1 /*
2  * Wrapper functions for libwolfssl
3  * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 
11 #include "common.h"
12 #include "crypto.h"
13 
14 /* wolfSSL headers */
15 #include <wolfssl/options.h>
16 #include <wolfssl/wolfcrypt/md4.h>
17 #include <wolfssl/wolfcrypt/md5.h>
18 #include <wolfssl/wolfcrypt/sha.h>
19 #include <wolfssl/wolfcrypt/sha256.h>
20 #include <wolfssl/wolfcrypt/sha512.h>
21 #include <wolfssl/wolfcrypt/hmac.h>
22 #include <wolfssl/wolfcrypt/pwdbased.h>
23 #include <wolfssl/wolfcrypt/arc4.h>
24 #include <wolfssl/wolfcrypt/des3.h>
25 #include <wolfssl/wolfcrypt/aes.h>
26 #include <wolfssl/wolfcrypt/dh.h>
27 #include <wolfssl/wolfcrypt/cmac.h>
28 #include <wolfssl/wolfcrypt/ecc.h>
29 #include <wolfssl/openssl/bn.h>
30 
31 
32 #ifndef CONFIG_FIPS
33 
34 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
35 {
36 	Md4 md4;
37 	size_t i;
38 
39 	if (TEST_FAIL())
40 		return -1;
41 
42 	wc_InitMd4(&md4);
43 
44 	for (i = 0; i < num_elem; i++)
45 		wc_Md4Update(&md4, addr[i], len[i]);
46 
47 	wc_Md4Final(&md4, mac);
48 
49 	return 0;
50 }
51 
52 
53 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
54 {
55 	wc_Md5 md5;
56 	size_t i;
57 
58 	if (TEST_FAIL())
59 		return -1;
60 
61 	wc_InitMd5(&md5);
62 
63 	for (i = 0; i < num_elem; i++)
64 		wc_Md5Update(&md5, addr[i], len[i]);
65 
66 	wc_Md5Final(&md5, mac);
67 
68 	return 0;
69 }
70 
71 #endif /* CONFIG_FIPS */
72 
73 
74 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
75 {
76 	wc_Sha sha;
77 	size_t i;
78 
79 	if (TEST_FAIL())
80 		return -1;
81 
82 	wc_InitSha(&sha);
83 
84 	for (i = 0; i < num_elem; i++)
85 		wc_ShaUpdate(&sha, addr[i], len[i]);
86 
87 	wc_ShaFinal(&sha, mac);
88 
89 	return 0;
90 }
91 
92 
93 #ifndef NO_SHA256_WRAPPER
94 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
95 		  u8 *mac)
96 {
97 	wc_Sha256 sha256;
98 	size_t i;
99 
100 	if (TEST_FAIL())
101 		return -1;
102 
103 	wc_InitSha256(&sha256);
104 
105 	for (i = 0; i < num_elem; i++)
106 		wc_Sha256Update(&sha256, addr[i], len[i]);
107 
108 	wc_Sha256Final(&sha256, mac);
109 
110 	return 0;
111 }
112 #endif /* NO_SHA256_WRAPPER */
113 
114 
115 #ifdef CONFIG_SHA384
116 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
117 		  u8 *mac)
118 {
119 	wc_Sha384 sha384;
120 	size_t i;
121 
122 	if (TEST_FAIL())
123 		return -1;
124 
125 	wc_InitSha384(&sha384);
126 
127 	for (i = 0; i < num_elem; i++)
128 		wc_Sha384Update(&sha384, addr[i], len[i]);
129 
130 	wc_Sha384Final(&sha384, mac);
131 
132 	return 0;
133 }
134 #endif /* CONFIG_SHA384 */
135 
136 
137 #ifdef CONFIG_SHA512
138 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
139 		  u8 *mac)
140 {
141 	wc_Sha512 sha512;
142 	size_t i;
143 
144 	if (TEST_FAIL())
145 		return -1;
146 
147 	wc_InitSha512(&sha512);
148 
149 	for (i = 0; i < num_elem; i++)
150 		wc_Sha512Update(&sha512, addr[i], len[i]);
151 
152 	wc_Sha512Final(&sha512, mac);
153 
154 	return 0;
155 }
156 #endif /* CONFIG_SHA512 */
157 
158 
159 static int wolfssl_hmac_vector(int type, const u8 *key,
160 			       size_t key_len, size_t num_elem,
161 			       const u8 *addr[], const size_t *len, u8 *mac,
162 			       unsigned int mdlen)
163 {
164 	Hmac hmac;
165 	size_t i;
166 
167 	(void) mdlen;
168 
169 	if (TEST_FAIL())
170 		return -1;
171 
172 	if (wc_HmacSetKey(&hmac, type, key, (word32) key_len) != 0)
173 		return -1;
174 	for (i = 0; i < num_elem; i++)
175 		if (wc_HmacUpdate(&hmac, addr[i], len[i]) != 0)
176 			return -1;
177 	if (wc_HmacFinal(&hmac, mac) != 0)
178 		return -1;
179 	return 0;
180 }
181 
182 
183 #ifndef CONFIG_FIPS
184 
185 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
186 		    const u8 *addr[], const size_t *len, u8 *mac)
187 {
188 	return wolfssl_hmac_vector(WC_MD5, key, key_len, num_elem, addr, len,
189 				   mac, 16);
190 }
191 
192 
193 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
194 	     u8 *mac)
195 {
196 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
197 }
198 
199 #endif /* CONFIG_FIPS */
200 
201 
202 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
203 		     const u8 *addr[], const size_t *len, u8 *mac)
204 {
205 	return wolfssl_hmac_vector(WC_SHA, key, key_len, num_elem, addr, len,
206 				   mac, 20);
207 }
208 
209 
210 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
211 	      u8 *mac)
212 {
213 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
214 }
215 
216 
217 #ifdef CONFIG_SHA256
218 
219 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
220 		       const u8 *addr[], const size_t *len, u8 *mac)
221 {
222 	return wolfssl_hmac_vector(WC_SHA256, key, key_len, num_elem, addr, len,
223 				   mac, 32);
224 }
225 
226 
227 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
228 		size_t data_len, u8 *mac)
229 {
230 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
231 }
232 
233 #endif /* CONFIG_SHA256 */
234 
235 
236 #ifdef CONFIG_SHA384
237 
238 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
239 		       const u8 *addr[], const size_t *len, u8 *mac)
240 {
241 	return wolfssl_hmac_vector(WC_SHA384, key, key_len, num_elem, addr, len,
242 				   mac, 48);
243 }
244 
245 
