xref: /dragonfly/contrib/gdb-7/gdb/valops.c (revision 2020c8fe)
1 /* Perform non-arithmetic operations on values, for GDB.
2 
3    Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4    1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5    2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50 
51 extern int overload_debug;
52 /* Local functions.  */
53 
54 static int typecmp (int staticp, int varargs, int nargs,
55 		    struct field t1[], struct value *t2[]);
56 
57 static struct value *search_struct_field (const char *, struct value *,
58 					  int, struct type *, int);
59 
60 static struct value *search_struct_method (const char *, struct value **,
61 					   struct value **,
62 					   int, int *, struct type *);
63 
64 static int find_oload_champ_namespace (struct type **, int,
65 				       const char *, const char *,
66 				       struct symbol ***,
67 				       struct badness_vector **,
68 				       const int no_adl);
69 
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 				     const char *, const char *,
73 				     int, struct symbol ***,
74 				     struct badness_vector **, int *,
75 				     const int no_adl);
76 
77 static int find_oload_champ (struct type **, int, int, int,
78 			     struct fn_field *, struct symbol **,
79 			     struct badness_vector **);
80 
81 static int oload_method_static (int, struct fn_field *, int);
82 
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84 
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 					   int, int);
88 
89 static struct value *value_struct_elt_for_reference (struct type *,
90 						     int, struct type *,
91 						     char *,
92 						     struct type *,
93 						     int, enum noside);
94 
95 static struct value *value_namespace_elt (const struct type *,
96 					  char *, int , enum noside);
97 
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 						char *, int,
100 						enum noside);
101 
102 static CORE_ADDR allocate_space_in_inferior (int);
103 
104 static struct value *cast_into_complex (struct type *, struct value *);
105 
106 static struct fn_field *find_method_list (struct value **, const char *,
107 					  int, struct type *, int *,
108 					  struct type **, int *);
109 
110 void _initialize_valops (void);
111 
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114    default.  */
115 
116 static int auto_abandon = 0;
117 #endif
118 
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 			  struct cmd_list_element *c,
123 			  const char *value)
124 {
125   fprintf_filtered (file, _("Overload resolution in evaluating "
126 			    "C++ functions is %s.\n"),
127 		    value);
128 }
129 
130 /* Find the address of function name NAME in the inferior.  If OBJF_P
131    is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132    is defined.  */
133 
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137   struct symbol *sym;
138 
139   sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140   if (sym != NULL)
141     {
142       if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 	{
144 	  error (_("\"%s\" exists in this program but is not a function."),
145 		 name);
146 	}
147 
148       if (objf_p)
149 	*objf_p = SYMBOL_SYMTAB (sym)->objfile;
150 
151       return value_of_variable (sym, NULL);
152     }
153   else
154     {
155       struct minimal_symbol *msymbol =
156 	lookup_minimal_symbol (name, NULL, NULL);
157 
158       if (msymbol != NULL)
159 	{
160 	  struct objfile *objfile = msymbol_objfile (msymbol);
161 	  struct gdbarch *gdbarch = get_objfile_arch (objfile);
162 
163 	  struct type *type;
164 	  CORE_ADDR maddr;
165 	  type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 	  type = lookup_function_type (type);
167 	  type = lookup_pointer_type (type);
168 	  maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169 
170 	  if (objf_p)
171 	    *objf_p = objfile;
172 
173 	  return value_from_pointer (type, maddr);
174 	}
175       else
176 	{
177 	  if (!target_has_execution)
178 	    error (_("evaluation of this expression "
179 		     "requires the target program to be active"));
180 	  else
181 	    error (_("evaluation of this expression requires the "
182 		     "program to have a function \"%s\"."),
183 		   name);
184 	}
185     }
186 }
187 
188 /* Allocate NBYTES of space in the inferior using the inferior's
189    malloc and return a value that is a pointer to the allocated
190    space.  */
191 
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195   struct objfile *objf;
196   struct value *val = find_function_in_inferior ("malloc", &objf);
197   struct gdbarch *gdbarch = get_objfile_arch (objf);
198   struct value *blocklen;
199 
200   blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201   val = call_function_by_hand (val, 1, &blocklen);
202   if (value_logical_not (val))
203     {
204       if (!target_has_execution)
205 	error (_("No memory available to program now: "
206 		 "you need to start the target first"));
207       else
208 	error (_("No memory available to program: call to malloc failed"));
209     }
210   return val;
211 }
212 
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216   return value_as_long (value_allocate_space_in_inferior (len));
217 }
218 
219 /* Cast struct value VAL to type TYPE and return as a value.
220    Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221    for this to work.  Typedef to one of the codes is permitted.
222    Returns NULL if the cast is neither an upcast nor a downcast.  */
223 
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227   struct type *t1;
228   struct type *t2;
229   struct value *v;
230 
231   gdb_assert (type != NULL && v2 != NULL);
232 
233   t1 = check_typedef (type);
234   t2 = check_typedef (value_type (v2));
235 
236   /* Check preconditions.  */
237   gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 	       || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 	      && !!"Precondition is that type is of STRUCT or UNION kind.");
240   gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 	       || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 	      && !!"Precondition is that value is of STRUCT or UNION kind");
243 
244   if (TYPE_NAME (t1) != NULL
245       && TYPE_NAME (t2) != NULL
246       && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247     return NULL;
248 
249   /* Upcasting: look in the type of the source to see if it contains the
250      type of the target as a superclass.  If so, we'll need to
251      offset the pointer rather than just change its type.  */
252   if (TYPE_NAME (t1) != NULL)
253     {
254       v = search_struct_field (type_name_no_tag (t1),
255 			       v2, 0, t2, 1);
256       if (v)
257 	return v;
258     }
259 
260   /* Downcasting: look in the type of the target to see if it contains the
261      type of the source as a superclass.  If so, we'll need to
262      offset the pointer rather than just change its type.  */
263   if (TYPE_NAME (t2) != NULL)
264     {
265       /* Try downcasting using the run-time type of the value.  */
266       int full, top, using_enc;
267       struct type *real_type;
268 
269       real_type = value_rtti_type (v2, &full, &top, &using_enc);
270       if (real_type)
271 	{
272 	  v = value_full_object (v2, real_type, full, top, using_enc);
273 	  v = value_at_lazy (real_type, value_address (v));
274 
275 	  /* We might be trying to cast to the outermost enclosing
276 	     type, in which case search_struct_field won't work.  */
277 	  if (TYPE_NAME (real_type) != NULL
278 	      && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 	    return v;
280 
281 	  v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 	  if (v)
283 	    return v;
284 	}
285 
286       /* Try downcasting using information from the destination type
287 	 T2.  This wouldn't work properly for classes with virtual
288 	 bases, but those were handled above.  */
289       v = search_struct_field (type_name_no_tag (t2),
290 			       value_zero (t1, not_lval), 0, t1, 1);
291       if (v)
292 	{
293 	  /* Downcasting is possible (t1 is superclass of v2).  */
294 	  CORE_ADDR addr2 = value_address (v2);
295 
296 	  addr2 -= value_address (v) + value_embedded_offset (v);
297 	  return value_at (type, addr2);
298 	}
299     }
300 
301   return NULL;
302 }
303 
304 /* Cast one pointer or reference type to another.  Both TYPE and
305    the type of ARG2 should be pointer types, or else both should be
306    reference types.  Returns the new pointer or reference.  */
307 
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311   struct type *type1 = check_typedef (type);
312   struct type *type2 = check_typedef (value_type (arg2));
313   struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314   struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315 
316   if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317       && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318       && !value_logical_not (arg2))
319     {
320       struct value *v2;
321 
322       if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 	v2 = coerce_ref (arg2);
324       else
325 	v2 = value_ind (arg2);
326       gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 		  == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328       v2 = value_cast_structs (t1, v2);
329       /* At this point we have what we can have, un-dereference if needed.  */
330       if (v2)
331 	{
332 	  struct value *v = value_addr (v2);
333 
334 	  deprecated_set_value_type (v, type);
335 	  return v;
336 	}
337    }
338 
339   /* No superclass found, just change the pointer type.  */
340   arg2 = value_copy (arg2);
341   deprecated_set_value_type (arg2, type);
342   set_value_enclosing_type (arg2, type);
343   set_value_pointed_to_offset (arg2, 0);	/* pai: chk_val */
344   return arg2;
345 }
346 
347 /* Cast value ARG2 to type TYPE and return as a value.
348    More general than a C cast: accepts any two types of the same length,
349    and if ARG2 is an lvalue it can be cast into anything at all.  */
350 /* In C++, casts may change pointer or object representations.  */
351 
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355   enum type_code code1;
356   enum type_code code2;
357   int scalar;
358   struct type *type2;
359 
360   int convert_to_boolean = 0;
361 
362   if (value_type (arg2) == type)
363     return arg2;
364 
365   code1 = TYPE_CODE (check_typedef (type));
366 
367   /* Check if we are casting struct reference to struct reference.  */
368   if (code1 == TYPE_CODE_REF)
369     {
370       /* We dereference type; then we recurse and finally
371          we generate value of the given reference.  Nothing wrong with
372 	 that.  */
373       struct type *t1 = check_typedef (type);
374       struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375       struct value *val =  value_cast (dereftype, arg2);
376 
377       return value_ref (val);
378     }
379 
380   code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381 
382   if (code2 == TYPE_CODE_REF)
383     /* We deref the value and then do the cast.  */
384     return value_cast (type, coerce_ref (arg2));
385 
386   CHECK_TYPEDEF (type);
387   code1 = TYPE_CODE (type);
388   arg2 = coerce_ref (arg2);
389   type2 = check_typedef (value_type (arg2));
390 
391   /* You can't cast to a reference type.  See value_cast_pointers
392      instead.  */
393   gdb_assert (code1 != TYPE_CODE_REF);
394 
395   /* A cast to an undetermined-length array_type, such as
396      (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397      where N is sizeof(OBJECT)/sizeof(TYPE).  */
398   if (code1 == TYPE_CODE_ARRAY)
399     {
400       struct type *element_type = TYPE_TARGET_TYPE (type);
401       unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402 
403       if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 	{
405 	  struct type *range_type = TYPE_INDEX_TYPE (type);
406 	  int val_length = TYPE_LENGTH (type2);
407 	  LONGEST low_bound, high_bound, new_length;
408 
409 	  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 	    low_bound = 0, high_bound = 0;
411 	  new_length = val_length / element_length;
412 	  if (val_length % element_length != 0)
413 	    warning (_("array element type size does not "
414 		       "divide object size in cast"));
415 	  /* FIXME-type-allocation: need a way to free this type when
416 	     we are done with it.  */
417 	  range_type = create_range_type ((struct type *) NULL,
418 					  TYPE_TARGET_TYPE (range_type),
419 					  low_bound,
420 					  new_length + low_bound - 1);
421 	  deprecated_set_value_type (arg2,
422 				     create_array_type ((struct type *) NULL,
423 							element_type,
424 							range_type));
425 	  return arg2;
426 	}
427     }
428 
429   if (current_language->c_style_arrays
430       && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431       && !TYPE_VECTOR (type2))
432     arg2 = value_coerce_array (arg2);
433 
434   if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435     arg2 = value_coerce_function (arg2);
436 
437   type2 = check_typedef (value_type (arg2));
438   code2 = TYPE_CODE (type2);
439 
440   if (code1 == TYPE_CODE_COMPLEX)
441     return cast_into_complex (type, arg2);
442   if (code1 == TYPE_CODE_BOOL)
443     {
444       code1 = TYPE_CODE_INT;
445       convert_to_boolean = 1;
446     }
447   if (code1 == TYPE_CODE_CHAR)
448     code1 = TYPE_CODE_INT;
449   if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450     code2 = TYPE_CODE_INT;
451 
452   scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 	    || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 	    || code2 == TYPE_CODE_RANGE);
455 
456   if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457       && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458       && TYPE_NAME (type) != 0)
459     {
460       struct value *v = value_cast_structs (type, arg2);
461 
462       if (v)
463 	return v;
464     }
465 
466   if (code1 == TYPE_CODE_FLT && scalar)
467     return value_from_double (type, value_as_double (arg2));
468   else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469     {
470       enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471       int dec_len = TYPE_LENGTH (type);
472       gdb_byte dec[16];
473 
474       if (code2 == TYPE_CODE_FLT)
475 	decimal_from_floating (arg2, dec, dec_len, byte_order);
476       else if (code2 == TYPE_CODE_DECFLOAT)
477 	decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 			 byte_order, dec, dec_len, byte_order);
479       else
480 	/* The only option left is an integral type.  */
481 	decimal_from_integral (arg2, dec, dec_len, byte_order);
482 
483       return value_from_decfloat (type, dec);
484     }
485   else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 	    || code1 == TYPE_CODE_RANGE)
487 	   && (scalar || code2 == TYPE_CODE_PTR
488 	       || code2 == TYPE_CODE_MEMBERPTR))
489     {
490       LONGEST longest;
491 
492       /* When we cast pointers to integers, we mustn't use
493          gdbarch_pointer_to_address to find the address the pointer
494          represents, as value_as_long would.  GDB should evaluate
495          expressions just as the compiler would --- and the compiler
496          sees a cast as a simple reinterpretation of the pointer's
497          bits.  */
498       if (code2 == TYPE_CODE_PTR)
499         longest = extract_unsigned_integer
500 		    (value_contents (arg2), TYPE_LENGTH (type2),
501 		     gdbarch_byte_order (get_type_arch (type2)));
502       else
503         longest = value_as_long (arg2);
504       return value_from_longest (type, convert_to_boolean ?
505 				 (LONGEST) (longest ? 1 : 0) : longest);
506     }
507   else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 				      || code2 == TYPE_CODE_ENUM
509 				      || code2 == TYPE_CODE_RANGE))
510     {
511       /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 	 want the length of an address! -- we are really dealing with
513 	 addresses (i.e., gdb representations) not pointers (i.e.,
514 	 target representations) here.
