xref: /dragonfly/contrib/gdb-7/gdb/symtab.c (revision a68e0df0)
1 /* Symbol table lookup for the GNU debugger, GDB.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5    Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h"		/* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45 
46 #include "hashtab.h"
47 
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51 
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64 
65 /* Prototypes for local functions */
66 
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68 
69 static void rbreak_command (char *, int);
70 
71 static void types_info (char *, int);
72 
73 static void functions_info (char *, int);
74 
75 static void variables_info (char *, int);
76 
77 static void sources_info (char *, int);
78 
79 static void output_source_filename (const char *, int *);
80 
81 static int find_line_common (struct linetable *, int, int *);
82 
83 /* This one is used by linespec.c */
84 
85 char *operator_chars (char *p, char **end);
86 
87 static struct symbol *lookup_symbol_aux (const char *name,
88 					 const char *linkage_name,
89 					 const struct block *block,
90 					 const domain_enum domain,
91 					 enum language language,
92 					 int *is_a_field_of_this);
93 
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 					const char *linkage_name,
97 					const struct block *block,
98 					const domain_enum domain);
99 
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 					  const char *name,
103 					  const char *linkage_name,
104 					  const domain_enum domain);
105 
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 					   const char *name,
109 					   const char *linkage_name,
110 					   const domain_enum domain);
111 
112 static int file_matches (char *, char **, int);
113 
114 static void print_symbol_info (domain_enum,
115 			       struct symtab *, struct symbol *, int, char *);
116 
117 static void print_msymbol_info (struct minimal_symbol *);
118 
119 static void symtab_symbol_info (char *, domain_enum, int);
120 
121 void _initialize_symtab (void);
122 
123 /* */
124 
125 /* Allow the user to configure the debugger behavior with respect
126    to multiple-choice menus when more than one symbol matches during
127    a symbol lookup.  */
128 
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134   multiple_symbols_ask,
135   multiple_symbols_all,
136   multiple_symbols_cancel,
137   NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140 
141 /* Read-only accessor to AUTO_SELECT_MODE.  */
142 
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146   return multiple_symbols_mode;
147 }
148 
149 /* Block in which the most recently searched-for symbol was found.
150    Might be better to make this a parameter to lookup_symbol and
151    value_of_this. */
152 
153 const struct block *block_found;
154 
155 /* Check for a symtab of a specific name; first in symtabs, then in
156    psymtabs.  *If* there is no '/' in the name, a match after a '/'
157    in the symtab filename will also work.  */
158 
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162   struct symtab *s;
163   struct partial_symtab *ps;
164   struct objfile *objfile;
165   char *real_path = NULL;
166   char *full_path = NULL;
167 
168   /* Here we are interested in canonicalizing an absolute path, not
169      absolutizing a relative path.  */
170   if (IS_ABSOLUTE_PATH (name))
171     {
172       full_path = xfullpath (name);
173       make_cleanup (xfree, full_path);
174       real_path = gdb_realpath (name);
175       make_cleanup (xfree, real_path);
176     }
177 
178 got_symtab:
179 
180   /* First, search for an exact match */
181 
182   ALL_SYMTABS (objfile, s)
183   {
184     if (FILENAME_CMP (name, s->filename) == 0)
185       {
186 	return s;
187       }
188 
189     /* If the user gave us an absolute path, try to find the file in
190        this symtab and use its absolute path.  */
191 
192     if (full_path != NULL)
193       {
194         const char *fp = symtab_to_fullname (s);
195         if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196           {
197             return s;
198           }
199       }
200 
201     if (real_path != NULL)
202       {
203         char *fullname = symtab_to_fullname (s);
204         if (fullname != NULL)
205           {
206             char *rp = gdb_realpath (fullname);
207             make_cleanup (xfree, rp);
208             if (FILENAME_CMP (real_path, rp) == 0)
209               {
210                 return s;
211               }
212           }
213       }
214   }
215 
216   /* Now, search for a matching tail (only if name doesn't have any dirs) */
217 
218   if (lbasename (name) == name)
219     ALL_SYMTABS (objfile, s)
220     {
221       if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 	return s;
223     }
224 
225   /* Same search rules as above apply here, but now we look thru the
226      psymtabs.  */
227 
228   ps = lookup_partial_symtab (name);
229   if (!ps)
230     return (NULL);
231 
232   if (ps->readin)
233     error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 	   ps->filename, name);
235 
236   s = PSYMTAB_TO_SYMTAB (ps);
237 
238   if (s)
239     return s;
240 
241   /* At this point, we have located the psymtab for this file, but
242      the conversion to a symtab has failed.  This usually happens
243      when we are looking up an include file.  In this case,
244      PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245      been created.  So, we need to run through the symtabs again in
246      order to find the file.
247      XXX - This is a crock, and should be fixed inside of the the
248      symbol parsing routines. */
249   goto got_symtab;
250 }
251 
252 /* Lookup the partial symbol table of a source file named NAME.
253    *If* there is no '/' in the name, a match after a '/'
254    in the psymtab filename will also work.  */
255 
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259   struct partial_symtab *pst;
260   struct objfile *objfile;
261   char *full_path = NULL;
262   char *real_path = NULL;
263 
264   /* Here we are interested in canonicalizing an absolute path, not
265      absolutizing a relative path.  */
266   if (IS_ABSOLUTE_PATH (name))
267     {
268       full_path = xfullpath (name);
269       make_cleanup (xfree, full_path);
270       real_path = gdb_realpath (name);
271       make_cleanup (xfree, real_path);
272     }
273 
274   ALL_PSYMTABS (objfile, pst)
275   {
276     if (FILENAME_CMP (name, pst->filename) == 0)
277       {
278 	return (pst);
279       }
280 
281     /* If the user gave us an absolute path, try to find the file in
282        this symtab and use its absolute path.  */
283     if (full_path != NULL)
284       {
285 	psymtab_to_fullname (pst);
286 	if (pst->fullname != NULL
287 	    && FILENAME_CMP (full_path, pst->fullname) == 0)
288 	  {
289 	    return pst;
290 	  }
291       }
292 
293     if (real_path != NULL)
294       {
295         char *rp = NULL;
296 	psymtab_to_fullname (pst);
297         if (pst->fullname != NULL)
298           {
299             rp = gdb_realpath (pst->fullname);
300             make_cleanup (xfree, rp);
301           }
302 	if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 	  {
304 	    return pst;
305 	  }
306       }
307   }
308 
309   /* Now, search for a matching tail (only if name doesn't have any dirs) */
310 
311   if (lbasename (name) == name)
312     ALL_PSYMTABS (objfile, pst)
313     {
314       if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 	return (pst);
316     }
317 
318   return (NULL);
319 }
320 
321 /* Mangle a GDB method stub type.  This actually reassembles the pieces of the
322    full method name, which consist of the class name (from T), the unadorned
323    method name from METHOD_ID, and the signature for the specific overload,
324    specified by SIGNATURE_ID.  Note that this function is g++ specific. */
325 
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329   int mangled_name_len;
330   char *mangled_name;
331   struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332   struct fn_field *method = &f[signature_id];
333   char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334   char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335   char *newname = type_name_no_tag (type);
336 
337   /* Does the form of physname indicate that it is the full mangled name
338      of a constructor (not just the args)?  */
339   int is_full_physname_constructor;
340 
341   int is_constructor;
342   int is_destructor = is_destructor_name (physname);
343   /* Need a new type prefix.  */
344   char *const_prefix = method->is_const ? "C" : "";
345   char *volatile_prefix = method->is_volatile ? "V" : "";
346   char buf[20];
347   int len = (newname == NULL ? 0 : strlen (newname));
348 
349   /* Nothing to do if physname already contains a fully mangled v3 abi name
350      or an operator name.  */
351   if ((physname[0] == '_' && physname[1] == 'Z')
352       || is_operator_name (field_name))
353     return xstrdup (physname);
354 
355   is_full_physname_constructor = is_constructor_name (physname);
356 
357   is_constructor =
358     is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359 
360   if (!is_destructor)
361     is_destructor = (strncmp (physname, "__dt", 4) == 0);
362 
363   if (is_destructor || is_full_physname_constructor)
364     {
365       mangled_name = (char *) xmalloc (strlen (physname) + 1);
366       strcpy (mangled_name, physname);
367       return mangled_name;
368     }
369 
370   if (len == 0)
371     {
372       sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373     }
374   else if (physname[0] == 't' || physname[0] == 'Q')
375     {
376       /* The physname for template and qualified methods already includes
377          the class name.  */
378       sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379       newname = NULL;
380       len = 0;
381     }
382   else
383     {
384       sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385     }
386   mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 		      + strlen (buf) + len + strlen (physname) + 1);
388 
389     {
390       mangled_name = (char *) xmalloc (mangled_name_len);
391       if (is_constructor)
392 	mangled_name[0] = '\0';
393       else
394 	strcpy (mangled_name, field_name);
395     }
396   strcat (mangled_name, buf);
397   /* If the class doesn't have a name, i.e. newname NULL, then we just
398      mangle it using 0 for the length of the class.  Thus it gets mangled
399      as something starting with `::' rather than `classname::'. */
400   if (newname != NULL)
401     strcat (mangled_name, newname);
402 
403   strcat (mangled_name, physname);
404   return (mangled_name);
405 }
406 
407 
408 /* Initialize the language dependent portion of a symbol
409    depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 			       enum language language)
413 {
414   gsymbol->language = language;
415   if (gsymbol->language == language_cplus
416       || gsymbol->language == language_java
417       || gsymbol->language == language_objc)
418     {
419       gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420     }
421   else
422     {
423       memset (&gsymbol->language_specific, 0,
424 	      sizeof (gsymbol->language_specific));
425     }
426 }
427 
428 /* Functions to initialize a symbol's mangled name.  */
429 
430 /* Create the hash table used for demangled names.  Each hash entry is
431    a pair of strings; one for the mangled name and one for the demangled
432    name.  The entry is hashed via just the mangled name.  */
433 
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437   /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438      The hash table code will round this up to the next prime number.
439      Choosing a much larger table size wastes memory, and saves only about
440      1% in symbol reading.  */
441 
442   objfile->demangled_names_hash = htab_create_alloc
443     (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444      NULL, xcalloc, xfree);
445 }
446 
447 /* Try to determine the demangled name for a symbol, based on the
448    language of that symbol.  If the language is set to language_auto,
449    it will attempt to find any demangling algorithm that works and
450    then set the language appropriately.  The returned name is allocated
451    by the demangler and should be xfree'd.  */
452 
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 			    const char *mangled)
456 {
457   char *demangled = NULL;
458 
459   if (gsymbol->language == language_unknown)
460     gsymbol->language = language_auto;
461 
462   if (gsymbol->language == language_objc
463       || gsymbol->language == language_auto)
464     {
465       demangled =
466 	objc_demangle (mangled, 0);
467       if (demangled != NULL)
468 	{
469 	  gsymbol->language = language_objc;
470 	  return demangled;
471 	}
472     }
473   if (gsymbol->language == language_cplus
474       || gsymbol->language == language_auto)
475     {
476       demangled =
477         cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478       if (demangled != NULL)
479 	{
480 	  gsymbol->language = language_cplus;
481 	  return demangled;
482 	}
483     }
484   if (gsymbol->language == language_java)
485     {
486       demangled =
487         cplus_demangle (mangled,
488                         DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489       if (demangled != NULL)
490 	{
491 	  gsymbol->language = language_java;
492 	  return demangled;
493 	}
494     }
495   return NULL;
496 }
497 
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499    on LINKAGE_NAME and LEN.  The hash table corresponding to OBJFILE
500    is used, and the memory comes from that objfile's objfile_obstack.
501    LINKAGE_NAME is copied, so the pointer can be discarded after
502    calling this function.  */
503 
504 /* We have to be careful when dealing with Java names: when we run
505    into a Java minimal symbol, we don't know it's a Java symbol, so it
506    gets demangled as a C++ name.  This is unfortunate, but there's not
507    much we can do about it: but when demangling partial symbols and
508    regular symbols, we'd better not reuse the wrong demangled name.
509    (See PR gdb/1039.)  We solve this by putting a distinctive prefix
510    on Java names when storing them in the hash table.  */
511 
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation.  I
513    don't mind the Java prefix so much: different languages have
514    different demangling requirements, so it's only natural that we
515    need to keep language data around in our demangling cache.  But
516    it's not good that the minimal symbol has the wrong demangled name.
517    Unfortunately, I can't think of any easy solution to that
518    problem.  */
519 
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522 
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 		  const char *linkage_name, int len, struct objfile *objfile)
526 {
527   char **slot;
528   /* A 0-terminated copy of the linkage name.  */
529   const char *linkage_name_copy;
530   /* A copy of the linkage name that might have a special Java prefix
531      added to it, for use when looking names up in the hash table.  */
532   const char *lookup_name;
533   /* The length of lookup_name.  */
534   int lookup_len;
535 
536   if (objfile->demangled_names_hash == NULL)
537     create_demangled_names_hash (objfile);
538 
539   if (gsymbol->language == language_ada)
540     {
541       /* In Ada, we do the symbol lookups using the mangled name, so
542          we can save some space by not storing the demangled name.
543 
544          As a side note, we have also observed some overlap between
545          the C++ mangling and Ada mangling, similarly to what has
546          been observed with Java.  Because we don't store the demangled
547          name with the symbol, we don't need to use the same trick
548          as Java.  */
549       gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550       memcpy (gsymbol->name, linkage_name, len);
551       gsymbol->name[len] = '\0';
552       gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553 
554       return;
555     }
556 
557   /* The stabs reader generally provides names that are not
558      NUL-terminated; most of the other readers don't do this, so we
559      can just use the given copy, unless we're in the Java case.  */
560   if (gsymbol->language == language_java)
561     {
562       char *alloc_name;
563       lookup_len = len + JAVA_PREFIX_LEN;
564 
565       alloc_name = alloca (lookup_len + 1);
566       memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567       memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568       alloc_name[lookup_len] = '\0';
569 
570       lookup_name = alloc_name;
571       linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572     }
573   else if (linkage_name[len] != '\0')
574     {
575       char *alloc_name;
576       lookup_len = len;
577 
578       alloc_name = alloca (lookup_len + 1);
579       memcpy (alloc_name, linkage_name, len);
580       alloc_name[lookup_len] = '\0';
581 
582       lookup_name = alloc_name;
583       linkage_name_copy = alloc_name;
584     }
585   else
586     {
587       lookup_len = len;
588       lookup_name = linkage_name;
589       linkage_name_copy = linkage_name;
590     }
591 
592   slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 				   lookup_name, INSERT);
594 
595   /* If this name is not in the hash table, add it.  */
596   if (*slot == NULL)
597     {
598       char *demangled_name = symbol_find_demangled_name (gsymbol,
599 							 linkage_name_copy);
600       int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601 
602       /* If there is a demangled name, place it right after the mangled name.
603 	 Otherwise, just place a second zero byte after the end of the mangled
604 	 name.  */
605       *slot = obstack_alloc (&objfile->objfile_obstack,
606 			     lookup_len + demangled_len + 2);
607       memcpy (*slot, lookup_name, lookup_len + 1);
608       if (demangled_name != NULL)
609 	{
610 	  memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 	  xfree (demangled_name);
612 	}
613       else
614 	(*slot)[lookup_len + 1] = '\0';
615     }
616 
617   gsymbol->name = *slot + lookup_len - len;
618   if ((*slot)[lookup_len + 1] != '\0')
619     gsymbol->language_specific.cplus_specific.demangled_name
620       = &(*slot)[lookup_len + 1];
621   else
622     gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624 
625 /* Return the source code name of a symbol.  In languages where
626    demangling is necessary, this is the demangled name.  */
627 
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631   switch (gsymbol->language)
632     {
633     case language_cplus:
634     case language_java:
635     case language_objc:
636       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 	return gsymbol->language_specific.cplus_specific.demangled_name;
638       break;
639     case language_ada:
640       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 	return gsymbol->language_specific.cplus_specific.demangled_name;
642       else
643 	return ada_decode_symbol (gsymbol);
644       break;
645     default:
646       break;
647     }
648   return gsymbol->name;
649 }
650 
651 /* Return the demangled name for a symbol based on the language for
652    that symbol.  If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (const struct general_symbol_info *gsymbol)
655 {
656   switch (gsymbol->language)
657     {
658     case language_cplus:
659     case language_java:
660     case language_objc:
661       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 	return gsymbol->language_specific.cplus_specific.demangled_name;
663       break;
664     case language_ada:
665       if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 	return gsymbol->language_specific.cplus_specific.demangled_name;
667       else
668 	return ada_decode_symbol (gsymbol);
669       break;
670     default:
671       break;
672     }
673   return NULL;
674 }
675 
676 /* Return the search name of a symbol---generally the demangled or
677    linkage name of the symbol, depending on how it will be searched for.
