xref: /dragonfly/contrib/gdb-7/gdb/target.h (revision 783d47c4)
1 /* Interface between GDB and target environments, including files and processes
2 
3    Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4    2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5    Free Software Foundation, Inc.
6 
7    Contributed by Cygnus Support.  Written by John Gilmore.
8 
9    This file is part of GDB.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 3 of the License, or
14    (at your option) any later version.
15 
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20 
21    You should have received a copy of the GNU General Public License
22    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
23 
24 #if !defined (TARGET_H)
25 #define TARGET_H
26 
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39 struct traceframe_info;
40 struct expression;
41 
42 /* This include file defines the interface between the main part
43    of the debugger, and the part which is target-specific, or
44    specific to the communications interface between us and the
45    target.
46 
47    A TARGET is an interface between the debugger and a particular
48    kind of file or process.  Targets can be STACKED in STRATA,
49    so that more than one target can potentially respond to a request.
50    In particular, memory accesses will walk down the stack of targets
51    until they find a target that is interested in handling that particular
52    address.  STRATA are artificial boundaries on the stack, within
53    which particular kinds of targets live.  Strata exist so that
54    people don't get confused by pushing e.g. a process target and then
55    a file target, and wondering why they can't see the current values
56    of variables any more (the file target is handling them and they
57    never get to the process target).  So when you push a file target,
58    it goes into the file stratum, which is always below the process
59    stratum.  */
60 
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66 
67 enum strata
68   {
69     dummy_stratum,		/* The lowest of the low */
70     file_stratum,		/* Executable files, etc */
71     process_stratum,		/* Executing processes or core dump files */
72     thread_stratum,		/* Executing threads */
73     record_stratum,		/* Support record debugging */
74     arch_stratum		/* Architecture overrides */
75   };
76 
77 enum thread_control_capabilities
78   {
79     tc_none = 0,		/* Default: can't control thread execution.  */
80     tc_schedlock = 1,		/* Can lock the thread scheduler.  */
81   };
82 
83 /* Stuff for target_wait.  */
84 
85 /* Generally, what has the program done?  */
86 enum target_waitkind
87   {
88     /* The program has exited.  The exit status is in value.integer.  */
89     TARGET_WAITKIND_EXITED,
90 
91     /* The program has stopped with a signal.  Which signal is in
92        value.sig.  */
93     TARGET_WAITKIND_STOPPED,
94 
95     /* The program has terminated with a signal.  Which signal is in
96        value.sig.  */
97     TARGET_WAITKIND_SIGNALLED,
98 
99     /* The program is letting us know that it dynamically loaded something
100        (e.g. it called load(2) on AIX).  */
101     TARGET_WAITKIND_LOADED,
102 
103     /* The program has forked.  A "related" process' PTID is in
104        value.related_pid.  I.e., if the child forks, value.related_pid
105        is the parent's ID.  */
106 
107     TARGET_WAITKIND_FORKED,
108 
109     /* The program has vforked.  A "related" process's PTID is in
110        value.related_pid.  */
111 
112     TARGET_WAITKIND_VFORKED,
113 
114     /* The program has exec'ed a new executable file.  The new file's
115        pathname is pointed to by value.execd_pathname.  */
116 
117     TARGET_WAITKIND_EXECD,
118 
119     /* The program had previously vforked, and now the child is done
120        with the shared memory region, because it exec'ed or exited.
121        Note that the event is reported to the vfork parent.  This is
122        only used if GDB did not stay attached to the vfork child,
123        otherwise, a TARGET_WAITKIND_EXECD or
124        TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125        has the same effect.  */
126     TARGET_WAITKIND_VFORK_DONE,
127 
128     /* The program has entered or returned from a system call.  On
129        HP-UX, this is used in the hardware watchpoint implementation.
130        The syscall's unique integer ID number is in value.syscall_id.  */
131 
132     TARGET_WAITKIND_SYSCALL_ENTRY,
133     TARGET_WAITKIND_SYSCALL_RETURN,
134 
135     /* Nothing happened, but we stopped anyway.  This perhaps should be handled
136        within target_wait, but I'm not sure target_wait should be resuming the
137        inferior.  */
138     TARGET_WAITKIND_SPURIOUS,
139 
140     /* An event has occured, but we should wait again.
141        Remote_async_wait() returns this when there is an event
142        on the inferior, but the rest of the world is not interested in
143        it.  The inferior has not stopped, but has just sent some output
144        to the console, for instance.  In this case, we want to go back
145        to the event loop and wait there for another event from the
146        inferior, rather than being stuck in the remote_async_wait()
147        function. sThis way the event loop is responsive to other events,
148        like for instance the user typing.  */
149     TARGET_WAITKIND_IGNORE,
150 
151     /* The target has run out of history information,
152        and cannot run backward any further.  */
153     TARGET_WAITKIND_NO_HISTORY
154   };
155 
156 struct target_waitstatus
157   {
158     enum target_waitkind kind;
159 
160     /* Forked child pid, execd pathname, exit status, signal number or
161        syscall number.  */
162     union
163       {
164 	int integer;
165 	enum target_signal sig;
166 	ptid_t related_pid;
167 	char *execd_pathname;
168 	int syscall_number;
169       }
170     value;
171   };
172 
173 /* Options that can be passed to target_wait.  */
174 
175 /* Return immediately if there's no event already queued.  If this
176    options is not requested, target_wait blocks waiting for an
177    event.  */
178 #define TARGET_WNOHANG 1
179 
180 /* The structure below stores information about a system call.
181    It is basically used in the "catch syscall" command, and in
182    every function that gives information about a system call.
183 
184    It's also good to mention that its fields represent everything
185    that we currently know about a syscall in GDB.  */
186 struct syscall
187   {
188     /* The syscall number.  */
189     int number;
190 
191     /* The syscall name.  */
192     const char *name;
193   };
194 
195 /* Return a pretty printed form of target_waitstatus.
196    Space for the result is malloc'd, caller must free.  */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198 
199 /* Possible types of events that the inferior handler will have to
200    deal with.  */
201 enum inferior_event_type
202   {
203     /* There is a request to quit the inferior, abandon it.  */
204     INF_QUIT_REQ,
205     /* Process a normal inferior event which will result in target_wait
206        being called.  */
207     INF_REG_EVENT,
208     /* Deal with an error on the inferior.  */
209     INF_ERROR,
210     /* We are called because a timer went off.  */
211     INF_TIMER,
212     /* We are called to do stuff after the inferior stops.  */
213     INF_EXEC_COMPLETE,
214     /* We are called to do some stuff after the inferior stops, but we
215        are expected to reenter the proceed() and
216        handle_inferior_event() functions.  This is used only in case of
217        'step n' like commands.  */
218     INF_EXEC_CONTINUE
219   };
220 
221 /* Target objects which can be transfered using target_read,
222    target_write, et cetera.  */
223 
224 enum target_object
225 {
226   /* AVR target specific transfer.  See "avr-tdep.c" and "remote.c".  */
227   TARGET_OBJECT_AVR,
228   /* SPU target specific transfer.  See "spu-tdep.c".  */
229   TARGET_OBJECT_SPU,
230   /* Transfer up-to LEN bytes of memory starting at OFFSET.  */
231   TARGET_OBJECT_MEMORY,
232   /* Memory, avoiding GDB's data cache and trusting the executable.