515 
516 	 This allows things like "print *(int *)0x01000234" to work
517 	 without printing a misleading message -- which would
518 	 otherwise occur when dealing with a target having two byte
519 	 pointers and four byte addresses.  */
520 
521       int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522       LONGEST longest = value_as_long (arg2);
523 
524       if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 	{
526 	  if (longest >= ((LONGEST) 1 << addr_bit)
527 	      || longest <= -((LONGEST) 1 << addr_bit))
528 	    warning (_("value truncated"));
529 	}
530       return value_from_longest (type, longest);
531     }
532   else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 	   && value_as_long (arg2) == 0)
534     {
535       struct value *result = allocate_value (type);
536 
537       cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538       return result;
539     }
540   else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 	   && value_as_long (arg2) == 0)
542     {
543       /* The Itanium C++ ABI represents NULL pointers to members as
544 	 minus one, instead of biasing the normal case.  */
545       return value_from_longest (type, -1);
546     }
547   else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548     {
549       /* Widen the scalar to a vector.  */
550       struct type *eltype;
551       struct value *val;
552       LONGEST low_bound, high_bound;
553       int i;
554 
555       if (!get_array_bounds (type, &low_bound, &high_bound))
556 	error (_("Could not determine the vector bounds"));
557 
558       eltype = check_typedef (TYPE_TARGET_TYPE (type));
559       arg2 = value_cast (eltype, arg2);
560       val = allocate_value (type);
561 
562       for (i = 0; i < high_bound - low_bound + 1; i++)
563 	{
564 	  /* Duplicate the contents of arg2 into the destination vector.  */
565 	  memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 		  value_contents_all (arg2), TYPE_LENGTH (eltype));
567 	}
568       return val;
569     }
570   else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571     {
572       if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 	return value_cast_pointers (type, arg2);
574 
575       arg2 = value_copy (arg2);
576       deprecated_set_value_type (arg2, type);
577       set_value_enclosing_type (arg2, type);
578       set_value_pointed_to_offset (arg2, 0);	/* pai: chk_val */
579       return arg2;
580     }
581   else if (VALUE_LVAL (arg2) == lval_memory)
582     return value_at_lazy (type, value_address (arg2));
583   else if (code1 == TYPE_CODE_VOID)
584     {
585       return value_zero (type, not_lval);
586     }
587   else
588     {
589       error (_("Invalid cast."));
590       return 0;
591     }
592 }
593 
594 /* The C++ reinterpret_cast operator.  */
595 
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599   struct value *result;
600   struct type *real_type = check_typedef (type);
601   struct type *arg_type, *dest_type;
602   int is_ref = 0;
603   enum type_code dest_code, arg_code;
604 
605   /* Do reference, function, and array conversion.  */
606   arg = coerce_array (arg);
607 
608   /* Attempt to preserve the type the user asked for.  */
609   dest_type = type;
610 
611   /* If we are casting to a reference type, transform
612      reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V).  */
613   if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614     {
615       is_ref = 1;
616       arg = value_addr (arg);
617       dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618       real_type = lookup_pointer_type (real_type);
619     }
620 
621   arg_type = value_type (arg);
622 
623   dest_code = TYPE_CODE (real_type);
624   arg_code = TYPE_CODE (arg_type);
625 
626   /* We can convert pointer types, or any pointer type to int, or int
627      type to pointer.  */
628   if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629       || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630       || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631       || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632       || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633       || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634       || (dest_code == arg_code
635 	  && (dest_code == TYPE_CODE_PTR
636 	      || dest_code == TYPE_CODE_METHODPTR
637 	      || dest_code == TYPE_CODE_MEMBERPTR)))
638     result = value_cast (dest_type, arg);
639   else
640     error (_("Invalid reinterpret_cast"));
641 
642   if (is_ref)
643     result = value_cast (type, value_ref (value_ind (result)));
644 
645   return result;
646 }
647 
648 /* A helper for value_dynamic_cast.  This implements the first of two
649    runtime checks: we iterate over all the base classes of the value's
650    class which are equal to the desired class; if only one of these
651    holds the value, then it is the answer.  */
652 
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 		      const gdb_byte *valaddr,
656 		      int embedded_offset,
657 		      CORE_ADDR address,
658 		      struct value *val,
659 		      struct type *search_type,
660 		      CORE_ADDR arg_addr,
661 		      struct type *arg_type,
662 		      struct value **result)
663 {
664   int i, result_count = 0;
665 
666   for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
667     {
668       int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
669 				     address, val);
670 
671       if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
672 	{
673 	  if (address + embedded_offset + offset >= arg_addr
674 	      && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
675 	    {
676 	      ++result_count;
677 	      if (!*result)
678 		*result = value_at_lazy (TYPE_BASECLASS (search_type, i),
679 					 address + embedded_offset + offset);
680 	    }
681 	}
682       else
683 	result_count += dynamic_cast_check_1 (desired_type,
684 					      valaddr,
685 					      embedded_offset + offset,
686 					      address, val,
687 					      TYPE_BASECLASS (search_type, i),
688 					      arg_addr,
689 					      arg_type,
690 					      result);
691     }
692 
693   return result_count;
694 }
695 
696 /* A helper for value_dynamic_cast.  This implements the second of two
697    runtime checks: we look for a unique public sibling class of the
698    argument's declared class.  */
699 
700 static int
701 dynamic_cast_check_2 (struct type *desired_type,
702 		      const gdb_byte *valaddr,
703 		      int embedded_offset,
704 		      CORE_ADDR address,
705 		      struct value *val,
706 		      struct type *search_type,
707 		      struct value **result)
708 {
709   int i, result_count = 0;
710 
711   for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
712     {
713       int offset;
714 
715       if (! BASETYPE_VIA_PUBLIC (search_type, i))
716 	continue;
717 
718       offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
719 				 address, val);
720       if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
721 	{
722 	  ++result_count;
723 	  if (*result == NULL)
724 	    *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
725 				     address + embedded_offset + offset);
726 	}
727       else
728 	result_count += dynamic_cast_check_2 (desired_type,
729 					      valaddr,
730 					      embedded_offset + offset,
731 					      address, val,
732 					      TYPE_BASECLASS (search_type, i),
733 					      result);
734     }
735 
736   return result_count;
737 }
738 
739 /* The C++ dynamic_cast operator.  */
740 
741 struct value *
742 value_dynamic_cast (struct type *type, struct value *arg)
743 {
744   int full, top, using_enc;
745   struct type *resolved_type = check_typedef (type);
746   struct type *arg_type = check_typedef (value_type (arg));
747   struct type *class_type, *rtti_type;
748   struct value *result, *tem, *original_arg = arg;
749   CORE_ADDR addr;
750   int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
751 
752   if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
753       && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
754     error (_("Argument to dynamic_cast must be a pointer or reference type"));
755   if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
756       && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
757     error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
758 
759   class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
760   if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
761     {
762       if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
763 	  && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
764 		&& value_as_long (arg) == 0))
765 	error (_("Argument to dynamic_cast does not have pointer type"));
766       if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
767 	{
768 	  arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
769 	  if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
770 	    error (_("Argument to dynamic_cast does "
771 		     "not have pointer to class type"));
772 	}
773 
774       /* Handle NULL pointers.  */
775       if (value_as_long (arg) == 0)
776 	return value_zero (type, not_lval);
777 
778       arg = value_ind (arg);
779     }
780   else
781     {
782       if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
783 	error (_("Argument to dynamic_cast does not have class type"));
784     }
785 
786   /* If the classes are the same, just return the argument.  */
787   if (class_types_same_p (class_type, arg_type))
788     return value_cast (type, arg);
789 
790   /* If the target type is a unique base class of the argument's
791      declared type, just cast it.  */
792   if (is_ancestor (class_type, arg_type))
793     {
794       if (is_unique_ancestor (class_type, arg))
795 	return value_cast (type, original_arg);
796       error (_("Ambiguous dynamic_cast"));
797     }
798 
799   rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
800   if (! rtti_type)
801     error (_("Couldn't determine value's most derived type for dynamic_cast"));
802 
803   /* Compute the most derived object's address.  */
804   addr = value_address (arg);
805   if (full)
806     {
807       /* Done.  */
808     }
809   else if (using_enc)
810     addr += top;
811   else
812     addr += top + value_embedded_offset (arg);
813 
814   /* dynamic_cast<void *> means to return a pointer to the
815      most-derived object.  */
816   if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
817       && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
818     return value_at_lazy (type, addr);
819 
820   tem = value_at (type, addr);
821 
822   /* The first dynamic check specified in 5.2.7.  */
823   if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
824     {
825       if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
826 	return tem;
827       result = NULL;
828       if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
829 				value_contents_for_printing (tem),
830 				value_embedded_offset (tem),
831 				value_address (tem), tem,
832 				rtti_type, addr,
833 				arg_type,
834 				&result) == 1)
835 	return value_cast (type,
836 			   is_ref ? value_ref (result) : value_addr (result));
837     }
838 
839   /* The second dynamic check specified in 5.2.7.  */
840   result = NULL;
841   if (is_public_ancestor (arg_type, rtti_type)
842       && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
843 			       value_contents_for_printing (tem),
844 			       value_embedded_offset (tem),
845 			       value_address (tem), tem,
846 			       rtti_type, &result) == 1)
847     return value_cast (type,
848 		       is_ref ? value_ref (result) : value_addr (result));
849 
850   if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
851     return value_zero (type, not_lval);
852 
853   error (_("dynamic_cast failed"));
854 }
855 
856 /* Create a value of type TYPE that is zero, and return it.  */
857 
858 struct value *
859 value_zero (struct type *type, enum lval_type lv)
860 {
861   struct value *val = allocate_value (type);
862 
863   VALUE_LVAL (val) = lv;
864   return val;
865 }
866 
867 /* Create a value of numeric type TYPE that is one, and return it.  */
868 
869 struct value *
870 value_one (struct type *type, enum lval_type lv)
871 {
872   struct type *type1 = check_typedef (type);
873   struct value *val;
874 
875   if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
876     {
877       enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
878       gdb_byte v[16];
879 
880       decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
881       val = value_from_decfloat (type, v);
882     }
883   else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
884     {
885       val = value_from_double (type, (DOUBLEST) 1);
886     }
887   else if (is_integral_type (type1))
888     {
889       val = value_from_longest (type, (LONGEST) 1);
890     }
891   else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
892     {
893       struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
894       int i;
895       LONGEST low_bound, high_bound;
896       struct value *tmp;
897 
898       if (!get_array_bounds (type1, &low_bound, &high_bound))
899 	error (_("Could not determine the vector bounds"));
900 
901       val = allocate_value (type);
902       for (i = 0; i < high_bound - low_bound + 1; i++)
903 	{
904 	  tmp = value_one (eltype, lv);
905 	  memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
906 		  value_contents_all (tmp), TYPE_LENGTH (eltype));
907 	}
908     }
909   else
910     {
911       error (_("Not a numeric type."));
912     }
913 
914   VALUE_LVAL (val) = lv;
915   return val;
916 }
917 
918 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.  */
919 
920 static struct value *
921 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
922 {
923   struct value *val;
924 
925   if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
926     error (_("Attempt to dereference a generic pointer."));
927 
928   val = value_from_contents_and_address (type, NULL, addr);
929 
930   if (!lazy)
931     value_fetch_lazy (val);
932 
933   return val;
934 }
935 
936 /* Return a value with type TYPE located at ADDR.
937 
938    Call value_at only if the data needs to be fetched immediately;
939    if we can be 'lazy' and defer the fetch, perhaps indefinately, call
940    value_at_lazy instead.  value_at_lazy simply records the address of
941    the data and sets the lazy-evaluation-required flag.  The lazy flag
942    is tested in the value_contents macro, which is used if and when
943    the contents are actually required.
944 
945    Note: value_at does *NOT* handle embedded offsets; perform such
946    adjustments before or after calling it.  */
947 
948 struct value *
949 value_at (struct type *type, CORE_ADDR addr)
950 {
951   return get_value_at (type, addr, 0);
952 }
953 
954 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).  */
955 
956 struct value *
957 value_at_lazy (struct type *type, CORE_ADDR addr)
958 {
959   return get_value_at (type, addr, 1);
960 }
961 
962 /* Called only from the value_contents and value_contents_all()
963    macros, if the current data for a variable needs to be loaded into
964    value_contents(VAL).  Fetches the data from the user's process, and
965    clears the lazy flag to indicate that the data in the buffer is
966    valid.
967 
968    If the value is zero-length, we avoid calling read_memory, which
969    would abort.  We mark the value as fetched anyway -- all 0 bytes of
970    it.