678    If there is no distinct demangled name, then returns the same value
679    (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683   if (gsymbol->language == language_ada)
684     return gsymbol->name;
685   else
686     return symbol_natural_name (gsymbol);
687 }
688 
689 /* Initialize the structure fields to zero values.  */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693   sal->symtab = 0;
694   sal->section = 0;
695   sal->line = 0;
696   sal->pc = 0;
697   sal->end = 0;
698   sal->explicit_pc = 0;
699   sal->explicit_line = 0;
700 }
701 
702 
703 /* Return 1 if the two sections are the same, or if they could
704    plausibly be copies of each other, one in an original object
705    file and another in a separated debug file.  */
706 
707 int
708 matching_obj_sections (struct obj_section *obj_first,
709 		       struct obj_section *obj_second)
710 {
711   asection *first = obj_first? obj_first->the_bfd_section : NULL;
712   asection *second = obj_second? obj_second->the_bfd_section : NULL;
713   struct objfile *obj;
714 
715   /* If they're the same section, then they match.  */
716   if (first == second)
717     return 1;
718 
719   /* If either is NULL, give up.  */
720   if (first == NULL || second == NULL)
721     return 0;
722 
723   /* This doesn't apply to absolute symbols.  */
724   if (first->owner == NULL || second->owner == NULL)
725     return 0;
726 
727   /* If they're in the same object file, they must be different sections.  */
728   if (first->owner == second->owner)
729     return 0;
730 
731   /* Check whether the two sections are potentially corresponding.  They must
732      have the same size, address, and name.  We can't compare section indexes,
733      which would be more reliable, because some sections may have been
734      stripped.  */
735   if (bfd_get_section_size (first) != bfd_get_section_size (second))
736     return 0;
737 
738   /* In-memory addresses may start at a different offset, relativize them.  */
739   if (bfd_get_section_vma (first->owner, first)
740       - bfd_get_start_address (first->owner)
741       != bfd_get_section_vma (second->owner, second)
742 	 - bfd_get_start_address (second->owner))
743     return 0;
744 
745   if (bfd_get_section_name (first->owner, first) == NULL
746       || bfd_get_section_name (second->owner, second) == NULL
747       || strcmp (bfd_get_section_name (first->owner, first),
748 		 bfd_get_section_name (second->owner, second)) != 0)
749     return 0;
750 
751   /* Otherwise check that they are in corresponding objfiles.  */
752 
753   ALL_OBJFILES (obj)
754     if (obj->obfd == first->owner)
755       break;
756   gdb_assert (obj != NULL);
757 
758   if (obj->separate_debug_objfile != NULL
759       && obj->separate_debug_objfile->obfd == second->owner)
760     return 1;
761   if (obj->separate_debug_objfile_backlink != NULL
762       && obj->separate_debug_objfile_backlink->obfd == second->owner)
763     return 1;
764 
765   return 0;
766 }
767 
768 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
769    We may find a different psymtab than PST.  See FIND_PC_SECT_PSYMTAB.  */
770 
771 static struct partial_symtab *
772 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
773 			     struct partial_symtab *pst,
774 			     struct minimal_symbol *msymbol)
775 {
776   struct objfile *objfile = pst->objfile;
777   struct partial_symtab *tpst;
778   struct partial_symtab *best_pst = pst;
779   CORE_ADDR best_addr = pst->textlow;
780 
781   /* An objfile that has its functions reordered might have
782      many partial symbol tables containing the PC, but
783      we want the partial symbol table that contains the
784      function containing the PC.  */
785   if (!(objfile->flags & OBJF_REORDERED) &&
786       section == 0)	/* can't validate section this way */
787     return pst;
788 
789   if (msymbol == NULL)
790     return (pst);
791 
792   /* The code range of partial symtabs sometimes overlap, so, in
793      the loop below, we need to check all partial symtabs and
794      find the one that fits better for the given PC address. We
795      select the partial symtab that contains a symbol whose
796      address is closest to the PC address.  By closest we mean
797      that find_pc_sect_symbol returns the symbol with address
798      that is closest and still less than the given PC.  */
799   for (tpst = pst; tpst != NULL; tpst = tpst->next)
800     {
801       if (pc >= tpst->textlow && pc < tpst->texthigh)
802 	{
803 	  struct partial_symbol *p;
804 	  CORE_ADDR this_addr;
805 
806 	  /* NOTE: This assumes that every psymbol has a
807 	     corresponding msymbol, which is not necessarily
808 	     true; the debug info might be much richer than the
809 	     object's symbol table.  */
810 	  p = find_pc_sect_psymbol (tpst, pc, section);
811 	  if (p != NULL
812 	      && SYMBOL_VALUE_ADDRESS (p)
813 	      == SYMBOL_VALUE_ADDRESS (msymbol))
814 	    return tpst;
815 
816 	  /* Also accept the textlow value of a psymtab as a
817 	     "symbol", to provide some support for partial
818 	     symbol tables with line information but no debug
819 	     symbols (e.g. those produced by an assembler).  */
820 	  if (p != NULL)
821 	    this_addr = SYMBOL_VALUE_ADDRESS (p);
822 	  else
823 	    this_addr = tpst->textlow;
824 
825 	  /* Check whether it is closer than our current
826 	     BEST_ADDR.  Since this symbol address is
827 	     necessarily lower or equal to PC, the symbol closer
828 	     to PC is the symbol which address is the highest.
829 	     This way we return the psymtab which contains such
830 	     best match symbol. This can help in cases where the
831 	     symbol information/debuginfo is not complete, like
832 	     for instance on IRIX6 with gcc, where no debug info
833 	     is emitted for statics. (See also the nodebug.exp
834 	     testcase.) */
835 	  if (this_addr > best_addr)
836 	    {
837 	      best_addr = this_addr;
838 	      best_pst = tpst;
839 	    }
840 	}
841     }
842   return best_pst;
843 }
844 
845 /* Find which partial symtab contains PC and SECTION.  Return 0 if
846    none.  We return the psymtab that contains a symbol whose address
847    exactly matches PC, or, if we cannot find an exact match, the
848    psymtab that contains a symbol whose address is closest to PC.  */
849 struct partial_symtab *
850 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
851 {
852   struct objfile *objfile;
853   struct minimal_symbol *msymbol;
854 
855   /* If we know that this is not a text address, return failure.  This is
856      necessary because we loop based on texthigh and textlow, which do
857      not include the data ranges.  */
858   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
859   if (msymbol
860       && (MSYMBOL_TYPE (msymbol) == mst_data
861 	  || MSYMBOL_TYPE (msymbol) == mst_bss
862 	  || MSYMBOL_TYPE (msymbol) == mst_abs
863 	  || MSYMBOL_TYPE (msymbol) == mst_file_data
864 	  || MSYMBOL_TYPE (msymbol) == mst_file_bss))
865     return NULL;
866 
867   /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
868      than the later used TEXTLOW/TEXTHIGH one.  */
869 
870   ALL_OBJFILES (objfile)
871     if (objfile->psymtabs_addrmap != NULL)
872       {
873 	struct partial_symtab *pst;
874 
875 	pst = addrmap_find (objfile->psymtabs_addrmap, pc);
876 	if (pst != NULL)
877 	  {
878 	    /* FIXME: addrmaps currently do not handle overlayed sections,
879 	       so fall back to the non-addrmap case if we're debugging
880 	       overlays and the addrmap returned the wrong section.  */
881 	    if (overlay_debugging && msymbol && section)
882 	      {
883 		struct partial_symbol *p;
884 		/* NOTE: This assumes that every psymbol has a
885 		   corresponding msymbol, which is not necessarily
886 		   true; the debug info might be much richer than the
887 		   object's symbol table.  */
888 		p = find_pc_sect_psymbol (pst, pc, section);
889 		if (!p
890 		    || SYMBOL_VALUE_ADDRESS (p)
891 		       != SYMBOL_VALUE_ADDRESS (msymbol))
892 		  continue;
893 	      }
894 
895 	    /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
896 	       PSYMTABS_ADDRMAP we used has already the best 1-byte
897 	       granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
898 	       a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
899 	       overlap.  */
900 
901 	    return pst;
902 	  }
903       }
904 
905   /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
906      which still have no corresponding full SYMTABs read.  But it is not
907      present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
908      so far.  */
909 
910   ALL_OBJFILES (objfile)
911     {
912       struct partial_symtab *pst;
913 
914       /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
915 	 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
916 	 debug info type in single OBJFILE.  */
917 
918       ALL_OBJFILE_PSYMTABS (objfile, pst)
919 	if (pc >= pst->textlow && pc < pst->texthigh)
920 	  {
921 	    struct partial_symtab *best_pst;
922 
923 	    best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
924 						    msymbol);
925 	    if (best_pst != NULL)
926 	      return best_pst;
927 	  }
928     }
929 
930   return NULL;
931 }
932 
933 /* Find which partial symtab contains PC.  Return 0 if none.
934    Backward compatibility, no section */
935 
936 struct partial_symtab *
937 find_pc_psymtab (CORE_ADDR pc)
938 {
939   return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
940 }
941 
942 /* Find which partial symbol within a psymtab matches PC and SECTION.
943    Return 0 if none.  Check all psymtabs if PSYMTAB is 0.  */
944 
945 struct partial_symbol *
946 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
947 		      struct obj_section *section)
948 {
949   struct partial_symbol *best = NULL, *p, **pp;
950   CORE_ADDR best_pc;
951 
952   if (!psymtab)
953     psymtab = find_pc_sect_psymtab (pc, section);
954   if (!psymtab)
955     return 0;
956 
957   /* Cope with programs that start at address 0 */
958   best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
959 
960   /* Search the global symbols as well as the static symbols, so that
961      find_pc_partial_function doesn't use a minimal symbol and thus
962      cache a bad endaddr.  */
963   for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
964     (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
965      < psymtab->n_global_syms);
966        pp++)
967     {
968       p = *pp;
969       if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
970 	  && SYMBOL_CLASS (p) == LOC_BLOCK
971 	  && pc >= SYMBOL_VALUE_ADDRESS (p)
972 	  && (SYMBOL_VALUE_ADDRESS (p) > best_pc
973 	      || (psymtab->textlow == 0
974 		  && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
975 	{
976 	  if (section)		/* match on a specific section */
977 	    {
978 	      fixup_psymbol_section (p, psymtab->objfile);
979 	      if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
980 		continue;
981 	    }
982 	  best_pc = SYMBOL_VALUE_ADDRESS (p);
983 	  best = p;
984 	}
985     }
986 
987   for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
988     (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
989      < psymtab->n_static_syms);
990        pp++)
991     {
992       p = *pp;
993       if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
994 	  && SYMBOL_CLASS (p) == LOC_BLOCK
995 	  && pc >= SYMBOL_VALUE_ADDRESS (p)
996 	  && (SYMBOL_VALUE_ADDRESS (p) > best_pc
997 	      || (psymtab->textlow == 0
998 		  && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
999 	{
1000 	  if (section)		/* match on a specific section */
1001 	    {
1002 	      fixup_psymbol_section (p, psymtab->objfile);
1003 	      if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1004 		continue;
1005 	    }
1006 	  best_pc = SYMBOL_VALUE_ADDRESS (p);
1007 	  best = p;
1008 	}
1009     }
1010 
1011   return best;
1012 }
1013 
1014 /* Find which partial symbol within a psymtab matches PC.  Return 0 if none.
1015    Check all psymtabs if PSYMTAB is 0.  Backwards compatibility, no section. */
1016 
1017 struct partial_symbol *
1018 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1019 {
1020   return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1021 }
1022 
1023 /* Debug symbols usually don't have section information.  We need to dig that
1024    out of the minimal symbols and stash that in the debug symbol.  */
1025 
1026 static void
1027 fixup_section (struct general_symbol_info *ginfo,
1028 	       CORE_ADDR addr, struct objfile *objfile)
1029 {
1030   struct minimal_symbol *msym;
1031 
1032   /* First, check whether a minimal symbol with the same name exists
1033      and points to the same address.  The address check is required
1034      e.g. on PowerPC64, where the minimal symbol for a function will
1035      point to the function descriptor, while the debug symbol will
1036      point to the actual function code.  */
1037   msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1038   if (msym)
1039     {
1040       ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1041       ginfo->section = SYMBOL_SECTION (msym);
1042     }
1043   else
1044     {
1045       /* Static, function-local variables do appear in the linker
1046 	 (minimal) symbols, but are frequently given names that won't
1047 	 be found via lookup_minimal_symbol().  E.g., it has been
1048 	 observed in frv-uclinux (ELF) executables that a static,
1049 	 function-local variable named "foo" might appear in the
1050 	 linker symbols as "foo.6" or "foo.3".  Thus, there is no
1051 	 point in attempting to extend the lookup-by-name mechanism to
1052 	 handle this case due to the fact that there can be multiple
1053 	 names.
1054 
1055 	 So, instead, search the section table when lookup by name has
1056 	 failed.  The ``addr'' and ``endaddr'' fields may have already
1057 	 been relocated.  If so, the relocation offset (i.e. the
1058 	 ANOFFSET value) needs to be subtracted from these values when
1059 	 performing the comparison.  We unconditionally subtract it,
1060 	 because, when no relocation has been performed, the ANOFFSET
1061 	 value will simply be zero.
1062 
1063 	 The address of the symbol whose section we're fixing up HAS
1064 	 NOT BEEN adjusted (relocated) yet.  It can't have been since
1065 	 the section isn't yet known and knowing the section is
1066 	 necessary in order to add the correct relocation value.  In
1067 	 other words, we wouldn't even be in this function (attempting
1068 	 to compute the section) if it were already known.
1069 
1070 	 Note that it is possible to search the minimal symbols
1071 	 (subtracting the relocation value if necessary) to find the
1072 	 matching minimal symbol, but this is overkill and much less
1073 	 efficient.  It is not necessary to find the matching minimal
1074 	 symbol, only its section.
1075 
1076 	 Note that this technique (of doing a section table search)
1077 	 can fail when unrelocated section addresses overlap.  For
1078 	 this reason, we still attempt a lookup by name prior to doing
1079 	 a search of the section table.  */
1080 
1081       struct obj_section *s;
1082       ALL_OBJFILE_OSECTIONS (objfile, s)
1083 	{
1084 	  int idx = s->the_bfd_section->index;
1085 	  CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1086 
1087 	  if (obj_section_addr (s) - offset <= addr
1088 	      && addr < obj_section_endaddr (s) - offset)
1089 	    {
1090 	      ginfo->obj_section = s;
1091 	      ginfo->section = idx;
1092 	      return;
1093 	    }
1094 	}
1095     }
1096 }
1097 
1098 struct symbol *
1099 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1100 {
1101   CORE_ADDR addr;
1102 
1103   if (!sym)
1104     return NULL;
1105 
1106   if (SYMBOL_OBJ_SECTION (sym))
1107     return sym;
1108 
1109   /* We either have an OBJFILE, or we can get at it from the sym's
1110      symtab.  Anything else is a bug.  */
1111   gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1112 
1113   if (objfile == NULL)
1114     objfile = SYMBOL_SYMTAB (sym)->objfile;
1115 
1116   /* We should have an objfile by now.  */
1117   gdb_assert (objfile);
1118 
1119   switch (SYMBOL_CLASS (sym))
1120     {
1121     case LOC_STATIC:
1122     case LOC_LABEL:
1123       addr = SYMBOL_VALUE_ADDRESS (sym);
1124       break;
1125     case LOC_BLOCK:
1126       addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1127       break;
1128 
1129     default:
1130       /* Nothing else will be listed in the minsyms -- no use looking
1131 	 it up.  */
1132       return sym;
1133     }
1134 
1135   fixup_section (&sym->ginfo, addr, objfile);
1136 
1137   return sym;
1138 }
1139 
1140 struct partial_symbol *
1141 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1142 {
1143   CORE_ADDR addr;
1144 
1145   if (!psym)
1146     return NULL;
1147 
1148   if (SYMBOL_OBJ_SECTION (psym))
1149     return psym;
1150 
1151   gdb_assert (objfile);
1152 
1153   switch (SYMBOL_CLASS (psym))
1154     {
1155     case LOC_STATIC:
1156     case LOC_LABEL:
1157     case LOC_BLOCK:
1158       addr = SYMBOL_VALUE_ADDRESS (psym);
1159       break;
1160     default:
1161       /* Nothing else will be listed in the minsyms -- no use looking
1162 	 it up.  */
1163       return psym;
1164     }
1165 
1166   fixup_section (&psym->ginfo, addr, objfile);
1167 
1168   return psym;
1169 }
1170 
1171 /* Find the definition for a specified symbol name NAME
1172    in domain DOMAIN, visible from lexical block BLOCK.
1173    Returns the struct symbol pointer, or zero if no symbol is found.
1174    C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1175    NAME is a field of the current implied argument `this'.  If so set
1176    *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1177    BLOCK_FOUND is set to the block in which NAME is found (in the case of
1178    a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1179 
1180 /* This function has a bunch of loops in it and it would seem to be
1181    attractive to put in some QUIT's (though I'm not really sure
1182    whether it can run long enough to be really important).  But there
1183    are a few calls for which it would appear to be bad news to quit
1184    out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c.  (Note
1185    that there is C++ code below which can error(), but that probably
1186    doesn't affect these calls since they are looking for a known
1187    variable and thus can probably assume it will never hit the C++
1188    code).  */
1189 
1190 struct symbol *
1191 lookup_symbol_in_language (const char *name, const struct block *block,
1192 			   const domain_enum domain, enum language lang,
1193 			   int *is_a_field_of_this)
1194 {
1195   char *demangled_name = NULL;
1196   const char *modified_name = NULL;
1197   const char *mangled_name = NULL;
1198   struct symbol *returnval;
1199   struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1200 
1201   modified_name = name;
1202 
1203   /* If we are using C++ or Java, demangle the name before doing a lookup, so
1204      we can always binary search. */
1205   if (lang == language_cplus)
1206     {
1207       demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1208       if (demangled_name)
1209 	{
1210 	  mangled_name = name;
1211 	  modified_name = demangled_name;
1212 	  make_cleanup (xfree, demangled_name);
1213 	}
1214       else
1215 	{
1216 	  /* If we were given a non-mangled name, canonicalize it
1217 	     according to the language (so far only for C++).  */
1218 	  demangled_name = cp_canonicalize_string (name);
1219 	  if (demangled_name)
1220 	    {
1221 	      modified_name = demangled_name;
1222 	      make_cleanup (xfree, demangled_name);
1223 	    }
1224 	}
1225     }
1226   else if (lang == language_java)
1227     {
1228       demangled_name = cplus_demangle (name,
1229 		      		       DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1230       if (demangled_name)
1231 	{
1232 	  mangled_name = name;
1233 	  modified_name = demangled_name;
1234 	  make_cleanup (xfree, demangled_name);
1235 	}
1236     }
1237 
1238   if (case_sensitivity == case_sensitive_off)
1239     {
1240       char *copy;
1241       int len, i;
1242 
1243       len = strlen (name);
1244       copy = (char *) alloca (len + 1);
1245       for (i= 0; i < len; i++)
1246         copy[i] = tolower (name[i]);
1247       copy[len] = 0;
1248       modified_name = copy;
1249     }
1250 
1251   returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1252 				 domain, lang, is_a_field_of_this);
1253   do_cleanups (cleanup);
1254 
1255   return returnval;
1256 }
1257 
1258 /* Behave like lookup_symbol_in_language, but performed with the
1259    current language.  */
1260 
1261 struct symbol *
1262 lookup_symbol (const char *name, const struct block *block,
1263 	       domain_enum domain, int *is_a_field_of_this)
1264 {
1265   return lookup_symbol_in_language (name, block, domain,
1266 				    current_language->la_language,
1267 				    is_a_field_of_this);
1268 }
1269 
1270 /* Behave like lookup_symbol except that NAME is the natural name
1271    of the symbol that we're looking for and, if LINKAGE_NAME is
1272    non-NULL, ensure that the symbol's linkage name matches as
1273    well.  */
1274 
1275 static struct symbol *
1276 lookup_symbol_aux (const char *name, const char *linkage_name,
1277 		   const struct block *block, const domain_enum domain,
1278 		   enum language language, int *is_a_field_of_this)
1279 {
1280   struct symbol *sym;
1281   const struct language_defn *langdef;
1282 
1283   /* Make sure we do something sensible with is_a_field_of_this, since
1284      the callers that set this parameter to some non-null value will
1285      certainly use it later and expect it to be either 0 or 1.