246 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
247 		size_t data_len, u8 *mac)
248 {
249 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
250 }
251 
252 #endif /* CONFIG_SHA384 */
253 
254 
255 #ifdef CONFIG_SHA512
256 
257 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
258 		       const u8 *addr[], const size_t *len, u8 *mac)
259 {
260 	return wolfssl_hmac_vector(WC_SHA512, key, key_len, num_elem, addr, len,
261 				   mac, 64);
262 }
263 
264 
265 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
266 		size_t data_len, u8 *mac)
267 {
268 	return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
269 }
270 
271 #endif /* CONFIG_SHA512 */
272 
273 
274 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
275 		int iterations, u8 *buf, size_t buflen)
276 {
277 	if (wc_PBKDF2(buf, (const byte*)passphrase, os_strlen(passphrase), ssid,
278 		      ssid_len, iterations, buflen, WC_SHA) != 0)
279 		return -1;
280 	return 0;
281 }
282 
283 
284 #ifdef CONFIG_DES
285 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
286 {
287 	Des des;
288 	u8  pkey[8], next, tmp;
289 	int i;
290 
291 	/* Add parity bits to the key */
292 	next = 0;
293 	for (i = 0; i < 7; i++) {
294 		tmp = key[i];
295 		pkey[i] = (tmp >> i) | next | 1;
296 		next = tmp << (7 - i);
297 	}
298 	pkey[i] = next | 1;
299 
300 	wc_Des_SetKey(&des, pkey, NULL, DES_ENCRYPTION);
301 	wc_Des_EcbEncrypt(&des, cypher, clear, DES_BLOCK_SIZE);
302 
303 	return 0;
304 }
305 #endif /* CONFIG_DES */
306 
307 
308 void * aes_encrypt_init(const u8 *key, size_t len)
309 {
310 	Aes *aes;
311 
312 	if (TEST_FAIL())
313 		return NULL;
314 
315 	aes = os_malloc(sizeof(Aes));
316 	if (!aes)
317 		return NULL;
318 
319 	if (wc_AesSetKey(aes, key, len, NULL, AES_ENCRYPTION) < 0) {
320 		os_free(aes);
321 		return NULL;
322 	}
323 
324 	return aes;
325 }
326 
327 
328 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
329 {
330 	wc_AesEncryptDirect(ctx, crypt, plain);
331 	return 0;
332 }
333 
334 
335 void aes_encrypt_deinit(void *ctx)
336 {
337 	os_free(ctx);
338 }
339 
340 
341 void * aes_decrypt_init(const u8 *key, size_t len)
342 {
343 	Aes *aes;
344 
345 	if (TEST_FAIL())
346 		return NULL;
347 
348 	aes = os_malloc(sizeof(Aes));
349 	if (!aes)
350 		return NULL;
351 
352 	if (wc_AesSetKey(aes, key, len, NULL, AES_DECRYPTION) < 0) {
353 		os_free(aes);
354 		return NULL;
355 	}
356 
357 	return aes;
358 }
359 
360 
361 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
362 {
363 	wc_AesDecryptDirect(ctx, plain, crypt);
364 	return 0;
365 }
366 
367 
368 void aes_decrypt_deinit(void *ctx)
369 {
370 	os_free(ctx);
371 }
372 
373 
374 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
375 {
376 	Aes aes;
377 	int ret;
378 
379 	if (TEST_FAIL())
380 		return -1;
381 
382 	ret = wc_AesSetKey(&aes, key, 16, iv, AES_ENCRYPTION);
383 	if (ret != 0)
384 		return -1;
385 
386 	ret = wc_AesCbcEncrypt(&aes, data, data, data_len);
387 	if (ret != 0)
388 		return -1;
389 	return 0;
390 }
391 
392 
393 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
394 {
395 	Aes aes;
396 	int ret;
397 
398 	if (TEST_FAIL())
399 		return -1;
400 
401 	ret = wc_AesSetKey(&aes, key, 16, iv, AES_DECRYPTION);
402 	if (ret != 0)
403 		return -1;
404 
405 	ret = wc_AesCbcDecrypt(&aes, data, data, data_len);
406 	if (ret != 0)
407 		return -1;
408 	return 0;
409 }
410 
411 
412 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
413 {
414 	int ret;
415 
416 	if (TEST_FAIL())
417 		return -1;
418 
419 	ret = wc_AesKeyWrap(kek, kek_len, plain, n * 8, cipher, (n + 1) * 8,
420 			    NULL);
421 	return ret != (n + 1) * 8 ? -1 : 0;
422 }
423 
424 
425 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
426 	       u8 *plain)
427 {
428 	int ret;
429 
430 	if (TEST_FAIL())
431 		return -1;
432 
433 	ret = wc_AesKeyUnWrap(kek, kek_len, cipher, (n + 1) * 8, plain, n * 8,
434 			      NULL);
435 	return ret != n * 8 ? -1 : 0;
436 }
437 
438 
439 #ifndef CONFIG_NO_RC4
440 int rc4_skip(const u8 *key, size_t keylen, size_t skip, u8 *data,
441 	     size_t data_len)
442 {
443 #ifndef NO_RC4
444 	Arc4 arc4;
445 	unsigned char skip_buf[16];
446 
447 	wc_Arc4SetKey(&arc4, key, keylen);
448 
449 	while (skip >= sizeof(skip_buf)) {
450 		size_t len = skip;
451 
452 		if (len > sizeof(skip_buf))
453 			len = sizeof(skip_buf);
454 		wc_Arc4Process(&arc4, skip_buf, skip_buf, len);
455 		skip -= len;
456 	}
457 
458 	wc_Arc4Process(&arc4, data, data, data_len);
459 
460 	return 0;
461 #else /* NO_RC4 */
462 	return -1;
463 #endif /* NO_RC4 */
464 }
465 #endif /* CONFIG_NO_RC4 */
466 
467 
468 #if defined(EAP_IKEV2) || defined(EAP_IKEV2_DYNAMIC) \
469 		       || defined(EAP_SERVER_IKEV2)
470 union wolfssl_cipher {
471 	Aes aes;
472 	Des3 des3;
473 	Arc4 arc4;
474 };
475 
476 struct crypto_cipher {
477 	enum crypto_cipher_alg alg;
478 	union wolfssl_cipher enc;
479 	union wolfssl_cipher dec;
480 };
481 
482 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
483 					  const u8 *iv, const u8 *key,
484 					  size_t key_len)
485 {
486 	struct crypto_cipher *ctx;
487 
488 	ctx = os_zalloc(sizeof(*ctx));
489 	if (!ctx)
490 		return NULL;
491 
492 	switch (alg) {