971 
972    This function returns a value because it is used in the
973    value_contents macro as part of an expression, where a void would
974    not work.  The value is ignored.  */
975 
976 int
977 value_fetch_lazy (struct value *val)
978 {
979   gdb_assert (value_lazy (val));
980   allocate_value_contents (val);
981   if (value_bitsize (val))
982     {
983       /* To read a lazy bitfield, read the entire enclosing value.  This
984 	 prevents reading the same block of (possibly volatile) memory once
985          per bitfield.  It would be even better to read only the containing
986          word, but we have no way to record that just specific bits of a
987          value have been fetched.  */
988       struct type *type = check_typedef (value_type (val));
989       enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
990       struct value *parent = value_parent (val);
991       LONGEST offset = value_offset (val);
992       LONGEST num;
993       int length = TYPE_LENGTH (type);
994 
995       if (!value_bits_valid (val,
996 			     TARGET_CHAR_BIT * offset + value_bitpos (val),
997 			     value_bitsize (val)))
998 	error (_("value has been optimized out"));
999 
1000       if (!unpack_value_bits_as_long (value_type (val),
1001 				      value_contents_for_printing (parent),
1002 				      offset,
1003 				      value_bitpos (val),
1004 				      value_bitsize (val), parent, &num))
1005 	mark_value_bytes_unavailable (val,
1006 				      value_embedded_offset (val),
1007 				      length);
1008       else
1009 	store_signed_integer (value_contents_raw (val), length,
1010 			      byte_order, num);
1011     }
1012   else if (VALUE_LVAL (val) == lval_memory)
1013     {
1014       CORE_ADDR addr = value_address (val);
1015       int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1016 
1017       if (length)
1018 	read_value_memory (val, 0, value_stack (val),
1019 			   addr, value_contents_all_raw (val), length);
1020     }
1021   else if (VALUE_LVAL (val) == lval_register)
1022     {
1023       struct frame_info *frame;
1024       int regnum;
1025       struct type *type = check_typedef (value_type (val));
1026       struct value *new_val = val, *mark = value_mark ();
1027 
1028       /* Offsets are not supported here; lazy register values must
1029 	 refer to the entire register.  */
1030       gdb_assert (value_offset (val) == 0);
1031 
1032       while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1033 	{
1034 	  frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1035 	  regnum = VALUE_REGNUM (new_val);
1036 
1037 	  gdb_assert (frame != NULL);
1038 
1039 	  /* Convertible register routines are used for multi-register
1040 	     values and for interpretation in different types
1041 	     (e.g. float or int from a double register).  Lazy
1042 	     register values should have the register's natural type,
1043 	     so they do not apply.  */
1044 	  gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1045 						   regnum, type));
1046 
1047 	  new_val = get_frame_register_value (frame, regnum);
1048 	}
1049 
1050       /* If it's still lazy (for instance, a saved register on the
1051 	 stack), fetch it.  */
1052       if (value_lazy (new_val))
1053 	value_fetch_lazy (new_val);
1054 
1055       /* If the register was not saved, mark it optimized out.  */
1056       if (value_optimized_out (new_val))
1057 	set_value_optimized_out (val, 1);
1058       else
1059 	{
1060 	  set_value_lazy (val, 0);
1061 	  value_contents_copy (val, value_embedded_offset (val),
1062 			       new_val, value_embedded_offset (new_val),
1063 			       TYPE_LENGTH (type));
1064 	}
1065 
1066       if (frame_debug)
1067 	{
1068 	  struct gdbarch *gdbarch;
1069 	  frame = frame_find_by_id (VALUE_FRAME_ID (val));
1070 	  regnum = VALUE_REGNUM (val);
1071 	  gdbarch = get_frame_arch (frame);
1072 
1073 	  fprintf_unfiltered (gdb_stdlog,
1074 			      "{ value_fetch_lazy "
1075 			      "(frame=%d,regnum=%d(%s),...) ",
1076 			      frame_relative_level (frame), regnum,
1077 			      user_reg_map_regnum_to_name (gdbarch, regnum));
1078 
1079 	  fprintf_unfiltered (gdb_stdlog, "->");
1080 	  if (value_optimized_out (new_val))
1081 	    fprintf_unfiltered (gdb_stdlog, " optimized out");
1082 	  else
1083 	    {
1084 	      int i;
1085 	      const gdb_byte *buf = value_contents (new_val);
1086 
1087 	      if (VALUE_LVAL (new_val) == lval_register)
1088 		fprintf_unfiltered (gdb_stdlog, " register=%d",
1089 				    VALUE_REGNUM (new_val));
1090 	      else if (VALUE_LVAL (new_val) == lval_memory)
1091 		fprintf_unfiltered (gdb_stdlog, " address=%s",
1092 				    paddress (gdbarch,
1093 					      value_address (new_val)));
1094 	      else
1095 		fprintf_unfiltered (gdb_stdlog, " computed");
1096 
1097 	      fprintf_unfiltered (gdb_stdlog, " bytes=");
1098 	      fprintf_unfiltered (gdb_stdlog, "[");
1099 	      for (i = 0; i < register_size (gdbarch, regnum); i++)
1100 		fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1101 	      fprintf_unfiltered (gdb_stdlog, "]");
1102 	    }
1103 
1104 	  fprintf_unfiltered (gdb_stdlog, " }\n");
1105 	}
1106 
1107       /* Dispose of the intermediate values.  This prevents
1108 	 watchpoints from trying to watch the saved frame pointer.  */
1109       value_free_to_mark (mark);
1110     }
1111   else if (VALUE_LVAL (val) == lval_computed)
1112     value_computed_funcs (val)->read (val);
1113   else if (value_optimized_out (val))
1114     /* Keep it optimized out.  */;
1115   else
1116     internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1117 
1118   set_value_lazy (val, 0);
1119   return 0;
1120 }
1121 
1122 void
1123 read_value_memory (struct value *val, int embedded_offset,
1124 		   int stack, CORE_ADDR memaddr,
1125 		   gdb_byte *buffer, size_t length)
1126 {
1127   if (length)
1128     {
1129       VEC(mem_range_s) *available_memory;
1130 
1131       if (get_traceframe_number () < 0
1132 	  || !traceframe_available_memory (&available_memory, memaddr, length))
1133 	{
1134 	  if (stack)
1135 	    read_stack (memaddr, buffer, length);
1136 	  else
1137 	    read_memory (memaddr, buffer, length);
1138 	}
1139       else
1140 	{
1141 	  struct target_section_table *table;
1142 	  struct cleanup *old_chain;
1143 	  CORE_ADDR unavail;
1144 	  mem_range_s *r;
1145 	  int i;
1146 
1147 	  /* Fallback to reading from read-only sections.  */
1148 	  table = target_get_section_table (&exec_ops);
1149 	  available_memory =
1150 	    section_table_available_memory (available_memory,
1151 					    memaddr, length,
1152 					    table->sections,
1153 					    table->sections_end);
1154 
1155 	  old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1156 				    &available_memory);
1157 
1158 	  normalize_mem_ranges (available_memory);
1159 
1160 	  /* Mark which bytes are unavailable, and read those which
1161 	     are available.  */
1162 
1163 	  unavail = memaddr;
1164 
1165 	  for (i = 0;
1166 	       VEC_iterate (mem_range_s, available_memory, i, r);
1167 	       i++)
1168 	    {
1169 	      if (mem_ranges_overlap (r->start, r->length,
1170 				      memaddr, length))
1171 		{
1172 		  CORE_ADDR lo1, hi1, lo2, hi2;
1173 		  CORE_ADDR start, end;
1174 
1175 		  /* Get the intersection window.  */
1176 		  lo1 = memaddr;
1177 		  hi1 = memaddr + length;
1178 		  lo2 = r->start;
1179 		  hi2 = r->start + r->length;
1180 		  start = max (lo1, lo2);
1181 		  end = min (hi1, hi2);
1182 
1183 		  gdb_assert (end - memaddr <= length);
1184 
1185 		  if (start > unavail)
1186 		    mark_value_bytes_unavailable (val,
1187 						  (embedded_offset
1188 						   + unavail - memaddr),
1189 						  start - unavail);
1190 		  unavail = end;
1191 
1192 		  read_memory (start, buffer + start - memaddr, end - start);
1193 		}
1194 	    }
1195 
1196 	  if (unavail != memaddr + length)
1197 	    mark_value_bytes_unavailable (val,
1198 					  embedded_offset + unavail - memaddr,
1199 					  (memaddr + length) - unavail);
1200 
1201 	  do_cleanups (old_chain);
1202 	}
1203     }
1204 }
1205 
1206 /* Store the contents of FROMVAL into the location of TOVAL.
1207    Return a new value with the location of TOVAL and contents of FROMVAL.  */
1208 
1209 struct value *
1210 value_assign (struct value *toval, struct value *fromval)
1211 {
1212   struct type *type;
1213   struct value *val;
1214   struct frame_id old_frame;
1215 
1216   if (!deprecated_value_modifiable (toval))
1217     error (_("Left operand of assignment is not a modifiable lvalue."));
1218 
1219   toval = coerce_ref (toval);
1220 
1221   type = value_type (toval);
1222   if (VALUE_LVAL (toval) != lval_internalvar)
1223     fromval = value_cast (type, fromval);
1224   else
1225     {
1226       /* Coerce arrays and functions to pointers, except for arrays
1227 	 which only live in GDB's storage.  */
1228       if (!value_must_coerce_to_target (fromval))
1229 	fromval = coerce_array (fromval);
1230     }
1231 
1232   CHECK_TYPEDEF (type);
1233 
1234   /* Since modifying a register can trash the frame chain, and
1235      modifying memory can trash the frame cache, we save the old frame
1236      and then restore the new frame afterwards.  */
1237   old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1238 
1239   switch (VALUE_LVAL (toval))
1240     {
1241     case lval_internalvar:
1242       set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1243       return value_of_internalvar (get_type_arch (type),
1244 				   VALUE_INTERNALVAR (toval));
1245 
1246     case lval_internalvar_component:
1247       set_internalvar_component (VALUE_INTERNALVAR (toval),
1248 				 value_offset (toval),
1249 				 value_bitpos (toval),
1250 				 value_bitsize (toval),
1251 				 fromval);
1252       break;
1253 
1254     case lval_memory:
1255       {
1256 	const gdb_byte *dest_buffer;
1257 	CORE_ADDR changed_addr;
1258 	int changed_len;
1259         gdb_byte buffer[sizeof (LONGEST)];
1260 
1261 	if (value_bitsize (toval))
1262 	  {
1263 	    struct value *parent = value_parent (toval);
1264 
1265 	    changed_addr = value_address (parent) + value_offset (toval);
1266 	    changed_len = (value_bitpos (toval)
1267 			   + value_bitsize (toval)
1268 			   + HOST_CHAR_BIT - 1)
1269 	      / HOST_CHAR_BIT;
1270 
1271 	    /* If we can read-modify-write exactly the size of the
1272 	       containing type (e.g. short or int) then do so.  This
1273 	       is safer for volatile bitfields mapped to hardware
1274 	       registers.  */
1275 	    if (changed_len < TYPE_LENGTH (type)
1276 		&& TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1277 		&& ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1278 	      changed_len = TYPE_LENGTH (type);
1279 
1280 	    if (changed_len > (int) sizeof (LONGEST))
1281 	      error (_("Can't handle bitfields which "
1282 		       "don't fit in a %d bit word."),
1283 		     (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1284 
1285 	    read_memory (changed_addr, buffer, changed_len);
1286 	    modify_field (type, buffer, value_as_long (fromval),
1287 			  value_bitpos (toval), value_bitsize (toval));
1288 	    dest_buffer = buffer;
1289 	  }
1290 	else
1291 	  {
1292 	    changed_addr = value_address (toval);
1293 	    changed_len = TYPE_LENGTH (type);
1294 	    dest_buffer = value_contents (fromval);
1295 	  }
1296 
1297 	write_memory (changed_addr, dest_buffer, changed_len);
1298 	observer_notify_memory_changed (changed_addr, changed_len,
1299 					dest_buffer);
1300       }
1301       break;
1302 
1303     case lval_register:
1304       {
1305 	struct frame_info *frame;
1306 	struct gdbarch *gdbarch;
1307 	int value_reg;
1308 
1309 	/* Figure out which frame this is in currently.  */
1310 	frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1311 	value_reg = VALUE_REGNUM (toval);
1312 
1313 	if (!frame)
1314 	  error (_("Value being assigned to is no longer active."));
1315 
1316 	gdbarch = get_frame_arch (frame);
1317 	if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1318 	  {
1319 	    /* If TOVAL is a special machine register requiring
1320 	       conversion of program values to a special raw
1321 	       format.  */
1322 	    gdbarch_value_to_register (gdbarch, frame,
1323 				       VALUE_REGNUM (toval), type,
1324 				       value_contents (fromval));
1325 	  }
1326 	else
1327 	  {
1328 	    if (value_bitsize (toval))
1329 	      {
1330 		struct value *parent = value_parent (toval);
1331 		int offset = value_offset (parent) + value_offset (toval);
1332 		int changed_len;
1333 		gdb_byte buffer[sizeof (LONGEST)];
1334 		int optim, unavail;
1335 
1336 		changed_len = (value_bitpos (toval)
1337 			       + value_bitsize (toval)
1338 			       + HOST_CHAR_BIT - 1)
1339 		  / HOST_CHAR_BIT;
1340 
1341 		if (changed_len > (int) sizeof (LONGEST))
1342 		  error (_("Can't handle bitfields which "
1343 			   "don't fit in a %d bit word."),
1344 			 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1345 
1346 		if (!get_frame_register_bytes (frame, value_reg, offset,
1347 					       changed_len, buffer,
1348 					       &optim, &unavail))
1349 		  {
1350 		    if (optim)
1351 		      error (_("value has been optimized out"));
1352 		    if (unavail)
1353 		      throw_error (NOT_AVAILABLE_ERROR,
1354 				   _("value is not available"));
1355 		  }
1356 
1357 		modify_field (type, buffer, value_as_long (fromval),
1358 			      value_bitpos (toval), value_bitsize (toval));
1359 
1360 		put_frame_register_bytes (frame, value_reg, offset,
1361 					  changed_len, buffer);
1362 	      }
1363 	    else
1364 	      {
1365 		put_frame_register_bytes (frame, value_reg,
1366 					  value_offset (toval),
1367 					  TYPE_LENGTH (type),
1368 					  value_contents (fromval));
1369 	      }
1370 	  }
1371 
1372 	if (deprecated_register_changed_hook)
1373 	  deprecated_register_changed_hook (-1);
1374 	observer_notify_target_changed (&current_target);
1375 	break;
1376       }
1377 
1378     case lval_computed:
1379       {
1380 	struct lval_funcs *funcs = value_computed_funcs (toval);
1381 
1382 	funcs->write (toval, fromval);
1383       }
1384       break;
1385 
1386     default:
1387       error (_("Left operand of assignment is not an lvalue."));
1388     }
1389 
1390   /* Assigning to the stack pointer, frame pointer, and other
1391      (architecture and calling convention specific) registers may
1392      cause the frame cache to be out of date.  Assigning to memory
1393      also can.  We just do this on all assignments to registers or
1394      memory, for simplicity's sake; I doubt the slowdown matters.  */
1395   switch (VALUE_LVAL (toval))
1396     {
1397     case lval_memory:
1398     case lval_register:
1399     case lval_computed:
1400 
1401       reinit_frame_cache ();
1402 
1403       /* Having destroyed the frame cache, restore the selected
1404 	 frame.  */
1405 
1406       /* FIXME: cagney/2002-11-02: There has to be a better way of
1407 	 doing this.  Instead of constantly saving/restoring the
1408 	 frame.  Why not create a get_selected_frame() function that,
1409 	 having saved the selected frame's ID can automatically
1410 	 re-find the previously selected frame automatically.  */
1411 
1412       {
1413 	struct frame_info *fi = frame_find_by_id (old_frame);
1414 
1415 	if (fi != NULL)
1416 	  select_frame (fi);
1417       }
1418 
1419       break;
1420     default:
1421       break;
1422     }
1423 
1424   /* If the field does not entirely fill a LONGEST, then zero the sign
1425      bits.  If the field is signed, and is negative, then sign
1426      extend.  */
1427   if ((value_bitsize (toval) > 0)
1428       && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1429     {
1430       LONGEST fieldval = value_as_long (fromval);
1431       LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1432 
1433       fieldval &= valmask;
1434       if (!TYPE_UNSIGNED (type)
1435 	  && (fieldval & (valmask ^ (valmask >> 1))))
1436 	fieldval |= ~valmask;
1437 
1438       fromval = value_from_longest (type, fieldval);
1439     }
1440 
1441   /* The return value is a copy of TOVAL so it shares its location
1442      information, but its contents are updated from FROMVAL.  This
1443      implies the returned value is not lazy, even if TOVAL was.  */
1444   val = value_copy (toval);
1445   set_value_lazy (val, 0);
1446   memcpy (value_contents_raw (val), value_contents (fromval),
1447 	  TYPE_LENGTH (type));
1448 
1449   /* We copy over the enclosing type and pointed-to offset from FROMVAL
1450      in the case of pointer types.  For object types, the enclosing type
1451      and embedded offset must *not* be copied: the target object refered
1452      to by TOVAL retains its original dynamic type after assignment.  */
1453   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1454     {
1455       set_value_enclosing_type (val, value_enclosing_type (fromval));
1456       set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1457     }
1458 
1459   return val;
1460 }
1461 
1462 /* Extend a value VAL to COUNT repetitions of its type.  */
1463 
1464 struct value *
1465 value_repeat (struct value *arg1, int count)
1466 {
1467   struct value *val;
1468 
1469   if (VALUE_LVAL (arg1) != lval_memory)
1470     error (_("Only values in memory can be extended with '@'."));
1471   if (count < 1)
1472     error (_("Invalid number %d of repetitions."), count);
1473 
1474   val = allocate_repeat_value (value_enclosing_type (arg1), count);
1475 
1476   VALUE_LVAL (val) = lval_memory;
1477   set_value_address (val, value_address (arg1));
1478 
1479   read_value_memory (val, 0, value_stack (val), value_address (val),
1480 		     value_contents_all_raw (val),
1481 		     TYPE_LENGTH (value_enclosing_type (val)));
1482 
1483   return val;
1484 }
1485 
1486 struct value *
1487 value_of_variable (struct symbol *var, struct block *b)
1488 {
1489   struct value *val;
1490   struct frame_info *frame;
1491 
1492   if (!symbol_read_needs_frame (var))
1493     frame = NULL;
1494   else if (!b)
1495     frame = get_selected_frame (_("No frame selected."));
1496   else
1497     {
1498       frame = block_innermost_frame (b);
1499       if (!frame)
1500 	{
1501 	  if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1502 	      && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1503 	    error (_("No frame is currently executing in block %s."),
1504 		   SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1505 	  else
1506 	    error (_("No frame is currently executing in specified block"));
1507 	}
1508     }
1509 
1510   val = read_var_value (var, frame);
1511   if (!val)
1512     error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1513 
1514   return val;
1515 }
1516 
1517 struct value *
1518 address_of_variable (struct symbol *var, struct block *b)
1519 {
1520   struct type *type = SYMBOL_TYPE (var);
1521   struct value *val;
1522 
1523   /* Evaluate it first; if the result is a memory address, we're fine.