1286      If we don't set it, the contents of is_a_field_of_this are
1287      undefined.  */
1288   if (is_a_field_of_this != NULL)
1289     *is_a_field_of_this = 0;
1290 
1291   /* Search specified block and its superiors.  Don't search
1292      STATIC_BLOCK or GLOBAL_BLOCK.  */
1293 
1294   sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1295   if (sym != NULL)
1296     return sym;
1297 
1298   /* If requested to do so by the caller and if appropriate for LANGUAGE,
1299      check to see if NAME is a field of `this'. */
1300 
1301   langdef = language_def (language);
1302 
1303   if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1304       && block != NULL)
1305     {
1306       struct symbol *sym = NULL;
1307       /* 'this' is only defined in the function's block, so find the
1308 	 enclosing function block.  */
1309       for (; block && !BLOCK_FUNCTION (block);
1310 	   block = BLOCK_SUPERBLOCK (block));
1311 
1312       if (block && !dict_empty (BLOCK_DICT (block)))
1313 	sym = lookup_block_symbol (block, langdef->la_name_of_this,
1314 				   NULL, VAR_DOMAIN);
1315       if (sym)
1316 	{
1317 	  struct type *t = sym->type;
1318 
1319 	  /* I'm not really sure that type of this can ever
1320 	     be typedefed; just be safe.  */
1321 	  CHECK_TYPEDEF (t);
1322 	  if (TYPE_CODE (t) == TYPE_CODE_PTR
1323 	      || TYPE_CODE (t) == TYPE_CODE_REF)
1324 	    t = TYPE_TARGET_TYPE (t);
1325 
1326 	  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1327 	      && TYPE_CODE (t) != TYPE_CODE_UNION)
1328 	    error (_("Internal error: `%s' is not an aggregate"),
1329 		   langdef->la_name_of_this);
1330 
1331 	  if (check_field (t, name))
1332 	    {
1333 	      *is_a_field_of_this = 1;
1334 	      return NULL;
1335 	    }
1336 	}
1337     }
1338 
1339   /* Now do whatever is appropriate for LANGUAGE to look
1340      up static and global variables.  */
1341 
1342   sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1343   if (sym != NULL)
1344     return sym;
1345 
1346   /* Now search all static file-level symbols.  Not strictly correct,
1347      but more useful than an error.  Do the symtabs first, then check
1348      the psymtabs.  If a psymtab indicates the existence of the
1349      desired name as a file-level static, then do psymtab-to-symtab
1350      conversion on the fly and return the found symbol. */
1351 
1352   sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1353   if (sym != NULL)
1354     return sym;
1355 
1356   sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1357   if (sym != NULL)
1358     return sym;
1359 
1360   return NULL;
1361 }
1362 
1363 /* Check to see if the symbol is defined in BLOCK or its superiors.
1364    Don't search STATIC_BLOCK or GLOBAL_BLOCK.  */
1365 
1366 static struct symbol *
1367 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1368 			 const struct block *block,
1369 			 const domain_enum domain)
1370 {
1371   struct symbol *sym;
1372   const struct block *static_block = block_static_block (block);
1373 
1374   /* Check if either no block is specified or it's a global block.  */
1375 
1376   if (static_block == NULL)
1377     return NULL;
1378 
1379   while (block != static_block)
1380     {
1381       sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1382       if (sym != NULL)
1383 	return sym;
1384 
1385       if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1386 	break;
1387       block = BLOCK_SUPERBLOCK (block);
1388     }
1389 
1390   /* We've reached the edge of the function without finding a result.  */
1391 
1392   return NULL;
1393 }
1394 
1395 /* Look up OBJFILE to BLOCK.  */
1396 
1397 static struct objfile *
1398 lookup_objfile_from_block (const struct block *block)
1399 {
1400   struct objfile *obj;
1401   struct symtab *s;
1402 
1403   if (block == NULL)
1404     return NULL;
1405 
1406   block = block_global_block (block);
1407   /* Go through SYMTABS.  */
1408   ALL_SYMTABS (obj, s)
1409     if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1410       return obj;
1411 
1412   return NULL;
1413 }
1414 
1415 /* Look up a symbol in a block; if found, fixup the symbol, and set
1416    block_found appropriately.  */
1417 
1418 struct symbol *
1419 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1420 			 const struct block *block,
1421 			 const domain_enum domain)
1422 {
1423   struct symbol *sym;
1424 
1425   sym = lookup_block_symbol (block, name, linkage_name, domain);
1426   if (sym)
1427     {
1428       block_found = block;
1429       return fixup_symbol_section (sym, NULL);
1430     }
1431 
1432   return NULL;
1433 }
1434 
1435 /* Check all global symbols in OBJFILE in symtabs and
1436    psymtabs.  */
1437 
1438 struct symbol *
1439 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1440 				   const char *name,
1441 				   const char *linkage_name,
1442 				   const domain_enum domain)
1443 {
1444   struct symbol *sym;
1445   struct blockvector *bv;
1446   const struct block *block;
1447   struct symtab *s;
1448   struct partial_symtab *ps;
1449 
1450   /* Go through symtabs.  */
1451   ALL_OBJFILE_SYMTABS (objfile, s)
1452   {
1453     bv = BLOCKVECTOR (s);
1454     block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1455     sym = lookup_block_symbol (block, name, linkage_name, domain);
1456     if (sym)
1457       {
1458 	block_found = block;
1459 	return fixup_symbol_section (sym, (struct objfile *)objfile);
1460       }
1461   }
1462 
1463   /* Now go through psymtabs.  */
1464   ALL_OBJFILE_PSYMTABS (objfile, ps)
1465   {
1466     if (!ps->readin
1467 	&& lookup_partial_symbol (ps, name, linkage_name,
1468 				  1, domain))
1469       {
1470 	s = PSYMTAB_TO_SYMTAB (ps);
1471 	bv = BLOCKVECTOR (s);
1472 	block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1473 	sym = lookup_block_symbol (block, name, linkage_name, domain);
1474 	return fixup_symbol_section (sym, (struct objfile *)objfile);
1475       }
1476   }
1477 
1478   if (objfile->separate_debug_objfile)
1479     return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1480 					      name, linkage_name, domain);
1481 
1482   return NULL;
1483 }
1484 
1485 /* Check to see if the symbol is defined in one of the symtabs.
1486    BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1487    depending on whether or not we want to search global symbols or
1488    static symbols.  */
1489 
1490 static struct symbol *
1491 lookup_symbol_aux_symtabs (int block_index,
1492 			   const char *name, const char *linkage_name,
1493 			   const domain_enum domain)
1494 {
1495   struct symbol *sym;
1496   struct objfile *objfile;
1497   struct blockvector *bv;
1498   const struct block *block;
1499   struct symtab *s;
1500 
1501   ALL_PRIMARY_SYMTABS (objfile, s)
1502   {
1503     bv = BLOCKVECTOR (s);
1504     block = BLOCKVECTOR_BLOCK (bv, block_index);
1505     sym = lookup_block_symbol (block, name, linkage_name, domain);
1506     if (sym)
1507       {
1508 	block_found = block;
1509 	return fixup_symbol_section (sym, objfile);
1510       }
1511   }
1512 
1513   return NULL;
1514 }
1515 
1516 /* Check to see if the symbol is defined in one of the partial
1517    symtabs.  BLOCK_INDEX should be either GLOBAL_BLOCK or
1518    STATIC_BLOCK, depending on whether or not we want to search global
1519    symbols or static symbols.  */
1520 
1521 static struct symbol *
1522 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1523 			    const char *linkage_name,
1524 			    const domain_enum domain)
1525 {
1526   struct symbol *sym;
1527   struct objfile *objfile;
1528   struct blockvector *bv;
1529   const struct block *block;
1530   struct partial_symtab *ps;
1531   struct symtab *s;
1532   const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1533 
1534   ALL_PSYMTABS (objfile, ps)
1535   {
1536     if (!ps->readin
1537 	&& lookup_partial_symbol (ps, name, linkage_name,
1538 				  psymtab_index, domain))
1539       {
1540 	s = PSYMTAB_TO_SYMTAB (ps);
1541 	bv = BLOCKVECTOR (s);
1542 	block = BLOCKVECTOR_BLOCK (bv, block_index);
1543 	sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 	if (!sym)
1545 	  {
1546 	    /* This shouldn't be necessary, but as a last resort try
1547 	       looking in the statics even though the psymtab claimed
1548 	       the symbol was global, or vice-versa. It's possible
1549 	       that the psymtab gets it wrong in some cases.  */
1550 
1551 	    /* FIXME: carlton/2002-09-30: Should we really do that?
1552 	       If that happens, isn't it likely to be a GDB error, in
1553 	       which case we should fix the GDB error rather than
1554 	       silently dealing with it here?  So I'd vote for
1555 	       removing the check for the symbol in the other
1556 	       block.  */
1557 	    block = BLOCKVECTOR_BLOCK (bv,
1558 				       block_index == GLOBAL_BLOCK ?
1559 				       STATIC_BLOCK : GLOBAL_BLOCK);
1560 	    sym = lookup_block_symbol (block, name, linkage_name, domain);
1561 	    if (!sym)
1562 	      error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1563 		     block_index == GLOBAL_BLOCK ? "global" : "static",
1564 		     name, ps->filename, name, name);
1565 	  }
1566 	return fixup_symbol_section (sym, objfile);
1567       }
1568   }
1569 
1570   return NULL;
1571 }
1572 
1573 /* A default version of lookup_symbol_nonlocal for use by languages
1574    that can't think of anything better to do.  This implements the C
1575    lookup rules.  */
1576 
1577 struct symbol *
1578 basic_lookup_symbol_nonlocal (const char *name,
1579 			      const char *linkage_name,
1580 			      const struct block *block,
1581 			      const domain_enum domain)
1582 {
1583   struct symbol *sym;
1584 
1585   /* NOTE: carlton/2003-05-19: The comments below were written when
1586      this (or what turned into this) was part of lookup_symbol_aux;
1587      I'm much less worried about these questions now, since these
1588      decisions have turned out well, but I leave these comments here
1589      for posterity.  */
1590 
1591   /* NOTE: carlton/2002-12-05: There is a question as to whether or
1592      not it would be appropriate to search the current global block
1593      here as well.  (That's what this code used to do before the
1594      is_a_field_of_this check was moved up.)  On the one hand, it's
1595      redundant with the lookup_symbol_aux_symtabs search that happens
1596      next.  On the other hand, if decode_line_1 is passed an argument
1597      like filename:var, then the user presumably wants 'var' to be
1598      searched for in filename.  On the third hand, there shouldn't be
1599      multiple global variables all of which are named 'var', and it's
1600      not like decode_line_1 has ever restricted its search to only
1601      global variables in a single filename.  All in all, only
1602      searching the static block here seems best: it's correct and it's
1603      cleanest.  */
1604 
1605   /* NOTE: carlton/2002-12-05: There's also a possible performance
1606      issue here: if you usually search for global symbols in the
1607      current file, then it would be slightly better to search the
1608      current global block before searching all the symtabs.  But there
1609      are other factors that have a much greater effect on performance
1610      than that one, so I don't think we should worry about that for
1611      now.  */
1612 
1613   sym = lookup_symbol_static (name, linkage_name, block, domain);
1614   if (sym != NULL)
1615     return sym;
1616 
1617   return lookup_symbol_global (name, linkage_name, block, domain);
1618 }
1619 
1620 /* Lookup a symbol in the static block associated to BLOCK, if there
1621    is one; do nothing if BLOCK is NULL or a global block.  */
1622 
1623 struct symbol *
1624 lookup_symbol_static (const char *name,
1625 		      const char *linkage_name,
1626 		      const struct block *block,
1627 		      const domain_enum domain)
1628 {
1629   const struct block *static_block = block_static_block (block);
1630 
1631   if (static_block != NULL)
1632     return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1633   else
1634     return NULL;
1635 }
1636 
1637 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1638    necessary).  */
1639 
1640 struct symbol *
1641 lookup_symbol_global (const char *name,
1642 		      const char *linkage_name,
1643 		      const struct block *block,
1644 		      const domain_enum domain)
1645 {
1646   struct symbol *sym = NULL;
1647   struct objfile *objfile = NULL;
1648 
1649   /* Call library-specific lookup procedure.  */
1650   objfile = lookup_objfile_from_block (block);
1651   if (objfile != NULL)
1652     sym = solib_global_lookup (objfile, name, linkage_name, domain);
1653   if (sym != NULL)
1654     return sym;
1655 
1656   sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1657   if (sym != NULL)
1658     return sym;
1659 
1660   return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1661 }
1662 
1663 int
1664 symbol_matches_domain (enum language symbol_language,
1665 		       domain_enum symbol_domain,
1666 		       domain_enum domain)
1667 {
1668   /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1669      A Java class declaration also defines a typedef for the class.
1670      Similarly, any Ada type declaration implicitly defines a typedef.  */
1671   if (symbol_language == language_cplus
1672       || symbol_language == language_java
1673       || symbol_language == language_ada)
1674     {
1675       if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1676 	  && symbol_domain == STRUCT_DOMAIN)
1677 	return 1;
1678     }
1679   /* For all other languages, strict match is required.  */
1680   return (symbol_domain == domain);
1681 }
1682 
1683 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1684    If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1685    linkage name matches it.  Check the global symbols if GLOBAL, the
1686    static symbols if not */
1687 
1688 struct partial_symbol *
1689 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1690 		       const char *linkage_name, int global,
1691 		       domain_enum domain)
1692 {
1693   struct partial_symbol *temp;
1694   struct partial_symbol **start, **psym;
1695   struct partial_symbol **top, **real_top, **bottom, **center;
1696   int length = (global ? pst->n_global_syms : pst->n_static_syms);
1697   int do_linear_search = 1;
1698 
1699   if (length == 0)
1700     {
1701       return (NULL);
1702     }
1703   start = (global ?
1704 	   pst->objfile->global_psymbols.list + pst->globals_offset :
1705 	   pst->objfile->static_psymbols.list + pst->statics_offset);
1706 
1707   if (global)			/* This means we can use a binary search. */
1708     {
1709       do_linear_search = 0;
1710 
1711       /* Binary search.  This search is guaranteed to end with center
1712          pointing at the earliest partial symbol whose name might be
1713          correct.  At that point *all* partial symbols with an
1714          appropriate name will be checked against the correct
1715          domain.  */
1716 
1717       bottom = start;
1718       top = start + length - 1;
1719       real_top = top;
1720       while (top > bottom)
1721 	{
1722 	  center = bottom + (top - bottom) / 2;
1723 	  if (!(center < top))
1724 	    internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1725 	  if (!do_linear_search
1726 	      && (SYMBOL_LANGUAGE (*center) == language_java))
1727 	    {
1728 	      do_linear_search = 1;
1729 	    }
1730 	  if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1731 	    {
1732 	      top = center;
1733 	    }
1734 	  else
1735 	    {
1736 	      bottom = center + 1;
1737 	    }
1738 	}
1739       if (!(top == bottom))
1740 	internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1741 
1742       while (top <= real_top
1743 	     && (linkage_name != NULL
1744 		 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1745 		 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1746 	{
1747 	  if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1748 				     SYMBOL_DOMAIN (*top), domain))
1749 	    return (*top);
1750 	  top++;
1751 	}
1752     }
1753 
1754   /* Can't use a binary search or else we found during the binary search that
1755      we should also do a linear search. */
1756 
1757   if (do_linear_search)
1758     {
1759       for (psym = start; psym < start + length; psym++)
1760 	{
1761 	  if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1762 				     SYMBOL_DOMAIN (*psym), domain))
1763 	    {
1764 	      if (linkage_name != NULL
1765 		  ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1766 		  : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1767 		{
1768 		  return (*psym);
1769 		}
1770 	    }
1771 	}
1772     }
1773 
1774   return (NULL);
1775 }
1776 
1777 /* Look up a type named NAME in the struct_domain.  The type returned
1778    must not be opaque -- i.e., must have at least one field
1779    defined.  */
1780 
1781 struct type *
1782 lookup_transparent_type (const char *name)
1783 {
1784   return current_language->la_lookup_transparent_type (name);
1785 }
1786 
1787 /* The standard implementation of lookup_transparent_type.  This code
1788    was modeled on lookup_symbol -- the parts not relevant to looking
1789    up types were just left out.  In particular it's assumed here that
1790    types are available in struct_domain and only at file-static or
1791    global blocks.  */
1792 
1793 struct type *
1794 basic_lookup_transparent_type (const char *name)
1795 {
1796   struct symbol *sym;
1797   struct symtab *s = NULL;
1798   struct partial_symtab *ps;
1799   struct blockvector *bv;
1800   struct objfile *objfile;
1801   struct block *block;
1802 
1803   /* Now search all the global symbols.  Do the symtab's first, then
1804      check the psymtab's. If a psymtab indicates the existence
1805      of the desired name as a global, then do psymtab-to-symtab
1806      conversion on the fly and return the found symbol.  */
1807 
1808   ALL_PRIMARY_SYMTABS (objfile, s)
1809   {
1810     bv = BLOCKVECTOR (s);
1811     block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1812     sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1813     if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1814       {
1815 	return SYMBOL_TYPE (sym);
1816       }
1817   }
1818 
1819   ALL_PSYMTABS (objfile, ps)
1820   {
1821     if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1822 					      1, STRUCT_DOMAIN))
1823       {
1824 	s = PSYMTAB_TO_SYMTAB (ps);
1825 	bv = BLOCKVECTOR (s);
1826 	block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1827 	sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1828 	if (!sym)
1829 	  {
1830 	    /* This shouldn't be necessary, but as a last resort
1831 	     * try looking in the statics even though the psymtab
1832 	     * claimed the symbol was global. It's possible that
1833 	     * the psymtab gets it wrong in some cases.
1834 	     */
1835 	    block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1836 	    sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1837 	    if (!sym)
1838 	      error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1839 %s may be an inlined function, or may be a template function\n\
1840 (if a template, try specifying an instantiation: %s<type>)."),
1841 		     name, ps->filename, name, name);
1842 	  }
1843 	if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1844 	  return SYMBOL_TYPE (sym);
1845       }
1846   }
1847 
1848   /* Now search the static file-level symbols.
1849      Not strictly correct, but more useful than an error.
1850      Do the symtab's first, then
1851      check the psymtab's. If a psymtab indicates the existence
1852      of the desired name as a file-level static, then do psymtab-to-symtab
1853      conversion on the fly and return the found symbol.
1854    */
1855 
1856   ALL_PRIMARY_SYMTABS (objfile, s)
1857   {
1858     bv = BLOCKVECTOR (s);
1859     block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1860     sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1861     if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1862       {
1863 	return SYMBOL_TYPE (sym);
1864       }
1865   }
1866 
1867   ALL_PSYMTABS (objfile, ps)
1868   {
1869     if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1870       {
1871 	s = PSYMTAB_TO_SYMTAB (ps);
1872 	bv = BLOCKVECTOR (s);
1873 	block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1874 	sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1875 	if (!sym)
1876 	  {
1877 	    /* This shouldn't be necessary, but as a last resort
1878 	     * try looking in the globals even though the psymtab
1879 	     * claimed the symbol was static. It's possible that
1880 	     * the psymtab gets it wrong in some cases.
