1 /* mpfr_root -- kth root. 2 3 Copyright 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. 4 Contributed by the AriC and Caramel projects, INRIA. 5 6 This file is part of the GNU MPFR Library. 7 8 The GNU MPFR Library is free software; you can redistribute it and/or modify 9 it under the terms of the GNU Lesser General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or (at your 11 option) any later version. 12 13 The GNU MPFR Library is distributed in the hope that it will be useful, but 14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 16 License for more details. 17 18 You should have received a copy of the GNU Lesser General Public License 19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see 20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ 22 23 #define MPFR_NEED_LONGLONG_H 24 #include "mpfr-impl.h" 25 26 /* The computation of y = x^(1/k) is done as follows: 27 28 Let x = sign * m * 2^(k*e) where m is an integer 29 30 with 2^(k*(n-1)) <= m < 2^(k*n) where n = PREC(y) 31 32 and m = s^k + r where 0 <= r and m < (s+1)^k 33 34 we want that s has n bits i.e. s >= 2^(n-1), or m >= 2^(k*(n-1)) 35 i.e. m must have at least k*(n-1)+1 bits 36 37 then, not taking into account the sign, the result will be 38 x^(1/k) = s * 2^e or (s+1) * 2^e according to the rounding mode. 39 */ 40 41 int 42 mpfr_root (mpfr_ptr y, mpfr_srcptr x, unsigned long k, mpfr_rnd_t rnd_mode) 43 { 44 mpz_t m; 45 mpfr_exp_t e, r, sh; 46 mpfr_prec_t n, size_m, tmp; 47 int inexact, negative; 48 MPFR_SAVE_EXPO_DECL (expo); 49 50 MPFR_LOG_FUNC 51 (("x[%Pu]=%.*Rg k=%lu rnd=%d", 52 mpfr_get_prec (x), mpfr_log_prec, x, k, rnd_mode), 53 ("y[%Pu]=%.*Rg inexact=%d", 54 mpfr_get_prec (y), mpfr_log_prec, y, inexact)); 55 56 if (MPFR_UNLIKELY (k <= 1)) 57 { 58 if (k < 1) /* k==0 => y=x^(1/0)=x^(+Inf) */ 59 #if 0 60 /* For 0 <= x < 1 => +0. 61 For x = 1 => 1. 62 For x > 1, => +Inf. 63 For x < 0 => NaN. 64 */ 65 { 66 if (MPFR_IS_NEG (x) && !MPFR_IS_ZERO (x)) 67 { 68 MPFR_SET_NAN (y); 69 MPFR_RET_NAN; 70 } 71 inexact = mpfr_cmp (x, __gmpfr_one); 72 if (inexact == 0) 73 return mpfr_set_ui (y, 1, rnd_mode); /* 1 may be Out of Range */ 74 else if (inexact < 0) 75 return mpfr_set_ui (y, 0, rnd_mode); /* 0+ */ 76 else 77 { 78 mpfr_set_inf (y, 1); 79 return 0; 80 } 81 } 82 #endif 83 { 84 MPFR_SET_NAN (y); 85 MPFR_RET_NAN; 86 } 87 else /* y =x^(1/1)=x */ 88 return mpfr_set (y, x, rnd_mode); 89 } 90 91 /* Singular values */ 92 else if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) 93 { 94 if (MPFR_IS_NAN (x)) 95 { 96 MPFR_SET_NAN (y); /* NaN^(1/k) = NaN */ 97 MPFR_RET_NAN; 98 } 99 else if (MPFR_IS_INF (x)) /* +Inf^(1/k) = +Inf 100 -Inf^(1/k) = -Inf if k odd 101 -Inf^(1/k) = NaN if k even */ 102 { 103 if (MPFR_IS_NEG(x) && (k % 2 == 0)) 