language is \"%s\".\n"),
2648 		    value);
2649 }
2650 
2651 static void
2652 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2653 {
2654   int i;
2655   char *cp = ext_args;
2656   enum language lang;
2657 
2658   /* First arg is filename extension, starting with '.'  */
2659   if (*cp != '.')
2660     error (_("'%s': Filename extension must begin with '.'"), ext_args);
2661 
2662   /* Find end of first arg.  */
2663   while (*cp && !isspace (*cp))
2664     cp++;
2665 
2666   if (*cp == '\0')
2667     error (_("'%s': two arguments required -- "
2668 	     "filename extension and language"),
2669 	   ext_args);
2670 
2671   /* Null-terminate first arg.  */
2672   *cp++ = '\0';
2673 
2674   /* Find beginning of second arg, which should be a source language.  */
2675   while (*cp && isspace (*cp))
2676     cp++;
2677 
2678   if (*cp == '\0')
2679     error (_("'%s': two arguments required -- "
2680 	     "filename extension and language"),
2681 	   ext_args);
2682 
2683   /* Lookup the language from among those we know.  */
2684   lang = language_enum (cp);
2685 
2686   /* Now lookup the filename extension: do we already know it?  */
2687   for (i = 0; i < fl_table_next; i++)
2688     if (0 == strcmp (ext_args, filename_language_table[i].ext))
2689       break;
2690 
2691   if (i >= fl_table_next)
2692     {
2693       /* New file extension.  */
2694       add_filename_language (ext_args, lang);
2695     }
2696   else
2697     {
2698       /* Redefining a previously known filename extension.  */
2699 
2700       /* if (from_tty) */
2701       /*   query ("Really make files of type %s '%s'?", */
2702       /*          ext_args, language_str (lang));           */
2703 
2704       xfree (filename_language_table[i].ext);
2705       filename_language_table[i].ext = xstrdup (ext_args);
2706       filename_language_table[i].lang = lang;
2707     }
2708 }
2709 
2710 static void
2711 info_ext_lang_command (char *args, int from_tty)
2712 {
2713   int i;
2714 
2715   printf_filtered (_("Filename extensions and the languages they represent:"));
2716   printf_filtered ("\n\n");
2717   for (i = 0; i < fl_table_next; i++)
2718     printf_filtered ("\t%s\t- %s\n",
2719 		     filename_language_table[i].ext,
2720 		     language_str (filename_language_table[i].lang));
2721 }
2722 
2723 static void
2724 init_filename_language_table (void)
2725 {
2726   if (fl_table_size == 0)	/* Protect against repetition.  */
2727     {
2728       fl_table_size = 20;
2729       fl_table_next = 0;
2730       filename_language_table =
2731 	xmalloc (fl_table_size * sizeof (*filename_language_table));
2732       add_filename_language (".c", language_c);
2733       add_filename_language (".d", language_d);
2734       add_filename_language (".C", language_cplus);
2735       add_filename_language (".cc", language_cplus);
2736       add_filename_language (".cp", language_cplus);
2737       add_filename_language (".cpp", language_cplus);
2738       add_filename_language (".cxx", language_cplus);
2739       add_filename_language (".c++", language_cplus);
2740       add_filename_language (".java", language_java);
2741       add_filename_language (".class", language_java);
2742       add_filename_language (".m", language_objc);
2743       add_filename_language (".f", language_fortran);
2744       add_filename_language (".F", language_fortran);
2745       add_filename_language (".for", language_fortran);
2746       add_filename_language (".FOR", language_fortran);
2747       add_filename_language (".ftn", language_fortran);
2748       add_filename_language (".FTN", language_fortran);
2749       add_filename_language (".fpp", language_fortran);
2750       add_filename_language (".FPP", language_fortran);
2751       add_filename_language (".f90", language_fortran);
2752       add_filename_language (".F90", language_fortran);
2753       add_filename_language (".f95", language_fortran);
2754       add_filename_language (".F95", language_fortran);
2755       add_filename_language (".f03", language_fortran);
2756       add_filename_language (".F03", language_fortran);
2757       add_filename_language (".f08", language_fortran);
2758       add_filename_language (".F08", language_fortran);
2759       add_filename_language (".s", language_asm);
2760       add_filename_language (".sx", language_asm);
2761       add_filename_language (".S", language_asm);
2762       add_filename_language (".pas", language_pascal);
2763       add_filename_language (".p", language_pascal);
2764       add_filename_language (".pp", language_pascal);
2765       add_filename_language (".adb", language_ada);
2766       add_filename_language (".ads", language_ada);
2767       add_filename_language (".a", language_ada);
2768       add_filename_language (".ada", language_ada);
2769       add_filename_language (".dg", language_ada);
2770     }
2771 }
2772 
2773 enum language
2774 deduce_language_from_filename (const char *filename)
2775 {
2776   int i;
2777   char *cp;
2778 
2779   if (filename != NULL)
2780     if ((cp = strrchr (filename, '.')) != NULL)
2781       for (i = 0; i < fl_table_next; i++)
2782 	if (strcmp (cp, filename_language_table[i].ext) == 0)
2783 	  return filename_language_table[i].lang;
2784 
2785   return language_unknown;
2786 }
2787 
2788 /* allocate_symtab:
2789 
2790    Allocate and partly initialize a new symbol table.  Return a pointer
2791    to it.  error() if no space.