1881 	     */
1882 	    block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1883 	    sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1884 	    if (!sym)
1885 	      error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1886 %s may be an inlined function, or may be a template function\n\
1887 (if a template, try specifying an instantiation: %s<type>)."),
1888 		     name, ps->filename, name, name);
1889 	  }
1890 	if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1891 	  return SYMBOL_TYPE (sym);
1892       }
1893   }
1894   return (struct type *) 0;
1895 }
1896 
1897 
1898 /* Find the psymtab containing main(). */
1899 /* FIXME:  What about languages without main() or specially linked
1900    executables that have no main() ? */
1901 
1902 struct partial_symtab *
1903 find_main_psymtab (void)
1904 {
1905   struct partial_symtab *pst;
1906   struct objfile *objfile;
1907 
1908   ALL_PSYMTABS (objfile, pst)
1909   {
1910     if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1911       {
1912 	return (pst);
1913       }
1914   }
1915   return (NULL);
1916 }
1917 
1918 /* Search BLOCK for symbol NAME in DOMAIN.
1919 
1920    Note that if NAME is the demangled form of a C++ symbol, we will fail
1921    to find a match during the binary search of the non-encoded names, but
1922    for now we don't worry about the slight inefficiency of looking for
1923    a match we'll never find, since it will go pretty quick.  Once the
1924    binary search terminates, we drop through and do a straight linear
1925    search on the symbols.  Each symbol which is marked as being a ObjC/C++
1926    symbol (language_cplus or language_objc set) has both the encoded and
1927    non-encoded names tested for a match.
1928 
1929    If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1930    particular mangled name.
1931 */
1932 
1933 struct symbol *
1934 lookup_block_symbol (const struct block *block, const char *name,
1935 		     const char *linkage_name,
1936 		     const domain_enum domain)
1937 {
1938   struct dict_iterator iter;
1939   struct symbol *sym;
1940 
1941   if (!BLOCK_FUNCTION (block))
1942     {
1943       for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1944 	   sym != NULL;
1945 	   sym = dict_iter_name_next (name, &iter))
1946 	{
1947 	  if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1948 				     SYMBOL_DOMAIN (sym), domain)
1949 	      && (linkage_name != NULL
1950 		  ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1951 	    return sym;
1952 	}
1953       return NULL;
1954     }
1955   else
1956     {
1957       /* Note that parameter symbols do not always show up last in the
1958 	 list; this loop makes sure to take anything else other than
1959 	 parameter symbols first; it only uses parameter symbols as a
1960 	 last resort.  Note that this only takes up extra computation
1961 	 time on a match.  */
1962 
1963       struct symbol *sym_found = NULL;
1964 
1965       for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1966 	   sym != NULL;
1967 	   sym = dict_iter_name_next (name, &iter))
1968 	{
1969 	  if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1970 				     SYMBOL_DOMAIN (sym), domain)
1971 	      && (linkage_name != NULL
1972 		  ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1973 	    {
1974 	      sym_found = sym;
1975 	      if (!SYMBOL_IS_ARGUMENT (sym))
1976 		{
1977 		  break;
1978 		}
1979 	    }
1980 	}
1981       return (sym_found);	/* Will be NULL if not found. */
1982     }
1983 }
1984 
1985 /* Find the symtab associated with PC and SECTION.  Look through the
1986    psymtabs and read in another symtab if necessary. */
1987 
1988 struct symtab *
1989 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1990 {
1991   struct block *b;
1992   struct blockvector *bv;
1993   struct symtab *s = NULL;
1994   struct symtab *best_s = NULL;
1995   struct partial_symtab *ps;
1996   struct objfile *objfile;
1997   CORE_ADDR distance = 0;
1998   struct minimal_symbol *msymbol;
1999 
2000   /* If we know that this is not a text address, return failure.  This is
2001      necessary because we loop based on the block's high and low code
2002      addresses, which do not include the data ranges, and because
2003      we call find_pc_sect_psymtab which has a similar restriction based
2004      on the partial_symtab's texthigh and textlow.  */
2005   msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2006   if (msymbol
2007       && (MSYMBOL_TYPE (msymbol) == mst_data
2008 	  || MSYMBOL_TYPE (msymbol) == mst_bss
2009 	  || MSYMBOL_TYPE (msymbol) == mst_abs
2010 	  || MSYMBOL_TYPE (msymbol) == mst_file_data
2011 	  || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2012     return NULL;
2013 
2014   /* Search all symtabs for the one whose file contains our address, and which
2015      is the smallest of all the ones containing the address.  This is designed
2016      to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2017      and symtab b is at 0x2000-0x3000.  So the GLOBAL_BLOCK for a is from
2018      0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2019 
2020      This happens for native ecoff format, where code from included files
2021      gets its own symtab. The symtab for the included file should have
2022      been read in already via the dependency mechanism.
2023      It might be swifter to create several symtabs with the same name
2024      like xcoff does (I'm not sure).
2025 
2026      It also happens for objfiles that have their functions reordered.
2027      For these, the symtab we are looking for is not necessarily read in.  */
2028 
2029   ALL_PRIMARY_SYMTABS (objfile, s)
2030   {
2031     bv = BLOCKVECTOR (s);
2032     b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2033 
2034     if (BLOCK_START (b) <= pc
2035 	&& BLOCK_END (b) > pc
2036 	&& (distance == 0
2037 	    || BLOCK_END (b) - BLOCK_START (b) < distance))
2038       {
2039 	/* For an objfile that has its functions reordered,
2040 	   find_pc_psymtab will find the proper partial symbol table
2041 	   and we simply return its corresponding symtab.  */
2042 	/* In order to better support objfiles that contain both
2043 	   stabs and coff debugging info, we continue on if a psymtab
2044 	   can't be found. */
2045 	if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2046 	  {
2047 	    ps = find_pc_sect_psymtab (pc, section);
2048 	    if (ps)
2049 	      return PSYMTAB_TO_SYMTAB (ps);
2050 	  }
2051 	if (section != 0)
2052 	  {
2053 	    struct dict_iterator iter;
2054 	    struct symbol *sym = NULL;
2055 
2056 	    ALL_BLOCK_SYMBOLS (b, iter, sym)
2057 	      {
2058 		fixup_symbol_section (sym, objfile);
2059 		if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2060 		  break;
2061 	      }
2062 	    if (sym == NULL)
2063 	      continue;		/* no symbol in this symtab matches section */
2064 	  }
2065 	distance = BLOCK_END (b) - BLOCK_START (b);
2066 	best_s = s;
2067       }
2068   }
2069 
2070   if (best_s != NULL)
2071     return (best_s);
2072 
2073   s = NULL;
2074   ps = find_pc_sect_psymtab (pc, section);
2075   if (ps)
2076     {
2077       if (ps->readin)
2078 	/* Might want to error() here (in case symtab is corrupt and
2079 	   will cause a core dump), but maybe we can successfully
2080 	   continue, so let's not.  */
2081 	warning (_("\
2082 (Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2083 		 paddress (get_objfile_arch (ps->objfile), pc));
2084       s = PSYMTAB_TO_SYMTAB (ps);
2085     }
2086   return (s);
2087 }
2088 
2089 /* Find the symtab associated with PC.  Look through the psymtabs and
2090    read in another symtab if necessary.  Backward compatibility, no section */
2091 
2092 struct symtab *
2093 find_pc_symtab (CORE_ADDR pc)
2094 {
2095   return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2096 }
2097 
2098 
2099 /* Find the source file and line number for a given PC value and SECTION.
2100    Return a structure containing a symtab pointer, a line number,
2101    and a pc range for the entire source line.
2102    The value's .pc field is NOT the specified pc.
2103    NOTCURRENT nonzero means, if specified pc is on a line boundary,
2104    use the line that ends there.  Otherwise, in that case, the line
2105    that begins there is used.  */
2106 
2107 /* The big complication here is that a line may start in one file, and end just
2108    before the start of another file.  This usually occurs when you #include
2109    code in the middle of a subroutine.  To properly find the end of a line's PC
2110    range, we must search all symtabs associated with this compilation unit, and
2111    find the one whose first PC is closer than that of the next line in this
2112    symtab.  */
2113 
2114 /* If it's worth the effort, we could be using a binary search.  */
2115 
2116 struct symtab_and_line
2117 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2118 {
2119   struct symtab *s;
2120   struct linetable *l;
2121   int len;
2122   int i;
2123   struct linetable_entry *item;
2124   struct symtab_and_line val;
2125   struct blockvector *bv;
2126   struct minimal_symbol *msymbol;
2127   struct minimal_symbol *mfunsym;
2128 
2129   /* Info on best line seen so far, and where it starts, and its file.  */
2130 
2131   struct linetable_entry *best = NULL;
2132   CORE_ADDR best_end = 0;
2133   struct symtab *best_symtab = 0;
2134 
2135   /* Store here the first line number
2136      of a file which contains the line at the smallest pc after PC.
2137      If we don't find a line whose range contains PC,
2138      we will use a line one less than this,
2139      with a range from the start of that file to the first line's pc.  */
2140   struct linetable_entry *alt = NULL;
2141   struct symtab *alt_symtab = 0;
2142 
2143   /* Info on best line seen in this file.  */
2144 
2145   struct linetable_entry *prev;
2146 
2147   /* If this pc is not from the current frame,
2148      it is the address of the end of a call instruction.
2149      Quite likely that is the start of the following statement.
2150      But what we want is the statement containing the instruction.
2151      Fudge the pc to make sure we get that.  */
2152 
2153   init_sal (&val);		/* initialize to zeroes */
2154 
2155   /* It's tempting to assume that, if we can't find debugging info for
2156      any function enclosing PC, that we shouldn't search for line
2157      number info, either.  However, GAS can emit line number info for
2158      assembly files --- very helpful when debugging hand-written
2159      assembly code.  In such a case, we'd have no debug info for the
2160      function, but we would have line info.  */
2161 
2162   if (notcurrent)
2163     pc -= 1;
2164 
2165   /* elz: added this because this function returned the wrong
2166      information if the pc belongs to a stub (import/export)
2167      to call a shlib function. This stub would be anywhere between
2168      two functions in the target, and the line info was erroneously
2169      taken to be the one of the line before the pc.
2170    */
2171   /* RT: Further explanation:
2172 
2173    * We have stubs (trampolines) inserted between procedures.
2174    *
2175    * Example: "shr1" exists in a shared library, and a "shr1" stub also
2176    * exists in the main image.
2177    *
2178    * In the minimal symbol table, we have a bunch of symbols
2179    * sorted by start address. The stubs are marked as "trampoline",
2180    * the others appear as text. E.g.:
2181    *
2182    *  Minimal symbol table for main image
2183    *     main:  code for main (text symbol)
2184    *     shr1: stub  (trampoline symbol)
2185    *     foo:   code for foo (text symbol)
2186    *     ...
2187    *  Minimal symbol table for "shr1" image:
2188    *     ...
2189    *     shr1: code for shr1 (text symbol)
2190    *     ...
2191    *
2192    * So the code below is trying to detect if we are in the stub
2193    * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2194    * and if found,  do the symbolization from the real-code address
2195    * rather than the stub address.
2196    *
2197    * Assumptions being made about the minimal symbol table:
2198    *   1. lookup_minimal_symbol_by_pc() will return a trampoline only
2199    *      if we're really in the trampoline. If we're beyond it (say
2200    *      we're in "foo" in the above example), it'll have a closer
2201    *      symbol (the "foo" text symbol for example) and will not
2202    *      return the trampoline.
2203    *   2. lookup_minimal_symbol_text() will find a real text symbol
2204    *      corresponding to the trampoline, and whose address will
2205    *      be different than the trampoline address. I put in a sanity
2206    *      check for the address being the same, to avoid an
2207    *      infinite recursion.
2208    */
2209   msymbol = lookup_minimal_symbol_by_pc (pc);
2210   if (msymbol != NULL)
2211     if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2212       {
2213 	mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2214 					      NULL);
2215 	if (mfunsym == NULL)
2216 	  /* I eliminated this warning since it is coming out
2217 	   * in the following situation:
2218 	   * gdb shmain // test program with shared libraries
2219 	   * (gdb) break shr1  // function in shared lib
2220 	   * Warning: In stub for ...
2221 	   * In the above situation, the shared lib is not loaded yet,
2222 	   * so of course we can't find the real func/line info,
2223 	   * but the "break" still works, and the warning is annoying.
2224 	   * So I commented out the warning. RT */
2225 	  /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2226 	/* fall through */
2227 	else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2228 	  /* Avoid infinite recursion */
2229 	  /* See above comment about why warning is commented out */
2230 	  /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2231 	/* fall through */
2232 	else
2233 	  return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2234       }
2235 
2236 
2237   s = find_pc_sect_symtab (pc, section);
2238   if (!s)
2239     {
2240       /* if no symbol information, return previous pc */
2241       if (notcurrent)
2242 	pc++;
2243       val.pc = pc;
2244       return val;
2245     }
2246 
2247   bv = BLOCKVECTOR (s);
2248 
2249   /* Look at all the symtabs that share this blockvector.
2250      They all have the same apriori range, that we found was right;
2251      but they have different line tables.  */
2252 
2253   for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2254     {
2255       /* Find the best line in this symtab.  */
2256       l = LINETABLE (s);
2257       if (!l)
2258 	continue;
2259       len = l->nitems;
2260       if (len <= 0)
2261 	{
2262 	  /* I think len can be zero if the symtab lacks line numbers
2263 	     (e.g. gcc -g1).  (Either that or the LINETABLE is NULL;
2264 	     I'm not sure which, and maybe it depends on the symbol
2265 	     reader).  */
2266 	  continue;
2267 	}
2268 
2269       prev = NULL;
2270       item = l->item;		/* Get first line info */
2271 
2272       /* Is this file's first line closer than the first lines of other files?
2273          If so, record this file, and its first line, as best alternate.  */
2274       if (item->pc > pc && (!alt || item->pc < alt->pc))
2275 	{
2276 	  alt = item;
2277 	  alt_symtab = s;
2278 	}
2279 
2280       for (i = 0; i < len; i++, item++)
2281 	{
2282 	  /* Leave prev pointing to the linetable entry for the last line
2283 	     that started at or before PC.  */
2284 	  if (item->pc > pc)
2285 	    break;
2286 
2287 	  prev = item;
2288 	}
2289 
2290       /* At this point, prev points at the line whose start addr is <= pc, and
2291          item points at the next line.  If we ran off the end of the linetable
2292          (pc >= start of the last line), then prev == item.  If pc < start of
2293          the first line, prev will not be set.  */
2294 
2295       /* Is this file's best line closer than the best in the other files?
2296          If so, record this file, and its best line, as best so far.  Don't
2297          save prev if it represents the end of a function (i.e. line number
2298          0) instead of a real line.  */
2299 
2300       if (prev && prev->line && (!best || prev->pc > best->pc))
2301 	{
2302 	  best = prev;
2303 	  best_symtab = s;
2304 
2305 	  /* Discard BEST_END if it's before the PC of the current BEST.  */
2306 	  if (best_end <= best->pc)
2307 	    best_end = 0;
2308 	}
2309 
2310       /* If another line (denoted by ITEM) is in the linetable and its
2311          PC is after BEST's PC, but before the current BEST_END, then
2312 	 use ITEM's PC as the new best_end.  */
2313       if (best && i < len && item->pc > best->pc
2314           && (best_end == 0 || best_end > item->pc))
2315 	best_end = item->pc;
2316     }
2317 
2318   if (!best_symtab)
2319     {
2320       /* If we didn't find any line number info, just return zeros.
2321 	 We used to return alt->line - 1 here, but that could be
2322 	 anywhere; if we don't have line number info for this PC,
2323 	 don't make some up.  */
2324       val.pc = pc;
2325     }
2326   else if (best->line == 0)
2327     {
2328       /* If our best fit is in a range of PC's for which no line
2329 	 number info is available (line number is zero) then we didn't
2330 	 find any valid line information. */
2331       val.pc = pc;
2332     }
2333   else
2334     {
2335       val.symtab = best_symtab;
2336       val.line = best->line;
2337       val.pc = best->pc;
2338       if (best_end && (!alt || best_end < alt->pc))
2339 	val.end = best_end;
2340       else if (alt)
2341 	val.end = alt->pc;
2342       else
2343 	val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2344     }
2345   val.section = section;
2346   return val;
2347 }
2348 
2349 /* Backward compatibility (no section) */
2350 
2351 struct symtab_and_line
2352 find_pc_line (CORE_ADDR pc, int notcurrent)
2353 {
2354   struct obj_section *section;
2355 
2356   section = find_pc_overlay (pc);
2357   if (pc_in_unmapped_range (pc, section))
2358     pc = overlay_mapped_address (pc, section);
2359   return find_pc_sect_line (pc, section, notcurrent);
2360 }
2361 
2362 /* Find line number LINE in any symtab whose name is the same as
2363    SYMTAB.
2364 
2365    If found, return the symtab that contains the linetable in which it was
2366    found, set *INDEX to the index in the linetable of the best entry
2367    found, and set *EXACT_MATCH nonzero if the value returned is an
2368    exact match.
2369 
2370    If not found, return NULL.  */
2371 
2372 struct symtab *
2373 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2374 {
2375   int exact = 0;  /* Initialized here to avoid a compiler warning.  */
2376 
2377   /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2378      so far seen.  */
2379 
2380   int best_index;
2381   struct linetable *best_linetable;
2382   struct symtab *best_symtab;
2383 
2384   /* First try looking it up in the given symtab.  */
2385   best_linetable = LINETABLE (symtab);
2386   best_symtab = symtab;
2387   best_index = find_line_common (best_linetable, line, &exact);
2388   if (best_index < 0 || !exact)
2389     {
2390       /* Didn't find an exact match.  So we better keep looking for
2391          another symtab with the same name.  In the case of xcoff,
2392          multiple csects for one source file (produced by IBM's FORTRAN
2393          compiler) produce multiple symtabs (this is unavoidable
2394          assuming csects can be at arbitrary places in memory and that
2395          the GLOBAL_BLOCK of a symtab has a begin and end address).  */
2396 
2397       /* BEST is the smallest linenumber > LINE so far seen,
2398          or 0 if none has been seen so far.
2399          BEST_INDEX and BEST_LINETABLE identify the item for it.  */
2400       int best;
2401 
2402       struct objfile *objfile;
2403       struct symtab *s;
2404       struct partial_symtab *p;
2405 
2406       if (best_index >= 0)
2407 	best = best_linetable->item[best_index].line;
2408       else
2409 	best = 0;
2410 
2411       ALL_PSYMTABS (objfile, p)
2412       {
2413         if (strcmp (symtab->filename, p->filename) != 0)
2414           continue;
2415         PSYMTAB_TO_SYMTAB (p);
2416       }
2417 
2418       ALL_SYMTABS (objfile, s)
2419       {
2420 	struct linetable *l;
2421 	int ind;
2422 
2423 	if (strcmp (symtab->filename, s->filename) != 0)
2424 	  continue;
2425 	l = LINETABLE (s);
2426 	ind = find_line_common (l, line, &exact);
2427 	if (ind >= 0)
2428 	  {
2429 	    if (exact)
2430 	      {
2431 		best_index = ind;
2432 		best_linetable = l;
2433 		best_symtab = s;
2434 		goto done;
2435 	      }
2436 	    if (best == 0 || l->item[ind].line < best)
2437 	      {
2438 		best = l->item[ind].line;
2439 		best_index = ind;
2440 		best_linetable = l;
2441 		best_symtab = s;
2442 	      }
2443 	  }
2444       }
2445     }
2446 done:
2447   if (best_index < 0)
2448     return NULL;
2449 
2450   if (index)
2451     *index = best_index;
2452   if (exact_match)
2453     *exact_match = exact;
2454 
2455   return best_symtab;
2456 }
2457 
2458 /* Set the PC value for a given source file and line number and return true.