493 #ifndef CONFIG_NO_RC4
494 #ifndef NO_RC4
495 	case CRYPTO_CIPHER_ALG_RC4:
496 		wc_Arc4SetKey(&ctx->enc.arc4, key, key_len);
497 		wc_Arc4SetKey(&ctx->dec.arc4, key, key_len);
498 		break;
499 #endif /* NO_RC4 */
500 #endif /* CONFIG_NO_RC4 */
501 #ifndef NO_AES
502 	case CRYPTO_CIPHER_ALG_AES:
503 		switch (key_len) {
504 		case 16:
505 		case 24:
506 		case 32:
507 			break;
508 		default:
509 			os_free(ctx);
510 			return NULL;
511 		}
512 		if (wc_AesSetKey(&ctx->enc.aes, key, key_len, iv,
513 				 AES_ENCRYPTION) ||
514 		    wc_AesSetKey(&ctx->dec.aes, key, key_len, iv,
515 				 AES_DECRYPTION)) {
516 			os_free(ctx);
517 			return NULL;
518 		}
519 		break;
520 #endif /* NO_AES */
521 #ifndef NO_DES3
522 	case CRYPTO_CIPHER_ALG_3DES:
523 		if (key_len != DES3_KEYLEN ||
524 		    wc_Des3_SetKey(&ctx->enc.des3, key, iv, DES_ENCRYPTION) ||
525 		    wc_Des3_SetKey(&ctx->dec.des3, key, iv, DES_DECRYPTION)) {
526 			os_free(ctx);
527 			return NULL;
528 		}
529 		break;
530 #endif /* NO_DES3 */
531 	case CRYPTO_CIPHER_ALG_RC2:
532 	case CRYPTO_CIPHER_ALG_DES:
533 	default:
534 		os_free(ctx);
535 		return NULL;
536 	}
537 
538 	ctx->alg = alg;
539 
540 	return ctx;
541 }
542 
543 
544 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
545 			  u8 *crypt, size_t len)
546 {
547 	switch (ctx->alg) {
548 #ifndef CONFIG_NO_RC4
549 #ifndef NO_RC4
550 	case CRYPTO_CIPHER_ALG_RC4:
551 		wc_Arc4Process(&ctx->enc.arc4, crypt, plain, len);
552 		return 0;
553 #endif /* NO_RC4 */
554 #endif /* CONFIG_NO_RC4 */
555 #ifndef NO_AES
556 	case CRYPTO_CIPHER_ALG_AES:
557 		if (wc_AesCbcEncrypt(&ctx->enc.aes, crypt, plain, len) != 0)
558 			return -1;
559 		return 0;
560 #endif /* NO_AES */
561 #ifndef NO_DES3
562 	case CRYPTO_CIPHER_ALG_3DES:
563 		if (wc_Des3_CbcEncrypt(&ctx->enc.des3, crypt, plain, len) != 0)
564 			return -1;
565 		return 0;
566 #endif /* NO_DES3 */
567 	default:
568 		return -1;
569 	}
570 	return -1;
571 }
572 
573 
574 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
575 			  u8 *plain, size_t len)
576 {
577 	switch (ctx->alg) {
578 #ifndef CONFIG_NO_RC4
579 #ifndef NO_RC4
580 	case CRYPTO_CIPHER_ALG_RC4:
581 		wc_Arc4Process(&ctx->dec.arc4, plain, crypt, len);
582 		return 0;
583 #endif /* NO_RC4 */
584 #endif /* CONFIG_NO_RC4 */
585 #ifndef NO_AES
586 	case CRYPTO_CIPHER_ALG_AES:
587 		if (wc_AesCbcDecrypt(&ctx->dec.aes, plain, crypt, len) != 0)
588 			return -1;
589 		return 0;
590 #endif /* NO_AES */
591 #ifndef NO_DES3
592 	case CRYPTO_CIPHER_ALG_3DES:
593 		if (wc_Des3_CbcDecrypt(&ctx->dec.des3, plain, crypt, len) != 0)
594 			return -1;
595 		return 0;
596 #endif /* NO_DES3 */
597 	default:
598 		return -1;
599 	}
600 	return -1;
601 }
602 
603 
604 void crypto_cipher_deinit(struct crypto_cipher *ctx)
605 {
606 	os_free(ctx);
607 }
608 
609 #endif
610 
611 
612 #ifdef CONFIG_WPS_NFC
613 
614 static const unsigned char RFC3526_PRIME_1536[] = {
615 	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2,
616 	0x21, 0x68, 0xC2, 0x34, 0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
617 	0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74, 0x02, 0x0B, 0xBE, 0xA6,
618 	0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
619 	0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D,
620 	0xF2, 0x5F, 0x14, 0x37, 0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45,
621 	0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6, 0xF4, 0x4C, 0x42, 0xE9,
622 	0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
623 	0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11,
624 	0x7C, 0x4B, 0x1F, 0xE6, 0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D,
625 	0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05, 0x98, 0xDA, 0x48, 0x36,
626 	0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
627 	0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56,
628 	0x20, 0x85, 0x52, 0xBB, 0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D,
629 	0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04, 0xF1, 0x74, 0x6C, 0x08,
630 	0xCA, 0x23, 0x73, 0x27, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
631 };
632 
633 static const unsigned char RFC3526_GENERATOR_1536[] = {
634 	0x02
635 };
636 
637 #define RFC3526_LEN sizeof(RFC3526_PRIME_1536)
638 
639 
640 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
641 {
642 	WC_RNG rng;
643 	DhKey *ret = NULL;
644 	DhKey *dh = NULL;
645 	struct wpabuf *privkey = NULL;
646 	struct wpabuf *pubkey = NULL;
647 	word32 priv_sz, pub_sz;
648 
649 	*priv = NULL;
650 	wpabuf_free(*publ);
651 	*publ = NULL;
652 
653 	dh = XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_TMP_BUFFER);
654 	if (!dh)
655 		return NULL;
656 	wc_InitDhKey(dh);
657 
658 	if (wc_InitRng(&rng) != 0) {
659 		XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
660 		return NULL;
661 	}
662 
663 	privkey = wpabuf_alloc(RFC3526_LEN);
664 	pubkey = wpabuf_alloc(RFC3526_LEN);
665 	if (!privkey || !pubkey)
666 		goto done;
667 
668 	if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536),
669 			RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536))
670 	    != 0)
671 		goto done;
672 