2792 
2793    Caller must set these fields:
2794    LINETABLE(symtab)
2795    symtab->blockvector
2796    symtab->dirname
2797    symtab->free_code
2798    symtab->free_ptr
2799  */
2800 
2801 struct symtab *
2802 allocate_symtab (const char *filename, struct objfile *objfile)
2803 {
2804   struct symtab *symtab;
2805 
2806   symtab = (struct symtab *)
2807     obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2808   memset (symtab, 0, sizeof (*symtab));
2809   symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2810 				      objfile->filename_cache);
2811   symtab->fullname = NULL;
2812   symtab->language = deduce_language_from_filename (filename);
2813   symtab->debugformat = "unknown";
2814 
2815   /* Hook it to the objfile it comes from.  */
2816 
2817   symtab->objfile = objfile;
2818   symtab->next = objfile->symtabs;
2819   objfile->symtabs = symtab;
2820 
2821   return (symtab);
2822 }
2823 
2824 
2825 /* Reset all data structures in gdb which may contain references to symbol
2826    table data.  ADD_FLAGS is a bitmask of enum symfile_add_flags.  */
2827 
2828 void
2829 clear_symtab_users (int add_flags)
2830 {
2831   /* Someday, we should do better than this, by only blowing away
2832      the things that really need to be blown.  */
2833 
2834   /* Clear the "current" symtab first, because it is no longer valid.
2835      breakpoint_re_set may try to access the current symtab.  */
2836   clear_current_source_symtab_and_line ();
2837 
2838   clear_displays ();
2839   if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2840     breakpoint_re_set ();
2841   clear_last_displayed_sal ();
2842   clear_pc_function_cache ();
2843   observer_notify_new_objfile (NULL);
2844 
2845   /* Clear globals which might have pointed into a removed objfile.
2846      FIXME: It's not clear which of these are supposed to persist
2847      between expressions and which ought to be reset each time.  */
2848   expression_context_block = NULL;
2849   innermost_block = NULL;
2850 
2851   /* Varobj may refer to old symbols, perform a cleanup.  */
2852   varobj_invalidate ();
2853 
2854 }
2855 
2856 static void
2857 clear_symtab_users_cleanup (void *ignore)
2858 {
2859   clear_symtab_users (0);
2860 }
2861 
2862 /* OVERLAYS:
2863    The following code implements an abstraction for debugging overlay sections.
2864 
2865    The target model is as follows:
2866    1) The gnu linker will permit multiple sections to be mapped into the
2867    same VMA, each with its own unique LMA (or load address).
2868    2) It is assumed that some runtime mechanism exists for mapping the
2869    sections, one by one, from the load address into the VMA address.
2870    3) This code provides a mechanism for gdb to keep track of which
2871    sections should be considered to be mapped from the VMA to the LMA.
2872    This information is used for symbol lookup, and memory read/write.
2873    For instance, if a section has been mapped then its contents
2874    should be read from the VMA, otherwise from the LMA.
2875 
2876    Two levels of debugger support for overlays are available.  One is
2877    "manual", in which the debugger relies on the user to tell it which
2878    overlays are currently mapped.  This level of support is
2879    implemented entirely in the core debugger, and the information about
2880    whether a section is mapped is kept in the objfile->obj_section table.
2881 
2882    The second level of support is "automatic", and is only available if
2883    the target-specific code provides functionality to read the target's
2884    overlay mapping table, and translate its contents for the debugger
2885    (by updating the mapped state information in the obj_section tables).
2886 
2887    The interface is as follows:
2888    User commands:
2889    overlay map <name>   -- tell gdb to consider this section mapped
2890    overlay unmap <name> -- tell gdb to consider this section unmapped
2891    overlay list         -- list the sections that GDB thinks are mapped
2892    overlay read-target  -- get the target's state of what's mapped
2893    overlay off/manual/auto -- set overlay debugging state
2894    Functional interface:
2895    find_pc_mapped_section(pc):    if the pc is in the range of a mapped
2896    section, return that section.
2897    find_pc_overlay(pc):       find any overlay section that contains
2898    the pc, either in its VMA or its LMA
2899    section_is_mapped(sect):       true if overlay is marked as mapped
2900    section_is_overlay(sect):      true if section's VMA != LMA
2901    pc_in_mapped_range(pc,sec):    true if pc belongs to section's VMA
2902    pc_in_unmapped_range(...):     true if pc belongs to section's LMA
2903    sections_overlap(sec1, sec2):  true if mapped sec1 and sec2 ranges overlap
2904    overlay_mapped_address(...):   map an address from section's LMA to VMA
2905    overlay_unmapped_address(...): map an address from section's VMA to LMA
2906    symbol_overlayed_address(...): Return a "current" address for symbol:
2907    either in VMA or LMA depending on whether
2908    the symbol's section is currently mapped.  */
2909 
2910 /* Overlay debugging state: */
2911 
2912 enum overlay_debugging_state overlay_debugging = ovly_off;
2913 int overlay_cache_invalid = 0;	/* True if need to refresh mapped state.  */
2914 
2915 /* Function: section_is_overlay (SECTION)
