1 /* mpn_udiv_w_sdiv -- implement udiv_qrnnd on machines with only signed 2 division. 3 4 Contributed by Peter L. Montgomery. 5 6 THIS IS AN INTERNAL FUNCTION WITH A MUTABLE INTERFACE. IT IS ONLY SAFE 7 TO REACH THIS FUNCTION THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS 8 ALMOST GUARANTEED THAT THIS FUNCTION WILL CHANGE OR DISAPPEAR IN A FUTURE 9 GNU MP RELEASE. 10 11 12 Copyright 1992, 1994, 1996, 2000 Free Software Foundation, Inc. 13 14 This file is part of the GNU MP Library. 15 16 The GNU MP Library is free software; you can redistribute it and/or modify 17 it under the terms of the GNU Lesser General Public License as published by 18 the Free Software Foundation; either version 3 of the License, or (at your 19 option) any later version. 20 21 The GNU MP Library is distributed in the hope that it will be useful, but 22 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 23 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 24 License for more details. 25 26 You should have received a copy of the GNU Lesser General Public License 27 along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ 28 29 #include "gmp.h" 30 #include "gmp-impl.h" 31 #include "longlong.h" 32 33 mp_limb_t 34 mpn_udiv_w_sdiv (rp, a1, a0, d) 35 mp_limb_t *rp, a1, a0, d; 36 { 37 mp_limb_t q, r; 38 mp_limb_t c0, c1, b1; 39 40 ASSERT (d != 0); 41 ASSERT (a1 < d); 42 43 if ((mp_limb_signed_t) d >= 0) 44 { 45 if (a1 < d - a1 - (a0 >> (GMP_LIMB_BITS - 1))) 46 { 47 /* dividend, divisor, and quotient are nonnegative */ 48 sdiv_qrnnd (q, r, a1, a0, d); 49 } 50 else 51 { 52 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ 53 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (GMP_LIMB_BITS - 1)); 54 /* Divide (c1*2^32 + c0) by d */ 55 sdiv_qrnnd (q, r, c1, c0, d); 56 /* Add 2^31 to quotient */ 57 q += (mp_limb_t) 1 << (GMP_LIMB_BITS - 1); 58 } 59 } 60 else 61 { 62 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ 63 c1 = a1 >> 1; /* A/2 */ 64 c0 = (a1 << (GMP_LIMB_BITS - 1)) + (a0 >> 1); 65 66 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ 67 { 68 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ 69 70 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ 71 if ((d & 1) != 0) 72 { 73 if (r >= q) 74 r = r - q; 75 else if (q - r <= d) 76 { 77 r = r - q + d; 78 q--; 79 } 80 else 81 { 82 r = r - q + 2*d; 83 q -= 2; 84 } 85 } 86 } 87 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ 88 { 89 c1 = (b1 - 1) - c1; 90 c0 = ~c0; /* logical NOT */ 91 92 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ 93 94 q = ~q; /* (A/2)/b1 */ 95 r = (b1 - 1) - r; 96 97 r = 2*r + (a0 & 1); /* A/(2*b1) */ 98 99 if ((d & 1) != 0) 100 { 101 if (r >= q) 102 r = r - q; 103 else if (q - r <= d) 104 { 105 r = r - q + d; 106 q--; 107 } 108 else 109 { 110 r = r - q + 2*d; 111 q -= 2; 112 } 113 } 114 } 115 else /* Implies c1 = b1 */ 116 { /* Hence a1 = d - 1 = 2*b1 - 1 */ 117 if (a0 >= -d) 118 { 119 q = -1; 120 r = a0 + d; 121 } 122 else 123 { 124 q = -2; 125 r = a0 + 2*d; 126 } 127 } 128 } 129 130 *rp = r; 131 return q; 132 } 133