1524      Lazy evaluation pays off here.  */
1525 
1526   val = value_of_variable (var, b);
1527 
1528   if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1529       || TYPE_CODE (type) == TYPE_CODE_FUNC)
1530     {
1531       CORE_ADDR addr = value_address (val);
1532 
1533       return value_from_pointer (lookup_pointer_type (type), addr);
1534     }
1535 
1536   /* Not a memory address; check what the problem was.  */
1537   switch (VALUE_LVAL (val))
1538     {
1539     case lval_register:
1540       {
1541 	struct frame_info *frame;
1542 	const char *regname;
1543 
1544 	frame = frame_find_by_id (VALUE_FRAME_ID (val));
1545 	gdb_assert (frame);
1546 
1547 	regname = gdbarch_register_name (get_frame_arch (frame),
1548 					 VALUE_REGNUM (val));
1549 	gdb_assert (regname && *regname);
1550 
1551 	error (_("Address requested for identifier "
1552 		 "\"%s\" which is in register $%s"),
1553 	       SYMBOL_PRINT_NAME (var), regname);
1554 	break;
1555       }
1556 
1557     default:
1558       error (_("Can't take address of \"%s\" which isn't an lvalue."),
1559 	     SYMBOL_PRINT_NAME (var));
1560       break;
1561     }
1562 
1563   return val;
1564 }
1565 
1566 /* Return one if VAL does not live in target memory, but should in order
1567    to operate on it.  Otherwise return zero.  */
1568 
1569 int
1570 value_must_coerce_to_target (struct value *val)
1571 {
1572   struct type *valtype;
1573 
1574   /* The only lval kinds which do not live in target memory.  */
1575   if (VALUE_LVAL (val) != not_lval
1576       && VALUE_LVAL (val) != lval_internalvar)
1577     return 0;
1578 
1579   valtype = check_typedef (value_type (val));
1580 
1581   switch (TYPE_CODE (valtype))
1582     {
1583     case TYPE_CODE_ARRAY:
1584       return TYPE_VECTOR (valtype) ? 0 : 1;
1585     case TYPE_CODE_STRING:
1586       return 1;
1587     default:
1588       return 0;
1589     }
1590 }
1591 
1592 /* Make sure that VAL lives in target memory if it's supposed to.  For
1593    instance, strings are constructed as character arrays in GDB's
1594    storage, and this function copies them to the target.  */
1595 
1596 struct value *
1597 value_coerce_to_target (struct value *val)
1598 {
1599   LONGEST length;
1600   CORE_ADDR addr;
1601 
1602   if (!value_must_coerce_to_target (val))
1603     return val;
1604 
1605   length = TYPE_LENGTH (check_typedef (value_type (val)));
1606   addr = allocate_space_in_inferior (length);
1607   write_memory (addr, value_contents (val), length);
1608   return value_at_lazy (value_type (val), addr);
1609 }
1610 
1611 /* Given a value which is an array, return a value which is a pointer
1612    to its first element, regardless of whether or not the array has a
1613    nonzero lower bound.
1614 
1615    FIXME: A previous comment here indicated that this routine should
1616    be substracting the array's lower bound.  It's not clear to me that
1617    this is correct.  Given an array subscripting operation, it would
1618    certainly work to do the adjustment here, essentially computing:
1619 
1620    (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1621 
1622    However I believe a more appropriate and logical place to account
1623    for the lower bound is to do so in value_subscript, essentially
1624    computing:
1625 
1626    (&array[0] + ((index - lowerbound) * sizeof array[0]))
1627 
1628    As further evidence consider what would happen with operations
1629    other than array subscripting, where the caller would get back a
1630    value that had an address somewhere before the actual first element
1631    of the array, and the information about the lower bound would be
1632    lost because of the coercion to pointer type.  */
1633 
1634 struct value *
1635 value_coerce_array (struct value *arg1)
1636 {
1637   struct type *type = check_typedef (value_type (arg1));
1638 
1639   /* If the user tries to do something requiring a pointer with an
1640      array that has not yet been pushed to the target, then this would
1641      be a good time to do so.  */
1642   arg1 = value_coerce_to_target (arg1);
1643 
1644   if (VALUE_LVAL (arg1) != lval_memory)
1645     error (_("Attempt to take address of value not located in memory."));
1646 
1647   return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1648 			     value_address (arg1));
1649 }
1650 
1651 /* Given a value which is a function, return a value which is a pointer
1652    to it.  */
1653 
1654 struct value *
1655 value_coerce_function (struct value *arg1)
1656 {
1657   struct value *retval;
1658 
1659   if (VALUE_LVAL (arg1) != lval_memory)
1660     error (_("Attempt to take address of value not located in memory."));
1661 
1662   retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1663 			       value_address (arg1));
1664   return retval;
1665 }
1666 
1667 /* Return a pointer value for the object for which ARG1 is the
1668    contents.  */
1669 
1670 struct value *
1671 value_addr (struct value *arg1)
1672 {
1673   struct value *arg2;
1674   struct type *type = check_typedef (value_type (arg1));
1675 
1676   if (TYPE_CODE (type) == TYPE_CODE_REF)
1677     {
1678       /* Copy the value, but change the type from (T&) to (T*).  We
1679          keep the same location information, which is efficient, and
1680          allows &(&X) to get the location containing the reference.  */
1681       arg2 = value_copy (arg1);
1682       deprecated_set_value_type (arg2,
1683 				 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1684       return arg2;
1685     }
1686   if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1687     return value_coerce_function (arg1);
1688 
1689   /* If this is an array that has not yet been pushed to the target,
1690      then this would be a good time to force it to memory.  */
1691   arg1 = value_coerce_to_target (arg1);
1692 
1693   if (VALUE_LVAL (arg1) != lval_memory)
1694     error (_("Attempt to take address of value not located in memory."));
1695 
1696   /* Get target memory address.  */
1697   arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1698 			     (value_address (arg1)
1699 			      + value_embedded_offset (arg1)));
1700 
1701   /* This may be a pointer to a base subobject; so remember the
1702      full derived object's type ...  */
1703   set_value_enclosing_type (arg2,
1704 			    lookup_pointer_type (value_enclosing_type (arg1)));
1705   /* ... and also the relative position of the subobject in the full
1706      object.  */
1707   set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1708   return arg2;
1709 }
1710 
1711 /* Return a reference value for the object for which ARG1 is the
1712    contents.  */
1713 
1714 struct value *
1715 value_ref (struct value *arg1)
1716 {
1717   struct value *arg2;
1718   struct type *type = check_typedef (value_type (arg1));
1719 
1720   if (TYPE_CODE (type) == TYPE_CODE_REF)
1721     return arg1;
1722 
1723   arg2 = value_addr (arg1);
1724   deprecated_set_value_type (arg2, lookup_reference_type (type));
1725   return arg2;
1726 }
1727 
1728 /* Given a value of a pointer type, apply the C unary * operator to
1729    it.  */
1730 
1731 struct value *
1732 value_ind (struct value *arg1)
1733 {
1734   struct type *base_type;
1735   struct value *arg2;
1736 
1737   arg1 = coerce_array (arg1);
1738 
1739   base_type = check_typedef (value_type (arg1));
1740 
1741   if (VALUE_LVAL (arg1) == lval_computed)
1742     {
1743       struct lval_funcs *funcs = value_computed_funcs (arg1);
1744 
1745       if (funcs->indirect)
1746 	{
1747 	  struct value *result = funcs->indirect (arg1);
1748 
1749 	  if (result)
1750 	    return result;
1751 	}
1752     }
1753 
1754   if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1755     {
1756       struct type *enc_type;
1757 
1758       /* We may be pointing to something embedded in a larger object.
1759          Get the real type of the enclosing object.  */
1760       enc_type = check_typedef (value_enclosing_type (arg1));
1761       enc_type = TYPE_TARGET_TYPE (enc_type);
1762 
1763       if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1764 	  || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1765 	/* For functions, go through find_function_addr, which knows
1766 	   how to handle function descriptors.  */
1767 	arg2 = value_at_lazy (enc_type,
1768 			      find_function_addr (arg1, NULL));
1769       else
1770 	/* Retrieve the enclosing object pointed to.  */
1771 	arg2 = value_at_lazy (enc_type,
1772 			      (value_as_address (arg1)
1773 			       - value_pointed_to_offset (arg1)));
1774 
1775       /* Re-adjust type.  */
1776       deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1777       /* Add embedding info.  */
1778       set_value_enclosing_type (arg2, enc_type);
1779       set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1780 
1781       /* We may be pointing to an object of some derived type.  */
1782       arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1783       return arg2;
1784     }
1785 
1786   error (_("Attempt to take contents of a non-pointer value."));
1787   return 0;			/* For lint -- never reached.  */
1788 }
1789 
1790 /* Create a value for an array by allocating space in GDB, copying the
1791    data into that space, and then setting up an array value.
1792 
1793    The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1794    is populated from the values passed in ELEMVEC.
1795 
1796    The element type of the array is inherited from the type of the
1797    first element, and all elements must have the same size (though we
1798    don't currently enforce any restriction on their types).  */
1799 
1800 struct value *
1801 value_array (int lowbound, int highbound, struct value **elemvec)
1802 {
1803   int nelem;
1804   int idx;
1805   unsigned int typelength;
1806   struct value *val;
1807   struct type *arraytype;
1808 
1809   /* Validate that the bounds are reasonable and that each of the
1810      elements have the same size.  */
1811 
1812   nelem = highbound - lowbound + 1;
1813   if (nelem <= 0)
1814     {
1815       error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1816     }
1817   typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1818   for (idx = 1; idx < nelem; idx++)
1819     {
1820       if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1821 	{
1822 	  error (_("array elements must all be the same size"));
1823 	}
1824     }
1825 
1826   arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1827 				       lowbound, highbound);
1828 
1829   if (!current_language->c_style_arrays)
1830     {
1831       val = allocate_value (arraytype);
1832       for (idx = 0; idx < nelem; idx++)
1833 	value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1834 			     typelength);
1835       return val;
1836     }
1837 
1838   /* Allocate space to store the array, and then initialize it by
1839      copying in each element.  */
1840 
1841   val = allocate_value (arraytype);
1842   for (idx = 0; idx < nelem; idx++)
1843     value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1844   return val;
1845 }
1846 
1847 struct value *
1848 value_cstring (char *ptr, int len, struct type *char_type)
1849 {
1850   struct value *val;
1851   int lowbound = current_language->string_lower_bound;
1852   int highbound = len / TYPE_LENGTH (char_type);
1853   struct type *stringtype
1854     = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1855 
1856   val = allocate_value (stringtype);
1857   memcpy (value_contents_raw (val), ptr, len);
1858   return val;
1859 }
1860 
1861 /* Create a value for a string constant by allocating space in the
1862    inferior, copying the data into that space, and returning the
1863    address with type TYPE_CODE_STRING.  PTR points to the string
1864    constant data; LEN is number of characters.
1865 
1866    Note that string types are like array of char types with a lower
1867    bound of zero and an upper bound of LEN - 1.  Also note that the
1868    string may contain embedded null bytes.  */
1869 
1870 struct value *
1871 value_string (char *ptr, int len, struct type *char_type)
1872 {
1873   struct value *val;
1874   int lowbound = current_language->string_lower_bound;
1875   int highbound = len / TYPE_LENGTH (char_type);
1876   struct type *stringtype
1877     = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1878 
1879   val = allocate_value (stringtype);
1880   memcpy (value_contents_raw (val), ptr, len);
1881   return val;
1882 }
1883 
1884 struct value *
1885 value_bitstring (char *ptr, int len, struct type *index_type)
1886 {
1887   struct value *val;
1888   struct type *domain_type
1889     = create_range_type (NULL, index_type, 0, len - 1);
1890   struct type *type = create_set_type (NULL, domain_type);
1891 
1892   TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1893   val = allocate_value (type);
1894   memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1895   return val;
1896 }
1897 
1898 /* See if we can pass arguments in T2 to a function which takes
1899    arguments of types T1.  T1 is a list of NARGS arguments, and T2 is
1900    a NULL-terminated vector.  If some arguments need coercion of some
1901    sort, then the coerced values are written into T2.  Return value is
1902    0 if the arguments could be matched, or the position at which they
1903    differ if not.
1904 
1905    STATICP is nonzero if the T1 argument list came from a static
1906    member function.  T2 will still include the ``this'' pointer, but
1907    it will be skipped.
1908 
1909    For non-static member functions, we ignore the first argument,
1910    which is the type of the instance variable.  This is because we
1911    want to handle calls with objects from derived classes.  This is
1912    not entirely correct: we should actually check to make sure that a
1913    requested operation is type secure, shouldn't we?  FIXME.  */
1914 
1915 static int
1916 typecmp (int staticp, int varargs, int nargs,
1917 	 struct field t1[], struct value *t2[])
1918 {
1919   int i;
1920 
1921   if (t2 == 0)
1922     internal_error (__FILE__, __LINE__,
1923 		    _("typecmp: no argument list"));
1924 
1925   /* Skip ``this'' argument if applicable.  T2 will always include
1926      THIS.  */
1927   if (staticp)
1928     t2 ++;
1929 
1930   for (i = 0;
1931        (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1932        i++)
1933     {
1934       struct type *tt1, *tt2;
1935 
1936       if (!t2[i])
1937 	return i + 1;
1938 
1939       tt1 = check_typedef (t1[i].type);
1940       tt2 = check_typedef (value_type (t2[i]));
1941 
1942       if (TYPE_CODE (tt1) == TYPE_CODE_REF
1943       /* We should be doing hairy argument matching, as below.  */
1944 	  && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1945 	      == TYPE_CODE (tt2)))
1946 	{
1947 	  if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1948 	    t2[i] = value_coerce_array (t2[i]);
1949 	  else
1950 	    t2[i] = value_ref (t2[i]);
1951 	  continue;
1952 	}
1953 
1954       /* djb - 20000715 - Until the new type structure is in the
1955 	 place, and we can attempt things like implicit conversions,
1956 	 we need to do this so you can take something like a map<const
1957 	 char *>, and properly access map["hello"], because the
1958 	 argument to [] will be a reference to a pointer to a char,
1959 	 and the argument will be a pointer to a char.  */
1960       while (TYPE_CODE(tt1) == TYPE_CODE_REF
1961 	     || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1962 	{
1963 	  tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1964 	}
1965       while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1966 	     || TYPE_CODE(tt2) == TYPE_CODE_PTR
1967 	     || TYPE_CODE(tt2) == TYPE_CODE_REF)
1968 	{
1969 	  tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1970 	}
1971       if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1972 	continue;
1973       /* Array to pointer is a `trivial conversion' according to the
1974 	 ARM.  */
1975 
1976       /* We should be doing much hairier argument matching (see
1977          section 13.2 of the ARM), but as a quick kludge, just check
1978          for the same type code.  */
1979       if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1980 	return i + 1;
1981     }
1982   if (varargs || t2[i] == NULL)
1983     return 0;
1984   return i + 1;
1985 }
1986 
1987 /* Helper function used by value_struct_elt to recurse through
1988    baseclasses.  Look for a field NAME in ARG1.  Adjust the address of
1989    ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1990    TYPE.  If found, return value, else return NULL.