673 	if (wc_DhGenerateKeyPair(dh, &rng, wpabuf_mhead(privkey), &priv_sz,
674 				 wpabuf_mhead(pubkey), &pub_sz) != 0)
675 		goto done;
676 
677 	wpabuf_put(privkey, priv_sz);
678 	wpabuf_put(pubkey, pub_sz);
679 
680 	ret = dh;
681 	*priv = privkey;
682 	*publ = pubkey;
683 	dh = NULL;
684 	privkey = NULL;
685 	pubkey = NULL;
686 done:
687 	wpabuf_clear_free(pubkey);
688 	wpabuf_clear_free(privkey);
689 	if (dh) {
690 		wc_FreeDhKey(dh);
691 		XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
692 	}
693 	wc_FreeRng(&rng);
694 	return ret;
695 }
696 
697 
698 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
699 {
700 	DhKey *ret = NULL;
701 	DhKey *dh;
702 	byte *secret;
703 	word32 secret_sz;
704 
705 	dh = XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_TMP_BUFFER);
706 	if (!dh)
707 		return NULL;
708 	wc_InitDhKey(dh);
709 
710 	secret = XMALLOC(RFC3526_LEN, NULL, DYNAMIC_TYPE_TMP_BUFFER);
711 	if (!secret)
712 		goto done;
713 
714 	if (wc_DhSetKey(dh, RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536),
715 			RFC3526_GENERATOR_1536, sizeof(RFC3526_GENERATOR_1536))
716 	    != 0)
717 		goto done;
718 
719 	if (wc_DhAgree(dh, secret, &secret_sz, wpabuf_head(priv),
720 		       wpabuf_len(priv), RFC3526_GENERATOR_1536,
721 		       sizeof(RFC3526_GENERATOR_1536)) != 0)
722 		goto done;
723 
724 	if (secret_sz != wpabuf_len(publ) ||
725 	    os_memcmp(secret, wpabuf_head(publ), secret_sz) != 0)
726 		goto done;
727 
728 	ret = dh;
729 	dh = NULL;
730 done:
731 	if (dh) {
732 		wc_FreeDhKey(dh);
733 		XFREE(dh, NULL, DYNAMIC_TYPE_TMP_BUFFER);
734 	}
735 	XFREE(secret, NULL, DYNAMIC_TYPE_TMP_BUFFER);
736 	return ret;
737 }
738 
739 
740 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
741 				  const struct wpabuf *own_private)
742 {
743 	struct wpabuf *ret = NULL;
744 	struct wpabuf *secret;
745 	word32 secret_sz;
746 
747 	secret = wpabuf_alloc(RFC3526_LEN);
748 	if (!secret)
749 		goto done;
750 
751 	if (wc_DhAgree(ctx, wpabuf_mhead(secret), &secret_sz,
752 		       wpabuf_head(own_private), wpabuf_len(own_private),
753 		       wpabuf_head(peer_public), wpabuf_len(peer_public)) != 0)
754 		goto done;
755 
756 	wpabuf_put(secret, secret_sz);
757 
758 	ret = secret;
759 	secret = NULL;
760 done:
761 	wpabuf_clear_free(secret);
762 	return ret;
763 }
764 
765 
766 void dh5_free(void *ctx)
767 {
768 	if (!ctx)
769 		return;
770 
771 	wc_FreeDhKey(ctx);
772 	XFREE(ctx, NULL, DYNAMIC_TYPE_TMP_BUFFER);
773 }
774 
775 #endif /* CONFIG_WPS_NFC */
776 
777 
778 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey,
779 		   u8 *pubkey)
780 {
781 	int ret = -1;
782 	WC_RNG rng;
783 	DhKey *dh = NULL;
784 	word32 priv_sz, pub_sz;
785 
786 	if (TEST_FAIL())
787 		return -1;
788 
789 	dh = os_malloc(sizeof(DhKey));
790 	if (!dh)
791 		return -1;
792 	wc_InitDhKey(dh);
793 
794 	if (wc_InitRng(&rng) != 0) {
795 		os_free(dh);
796 		return -1;
797 	}
798 
799 	if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0)
800 		goto done;
801 
802 	if (wc_DhGenerateKeyPair(dh, &rng, privkey, &priv_sz, pubkey, &pub_sz)
803 	    != 0)
804 		goto done;
805 
806 	if (priv_sz < prime_len) {
807 		size_t pad_sz = prime_len - priv_sz;
808 
809 		os_memmove(privkey + pad_sz, privkey, priv_sz);
810 		os_memset(privkey, 0, pad_sz);
811 	}
812 
813 	if (pub_sz < prime_len) {
814 		size_t pad_sz = prime_len - pub_sz;
815 
816 		os_memmove(pubkey + pad_sz, pubkey, pub_sz);
817 		os_memset(pubkey, 0, pad_sz);
818 	}
819 	ret = 0;
820 done:
821 	wc_FreeDhKey(dh);
822 	os_free(dh);
823 	wc_FreeRng(&rng);
824 	return ret;
825 }
826 
827 
828 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len,
829 			    const u8 *order, size_t order_len,
830 			    const u8 *privkey, size_t privkey_len,
831 			    const u8 *pubkey, size_t pubkey_len,
832 			    u8 *secret, size_t *len)
833 {
834 	int ret = -1;
835 	DhKey *dh;
836 	word32 secret_sz;
837 
838 	dh = os_malloc(sizeof(DhKey));
839 	if (!dh)
840 		return -1;
841 	wc_InitDhKey(dh);
842 
843 	if (wc_DhSetKey(dh, prime, prime_len, &generator, 1) != 0)
844 		goto done;
845 
846 	if (wc_DhAgree(dh, secret, &secret_sz, privkey, privkey_len, pubkey,
847 		       pubkey_len) != 0)
848 		goto done;
849 
850 	*len = secret_sz;
851 	ret = 0;
852 done:
853 	wc_FreeDhKey(dh);
854 	os_free(dh);
855 	return ret;
856 }
857 
858 
859 #ifdef CONFIG_FIPS
860 int crypto_get_random(void *buf, size_t len)
861 {
862 	int ret = 0;
863 	WC_RNG rng;
864 
865 	if (wc_InitRng(&rng) != 0)
866 		return -1;
867 	if (wc_RNG_GenerateBlock(&rng, buf, len) != 0)
868 		ret = -1;
869 	wc_FreeRng(&rng);
870 	return ret;
871 }
872 #endif /* CONFIG_FIPS */
873 
874 
875 #if defined(EAP_PWD) || defined(EAP_SERVER_PWD)
876 struct crypto_hash {
877 	Hmac hmac;
878 	int size;
879 };
880 
881 
882 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
883 				      size_t key_len)
884 {
885 	struct crypto_hash *ret = NULL;
886 	struct crypto_hash *hash;
887 	int type;
888 
889 	hash = os_zalloc(sizeof(*hash));
890 	if (!hash)
891 		goto done;
892 
893 	switch (alg) {
894 #ifndef NO_MD5
895 	case CRYPTO_HASH_ALG_HMAC_MD5:
896 		hash->size = 16;
897 		type = WC_MD5;
898 		break;