2916    Returns true if SECTION has VMA not equal to LMA, ie.
2917    SECTION is loaded at an address different from where it will "run".  */
2918 
2919 int
2920 section_is_overlay (struct obj_section *section)
2921 {
2922   if (overlay_debugging && section)
2923     {
2924       bfd *abfd = section->objfile->obfd;
2925       asection *bfd_section = section->the_bfd_section;
2926 
2927       if (bfd_section_lma (abfd, bfd_section) != 0
2928 	  && bfd_section_lma (abfd, bfd_section)
2929 	     != bfd_section_vma (abfd, bfd_section))
2930 	return 1;
2931     }
2932 
2933   return 0;
2934 }
2935 
2936 /* Function: overlay_invalidate_all (void)
2937    Invalidate the mapped state of all overlay sections (mark it as stale).  */
2938 
2939 static void
2940 overlay_invalidate_all (void)
2941 {
2942   struct objfile *objfile;
2943   struct obj_section *sect;
2944 
2945   ALL_OBJSECTIONS (objfile, sect)
2946     if (section_is_overlay (sect))
2947       sect->ovly_mapped = -1;
2948 }
2949 
2950 /* Function: section_is_mapped (SECTION)
2951    Returns true if section is an overlay, and is currently mapped.
2952 
2953    Access to the ovly_mapped flag is restricted to this function, so
2954    that we can do automatic update.  If the global flag
2955    OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2956    overlay_invalidate_all.  If the mapped state of the particular
2957    section is stale, then call TARGET_OVERLAY_UPDATE to refresh it.  */
2958 
2959 int
2960 section_is_mapped (struct obj_section *osect)
2961 {
2962   struct gdbarch *gdbarch;
2963 
2964   if (osect == 0 || !section_is_overlay (osect))
2965     return 0;
2966 
2967   switch (overlay_debugging)
2968     {
2969     default:
2970     case ovly_off:
2971       return 0;			/* overlay debugging off */
2972     case ovly_auto:		/* overlay debugging automatic */
2973       /* Unles there is a gdbarch_overlay_update function,
2974          there's really nothing useful to do here (can't really go auto).  */
2975       gdbarch = get_objfile_arch (osect->objfile);
2976       if (gdbarch_overlay_update_p (gdbarch))
2977 	{
2978 	  if (overlay_cache_invalid)
2979 	    {
2980 	      overlay_invalidate_all ();
2981 	      overlay_cache_invalid = 0;
2982 	    }
2983 	  if (osect->ovly_mapped == -1)
2984 	    gdbarch_overlay_update (gdbarch, osect);
2985 	}
2986       /* fall thru to manual case */
2987     case ovly_on:		/* overlay debugging manual */
2988       return osect->ovly_mapped == 1;
2989     }
2990 }
2991 
2992 /* Function: pc_in_unmapped_range
2993    If PC falls into the lma range of SECTION, return true, else false.  */
2994 
2995 CORE_ADDR
2996 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2997 {
2998   if (section_is_overlay (section))
2999     {
3000       bfd *abfd = section->objfile->obfd;
3001       asection *bfd_section = section->the_bfd_section;
3002 
3003       /* We assume the LMA is relocated by the same offset as the VMA.  */
3004       bfd_vma size = bfd_get_section_size (bfd_section);
3005       CORE_ADDR offset = obj_section_offset (section);
3006 
3007       if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3008 	  && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3009 	return 1;
3010     }
3011 
3012   return 0;
3013 }
3014 
3015 /* Function: pc_in_mapped_range
3016    If PC falls into the vma range of SECTION, return true, else false.  */
3017 
3018 CORE_ADDR
3019 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3020 {
3021   if (section_is_overlay (section))
3022     {
3023       if (obj_section_addr (section) <= pc
3024 	  && pc < obj_section_endaddr (section))
3025 	return 1;
3026     }
3027 
3028   return 0;
3029 }
3030 
3031 
3032 /* Return true if the mapped ranges of sections A and B overlap, false
3033    otherwise.  */
3034 static int
3035 sections_overlap (struct obj_section *a, struct obj_section *b)
3036 {
3037   CORE_ADDR a_start = obj_section_addr (a);
3038   CORE_ADDR a_end = obj_section_endaddr (a);
3039   CORE_ADDR b_start = obj_section_addr (b);
3040   CORE_ADDR b_end = obj_section_endaddr (b);
3041 
3042   return (a_start < b_end && b_start < a_end);
3043 }
3044 
3045 /* Function: overlay_unmapped_address (PC, SECTION)
3046    Returns the address corresponding to PC in the unmapped (load) range.
3047    May be the same as PC.  */
3048 
3049 CORE_ADDR
3050 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3051 {
3052   if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3053     {
3054       bfd *abfd = section->objfile->obfd;
3055       asection *bfd_section = section->the_bfd_section;
3056 
3057       return pc + bfd_section_lma (abfd, bfd_section)
3058 		- bfd_section_vma (abfd, bfd_section);
3059     }
3060 
3061   return pc;
3062 }
3063 
3064 /* Function: overlay_mapped_address (PC, SECTION)