1991 
1992    If LOOKING_FOR_BASECLASS, then instead of looking for struct
1993    fields, look for a baseclass named NAME.  */
1994 
1995 static struct value *
1996 search_struct_field (const char *name, struct value *arg1, int offset,
1997 		     struct type *type, int looking_for_baseclass)
1998 {
1999   int i;
2000   int nbases;
2001 
2002   CHECK_TYPEDEF (type);
2003   nbases = TYPE_N_BASECLASSES (type);
2004 
2005   if (!looking_for_baseclass)
2006     for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2007       {
2008 	char *t_field_name = TYPE_FIELD_NAME (type, i);
2009 
2010 	if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2011 	  {
2012 	    struct value *v;
2013 
2014 	    if (field_is_static (&TYPE_FIELD (type, i)))
2015 	      {
2016 		v = value_static_field (type, i);
2017 		if (v == 0)
2018 		  error (_("field %s is nonexistent or "
2019 			   "has been optimized out"),
2020 			 name);
2021 	      }
2022 	    else
2023 	      {
2024 		v = value_primitive_field (arg1, offset, i, type);
2025 		if (v == 0)
2026 		  error (_("there is no field named %s"), name);
2027 	      }
2028 	    return v;
2029 	  }
2030 
2031 	if (t_field_name
2032 	    && (t_field_name[0] == '\0'
2033 		|| (TYPE_CODE (type) == TYPE_CODE_UNION
2034 		    && (strcmp_iw (t_field_name, "else") == 0))))
2035 	  {
2036 	    struct type *field_type = TYPE_FIELD_TYPE (type, i);
2037 
2038 	    if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2039 		|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2040 	      {
2041 		/* Look for a match through the fields of an anonymous
2042 		   union, or anonymous struct.  C++ provides anonymous
2043 		   unions.
2044 
2045 		   In the GNU Chill (now deleted from GDB)
2046 		   implementation of variant record types, each
2047 		   <alternative field> has an (anonymous) union type,
2048 		   each member of the union represents a <variant
2049 		   alternative>.  Each <variant alternative> is
2050 		   represented as a struct, with a member for each
2051 		   <variant field>.  */
2052 
2053 		struct value *v;
2054 		int new_offset = offset;
2055 
2056 		/* This is pretty gross.  In G++, the offset in an
2057 		   anonymous union is relative to the beginning of the
2058 		   enclosing struct.  In the GNU Chill (now deleted
2059 		   from GDB) implementation of variant records, the
2060 		   bitpos is zero in an anonymous union field, so we
2061 		   have to add the offset of the union here.  */
2062 		if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2063 		    || (TYPE_NFIELDS (field_type) > 0
2064 			&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
2065 		  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2066 
2067 		v = search_struct_field (name, arg1, new_offset,
2068 					 field_type,
2069 					 looking_for_baseclass);
2070 		if (v)
2071 		  return v;
2072 	      }
2073 	  }
2074       }
2075 
2076   for (i = 0; i < nbases; i++)
2077     {
2078       struct value *v;
2079       struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2080       /* If we are looking for baseclasses, this is what we get when
2081          we hit them.  But it could happen that the base part's member
2082          name is not yet filled in.  */
2083       int found_baseclass = (looking_for_baseclass
2084 			     && TYPE_BASECLASS_NAME (type, i) != NULL
2085 			     && (strcmp_iw (name,
2086 					    TYPE_BASECLASS_NAME (type,
2087 								 i)) == 0));
2088 
2089       if (BASETYPE_VIA_VIRTUAL (type, i))
2090 	{
2091 	  int boffset;
2092 	  struct value *v2;
2093 
2094 	  boffset = baseclass_offset (type, i,
2095 				      value_contents_for_printing (arg1),
2096 				      value_embedded_offset (arg1) + offset,
2097 				      value_address (arg1),
2098 				      arg1);
2099 
2100 	  /* The virtual base class pointer might have been clobbered
2101 	     by the user program.  Make sure that it still points to a
2102 	     valid memory location.  */
2103 
2104 	  boffset += value_embedded_offset (arg1) + offset;
2105 	  if (boffset < 0
2106 	      || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2107 	    {
2108 	      CORE_ADDR base_addr;
2109 
2110 	      v2  = allocate_value (basetype);
2111 	      base_addr = value_address (arg1) + boffset;
2112 	      if (target_read_memory (base_addr,
2113 				      value_contents_raw (v2),
2114 				      TYPE_LENGTH (basetype)) != 0)
2115 		error (_("virtual baseclass botch"));
2116 	      VALUE_LVAL (v2) = lval_memory;
2117 	      set_value_address (v2, base_addr);
2118 	    }
2119 	  else
2120 	    {
2121 	      v2 = value_copy (arg1);
2122 	      deprecated_set_value_type (v2, basetype);
2123 	      set_value_embedded_offset (v2, boffset);
2124 	    }
2125 
2126 	  if (found_baseclass)
2127 	    return v2;
2128 	  v = search_struct_field (name, v2, 0,
2129 				   TYPE_BASECLASS (type, i),
2130 				   looking_for_baseclass);
2131 	}
2132       else if (found_baseclass)
2133 	v = value_primitive_field (arg1, offset, i, type);
2134       else
2135 	v = search_struct_field (name, arg1,
2136 				 offset + TYPE_BASECLASS_BITPOS (type,
2137 								 i) / 8,
2138 				 basetype, looking_for_baseclass);
2139       if (v)
2140 	return v;
2141     }
2142   return NULL;
2143 }
2144 
2145 /* Helper function used by value_struct_elt to recurse through
2146    baseclasses.  Look for a field NAME in ARG1.  Adjust the address of
2147    ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2148    TYPE.
2149 
2150    If found, return value, else if name matched and args not return
2151    (value) -1, else return NULL.  */
2152 
2153 static struct value *
2154 search_struct_method (const char *name, struct value **arg1p,
2155 		      struct value **args, int offset,
2156 		      int *static_memfuncp, struct type *type)
2157 {
2158   int i;
2159   struct value *v;
2160   int name_matched = 0;
2161   char dem_opname[64];
2162 
2163   CHECK_TYPEDEF (type);
2164   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2165     {
2166       char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2167 
2168       /* FIXME!  May need to check for ARM demangling here.  */
2169       if (strncmp (t_field_name, "__", 2) == 0 ||
2170 	  strncmp (t_field_name, "op", 2) == 0 ||
2171 	  strncmp (t_field_name, "type", 4) == 0)
2172 	{
2173 	  if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2174 	    t_field_name = dem_opname;
2175 	  else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2176 	    t_field_name = dem_opname;
2177 	}
2178       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2179 	{
2180 	  int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2181 	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2182 
2183 	  name_matched = 1;
2184 	  check_stub_method_group (type, i);
2185 	  if (j > 0 && args == 0)
2186 	    error (_("cannot resolve overloaded method "
2187 		     "`%s': no arguments supplied"), name);
2188 	  else if (j == 0 && args == 0)
2189 	    {
2190 	      v = value_fn_field (arg1p, f, j, type, offset);
2191 	      if (v != NULL)
2192 		return v;
2193 	    }
2194 	  else
2195 	    while (j >= 0)
2196 	      {
2197 		if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2198 			      TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2199 			      TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2200 			      TYPE_FN_FIELD_ARGS (f, j), args))
2201 		  {
2202 		    if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2203 		      return value_virtual_fn_field (arg1p, f, j,
2204 						     type, offset);
2205 		    if (TYPE_FN_FIELD_STATIC_P (f, j)
2206 			&& static_memfuncp)
2207 		      *static_memfuncp = 1;
2208 		    v = value_fn_field (arg1p, f, j, type, offset);
2209 		    if (v != NULL)
2210 		      return v;
2211 		  }
2212 		j--;
2213 	      }
2214 	}
2215     }
2216 
2217   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2218     {
2219       int base_offset;
2220       int skip = 0;
2221       int this_offset;
2222 
2223       if (BASETYPE_VIA_VIRTUAL (type, i))
2224 	{
2225 	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2226 	  struct value *base_val;
2227 	  const gdb_byte *base_valaddr;
2228 
2229 	  /* The virtual base class pointer might have been
2230 	     clobbered by the user program.  Make sure that it
2231 	    still points to a valid memory location.  */
2232 
2233 	  if (offset < 0 || offset >= TYPE_LENGTH (type))
2234 	    {
2235 	      gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2236 	      CORE_ADDR address = value_address (*arg1p);
2237 
2238 	      if (target_read_memory (address + offset,
2239 				      tmp, TYPE_LENGTH (baseclass)) != 0)
2240 		error (_("virtual baseclass botch"));
2241 
2242 	      base_val = value_from_contents_and_address (baseclass,
2243 							  tmp,
2244 							  address + offset);
2245 	      base_valaddr = value_contents_for_printing (base_val);
2246 	      this_offset = 0;
2247 	    }
2248 	  else
2249 	    {
2250 	      base_val = *arg1p;
2251 	      base_valaddr = value_contents_for_printing (*arg1p);
2252 	      this_offset = offset;
2253 	    }
2254 
2255 	  base_offset = baseclass_offset (type, i, base_valaddr,
2256 					  this_offset, value_address (base_val),
2257 					  base_val);
2258 	}
2259       else
2260 	{
2261 	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2262 	}
2263       v = search_struct_method (name, arg1p, args, base_offset + offset,
2264 				static_memfuncp, TYPE_BASECLASS (type, i));
2265       if (v == (struct value *) - 1)
2266 	{
2267 	  name_matched = 1;
2268 	}
2269       else if (v)
2270 	{
2271 	  /* FIXME-bothner:  Why is this commented out?  Why is it here?  */
2272 	  /* *arg1p = arg1_tmp; */
2273 	  return v;
2274 	}
2275     }
2276   if (name_matched)
2277     return (struct value *) - 1;
2278   else
2279     return NULL;
2280 }
2281 
2282 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2283    extract the component named NAME from the ultimate target
2284    structure/union and return it as a value with its appropriate type.
2285    ERR is used in the error message if *ARGP's type is wrong.
2286 
2287    C++: ARGS is a list of argument types to aid in the selection of
2288    an appropriate method.  Also, handle derived types.
2289 
2290    STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2291    where the truthvalue of whether the function that was resolved was
2292    a static member function or not is stored.
2293 
2294    ERR is an error message to be printed in case the field is not
2295    found.  */
2296 
2297 struct value *
2298 value_struct_elt (struct value **argp, struct value **args,
2299 		  const char *name, int *static_memfuncp, const char *err)
2300 {
2301   struct type *t;
2302   struct value *v;
2303 
2304   *argp = coerce_array (*argp);
2305 
2306   t = check_typedef (value_type (*argp));
2307 
2308   /* Follow pointers until we get to a non-pointer.  */
2309 
2310   while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2311     {
2312       *argp = value_ind (*argp);
2313       /* Don't coerce fn pointer to fn and then back again!  */
2314       if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2315 	*argp = coerce_array (*argp);
2316       t = check_typedef (value_type (*argp));
2317     }
2318 
2319   if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2320       && TYPE_CODE (t) != TYPE_CODE_UNION)
2321     error (_("Attempt to extract a component of a value that is not a %s."),
2322 	   err);
2323 
2324   /* Assume it's not, unless we see that it is.  */
2325   if (static_memfuncp)
2326     *static_memfuncp = 0;
2327 
2328   if (!args)
2329     {
2330       /* if there are no arguments ...do this...  */
2331 
2332       /* Try as a field first, because if we succeed, there is less
2333          work to be done.  */
2334       v = search_struct_field (name, *argp, 0, t, 0);
2335       if (v)
2336 	return v;
2337 
2338       /* C++: If it was not found as a data field, then try to
2339          return it as a pointer to a method.  */
2340       v = search_struct_method (name, argp, args, 0,
2341 				static_memfuncp, t);
2342 
2343       if (v == (struct value *) - 1)
2344 	error (_("Cannot take address of method %s."), name);
2345       else if (v == 0)
2346 	{
2347 	  if (TYPE_NFN_FIELDS (t))
2348 	    error (_("There is no member or method named %s."), name);
2349 	  else
2350 	    error (_("There is no member named %s."), name);
2351 	}
2352       return v;
2353     }
2354 
2355     v = search_struct_method (name, argp, args, 0,
2356 			      static_memfuncp, t);
2357 
2358   if (v == (struct value *) - 1)
2359     {
2360       error (_("One of the arguments you tried to pass to %s could not "
2361 	       "be converted to what the function wants."), name);
2362     }
2363   else if (v == 0)
2364     {
2365       /* See if user tried to invoke data as function.  If so, hand it
2366          back.  If it's not callable (i.e., a pointer to function),
2367          gdb should give an error.  */
2368       v = search_struct_field (name, *argp, 0, t, 0);
2369       /* If we found an ordinary field, then it is not a method call.
2370 	 So, treat it as if it were a static member function.  */
2371       if (v && static_memfuncp)
2372 	*static_memfuncp = 1;
2373     }
2374 
2375   if (!v)
2376     throw_error (NOT_FOUND_ERROR,
2377                  _("Structure has no component named %s."), name);
2378   return v;
2379 }
2380 
2381 /* Search through the methods of an object (and its bases) to find a
2382    specified method.  Return the pointer to the fn_field list of
2383    overloaded instances.
2384 
2385    Helper function for value_find_oload_list.
2386    ARGP is a pointer to a pointer to a value (the object).
2387    METHOD is a string containing the method name.
2388    OFFSET is the offset within the value.
2389    TYPE is the assumed type of the object.
2390    NUM_FNS is the number of overloaded instances.
2391    BASETYPE is set to the actual type of the subobject where the
2392       method is found.
2393    BOFFSET is the offset of the base subobject where the method is found.  */
2394 
2395 static struct fn_field *
2396 find_method_list (struct value **argp, const char *method,
2397 		  int offset, struct type *type, int *num_fns,
2398 		  struct type **basetype, int *boffset)
2399 {
2400   int i;
2401   struct fn_field *f;
2402   CHECK_TYPEDEF (type);
2403 
2404   *num_fns = 0;
2405 
2406   /* First check in object itself.  */
2407   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2408     {
2409       /* pai: FIXME What about operators and type conversions?  */
2410       char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2411 
2412       if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2413 	{
2414 	  int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2415 	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2416 
2417 	  *num_fns = len;
2418 	  *basetype = type;
2419 	  *boffset = offset;
2420 
2421 	  /* Resolve any stub methods.  */
2422 	  check_stub_method_group (type, i);
2423 
2424 	  return f;
2425 	}
2426     }
2427 
2428   /* Not found in object, check in base subobjects.  */
2429   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2430     {
2431       int base_offset;
2432 
2433       if (BASETYPE_VIA_VIRTUAL (type, i))
2434 	{
2435 	  base_offset = baseclass_offset (type, i,
2436 					  value_contents_for_printing (*argp),
2437 					  value_offset (*argp) + offset,
2438 					  value_address (*argp), *argp);
2439 	}
2440       else /* Non-virtual base, simply use bit position from debug
2441 	      info.  */
2442 	{
2443 	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2444 	}
2445       f = find_method_list (argp, method, base_offset + offset,
2446 			    TYPE_BASECLASS (type, i), num_fns,
2447 			    basetype, boffset);
2448       if (f)
2449 	return f;
2450     }
2451   return NULL;
2452 }
2453 
2454 /* Return the list of overloaded methods of a specified name.