899 #endif /* NO_MD5 */
900 #ifndef NO_SHA
901 	case CRYPTO_HASH_ALG_HMAC_SHA1:
902 		type = WC_SHA;
903 		hash->size = 20;
904 		break;
905 #endif /* NO_SHA */
906 #ifdef CONFIG_SHA256
907 #ifndef NO_SHA256
908 	case CRYPTO_HASH_ALG_HMAC_SHA256:
909 		type = WC_SHA256;
910 		hash->size = 32;
911 		break;
912 #endif /* NO_SHA256 */
913 #endif /* CONFIG_SHA256 */
914 	default:
915 		goto done;
916 	}
917 
918 	if (wc_HmacSetKey(&hash->hmac, type, key, key_len) != 0)
919 		goto done;
920 
921 	ret = hash;
922 	hash = NULL;
923 done:
924 	os_free(hash);
925 	return ret;
926 }
927 
928 
929 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
930 {
931 	if (!ctx)
932 		return;
933 	wc_HmacUpdate(&ctx->hmac, data, len);
934 }
935 
936 
937 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
938 {
939 	int ret = 0;
940 
941 	if (!ctx)
942 		return -2;
943 
944 	if (!mac || !len)
945 		goto done;
946 
947 	if (wc_HmacFinal(&ctx->hmac, mac) != 0) {
948 		ret = -1;
949 		goto done;
950 	}
951 
952 	*len = ctx->size;
953 	ret = 0;
954 done:
955 	bin_clear_free(ctx, sizeof(*ctx));
956 	if (TEST_FAIL())
957 		return -1;
958 	return ret;
959 }
960 
961 #endif
962 
963 
964 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
965 		     const u8 *addr[], const size_t *len, u8 *mac)
966 {
967 	Cmac cmac;
968 	size_t i;
969 	word32 sz;
970 
971 	if (TEST_FAIL())
972 		return -1;
973 
974 	if (wc_InitCmac(&cmac, key, key_len, WC_CMAC_AES, NULL) != 0)
975 		return -1;
976 
977 	for (i = 0; i < num_elem; i++)
978 		if (wc_CmacUpdate(&cmac, addr[i], len[i]) != 0)
979 			return -1;
980 
981 	sz = AES_BLOCK_SIZE;
982 	if (wc_CmacFinal(&cmac, mac, &sz) != 0 || sz != AES_BLOCK_SIZE)
983 		return -1;
984 
985 	return 0;
986 }
987 
988 
989 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
990 			 const u8 *addr[], const size_t *len, u8 *mac)
991 {
992 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
993 }
994 
995 
996 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
997 {
998 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
999 }
1000 
1001 
1002 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
1003 {
1004 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
1005 }
1006 
1007 
1008 struct crypto_bignum * crypto_bignum_init(void)
1009 {
1010 	mp_int *a;
1011 
1012 	if (TEST_FAIL())
1013 		return NULL;
1014 
1015 	a = os_malloc(sizeof(*a));
1016 	if (!a || mp_init(a) != MP_OKAY) {
1017 		os_free(a);
1018 		a = NULL;
1019 	}
1020 
1021 	return (struct crypto_bignum *) a;
1022 }
1023 
1024 
1025 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
1026 {
1027 	mp_int *a;
1028 
1029 	if (TEST_FAIL())
1030 		return NULL;
1031 
1032 	a = (mp_int *) crypto_bignum_init();
1033 	if (!a)
1034 		return NULL;
1035 
1036 	if (mp_read_unsigned_bin(a, buf, len) != MP_OKAY) {
1037 		os_free(a);
1038 		a = NULL;
1039 	}
1040 
1041 	return (struct crypto_bignum *) a;
1042 }
1043 
1044 
1045 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
1046 {
1047 	if (!n)
1048 		return;
1049 
1050 	if (clear)
1051 		mp_forcezero((mp_int *) n);
1052 	mp_clear((mp_int *) n);
1053 	os_free((mp_int *) n);
1054 }
1055 
1056 
1057 int crypto_bignum_to_bin(const struct crypto_bignum *a,
1058 			 u8 *buf, size_t buflen, size_t padlen)
1059 {
1060 	int num_bytes, offset;
1061 
1062 	if (TEST_FAIL())
1063 		return -1;
1064 
1065 	if (padlen > buflen)
1066 		return -1;
1067 
1068 	num_bytes = (mp_count_bits((mp_int *) a) + 7) / 8;
1069 	if ((size_t) num_bytes > buflen)
1070 		return -1;
1071 	if (padlen > (size_t) num_bytes)
1072 		offset = padlen - num_bytes;
1073 	else
1074 		offset = 0;
1075 
1076 	os_memset(buf, 0, offset);
1077 	mp_to_unsigned_bin((mp_int *) a, buf + offset);
1078 
1079 	return num_bytes + offset;
1080 }
1081 
1082 
1083 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m)
1084 {
1085 	int ret = 0;
1086 	WC_RNG rng;
1087 
1088 	if (TEST_FAIL())
1089 		return -1;
1090 	if (wc_InitRng(&rng) != 0)
1091 		return -1;
1092 	if (mp_rand_prime((mp_int *) r,
1093 			  (mp_count_bits((mp_int *) m) + 7) / 8 * 2,
1094 			  &rng, NULL) != 0)
1095 		ret = -1;
1096 	if (ret == 0 &&
1097 	    mp_mod((mp_int *) r, (mp_int *) m, (mp_int *) r) != 0)
1098 		ret = -1;
1099 	wc_FreeRng(&rng);
1100 	return ret;
1101 }
1102 
1103 
1104 int crypto_bignum_add(const struct crypto_bignum *a,
1105 		      const struct crypto_bignum *b,
1106 		      struct crypto_bignum *r)
1107 {
1108 	return mp_add((mp_int *) a, (mp_int *) b,
1109 		      (mp_int *) r) == MP_OKAY ? 0 : -1;
1110 }
1111 
1112 
1113 int crypto_bignum_mod(const struct crypto_bignum *a,
1114 		      const struct crypto_bignum *m,
1115 		      struct crypto_bignum *r)
1116 {
1117 	return mp_mod((mp_int *) a, (mp_int *) m,
1118 		      (mp_int *) r) == MP_OKAY ? 0 : -1;
1119 }
1120 
1121 
1122 int crypto_bignum_exptmod(const struct crypto_bignum *b,
1123 			  const struct crypto_bignum *e,
1124 			  const struct crypto_bignum *m,
1125 			  struct crypto_bignum *r)
1126 {
1127 	if (TEST_FAIL())
1128 		return -1;
1129 
1130 	return mp_exptmod((mp_int *) b, (mp_int *) e, (mp_int *) m,
1131 			  (mp_int *) r) == MP_OKAY ?  0 : -1;
1132 }
1133 
1134 