104 { 105 MPFR_SET_NAN (y); 106 MPFR_RET_NAN; 107 } 108 MPFR_SET_INF (y); 109 MPFR_SET_SAME_SIGN (y, x); 110 MPFR_RET (0); 111 } 112 else /* x is necessarily 0: (+0)^(1/k) = +0 113 (-0)^(1/k) = -0 */ 114 { 115 MPFR_ASSERTD (MPFR_IS_ZERO (x)); 116 MPFR_SET_ZERO (y); 117 MPFR_SET_SAME_SIGN (y, x); 118 MPFR_RET (0); 119 } 120 } 121 122 /* Returns NAN for x < 0 and k even */ 123 else if (MPFR_IS_NEG (x) && (k % 2 == 0)) 124 { 125 MPFR_SET_NAN (y); 126 MPFR_RET_NAN; 127 } 128 129 /* General case */ 130 MPFR_SAVE_EXPO_MARK (expo); 131 mpz_init (m); 132 133 e = mpfr_get_z_2exp (m, x); /* x = m * 2^e */ 134 if ((negative = MPFR_IS_NEG(x))) 135 mpz_neg (m, m); 136 r = e % (mpfr_exp_t) k; 137 if (r < 0) 138 r += k; /* now r = e (mod k) with 0 <= e < r */ 139 /* x = (m*2^r) * 2^(e-r) where e-r is a multiple of k */ 140 141 MPFR_MPZ_SIZEINBASE2 (size_m, m); 142 /* for rounding to nearest, we want the round bit to be in the root */ 143 n = MPFR_PREC (y) + (rnd_mode == MPFR_RNDN); 144 145 /* we now multiply m by 2^(r+k*sh) so that root(m,k) will give 146 exactly n bits: we want k*(n-1)+1 <= size_m + k*sh + r <= k*n 147 i.e. sh = floor ((kn-size_m-r)/k) */ 148 if ((mpfr_exp_t) size_m + r > k * (mpfr_exp_t) n) 149 sh = 0; /* we already have too many bits */ 150 else 151 sh = (k * (mpfr_exp_t) n - (mpfr_exp_t) size_m - r) / k; 152 sh = k * sh + r; 153 if (sh >= 0) 154 { 155 mpz_mul_2exp (m, m, sh); 156 e = e - sh; 157 } 158 else if (r > 0) 159 { 160 mpz_mul_2exp (m, m, r); 161 e = e - r; 162 } 163 164 /* invariant: x = m*2^e, with e divisible by k */ 165 166 /* we reuse the variable m to store the kth root, since it is not needed 167 any more: we just need to know if the root is exact */ 168 inexact = mpz_root (m, m, k) == 0; 169 170 MPFR_MPZ_SIZEINBASE2 (tmp, m); 171 sh = tmp - n; 172 if (sh > 0) /* we have to flush to 0 the last sh bits from m */ 173 { 174 inexact = inexact || ((mpfr_exp_t) mpz_scan1 (m, 0) < sh); 175 mpz_fdiv_q_2exp (m, m, sh); 176 e += k * sh; 177 } 178 179 if (inexact) 180 { 181 if (negative) 182 rnd_mode = MPFR_INVERT_RND (rnd_mode); 183 if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA 184 || (rnd_mode == MPFR_RNDN && mpz_tstbit (m, 0))) 185 inexact = 1, mpz_add_ui (m, m, 1); 186 else 187 inexact = -1; 188 } 189 190 /* either inexact is not zero, and the conversion is exact, i.e. inexact 191 is not changed; or inexact=0, and inexact is set only when 192 rnd_mode=MPFR_RNDN and bit (n+1) from m is 1 */ 193 inexact += mpfr_set_z (y, m, MPFR_RNDN); 194 MPFR_SET_EXP (y, MPFR_GET_EXP (y) + e / (mpfr_exp_t) k); 195 196 if (negative) 197 { 198 MPFR_CHANGE_SIGN (y); 199 inexact = -inexact; 200 } 201 202 mpz_clear (m); 203 MPFR_SAVE_EXPO_FREE (expo); 204 return mpfr_check_range (y, inexact, rnd_mode); 205 } 206