2455 
2456    ARGP is a pointer to a pointer to a value (the object).
2457    METHOD is the method name.
2458    OFFSET is the offset within the value contents.
2459    NUM_FNS is the number of overloaded instances.
2460    BASETYPE is set to the type of the base subobject that defines the
2461       method.
2462    BOFFSET is the offset of the base subobject which defines the method.  */
2463 
2464 struct fn_field *
2465 value_find_oload_method_list (struct value **argp, const char *method,
2466 			      int offset, int *num_fns,
2467 			      struct type **basetype, int *boffset)
2468 {
2469   struct type *t;
2470 
2471   t = check_typedef (value_type (*argp));
2472 
2473   /* Code snarfed from value_struct_elt.  */
2474   while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2475     {
2476       *argp = value_ind (*argp);
2477       /* Don't coerce fn pointer to fn and then back again!  */
2478       if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2479 	*argp = coerce_array (*argp);
2480       t = check_typedef (value_type (*argp));
2481     }
2482 
2483   if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2484       && TYPE_CODE (t) != TYPE_CODE_UNION)
2485     error (_("Attempt to extract a component of a "
2486 	     "value that is not a struct or union"));
2487 
2488   return find_method_list (argp, method, 0, t, num_fns,
2489 			   basetype, boffset);
2490 }
2491 
2492 /* Given an array of argument types (ARGTYPES) (which includes an
2493    entry for "this" in the case of C++ methods), the number of
2494    arguments NARGS, the NAME of a function whether it's a method or
2495    not (METHOD), and the degree of laxness (LAX) in conforming to
2496    overload resolution rules in ANSI C++, find the best function that
2497    matches on the argument types according to the overload resolution
2498    rules.
2499 
2500    METHOD can be one of three values:
2501      NON_METHOD for non-member functions.
2502      METHOD: for member functions.
2503      BOTH: used for overload resolution of operators where the
2504        candidates are expected to be either member or non member
2505        functions.  In this case the first argument ARGTYPES
2506        (representing 'this') is expected to be a reference to the
2507        target object, and will be dereferenced when attempting the
2508        non-member search.
2509 
2510    In the case of class methods, the parameter OBJ is an object value
2511    in which to search for overloaded methods.
2512 
2513    In the case of non-method functions, the parameter FSYM is a symbol
2514    corresponding to one of the overloaded functions.
2515 
2516    Return value is an integer: 0 -> good match, 10 -> debugger applied
2517    non-standard coercions, 100 -> incompatible.
2518 
2519    If a method is being searched for, VALP will hold the value.
2520    If a non-method is being searched for, SYMP will hold the symbol
2521    for it.
2522 
2523    If a method is being searched for, and it is a static method,
2524    then STATICP will point to a non-zero value.
2525 
2526    If NO_ADL argument dependent lookup is disabled.  This is used to prevent
2527    ADL overload candidates when performing overload resolution for a fully
2528    qualified name.
2529 
2530    Note: This function does *not* check the value of
2531    overload_resolution.  Caller must check it to see whether overload
2532    resolution is permitted.  */
2533 
2534 int
2535 find_overload_match (struct type **arg_types, int nargs,
2536 		     const char *name, enum oload_search_type method,
2537 		     int lax, struct value **objp, struct symbol *fsym,
2538 		     struct value **valp, struct symbol **symp,
2539 		     int *staticp, const int no_adl)
2540 {
2541   struct value *obj = (objp ? *objp : NULL);
2542   /* Index of best overloaded function.  */
2543   int func_oload_champ = -1;
2544   int method_oload_champ = -1;
2545 
2546   /* The measure for the current best match.  */
2547   struct badness_vector *method_badness = NULL;
2548   struct badness_vector *func_badness = NULL;
2549 
2550   struct value *temp = obj;
2551   /* For methods, the list of overloaded methods.  */
2552   struct fn_field *fns_ptr = NULL;
2553   /* For non-methods, the list of overloaded function symbols.  */
2554   struct symbol **oload_syms = NULL;
2555   /* Number of overloaded instances being considered.  */
2556   int num_fns = 0;
2557   struct type *basetype = NULL;
2558   int boffset;
2559 
2560   struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2561 
2562   const char *obj_type_name = NULL;
2563   const char *func_name = NULL;
2564   enum oload_classification match_quality;
2565   enum oload_classification method_match_quality = INCOMPATIBLE;
2566   enum oload_classification func_match_quality = INCOMPATIBLE;
2567 
2568   /* Get the list of overloaded methods or functions.  */
2569   if (method == METHOD || method == BOTH)
2570     {
2571       gdb_assert (obj);
2572 
2573       /* OBJ may be a pointer value rather than the object itself.  */
2574       obj = coerce_ref (obj);
2575       while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2576 	obj = coerce_ref (value_ind (obj));
2577       obj_type_name = TYPE_NAME (value_type (obj));
2578 
2579       /* First check whether this is a data member, e.g. a pointer to
2580 	 a function.  */
2581       if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2582 	{
2583 	  *valp = search_struct_field (name, obj, 0,
2584 				       check_typedef (value_type (obj)), 0);
2585 	  if (*valp)
2586 	    {
2587 	      *staticp = 1;
2588 	      return 0;
2589 	    }
2590 	}
2591 
2592       /* Retrieve the list of methods with the name NAME.  */
2593       fns_ptr = value_find_oload_method_list (&temp, name,
2594 					      0, &num_fns,
2595 					      &basetype, &boffset);
2596       /* If this is a method only search, and no methods were found
2597          the search has faild.  */
2598       if (method == METHOD && (!fns_ptr || !num_fns))
2599 	error (_("Couldn't find method %s%s%s"),
2600 	       obj_type_name,
2601 	       (obj_type_name && *obj_type_name) ? "::" : "",
2602 	       name);
2603       /* If we are dealing with stub method types, they should have
2604 	 been resolved by find_method_list via
2605 	 value_find_oload_method_list above.  */
2606       if (fns_ptr)
2607 	{
2608 	  gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2609 	  method_oload_champ = find_oload_champ (arg_types, nargs, method,
2610 	                                         num_fns, fns_ptr,
2611 	                                         oload_syms, &method_badness);
2612 
2613 	  method_match_quality =
2614 	      classify_oload_match (method_badness, nargs,
2615 	                            oload_method_static (method, fns_ptr,
2616 	                                                 method_oload_champ));
2617 
2618 	  make_cleanup (xfree, method_badness);
2619 	}
2620 
2621     }
2622 
2623   if (method == NON_METHOD || method == BOTH)
2624     {
2625       const char *qualified_name = NULL;
2626 
2627       /* If the overload match is being search for both as a method
2628          and non member function, the first argument must now be
2629          dereferenced.  */
2630       if (method == BOTH)
2631 	arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2632 
2633       if (fsym)
2634         {
2635           qualified_name = SYMBOL_NATURAL_NAME (fsym);
2636 
2637           /* If we have a function with a C++ name, try to extract just
2638 	     the function part.  Do not try this for non-functions (e.g.
2639 	     function pointers).  */
2640           if (qualified_name
2641               && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2642 	      == TYPE_CODE_FUNC)
2643             {
2644 	      char *temp;
2645 
2646 	      temp = cp_func_name (qualified_name);
2647 
2648 	      /* If cp_func_name did not remove anything, the name of the
2649 	         symbol did not include scope or argument types - it was
2650 	         probably a C-style function.  */
2651 	      if (temp)
2652 		{
2653 		  make_cleanup (xfree, temp);
2654 		  if (strcmp (temp, qualified_name) == 0)
2655 		    func_name = NULL;
2656 		  else
2657 		    func_name = temp;
2658 		}
2659             }
2660         }
2661       else
2662 	{
2663 	  func_name = name;
2664 	  qualified_name = name;
2665 	}
2666 
2667       /* If there was no C++ name, this must be a C-style function or
2668 	 not a function at all.  Just return the same symbol.  Do the
2669 	 same if cp_func_name fails for some reason.  */
2670       if (func_name == NULL)
2671         {
2672 	  *symp = fsym;
2673           return 0;
2674         }
2675 
2676       func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2677                                                      func_name,
2678                                                      qualified_name,
2679                                                      &oload_syms,
2680                                                      &func_badness,
2681                                                      no_adl);
2682 
2683       if (func_oload_champ >= 0)
2684 	func_match_quality = classify_oload_match (func_badness, nargs, 0);
2685 
2686       make_cleanup (xfree, oload_syms);
2687       make_cleanup (xfree, func_badness);
2688     }
2689 
2690   /* Did we find a match ?  */
2691   if (method_oload_champ == -1 && func_oload_champ == -1)
2692     throw_error (NOT_FOUND_ERROR,
2693                  _("No symbol \"%s\" in current context."),
2694                  name);
2695 
2696   /* If we have found both a method match and a function
2697      match, find out which one is better, and calculate match
2698      quality.  */
2699   if (method_oload_champ >= 0 && func_oload_champ >= 0)
2700     {
2701       switch (compare_badness (func_badness, method_badness))
2702         {
2703 	  case 0: /* Top two contenders are equally good.  */
2704 	    /* FIXME: GDB does not support the general ambiguous case.
2705 	     All candidates should be collected and presented the
2706 	     user.  */
2707 	    error (_("Ambiguous overload resolution"));
2708 	    break;
2709 	  case 1: /* Incomparable top contenders.  */
2710 	    /* This is an error incompatible candidates
2711 	       should not have been proposed.  */
2712 	    error (_("Internal error: incompatible "
2713 		     "overload candidates proposed"));
2714 	    break;
2715 	  case 2: /* Function champion.  */
2716 	    method_oload_champ = -1;
2717 	    match_quality = func_match_quality;
2718 	    break;
2719 	  case 3: /* Method champion.  */
2720 	    func_oload_champ = -1;
2721 	    match_quality = method_match_quality;
2722 	    break;
2723 	  default:
2724 	    error (_("Internal error: unexpected overload comparison result"));
2725 	    break;
2726         }
2727     }
2728   else
2729     {
2730       /* We have either a method match or a function match.  */
2731       if (method_oload_champ >= 0)
2732 	match_quality = method_match_quality;
2733       else
2734 	match_quality = func_match_quality;
2735     }
2736 
2737   if (match_quality == INCOMPATIBLE)
2738     {
2739       if (method == METHOD)
2740 	error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2741 	       obj_type_name,
2742 	       (obj_type_name && *obj_type_name) ? "::" : "",
2743 	       name);
2744       else
2745 	error (_("Cannot resolve function %s to any overloaded instance"),
2746 	       func_name);
2747     }
2748   else if (match_quality == NON_STANDARD)
2749     {
2750       if (method == METHOD)
2751 	warning (_("Using non-standard conversion to match "
2752 		   "method %s%s%s to supplied arguments"),
2753 		 obj_type_name,
2754 		 (obj_type_name && *obj_type_name) ? "::" : "",
2755 		 name);
2756       else
2757 	warning (_("Using non-standard conversion to match "
2758 		   "function %s to supplied arguments"),
2759 		 func_name);
2760     }
2761 
2762   if (staticp != NULL)
2763     *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2764 
2765   if (method_oload_champ >= 0)
2766     {
2767       if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2768 	*valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2769 					basetype, boffset);
2770       else
2771 	*valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2772 				basetype, boffset);
2773     }
2774   else
2775     *symp = oload_syms[func_oload_champ];
2776 
2777   if (objp)
2778     {
2779       struct type *temp_type = check_typedef (value_type (temp));
2780       struct type *obj_type = check_typedef (value_type (*objp));
2781 
2782       if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2783 	  && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2784 	      || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2785 	{
2786 	  temp = value_addr (temp);
2787 	}
2788       *objp = temp;
2789     }
2790 
2791   do_cleanups (all_cleanups);
2792 
2793   switch (match_quality)
2794     {
2795     case INCOMPATIBLE:
2796       return 100;
2797     case NON_STANDARD:
2798       return 10;
2799     default:				/* STANDARD */
2800       return 0;
2801     }
2802 }
2803 
2804 /* Find the best overload match, searching for FUNC_NAME in namespaces
2805    contained in QUALIFIED_NAME until it either finds a good match or
2806    runs out of namespaces.  It stores the overloaded functions in
2807    *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  The
2808    calling function is responsible for freeing *OLOAD_SYMS and
2809    *OLOAD_CHAMP_BV.  If NO_ADL, argument dependent lookup is not
2810    performned.  */
2811 
2812 static int
2813 find_oload_champ_namespace (struct type **arg_types, int nargs,
2814 			    const char *func_name,
2815 			    const char *qualified_name,
2816 			    struct symbol ***oload_syms,
2817 			    struct badness_vector **oload_champ_bv,
2818 			    const int no_adl)
2819 {
2820   int oload_champ;
2821 
2822   find_oload_champ_namespace_loop (arg_types, nargs,
2823 				   func_name,
2824 				   qualified_name, 0,
2825 				   oload_syms, oload_champ_bv,
2826 				   &oload_champ,
2827 				   no_adl);
2828 
2829   return oload_champ;
2830 }
2831 
2832 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2833    how deep we've looked for namespaces, and the champ is stored in
2834    OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0
2835    if it isn't.  Other arguments are the same as in
2836    find_oload_champ_namespace
2837 
2838    It is the caller's responsibility to free *OLOAD_SYMS and
2839    *OLOAD_CHAMP_BV.  */
2840 
2841 static int
2842 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2843 				 const char *func_name,
2844 				 const char *qualified_name,
2845 				 int namespace_len,
2846 				 struct symbol ***oload_syms,
2847 				 struct badness_vector **oload_champ_bv,
2848 				 int *oload_champ,
2849 				 const int no_adl)
2850 {
2851   int next_namespace_len = namespace_len;
2852   int searched_deeper = 0;
2853   int num_fns = 0;
2854   struct cleanup *old_cleanups;
2855   int new_oload_champ;
2856   struct symbol **new_oload_syms;
2857   struct badness_vector *new_oload_champ_bv;
2858   char *new_namespace;
2859 
2860   if (next_namespace_len != 0)
2861     {
2862       gdb_assert (qualified_name[next_namespace_len] == ':');
2863       next_namespace_len +=  2;
2864     }
2865   next_namespace_len +=
2866     cp_find_first_component (qualified_name + next_namespace_len);
2867 
2868   /* Initialize these to values that can safely be xfree'd.  */
2869   *oload_syms = NULL;
2870   *oload_champ_bv = NULL;
2871 
2872   /* First, see if we have a deeper namespace we can search in.