1135 int crypto_bignum_inverse(const struct crypto_bignum *a,
1136 			  const struct crypto_bignum *m,
1137 			  struct crypto_bignum *r)
1138 {
1139 	if (TEST_FAIL())
1140 		return -1;
1141 
1142 	return mp_invmod((mp_int *) a, (mp_int *) m,
1143 			 (mp_int *) r) == MP_OKAY ? 0 : -1;
1144 }
1145 
1146 
1147 int crypto_bignum_sub(const struct crypto_bignum *a,
1148 		      const struct crypto_bignum *b,
1149 		      struct crypto_bignum *r)
1150 {
1151 	if (TEST_FAIL())
1152 		return -1;
1153 
1154 	return mp_add((mp_int *) a, (mp_int *) b,
1155 		      (mp_int *) r) == MP_OKAY ? 0 : -1;
1156 }
1157 
1158 
1159 int crypto_bignum_div(const struct crypto_bignum *a,
1160 		      const struct crypto_bignum *b,
1161 		      struct crypto_bignum *d)
1162 {
1163 	if (TEST_FAIL())
1164 		return -1;
1165 
1166 	return mp_div((mp_int *) a, (mp_int *) b, (mp_int *) d,
1167 		      NULL) == MP_OKAY ? 0 : -1;
1168 }
1169 
1170 
1171 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1172 			 const struct crypto_bignum *b,
1173 			 const struct crypto_bignum *m,
1174 			 struct crypto_bignum *d)
1175 {
1176 	if (TEST_FAIL())
1177 		return -1;
1178 
1179 	return mp_mulmod((mp_int *) a, (mp_int *) b, (mp_int *) m,
1180 			 (mp_int *) d) == MP_OKAY ?  0 : -1;
1181 }
1182 
1183 
1184 int crypto_bignum_rshift(const struct crypto_bignum *a, int n,
1185 			 struct crypto_bignum *r)
1186 {
1187 	if (mp_copy((mp_int *) a, (mp_int *) r) != MP_OKAY)
1188 		return -1;
1189 	mp_rshb((mp_int *) r, n);
1190 	return 0;
1191 }
1192 
1193 
1194 int crypto_bignum_cmp(const struct crypto_bignum *a,
1195 		      const struct crypto_bignum *b)
1196 {
1197 	return mp_cmp((mp_int *) a, (mp_int *) b);
1198 }
1199 
1200 
1201 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1202 {
1203 	return mp_iszero((mp_int *) a);
1204 }
1205 
1206 
1207 int crypto_bignum_is_one(const struct crypto_bignum *a)
1208 {
1209 	return mp_isone((const mp_int *) a);
1210 }
1211 
1212 int crypto_bignum_is_odd(const struct crypto_bignum *a)
1213 {
1214 	return mp_isodd((mp_int *) a);
1215 }
1216 
1217 
1218 int crypto_bignum_legendre(const struct crypto_bignum *a,
1219 			   const struct crypto_bignum *p)
1220 {
1221 	mp_int t;
1222 	int ret;
1223 	int res = -2;
1224 
1225 	if (TEST_FAIL())
1226 		return -2;
1227 
1228 	if (mp_init(&t) != MP_OKAY)
1229 		return -2;
1230 
1231 	/* t = (p-1) / 2 */
1232 	ret = mp_sub_d((mp_int *) p, 1, &t);
1233 	if (ret == MP_OKAY)
1234 		mp_rshb(&t, 1);
1235 	if (ret == MP_OKAY)
1236 		ret = mp_exptmod((mp_int *) a, &t, (mp_int *) p, &t);
1237 	if (ret == MP_OKAY) {
1238 		if (mp_isone(&t))
1239 			res = 1;
1240 		else if (mp_iszero(&t))
1241 			res = 0;
1242 		else
1243 			res = -1;
1244 	}
1245 
1246 	mp_clear(&t);
1247 	return res;
1248 }
1249 
1250 
1251 #ifdef CONFIG_ECC
1252 
1253 int ecc_map(ecc_point *, mp_int *, mp_digit);
1254 int ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R,
1255 			     mp_int *a, mp_int *modulus, mp_digit mp);
1256 
1257 struct crypto_ec {
1258 	ecc_key key;
1259 	mp_int a;
1260 	mp_int prime;
1261 	mp_int order;
1262 	mp_digit mont_b;
1263 	mp_int b;
1264 };
1265 
1266 
1267 struct crypto_ec * crypto_ec_init(int group)
1268 {
1269 	int built = 0;
1270 	struct crypto_ec *e;
1271 	int curve_id;
1272 
1273 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1274 	switch (group) {
1275 	case 19:
1276 		curve_id = ECC_SECP256R1;
1277 		break;
1278 	case 20:
1279 		curve_id = ECC_SECP384R1;
1280 		break;
1281 	case 21:
1282 		curve_id = ECC_SECP521R1;
1283 		break;
1284 	case 25:
1285 		curve_id = ECC_SECP192R1;
1286 		break;
1287 	case 26:
1288 		curve_id = ECC_SECP224R1;
1289 		break;
1290 #ifdef HAVE_ECC_BRAINPOOL
1291 	case 27:
1292 		curve_id = ECC_BRAINPOOLP224R1;
1293 		break;
1294 	case 28:
1295 		curve_id = ECC_BRAINPOOLP256R1;
1296 		break;
1297 	case 29:
1298 		curve_id = ECC_BRAINPOOLP384R1;
1299 		break;
1300 	case 30:
1301 		curve_id = ECC_BRAINPOOLP512R1;
1302 		break;
1303 #endif /* HAVE_ECC_BRAINPOOL */
1304 	default:
1305 		return NULL;
1306 	}
1307 
1308 	e = os_zalloc(sizeof(*e));
1309 	if (!e)
1310 		return NULL;
1311 
1312 	if (wc_ecc_init(&e->key) != 0 ||
1313 	    wc_ecc_set_curve(&e->key, 0, curve_id) != 0 ||
1314 	    mp_init(&e->a) != MP_OKAY ||
1315 	    mp_init(&e->prime) != MP_OKAY ||
1316 	    mp_init(&e->order) != MP_OKAY ||
1317 	    mp_init(&e->b) != MP_OKAY ||
1318 	    mp_read_radix(&e->a, e->key.dp->Af, 16) != MP_OKAY ||
1319 	    mp_read_radix(&e->b, e->key.dp->Bf, 16) != MP_OKAY ||
1320 	    mp_read_radix(&e->prime, e->key.dp->prime, 16) != MP_OKAY ||
1321 	    mp_read_radix(&e->order, e->key.dp->order, 16) != MP_OKAY ||
1322 	    mp_montgomery_setup(&e->prime, &e->mont_b) != MP_OKAY)
1323 		goto done;
1324 
1325 	built = 1;
1326 done:
1327 	if (!built) {
1328 		crypto_ec_deinit(e);
1329 		e = NULL;
1330 	}
1331 	return e;
1332 }
1333 
1334 
1335 void crypto_ec_deinit(struct crypto_ec* e)
1336 {
1337 	if (!e)
1338 		return;
1339 
1340 	mp_clear(&e->b);
1341 	mp_clear(&e->order);
1342 	mp_clear(&e->prime);
1343 	mp_clear(&e->a);
1344 	wc_ecc_free(&e->key);
1345 	os_free(e);
1346 }
1347 
1348 
1349 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1350 {
