1 /* 2 * Minimal code for RSA support from LibTomMath 0.41 3 * http://libtom.org/ 4 * http://libtom.org/files/ltm-0.41.tar.bz2 5 * This library was released in public domain by Tom St Denis. 6 * 7 * The combination in this file may not use all of the optimized algorithms 8 * from LibTomMath and may be considerable slower than the LibTomMath with its 9 * default settings. The main purpose of having this version here is to make it 10 * easier to build bignum.c wrapper without having to install and build an 11 * external library. 12 * 13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this 14 * libtommath.c file instead of using the external LibTomMath library. 15 */ 16 17 #ifndef CHAR_BIT 18 #define CHAR_BIT 8 19 #endif 20 21 #define BN_MP_INVMOD_C 22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would 23 * require BN_MP_EXPTMOD_FAST_C instead */ 24 #define BN_S_MP_MUL_DIGS_C 25 #define BN_MP_INVMOD_SLOW_C 26 #define BN_S_MP_SQR_C 27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this 28 * would require other than mp_reduce */ 29 30 #ifdef LTM_FAST 31 32 /* Use faster div at the cost of about 1 kB */ 33 #define BN_MP_MUL_D_C 34 35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */ 36 #define BN_MP_EXPTMOD_FAST_C 37 #define BN_MP_MONTGOMERY_SETUP_C 38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C 39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 40 #define BN_MP_MUL_2_C 41 42 /* Include faster sqr at the cost of about 0.5 kB in code */ 43 #define BN_FAST_S_MP_SQR_C 44 45 /* About 0.25 kB of code, but ~1.7kB of stack space! */ 46 #define BN_FAST_S_MP_MUL_DIGS_C 47 48 #else /* LTM_FAST */ 49 50 #define BN_MP_DIV_SMALL 51 #define BN_MP_INIT_MULTI_C 52 #define BN_MP_CLEAR_MULTI_C 53 #define BN_MP_ABS_C 54 #endif /* LTM_FAST */ 55 56 /* Current uses do not require support for negative exponent in exptmod, so we 57 * can save about 1.5 kB in leaving out invmod. */ 58 #define LTM_NO_NEG_EXP 59 60 /* from tommath.h */ 61 62 #ifndef MIN 63 #define MIN(x,y) ((x)<(y)?(x):(y)) 64 #endif 65 66 #ifndef MAX 67 #define MAX(x,y) ((x)>(y)?(x):(y)) 68 #endif 69 70 #define OPT_CAST(x) 71 72 #ifdef __x86_64__ 73 typedef unsigned long mp_digit; 74 typedef unsigned long mp_word __attribute__((mode(TI))); 75 76 #define DIGIT_BIT 60 77 #define MP_64BIT 78 #else 79 typedef unsigned long mp_digit; 80 typedef u64 mp_word; 81 82 #define DIGIT_BIT 28 83 #define MP_28BIT 84 #endif 85 86 87 #define XMALLOC os_malloc 88 #define XFREE os_free 89 #define XREALLOC os_realloc 90 91 92 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) 93 94 #define MP_LT -1 /* less than */ 95 #define MP_EQ 0 /* equal to */ 96 #define MP_GT 1 /* greater than */ 97 98 #define MP_ZPOS 0 /* positive integer */ 99 #define MP_NEG 1 /* negative */ 100 101 #define MP_OKAY 0 /* ok result */ 102 #define MP_MEM -2 /* out of mem */ 103 #define MP_VAL -3 /* invalid input */ 104 105 #define MP_YES 1 /* yes response */ 106 #define MP_NO 0 /* no response */ 107 108 typedef int mp_err; 109 110 /* define this to use lower memory usage routines (exptmods mostly) */ 111 #define MP_LOW_MEM 112 113 /* default precision */ 114 #ifndef MP_PREC 115 #ifndef MP_LOW_MEM 116 #define MP_PREC 32 /* default digits of precision */ 117 #else 118 #define MP_PREC 8 /* default digits of precision */ 119 #endif 120 #endif 121 122 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ 123 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) 124 125 /* the infamous mp_int structure */ 126 typedef struct { 127 int used, alloc, sign; 128 mp_digit *dp; 129 } mp_int; 130 131 132 /* ---> Basic Manipulations <--- */ 133 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) 134 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) 135 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) 136 137 138 /* prototypes for copied functions */ 139 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) 140 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); 141 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); 142 static int s_mp_sqr(mp_int * a, mp_int * b); 143 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); 144 145 #ifdef BN_FAST_S_MP_MUL_DIGS_C 146 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); 147 #endif 148 149 #ifdef BN_MP_INIT_MULTI_C 150 static int mp_init_multi(mp_int *mp, ...); 151 #endif 152 #ifdef BN_MP_CLEAR_MULTI_C 153 