233      Target implementations of to_xfer_partial never need to handle
234      this object, and most callers should not use it.  */
235   TARGET_OBJECT_RAW_MEMORY,
236   /* Memory known to be part of the target's stack.  This is cached even
237      if it is not in a region marked as such, since it is known to be
238      "normal" RAM.  */
239   TARGET_OBJECT_STACK_MEMORY,
240   /* Kernel Unwind Table.  See "ia64-tdep.c".  */
241   TARGET_OBJECT_UNWIND_TABLE,
242   /* Transfer auxilliary vector.  */
243   TARGET_OBJECT_AUXV,
244   /* StackGhost cookie.  See "sparc-tdep.c".  */
245   TARGET_OBJECT_WCOOKIE,
246   /* Target memory map in XML format.  */
247   TARGET_OBJECT_MEMORY_MAP,
248   /* Flash memory.  This object can be used to write contents to
249      a previously erased flash memory.  Using it without erasing
250      flash can have unexpected results.  Addresses are physical
251      address on target, and not relative to flash start.  */
252   TARGET_OBJECT_FLASH,
253   /* Available target-specific features, e.g. registers and coprocessors.
254      See "target-descriptions.c".  ANNEX should never be empty.  */
255   TARGET_OBJECT_AVAILABLE_FEATURES,
256   /* Currently loaded libraries, in XML format.  */
257   TARGET_OBJECT_LIBRARIES,
258   /* Get OS specific data.  The ANNEX specifies the type (running
259      processes, etc.).  The data being transfered is expected to follow
260      the DTD specified in features/osdata.dtd.  */
261   TARGET_OBJECT_OSDATA,
262   /* Extra signal info.  Usually the contents of `siginfo_t' on unix
263      platforms.  */
264   TARGET_OBJECT_SIGNAL_INFO,
265   /* The list of threads that are being debugged.  */
266   TARGET_OBJECT_THREADS,
267   /* Collected static trace data.  */
268   TARGET_OBJECT_STATIC_TRACE_DATA,
269   /* The HP-UX registers (those that can be obtained or modified by using
270      the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests).  */
271   TARGET_OBJECT_HPUX_UREGS,
272   /* The HP-UX shared library linkage pointer.  ANNEX should be a string
273      image of the code address whose linkage pointer we are looking for.
274 
275      The size of the data transfered is always 8 bytes (the size of an
276      address on ia64).  */
277   TARGET_OBJECT_HPUX_SOLIB_GOT,
278   /* Traceframe info, in XML format.  */
279   TARGET_OBJECT_TRACEFRAME_INFO,
280   /* Possible future objects: TARGET_OBJECT_FILE, ...  */
281 };
282 
283 /* Enumeration of the kinds of traceframe searches that a target may
284    be able to perform.  */
285 
286 enum trace_find_type
287   {
288     tfind_number,
289     tfind_pc,
290     tfind_tp,
291     tfind_range,
292     tfind_outside,
293   };
294 
295 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
296 DEF_VEC_P(static_tracepoint_marker_p);
297 
298 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
299    OBJECT.  The OFFSET, for a seekable object, specifies the
300    starting point.  The ANNEX can be used to provide additional
301    data-specific information to the target.
302 
303    Return the number of bytes actually transfered, or -1 if the
304    transfer is not supported or otherwise fails.  Return of a positive
305    value less than LEN indicates that no further transfer is possible.
306    Unlike the raw to_xfer_partial interface, callers of these
307    functions do not need to retry partial transfers.  */
308 
309 extern LONGEST target_read (struct target_ops *ops,
310 			    enum target_object object,
311 			    const char *annex, gdb_byte *buf,
312 			    ULONGEST offset, LONGEST len);
313 
314 struct memory_read_result
315   {
316     /* First address that was read.  */
317     ULONGEST begin;
318     /* Past-the-end address.  */
319     ULONGEST end;
320     /* The data.  */
321     gdb_byte *data;
322 };
323 typedef struct memory_read_result memory_read_result_s;
324 DEF_VEC_O(memory_read_result_s);
325 
326 extern void free_memory_read_result_vector (void *);
327 
328 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
329 						      ULONGEST offset,
330 						      LONGEST len);
331 
332 extern LONGEST target_write (struct target_ops *ops,
333 			     enum target_object object,
334 			     const char *annex, const gdb_byte *buf,
335 			     ULONGEST offset, LONGEST len);
336 
337 /* Similar to target_write, except that it also calls PROGRESS with
338    the number of bytes written and the opaque BATON after every
339    successful partial write (and before the first write).  This is
340    useful for progress reporting and user interaction while writing
341    data.  To abort the transfer, the progress callback can throw an
342    exception.  */
343 
344 LONGEST target_write_with_progress (struct target_ops *ops,
345 				    enum target_object object,
346 				    const char *annex, const gdb_byte *buf,
347 				    ULONGEST offset, LONGEST len,
348 				    void (*progress) (ULONGEST, void *),
349 				    void *baton);
350 
351 /* Wrapper to perform a full read of unknown size.  OBJECT/ANNEX will
352    be read using OPS.  The return value will be -1 if the transfer
353    fails or is not supported; 0 if the object is empty; or the length
354    of the object otherwise.  If a positive value is returned, a
355    sufficiently large buffer will be allocated using xmalloc and
356    returned in *BUF_P containing the contents of the object.
357 
358    This method should be used for objects sufficiently small to store
359    in a single xmalloc'd buffer, when no fixed bound on the object's
360    size is known in advance.  Don't try to read TARGET_OBJECT_MEMORY
361    through this function.  */
362 
363 extern LONGEST target_read_alloc (struct target_ops *ops,
364 				  enum target_object object,
365 				  const char *annex, gdb_byte **buf_p);
366 
367 /* Read OBJECT/ANNEX using OPS.  The result is NUL-terminated and
368    returned as a string, allocated using xmalloc.  If an error occurs
369    or the transfer is unsupported, NULL is returned.  Empty objects
370    are returned as allocated but empty strings.  A warning is issued
371    if the result contains any embedded NUL bytes.  */
372 
373 extern char *target_read_stralloc (struct target_ops *ops,
374 				   enum target_object object,
375 				   const char *annex);
376 
377 /* Wrappers to target read/write that perform memory transfers.  They
378    throw an error if the memory transfer fails.
379 
380    NOTE: cagney/2003-10-23: The naming schema is lifted from
381    "frame.h".  The parameter order is lifted from get_frame_memory,
382    which in turn lifted it from read_memory.  */
383 
384 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
385 			       gdb_byte *buf, LONGEST len);
386 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
387 					    CORE_ADDR addr, int len,
388 					    enum bfd_endian byte_order);
389 
390 struct thread_info;		/* fwd decl for parameter list below: */
391 
392 struct target_ops
393   {
394     struct target_ops *beneath;	/* To the target under this one.  */
395     char *to_shortname;		/* Name this target type */
396     char *to_longname;		/* Name for printing */
397     char *to_doc;		/* Documentation.  Does not include trailing
398 				   newline, and starts with a one-line descrip-
399 				   tion (probably similar to to_longname).  */
400     /* Per-target scratch pad.  */
401     void *to_data;
402     /* The open routine takes the rest of the parameters from the
403        command, and (if successful) pushes a new target onto the
404        stack.  Targets should supply this routine, if only to provide
405        an error message.  */
406     void (*to_open) (char *, int);
407     /* Old targets with a static target vector provide "to_close".
408        New re-entrant targets provide "to_xclose" and that is expected
409        to xfree everything (including the "struct target_ops").  */
410     void (*to_xclose) (struct target_ops *targ, int quitting);
411     void (*to_close) (int);
412     void (*to_attach) (struct target_ops *ops, char *, int);
413     void (*to_post_attach) (int);
414     void (*to_detach) (struct target_ops *ops, char *, int);
415     void (*to_disconnect) (struct target_ops *, char *, int);
416     void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
417     ptid_t (*to_wait) (struct target_ops *,
418 		       ptid_t, struct target_waitstatus *, int);
419     void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
420     void (*to_store_registers) (struct target_ops *, struct regcache *, int);
421     void (*to_prepare_to_store) (struct regcache *);
422 
423     /* Transfer LEN bytes of memory between GDB address MYADDR and
424        target address MEMADDR.  If WRITE, transfer them to the target, else
425        transfer them from the target.  TARGET is the target from which we
426        get this function.