1351 	if (TEST_FAIL())
1352 		return NULL;
1353 	if (!e)
1354 		return NULL;
1355 	return (struct crypto_ec_point *) wc_ecc_new_point();
1356 }
1357 
1358 
1359 size_t crypto_ec_prime_len(struct crypto_ec *e)
1360 {
1361 	return (mp_count_bits(&e->prime) + 7) / 8;
1362 }
1363 
1364 
1365 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1366 {
1367 	return mp_count_bits(&e->prime);
1368 }
1369 
1370 
1371 size_t crypto_ec_order_len(struct crypto_ec *e)
1372 {
1373 	return (mp_count_bits(&e->order) + 7) / 8;
1374 }
1375 
1376 
1377 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1378 {
1379 	return (const struct crypto_bignum *) &e->prime;
1380 }
1381 
1382 
1383 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1384 {
1385 	return (const struct crypto_bignum *) &e->order;
1386 }
1387 
1388 
1389 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1390 {
1391 	ecc_point *point = (ecc_point *) p;
1392 
1393 	if (!p)
1394 		return;
1395 
1396 	if (clear) {
1397 		mp_forcezero(point->x);
1398 		mp_forcezero(point->y);
1399 		mp_forcezero(point->z);
1400 	}
1401 	wc_ecc_del_point(point);
1402 }
1403 
1404 
1405 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p,
1406 		      struct crypto_bignum *x)
1407 {
1408 	return mp_copy(((ecc_point *) p)->x, (mp_int *) x) == MP_OKAY ? 0 : -1;
1409 }
1410 
1411 
1412 int crypto_ec_point_to_bin(struct crypto_ec *e,
1413 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1414 {
1415 	ecc_point *p = (ecc_point *) point;
1416 
1417 	if (TEST_FAIL())
1418 		return -1;
1419 
1420 	if (!mp_isone(p->z)) {
1421 		if (ecc_map(p, &e->prime, e->mont_b) != MP_OKAY)
1422 			return -1;
1423 	}
1424 
1425 	if (x) {
1426 		if (crypto_bignum_to_bin((struct crypto_bignum *)p->x, x,
1427 					 e->key.dp->size,
1428 					 e->key.dp->size) <= 0)
1429 			return -1;
1430 	}
1431 
1432 	if (y) {
1433 		if (crypto_bignum_to_bin((struct crypto_bignum *) p->y, y,
1434 					 e->key.dp->size,
1435 					 e->key.dp->size) <= 0)
1436 			return -1;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 
1443 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1444 						  const u8 *val)
1445 {
1446 	ecc_point *point = NULL;
1447 	int loaded = 0;
1448 
1449 	if (TEST_FAIL())
1450 		return NULL;
1451 
1452 	point = wc_ecc_new_point();
1453 	if (!point)
1454 		goto done;
1455 
1456 	if (mp_read_unsigned_bin(point->x, val, e->key.dp->size) != MP_OKAY)
1457 		goto done;
1458 	val += e->key.dp->size;
1459 	if (mp_read_unsigned_bin(point->y, val, e->key.dp->size) != MP_OKAY)
1460 		goto done;
1461 	mp_set(point->z, 1);
1462 
1463 	loaded = 1;
1464 done:
1465 	if (!loaded) {
1466 		wc_ecc_del_point(point);
1467 		point = NULL;
1468 	}
1469 	return (struct crypto_ec_point *) point;
1470 }
1471 
1472 
1473 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1474 			const struct crypto_ec_point *b,
1475 			struct crypto_ec_point *c)
1476 {
1477 	mp_int mu;
1478 	ecc_point *ta = NULL, *tb = NULL;
1479 	ecc_point *pa = (ecc_point *) a, *pb = (ecc_point *) b;
1480 	mp_int *modulus = &e->prime;
1481 	int ret;
1482 
1483 	if (TEST_FAIL())
1484 		return -1;
1485 
1486 	ret = mp_init(&mu);
1487 	if (ret != MP_OKAY)
1488 		return -1;
1489 
1490 	ret = mp_montgomery_calc_normalization(&mu, modulus);
1491 	if (ret != MP_OKAY) {
1492 		mp_clear(&mu);
1493 		return -1;
1494 	}
1495 
1496 	if (!mp_isone(&mu)) {
1497 		ta = wc_ecc_new_point();
1498 		if (!ta) {
1499 			mp_clear(&mu);
1500 			return -1;
1501 		}
1502 		tb = wc_ecc_new_point();
1503 		if (!tb) {
1504 			wc_ecc_del_point(ta);
1505 			mp_clear(&mu);
1506 			return -1;
1507 		}
1508 
1509 		if (mp_mulmod(pa->x, &mu, modulus, ta->x) != MP_OKAY ||
1510 		    mp_mulmod(pa->y, &mu, modulus, ta->y) != MP_OKAY ||
1511 		    mp_mulmod(pa->z, &mu, modulus, ta->z) != MP_OKAY ||
1512 		    mp_mulmod(pb->x, &mu, modulus, tb->x) != MP_OKAY ||
1513 		    mp_mulmod(pb->y, &mu, modulus, tb->y) != MP_OKAY ||
1514 		    mp_mulmod(pb->z, &mu, modulus, tb->z) != MP_OKAY) {
1515 			ret = -1;
1516 			goto end;
1517 		}
1518 		pa = ta;
1519 		pb = tb;
1520 	}
1521 
1522 	ret = ecc_projective_add_point(pa, pb, (ecc_point *) c, &e->a,
1523 				       &e->prime, e->mont_b);
1524 	if (ret != 0) {
1525 		ret = -1;
1526 		goto end;
1527 	}
1528 
1529 	if (ecc_map((ecc_point *) c, &e->prime, e->mont_b) != MP_OKAY)
1530 		ret = -1;
1531 	else
1532 		ret = 0;
1533 end:
1534 	wc_ecc_del_point(tb);
1535 	wc_ecc_del_point(ta);
1536 	mp_clear(&mu);
1537 	return ret;
1538 }
1539 
1540 
1541 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1542 			const struct crypto_bignum *b,
1543 			struct crypto_ec_point *res)
1544 {
1545 	int ret;
1546 
1547 	if (TEST_FAIL())
1548 		return -1;
1549 
1550 	ret = wc_ecc_mulmod((mp_int *) b, (ecc_point *) p, (ecc_point *) res,
1551 			    &e->a, &e->prime, 1);
1552 	return ret == 0 ? 0 : -1;
1553 }
1554 
1555 
1556 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1557 {
1558 	ecc_point *point = (ecc_point *) p;
1559 
1560 	if (TEST_FAIL())
1561 		return -1;
1562 
1563 	if (mp_sub(&e->prime, point->y, point->y) != MP_OKAY)
1564 		return -1;
1565 
1566 	return 0;
1567 }
1568 
1569 