3065    Returns the address corresponding to PC in the mapped (runtime) range.
3066    May be the same as PC.  */
3067 
3068 CORE_ADDR
3069 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3070 {
3071   if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3072     {
3073       bfd *abfd = section->objfile->obfd;
3074       asection *bfd_section = section->the_bfd_section;
3075 
3076       return pc + bfd_section_vma (abfd, bfd_section)
3077 		- bfd_section_lma (abfd, bfd_section);
3078     }
3079 
3080   return pc;
3081 }
3082 
3083 
3084 /* Function: symbol_overlayed_address
3085    Return one of two addresses (relative to the VMA or to the LMA),
3086    depending on whether the section is mapped or not.  */
3087 
3088 CORE_ADDR
3089 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3090 {
3091   if (overlay_debugging)
3092     {
3093       /* If the symbol has no section, just return its regular address.  */
3094       if (section == 0)
3095 	return address;
3096       /* If the symbol's section is not an overlay, just return its
3097 	 address.  */
3098       if (!section_is_overlay (section))
3099 	return address;
3100       /* If the symbol's section is mapped, just return its address.  */
3101       if (section_is_mapped (section))
3102 	return address;
3103       /*
3104        * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3105        * then return its LOADED address rather than its vma address!!
3106        */
3107       return overlay_unmapped_address (address, section);
3108     }
3109   return address;
3110 }
3111 
3112 /* Function: find_pc_overlay (PC)
3113    Return the best-match overlay section for PC:
3114    If PC matches a mapped overlay section's VMA, return that section.
3115    Else if PC matches an unmapped section's VMA, return that section.
3116    Else if PC matches an unmapped section's LMA, return that section.  */
3117 
3118 struct obj_section *
3119 find_pc_overlay (CORE_ADDR pc)
3120 {
3121   struct objfile *objfile;
3122   struct obj_section *osect, *best_match = NULL;
3123 
3124   if (overlay_debugging)
3125     ALL_OBJSECTIONS (objfile, osect)
3126       if (section_is_overlay (osect))
3127       {
3128 	if (pc_in_mapped_range (pc, osect))
3129 	  {
3130 	    if (section_is_mapped (osect))
3131 	      return osect;
3132 	    else
3133 	      best_match = osect;
3134 	  }
3135 	else if (pc_in_unmapped_range (pc, osect))
3136 	  best_match = osect;
3137       }
3138   return best_match;
3139 }
3140 
3141 /* Function: find_pc_mapped_section (PC)
3142    If PC falls into the VMA address range of an overlay section that is
3143    currently marked as MAPPED, return that section.  Else return NULL.  */
3144 
3145 struct obj_section *
3146 find_pc_mapped_section (CORE_ADDR pc)
3147 {
3148   struct objfile *objfile;
3149   struct obj_section *osect;
3150 
3151   if (overlay_debugging)
3152     ALL_OBJSECTIONS (objfile, osect)
3153       if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3154 	return osect;
3155 
3156   return NULL;
3157 }
3158 
3159 /* Function: list_overlays_command
3160    Print a list of mapped sections and their PC ranges.  */
3161 
3162 void
3163 list_overlays_command (char *args, int from_tty)
3164 {
3165   int nmapped = 0;
3166   struct objfile *objfile;
3167   struct obj_section *osect;
3168 
3169   if (overlay_debugging)
3170     ALL_OBJSECTIONS (objfile, osect)
3171       if (section_is_mapped (osect))
3172       {
3173 	struct gdbarch *gdbarch = get_objfile_arch (objfile);
3174 	const char *name;
3175 	bfd_vma lma, vma;
3176 	int size;
3177 
3178 	vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3179 	lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3180 	size = bfd_get_section_size (osect->the_bfd_section);
3181 	name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3182 
3183 	printf_filtered ("Section %s, loaded at ", name);
3184 	fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3185 	puts_filtered (" - ");
3186 	fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3187 	printf_filtered (", mapped at ");
3188 	fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3189 	puts_filtered (" - ");
3190 	fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3191 	puts_filtered ("\n");
3192 
3193 	nmapped++;
3194       }
3195   if (nmapped == 0)
3196     printf_filtered (_("No sections are mapped.\n"));
3197 }
3198 
3199 /* Function: map_overlay_command
3200    Mark the named section as mapped (ie. residing at its VMA address).  */
3201 
3202 void
3203 map_overlay_command (char *args, int from_tty)
3204 {
3205   struct objfile *objfile, *objfile2;
3206   struct obj_section *sec, *sec2;
3207 
3208   if (!overlay_debugging)
3209     error (_("Overlay debugging not enabled.  Use "
3210 	     "either the 'overlay auto' or\n"
3211 	     "the 'overlay manual' command."));
3212 
3213   if (args == 0 || *args == 0)
3214     error (_("Argument required: name of an overlay section"));
3215 
3216   /* First, find a section matching the user supplied argument.  */
3217   ALL_OBJSECTIONS (objfile, sec)
3218     if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3219     {
3220       /* Now, check to see if the section is an overlay.  */
3221       if (!section_is_overlay (sec))
3222 	continue;		/* not an overlay section */
3223 
3224       /* Mark the overlay as "mapped".  */
3225       sec->ovly_mapped = 1;
3226 
3227       /* Next, make a pass and unmap any sections that are
3228          overlapped by this new section: */
3229       ALL_OBJSECTIONS (objfile2, sec2)
3230 	if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3231 	{
3232 	  if (info_verbose)
3233 	    printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3234 			     bfd_section_name (objfile->obfd,
3235 					       sec2->the_bfd_section));
3236 	  sec2->ovly_mapped = 0;	/* sec2 overlaps sec: unmap sec2.  */
3237 	}
3238       return;
3239     }
3240   error (_("No overlay section called %s"), args);
3241 }
3242 
3243 /* Function: unmap_overlay_command
3244    Mark the overlay section as unmapped
3245    (ie. resident in its LMA address range, rather than the VMA range).  */
3246 
3247 void
3248 unmap_overlay_command (char *args, int from_tty)
3249 {
3250   struct objfile *objfile;
3251   struct obj_section *sec;
3252 
3253   if (!overlay_debugging)
3254     error (_("Overlay debugging not enabled.  "
3255 	     "Use either the 'overlay auto' or\n"
3256 	     "the 'overlay manual' command."));
3257 
3258   if (args == 0 || *args == 0)
3259     error (_("Argument required: name of an overlay section"));
3260 
3261   /* First, find a section matching the user supplied argument.  */
3262   ALL_OBJSECTIONS (objfile, sec)
3263     if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3264     {
3265       if (!sec->ovly_mapped)
3266 	error (_("Section %s is not mapped"), args);
3267       sec->ovly_mapped = 0;
3268       return;
3269     }
3270   error (_("No overlay section called %s"), args);