427 
428        Return value, N, is one of the following:
429 
430        0 means that we can't handle this.  If errno has been set, it is the
431        error which prevented us from doing it (FIXME: What about bfd_error?).
432 
433        positive (call it N) means that we have transferred N bytes
434        starting at MEMADDR.  We might be able to handle more bytes
435        beyond this length, but no promises.
436 
437        negative (call its absolute value N) means that we cannot
438        transfer right at MEMADDR, but we could transfer at least
439        something at MEMADDR + N.
440 
441        NOTE: cagney/2004-10-01: This has been entirely superseeded by
442        to_xfer_partial and inferior inheritance.  */
443 
444     int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
445 				   int len, int write,
446 				   struct mem_attrib *attrib,
447 				   struct target_ops *target);
448 
449     void (*to_files_info) (struct target_ops *);
450     int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
451     int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
452     int (*to_can_use_hw_breakpoint) (int, int, int);
453     int (*to_ranged_break_num_registers) (struct target_ops *);
454     int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
455     int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
456 
457     /* Documentation of what the two routines below are expected to do is
458        provided with the corresponding target_* macros.  */
459     int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
460     int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
461 
462     int (*to_stopped_by_watchpoint) (void);
463     int to_have_steppable_watchpoint;
464     int to_have_continuable_watchpoint;
465     int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
466     int (*to_watchpoint_addr_within_range) (struct target_ops *,
467 					    CORE_ADDR, CORE_ADDR, int);
468 
469     /* Documentation of this routine is provided with the corresponding
470        target_* macro.  */
471     int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
472 
473     int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
474 					      struct expression *);
475     void (*to_terminal_init) (void);
476     void (*to_terminal_inferior) (void);
477     void (*to_terminal_ours_for_output) (void);
478     void (*to_terminal_ours) (void);
479     void (*to_terminal_save_ours) (void);
480     void (*to_terminal_info) (char *, int);
481     void (*to_kill) (struct target_ops *);
482     void (*to_load) (char *, int);
483     void (*to_create_inferior) (struct target_ops *,
484 				char *, char *, char **, int);
485     void (*to_post_startup_inferior) (ptid_t);
486     int (*to_insert_fork_catchpoint) (int);
487     int (*to_remove_fork_catchpoint) (int);
488     int (*to_insert_vfork_catchpoint) (int);
489     int (*to_remove_vfork_catchpoint) (int);
490     int (*to_follow_fork) (struct target_ops *, int);
491     int (*to_insert_exec_catchpoint) (int);
492     int (*to_remove_exec_catchpoint) (int);
493     int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
494     int (*to_has_exited) (int, int, int *);
495     void (*to_mourn_inferior) (struct target_ops *);
496     int (*to_can_run) (void);
497     void (*to_notice_signals) (ptid_t ptid);
498     int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
499     void (*to_find_new_threads) (struct target_ops *);
500     char *(*to_pid_to_str) (struct target_ops *, ptid_t);
501     char *(*to_extra_thread_info) (struct thread_info *);
502     char *(*to_thread_name) (struct thread_info *);
503     void (*to_stop) (ptid_t);
504     void (*to_rcmd) (char *command, struct ui_file *output);
505     char *(*to_pid_to_exec_file) (int pid);
506     void (*to_log_command) (const char *);
507     struct target_section_table *(*to_get_section_table) (struct target_ops *);
508     enum strata to_stratum;
509     int (*to_has_all_memory) (struct target_ops *);
510     int (*to_has_memory) (struct target_ops *);
511     int (*to_has_stack) (struct target_ops *);
512     int (*to_has_registers) (struct target_ops *);
513     int (*to_has_execution) (struct target_ops *, ptid_t);
514     int to_has_thread_control;	/* control thread execution */
515     int to_attach_no_wait;
516     /* ASYNC target controls */
517     int (*to_can_async_p) (void);
518     int (*to_is_async_p) (void);
519     void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
520     int (*to_async_mask) (int);
521     int (*to_supports_non_stop) (void);
522     /* find_memory_regions support method for gcore */
523     int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
524     /* make_corefile_notes support method for gcore */
525     char * (*to_make_corefile_notes) (bfd *, int *);
526     /* get_bookmark support method for bookmarks */
527     gdb_byte * (*to_get_bookmark) (char *, int);
528     /* goto_bookmark support method for bookmarks */
529     void (*to_goto_bookmark) (gdb_byte *, int);
530     /* Return the thread-local address at OFFSET in the
531        thread-local storage for the thread PTID and the shared library
532        or executable file given by OBJFILE.  If that block of
533        thread-local storage hasn't been allocated yet, this function
534        may return an error.  */
535     CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
536 					      ptid_t ptid,
537 					      CORE_ADDR load_module_addr,
538 					      CORE_ADDR offset);
539 
540     /* Request that OPS transfer up to LEN 8-bit bytes of the target's
541        OBJECT.  The OFFSET, for a seekable object, specifies the
542        starting point.  The ANNEX can be used to provide additional
543        data-specific information to the target.
544 
545        Return the number of bytes actually transfered, zero when no
546        further transfer is possible, and -1 when the transfer is not
547        supported.  Return of a positive value smaller than LEN does
548        not indicate the end of the object, only the end of the
549        transfer; higher level code should continue transferring if
550        desired.  This is handled in target.c.
551 
552        The interface does not support a "retry" mechanism.  Instead it
553        assumes that at least one byte will be transfered on each
554        successful call.
555 
556        NOTE: cagney/2003-10-17: The current interface can lead to
557        fragmented transfers.  Lower target levels should not implement
558        hacks, such as enlarging the transfer, in an attempt to
559        compensate for this.  Instead, the target stack should be
560        extended so that it implements supply/collect methods and a
561        look-aside object cache.  With that available, the lowest
562        target can safely and freely "push" data up the stack.
563 
564        See target_read and target_write for more information.  One,
565        and only one, of readbuf or writebuf must be non-NULL.  */
566 
567     LONGEST (*to_xfer_partial) (struct target_ops *ops,
568 				enum target_object object, const char *annex,
569 				gdb_byte *readbuf, const gdb_byte *writebuf,
570 				ULONGEST offset, LONGEST len);
571 
572     /* Returns the memory map for the target.  A return value of NULL
573        means that no memory map is available.  If a memory address
574        does not fall within any returned regions, it's assumed to be
575        RAM.  The returned memory regions should not overlap.
576 
577        The order of regions does not matter; target_memory_map will
578        sort regions by starting address.  For that reason, this
579        function should not be called directly except via
580        target_memory_map.
581 
582        This method should not cache data; if the memory map could
583        change unexpectedly, it should be invalidated, and higher
584        layers will re-fetch it.  */
585     VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
586 
587     /* Erases the region of flash memory starting at ADDRESS, of
588        length LENGTH.
589 
590        Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
591        on flash block boundaries, as reported by 'to_memory_map'.  */
592     void (*to_flash_erase) (struct target_ops *,
593                            ULONGEST address, LONGEST length);
594 
595     /* Finishes a flash memory write sequence.  After this operation
596        all flash memory should be available for writing and the result
597        of reading from areas written by 'to_flash_write' should be
598        equal to what was written.  */
599     void (*to_flash_done) (struct target_ops *);
600 
601     /* Describe the architecture-specific features of this target.
602        Returns the description found, or NULL if no description
603        was available.  */
604     const struct target_desc *(*to_read_description) (struct target_ops *ops);
605 
606     /* Build the PTID of the thread on which a given task is running,
607        based on LWP and THREAD.  These values are extracted from the
608        task Private_Data section of the Ada Task Control Block, and
609        their interpretation depends on the target.  */
610     ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
611 
612     /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
613        Return 0 if *READPTR is already at the end of the buffer.
614        Return -1 if there is insufficient buffer for a whole entry.
615        Return 1 if an entry was read into *TYPEP and *VALP.  */
616     int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
617                          gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
618 
619     /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
620        sequence of bytes in PATTERN with length PATTERN_LEN.
