1 /* mpfr_rem1 -- internal function 2 mpfr_fmod -- compute the floating-point remainder of x/y 3 mpfr_remquo and mpfr_remainder -- argument reduction functions 4 5 Copyright 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. 6 Contributed by the AriC and Caramel projects, INRIA. 7 8 This file is part of the GNU MPFR Library. 9 10 The GNU MPFR Library is free software; you can redistribute it and/or modify 11 it under the terms of the GNU Lesser General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or (at your 13 option) any later version. 14 15 The GNU MPFR Library is distributed in the hope that it will be useful, but 16 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 18 License for more details. 19 20 You should have received a copy of the GNU Lesser General Public License 21 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see 22 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 23 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ 24 25 # include "mpfr-impl.h" 26 27 /* we return as many bits as we can, keeping just one bit for the sign */ 28 # define WANTED_BITS (sizeof(long) * CHAR_BIT - 1) 29 30 /* 31 rem1 works as follows: 32 The first rounding mode rnd_q indicate if we are actually computing 33 a fmod (MPFR_RNDZ) or a remainder/remquo (MPFR_RNDN). 34 35 Let q = x/y rounded to an integer in the direction rnd_q. 36 Put x - q*y in rem, rounded according to rnd. 37 If quo is not null, the value stored in *quo has the sign of q, 38 and agrees with q with the 2^n low order bits. 39 In other words, *quo = q (mod 2^n) and *quo q >= 0. 40 If rem is zero, then it has the sign of x. 41 The returned 'int' is the inexact flag giving the place of rem wrt x - q*y. 42 43 If x or y is NaN: *quo is undefined, rem is NaN. 44 If x is Inf, whatever y: *quo is undefined, rem is NaN. 45 If y is Inf, x not NaN nor Inf: *quo is 0, rem is x. 46 If y is 0, whatever x: *quo is undefined, rem is NaN. 47 If x is 0, whatever y (not NaN nor 0): *quo is 0, rem is x. 48 49 Otherwise if x and y are neither NaN, Inf nor 0, q is always defined, 50 thus *quo is. 51 Since |x - q*y| <= y/2, no overflow is possible. 52 Only an underflow is possible when y is very small. 53 */ 54 55 static int 56 mpfr_rem1 (mpfr_ptr rem, long *quo, mpfr_rnd_t rnd_q, 57 mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd) 58 { 59 mpfr_exp_t ex, ey; 60 int compare, inex, q_is_odd, sign, signx = MPFR_SIGN (x); 61 mpz_t mx, my, r; 62 63 MPFR_ASSERTD (rnd_q == MPFR_RNDN || rnd_q == MPFR_RNDZ); 64 65 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) || MPFR_IS_SINGULAR (y))) 66 { 67 if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y) || MPFR_IS_INF (x) 68 || MPFR_IS_ZERO (y)) 69 { 70 /* for remquo, quo is undefined */ 71 MPFR_SET_NAN (rem); 72 MPFR_RET_NAN; 73 } 74 else /* either y is Inf and x is 0 or non-special, 75 or x is 0 and y is non-special, 76 in both cases the quotient is zero. */ 77 { 78 if (quo) 79 *quo = 0; 80 return mpfr_set (rem, x, rnd); 81 } 82 } 83 84 /* now neither x nor y is NaN, Inf or zero */ 85 86 mpz_init (mx); 87 mpz_init (my); 88 mpz_init (r); 89 90 ex = mpfr_get_z_2exp (mx, x); /* x = mx*2^ex */ 91 ey = mpfr_get_z_2exp (my, y); /* y = my*2^ey */ 92 93 /* to get rid of sign problems, we compute it separately: 94 quo(-x,-y) = quo(x,y), rem(-x,-y) = -rem(x,y) 95 quo(-x,y) = -quo(x,y), rem(-x,y) = -rem(x,y) 96 thus quo = sign(x/y)*quo(|x|,|y|), rem = sign(x)*rem(|x|,|y|) */ 97 sign = (signx == MPFR_SIGN (y)) ? 