3271 }
3272 
3273 /* Function: overlay_auto_command
3274    A utility command to turn on overlay debugging.
3275    Possibly this should be done via a set/show command.  */
3276 
3277 static void
3278 overlay_auto_command (char *args, int from_tty)
3279 {
3280   overlay_debugging = ovly_auto;
3281   enable_overlay_breakpoints ();
3282   if (info_verbose)
3283     printf_unfiltered (_("Automatic overlay debugging enabled."));
3284 }
3285 
3286 /* Function: overlay_manual_command
3287    A utility command to turn on overlay debugging.
3288    Possibly this should be done via a set/show command.  */
3289 
3290 static void
3291 overlay_manual_command (char *args, int from_tty)
3292 {
3293   overlay_debugging = ovly_on;
3294   disable_overlay_breakpoints ();
3295   if (info_verbose)
3296     printf_unfiltered (_("Overlay debugging enabled."));
3297 }
3298 
3299 /* Function: overlay_off_command
3300    A utility command to turn on overlay debugging.
3301    Possibly this should be done via a set/show command.  */
3302 
3303 static void
3304 overlay_off_command (char *args, int from_tty)
3305 {
3306   overlay_debugging = ovly_off;
3307   disable_overlay_breakpoints ();
3308   if (info_verbose)
3309     printf_unfiltered (_("Overlay debugging disabled."));
3310 }
3311 
3312 static void
3313 overlay_load_command (char *args, int from_tty)
3314 {
3315   struct gdbarch *gdbarch = get_current_arch ();
3316 
3317   if (gdbarch_overlay_update_p (gdbarch))
3318     gdbarch_overlay_update (gdbarch, NULL);
3319   else
3320     error (_("This target does not know how to read its overlay state."));
3321 }
3322 
3323 /* Function: overlay_command
3324    A place-holder for a mis-typed command.  */
3325 
3326 /* Command list chain containing all defined "overlay" subcommands.  */
3327 struct cmd_list_element *overlaylist;
3328 
3329 static void
3330 overlay_command (char *args, int from_tty)
3331 {
3332   printf_unfiltered
3333     ("\"overlay\" must be followed by the name of an overlay command.\n");
3334   help_list (overlaylist, "overlay ", -1, gdb_stdout);
3335 }
3336 
3337 
3338 /* Target Overlays for the "Simplest" overlay manager:
3339 
3340    This is GDB's default target overlay layer.  It works with the
3341    minimal overlay manager supplied as an example by Cygnus.  The
3342    entry point is via a function pointer "gdbarch_overlay_update",
3343    so targets that use a different runtime overlay manager can
3344    substitute their own overlay_update function and take over the
3345    function pointer.
3346 
3347    The overlay_update function pokes around in the target's data structures
3348    to see what overlays are mapped, and updates GDB's overlay mapping with
3349    this information.
3350 
3351    In this simple implementation, the target data structures are as follows:
3352    unsigned _novlys;            /# number of overlay sections #/
3353    unsigned _ovly_table[_novlys][4] = {
3354    {VMA, SIZE, LMA, MAPPED},    /# one entry per overlay section #/
3355    {..., ...,  ..., ...},
3356    }
3357    unsigned _novly_regions;     /# number of overlay regions #/
3358    unsigned _ovly_region_table[_novly_regions][3] = {
3359    {VMA, SIZE, MAPPED_TO_LMA},  /# one entry per overlay region #/
3360    {..., ...,  ...},
3361    }
3362    These functions will attempt to update GDB's mappedness state in the
3363    symbol section table, based on the target's mappedness state.