621 
622        The result is 1 if found, 0 if not found, and -1 if there was an error
623        requiring halting of the search (e.g. memory read error).
624        If the pattern is found the address is recorded in FOUND_ADDRP.  */
625     int (*to_search_memory) (struct target_ops *ops,
626 			     CORE_ADDR start_addr, ULONGEST search_space_len,
627 			     const gdb_byte *pattern, ULONGEST pattern_len,
628 			     CORE_ADDR *found_addrp);
629 
630     /* Can target execute in reverse?  */
631     int (*to_can_execute_reverse) (void);
632 
633     /* Does this target support debugging multiple processes
634        simultaneously?  */
635     int (*to_supports_multi_process) (void);
636 
637     /* Determine current architecture of thread PTID.
638 
639        The target is supposed to determine the architecture of the code where
640        the target is currently stopped at (on Cell, if a target is in spu_run,
641        to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
642        This is architecture used to perform decr_pc_after_break adjustment,
643        and also determines the frame architecture of the innermost frame.
644        ptrace operations need to operate according to target_gdbarch.
645 
646        The default implementation always returns target_gdbarch.  */
647     struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
648 
649     /* Determine current address space of thread PTID.
650 
651        The default implementation always returns the inferior's
652        address space.  */
653     struct address_space *(*to_thread_address_space) (struct target_ops *,
654 						      ptid_t);
655 
656     /* Tracepoint-related operations.  */
657 
658     /* Prepare the target for a tracing run.  */
659     void (*to_trace_init) (void);
660 
661     /* Send full details of a tracepoint to the target.  */
662     void (*to_download_tracepoint) (struct breakpoint *t);
663 
664     /* Send full details of a trace state variable to the target.  */
665     void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
666 
667     /* Inform the target info of memory regions that are readonly
668        (such as text sections), and so it should return data from
669        those rather than look in the trace buffer.  */
670     void (*to_trace_set_readonly_regions) (void);
671 
672     /* Start a trace run.  */
673     void (*to_trace_start) (void);
674 
675     /* Get the current status of a tracing run.  */
676     int (*to_get_trace_status) (struct trace_status *ts);
677 
678     /* Stop a trace run.  */
679     void (*to_trace_stop) (void);
680 
681    /* Ask the target to find a trace frame of the given type TYPE,
682       using NUM, ADDR1, and ADDR2 as search parameters.  Returns the
683       number of the trace frame, and also the tracepoint number at
684       TPP.  If no trace frame matches, return -1.  May throw if the
685       operation fails.  */
686     int (*to_trace_find) (enum trace_find_type type, int num,
687 			  ULONGEST addr1, ULONGEST addr2, int *tpp);
688 
689     /* Get the value of the trace state variable number TSV, returning
690        1 if the value is known and writing the value itself into the
691        location pointed to by VAL, else returning 0.  */
692     int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
693 
694     int (*to_save_trace_data) (const char *filename);
695 
696     int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
697 
698     int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
699 
700     LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
701 				      ULONGEST offset, LONGEST len);
702 
703     /* Set the target's tracing behavior in response to unexpected
704        disconnection - set VAL to 1 to keep tracing, 0 to stop.  */
705     void (*to_set_disconnected_tracing) (int val);
706     void (*to_set_circular_trace_buffer) (int val);
707 
708     /* Return the processor core that thread PTID was last seen on.
709        This information is updated only when:
710        - update_thread_list is called
711        - thread stops
712        If the core cannot be determined -- either for the specified
713        thread, or right now, or in this debug session, or for this
714        target -- return -1.  */
715     int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
716 
717     /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
718        matches the contents of [DATA,DATA+SIZE).  Returns 1 if there's
719        a match, 0 if there's a mismatch, and -1 if an error is
720        encountered while reading memory.  */
721     int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
722 			     CORE_ADDR memaddr, ULONGEST size);
723 
724     /* Return the address of the start of the Thread Information Block
725        a Windows OS specific feature.  */
726     int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
727 
728     /* Send the new settings of write permission variables.  */
729     void (*to_set_permissions) (void);
730 
731     /* Look for a static tracepoint marker at ADDR, and fill in MARKER
732        with its details.  Return 1 on success, 0 on failure.  */
733     int (*to_static_tracepoint_marker_at) (CORE_ADDR,
734 					   struct static_tracepoint_marker *marker);
735 
736     /* Return a vector of all tracepoints markers string id ID, or all
737        markers if ID is NULL.  */
738     VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
739       (const char *id);
740 
741     /* Return a traceframe info object describing the current
742        traceframe's contents.  This method should not cache data;
743        higher layers take care of caching, invalidating, and
744        re-fetching when necessary.  */
745     struct traceframe_info *(*to_traceframe_info) (void);
746 
747     int to_magic;
748     /* Need sub-structure for target machine related rather than comm related?
749      */
750   };
751 
752 /* Magic number for checking ops size.  If a struct doesn't end with this
753    number, somebody changed the declaration but didn't change all the
754    places that initialize one.  */
755 
756 #define	OPS_MAGIC	3840
757 
758 /* The ops structure for our "current" target process.  This should
759    never be NULL.  If there is no target, it points to the dummy_target.  */
760 
761 extern struct target_ops current_target;
762 
763 /* Define easy words for doing these operations on our current target.  */
764 
765 #define	target_shortname	(current_target.to_shortname)
766 #define	target_longname		(current_target.to_longname)
767 
768 /* Does whatever cleanup is required for a target that we are no
769    longer going to be calling.  QUITTING indicates that GDB is exiting
770    and should not get hung on an error (otherwise it is important to
771    perform clean termination, even if it takes a while).  This routine
772    is automatically always called when popping the target off the
773    target stack (to_beneath is undefined).  Closing file descriptors
774    and freeing all memory allocated memory are typical things it
775    should do.  */
776 
777 void target_close (struct target_ops *targ, int quitting);
778 
779 /* Attaches to a process on the target side.  Arguments are as passed
780    to the `attach' command by the user.  This routine can be called
781    when the target is not on the target-stack, if the target_can_run
782    routine returns 1; in that case, it must push itself onto the stack.
783    Upon exit, the target should be ready for normal operations, and
784    should be ready to deliver the status of the process immediately
785    (without waiting) to an upcoming target_wait call.  */
786 
787 void target_attach (char *, int);
788 
789 /* Some targets don't generate traps when attaching to the inferior,
790    or their target_attach implementation takes care of the waiting.
791    These targets must set to_attach_no_wait.  */
792 
793 #define target_attach_no_wait \
794      (current_target.to_attach_no_wait)
795 
796 /* The target_attach operation places a process under debugger control,
797    and stops the process.
798 
799    This operation provides a target-specific hook that allows the
800    necessary bookkeeping to be performed after an attach completes.  */
801 #define target_post_attach(pid) \
802      (*current_target.to_post_attach) (pid)
803 
804 /* Takes a program previously attached to and detaches it.