2873      If we get a good match there, use it.  */
2874 
2875   if (qualified_name[next_namespace_len] == ':')
2876     {
2877       searched_deeper = 1;
2878 
2879       if (find_oload_champ_namespace_loop (arg_types, nargs,
2880 					   func_name, qualified_name,
2881 					   next_namespace_len,
2882 					   oload_syms, oload_champ_bv,
2883 					   oload_champ, no_adl))
2884 	{
2885 	  return 1;
2886 	}
2887     };
2888 
2889   /* If we reach here, either we're in the deepest namespace or we
2890      didn't find a good match in a deeper namespace.  But, in the
2891      latter case, we still have a bad match in a deeper namespace;
2892      note that we might not find any match at all in the current
2893      namespace.  (There's always a match in the deepest namespace,
2894      because this overload mechanism only gets called if there's a
2895      function symbol to start off with.)  */
2896 
2897   old_cleanups = make_cleanup (xfree, *oload_syms);
2898   make_cleanup (xfree, *oload_champ_bv);
2899   new_namespace = alloca (namespace_len + 1);
2900   strncpy (new_namespace, qualified_name, namespace_len);
2901   new_namespace[namespace_len] = '\0';
2902   new_oload_syms = make_symbol_overload_list (func_name,
2903 					      new_namespace);
2904 
2905   /* If we have reached the deepest level perform argument
2906      determined lookup.  */
2907   if (!searched_deeper && !no_adl)
2908     make_symbol_overload_list_adl (arg_types, nargs, func_name);
2909 
2910   while (new_oload_syms[num_fns])
2911     ++num_fns;
2912 
2913   new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2914 				      NULL, new_oload_syms,
2915 				      &new_oload_champ_bv);
2916 
2917   /* Case 1: We found a good match.  Free earlier matches (if any),
2918      and return it.  Case 2: We didn't find a good match, but we're
2919      not the deepest function.  Then go with the bad match that the
2920      deeper function found.  Case 3: We found a bad match, and we're
2921      the deepest function.  Then return what we found, even though
2922      it's a bad match.  */
2923 
2924   if (new_oload_champ != -1
2925       && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2926     {
2927       *oload_syms = new_oload_syms;
2928       *oload_champ = new_oload_champ;
2929       *oload_champ_bv = new_oload_champ_bv;
2930       do_cleanups (old_cleanups);
2931       return 1;
2932     }
2933   else if (searched_deeper)
2934     {
2935       xfree (new_oload_syms);
2936       xfree (new_oload_champ_bv);
2937       discard_cleanups (old_cleanups);
2938       return 0;
2939     }
2940   else
2941     {
2942       *oload_syms = new_oload_syms;
2943       *oload_champ = new_oload_champ;
2944       *oload_champ_bv = new_oload_champ_bv;
2945       do_cleanups (old_cleanups);
2946       return 0;
2947     }
2948 }
2949 
2950 /* Look for a function to take NARGS args of types ARG_TYPES.  Find
2951    the best match from among the overloaded methods or functions
2952    (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2953    The number of methods/functions in the list is given by NUM_FNS.
2954    Return the index of the best match; store an indication of the
2955    quality of the match in OLOAD_CHAMP_BV.
2956 
2957    It is the caller's responsibility to free *OLOAD_CHAMP_BV.  */
2958 
2959 static int
2960 find_oload_champ (struct type **arg_types, int nargs, int method,
2961 		  int num_fns, struct fn_field *fns_ptr,
2962 		  struct symbol **oload_syms,
2963 		  struct badness_vector **oload_champ_bv)
2964 {
2965   int ix;
2966   /* A measure of how good an overloaded instance is.  */
2967   struct badness_vector *bv;
2968   /* Index of best overloaded function.  */
2969   int oload_champ = -1;
2970   /* Current ambiguity state for overload resolution.  */
2971   int oload_ambiguous = 0;
2972   /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */
2973 
2974   *oload_champ_bv = NULL;
2975 
2976   /* Consider each candidate in turn.  */
2977   for (ix = 0; ix < num_fns; ix++)
2978     {
2979       int jj;
2980       int static_offset = oload_method_static (method, fns_ptr, ix);
2981       int nparms;
2982       struct type **parm_types;
2983 
2984       if (method)
2985 	{
2986 	  nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2987 	}
2988       else
2989 	{
2990 	  /* If it's not a method, this is the proper place.  */
2991 	  nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2992 	}
2993 
2994       /* Prepare array of parameter types.  */
2995       parm_types = (struct type **)
2996 	xmalloc (nparms * (sizeof (struct type *)));
2997       for (jj = 0; jj < nparms; jj++)
2998 	parm_types[jj] = (method
2999 			  ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3000 			  : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3001 					     jj));
3002 
3003       /* Compare parameter types to supplied argument types.  Skip
3004          THIS for static methods.  */
3005       bv = rank_function (parm_types, nparms,
3006 			  arg_types + static_offset,
3007 			  nargs - static_offset);
3008 
3009       if (!*oload_champ_bv)
3010 	{
3011 	  *oload_champ_bv = bv;
3012 	  oload_champ = 0;
3013 	}
3014       else /* See whether current candidate is better or worse than
3015 	      previous best.  */
3016 	switch (compare_badness (bv, *oload_champ_bv))
3017 	  {
3018 	  case 0:		/* Top two contenders are equally good.  */
3019 	    oload_ambiguous = 1;
3020 	    break;
3021 	  case 1:		/* Incomparable top contenders.  */
3022 	    oload_ambiguous = 2;
3023 	    break;
3024 	  case 2:		/* New champion, record details.  */
3025 	    *oload_champ_bv = bv;
3026 	    oload_ambiguous = 0;
3027 	    oload_champ = ix;
3028 	    break;
3029 	  case 3:
3030 	  default:
3031 	    break;
3032 	  }
3033       xfree (parm_types);
3034       if (overload_debug)
3035 	{
3036 	  if (method)
3037 	    fprintf_filtered (gdb_stderr,
3038 			      "Overloaded method instance %s, # of parms %d\n",
3039 			      fns_ptr[ix].physname, nparms);
3040 	  else
3041 	    fprintf_filtered (gdb_stderr,
3042 			      "Overloaded function instance "
3043 			      "%s # of parms %d\n",
3044 			      SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3045 			      nparms);
3046 	  for (jj = 0; jj < nargs - static_offset; jj++)
3047 	    fprintf_filtered (gdb_stderr,
3048 			      "...Badness @ %d : %d\n",
3049 			      jj, bv->rank[jj].rank);
3050 	  fprintf_filtered (gdb_stderr, "Overload resolution "
3051 			    "champion is %d, ambiguous? %d\n",
3052 			    oload_champ, oload_ambiguous);
3053 	}
3054     }
3055 
3056   return oload_champ;
3057 }
3058 
3059 /* Return 1 if we're looking at a static method, 0 if we're looking at
3060    a non-static method or a function that isn't a method.  */
3061 
3062 static int
3063 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3064 {
3065   if (method && fns_ptr && index >= 0
3066       && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3067     return 1;
3068   else
3069     return 0;
3070 }
3071 
3072 /* Check how good an overload match OLOAD_CHAMP_BV represents.  */
3073 
3074 static enum oload_classification
3075 classify_oload_match (struct badness_vector *oload_champ_bv,
3076 		      int nargs,
3077 		      int static_offset)
3078 {
3079   int ix;
3080 
3081   for (ix = 1; ix <= nargs - static_offset; ix++)
3082     {
3083       /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3084          or worse return INCOMPATIBLE.  */
3085       if (compare_ranks (oload_champ_bv->rank[ix],
3086                          INCOMPATIBLE_TYPE_BADNESS) <= 0)
3087 	return INCOMPATIBLE;	/* Truly mismatched types.  */
3088       /* Otherwise If this conversion is as bad as
3089          NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD.  */
3090       else if (compare_ranks (oload_champ_bv->rank[ix],
3091                               NS_POINTER_CONVERSION_BADNESS) <= 0)
3092 	return NON_STANDARD;	/* Non-standard type conversions
3093 				   needed.  */
3094     }
3095 
3096   return STANDARD;		/* Only standard conversions needed.  */
3097 }
3098 
3099 /* C++: return 1 is NAME is a legitimate name for the destructor of
3100    type TYPE.  If TYPE does not have a destructor, or if NAME is
3101    inappropriate for TYPE, an error is signaled.  */
3102 int
3103 destructor_name_p (const char *name, const struct type *type)
3104 {
3105   if (name[0] == '~')
3106     {
3107       char *dname = type_name_no_tag (type);
3108       char *cp = strchr (dname, '<');
3109       unsigned int len;
3110 
3111       /* Do not compare the template part for template classes.  */
3112       if (cp == NULL)
3113 	len = strlen (dname);
3114       else
3115 	len = cp - dname;
3116       if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3117 	error (_("name of destructor must equal name of class"));
3118       else
3119 	return 1;
3120     }
3121   return 0;
3122 }
3123 
3124 /* Given TYPE, a structure/union,
3125    return 1 if the component named NAME from the ultimate target
3126    structure/union is defined, otherwise, return 0.  */
3127 
3128 int
3129 check_field (struct type *type, const char *name)
3130 {
3131   int i;
3132 
3133   /* The type may be a stub.  */
3134   CHECK_TYPEDEF (type);
3135 
3136   for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3137     {
3138       char *t_field_name = TYPE_FIELD_NAME (type, i);
3139 
3140       if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3141 	return 1;
3142     }
3143 
3144   /* C++: If it was not found as a data field, then try to return it
3145      as a pointer to a method.  */
3146 
3147   for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3148     {
3149       if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3150 	return 1;
3151     }
3152 
3153   for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3154     if (check_field (TYPE_BASECLASS (type, i), name))
3155       return 1;
3156 
3157   return 0;
3158 }
3159 
3160 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3161    return the appropriate member (or the address of the member, if
3162    WANT_ADDRESS).  This function is used to resolve user expressions
3163    of the form "DOMAIN::NAME".  For more details on what happens, see
3164    the comment before value_struct_elt_for_reference.  */
3165 
3166 struct value *
3167 value_aggregate_elt (struct type *curtype, char *name,
3168 		     struct type *expect_type, int want_address,
3169 		     enum noside noside)
3170 {
3171   switch (TYPE_CODE (curtype))
3172     {
3173     case TYPE_CODE_STRUCT:
3174     case TYPE_CODE_UNION:
3175       return value_struct_elt_for_reference (curtype, 0, curtype,
3176 					     name, expect_type,
3177 					     want_address, noside);
3178     case TYPE_CODE_NAMESPACE:
3179       return value_namespace_elt (curtype, name,
3180 				  want_address, noside);
3181     default:
3182       internal_error (__FILE__, __LINE__,
3183 		      _("non-aggregate type in value_aggregate_elt"));
3184     }
3185 }
3186 
3187 /* Compares the two method/function types T1 and T2 for "equality"
3188    with respect to the methods' parameters.  If the types of the
3189    two parameter lists are the same, returns 1; 0 otherwise.  This
3190    comparison may ignore any artificial parameters in T1 if
3191    SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip
3192    the first artificial parameter in T1, assumed to be a 'this' pointer.
3193 
3194    The type T2 is expected to have come from make_params (in eval.c).  */
3195 
3196 static int
3197 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3198 {
3199   int start = 0;
3200 
3201   if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3202     ++start;
3203 
3204   /* If skipping artificial fields, find the first real field
3205      in T1.  */
3206   if (skip_artificial)
3207     {
3208       while (start < TYPE_NFIELDS (t1)
3209 	     && TYPE_FIELD_ARTIFICIAL (t1, start))
3210 	++start;
3211     }
3212 
3213   /* Now compare parameters.  */
3214 
3215   /* Special case: a method taking void.  T1 will contain no
3216      non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */
3217   if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3218       && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3219     return 1;
3220 
3221   if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3222     {
3223       int i;
3224 
3225       for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3226 	{
3227 	  if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3228 	                                   TYPE_FIELD_TYPE (t2, i)),
3229 	                     EXACT_MATCH_BADNESS) != 0)
3230 	    return 0;
3231 	}
3232 
3233       return 1;
3234     }
3235 
3236   return 0;
3237 }
3238 
3239 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3240    return the address of this member as a "pointer to member" type.
3241    If INTYPE is non-null, then it will be the type of the member we
3242    are looking for.  This will help us resolve "pointers to member
3243    functions".  This function is used to resolve user expressions of
3244    the form "DOMAIN::NAME".  */
3245 
3246 static struct value *
3247 value_struct_elt_for_reference (struct type *domain, int offset,
3248 				struct type *curtype, char *name,
3249 				struct type *intype,
3250 				int want_address,
3251 				enum noside noside)
3252 {
3253   struct type *t = curtype;
3254   int i;
3255   struct value *v, *result;
3256 
3257   if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3258       && TYPE_CODE (t) != TYPE_CODE_UNION)
3259     error (_("Internal error: non-aggregate type "
3260 	     "to value_struct_elt_for_reference"));
3261 
3262   for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3263     {
3264       char *t_field_name = TYPE_FIELD_NAME (t, i);
3265 
3266       if (t_field_name && strcmp (t_field_name, name) == 0)
3267 	{
3268 	  if (field_is_static (&TYPE_FIELD (t, i)))
3269 	    {
3270 	      v = value_static_field (t, i);
3271 	      if (v == NULL)
3272 		error (_("static field %s has been optimized out"),
3273 		       name);
3274 	      if (want_address)
3275 		v = value_addr (v);
3276 	      return v;
3277 	    }
3278 	  if (TYPE_FIELD_PACKED (t, i))
3279 	    error (_("pointers to bitfield members not allowed"));
3280 
3281 	  if (want_address)
3282 	    return value_from_longest
3283 	      (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3284 	       offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3285 	  else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3286 	    return allocate_value (TYPE_FIELD_TYPE (t, i));
3287 	  else
3288 	    error (_("Cannot reference non-static field \"%s\""), name);
3289 	}
3290     }
3291 
3292   /* C++: If it was not found as a data field, then try to return it
3293      as a pointer to a method.  */
3294 
3295   /* Perform all necessary dereferencing.  */
3296   while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3297     intype = TYPE_TARGET_TYPE (intype);
3298 
3299   for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3300     {
3301       char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3302       char dem_opname[64];
3303 
3304       if (strncmp (t_field_name, "__", 2) == 0
3305 	  || strncmp (t_field_name, "op", 2) == 0
3306 	  || strncmp (t_field_name, "type", 4) == 0)
3307 	{
3308 	  if (cplus_demangle_opname (t_field_name,
3309 				     dem_opname, DMGL_ANSI))
3310 	    t_field_name = dem_opname;
3311 	  else if (cplus_demangle_opname (t_field_name,
3312 					  dem_opname, 0))
3313 	    t_field_name = dem_opname;
3314 	}
3315       if (t_field_name && strcmp (t_field_name, name) == 0)
3316 	{
3317 	  int j;
3318 	  int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3319 	  struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3320 
3321 	  check_stub_method_group (t, i);
3322 
3323 	  if (intype)
3324 	    {
3325 	      for (j = 0; j < len; ++j)
3326 		{
3327 		  if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3328 		      || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3329 					     intype, 1))
3330 		    break;
3331 		}
3332 
3333 	      if (j == len)
3334 		error (_("no member function matches "
3335 			 "that type instantiation"));
3336 	    }
3337 	  else
3338 	    {
3339 	      int ii;
3340 
3341 	      j = -1;
3342 	      for (ii = 0; ii < len; ++ii)
3343 		{
3344 		  /* Skip artificial methods.  This is necessary if,
3345 		     for example, the user wants to "print
3346 		     subclass::subclass" with only one user-defined
3347 		     constructor.  There is no ambiguity in this case.