3364 
3365    To do this, we keep a cached copy of the target's _ovly_table, and
3366    attempt to detect when the cached copy is invalidated.  The main
3367    entry point is "simple_overlay_update(SECT), which looks up SECT in
3368    the cached table and re-reads only the entry for that section from
3369    the target (whenever possible).  */
3370 
3371 /* Cached, dynamically allocated copies of the target data structures: */
3372 static unsigned (*cache_ovly_table)[4] = 0;
3373 static unsigned cache_novlys = 0;
3374 static CORE_ADDR cache_ovly_table_base = 0;
3375 enum ovly_index
3376   {
3377     VMA, SIZE, LMA, MAPPED
3378   };
3379 
3380 /* Throw away the cached copy of _ovly_table.  */
3381 static void
3382 simple_free_overlay_table (void)
3383 {
3384   if (cache_ovly_table)
3385     xfree (cache_ovly_table);
3386   cache_novlys = 0;
3387   cache_ovly_table = NULL;
3388   cache_ovly_table_base = 0;
3389 }
3390 
3391 /* Read an array of ints of size SIZE from the target into a local buffer.
3392    Convert to host order.  int LEN is number of ints.  */
3393 static void
3394 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3395 			int len, int size, enum bfd_endian byte_order)
3396 {
3397   /* FIXME (alloca): Not safe if array is very large.  */
3398   gdb_byte *buf = alloca (len * size);
3399   int i;
3400 
3401   read_memory (memaddr, buf, len * size);
3402   for (i = 0; i < len; i++)
3403     myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3404 }
3405 
3406 /* Find and grab a copy of the target _ovly_table
3407    (and _novlys, which is needed for the table's size).  */
3408 static int
3409 simple_read_overlay_table (void)
3410 {
3411   struct minimal_symbol *novlys_msym, *ovly_table_msym;
3412   struct gdbarch *gdbarch;
3413   int word_size;
3414   enum bfd_endian byte_order;
3415 
3416   simple_free_overlay_table ();
3417   novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3418   if (! novlys_msym)
3419     {
3420       error (_("Error reading inferior's overlay table: "
3421              "couldn't find `_novlys' variable\n"
3422              "in inferior.  Use `overlay manual' mode."));
3423       return 0;
3424     }
3425 
3426   ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3427   if (! ovly_table_msym)
3428     {
3429       error (_("Error reading inferior's overlay table: couldn't find "
3430              "`_ovly_table' array\n"
3431              "in inferior.  Use `overlay manual' mode."));
3432       return 0;
3433     }
3434 
3435   gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3436   word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3437   byte_order = gdbarch_byte_order (gdbarch);
3438 
3439   cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3440 				      4, byte_order);
3441   cache_ovly_table
3442     = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3443   cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3444   read_target_long_array (cache_ovly_table_base,
3445                           (unsigned int *) cache_ovly_table,
3446                           cache_novlys * 4, word_size, byte_order);
3447 
3448   return 1;			/* SUCCESS */
3449 }
3450 
3451 /* Function: simple_overlay_update_1
3452    A helper function for simple_overlay_update.  Assuming a cached copy
3453    of _ovly_table exists, look through it to find an entry whose vma,
3454    lma and size match those of OSECT.  Re-read the entry and make sure
3455    it still matches OSECT (else the table may no longer be valid).
3456    Set OSECT's mapped state to match the entry.  Return: 1 for
3457    success, 0 for failure.  */
3458 
3459 static int
3460 simple_overlay_update_1 (struct obj_section *osect)
3461 {
3462   int i, size;
3463   bfd *obfd = osect->objfile->obfd;
3464   asection *bsect = osect->the_bfd_section;
3465   struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3466   int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3467   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3468 
3469   size = bfd_get_section_size (osect->the_bfd_section);
3470   for (i = 0; i < cache_novlys; i++)
3471     if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3472 	&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3473 	/* && cache_ovly_table[i][SIZE] == size */ )
3474       {
3475 	read_target_long_array (cache_ovly_table_base + i * word_size,
3476 				(unsigned int *) cache_ovly_table[i],
3477 				4, word_size, byte_order);
3478 	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3479 	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3480 	    /* && cache_ovly_table[i][SIZE] == size */ )
3481 	  {
3482 	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3483 	    return 1;
3484 	  }
3485 	else	/* Warning!  Warning!  Target's ovly table has changed!  */
3486 	  return 0;
3487       }
3488   return 0;
3489 }
3490 
3491 /* Function: simple_overlay_update
3492    If OSECT is NULL, then update all sections' mapped state
3493    (after re-reading the entire target _ovly_table).
3494    If OSECT is non-NULL, then try to find a matching entry in the
3495    cached ovly_table and update only OSECT's mapped state.
3496    If a cached entry can't be found or the cache isn't valid, then
3497    re-read the entire cache, and go ahead and update all sections.  */
3498 
3499 void
3500 simple_overlay_update (struct obj_section *osect)
3501 {
3502   struct objfile *objfile;
3503 
3504   /* Were we given an osect to look up?  NULL means do all of them.  */
3505   if (osect)
3506     /* Have we got a cached copy of the target's overlay table?  */
3507     if (cache_ovly_table != NULL)
3508       {
3509 	/* Does its cached location match what's currently in the
3510 	   symtab?  */
3511 	struct minimal_symbol *minsym
3512 	  = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3513 
3514 	if (minsym == NULL)
3515 	  error (_("Error reading inferior's overlay table: couldn't "
3516 		   "find `_ovly_table' array\n"
3517 		   "in inferior.  Use `overlay manual' mode."));
3518 
3519 	if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3520 	  /* Then go ahead and try to look up this single section in
3521 	     the cache.  */
3522 	  if (simple_overlay_update_1 (osect))
3523 	    /* Found it!  We're done.  */
3524 	    return;
3525       }
3526 
3527   /* Cached table no good: need to read the entire table anew.