805    The program may resume execution (some targets do, some don't) and will
806    no longer stop on signals, etc.  We better not have left any breakpoints
807    in the program or it'll die when it hits one.  ARGS is arguments
808    typed by the user (e.g. a signal to send the process).  FROM_TTY
809    says whether to be verbose or not.  */
810 
811 extern void target_detach (char *, int);
812 
813 /* Disconnect from the current target without resuming it (leaving it
814    waiting for a debugger).  */
815 
816 extern void target_disconnect (char *, int);
817 
818 /* Resume execution of the target process PTID.  STEP says whether to
819    single-step or to run free; SIGGNAL is the signal to be given to
820    the target, or TARGET_SIGNAL_0 for no signal.  The caller may not
821    pass TARGET_SIGNAL_DEFAULT.  */
822 
823 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
824 
825 /* Wait for process pid to do something.  PTID = -1 to wait for any
826    pid to do something.  Return pid of child, or -1 in case of error;
827    store status through argument pointer STATUS.  Note that it is
828    _NOT_ OK to throw_exception() out of target_wait() without popping
829    the debugging target from the stack; GDB isn't prepared to get back
830    to the prompt with a debugging target but without the frame cache,
831    stop_pc, etc., set up.  OPTIONS is a bitwise OR of TARGET_W*
832    options.  */
833 
834 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
835 			   int options);
836 
837 /* Fetch at least register REGNO, or all regs if regno == -1.  No result.  */
838 
839 extern void target_fetch_registers (struct regcache *regcache, int regno);
840 
841 /* Store at least register REGNO, or all regs if REGNO == -1.
842    It can store as many registers as it wants to, so target_prepare_to_store
843    must have been previously called.  Calls error() if there are problems.  */
844 
845 extern void target_store_registers (struct regcache *regcache, int regs);
846 
847 /* Get ready to modify the registers array.  On machines which store
848    individual registers, this doesn't need to do anything.  On machines
849    which store all the registers in one fell swoop, this makes sure
850    that REGISTERS contains all the registers from the program being
851    debugged.  */
852 
853 #define	target_prepare_to_store(regcache)	\
854      (*current_target.to_prepare_to_store) (regcache)
855 
856 /* Determine current address space of thread PTID.  */
857 
858 struct address_space *target_thread_address_space (ptid_t);
859 
860 /* Returns true if this target can debug multiple processes
861    simultaneously.  */
862 
863 #define	target_supports_multi_process()	\
864      (*current_target.to_supports_multi_process) ()
865 
866 /* Invalidate all target dcaches.  */
867 extern void target_dcache_invalidate (void);
868 
869 extern int target_read_string (CORE_ADDR, char **, int, int *);
870 
871 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
872 
873 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
874 
875 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
876 				int len);
877 
878 /* Fetches the target's memory map.  If one is found it is sorted
879    and returned, after some consistency checking.  Otherwise, NULL
880    is returned.  */
881 VEC(mem_region_s) *target_memory_map (void);
882 
883 /* Erase the specified flash region.  */
884 void target_flash_erase (ULONGEST address, LONGEST length);
885 
886 /* Finish a sequence of flash operations.  */
887 void target_flash_done (void);
888 
889 /* Describes a request for a memory write operation.  */
890 struct memory_write_request
891   {
892     /* Begining address that must be written.  */
893     ULONGEST begin;
894     /* Past-the-end address.  */
895     ULONGEST end;
896     /* The data to write.  */
897     gdb_byte *data;
898     /* A callback baton for progress reporting for this request.  */
899     void *baton;
900   };
901 typedef struct memory_write_request memory_write_request_s;
902 DEF_VEC_O(memory_write_request_s);
903 
904 /* Enumeration specifying different flash preservation behaviour.  */
905 enum flash_preserve_mode
906   {
907     flash_preserve,
908     flash_discard
909   };
910 
911 /* Write several memory blocks at once.  This version can be more
912    efficient than making several calls to target_write_memory, in
913    particular because it can optimize accesses to flash memory.
914 
915    Moreover, this is currently the only memory access function in gdb
916    that supports writing to flash memory, and it should be used for
917    all cases where access to flash memory is desirable.
918 
919    REQUESTS is the vector (see vec.h) of memory_write_request.
920    PRESERVE_FLASH_P indicates what to do with blocks which must be
921      erased, but not completely rewritten.
922    PROGRESS_CB is a function that will be periodically called to provide
923      feedback to user.  It will be called with the baton corresponding
924      to the request currently being written.  It may also be called
925      with a NULL baton, when preserved flash sectors are being rewritten.
926 
927    The function returns 0 on success, and error otherwise.  */
928 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
929 				enum flash_preserve_mode preserve_flash_p,
930 				void (*progress_cb) (ULONGEST, void *));
931 
932 /* From infrun.c.  */
933 
934 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
935 
936 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
937 
938 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
939 
940 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
941 
942 /* Print a line about the current target.  */
943 
944 #define	target_files_info()	\
945      (*current_target.to_files_info) (&current_target)
946 
947 /* Insert a breakpoint at address BP_TGT->placed_address in the target
948    machine.  Result is 0 for success, or an errno value.  */
949 
950 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
951 				     struct bp_target_info *bp_tgt);
952 
953 /* Remove a breakpoint at address BP_TGT->placed_address in the target
954    machine.  Result is 0 for success, or an errno value.  */
955 
956 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
957 				     struct bp_target_info *bp_tgt);
958 
959 /* Initialize the terminal settings we record for the inferior,
960    before we actually run the inferior.  */
961 
962 #define target_terminal_init() \
963      (*current_target.to_terminal_init) ()
964 
965 /* Put the inferior's terminal settings into effect.
966    This is preparation for starting or resuming the inferior.  */
967 
968 extern void target_terminal_inferior (void);
969 
970 /* Put some of our terminal settings into effect,
971    enough to get proper results from our output,
972    but do not change into or out of RAW mode
973    so that no input is discarded.
974 
975    After doing this, either terminal_ours or terminal_inferior
976    should be called to get back to a normal state of affairs.  */
977 
978 #define target_terminal_ours_for_output() \
979      (*current_target.to_terminal_ours_for_output) ()
980 
981 /* Put our terminal settings into effect.
982    First record the inferior's terminal settings
983    so they can be restored properly later.  */
984 
985 #define target_terminal_ours() \
986      (*current_target.to_terminal_ours) ()
987 
988 /* Save our terminal settings.
989    This is called from TUI after entering or leaving the curses
990    mode.  Since curses modifies our terminal this call is here
991    to take this change into account.  */
992 
993 #define target_terminal_save_ours() \
994      (*current_target.to_terminal_save_ours) ()
995 
996 /* Print useful information about our terminal status, if such a thing
997    exists.  */
998 
999 #define target_terminal_info(arg, from_tty) \
1000      (*current_target.to_terminal_info) (arg, from_tty)
1001 
1002 /* Kill the inferior process.   Make it go away.  */
1003 
1004 extern void target_kill (void);
1005 
1006 /* Load an executable file into the target process.  This is expected
1007    to not only bring new code into the target process, but also to
1008    update GDB's symbol tables to match.
1009 
1010    ARG contains command-line arguments, to be broken down with
1011    buildargv ().  The first non-switch argument is the filename to
1012    load, FILE; the second is a number (as parsed by strtoul (..., ...,
1013    0)), which is an offset to apply to the load addresses of FILE's
1014    sections.  The target may define switches, or other non-switch
1015    arguments, as it pleases.  */
1016 
1017 extern void target_load (char *arg, int from_tty);
1018 
1019 /* Start an inferior process and set inferior_ptid to its pid.
1020    EXEC_FILE is the file to run.
1021    ALLARGS is a string containing the arguments to the program.
1022    ENV is the environment vector to pass.  Errors reported with error().
1023    On VxWorks and various standalone systems, we ignore exec_file.  */
1024 
1025 void target_create_inferior (char *exec_file, char *args,
1026 			     char **env, int from_tty);
1027 
1028 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1029    notification of inferior events such as fork and vork immediately
1030    after the inferior is created.  (This because of how gdb gets an
1031    inferior created via invoking a shell to do it.  In such a scenario,
1032    if the shell init file has commands in it, the shell will fork and
1033    exec for each of those commands, and we will see each such fork
1034    event.  Very bad.)