2459    Returns zero for invalid line number (and sets the PC to 0).
2460    The source file is specified with a struct symtab.  */
2461 
2462 int
2463 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2464 {
2465   struct linetable *l;
2466   int ind;
2467 
2468   *pc = 0;
2469   if (symtab == 0)
2470     return 0;
2471 
2472   symtab = find_line_symtab (symtab, line, &ind, NULL);
2473   if (symtab != NULL)
2474     {
2475       l = LINETABLE (symtab);
2476       *pc = l->item[ind].pc;
2477       return 1;
2478     }
2479   else
2480     return 0;
2481 }
2482 
2483 /* Find the range of pc values in a line.
2484    Store the starting pc of the line into *STARTPTR
2485    and the ending pc (start of next line) into *ENDPTR.
2486    Returns 1 to indicate success.
2487    Returns 0 if could not find the specified line.  */
2488 
2489 int
2490 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2491 		    CORE_ADDR *endptr)
2492 {
2493   CORE_ADDR startaddr;
2494   struct symtab_and_line found_sal;
2495 
2496   startaddr = sal.pc;
2497   if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2498     return 0;
2499 
2500   /* This whole function is based on address.  For example, if line 10 has
2501      two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2502      "info line *0x123" should say the line goes from 0x100 to 0x200
2503      and "info line *0x355" should say the line goes from 0x300 to 0x400.
2504      This also insures that we never give a range like "starts at 0x134
2505      and ends at 0x12c".  */
2506 
2507   found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2508   if (found_sal.line != sal.line)
2509     {
2510       /* The specified line (sal) has zero bytes.  */
2511       *startptr = found_sal.pc;
2512       *endptr = found_sal.pc;
2513     }
2514   else
2515     {
2516       *startptr = found_sal.pc;
2517       *endptr = found_sal.end;
2518     }
2519   return 1;
2520 }
2521 
2522 /* Given a line table and a line number, return the index into the line
2523    table for the pc of the nearest line whose number is >= the specified one.
2524    Return -1 if none is found.  The value is >= 0 if it is an index.
2525 
2526    Set *EXACT_MATCH nonzero if the value returned is an exact match.  */
2527 
2528 static int
2529 find_line_common (struct linetable *l, int lineno,
2530 		  int *exact_match)
2531 {
2532   int i;
2533   int len;
2534 
2535   /* BEST is the smallest linenumber > LINENO so far seen,
2536      or 0 if none has been seen so far.
2537      BEST_INDEX identifies the item for it.  */
2538 
2539   int best_index = -1;
2540   int best = 0;
2541 
2542   *exact_match = 0;
2543 
2544   if (lineno <= 0)
2545     return -1;
2546   if (l == 0)
2547     return -1;
2548 
2549   len = l->nitems;
2550   for (i = 0; i < len; i++)
2551     {
2552       struct linetable_entry *item = &(l->item[i]);
2553 
2554       if (item->line == lineno)
2555 	{
2556 	  /* Return the first (lowest address) entry which matches.  */
2557 	  *exact_match = 1;
2558 	  return i;
2559 	}
2560 
2561       if (item->line > lineno && (best == 0 || item->line < best))
2562 	{
2563 	  best = item->line;
2564 	  best_index = i;
2565 	}
2566     }
2567 
2568   /* If we got here, we didn't get an exact match.  */
2569   return best_index;
2570 }
2571 
2572 int
2573 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2574 {
2575   struct symtab_and_line sal;
2576   sal = find_pc_line (pc, 0);
2577   *startptr = sal.pc;
2578   *endptr = sal.end;
2579   return sal.symtab != 0;
2580 }
2581 
2582 /* Given a function start address PC and SECTION, find the first
2583    address after the function prologue.  */
2584 CORE_ADDR
2585 find_function_start_pc (struct gdbarch *gdbarch,
2586 			CORE_ADDR pc, struct obj_section *section)
2587 {
2588   /* If the function is in an unmapped overlay, use its unmapped LMA address,
2589      so that gdbarch_skip_prologue has something unique to work on.  */
2590   if (section_is_overlay (section) && !section_is_mapped (section))
2591     pc = overlay_unmapped_address (pc, section);
2592 
2593   pc += gdbarch_deprecated_function_start_offset (gdbarch);
2594   pc = gdbarch_skip_prologue (gdbarch, pc);
2595 
2596   /* For overlays, map pc back into its mapped VMA range.  */
2597   pc = overlay_mapped_address (pc, section);
2598 
2599   return pc;
2600 }
2601 
2602 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2603    address for that function that has an entry in SYMTAB's line info
2604    table.  If such an entry cannot be found, return FUNC_ADDR
2605    unaltered.  */
2606 CORE_ADDR
2607 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2608 {
2609   CORE_ADDR func_start, func_end;
2610   struct linetable *l;
2611   int ind, i, len;
2612   int best_lineno = 0;
2613   CORE_ADDR best_pc = func_addr;
2614 
2615   /* Give up if this symbol has no lineinfo table.  */
2616   l = LINETABLE (symtab);
2617   if (l == NULL)
2618     return func_addr;
2619 
2620   /* Get the range for the function's PC values, or give up if we
2621      cannot, for some reason.  */
2622   if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2623     return func_addr;
2624 
2625   /* Linetable entries are ordered by PC values, see the commentary in
2626      symtab.h where `struct linetable' is defined.  Thus, the first
2627      entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2628      address we are looking for.  */
2629   for (i = 0; i < l->nitems; i++)
2630     {
2631       struct linetable_entry *item = &(l->item[i]);
2632 
2633       /* Don't use line numbers of zero, they mark special entries in
2634 	 the table.  See the commentary on symtab.h before the
2635 	 definition of struct linetable.  */
2636       if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2637 	return item->pc;
2638     }
2639 
2640   return func_addr;
2641 }
2642 
2643 /* Given a function symbol SYM, find the symtab and line for the start
2644    of the function.
2645    If the argument FUNFIRSTLINE is nonzero, we want the first line
2646    of real code inside the function.  */
2647 
2648 struct symtab_and_line
2649 find_function_start_sal (struct symbol *sym, int funfirstline)
2650 {
2651   struct block *block = SYMBOL_BLOCK_VALUE (sym);
2652   struct objfile *objfile = lookup_objfile_from_block (block);
2653   struct gdbarch *gdbarch = get_objfile_arch (objfile);
2654 
2655   CORE_ADDR pc;
2656   struct symtab_and_line sal;
2657   struct block *b, *function_block;
2658 
2659   pc = BLOCK_START (block);
2660   fixup_symbol_section (sym, objfile);
2661   if (funfirstline)
2662     {
2663       /* Skip "first line" of function (which is actually its prologue).  */
2664       pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2665     }
2666   sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2667 
2668   /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2669      line is still part of the same function.  */
2670   if (sal.pc != pc
2671       && BLOCK_START (block) <= sal.end
2672       && sal.end < BLOCK_END (block))
2673     {
2674       /* First pc of next line */
2675       pc = sal.end;
2676       /* Recalculate the line number (might not be N+1).  */
2677       sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2678     }
2679 
2680   /* On targets with executable formats that don't have a concept of
2681      constructors (ELF with .init has, PE doesn't), gcc emits a call
2682      to `__main' in `main' between the prologue and before user
2683      code.  */
2684   if (funfirstline
2685       && gdbarch_skip_main_prologue_p (gdbarch)
2686       && SYMBOL_LINKAGE_NAME (sym)
2687       && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2688     {
2689       pc = gdbarch_skip_main_prologue (gdbarch, pc);
2690       /* Recalculate the line number (might not be N+1).  */
2691       sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2692     }
2693 
2694   /* If we still don't have a valid source line, try to find the first
2695      PC in the lineinfo table that belongs to the same function.  This
2696      happens with COFF debug info, which does not seem to have an
2697      entry in lineinfo table for the code after the prologue which has
2698      no direct relation to source.  For example, this was found to be
2699      the case with the DJGPP target using "gcc -gcoff" when the
2700      compiler inserted code after the prologue to make sure the stack
2701      is aligned.  */
2702   if (funfirstline && sal.symtab == NULL)
2703     {
2704       pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2705       /* Recalculate the line number.  */
2706       sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2707     }
2708 
2709   sal.pc = pc;
2710 
2711   /* Check if we are now inside an inlined function.  If we can,
2712      use the call site of the function instead.  */
2713   b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2714   function_block = NULL;
2715   while (b != NULL)
2716     {
2717       if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2718 	function_block = b;
2719       else if (BLOCK_FUNCTION (b) != NULL)
2720 	break;
2721       b = BLOCK_SUPERBLOCK (b);
2722     }
2723   if (function_block != NULL
2724       && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2725     {
2726       sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2727       sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2728     }
2729 
2730   return sal;
2731 }
2732 
2733 /* If P is of the form "operator[ \t]+..." where `...' is
2734    some legitimate operator text, return a pointer to the
2735    beginning of the substring of the operator text.
2736    Otherwise, return "".  */
2737 char *
2738 operator_chars (char *p, char **end)
2739 {
2740   *end = "";
2741   if (strncmp (p, "operator", 8))
2742     return *end;
2743   p += 8;
2744 
2745   /* Don't get faked out by `operator' being part of a longer
2746      identifier.  */
2747   if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2748     return *end;
2749 
2750   /* Allow some whitespace between `operator' and the operator symbol.  */
2751   while (*p == ' ' || *p == '\t')
2752     p++;
2753 
2754   /* Recognize 'operator TYPENAME'. */
2755 
2756   if (isalpha (*p) || *p == '_' || *p == '$')
2757     {
2758       char *q = p + 1;
2759       while (isalnum (*q) || *q == '_' || *q == '$')
2760 	q++;
2761       *end = q;
2762       return p;
2763     }
2764 
2765   while (*p)
2766     switch (*p)
2767       {
2768       case '\\':			/* regexp quoting */
2769 	if (p[1] == '*')
2770 	  {
2771 	    if (p[2] == '=')	/* 'operator\*=' */
2772 	      *end = p + 3;
2773 	    else			/* 'operator\*'  */
2774 	      *end = p + 2;
2775 	    return p;
2776 	  }
2777 	else if (p[1] == '[')
2778 	  {
2779 	    if (p[2] == ']')
2780 	      error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2781 	    else if (p[2] == '\\' && p[3] == ']')
2782 	      {
2783 		*end = p + 4;	/* 'operator\[\]' */
2784 		return p;
2785 	      }
2786 	    else
2787 	      error (_("nothing is allowed between '[' and ']'"));
2788 	  }
2789 	else
2790 	  {
2791 	    /* Gratuitous qoute: skip it and move on. */
2792 	    p++;
2793 	    continue;
2794 	  }
2795 	break;
2796       case '!':
2797       case '=':
2798       case '*':
2799       case '/':
2800       case '%':
2801       case '^':
2802 	if (p[1] == '=')
2803 	  *end = p + 2;
2804 	else
2805 	  *end = p + 1;
2806 	return p;
2807       case '<':
2808       case '>':
2809       case '+':
2810       case '-':
2811       case '&':
2812       case '|':
2813 	if (p[0] == '-' && p[1] == '>')
2814 	  {
2815 	    /* Struct pointer member operator 'operator->'. */
2816 	    if (p[2] == '*')
2817 	      {
2818 		*end = p + 3;	/* 'operator->*' */
2819 		return p;
2820 	      }
2821 	    else if (p[2] == '\\')
2822 	      {
2823 		*end = p + 4;	/* Hopefully 'operator->\*' */
2824 		return p;
2825 	      }
2826 	    else
2827 	      {
2828 		*end = p + 2;	/* 'operator->' */
2829 		return p;
2830 	      }
2831 	  }
2832 	if (p[1] == '=' || p[1] == p[0])
2833 	  *end = p + 2;
2834 	else
2835 	  *end = p + 1;
2836 	return p;
2837       case '~':
2838       case ',':
2839 	*end = p + 1;
2840 	return p;
2841       case '(':
2842 	if (p[1] != ')')
2843 	  error (_("`operator ()' must be specified without whitespace in `()'"));
2844 	*end = p + 2;
2845 	return p;
2846       case '?':
2847 	if (p[1] != ':')
2848 	  error (_("`operator ?:' must be specified without whitespace in `?:'"));
2849 	*end = p + 2;
2850 	return p;
2851       case '[':
2852 	if (p[1] != ']')
2853 	  error (_("`operator []' must be specified without whitespace in `[]'"));
2854 	*end = p + 2;
2855 	return p;
2856       default:
2857 	error (_("`operator %s' not supported"), p);
2858 	break;
2859       }
2860 
2861   *end = "";
2862   return *end;
2863 }
2864 
2865 
2866 /* If FILE is not already in the table of files, return zero;
2867    otherwise return non-zero.  Optionally add FILE to the table if ADD
2868    is non-zero.  If *FIRST is non-zero, forget the old table
2869    contents.  */
2870 static int
2871 filename_seen (const char *file, int add, int *first)
2872 {
2873   /* Table of files seen so far.  */
2874   static const char **tab = NULL;
2875   /* Allocated size of tab in elements.
2876      Start with one 256-byte block (when using GNU malloc.c).
2877      24 is the malloc overhead when range checking is in effect.  */
2878   static int tab_alloc_size = (256 - 24) / sizeof (char *);
2879   /* Current size of tab in elements.  */
2880   static int tab_cur_size;
2881   const char **p;
2882 
2883   if (*first)
2884     {
2885       if (tab == NULL)
2886 	tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2887       tab_cur_size = 0;
2888     }
2889 
2890   /* Is FILE in tab?  */
2891   for (p = tab; p < tab + tab_cur_size; p++)
2892     if (strcmp (*p, file) == 0)
2893       return 1;
2894 
2895   /* No; maybe add it to tab.  */
2896   if (add)
2897     {
2898       if (tab_cur_size == tab_alloc_size)
2899 	{
2900 	  tab_alloc_size *= 2;
2901 	  tab = (const char **) xrealloc ((char *) tab,
2902 					  tab_alloc_size * sizeof (*tab));
2903 	}
2904       tab[tab_cur_size++] = file;
2905     }
2906 
2907   return 0;
2908 }
2909 
2910 /* Slave routine for sources_info.  Force line breaks at ,'s.
2911    NAME is the name to print and *FIRST is nonzero if this is the first
2912    name printed.  Set *FIRST to zero.  */
2913 static void
2914 output_source_filename (const char *name, int *first)
2915 {
2916   /* Since a single source file can result in several partial symbol
2917      tables, we need to avoid printing it more than once.  Note: if
2918      some of the psymtabs are read in and some are not, it gets
2919      printed both under "Source files for which symbols have been
2920      read" and "Source files for which symbols will be read in on
2921      demand".  I consider this a reasonable way to deal with the
2922      situation.  I'm not sure whether this can also happen for
2923      symtabs; it doesn't hurt to check.  */
2924 
2925   /* Was NAME already seen?  */
2926   if (filename_seen (name, 1, first))
2927     {
2928       /* Yes; don't print it again.  */
2929       return;
2930     }
2931   /* No; print it and reset *FIRST.  */
2932   if (*first)
2933     {
2934       *first = 0;
2935     }
2936   else
2937     {
2938       printf_filtered (", ");
2939     }
2940 
2941   wrap_here ("");
2942   fputs_filtered (name, gdb_stdout);
2943 }
2944 
2945 static void
2946 sources_info (char *ignore, int from_tty)
2947 {
2948   struct symtab *s;
2949   struct partial_symtab *ps;
2950   struct objfile *objfile;
2951   int first;
2952 
2953   if (!have_full_symbols () && !have_partial_symbols ())
2954     {
2955       error (_("No symbol table is loaded.  Use the \"file\" command."));
2956     }
2957 
2958   printf_filtered ("Source files for which symbols have been read in:\n\n");
2959 
2960   first = 1;
2961   ALL_SYMTABS (objfile, s)
2962   {
2963     const char *fullname = symtab_to_fullname (s);
2964     output_source_filename (fullname ? fullname : s->filename, &first);
2965   }
2966   printf_filtered ("\n\n");
2967 
2968   printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2969 
2970   first = 1;
2971   ALL_PSYMTABS (objfile, ps)
2972   {
2973     if (!ps->readin)
2974       {
2975 	const char *fullname = psymtab_to_fullname (ps);
2976 	output_source_filename (fullname ? fullname : ps->filename, &first);
2977       }
2978   }
2979   printf_filtered ("\n");
2980 }
2981 
2982 static int
2983 file_matches (char *file, char *files[], int nfiles)
2984 {
2985   int i;
2986 
2987   if (file != NULL && nfiles != 0)
2988     {
2989       for (i = 0; i < nfiles; i++)
2990 	{
2991 	  if (strcmp (files[i], lbasename (file)) == 0)
2992 	    return 1;
2993 	}
2994     }
2995   else if (nfiles == 0)
2996     return 1;
2997   return 0;
2998 }
2999 
3000 /* Free any memory associated with a search. */
3001 void
3002 free_search_symbols (struct symbol_search *symbols)
3003 {
3004   struct symbol_search *p;
3005   struct symbol_search *next;
3006 
3007   for (p = symbols; p != NULL; p = next)
3008     {
3009       next = p->next;
3010       xfree (p);
3011     }
3012 }
3013 
3014 static void
3015 do_free_search_symbols_cleanup (void *symbols)
3016 {
3017   free_search_symbols (symbols);
3018 }
3019 
3020 struct cleanup *
3021 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3022 {
3023   return make_cleanup (do_free_search_symbols_cleanup, symbols);
3024 }
3025 
3026 /* Helper function for sort_search_symbols and qsort.  Can only
3027    sort symbols, not minimal symbols.  */
3028 static int
3029 compare_search_syms (const void *sa, const void *sb)
3030 {
3031   struct symbol_search **sym_a = (struct symbol_search **) sa;
3032   struct symbol_search **sym_b = (struct symbol_search **) sb;
3033 
3034   return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3035 		 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3036 }
3037 
3038 /* Sort the ``nfound'' symbols in the list after prevtail.  Leave
3039    prevtail where it is, but update its next pointer to point to
3040    the first of the sorted symbols.  */
3041 static struct symbol_search *
3042 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3043 {
3044   struct symbol_search **symbols, *symp, *old_next;
3045   int i;
3046 
3047   symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3048 					       * nfound);
3049   symp = prevtail->next;
3050   for (i = 0; i < nfound; i++)
3051     {
3052       symbols[i] = symp;
3053       symp = symp->next;
3054     }
3055   /* Generally NULL.  */
3056   old_next = symp;
3057 
3058   qsort (symbols, nfound, sizeof (struct symbol_search *),
3059 	 compare_search_syms);
3060 
3061   symp = prevtail;
3062   for (i = 0; i < nfound; i++)
3063     {
3064       symp->next = symbols[i];
3065       symp = symp->next;
3066     }
3067   symp->next = old_next;
3068 
3069   xfree (symbols);
3070   return symp;
3071 }
3072 
3073 /* Search the symbol table for matches to the regular expression REGEXP,
3074    returning the results in *MATCHES.