1 : -1; 98 mpz_abs (mx, mx); 99 mpz_abs (my, my); 100 q_is_odd = 0; 101 102 /* divide my by 2^k if possible to make operations mod my easier */ 103 { 104 unsigned long k = mpz_scan1 (my, 0); 105 ey += k; 106 mpz_fdiv_q_2exp (my, my, k); 107 } 108 109 if (ex <= ey) 110 { 111 /* q = x/y = mx/(my*2^(ey-ex)) */ 112 mpz_mul_2exp (my, my, ey - ex); /* divide mx by my*2^(ey-ex) */ 113 if (rnd_q == MPFR_RNDZ) 114 /* 0 <= |r| <= |my|, r has the same sign as mx */ 115 mpz_tdiv_qr (mx, r, mx, my); 116 else 117 /* 0 <= |r| <= |my|, r has the same sign as my */ 118 mpz_fdiv_qr (mx, r, mx, my); 119 120 if (rnd_q == MPFR_RNDN) 121 q_is_odd = mpz_tstbit (mx, 0); 122 if (quo) /* mx is the quotient */ 123 { 124 mpz_tdiv_r_2exp (mx, mx, WANTED_BITS); 125 *quo = mpz_get_si (mx); 126 } 127 } 128 else /* ex > ey */ 129 { 130 if (quo) /* remquo case */ 131 /* for remquo, to get the low WANTED_BITS more bits of the quotient, 132 we first compute R = X mod Y*2^WANTED_BITS, where X and Y are 133 defined below. Then the low WANTED_BITS of the quotient are 134 floor(R/Y). */ 135 mpz_mul_2exp (my, my, WANTED_BITS); /* 2^WANTED_BITS*Y */ 136 137 else if (rnd_q == MPFR_RNDN) /* remainder case */ 138 /* Let X = mx*2^(ex-ey) and Y = my. Then both X and Y are integers. 139 Assume X = R mod Y, then x = X*2^ey = R*2^ey mod (Y*2^ey=y). 140 To be able to perform the rounding, we need the least significant 141 bit of the quotient, i.e., one more bit in the remainder, 142 which is obtained by dividing by 2Y. */ 143 mpz_mul_2exp (my, my, 1); /* 2Y */ 144 145 mpz_set_ui (r, 2); 146 mpz_powm_ui (r, r, ex - ey, my); /* 2^(ex-ey) mod my */ 147 mpz_mul (r, r, mx); 148 mpz_mod (r, r, my); 149 150 if (quo) /* now 0 <= r < 2^WANTED_BITS*Y */ 151 { 152 mpz_fdiv_q_2exp (my, my, WANTED_BITS); /* back to Y */ 153 mpz_tdiv_qr (mx, r, r, my); 154 /* oldr = mx*my + newr */ 155 *quo = mpz_get_si (mx); 156 q_is_odd = *quo & 1; 157 } 158 else if (rnd_q == MPFR_RNDN) /* now 0 <= r < 2Y in the remainder case */ 159 { 160 mpz_fdiv_q_2exp (my, my, 1); /* back to Y */ 161 /* least significant bit of q */ 162 q_is_odd = mpz_cmpabs (r, my) >= 0; 163 if (q_is_odd) 164 mpz_sub (r, r, my); 165 } 166 /* now 0 <= |r| < |my|, and if needed, 167 q_is_odd is the least significant bit of q */ 168 } 169 170 if (mpz_cmp_ui (r, 0) == 0) 171 { 172 inex = mpfr_set_ui (rem, 0, MPFR_RNDN); 173 /* take into account sign of x */ 174 if (signx < 0) 175 mpfr_neg (rem, rem, MPFR_RNDN); 176 } 177 else 178 { 179 if (rnd_q == MPFR_RNDN) 180 { 181 /* FIXME: the comparison 2*r < my could be done more efficiently 182 at the mpn level */ 183 mpz_mul_2exp (r, r, 1); 184 compare = mpz_cmpabs (r, my); 185 mpz_fdiv_q_2exp (r, r, 1); 186 compare = ((compare > 0) || 187 ((rnd_q == MPFR_RNDN) && (compare == 0) && q_is_odd)); 188 /* if compare != 0, we need to subtract my to r, and add 1 to quo */ 189 if (compare) 190 { 191 mpz_sub (r, r, my); 192 if (quo && (rnd_q == MPFR_RNDN)) 193 *quo += 1; 194 } 195 } 196 /* take into account sign of x */ 197 if (signx < 0) 198 mpz_neg (r, r); 199 inex = mpfr_set_z_2exp (rem, r, ex > ey ? ey : ex, rnd); 200 } 201 202 if (quo) 203 *quo *= sign; 204 205 mpz_clear (mx); 206 mpz_clear (my); 207 mpz_clear (r); 208 209 return inex; 210 } 211 212 int 213 mpfr_remainder (mpfr_ptr rem, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd) 214 { 215 return mpfr_rem1 (rem, (long *) 0, MPFR_RNDN, x, y, rnd); 216 } 217 218 int 219 mpfr_remquo (mpfr_ptr rem, long *quo, 220 mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd) 221 { 222 return mpfr_rem1 (rem, quo, MPFR_RNDN, x, y, rnd); 223 } 224 225 int 226 mpfr_fmod (mpfr_ptr rem, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd) 227 { 228 return mpfr_rem1 (rem, (long *) 0, MPFR_RNDZ, x, y, rnd); 229 } 230