3528      Or else we want all the sections, in which case it's actually
3529      more efficient to read the whole table in one block anyway.  */
3530 
3531   if (! simple_read_overlay_table ())
3532     return;
3533 
3534   /* Now may as well update all sections, even if only one was requested.  */
3535   ALL_OBJSECTIONS (objfile, osect)
3536     if (section_is_overlay (osect))
3537     {
3538       int i, size;
3539       bfd *obfd = osect->objfile->obfd;
3540       asection *bsect = osect->the_bfd_section;
3541 
3542       size = bfd_get_section_size (bsect);
3543       for (i = 0; i < cache_novlys; i++)
3544 	if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3545 	    && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3546 	    /* && cache_ovly_table[i][SIZE] == size */ )
3547 	  { /* obj_section matches i'th entry in ovly_table.  */
3548 	    osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3549 	    break;		/* finished with inner for loop: break out.  */
3550 	  }
3551     }
3552 }
3553 
3554 /* Set the output sections and output offsets for section SECTP in
3555    ABFD.  The relocation code in BFD will read these offsets, so we
3556    need to be sure they're initialized.  We map each section to itself,
3557    with no offset; this means that SECTP->vma will be honored.  */
3558 
3559 static void
3560 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3561 {
3562   sectp->output_section = sectp;
3563   sectp->output_offset = 0;
3564 }
3565 
3566 /* Default implementation for sym_relocate.  */
3567 
3568 
3569 bfd_byte *
3570 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3571                           bfd_byte *buf)
3572 {
3573   bfd *abfd = objfile->obfd;
3574 
3575   /* We're only interested in sections with relocation
3576      information.  */
3577   if ((sectp->flags & SEC_RELOC) == 0)
3578     return NULL;
3579 
3580   /* We will handle section offsets properly elsewhere, so relocate as if
3581      all sections begin at 0.  */
3582   bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3583 
3584   return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3585 }
3586 
3587 /* Relocate the contents of a debug section SECTP in ABFD.  The
3588    contents are stored in BUF if it is non-NULL, or returned in a
3589    malloc'd buffer otherwise.
3590 
3591    For some platforms and debug info formats, shared libraries contain
3592    relocations against the debug sections (particularly for DWARF-2;
3593    one affected platform is PowerPC GNU/Linux, although it depends on
3594    the version of the linker in use).  Also, ELF object files naturally
3595    have unresolved relocations for their debug sections.  We need to apply
3596    the relocations in order to get the locations of symbols correct.
3597    Another example that may require relocation processing, is the
3598    DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3599    debug section.  */
3600 
3601 bfd_byte *
3602 symfile_relocate_debug_section (struct objfile *objfile,
3603                                 asection *sectp, bfd_byte *buf)
3604 {
3605   gdb_assert (objfile->sf->sym_relocate);
3606 
3607   return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3608 }
3609 
3610 struct symfile_segment_data *
3611 get_symfile_segment_data (bfd *abfd)
3612 {
3613   const struct sym_fns *sf = find_sym_fns (abfd);
3614 
3615   if (sf == NULL)
3616     return NULL;
3617 
3618   return sf->sym_segments (abfd);
3619 }
3620 
3621 void
3622 free_symfile_segment_data (struct symfile_segment_data *data)
3623 {
3624   xfree (data->segment_bases);
3625   xfree (data->segment_sizes);
3626   xfree (data->segment_info);
3627   xfree (data);
3628 }
3629 
3630 
3631 /* Given:
3632    - DATA, containing segment addresses from the object file ABFD, and
3633      the mapping from ABFD's sections onto the segments that own them,
3634      and
3635    - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3636      segment addresses reported by the target,
3637    store the appropriate offsets for each section in OFFSETS.