1035 
1036    Such targets will supply an appropriate definition for this function.  */
1037 
1038 #define target_post_startup_inferior(ptid) \
1039      (*current_target.to_post_startup_inferior) (ptid)
1040 
1041 /* On some targets, we can catch an inferior fork or vfork event when
1042    it occurs.  These functions insert/remove an already-created
1043    catchpoint for such events.  They return  0 for success, 1 if the
1044    catchpoint type is not supported and -1 for failure.  */
1045 
1046 #define target_insert_fork_catchpoint(pid) \
1047      (*current_target.to_insert_fork_catchpoint) (pid)
1048 
1049 #define target_remove_fork_catchpoint(pid) \
1050      (*current_target.to_remove_fork_catchpoint) (pid)
1051 
1052 #define target_insert_vfork_catchpoint(pid) \
1053      (*current_target.to_insert_vfork_catchpoint) (pid)
1054 
1055 #define target_remove_vfork_catchpoint(pid) \
1056      (*current_target.to_remove_vfork_catchpoint) (pid)
1057 
1058 /* If the inferior forks or vforks, this function will be called at
1059    the next resume in order to perform any bookkeeping and fiddling
1060    necessary to continue debugging either the parent or child, as
1061    requested, and releasing the other.  Information about the fork
1062    or vfork event is available via get_last_target_status ().
1063    This function returns 1 if the inferior should not be resumed
1064    (i.e. there is another event pending).  */
1065 
1066 int target_follow_fork (int follow_child);
1067 
1068 /* On some targets, we can catch an inferior exec event when it
1069    occurs.  These functions insert/remove an already-created
1070    catchpoint for such events.  They return  0 for success, 1 if the
1071    catchpoint type is not supported and -1 for failure.  */
1072 
1073 #define target_insert_exec_catchpoint(pid) \
1074      (*current_target.to_insert_exec_catchpoint) (pid)
1075 
1076 #define target_remove_exec_catchpoint(pid) \
1077      (*current_target.to_remove_exec_catchpoint) (pid)
1078 
1079 /* Syscall catch.
1080 
1081    NEEDED is nonzero if any syscall catch (of any kind) is requested.
1082    If NEEDED is zero, it means the target can disable the mechanism to
1083    catch system calls because there are no more catchpoints of this type.
1084 
1085    ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1086    being requested.  In this case, both TABLE_SIZE and TABLE should
1087    be ignored.
1088 
1089    TABLE_SIZE is the number of elements in TABLE.  It only matters if
1090    ANY_COUNT is zero.
1091 
1092    TABLE is an array of ints, indexed by syscall number.  An element in
1093    this array is nonzero if that syscall should be caught.  This argument
1094    only matters if ANY_COUNT is zero.
1095 
1096    Return 0 for success, 1 if syscall catchpoints are not supported or -1
1097    for failure.  */
1098 
1099 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1100      (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1101 						  table_size, table)
1102 
1103 /* Returns TRUE if PID has exited.  And, also sets EXIT_STATUS to the
1104    exit code of PID, if any.  */
1105 
1106 #define target_has_exited(pid,wait_status,exit_status) \
1107      (*current_target.to_has_exited) (pid,wait_status,exit_status)
1108 
1109 /* The debugger has completed a blocking wait() call.  There is now
1110    some process event that must be processed.  This function should
1111    be defined by those targets that require the debugger to perform
1112    cleanup or internal state changes in response to the process event.  */
1113 
1114 /* The inferior process has died.  Do what is right.  */
1115 
1116 void target_mourn_inferior (void);
1117 
1118 /* Does target have enough data to do a run or attach command? */
1119 
1120 #define target_can_run(t) \
1121      ((t)->to_can_run) ()
1122 
1123 /* post process changes to signal handling in the inferior.  */
1124 
1125 #define target_notice_signals(ptid) \
1126      (*current_target.to_notice_signals) (ptid)
1127 
1128 /* Check to see if a thread is still alive.  */
1129 
1130 extern int target_thread_alive (ptid_t ptid);
1131 
1132 /* Query for new threads and add them to the thread list.  */
1133 
1134 extern void target_find_new_threads (void);
1135 
1136 /* Make target stop in a continuable fashion.  (For instance, under
1137    Unix, this should act like SIGSTOP).  This function is normally
1138    used by GUIs to implement a stop button.  */
1139 
1140 extern void target_stop (ptid_t ptid);
1141 
1142 /* Send the specified COMMAND to the target's monitor
1143    (shell,interpreter) for execution.  The result of the query is
1144    placed in OUTBUF.  */
1145 
1146 #define target_rcmd(command, outbuf) \
1147      (*current_target.to_rcmd) (command, outbuf)
1148 
1149 
1150 /* Does the target include all of memory, or only part of it?  This
1151    determines whether we look up the target chain for other parts of
1152    memory if this target can't satisfy a request.  */
1153 
1154 extern int target_has_all_memory_1 (void);
1155 #define target_has_all_memory target_has_all_memory_1 ()
1156 
1157 /* Does the target include memory?  (Dummy targets don't.)  */
1158 
1159 extern int target_has_memory_1 (void);
1160 #define target_has_memory target_has_memory_1 ()
1161 
1162 /* Does the target have a stack?  (Exec files don't, VxWorks doesn't, until
1163    we start a process.)  */
1164 
1165 extern int target_has_stack_1 (void);
1166 #define target_has_stack target_has_stack_1 ()
1167 
1168 /* Does the target have registers?  (Exec files don't.)  */
1169 
1170 extern int target_has_registers_1 (void);
1171 #define target_has_registers target_has_registers_1 ()
1172 
1173 /* Does the target have execution?  Can we make it jump (through
1174    hoops), or pop its stack a few times?  This means that the current
1175    target is currently executing; for some targets, that's the same as
1176    whether or not the target is capable of execution, but there are
1177    also targets which can be current while not executing.  In that
1178    case this will become true after target_create_inferior or
1179    target_attach.  */
1180 
1181 extern int target_has_execution_1 (ptid_t);
1182 
1183 /* Like target_has_execution_1, but always passes inferior_ptid.  */
1184 
1185 extern int target_has_execution_current (void);
1186 
1187 #define target_has_execution target_has_execution_current ()
1188 
1189 /* Default implementations for process_stratum targets.  Return true
1190    if there's a selected inferior, false otherwise.  */
1191 
1192 extern int default_child_has_all_memory (struct target_ops *ops);
1193 extern int default_child_has_memory (struct target_ops *ops);
1194 extern int default_child_has_stack (struct target_ops *ops);
1195 extern int default_child_has_registers (struct target_ops *ops);
1196 extern int default_child_has_execution (struct target_ops *ops,
1197 					ptid_t the_ptid);
1198 
1199 /* Can the target support the debugger control of thread execution?