3075 
3076    Only symbols of KIND are searched:
3077    FUNCTIONS_DOMAIN - search all functions
3078    TYPES_DOMAIN     - search all type names
3079    VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3080    and constants (enums)
3081 
3082    free_search_symbols should be called when *MATCHES is no longer needed.
3083 
3084    The results are sorted locally; each symtab's global and static blocks are
3085    separately alphabetized.
3086  */
3087 void
3088 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3089 		struct symbol_search **matches)
3090 {
3091   struct symtab *s;
3092   struct partial_symtab *ps;
3093   struct blockvector *bv;
3094   struct block *b;
3095   int i = 0;
3096   struct dict_iterator iter;
3097   struct symbol *sym;
3098   struct partial_symbol **psym;
3099   struct objfile *objfile;
3100   struct minimal_symbol *msymbol;
3101   char *val;
3102   int found_misc = 0;
3103   static enum minimal_symbol_type types[]
3104   =
3105   {mst_data, mst_text, mst_abs, mst_unknown};
3106   static enum minimal_symbol_type types2[]
3107   =
3108   {mst_bss, mst_file_text, mst_abs, mst_unknown};
3109   static enum minimal_symbol_type types3[]
3110   =
3111   {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3112   static enum minimal_symbol_type types4[]
3113   =
3114   {mst_file_bss, mst_text, mst_abs, mst_unknown};
3115   enum minimal_symbol_type ourtype;
3116   enum minimal_symbol_type ourtype2;
3117   enum minimal_symbol_type ourtype3;
3118   enum minimal_symbol_type ourtype4;
3119   struct symbol_search *sr;
3120   struct symbol_search *psr;
3121   struct symbol_search *tail;
3122   struct cleanup *old_chain = NULL;
3123 
3124   if (kind < VARIABLES_DOMAIN)
3125     error (_("must search on specific domain"));
3126 
3127   ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3128   ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3129   ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3130   ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3131 
3132   sr = *matches = NULL;
3133   tail = NULL;
3134 
3135   if (regexp != NULL)
3136     {
3137       /* Make sure spacing is right for C++ operators.
3138          This is just a courtesy to make the matching less sensitive
3139          to how many spaces the user leaves between 'operator'
3140          and <TYPENAME> or <OPERATOR>. */
3141       char *opend;
3142       char *opname = operator_chars (regexp, &opend);
3143       if (*opname)
3144 	{
3145 	  int fix = -1;		/* -1 means ok; otherwise number of spaces needed. */
3146 	  if (isalpha (*opname) || *opname == '_' || *opname == '$')
3147 	    {
3148 	      /* There should 1 space between 'operator' and 'TYPENAME'. */
3149 	      if (opname[-1] != ' ' || opname[-2] == ' ')
3150 		fix = 1;
3151 	    }
3152 	  else
3153 	    {
3154 	      /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3155 	      if (opname[-1] == ' ')
3156 		fix = 0;
3157 	    }
3158 	  /* If wrong number of spaces, fix it. */
3159 	  if (fix >= 0)
3160 	    {
3161 	      char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3162 	      sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3163 	      regexp = tmp;
3164 	    }
3165 	}
3166 
3167       if (0 != (val = re_comp (regexp)))
3168 	error (_("Invalid regexp (%s): %s"), val, regexp);
3169     }
3170 
3171   /* Search through the partial symtabs *first* for all symbols
3172      matching the regexp.  That way we don't have to reproduce all of
3173      the machinery below. */
3174 
3175   ALL_PSYMTABS (objfile, ps)
3176   {
3177     struct partial_symbol **bound, **gbound, **sbound;
3178     int keep_going = 1;
3179 
3180     if (ps->readin)
3181       continue;
3182 
3183     gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3184     sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3185     bound = gbound;
3186 
3187     /* Go through all of the symbols stored in a partial
3188        symtab in one loop. */
3189     psym = objfile->global_psymbols.list + ps->globals_offset;
3190     while (keep_going)
3191       {
3192 	if (psym >= bound)
3193 	  {
3194 	    if (bound == gbound && ps->n_static_syms != 0)
3195 	      {
3196 		psym = objfile->static_psymbols.list + ps->statics_offset;
3197 		bound = sbound;
3198 	      }
3199 	    else
3200 	      keep_going = 0;
3201 	    continue;
3202 	  }
3203 	else
3204 	  {
3205 	    QUIT;
3206 
3207 	    /* If it would match (logic taken from loop below)
3208 	       load the file and go on to the next one.  We check the
3209 	       filename here, but that's a bit bogus: we don't know
3210 	       what file it really comes from until we have full
3211 	       symtabs.  The symbol might be in a header file included by
3212 	       this psymtab.  This only affects Insight.  */
3213 	    if (file_matches (ps->filename, files, nfiles)
3214 		&& ((regexp == NULL
3215 		     || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3216 		    && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3217 			 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3218 			|| (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3219 			|| (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3220 	      {
3221 		PSYMTAB_TO_SYMTAB (ps);
3222 		keep_going = 0;
3223 	      }
3224 	  }
3225 	psym++;
3226       }
3227   }
3228 
3229   /* Here, we search through the minimal symbol tables for functions
3230      and variables that match, and force their symbols to be read.
3231      This is in particular necessary for demangled variable names,
3232      which are no longer put into the partial symbol tables.
3233      The symbol will then be found during the scan of symtabs below.
3234 
3235      For functions, find_pc_symtab should succeed if we have debug info
3236      for the function, for variables we have to call lookup_symbol
3237      to determine if the variable has debug info.
3238      If the lookup fails, set found_misc so that we will rescan to print
3239      any matching symbols without debug info.
3240    */
3241 
3242   if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3243     {
3244       ALL_MSYMBOLS (objfile, msymbol)
3245       {
3246         QUIT;
3247 
3248 	if (MSYMBOL_TYPE (msymbol) == ourtype ||
3249 	    MSYMBOL_TYPE (msymbol) == ourtype2 ||
3250 	    MSYMBOL_TYPE (msymbol) == ourtype3 ||
3251 	    MSYMBOL_TYPE (msymbol) == ourtype4)
3252 	  {
3253 	    if (regexp == NULL
3254 		|| re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3255 	      {
3256 		if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3257 		  {
3258 		    /* FIXME: carlton/2003-02-04: Given that the
3259 		       semantics of lookup_symbol keeps on changing
3260 		       slightly, it would be a nice idea if we had a
3261 		       function lookup_symbol_minsym that found the
3262 		       symbol associated to a given minimal symbol (if
3263 		       any).  */
3264 		    if (kind == FUNCTIONS_DOMAIN
3265 			|| lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3266 					  (struct block *) NULL,
3267 					  VAR_DOMAIN, 0)
3268 			== NULL)
3269 		      found_misc = 1;
3270 		  }
3271 	      }
3272 	  }
3273       }
3274     }
3275 
3276   ALL_PRIMARY_SYMTABS (objfile, s)
3277   {
3278     bv = BLOCKVECTOR (s);
3279       for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3280 	{
3281 	  struct symbol_search *prevtail = tail;
3282 	  int nfound = 0;
3283 	  b = BLOCKVECTOR_BLOCK (bv, i);
3284 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
3285 	    {
3286 	      struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3287 	      QUIT;
3288 
3289 	      if (file_matches (real_symtab->filename, files, nfiles)
3290 		  && ((regexp == NULL
3291 		       || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3292 		      && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3293 			   && SYMBOL_CLASS (sym) != LOC_BLOCK
3294 			   && SYMBOL_CLASS (sym) != LOC_CONST)
3295 			  || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3296 			  || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3297 		{
3298 		  /* match */
3299 		  psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3300 		  psr->block = i;
3301 		  psr->symtab = real_symtab;
3302 		  psr->symbol = sym;
3303 		  psr->msymbol = NULL;
3304 		  psr->next = NULL;
3305 		  if (tail == NULL)
3306 		    sr = psr;
3307 		  else
3308 		    tail->next = psr;
3309 		  tail = psr;
3310 		  nfound ++;
3311 		}
3312 	    }
3313 	  if (nfound > 0)
3314 	    {
3315 	      if (prevtail == NULL)
3316 		{
3317 		  struct symbol_search dummy;
3318 
3319 		  dummy.next = sr;
3320 		  tail = sort_search_symbols (&dummy, nfound);
3321 		  sr = dummy.next;
3322 
3323 		  old_chain = make_cleanup_free_search_symbols (sr);
3324 		}
3325 	      else
3326 		tail = sort_search_symbols (prevtail, nfound);
3327 	    }
3328 	}
3329   }
3330 
3331   /* If there are no eyes, avoid all contact.  I mean, if there are
3332      no debug symbols, then print directly from the msymbol_vector.  */
3333 
3334   if (found_misc || kind != FUNCTIONS_DOMAIN)
3335     {
3336       ALL_MSYMBOLS (objfile, msymbol)
3337       {
3338         QUIT;
3339 
3340 	if (MSYMBOL_TYPE (msymbol) == ourtype ||
3341 	    MSYMBOL_TYPE (msymbol) == ourtype2 ||
3342 	    MSYMBOL_TYPE (msymbol) == ourtype3 ||
3343 	    MSYMBOL_TYPE (msymbol) == ourtype4)
3344 	  {
3345 	    if (regexp == NULL
3346 		|| re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3347 	      {
3348 		/* Functions:  Look up by address. */
3349 		if (kind != FUNCTIONS_DOMAIN ||
3350 		    (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3351 		  {
3352 		    /* Variables/Absolutes:  Look up by name */
3353 		    if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3354 				       (struct block *) NULL, VAR_DOMAIN, 0)
3355 			 == NULL)
3356 		      {
3357 			/* match */
3358 			psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3359 			psr->block = i;
3360 			psr->msymbol = msymbol;
3361 			psr->symtab = NULL;
3362 			psr->symbol = NULL;
3363 			psr->next = NULL;
3364 			if (tail == NULL)
3365 			  {
3366 			    sr = psr;
3367 			    old_chain = make_cleanup_free_search_symbols (sr);
3368 			  }
3369 			else
3370 			  tail->next = psr;
3371 			tail = psr;
3372 		      }
3373 		  }
3374 	      }
3375 	  }
3376       }
3377     }
3378 
3379   *matches = sr;
3380   if (sr != NULL)
3381     discard_cleanups (old_chain);
3382 }
3383 
3384 /* Helper function for symtab_symbol_info, this function uses
3385    the data returned from search_symbols() to print information
3386    regarding the match to gdb_stdout.
3387  */
3388 static void
3389 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3390 		   int block, char *last)
3391 {
3392   if (last == NULL || strcmp (last, s->filename) != 0)
3393     {
3394       fputs_filtered ("\nFile ", gdb_stdout);
3395       fputs_filtered (s->filename, gdb_stdout);
3396       fputs_filtered (":\n", gdb_stdout);
3397     }
3398 
3399   if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3400     printf_filtered ("static ");
3401 
3402   /* Typedef that is not a C++ class */
3403   if (kind == TYPES_DOMAIN
3404       && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3405     typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3406   /* variable, func, or typedef-that-is-c++-class */
3407   else if (kind < TYPES_DOMAIN ||
3408 	   (kind == TYPES_DOMAIN &&
3409 	    SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3410     {
3411       type_print (SYMBOL_TYPE (sym),
3412 		  (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3413 		   ? "" : SYMBOL_PRINT_NAME (sym)),
3414 		  gdb_stdout, 0);
3415 
3416       printf_filtered (";\n");
3417     }
3418 }
3419 
3420 /* This help function for symtab_symbol_info() prints information
3421    for non-debugging symbols to gdb_stdout.
3422  */
3423 static void
3424 print_msymbol_info (struct minimal_symbol *msymbol)
3425 {
3426   struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3427   char *tmp;
3428 
3429   if (gdbarch_addr_bit (gdbarch) <= 32)
3430     tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3431 			     & (CORE_ADDR) 0xffffffff,
3432 			     8);
3433   else
3434     tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3435 			     16);
3436   printf_filtered ("%s  %s\n",
3437 		   tmp, SYMBOL_PRINT_NAME (msymbol));
3438 }
3439 
3440 /* This is the guts of the commands "info functions", "info types", and
3441    "info variables". It calls search_symbols to find all matches and then
3442    print_[m]symbol_info to print out some useful information about the
3443    matches.
3444  */
3445 static void
3446 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3447 {
3448   static char *classnames[]
3449   =
3450   {"variable", "function", "type", "method"};
3451   struct symbol_search *symbols;
3452   struct symbol_search *p;
3453   struct cleanup *old_chain;
3454   char *last_filename = NULL;
3455   int first = 1;
3456 
3457   /* must make sure that if we're interrupted, symbols gets freed */
3458   search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3459   old_chain = make_cleanup_free_search_symbols (symbols);
3460 
3461   printf_filtered (regexp
3462 		   ? "All %ss matching regular expression \"%s\":\n"
3463 		   : "All defined %ss:\n",
3464 		   classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3465 
3466   for (p = symbols; p != NULL; p = p->next)
3467     {
3468       QUIT;
3469 
3470       if (p->msymbol != NULL)
3471 	{
3472 	  if (first)
3473 	    {
3474 	      printf_filtered ("\nNon-debugging symbols:\n");
3475 	      first = 0;
3476 	    }
3477 	  print_msymbol_info (p->msymbol);
3478 	}
3479       else
3480 	{
3481 	  print_symbol_info (kind,
3482 			     p->symtab,
3483 			     p->symbol,
3484 			     p->block,
3485 			     last_filename);
3486 	  last_filename = p->symtab->filename;
3487 	}
3488     }
3489 
3490   do_cleanups (old_chain);
3491 }
3492 
3493 static void
3494 variables_info (char *regexp, int from_tty)
3495 {
3496   symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3497 }
3498 
3499 static void
3500 functions_info (char *regexp, int from_tty)
3501 {
3502   symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3503 }
3504 
3505 
3506 static void
3507 types_info (char *regexp, int from_tty)
3508 {
3509   symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3510 }
3511 
3512 /* Breakpoint all functions matching regular expression. */
3513 
3514 void
3515 rbreak_command_wrapper (char *regexp, int from_tty)
3516 {
3517   rbreak_command (regexp, from_tty);
3518 }
3519 
3520 static void
3521 rbreak_command (char *regexp, int from_tty)
3522 {
3523   struct symbol_search *ss;
3524   struct symbol_search *p;
3525   struct cleanup *old_chain;
3526 
3527   search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3528   old_chain = make_cleanup_free_search_symbols (ss);
3529 
3530   for (p = ss; p != NULL; p = p->next)
3531     {
3532       if (p->msymbol == NULL)
3533 	{
3534 	  char *string = alloca (strlen (p->symtab->filename)
3535 				 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3536 				 + 4);
3537 	  strcpy (string, p->symtab->filename);
3538 	  strcat (string, ":'");
3539 	  strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3540 	  strcat (string, "'");
3541 	  break_command (string, from_tty);
3542 	  print_symbol_info (FUNCTIONS_DOMAIN,
3543 			     p->symtab,
3544 			     p->symbol,
3545 			     p->block,
3546 			     p->symtab->filename);
3547 	}
3548       else
3549 	{
3550 	  char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3551 				 + 3);
3552 	  strcpy (string, "'");
3553 	  strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3554 	  strcat (string, "'");
3555 
3556 	  break_command (string, from_tty);
3557 	  printf_filtered ("<function, no debug info> %s;\n",
3558 			   SYMBOL_PRINT_NAME (p->msymbol));
3559 	}
3560     }
3561 
3562   do_cleanups (old_chain);
3563 }
3564 
3565 
3566 /* Helper routine for make_symbol_completion_list.  */
3567 
3568 static int return_val_size;
3569 static int return_val_index;
3570 static char **return_val;
3571 
3572 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3573       completion_list_add_name \
3574 	(SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3575 
3576 /*  Test to see if the symbol specified by SYMNAME (which is already
3577    demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3578    characters.  If so, add it to the current completion list. */
3579 
3580 static void
3581 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3582 			  char *text, char *word)
3583 {
3584   int newsize;
3585   int i;
3586 
3587   /* clip symbols that cannot match */
3588 
3589   if (strncmp (symname, sym_text, sym_text_len) != 0)
3590     {
3591       return;
3592     }
3593 
3594   /* We have a match for a completion, so add SYMNAME to the current list
3595      of matches. Note that the name is moved to freshly malloc'd space. */
3596 
3597   {
3598     char *new;
3599     if (word == sym_text)
3600       {
3601 	new = xmalloc (strlen (symname) + 5);
3602 	strcpy (new, symname);
3603       }
3604     else if (word > sym_text)
3605       {
3606 	/* Return some portion of symname.  */
3607 	new = xmalloc (strlen (symname) + 5);
3608 	strcpy (new, symname + (word - sym_text));
3609       }
3610     else
3611       {
3612 	/* Return some of SYM_TEXT plus symname.  */
3613 	new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3614 	strncpy (new, word, sym_text - word);
3615 	new[sym_text - word] = '\0';
3616 	strcat (new, symname);
3617       }
3618 
3619     if (return_val_index + 3 > return_val_size)
3620       {
3621 	newsize = (return_val_size *= 2) * sizeof (char *);
3622 	return_val = (char **) xrealloc ((char *) return_val, newsize);
3623       }
3624     return_val[return_val_index++] = new;
3625     return_val[return_val_index] = NULL;
3626   }
3627 }
3628 
3629 /* ObjC: In case we are completing on a selector, look as the msymbol
3630    again and feed all the selectors into the mill.  */
3631 
3632 static void
3633 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3634 			     int sym_text_len, char *text, char *word)
3635 {
3636   static char *tmp = NULL;
3637   static unsigned int tmplen = 0;
3638 
3639   char *method, *category, *selector;
3640   char *tmp2 = NULL;
3641 
3642   method = SYMBOL_NATURAL_NAME (msymbol);
3643 
3644   /* Is it a method?  */
3645   if ((method[0] != '-') && (method[0] != '+'))
3646     return;
3647 
3648   if (sym_text[0] == '[')
3649     /* Complete on shortened method method.  */
3650     completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3651 
3652   while ((strlen (method) + 1) >= tmplen)
3653     {
3654       if (tmplen == 0)
3655 	tmplen = 1024;
3656       else
3657 	tmplen *= 2;
3658       tmp = xrealloc (tmp, tmplen);
3659     }
3660   selector = strchr (method, ' ');
3661   if (selector != NULL)
3662     selector++;
3663 
3664   category = strchr (method, '(');
3665 
3666   if ((category != NULL) && (selector != NULL))
3667     {
3668       memcpy (tmp, method, (category - method));
3669       tmp[category - method] = ' ';
3670       memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3671       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3672       if (sym_text[0] == '[')
3673 	completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3674     }
3675 
3676   if (selector != NULL)
3677     {
3678       /* Complete on selector only.  */
3679       strcpy (tmp, selector);
3680       tmp2 = strchr (tmp, ']');
3681       if (tmp2 != NULL)
3682 	*tmp2 = '\0';
3683 
3684       completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3685     }
3686 }
3687 
3688 /* Break the non-quoted text based on the characters which are in
3689    symbols. FIXME: This should probably be language-specific. */
3690 
3691 static char *
3692 language_search_unquoted_string (char *text, char *p)
3693 {
3694   for (; p > text; --p)
3695     {
3696       if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3697 	continue;
3698       else
3699 	{
3700 	  if ((current_language->la_language == language_objc))
3701 	    {
3702 	      if (p[-1] == ':')     /* might be part of a method name */
3703 		continue;
3704 	      else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3705 		p -= 2;             /* beginning of a method name */
3706 	      else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3707 		{                   /* might be part of a method name */
3708 		  char *t = p;
3709 
3710 		  /* Seeing a ' ' or a '(' is not conclusive evidence
3711 		     that we are in the middle of a method name.  However,
3712 		     finding "-[" or "+[" should be pretty un-ambiguous.