1570 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1571 				  struct crypto_ec_point *p,
1572 				  const struct crypto_bignum *x, int y_bit)
1573 {
1574 	byte buf[1 + 2 * MAX_ECC_BYTES];
1575 	int ret;
1576 	int prime_len = crypto_ec_prime_len(e);
1577 
1578 	if (TEST_FAIL())
1579 		return -1;
1580 
1581 	buf[0] = y_bit ? ECC_POINT_COMP_ODD : ECC_POINT_COMP_EVEN;
1582 	ret = crypto_bignum_to_bin(x, buf + 1, prime_len, prime_len);
1583 	if (ret <= 0)
1584 		return -1;
1585 	ret = wc_ecc_import_point_der(buf, 1 + 2 * ret, e->key.idx,
1586 				      (ecc_point *) p);
1587 	if (ret != 0)
1588 		return -1;
1589 
1590 	return 0;
1591 }
1592 
1593 
1594 struct crypto_bignum *
1595 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1596 			      const struct crypto_bignum *x)
1597 {
1598 	mp_int *y2 = NULL;
1599 	mp_int t;
1600 	int calced = 0;
1601 
1602 	if (TEST_FAIL())
1603 		return NULL;
1604 
1605 	if (mp_init(&t) != MP_OKAY)
1606 		return NULL;
1607 
1608 	y2 = (mp_int *) crypto_bignum_init();
1609 	if (!y2)
1610 		goto done;
1611 
1612 	if (mp_sqrmod((mp_int *) x, &e->prime, y2) != 0 ||
1613 	    mp_mulmod((mp_int *) x, y2, &e->prime, y2) != 0 ||
1614 	    mp_mulmod((mp_int *) x, &e->a, &e->prime, &t) != 0 ||
1615 	    mp_addmod(y2, &t, &e->prime, y2) != 0 ||
1616 	    mp_addmod(y2, &e->b, &e->prime, y2) != 0)
1617 		goto done;
1618 
1619 	calced = 1;
1620 done:
1621 	if (!calced) {
1622 		if (y2) {
1623 			mp_clear(y2);
1624 			os_free(y2);
1625 		}
1626 		mp_clear(&t);
1627 	}
1628 
1629 	return (struct crypto_bignum *) y2;
1630 }
1631 
1632 
1633 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1634 				   const struct crypto_ec_point *p)
1635 {
1636 	return wc_ecc_point_is_at_infinity((ecc_point *) p);
1637 }
1638 
1639 
1640 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1641 				const struct crypto_ec_point *p)
1642 {
1643 	return wc_ecc_is_point((ecc_point *) p, &e->a, &e->b, &e->prime) ==
1644 		MP_OKAY;
1645 }
1646 
1647 
1648 int crypto_ec_point_cmp(const struct crypto_ec *e,
1649 			const struct crypto_ec_point *a,
1650 			const struct crypto_ec_point *b)
1651 {
1652 	return wc_ecc_cmp_point((ecc_point *) a, (ecc_point *) b);
1653 }
1654 
1655 
1656 struct crypto_ecdh {
1657 	struct crypto_ec *ec;
1658 };
1659 
1660 struct crypto_ecdh * crypto_ecdh_init(int group)
1661 {
1662 	struct crypto_ecdh *ecdh = NULL;
1663 	WC_RNG rng;
1664 	int ret;
1665 
1666 	if (wc_InitRng(&rng) != 0)
1667 		goto fail;
1668 
1669 	ecdh = os_zalloc(sizeof(*ecdh));
1670 	if (!ecdh)
1671 		goto fail;
1672 
1673 	ecdh->ec = crypto_ec_init(group);
1674 	if (!ecdh->ec)
1675 		goto fail;
1676 
1677 	ret = wc_ecc_make_key_ex(&rng, ecdh->ec->key.dp->size, &ecdh->ec->key,
1678 				 ecdh->ec->key.dp->id);
1679 	if (ret < 0)
1680 		goto fail;
1681 
1682 done:
1683 	wc_FreeRng(&rng);
1684 
1685 	return ecdh;
1686 fail:
1687 	crypto_ecdh_deinit(ecdh);
1688 	ecdh = NULL;
1689 	goto done;
1690 }
1691 
1692 
1693 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
1694 {
1695 	if (ecdh) {
1696 		crypto_ec_deinit(ecdh->ec);
1697 		os_free(ecdh);
1698 	}
1699 }
1700 
1701 
1702 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
1703 {
1704 	struct wpabuf *buf = NULL;
1705 	int ret;
1706 	int len = ecdh->ec->key.dp->size;
1707 
1708 	buf = wpabuf_alloc(inc_y ? 2 * len : len);
1709 	if (!buf)
1710 		goto fail;
1711 
1712 	ret = crypto_bignum_to_bin((struct crypto_bignum *)
1713 				   ecdh->ec->key.pubkey.x, wpabuf_put(buf, len),
1714 				   len, len);
1715 	if (ret < 0)
1716 		goto fail;
1717 	if (inc_y) {
1718 		ret = crypto_bignum_to_bin((struct crypto_bignum *)
1719 					   ecdh->ec->key.pubkey.y,
1720 					   wpabuf_put(buf, len), len, len);
1721 		if (ret < 0)
1722 			goto fail;
1723 	}
1724 
1725 done:
1726 	return buf;
1727 fail:
1728 	wpabuf_free(buf);
1729 	buf = NULL;
1730 	goto done;
1731 }
1732 
1733 
1734 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
1735 					const u8 *key, size_t len)
1736 {
1737 	int ret;
1738 	struct wpabuf *pubkey = NULL;
1739 	struct wpabuf *secret = NULL;
1740 	word32 key_len = ecdh->ec->key.dp->size;
1741 	ecc_point *point = NULL;
1742 	size_t need_key_len = inc_y ? 2 * key_len : key_len;
1743 
1744 	if (len < need_key_len)
1745 		goto fail;
1746 	pubkey = wpabuf_alloc(1 + 2 * key_len);
1747 	if (!pubkey)
1748 		goto fail;
1749 	wpabuf_put_u8(pubkey, inc_y ? ECC_POINT_UNCOMP : ECC_POINT_COMP_EVEN);
1750 	wpabuf_put_data(pubkey, key, need_key_len);
1751 
1752 	point = wc_ecc_new_point();
1753 	if (!point)
1754 		goto fail;
1755 
1756 	ret = wc_ecc_import_point_der(wpabuf_mhead(pubkey), 1 + 2 * key_len,
1757 				      ecdh->ec->key.idx, point);
1758 	if (ret != MP_OKAY)
1759 		goto fail;
1760 
1761 	secret = wpabuf_alloc(key_len);
1762 	if (!secret)
1763 		goto fail;
1764 
1765 	ret = wc_ecc_shared_secret_ex(&ecdh->ec->key, point,
1766 				      wpabuf_put(secret, key_len), &key_len);
1767 	if (ret != MP_OKAY)
1768 		goto fail;
1769 
1770 done:
1771 	wc_ecc_del_point(point);
1772 	wpabuf_free(pubkey);
1773 	return secret;
1774 fail:
1775 	wpabuf_free(secret);
1776 	secret = NULL;
1777 	goto done;
1778 }
1779 
1780 #endif /* CONFIG_ECC */
1781