3638 
3639    If there are fewer entries in SEGMENT_BASES than there are segments
3640    in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3641 
3642    If there are more entries, then ignore the extra.  The target may
3643    not be able to distinguish between an empty data segment and a
3644    missing data segment; a missing text segment is less plausible.  */
3645 int
3646 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3647 				 struct section_offsets *offsets,
3648 				 int num_segment_bases,
3649 				 const CORE_ADDR *segment_bases)
3650 {
3651   int i;
3652   asection *sect;
3653 
3654   /* It doesn't make sense to call this function unless you have some
3655      segment base addresses.  */
3656   gdb_assert (num_segment_bases > 0);
3657 
3658   /* If we do not have segment mappings for the object file, we
3659      can not relocate it by segments.  */
3660   gdb_assert (data != NULL);
3661   gdb_assert (data->num_segments > 0);
3662 
3663   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3664     {
3665       int which = data->segment_info[i];
3666 
3667       gdb_assert (0 <= which && which <= data->num_segments);
3668 
3669       /* Don't bother computing offsets for sections that aren't
3670          loaded as part of any segment.  */
3671       if (! which)
3672         continue;
3673 
3674       /* Use the last SEGMENT_BASES entry as the address of any extra
3675          segments mentioned in DATA->segment_info.  */
3676       if (which > num_segment_bases)
3677         which = num_segment_bases;
3678 
3679       offsets->offsets[i] = (segment_bases[which - 1]
3680                              - data->segment_bases[which - 1]);
3681     }
3682 
3683   return 1;
3684 }
3685 
3686 static void
3687 symfile_find_segment_sections (struct objfile *objfile)
3688 {
3689   bfd *abfd = objfile->obfd;
3690   int i;
3691   asection *sect;
3692   struct symfile_segment_data *data;
3693 
3694   data = get_symfile_segment_data (objfile->obfd);
3695   if (data == NULL)
3696     return;
3697 
3698   if (data->num_segments != 1 && data->num_segments != 2)
3699     {
3700       free_symfile_segment_data (data);
3701       return;
3702     }
3703 
3704   for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3705     {
3706       int which = data->segment_info[i];
3707 
3708       if (which == 1)
3709 	{
3710 	  if (objfile->sect_index_text == -1)
3711 	    objfile->sect_index_text = sect->index;
3712 
3713 	  if (objfile->sect_index_rodata == -1)
3714 	    objfile->sect_index_rodata = sect->index;
3715 	}
3716       else if (which == 2)
3717 	{
3718 	  if (objfile->sect_index_data == -1)
3719 	    objfile->sect_index_data = sect->index;
3720 
3721 	  if (objfile->sect_index_bss == -1)
3722 	    objfile->sect_index_bss = sect->index;
3723 	}
3724     }
3725 
3726   free_symfile_segment_data (data);
3727 }
3728 
3729 void
3730 _initialize_symfile (void)
3731 {
3732   struct cmd_list_element *c;
3733 
3734   c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3735 Load symbol table from executable file FILE.\n\
3736 The `file' command can also load symbol tables, as well as setting the file\n\
3737 to execute."), &cmdlist);
3738   set_cmd_completer (c, filename_completer);
3739 
3740   c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3741 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3742 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3743  ...]\nADDR is the starting address of the file's text.\n\
3744 The optional arguments are section-name section-address pairs and\n\
3745 should be specified if the data and bss segments are not contiguous\n\
3746 with the text.  SECT is a section name to be loaded at SECT_ADDR."),
3747 	       &cmdlist);
3748   set_cmd_completer (c, filename_completer);
3749 
3750   c = add_cmd ("load", class_files, load_command, _("\
3751 Dynamically load FILE into the running program, and record its symbols\n\
3752 for access from GDB.\n\
3753 A load OFFSET may also be given."), &cmdlist);
3754   set_cmd_completer (c, filename_completer);
3755 
3756   add_setshow_boolean_cmd ("symbol-reloading", class_support,
3757 			   &symbol_reloading, _("\
3758 Set dynamic symbol table reloading multiple times in one run."), _("\
3759 Show dynamic symbol table reloading multiple times in one run."), NULL,
3760 			   NULL,
3761 			   show_symbol_reloading,
3762 			   &setlist, &showlist);
3763 
3764   add_prefix_cmd ("overlay", class_support, overlay_command,
3765 		  _("Commands for debugging overlays."), &overlaylist,
3766 		  "overlay ", 0, &cmdlist);
3767 
3768   add_com_alias ("ovly", "overlay", class_alias, 1);
3769   add_com_alias ("ov", "overlay", class_alias, 1);
3770 
3771   add_cmd ("map-overlay", class_support, map_overlay_command,
3772 	   _("Assert that an overlay section is mapped."), &overlaylist);
3773 
3774   add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3775 	   _("Assert that an overlay section is unmapped."), &overlaylist);
3776 
3777   add_cmd ("list-overlays", class_support, list_overlays_command,
3778 	   _("List mappings of overlay sections."), &overlaylist);
3779 
3780   add_cmd ("manual", class_support, overlay_manual_command,
3781 	   _("Enable overlay debugging."), &overlaylist);
3782   add_cmd ("off", class_support, overlay_off_command,
3783 	   _("Disable overlay debugging."), &overlaylist);
3784   add_cmd ("auto", class_support, overlay_auto_command,
3785 	   _("Enable automatic overlay debugging."), &overlaylist);
3786   add_cmd ("load-target", class_support, overlay_load_command,
3787 	   _("Read the overlay mapping state from the target."), &overlaylist);
3788 
3789   /* Filename extension to source language lookup table: */
3790   init_filename_language_table ();
3791   add_setshow_string_noescape_cmd ("extension-language", class_files,
3792 				   &ext_args, _("\
3793 Set mapping between filename extension and source language."), _("\
3794 Show mapping between filename extension and source language."), _("\
3795 Usage: set extension-language .foo bar"),
3796 				   set_ext_lang_command,
3797 				   show_ext_args,
3798 				   &setlist, &showlist);
3799 
3800   add_info ("extensions", info_ext_lang_command,
3801 	    _("All filename extensions associated with a source language."));
3802 
3803   add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3804 				     &debug_file_directory, _("\
3805 Set the directories where separate debug symbols are searched for."), _("\
3806 Show the directories where separate debug symbols are searched for."), _("\
3807 Separate debug symbols are first searched for in the same\n\
3808 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3809 and lastly at the path of the directory of the binary with\n\
3810 each global debug-file-directory component prepended."),
3811 				     NULL,
3812 				     show_debug_file_directory,
3813 				     &setlist, &showlist);
3814 }
3815