1200    Can it lock the thread scheduler?  */
1201 
1202 #define target_can_lock_scheduler \
1203      (current_target.to_has_thread_control & tc_schedlock)
1204 
1205 /* Should the target enable async mode if it is supported?  Temporary
1206    cludge until async mode is a strict superset of sync mode.  */
1207 extern int target_async_permitted;
1208 
1209 /* Can the target support asynchronous execution?  */
1210 #define target_can_async_p() (current_target.to_can_async_p ())
1211 
1212 /* Is the target in asynchronous execution mode?  */
1213 #define target_is_async_p() (current_target.to_is_async_p ())
1214 
1215 int target_supports_non_stop (void);
1216 
1217 /* Put the target in async mode with the specified callback function.  */
1218 #define target_async(CALLBACK,CONTEXT) \
1219      (current_target.to_async ((CALLBACK), (CONTEXT)))
1220 
1221 /* This is to be used ONLY within call_function_by_hand().  It provides
1222    a workaround, to have inferior function calls done in sychronous
1223    mode, even though the target is asynchronous.  After
1224    target_async_mask(0) is called, calls to target_can_async_p() will
1225    return FALSE , so that target_resume() will not try to start the
1226    target asynchronously.  After the inferior stops, we IMMEDIATELY
1227    restore the previous nature of the target, by calling
1228    target_async_mask(1).  After that, target_can_async_p() will return
1229    TRUE.  ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1230 
1231    FIXME ezannoni 1999-12-13: we won't need this once we move
1232    the turning async on and off to the single execution commands,
1233    from where it is done currently, in remote_resume().  */
1234 
1235 #define target_async_mask(MASK)	\
1236   (current_target.to_async_mask (MASK))
1237 
1238 /* Converts a process id to a string.  Usually, the string just contains
1239    `process xyz', but on some systems it may contain
1240    `process xyz thread abc'.  */
1241 
1242 extern char *target_pid_to_str (ptid_t ptid);
1243 
1244 extern char *normal_pid_to_str (ptid_t ptid);
1245 
1246 /* Return a short string describing extra information about PID,
1247    e.g. "sleeping", "runnable", "running on LWP 3".  Null return value
1248    is okay.  */
1249 
1250 #define target_extra_thread_info(TP) \
1251      (current_target.to_extra_thread_info (TP))
1252 
1253 /* Return the thread's name.  A NULL result means that the target
1254    could not determine this thread's name.  */
1255 
1256 extern char *target_thread_name (struct thread_info *);
1257 
1258 /* Attempts to find the pathname of the executable file
1259    that was run to create a specified process.
1260 
1261    The process PID must be stopped when this operation is used.
1262 
1263    If the executable file cannot be determined, NULL is returned.
1264 
1265    Else, a pointer to a character string containing the pathname
1266    is returned.  This string should be copied into a buffer by
1267    the client if the string will not be immediately used, or if
1268    it must persist.  */
1269 
1270 #define target_pid_to_exec_file(pid) \
1271      (current_target.to_pid_to_exec_file) (pid)
1272 
1273 /* See the to_thread_architecture description in struct target_ops.  */
1274 
1275 #define target_thread_architecture(ptid) \
1276      (current_target.to_thread_architecture (&current_target, ptid))
1277 
1278 /*
1279  * Iterator function for target memory regions.
1280  * Calls a callback function once for each memory region 'mapped'
1281  * in the child process.  Defined as a simple macro rather than
1282  * as a function macro so that it can be tested for nullity.
1283  */
1284 
1285 #define target_find_memory_regions(FUNC, DATA) \
1286      (current_target.to_find_memory_regions) (FUNC, DATA)
1287 
1288 /*
1289  * Compose corefile .note section.
1290  */
1291 
1292 #define target_make_corefile_notes(BFD, SIZE_P) \
1293      (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1294 
1295 /* Bookmark interfaces.  */
1296 #define target_get_bookmark(ARGS, FROM_TTY) \
1297      (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1298 
1299 #define target_goto_bookmark(ARG, FROM_TTY) \
1300      (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1301 
1302 /* Hardware watchpoint interfaces.  */
1303 
1304 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1305    write).  Only the INFERIOR_PTID task is being queried.  */
1306 
1307 #define target_stopped_by_watchpoint \
1308    (*current_target.to_stopped_by_watchpoint)
1309 
1310 /* Non-zero if we have steppable watchpoints  */
1311 
1312 #define target_have_steppable_watchpoint \
1313    (current_target.to_have_steppable_watchpoint)
1314 
1315 /* Non-zero if we have continuable watchpoints  */
1316 
1317 #define target_have_continuable_watchpoint \
1318    (current_target.to_have_continuable_watchpoint)
1319 
1320 /* Provide defaults for hardware watchpoint functions.  */
1321 
1322 /* If the *_hw_beakpoint functions have not been defined
1323    elsewhere use the definitions in the target vector.  */
1324 
1325 /* Returns non-zero if we can set a hardware watchpoint of type TYPE.  TYPE is
1326    one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1327    bp_hardware_breakpoint.  CNT is the number of such watchpoints used so far
1328    (including this one?).  OTHERTYPE is who knows what...  */
1329 
1330 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1331  (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1332 
1333 /* Returns the number of debug registers needed to watch the given
1334    memory region, or zero if not supported.  */
1335 
1336 #define target_region_ok_for_hw_watchpoint(addr, len) \
1337     (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1338 
1339 
1340 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1341    TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1342    COND is the expression for its condition, or NULL if there's none.
1343    Returns 0 for success, 1 if the watchpoint type is not supported,
1344    -1 for failure.  */
1345 
1346 #define	target_insert_watchpoint(addr, len, type, cond) \
1347      (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1348 
1349 #define	target_remove_watchpoint(addr, len, type, cond) \
1350      (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1351 
1352 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1353      (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1354 
1355 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1356      (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1357 
1358 /* Return number of debug registers needed for a ranged breakpoint,
1359    or -1 if ranged breakpoints are not supported.  */
1360 
1361 extern int target_ranged_break_num_registers (void);
1362 
1363 /* Return non-zero if target knows the data address which triggered this
1364    target_stopped_by_watchpoint, in such case place it to *ADDR_P.  Only the
1365    INFERIOR_PTID task is being queried.  */
1366 #define target_stopped_data_address(target, addr_p) \
1367     (*target.to_stopped_data_address) (target, addr_p)
1368 
1369 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1370   (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1371 
1372 /* Return non-zero if the target is capable of using hardware to evaluate
1373    the condition expression.  In this case, if the condition is false when
1374    the watched memory location changes, execution may continue without the
1375    debugger being notified.
1376 
1377    Due to limitations in the hardware implementation, it may be capable of
1378    avoiding triggering the watchpoint in some cases where the condition
1379    expression is false, but may report some false positives as well.
1380    For this reason, GDB will still evaluate the condition expression when
1381    the watchpoint triggers.  */
1382 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1383   (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1384 
1385 /* Target can execute in reverse?  */
1386 #define target_can_execute_reverse \
1387      (current_target.to_can_execute_reverse ? \
1388       current_target.to_can_execute_reverse () : 0)
1389 
1390 extern const struct target_desc *target_read_description (struct target_ops *);
1391 
1392 #define target_get_ada_task_ptid(lwp, tid) \
1393      (*current_target.to_get_ada_task_ptid) (lwp,tid)
1394 
1395 /* Utility implementation of searching memory.  */
1396 extern int simple_search_memory (struct target_ops* ops,
1397                                  CORE_ADDR start_addr,
1398                                  ULONGEST search_space_len,
1399                                  const gdb_byte *pattern,
1400                                  ULONGEST pattern_len,
1401                                  CORE_ADDR *found_addrp);
1402 
1403 /* Main entry point for searching memory.  */
1404 extern int target_search_memory (CORE_ADDR start_addr,
1405                                  ULONGEST search_space_len,
1406                                  const gdb_byte *pattern,
1407                                  ULONGEST pattern_len,
1408                                  CORE_ADDR *found_addrp);
1409 
1410 /* Tracepoint-related operations.  */
1411 
1412 #define target_trace_init() \
1413   (*current_target.to_trace_init) ()
1414 
1415 #define target_download_tracepoint(t) \
1416   (*current_target.to_download_tracepoint) (t)
1417 
1418 #define target_download_trace_state_variable(tsv) \
1419   (*current_target.to_download_trace_state_variable) (tsv)
1420 
1421 #define target_trace_start() \
1422   (*current_target.to_trace_start) ()
1423 
1424 #define target_trace_set_readonly_regions() \
1425   (*current_target.to_trace_set_readonly_regions) ()
1426 
1427 #define target_get_trace_status(ts) \
1428   (*current_target.to_get_trace_status) (ts)
1429 
1430 #define target_trace_stop() \
1431   (*current_target.to_trace_stop) ()
1432 
1433 #define target_trace_find(type,num,addr1,addr2,tpp) \
1434   (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1435 
1436 #define target_get_trace_state_variable_value(tsv,val) \
1437   (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1438 
1439 #define target_save_trace_data(filename) \
1440   (*current_target.to_save_trace_data) (filename)
1441 
1442 #define target_upload_tracepoints(utpp) \
1443   (*current_target.to_upload_tracepoints) (utpp)
1444 
1445 #define target_upload_trace_state_variables(utsvp) \
1446   (*current_target.to_upload_trace_state_variables) (utsvp)
1447 
1448 #define target_get_raw_trace_data(buf,offset,len) \
1449   (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1450 
1451 #define target_set_disconnected_tracing(val) \
1452   (*current_target.to_set_disconnected_tracing) (val)
1453 
1454 #define	target_set_circular_trace_buffer(val)	\
1455   (*current_target.to_set_circular_trace_buffer) (val)
1456 
1457 #define target_get_tib_address(ptid, addr) \
1458   (*current_target.to_get_tib_address) ((ptid), (addr))
1459 
1460 #define target_set_permissions() \
1461   (*current_target.to_set_permissions) ()
1462 
1463 #define target_static_tracepoint_marker_at(addr, marker) \
1464   (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1465 
1466 #define target_static_tracepoint_markers_by_strid(marker_id) \
1467   (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1468 
1469 #define target_traceframe_info() \
1470   (*current_target.to_traceframe_info) ()
1471 
1472 /* Command logging facility.  */
1473 
1474 #define target_log_command(p)						\
1475   do									\
1476     if (current_target.to_log_command)					\
1477       (*current_target.to_log_command) (p);				\
1478   while (0)
1479 
1480 
1481 extern int target_core_of_thread (ptid_t ptid);
1482 
1483 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1484    the contents of [DATA,DATA+SIZE).  Returns 1 if there's a match, 0
1485    if there's a mismatch, and -1 if an error is encountered while
1486    reading memory.  Throws an error if the functionality is found not
1487    to be supported by the current target.  */
1488 int target_verify_memory (const gdb_byte *data,
1489 			  CORE_ADDR memaddr, ULONGEST size);
1490 
1491 /* Routines for maintenance of the target structures...