3348 		     We are careful here to allow artificial methods
3349 		     if they are the unique result.  */
3350 		  if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3351 		    {
3352 		      if (j == -1)
3353 			j = ii;
3354 		      continue;
3355 		    }
3356 
3357 		  /* Desired method is ambiguous if more than one
3358 		     method is defined.  */
3359 		  if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3360 		    error (_("non-unique member `%s' requires "
3361 			     "type instantiation"), name);
3362 
3363 		  j = ii;
3364 		}
3365 
3366 	      if (j == -1)
3367 		error (_("no matching member function"));
3368 	    }
3369 
3370 	  if (TYPE_FN_FIELD_STATIC_P (f, j))
3371 	    {
3372 	      struct symbol *s =
3373 		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3374 			       0, VAR_DOMAIN, 0);
3375 
3376 	      if (s == NULL)
3377 		return NULL;
3378 
3379 	      if (want_address)
3380 		return value_addr (read_var_value (s, 0));
3381 	      else
3382 		return read_var_value (s, 0);
3383 	    }
3384 
3385 	  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3386 	    {
3387 	      if (want_address)
3388 		{
3389 		  result = allocate_value
3390 		    (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3391 		  cplus_make_method_ptr (value_type (result),
3392 					 value_contents_writeable (result),
3393 					 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3394 		}
3395 	      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3396 		return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3397 	      else
3398 		error (_("Cannot reference virtual member function \"%s\""),
3399 		       name);
3400 	    }
3401 	  else
3402 	    {
3403 	      struct symbol *s =
3404 		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3405 			       0, VAR_DOMAIN, 0);
3406 
3407 	      if (s == NULL)
3408 		return NULL;
3409 
3410 	      v = read_var_value (s, 0);
3411 	      if (!want_address)
3412 		result = v;
3413 	      else
3414 		{
3415 		  result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3416 		  cplus_make_method_ptr (value_type (result),
3417 					 value_contents_writeable (result),
3418 					 value_address (v), 0);
3419 		}
3420 	    }
3421 	  return result;
3422 	}
3423     }
3424   for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3425     {
3426       struct value *v;
3427       int base_offset;
3428 
3429       if (BASETYPE_VIA_VIRTUAL (t, i))
3430 	base_offset = 0;
3431       else
3432 	base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3433       v = value_struct_elt_for_reference (domain,
3434 					  offset + base_offset,
3435 					  TYPE_BASECLASS (t, i),
3436 					  name, intype,
3437 					  want_address, noside);
3438       if (v)
3439 	return v;
3440     }
3441 
3442   /* As a last chance, pretend that CURTYPE is a namespace, and look
3443      it up that way; this (frequently) works for types nested inside
3444      classes.  */
3445 
3446   return value_maybe_namespace_elt (curtype, name,
3447 				    want_address, noside);
3448 }
3449 
3450 /* C++: Return the member NAME of the namespace given by the type
3451    CURTYPE.  */
3452 
3453 static struct value *
3454 value_namespace_elt (const struct type *curtype,
3455 		     char *name, int want_address,
3456 		     enum noside noside)
3457 {
3458   struct value *retval = value_maybe_namespace_elt (curtype, name,
3459 						    want_address,
3460 						    noside);
3461 
3462   if (retval == NULL)
3463     error (_("No symbol \"%s\" in namespace \"%s\"."),
3464 	   name, TYPE_TAG_NAME (curtype));
3465 
3466   return retval;
3467 }
3468 
3469 /* A helper function used by value_namespace_elt and
3470    value_struct_elt_for_reference.  It looks up NAME inside the
3471    context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3472    is a class and NAME refers to a type in CURTYPE itself (as opposed
3473    to, say, some base class of CURTYPE).  */
3474 
3475 static struct value *
3476 value_maybe_namespace_elt (const struct type *curtype,
3477 			   char *name, int want_address,
3478 			   enum noside noside)
3479 {
3480   const char *namespace_name = TYPE_TAG_NAME (curtype);
3481   struct symbol *sym;
3482   struct value *result;
3483 
3484   sym = cp_lookup_symbol_namespace (namespace_name, name,
3485 				    get_selected_block (0), VAR_DOMAIN);
3486 
3487   if (sym == NULL)
3488     {
3489       char *concatenated_name = alloca (strlen (namespace_name) + 2
3490 					+ strlen (name) + 1);
3491 
3492       sprintf (concatenated_name, "%s::%s", namespace_name, name);
3493       sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3494     }
3495 
3496   if (sym == NULL)
3497     return NULL;
3498   else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3499 	   && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3500     result = allocate_value (SYMBOL_TYPE (sym));
3501   else
3502     result = value_of_variable (sym, get_selected_block (0));
3503 
3504   if (result && want_address)
3505     result = value_addr (result);
3506 
3507   return result;
3508 }
3509 
3510 /* Given a pointer value V, find the real (RTTI) type of the object it
3511    points to.
3512 
3513    Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3514    and refer to the values computed for the object pointed to.  */
3515 
3516 struct type *
3517 value_rtti_target_type (struct value *v, int *full,
3518 			int *top, int *using_enc)
3519 {
3520   struct value *target;
3521 
3522   target = value_ind (v);
3523 
3524   return value_rtti_type (target, full, top, using_enc);
3525 }
3526 
3527 /* Given a value pointed to by ARGP, check its real run-time type, and
3528    if that is different from the enclosing type, create a new value
3529    using the real run-time type as the enclosing type (and of the same
3530    type as ARGP) and return it, with the embedded offset adjusted to
3531    be the correct offset to the enclosed object.  RTYPE is the type,
3532    and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3533    by value_rtti_type().  If these are available, they can be supplied
3534    and a second call to value_rtti_type() is avoided.  (Pass RTYPE ==
3535    NULL if they're not available.  */
3536 
3537 struct value *
3538 value_full_object (struct value *argp,
3539 		   struct type *rtype,
3540 		   int xfull, int xtop,
3541 		   int xusing_enc)
3542 {
3543   struct type *real_type;
3544   int full = 0;
3545   int top = -1;
3546   int using_enc = 0;
3547   struct value *new_val;
3548 
3549   if (rtype)
3550     {
3551       real_type = rtype;
3552       full = xfull;
3553       top = xtop;
3554       using_enc = xusing_enc;
3555     }
3556   else
3557     real_type = value_rtti_type (argp, &full, &top, &using_enc);
3558 
3559   /* If no RTTI data, or if object is already complete, do nothing.  */
3560   if (!real_type || real_type == value_enclosing_type (argp))
3561     return argp;
3562 
3563   /* If we have the full object, but for some reason the enclosing
3564      type is wrong, set it.  */
3565   /* pai: FIXME -- sounds iffy */
3566   if (full)
3567     {
3568       argp = value_copy (argp);
3569       set_value_enclosing_type (argp, real_type);
3570       return argp;
3571     }
3572 
3573   /* Check if object is in memory.  */
3574   if (VALUE_LVAL (argp) != lval_memory)
3575     {
3576       warning (_("Couldn't retrieve complete object of RTTI "
3577 		 "type %s; object may be in register(s)."),
3578 	       TYPE_NAME (real_type));
3579 
3580       return argp;
3581     }
3582 
3583   /* All other cases -- retrieve the complete object.  */
3584   /* Go back by the computed top_offset from the beginning of the
3585      object, adjusting for the embedded offset of argp if that's what
3586      value_rtti_type used for its computation.  */
3587   new_val = value_at_lazy (real_type, value_address (argp) - top +
3588 			   (using_enc ? 0 : value_embedded_offset (argp)));
3589   deprecated_set_value_type (new_val, value_type (argp));
3590   set_value_embedded_offset (new_val, (using_enc
3591 				       ? top + value_embedded_offset (argp)
3592 				       : top));
3593   return new_val;
3594 }
3595 
3596 
3597 /* Return the value of the local variable, if one exists.
3598    Flag COMPLAIN signals an error if the request is made in an
3599    inappropriate context.  */
3600 
3601 struct value *
3602 value_of_local (const char *name, int complain)
3603 {
3604   struct symbol *func, *sym;
3605   struct block *b;
3606   struct value * ret;
3607   struct frame_info *frame;
3608 
3609   if (complain)
3610     frame = get_selected_frame (_("no frame selected"));
3611   else
3612     {
3613       frame = deprecated_safe_get_selected_frame ();
3614       if (frame == 0)
3615 	return 0;
3616     }
3617 
3618   func = get_frame_function (frame);
3619   if (!func)
3620     {
3621       if (complain)
3622 	error (_("no `%s' in nameless context"), name);
3623       else
3624 	return 0;
3625     }
3626 
3627   b = SYMBOL_BLOCK_VALUE (func);
3628   if (dict_empty (BLOCK_DICT (b)))
3629     {
3630       if (complain)
3631 	error (_("no args, no `%s'"), name);
3632       else
3633 	return 0;
3634     }
3635 
3636   /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3637      symbol instead of the LOC_ARG one (if both exist).  */
3638   sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3639   if (sym == NULL)
3640     {
3641       if (complain)
3642 	error (_("current stack frame does not contain a variable named `%s'"),
3643 	       name);
3644       else
3645 	return NULL;
3646     }
3647 
3648   ret = read_var_value (sym, frame);
3649   if (ret == 0 && complain)
3650     error (_("`%s' argument unreadable"), name);
3651   return ret;
3652 }
3653 
3654 /* C++/Objective-C: return the value of the class instance variable,
3655    if one exists.  Flag COMPLAIN signals an error if the request is
3656    made in an inappropriate context.  */
3657 
3658 struct value *
3659 value_of_this (int complain)
3660 {
3661   if (!current_language->la_name_of_this)
3662     return 0;
3663   return value_of_local (current_language->la_name_of_this, complain);
3664 }
3665 
3666 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3667    elements long, starting at LOWBOUND.  The result has the same lower
3668    bound as the original ARRAY.  */
3669 
3670 struct value *
3671 value_slice (struct value *array, int lowbound, int length)
3672 {
3673   struct type *slice_range_type, *slice_type, *range_type;
3674   LONGEST lowerbound, upperbound;
3675   struct value *slice;
3676   struct type *array_type;
3677 
3678   array_type = check_typedef (value_type (array));
3679   if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3680       && TYPE_CODE (array_type) != TYPE_CODE_STRING
3681       && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3682     error (_("cannot take slice of non-array"));
3683 
3684   range_type = TYPE_INDEX_TYPE (array_type);
3685   if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3686     error (_("slice from bad array or bitstring"));
3687 
3688   if (lowbound < lowerbound || length < 0
3689       || lowbound + length - 1 > upperbound)
3690     error (_("slice out of range"));
3691 
3692   /* FIXME-type-allocation: need a way to free this type when we are
3693      done with it.  */
3694   slice_range_type = create_range_type ((struct type *) NULL,
3695 					TYPE_TARGET_TYPE (range_type),
3696 					lowbound,
3697 					lowbound + length - 1);
3698   if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3699     {
3700       int i;
3701 
3702       slice_type = create_set_type ((struct type *) NULL,
3703 				    slice_range_type);
3704       TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3705       slice = value_zero (slice_type, not_lval);
3706 
3707       for (i = 0; i < length; i++)
3708 	{
3709 	  int element = value_bit_index (array_type,
3710 					 value_contents (array),
3711 					 lowbound + i);
3712 
3713 	  if (element < 0)
3714 	    error (_("internal error accessing bitstring"));
3715 	  else if (element > 0)
3716 	    {
3717 	      int j = i % TARGET_CHAR_BIT;
3718 
3719 	      if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3720 		j = TARGET_CHAR_BIT - 1 - j;
3721 	      value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3722 	    }
3723 	}
3724       /* We should set the address, bitssize, and bitspos, so the
3725          slice can be used on the LHS, but that may require extensions
3726          to value_assign.  For now, just leave as a non_lval.
3727          FIXME.  */
3728     }
3729   else
3730     {
3731       struct type *element_type = TYPE_TARGET_TYPE (array_type);
3732       LONGEST offset =
3733 	(lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3734 
3735       slice_type = create_array_type ((struct type *) NULL,
3736 				      element_type,
3737 				      slice_range_type);
3738       TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3739 
3740       if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3741 	slice = allocate_value_lazy (slice_type);
3742       else
3743 	{
3744 	  slice = allocate_value (slice_type);
3745 	  value_contents_copy (slice, 0, array, offset,
3746 			       TYPE_LENGTH (slice_type));
3747 	}
3748 
3749       set_value_component_location (slice, array);
3750       VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3751       set_value_offset (slice, value_offset (array) + offset);
3752     }
3753   return slice;
3754 }
3755 
3756 /* Create a value for a FORTRAN complex number.  Currently most of the
3757    time values are coerced to COMPLEX*16 (i.e. a complex number
3758    composed of 2 doubles.  This really should be a smarter routine
3759    that figures out precision inteligently as opposed to assuming
3760    doubles.  FIXME: fmb  */
3761 
3762 struct value *
3763 value_literal_complex (struct value *arg1,
3764 		       struct value *arg2,
3765 		       struct type *type)
3766 {
3767   struct value *val;
3768   struct type *real_type = TYPE_TARGET_TYPE (type);
3769 
3770   val = allocate_value (type);
3771   arg1 = value_cast (real_type, arg1);
3772   arg2 = value_cast (real_type, arg2);
3773 
3774   memcpy (value_contents_raw (val),
3775 	  value_contents (arg1), TYPE_LENGTH (real_type));
3776   memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3777 	  value_contents (arg2), TYPE_LENGTH (real_type));
3778   return val;
3779 }
3780 
3781 /* Cast a value into the appropriate complex data type.  */
3782 
3783 static struct value *
3784 cast_into_complex (struct type *type, struct value *val)
3785 {
3786   struct type *real_type = TYPE_TARGET_TYPE (type);
3787 
3788   if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3789     {
3790       struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3791       struct value *re_val = allocate_value (val_real_type);
3792       struct value *im_val = allocate_value (val_real_type);
3793 
3794       memcpy (value_contents_raw (re_val),
3795 	      value_contents (val), TYPE_LENGTH (val_real_type));
3796       memcpy (value_contents_raw (im_val),
3797 	      value_contents (val) + TYPE_LENGTH (val_real_type),
3798 	      TYPE_LENGTH (val_real_type));
3799 
3800       return value_literal_complex (re_val, im_val, type);
3801     }
3802   else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3803 	   || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3804     return value_literal_complex (val,
3805 				  value_zero (real_type, not_lval),
3806 				  type);
3807   else
3808     error (_("cannot cast non-number to complex"));
3809 }
3810 
3811 void
3812 _initialize_valops (void)
3813 {
3814   add_setshow_boolean_cmd ("overload-resolution", class_support,
3815 			   &overload_resolution, _("\
3816 Set overload resolution in evaluating C++ functions."), _("\
3817 Show overload resolution in evaluating C++ functions."),
3818 			   NULL, NULL,
3819 			   show_overload_resolution,
3820 			   &setlist, &showlist);
3821   overload_resolution = 1;
3822 }
3823