3713 		     Unfortunately we have to find it now to decide.  */
3714 
3715 		  while (t > text)
3716 		    if (isalnum (t[-1]) || t[-1] == '_' ||
3717 			t[-1] == ' '    || t[-1] == ':' ||
3718 			t[-1] == '('    || t[-1] == ')')
3719 		      --t;
3720 		    else
3721 		      break;
3722 
3723 		  if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3724 		    p = t - 2;      /* method name detected */
3725 		  /* else we leave with p unchanged */
3726 		}
3727 	    }
3728 	  break;
3729 	}
3730     }
3731   return p;
3732 }
3733 
3734 static void
3735 completion_list_add_fields (struct symbol *sym, char *sym_text,
3736 			    int sym_text_len, char *text, char *word)
3737 {
3738   if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3739     {
3740       struct type *t = SYMBOL_TYPE (sym);
3741       enum type_code c = TYPE_CODE (t);
3742       int j;
3743 
3744       if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3745 	for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3746 	  if (TYPE_FIELD_NAME (t, j))
3747 	    completion_list_add_name (TYPE_FIELD_NAME (t, j),
3748 				      sym_text, sym_text_len, text, word);
3749     }
3750 }
3751 
3752 /* Type of the user_data argument passed to add_macro_name.  The
3753    contents are simply whatever is needed by
3754    completion_list_add_name.  */
3755 struct add_macro_name_data
3756 {
3757   char *sym_text;
3758   int sym_text_len;
3759   char *text;
3760   char *word;
3761 };
3762 
3763 /* A callback used with macro_for_each and macro_for_each_in_scope.
3764    This adds a macro's name to the current completion list.  */
3765 static void
3766 add_macro_name (const char *name, const struct macro_definition *ignore,
3767 		void *user_data)
3768 {
3769   struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3770   completion_list_add_name ((char *) name,
3771 			    datum->sym_text, datum->sym_text_len,
3772 			    datum->text, datum->word);
3773 }
3774 
3775 char **
3776 default_make_symbol_completion_list (char *text, char *word)
3777 {
3778   /* Problem: All of the symbols have to be copied because readline
3779      frees them.  I'm not going to worry about this; hopefully there
3780      won't be that many.  */
3781 
3782   struct symbol *sym;
3783   struct symtab *s;
3784   struct partial_symtab *ps;
3785   struct minimal_symbol *msymbol;
3786   struct objfile *objfile;
3787   struct block *b;
3788   const struct block *surrounding_static_block, *surrounding_global_block;
3789   struct dict_iterator iter;
3790   struct partial_symbol **psym;
3791   /* The symbol we are completing on.  Points in same buffer as text.  */
3792   char *sym_text;
3793   /* Length of sym_text.  */
3794   int sym_text_len;
3795 
3796   /* Now look for the symbol we are supposed to complete on.  */
3797   {
3798     char *p;
3799     char quote_found;
3800     char *quote_pos = NULL;
3801 
3802     /* First see if this is a quoted string.  */
3803     quote_found = '\0';
3804     for (p = text; *p != '\0'; ++p)
3805       {
3806 	if (quote_found != '\0')
3807 	  {
3808 	    if (*p == quote_found)
3809 	      /* Found close quote.  */
3810 	      quote_found = '\0';
3811 	    else if (*p == '\\' && p[1] == quote_found)
3812 	      /* A backslash followed by the quote character
3813 	         doesn't end the string.  */
3814 	      ++p;
3815 	  }
3816 	else if (*p == '\'' || *p == '"')
3817 	  {
3818 	    quote_found = *p;
3819 	    quote_pos = p;
3820 	  }
3821       }
3822     if (quote_found == '\'')
3823       /* A string within single quotes can be a symbol, so complete on it.  */
3824       sym_text = quote_pos + 1;
3825     else if (quote_found == '"')
3826       /* A double-quoted string is never a symbol, nor does it make sense
3827          to complete it any other way.  */
3828       {
3829 	return_val = (char **) xmalloc (sizeof (char *));
3830 	return_val[0] = NULL;
3831 	return return_val;
3832       }
3833     else
3834       {
3835 	/* It is not a quoted string.  Break it based on the characters
3836 	   which are in symbols.  */
3837 	while (p > text)
3838 	  {
3839 	    if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3840 		|| p[-1] == ':')
3841 	      --p;
3842 	    else
3843 	      break;
3844 	  }
3845 	sym_text = p;
3846       }
3847   }
3848 
3849   sym_text_len = strlen (sym_text);
3850 
3851   return_val_size = 100;
3852   return_val_index = 0;
3853   return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3854   return_val[0] = NULL;
3855 
3856   /* Look through the partial symtabs for all symbols which begin
3857      by matching SYM_TEXT.  Add each one that you find to the list.  */
3858 
3859   ALL_PSYMTABS (objfile, ps)
3860   {
3861     /* If the psymtab's been read in we'll get it when we search
3862        through the blockvector.  */
3863     if (ps->readin)
3864       continue;
3865 
3866     for (psym = objfile->global_psymbols.list + ps->globals_offset;
3867 	 psym < (objfile->global_psymbols.list + ps->globals_offset
3868 		 + ps->n_global_syms);
3869 	 psym++)
3870       {
3871 	/* If interrupted, then quit. */
3872 	QUIT;
3873 	COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3874       }
3875 
3876     for (psym = objfile->static_psymbols.list + ps->statics_offset;
3877 	 psym < (objfile->static_psymbols.list + ps->statics_offset
3878 		 + ps->n_static_syms);
3879 	 psym++)
3880       {
3881 	QUIT;
3882 	COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3883       }
3884   }
3885 
3886   /* At this point scan through the misc symbol vectors and add each
3887      symbol you find to the list.  Eventually we want to ignore
3888      anything that isn't a text symbol (everything else will be
3889      handled by the psymtab code above).  */
3890 
3891   ALL_MSYMBOLS (objfile, msymbol)
3892   {
3893     QUIT;
3894     COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3895 
3896     completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3897   }
3898 
3899   /* Search upwards from currently selected frame (so that we can
3900      complete on local vars).  Also catch fields of types defined in
3901      this places which match our text string.  Only complete on types
3902      visible from current context. */
3903 
3904   b = get_selected_block (0);
3905   surrounding_static_block = block_static_block (b);
3906   surrounding_global_block = block_global_block (b);
3907   if (surrounding_static_block != NULL)
3908     while (b != surrounding_static_block)
3909       {
3910 	QUIT;
3911 
3912 	ALL_BLOCK_SYMBOLS (b, iter, sym)
3913 	  {
3914 	    COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3915 					word);
3916 	    completion_list_add_fields (sym, sym_text, sym_text_len, text,
3917 					word);
3918 	  }
3919 
3920 	/* Stop when we encounter an enclosing function.  Do not stop for
3921 	   non-inlined functions - the locals of the enclosing function
3922 	   are in scope for a nested function.  */
3923 	if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3924 	  break;
3925 	b = BLOCK_SUPERBLOCK (b);
3926       }
3927 
3928   /* Add fields from the file's types; symbols will be added below.  */
3929 
3930   if (surrounding_static_block != NULL)
3931     ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3932       completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3933 
3934   if (surrounding_global_block != NULL)
3935       ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3936 	completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3937 
3938   /* Go through the symtabs and check the externs and statics for
3939      symbols which match.  */
3940 
3941   ALL_PRIMARY_SYMTABS (objfile, s)
3942   {
3943     QUIT;
3944     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3945     ALL_BLOCK_SYMBOLS (b, iter, sym)
3946       {
3947 	COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3948       }
3949   }
3950 
3951   ALL_PRIMARY_SYMTABS (objfile, s)
3952   {
3953     QUIT;
3954     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3955     ALL_BLOCK_SYMBOLS (b, iter, sym)
3956       {
3957 	COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3958       }
3959   }
3960 
3961   if (current_language->la_macro_expansion == macro_expansion_c)
3962     {
3963       struct macro_scope *scope;
3964       struct add_macro_name_data datum;
3965 
3966       datum.sym_text = sym_text;
3967       datum.sym_text_len = sym_text_len;
3968       datum.text = text;
3969       datum.word = word;
3970 
3971       /* Add any macros visible in the default scope.  Note that this
3972 	 may yield the occasional wrong result, because an expression
3973 	 might be evaluated in a scope other than the default.  For
3974 	 example, if the user types "break file:line if <TAB>", the
3975 	 resulting expression will be evaluated at "file:line" -- but
3976 	 at there does not seem to be a way to detect this at
3977 	 completion time.  */
3978       scope = default_macro_scope ();
3979       if (scope)
3980 	{
3981 	  macro_for_each_in_scope (scope->file, scope->line,
3982 				   add_macro_name, &datum);
3983 	  xfree (scope);
3984 	}
3985 
3986       /* User-defined macros are always visible.  */
3987       macro_for_each (macro_user_macros, add_macro_name, &datum);
3988     }
3989 
3990   return (return_val);
3991 }
3992 
3993 /* Return a NULL terminated array of all symbols (regardless of class)
3994    which begin by matching TEXT.  If the answer is no symbols, then
3995    the return value is an array which contains only a NULL pointer.  */
3996 
3997 char **
3998 make_symbol_completion_list (char *text, char *word)
3999 {
4000   return current_language->la_make_symbol_completion_list (text, word);
4001 }
4002 
4003 /* Like make_symbol_completion_list, but suitable for use as a
4004    completion function.  */
4005 
4006 char **
4007 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4008 				char *text, char *word)
4009 {
4010   return make_symbol_completion_list (text, word);
4011 }
4012 
4013 /* Like make_symbol_completion_list, but returns a list of symbols
4014    defined in a source file FILE.  */
4015 
4016 char **
4017 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4018 {
4019   struct symbol *sym;
4020   struct symtab *s;
4021   struct block *b;
4022   struct dict_iterator iter;
4023   /* The symbol we are completing on.  Points in same buffer as text.  */
4024   char *sym_text;
4025   /* Length of sym_text.  */
4026   int sym_text_len;
4027 
4028   /* Now look for the symbol we are supposed to complete on.
4029      FIXME: This should be language-specific.  */
4030   {
4031     char *p;
4032     char quote_found;
4033     char *quote_pos = NULL;
4034 
4035     /* First see if this is a quoted string.  */
4036     quote_found = '\0';
4037     for (p = text; *p != '\0'; ++p)
4038       {
4039 	if (quote_found != '\0')
4040 	  {
4041 	    if (*p == quote_found)
4042 	      /* Found close quote.  */
4043 	      quote_found = '\0';
4044 	    else if (*p == '\\' && p[1] == quote_found)
4045 	      /* A backslash followed by the quote character
4046 	         doesn't end the string.  */
4047 	      ++p;
4048 	  }
4049 	else if (*p == '\'' || *p == '"')
4050 	  {
4051 	    quote_found = *p;
4052 	    quote_pos = p;
4053 	  }
4054       }
4055     if (quote_found == '\'')
4056       /* A string within single quotes can be a symbol, so complete on it.  */
4057       sym_text = quote_pos + 1;
4058     else if (quote_found == '"')
4059       /* A double-quoted string is never a symbol, nor does it make sense
4060          to complete it any other way.  */
4061       {
4062 	return_val = (char **) xmalloc (sizeof (char *));
4063 	return_val[0] = NULL;
4064 	return return_val;
4065       }
4066     else
4067       {
4068 	/* Not a quoted string.  */
4069 	sym_text = language_search_unquoted_string (text, p);
4070       }
4071   }
4072 
4073   sym_text_len = strlen (sym_text);
4074 
4075   return_val_size = 10;
4076   return_val_index = 0;
4077   return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4078   return_val[0] = NULL;
4079 
4080   /* Find the symtab for SRCFILE (this loads it if it was not yet read
4081      in).  */
4082   s = lookup_symtab (srcfile);
4083   if (s == NULL)
4084     {
4085       /* Maybe they typed the file with leading directories, while the
4086 	 symbol tables record only its basename.  */
4087       const char *tail = lbasename (srcfile);
4088 
4089       if (tail > srcfile)
4090 	s = lookup_symtab (tail);
4091     }
4092 
4093   /* If we have no symtab for that file, return an empty list.  */
4094   if (s == NULL)
4095     return (return_val);
4096 
4097   /* Go through this symtab and check the externs and statics for
4098      symbols which match.  */
4099 
4100   b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4101   ALL_BLOCK_SYMBOLS (b, iter, sym)
4102     {
4103       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4104     }
4105 
4106   b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4107   ALL_BLOCK_SYMBOLS (b, iter, sym)
4108     {
4109       COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4110     }
4111 
4112   return (return_val);
4113 }
4114 
4115 /* A helper function for make_source_files_completion_list.  It adds
4116    another file name to a list of possible completions, growing the
4117    list as necessary.  */
4118 
4119 static void
4120 add_filename_to_list (const char *fname, char *text, char *word,
4121 		      char ***list, int *list_used, int *list_alloced)
4122 {
4123   char *new;
4124   size_t fnlen = strlen (fname);
4125 
4126   if (*list_used + 1 >= *list_alloced)
4127     {
4128       *list_alloced *= 2;
4129       *list = (char **) xrealloc ((char *) *list,
4130 				  *list_alloced * sizeof (char *));
4131     }
4132 
4133   if (word == text)
4134     {
4135       /* Return exactly fname.  */
4136       new = xmalloc (fnlen + 5);
4137       strcpy (new, fname);
4138     }
4139   else if (word > text)
4140     {
4141       /* Return some portion of fname.  */
4142       new = xmalloc (fnlen + 5);
4143       strcpy (new, fname + (word - text));
4144     }
4145   else
4146     {
4147       /* Return some of TEXT plus fname.  */
4148       new = xmalloc (fnlen + (text - word) + 5);
4149       strncpy (new, word, text - word);
4150       new[text - word] = '\0';
4151       strcat (new, fname);
4152     }
4153   (*list)[*list_used] = new;
4154   (*list)[++*list_used] = NULL;
4155 }
4156 
4157 static int
4158 not_interesting_fname (const char *fname)
4159 {
4160   static const char *illegal_aliens[] = {
4161     "_globals_",	/* inserted by coff_symtab_read */
4162     NULL
4163   };
4164   int i;
4165 
4166   for (i = 0; illegal_aliens[i]; i++)
4167     {
4168       if (strcmp (fname, illegal_aliens[i]) == 0)
4169 	return 1;
4170     }
4171   return 0;
4172 }
4173 
4174 /* Return a NULL terminated array of all source files whose names
4175    begin with matching TEXT.  The file names are looked up in the
4176    symbol tables of this program.  If the answer is no matchess, then
4177    the return value is an array which contains only a NULL pointer.  */
4178 
4179 char **
4180 make_source_files_completion_list (char *text, char *word)
4181 {
4182   struct symtab *s;
4183   struct partial_symtab *ps;
4184   struct objfile *objfile;
4185   int first = 1;
4186   int list_alloced = 1;
4187   int list_used = 0;
4188   size_t text_len = strlen (text);
4189   char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4190   const char *base_name;
4191 
4192   list[0] = NULL;
4193 
4194   if (!have_full_symbols () && !have_partial_symbols ())
4195     return list;
4196 
4197   ALL_SYMTABS (objfile, s)
4198     {
4199       if (not_interesting_fname (s->filename))
4200 	continue;
4201       if (!filename_seen (s->filename, 1, &first)
4202 #if HAVE_DOS_BASED_FILE_SYSTEM
4203 	  && strncasecmp (s->filename, text, text_len) == 0
4204 #else
4205 	  && strncmp (s->filename, text, text_len) == 0
4206 #endif
4207 	  )
4208 	{
4209 	  /* This file matches for a completion; add it to the current
4210 	     list of matches.  */
4211 	  add_filename_to_list (s->filename, text, word,
4212 				&list, &list_used, &list_alloced);
4213 	}
4214       else
4215 	{
4216 	  /* NOTE: We allow the user to type a base name when the
4217 	     debug info records leading directories, but not the other
4218 	     way around.  This is what subroutines of breakpoint
4219 	     command do when they parse file names.  */
4220 	  base_name = lbasename (s->filename);
4221 	  if (base_name != s->filename
4222 	      && !filename_seen (base_name, 1, &first)
4223 #if HAVE_DOS_BASED_FILE_SYSTEM
4224 	      && strncasecmp (base_name, text, text_len) == 0
4225 #else
4226 	      && strncmp (base_name, text, text_len) == 0
4227 #endif
4228 	      )
4229 	    add_filename_to_list (base_name, text, word,
4230 				  &list, &list_used, &list_alloced);
4231 	}
4232     }
4233 
4234   ALL_PSYMTABS (objfile, ps)
4235     {
4236       if (not_interesting_fname (ps->filename))
4237 	continue;
4238       if (!ps->readin)
4239 	{
4240 	  if (!filename_seen (ps->filename, 1, &first)
4241 #if HAVE_DOS_BASED_FILE_SYSTEM
4242 	      && strncasecmp (ps->filename, text, text_len) == 0
4243 #else
4244 	      && strncmp (ps->filename, text, text_len) == 0
4245 #endif
4246 	      )
4247 	    {
4248 	      /* This file matches for a completion; add it to the
4249 		 current list of matches.  */
4250 	      add_filename_to_list (ps->filename, text, word,
4251 				    &list, &list_used, &list_alloced);
4252 
4253 	    }
4254 	  else
4255 	    {
4256 	      base_name = lbasename (ps->filename);
4257 	      if (base_name != ps->filename
4258 		  && !filename_seen (base_name, 1, &first)
4259 #if HAVE_DOS_BASED_FILE_SYSTEM
4260 		  && strncasecmp (base_name, text, text_len) == 0
4261 #else
4262 		  && strncmp (base_name, text, text_len) == 0
4263 #endif
4264 		  )
4265 		add_filename_to_list (base_name, text, word,
4266 				      &list, &list_used, &list_alloced);
4267 	    }
4268 	}
4269     }
4270 
4271   return list;
4272 }
4273 
4274 /* Determine if PC is in the prologue of a function.  The prologue is the area
4275    between the first instruction of a function, and the first executable line.