1492 
1493    add_target:   Add a target to the list of all possible targets.
1494 
1495    push_target:  Make this target the top of the stack of currently used
1496    targets, within its particular stratum of the stack.  Result
1497    is 0 if now atop the stack, nonzero if not on top (maybe
1498    should warn user).
1499 
1500    unpush_target: Remove this from the stack of currently used targets,
1501    no matter where it is on the list.  Returns 0 if no
1502    change, 1 if removed from stack.
1503 
1504    pop_target:   Remove the top thing on the stack of current targets.  */
1505 
1506 extern void add_target (struct target_ops *);
1507 
1508 extern void push_target (struct target_ops *);
1509 
1510 extern int unpush_target (struct target_ops *);
1511 
1512 extern void target_pre_inferior (int);
1513 
1514 extern void target_preopen (int);
1515 
1516 extern void pop_target (void);
1517 
1518 /* Does whatever cleanup is required to get rid of all pushed targets.
1519    QUITTING is propagated to target_close; it indicates that GDB is
1520    exiting and should not get hung on an error (otherwise it is
1521    important to perform clean termination, even if it takes a
1522    while).  */
1523 extern void pop_all_targets (int quitting);
1524 
1525 /* Like pop_all_targets, but pops only targets whose stratum is
1526    strictly above ABOVE_STRATUM.  */
1527 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1528 
1529 extern int target_is_pushed (struct target_ops *t);
1530 
1531 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1532 					       CORE_ADDR offset);
1533 
1534 /* Struct target_section maps address ranges to file sections.  It is
1535    mostly used with BFD files, but can be used without (e.g. for handling
1536    raw disks, or files not in formats handled by BFD).  */
1537 
1538 struct target_section
1539   {
1540     CORE_ADDR addr;		/* Lowest address in section */
1541     CORE_ADDR endaddr;		/* 1+highest address in section */
1542 
1543     struct bfd_section *the_bfd_section;
1544 
1545     bfd *bfd;			/* BFD file pointer */
1546   };
1547 
1548 /* Holds an array of target sections.  Defined by [SECTIONS..SECTIONS_END[.  */
1549 
1550 struct target_section_table
1551 {
1552   struct target_section *sections;
1553   struct target_section *sections_end;
1554 };
1555 
1556 /* Return the "section" containing the specified address.  */
1557 struct target_section *target_section_by_addr (struct target_ops *target,
1558 					       CORE_ADDR addr);
1559 
1560 /* Return the target section table this target (or the targets
1561    beneath) currently manipulate.  */
1562 
1563 extern struct target_section_table *target_get_section_table
1564   (struct target_ops *target);
1565 
1566 /* From mem-break.c */
1567 
1568 extern int memory_remove_breakpoint (struct gdbarch *,
1569 				     struct bp_target_info *);
1570 
1571 extern int memory_insert_breakpoint (struct gdbarch *,
1572 				     struct bp_target_info *);
1573 
1574 extern int default_memory_remove_breakpoint (struct gdbarch *,
1575 					     struct bp_target_info *);
1576 
1577 extern int default_memory_insert_breakpoint (struct gdbarch *,
1578 					     struct bp_target_info *);
1579 
1580 
1581 /* From target.c */
1582 
1583 extern void initialize_targets (void);
1584 
1585 extern void noprocess (void) ATTRIBUTE_NORETURN;
1586 
1587 extern void target_require_runnable (void);
1588 
1589 extern void find_default_attach (struct target_ops *, char *, int);
1590 
1591 extern void find_default_create_inferior (struct target_ops *,
1592 					  char *, char *, char **, int);
1593 
1594 extern struct target_ops *find_run_target (void);
1595 
1596 extern struct target_ops *find_target_beneath (struct target_ops *);
1597 
1598 /* Read OS data object of type TYPE from the target, and return it in
1599    XML format.  The result is NUL-terminated and returned as a string,
1600    allocated using xmalloc.  If an error occurs or the transfer is
1601    unsupported, NULL is returned.  Empty objects are returned as
1602    allocated but empty strings.  */
1603 
1604 extern char *target_get_osdata (const char *type);
1605 
1606 
1607 /* Stuff that should be shared among the various remote targets.  */
1608 
1609 /* Debugging level.  0 is off, and non-zero values mean to print some debug
1610    information (higher values, more information).  */
1611 extern int remote_debug;
1612 
1613 /* Speed in bits per second, or -1 which means don't mess with the speed.  */
1614 extern int baud_rate;
1615 /* Timeout limit for response from target.  */
1616 extern int remote_timeout;
1617 
1618 
1619 /* Functions for helping to write a native target.  */
1620 
1621 /* This is for native targets which use a unix/POSIX-style waitstatus.  */
1622 extern void store_waitstatus (struct target_waitstatus *, int);
1623 
1624 /* These are in common/signals.c, but they're only used by gdb.  */
1625 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1626 							   int);
1627 extern int default_target_signal_to_host (struct gdbarch *,
1628 					  enum target_signal);
1629 
1630 /* Convert from a number used in a GDB command to an enum target_signal.  */
1631 extern enum target_signal target_signal_from_command (int);
1632 /* End of files in common/signals.c.  */
1633 
1634 /* Set the show memory breakpoints mode to show, and installs a cleanup
1635    to restore it back to the current value.  */
1636 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1637 
1638 extern int may_write_registers;
1639 extern int may_write_memory;
1640 extern int may_insert_breakpoints;
1641 extern int may_insert_tracepoints;
1642 extern int may_insert_fast_tracepoints;
1643 extern int may_stop;
1644 
1645 extern void update_target_permissions (void);
1646 
1647 
1648 /* Imported from machine dependent code.  */
1649 
1650 /* Blank target vector entries are initialized to target_ignore.  */
1651 void target_ignore (void);
1652 
1653 #endif /* !defined (TARGET_H) */
1654