4276    Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4277 
4278    If non-zero, func_start is where we think the prologue starts, possibly
4279    by previous examination of symbol table information.
4280  */
4281 
4282 int
4283 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4284 {
4285   struct symtab_and_line sal;
4286   CORE_ADDR func_addr, func_end;
4287 
4288   /* We have several sources of information we can consult to figure
4289      this out.
4290      - Compilers usually emit line number info that marks the prologue
4291        as its own "source line".  So the ending address of that "line"
4292        is the end of the prologue.  If available, this is the most
4293        reliable method.
4294      - The minimal symbols and partial symbols, which can usually tell
4295        us the starting and ending addresses of a function.
4296      - If we know the function's start address, we can call the
4297        architecture-defined gdbarch_skip_prologue function to analyze the
4298        instruction stream and guess where the prologue ends.
4299      - Our `func_start' argument; if non-zero, this is the caller's
4300        best guess as to the function's entry point.  At the time of
4301        this writing, handle_inferior_event doesn't get this right, so
4302        it should be our last resort.  */
4303 
4304   /* Consult the partial symbol table, to find which function
4305      the PC is in.  */
4306   if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4307     {
4308       CORE_ADDR prologue_end;
4309 
4310       /* We don't even have minsym information, so fall back to using
4311          func_start, if given.  */
4312       if (! func_start)
4313 	return 1;		/* We *might* be in a prologue.  */
4314 
4315       prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4316 
4317       return func_start <= pc && pc < prologue_end;
4318     }
4319 
4320   /* If we have line number information for the function, that's
4321      usually pretty reliable.  */
4322   sal = find_pc_line (func_addr, 0);
4323 
4324   /* Now sal describes the source line at the function's entry point,
4325      which (by convention) is the prologue.  The end of that "line",
4326      sal.end, is the end of the prologue.
4327 
4328      Note that, for functions whose source code is all on a single
4329      line, the line number information doesn't always end up this way.
4330      So we must verify that our purported end-of-prologue address is
4331      *within* the function, not at its start or end.  */
4332   if (sal.line == 0
4333       || sal.end <= func_addr
4334       || func_end <= sal.end)
4335     {
4336       /* We don't have any good line number info, so use the minsym
4337 	 information, together with the architecture-specific prologue
4338 	 scanning code.  */
4339       CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4340 
4341       return func_addr <= pc && pc < prologue_end;
4342     }
4343 
4344   /* We have line number info, and it looks good.  */
4345   return func_addr <= pc && pc < sal.end;
4346 }
4347 
4348 /* Given PC at the function's start address, attempt to find the
4349    prologue end using SAL information.  Return zero if the skip fails.
4350 
4351    A non-optimized prologue traditionally has one SAL for the function
4352    and a second for the function body.  A single line function has
4353    them both pointing at the same line.
4354 
4355    An optimized prologue is similar but the prologue may contain
4356    instructions (SALs) from the instruction body.  Need to skip those
4357    while not getting into the function body.
4358 
4359    The functions end point and an increasing SAL line are used as
4360    indicators of the prologue's endpoint.
4361 
4362    This code is based on the function refine_prologue_limit (versions
4363    found in both ia64 and ppc).  */
4364 
4365 CORE_ADDR
4366 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4367 {
4368   struct symtab_and_line prologue_sal;
4369   CORE_ADDR start_pc;
4370   CORE_ADDR end_pc;
4371   struct block *bl;
4372 
4373   /* Get an initial range for the function.  */
4374   find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4375   start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4376 
4377   prologue_sal = find_pc_line (start_pc, 0);
4378   if (prologue_sal.line != 0)
4379     {
4380       /* For langauges other than assembly, treat two consecutive line
4381 	 entries at the same address as a zero-instruction prologue.
4382 	 The GNU assembler emits separate line notes for each instruction
4383 	 in a multi-instruction macro, but compilers generally will not
4384 	 do this.  */
4385       if (prologue_sal.symtab->language != language_asm)
4386 	{
4387 	  struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4388 	  int exact;
4389 	  int idx = 0;
4390 
4391 	  /* Skip any earlier lines, and any end-of-sequence marker
4392 	     from a previous function.  */
4393 	  while (linetable->item[idx].pc != prologue_sal.pc
4394 		 || linetable->item[idx].line == 0)
4395 	    idx++;
4396 
4397 	  if (idx+1 < linetable->nitems
4398 	      && linetable->item[idx+1].line != 0
4399 	      && linetable->item[idx+1].pc == start_pc)
4400 	    return start_pc;
4401 	}
4402 
4403       /* If there is only one sal that covers the entire function,
4404 	 then it is probably a single line function, like
4405 	 "foo(){}". */
4406       if (prologue_sal.end >= end_pc)
4407 	return 0;
4408 
4409       while (prologue_sal.end < end_pc)
4410 	{
4411 	  struct symtab_and_line sal;
4412 
4413 	  sal = find_pc_line (prologue_sal.end, 0);
4414 	  if (sal.line == 0)
4415 	    break;
4416 	  /* Assume that a consecutive SAL for the same (or larger)
4417 	     line mark the prologue -> body transition.  */
4418 	  if (sal.line >= prologue_sal.line)
4419 	    break;
4420 
4421 	  /* The line number is smaller.  Check that it's from the
4422 	     same function, not something inlined.  If it's inlined,
4423 	     then there is no point comparing the line numbers.  */
4424 	  bl = block_for_pc (prologue_sal.end);
4425 	  while (bl)
4426 	    {
4427 	      if (block_inlined_p (bl))
4428 		break;
4429 	      if (BLOCK_FUNCTION (bl))
4430 		{
4431 		  bl = NULL;
4432 		  break;
4433 		}
4434 	      bl = BLOCK_SUPERBLOCK (bl);
4435 	    }
4436 	  if (bl != NULL)
4437 	    break;
4438 
4439 	  /* The case in which compiler's optimizer/scheduler has
4440 	     moved instructions into the prologue.  We look ahead in
4441 	     the function looking for address ranges whose
4442 	     corresponding line number is less the first one that we
4443 	     found for the function.  This is more conservative then
4444 	     refine_prologue_limit which scans a large number of SALs
4445 	     looking for any in the prologue */
4446 	  prologue_sal = sal;
4447 	}
4448     }
4449 
4450   if (prologue_sal.end < end_pc)
4451     /* Return the end of this line, or zero if we could not find a
4452        line.  */
4453     return prologue_sal.end;
4454   else
4455     /* Don't return END_PC, which is past the end of the function.  */
4456     return prologue_sal.pc;
4457 }
4458 
4459 struct symtabs_and_lines
4460 decode_line_spec (char *string, int funfirstline)
4461 {
4462   struct symtabs_and_lines sals;
4463   struct symtab_and_line cursal;
4464 
4465   if (string == 0)
4466     error (_("Empty line specification."));
4467 
4468   /* We use whatever is set as the current source line. We do not try
4469      and get a default  or it will recursively call us! */
4470   cursal = get_current_source_symtab_and_line ();
4471 
4472   sals = decode_line_1 (&string, funfirstline,
4473 			cursal.symtab, cursal.line,
4474 			(char ***) NULL, NULL);
4475 
4476   if (*string)
4477     error (_("Junk at end of line specification: %s"), string);
4478   return sals;
4479 }
4480 
4481 /* Track MAIN */
4482 static char *name_of_main;
4483 
4484 void
4485 set_main_name (const char *name)
4486 {
4487   if (name_of_main != NULL)
4488     {
4489       xfree (name_of_main);
4490       name_of_main = NULL;
4491     }
4492   if (name != NULL)
4493     {
4494       name_of_main = xstrdup (name);
4495     }
4496 }
4497 
4498 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4499    accordingly.  */
4500 
4501 static void
4502 find_main_name (void)
4503 {
4504   const char *new_main_name;
4505 
4506   /* Try to see if the main procedure is in Ada.  */
4507   /* FIXME: brobecker/2005-03-07: Another way of doing this would
4508      be to add a new method in the language vector, and call this
4509      method for each language until one of them returns a non-empty
4510      name.  This would allow us to remove this hard-coded call to
4511      an Ada function.  It is not clear that this is a better approach
4512      at this point, because all methods need to be written in a way
4513      such that false positives never be returned. For instance, it is
4514      important that a method does not return a wrong name for the main
4515      procedure if the main procedure is actually written in a different
4516      language.  It is easy to guaranty this with Ada, since we use a
4517      special symbol generated only when the main in Ada to find the name
4518      of the main procedure. It is difficult however to see how this can
4519      be guarantied for languages such as C, for instance.  This suggests
4520      that order of call for these methods becomes important, which means
4521      a more complicated approach.  */
4522   new_main_name = ada_main_name ();
4523   if (new_main_name != NULL)
4524     {
4525       set_main_name (new_main_name);
4526       return;
4527     }
4528 
4529   new_main_name = pascal_main_name ();
4530   if (new_main_name != NULL)
4531     {
4532       set_main_name (new_main_name);
4533       return;
4534     }
4535 
4536   /* The languages above didn't identify the name of the main procedure.
4537      Fallback to "main".  */
4538   set_main_name ("main");
4539 }
4540 
4541 char *
4542 main_name (void)
4543 {
4544   if (name_of_main == NULL)
4545     find_main_name ();
4546 
4547   return name_of_main;
4548 }
4549 
4550 /* Handle ``executable_changed'' events for the symtab module.  */
4551 
4552 static void
4553 symtab_observer_executable_changed (void)
4554 {
4555   /* NAME_OF_MAIN may no longer be the same, so reset it for now.  */
4556   set_main_name (NULL);
4557 }
4558 
4559 /* Helper to expand_line_sal below.  Appends new sal to SAL,
4560    initializing it from SYMTAB, LINENO and PC.  */
4561 static void
4562 append_expanded_sal (struct symtabs_and_lines *sal,
4563 		     struct symtab *symtab,
4564 		     int lineno, CORE_ADDR pc)
4565 {
4566   sal->sals = xrealloc (sal->sals,
4567 			sizeof (sal->sals[0])
4568 			* (sal->nelts + 1));
4569   init_sal (sal->sals + sal->nelts);
4570   sal->sals[sal->nelts].symtab = symtab;
4571   sal->sals[sal->nelts].section = NULL;
4572   sal->sals[sal->nelts].end = 0;
4573   sal->sals[sal->nelts].line = lineno;
4574   sal->sals[sal->nelts].pc = pc;
4575   ++sal->nelts;
4576 }
4577 
4578 /* Helper to expand_line_sal below.  Search in the symtabs for any
4579    linetable entry that exactly matches FILENAME and LINENO and append
4580    them to RET. If there is at least one match, return 1; otherwise,
4581    return 0, and return the best choice in BEST_ITEM and BEST_SYMTAB.  */
4582 
4583 static int
4584 append_exact_match_to_sals (char *filename, int lineno,
4585 			    struct symtabs_and_lines *ret,
4586 			    struct linetable_entry **best_item,
4587 			    struct symtab **best_symtab)
4588 {
4589   struct objfile *objfile;
4590   struct symtab *symtab;
4591   int exact = 0;
4592   int j;
4593   *best_item = 0;
4594   *best_symtab = 0;
4595 
4596   ALL_SYMTABS (objfile, symtab)
4597     {
4598       if (strcmp (filename, symtab->filename) == 0)
4599 	{
4600 	  struct linetable *l;
4601 	  int len;
4602 	  l = LINETABLE (symtab);
4603 	  if (!l)
4604 	    continue;
4605 	  len = l->nitems;
4606 
4607 	  for (j = 0; j < len; j++)
4608 	    {
4609 	      struct linetable_entry *item = &(l->item[j]);
4610 
4611 	      if (item->line == lineno)
4612 		{
4613 		  exact = 1;
4614 		  append_expanded_sal (ret, symtab, lineno, item->pc);
4615 		}
4616 	      else if (!exact && item->line > lineno
4617 		       && (*best_item == NULL
4618 			   || item->line < (*best_item)->line))
4619 		{
4620 		  *best_item = item;
4621 		  *best_symtab = symtab;
4622 		}
4623 	    }
4624 	}
4625     }
4626   return exact;
4627 }
4628 
4629 /* Compute a set of all sals in
4630    the entire program that correspond to same file
4631    and line as SAL and return those.  If there
4632    are several sals that belong to the same block,
4633    only one sal for the block is included in results.  */
4634 
4635 struct symtabs_and_lines
4636 expand_line_sal (struct symtab_and_line sal)
4637 {
4638   struct symtabs_and_lines ret, this_line;
4639   int i, j;
4640   struct objfile *objfile;
4641   struct partial_symtab *psymtab;
4642   struct symtab *symtab;
4643   int lineno;
4644   int deleted = 0;
4645   struct block **blocks = NULL;
4646   int *filter;
4647 
4648   ret.nelts = 0;
4649   ret.sals = NULL;
4650 
4651   if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4652     {
4653       ret.sals = xmalloc (sizeof (struct symtab_and_line));
4654       ret.sals[0] = sal;
4655       ret.nelts = 1;
4656       return ret;
4657     }
4658   else
4659     {
4660       struct linetable_entry *best_item = 0;
4661       struct symtab *best_symtab = 0;
4662       int exact = 0;
4663 
4664       lineno = sal.line;
4665 
4666       /* We need to find all symtabs for a file which name
4667 	 is described by sal.  We cannot just directly
4668 	 iterate over symtabs, since a symtab might not be
4669 	 yet created.  We also cannot iterate over psymtabs,
4670 	 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4671 	 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4672 	 corresponding to an included file.  Therefore, we do
4673 	 first pass over psymtabs, reading in those with
4674 	 the right name.  Then, we iterate over symtabs, knowing
4675 	 that all symtabs we're interested in are loaded.  */
4676 
4677       ALL_PSYMTABS (objfile, psymtab)
4678 	{
4679 	  if (strcmp (sal.symtab->filename,
4680 		      psymtab->filename) == 0)
4681 	    PSYMTAB_TO_SYMTAB (psymtab);
4682 	}
4683 
4684       /* Now search the symtab for exact matches and append them.  If
4685 	 none is found, append the best_item and all its exact
4686 	 matches.  */
4687       exact = append_exact_match_to_sals (sal.symtab->filename, lineno,
4688 					  &ret, &best_item, &best_symtab);
4689       if (!exact && best_item)
4690 	append_exact_match_to_sals (best_symtab->filename, best_item->line,
4691 				    &ret, &best_item, &best_symtab);
4692     }
4693 
4694   /* For optimized code, compiler can scatter one source line accross
4695      disjoint ranges of PC values, even when no duplicate functions
4696      or inline functions are involved.  For example, 'for (;;)' inside
4697      non-template non-inline non-ctor-or-dtor function can result
4698      in two PC ranges.  In this case, we don't want to set breakpoint
4699      on first PC of each range.  To filter such cases, we use containing
4700      blocks -- for each PC found above we see if there are other PCs
4701      that are in the same block.  If yes, the other PCs are filtered out.  */
4702 
4703   filter = alloca (ret.nelts * sizeof (int));
4704   blocks = alloca (ret.nelts * sizeof (struct block *));
4705   for (i = 0; i < ret.nelts; ++i)
4706     {
4707       filter[i] = 1;
4708       blocks[i] = block_for_pc (ret.sals[i].pc);
4709     }
4710 
4711   for (i = 0; i < ret.nelts; ++i)
4712     if (blocks[i] != NULL)
4713       for (j = i+1; j < ret.nelts; ++j)
4714 	if (blocks[j] == blocks[i])
4715 	  {
4716 	    filter[j] = 0;
4717 	    ++deleted;
4718 	    break;
4719 	  }
4720 
4721   {
4722     struct symtab_and_line *final =
4723       xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4724 
4725     for (i = 0, j = 0; i < ret.nelts; ++i)
4726       if (filter[i])
4727 	final[j++] = ret.sals[i];
4728 
4729     ret.nelts -= deleted;
4730     xfree (ret.sals);
4731     ret.sals = final;
4732   }
4733 
4734   return ret;
4735 }
4736 
4737 
4738 void
4739 _initialize_symtab (void)
4740 {
4741   add_info ("variables", variables_info, _("\
4742 All global and static variable names, or those matching REGEXP."));
4743   if (dbx_commands)
4744     add_com ("whereis", class_info, variables_info, _("\
4745 All global and static variable names, or those matching REGEXP."));
4746 
4747   add_info ("functions", functions_info,
4748 	    _("All function names, or those matching REGEXP."));
4749 
4750   /* FIXME:  This command has at least the following problems:
4751      1.  It prints builtin types (in a very strange and confusing fashion).
4752      2.  It doesn't print right, e.g. with
4753      typedef struct foo *FOO
4754      type_print prints "FOO" when we want to make it (in this situation)
4755      print "struct foo *".
4756      I also think "ptype" or "whatis" is more likely to be useful (but if
4757      there is much disagreement "info types" can be fixed).  */
4758   add_info ("types", types_info,
4759 	    _("All type names, or those matching REGEXP."));
4760 
4761   add_info ("sources", sources_info,
4762 	    _("Source files in the program."));
4763 
4764   add_com ("rbreak", class_breakpoint, rbreak_command,
4765 	   _("Set a breakpoint for all functions matching REGEXP."));
4766 
4767   if (xdb_commands)
4768     {
4769       add_com ("lf", class_info, sources_info,
4770 	       _("Source files in the program"));
4771       add_com ("lg", class_info, variables_info, _("\
4772 All global and static variable names, or those matching REGEXP."));
4773     }
4774 
4775   add_setshow_enum_cmd ("multiple-symbols", no_class,
4776                         multiple_symbols_modes, &multiple_symbols_mode,
4777                         _("\
4778 Set the debugger behavior when more than one symbol are possible matches\n\
4779 in an expression."), _("\
4780 Show how the debugger handles ambiguities in expressions."), _("\
4781 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4782                         NULL, NULL, &setlist, &showlist);
4783 
4784   observer_attach_executable_changed (symtab_observer_executable_changed);
4785 }
4786