static void mp_clear_multi(mp_int *mp, ...); 154 #endif 155 static int mp_lshd(mp_int * a, int b); 156 static void mp_set(mp_int * a, mp_digit b); 157 static void mp_clamp(mp_int * a); 158 static void mp_exch(mp_int * a, mp_int * b); 159 static void mp_rshd(mp_int * a, int b); 160 static void mp_zero(mp_int * a); 161 static int mp_mod_2d(mp_int * a, int b, mp_int * c); 162 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d); 163 static int mp_init_copy(mp_int * a, mp_int * b); 164 static int mp_mul_2d(mp_int * a, int b, mp_int * c); 165 #ifndef LTM_NO_NEG_EXP 166 static int mp_div_2(mp_int * a, mp_int * b); 167 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c); 168 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c); 169 #endif /* LTM_NO_NEG_EXP */ 170 static int mp_copy(mp_int * a, mp_int * b); 171 static int mp_count_bits(mp_int * a); 172 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); 173 static int mp_mod(mp_int * a, mp_int * b, mp_int * c); 174 static int mp_grow(mp_int * a, int size); 175 static int mp_cmp_mag(mp_int * a, mp_int * b); 176 #ifdef BN_MP_ABS_C 177 static int mp_abs(mp_int * a, mp_int * b); 178 #endif 179 static int mp_sqr(mp_int * a, mp_int * b); 180 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); 181 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); 182 static int mp_2expt(mp_int * a, int b); 183 static int mp_reduce_setup(mp_int * a, mp_int * b); 184 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu); 185 static int mp_init_size(mp_int * a, int size); 186 #ifdef BN_MP_EXPTMOD_FAST_C 187 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); 188 #endif /* BN_MP_EXPTMOD_FAST_C */ 189 #ifdef BN_FAST_S_MP_SQR_C 190 static int fast_s_mp_sqr (mp_int * a, mp_int * b); 191 #endif /* BN_FAST_S_MP_SQR_C */ 192 #ifdef BN_MP_MUL_D_C 193 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c); 194 #endif /* BN_MP_MUL_D_C */ 195 196 197 198 /* functions from bn_<func name>.c */ 199 200 201 /* reverse an array, used for radix code */ 202 static void bn_reverse (unsigned char *s, int len) 203 { 204 int ix, iy; 205 unsigned char t; 206 207 ix = 0; 208 iy = len - 1; 209 while (ix < iy) { 210 t = s[ix]; 211 s[ix] = s[iy]; 212 s[iy] = t; 213 ++ix; 214 --iy; 215 } 216 } 217 218 219 /* low level addition, based on HAC pp.594, Algorithm 14.7 */ 220 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c) 221 { 222 mp_int *x; 223 int olduse, res, min, max; 224 225 /* find sizes, we let |a| <= |b| which means we have to sort 226 * them. "x" will point to the input with the most digits 227 */ 228 if (a->used > b->used) { 229 min = b->used; 230 max = a->used; 231 x = a; 232 } else { 233 min = a->used; 234 max = b->used; 235 x = b; 236 } 237 238 /* init result */ 239 if (c->alloc < max + 1) { 240 if ((res = mp_grow (c, max + 1)) != MP_OKAY) { 241 return res; 242 } 243 } 244 245 /* get old used digit count and set new one */ 246 olduse = c->used; 247 c->used = max + 1; 248 249 { 250 register mp_digit u, *tmpa, *tmpb, *tmpc; 251 register int i; 252 253 /* alias for digit pointers */ 254 255 /* first input */ 256 tmpa = a->dp; 257 258 /* second input */ 259 tmpb = b->dp; 260 261 /* destination */ 262 tmpc = c->dp; 263 264 /* zero the carry */ 265 u = 0; 266 for (i = 0; i < min; i++) { 267 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ 268 *tmpc = *tmpa++ + *tmpb++ + u; 269 270 /* U = carry bit of T[i] */ 271 u = *tmpc >> ((mp_digit)DIGIT_BIT); 272 273 /* take away carry bit from T[i] */ 274 *tmpc++ &= MP_MASK; 275 } 276 277 /* now copy higher words if any, that is in A+B 278 * if A or B has more digits add those in 279 */ 280 if (min != max) { 281 for (; i < max; i++) { 282 /* T[i] = X[i] + U */ 283 *tmpc = x->dp[i] + u; 284 285 /* U = carry bit of T[i] */ 286 u = *tmpc >> ((mp_digit)DIGIT_BIT); 287 288 /* take away carry bit from T[i] */ 289 *tmpc++ &= MP_MASK; 290 } 291 } 292 293 /* add carry */ 294 *tmpc++ = u; 295 296 /* clear digits above oldused */ 297 for (i = c->used; i < olduse; i++) { 298 *tmpc++ = 0; 299 } 300 } 301 302 mp_clamp (c); 303 return MP_OKAY; 304 } 305 306 307 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ 308 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c) 309 { 310 int olduse, res, min, max; 311 312 /* find sizes */ 313 min = b->used; 314 max = a->used; 315 316 /* init result */ 317 if (c->alloc < max) { 318 if ((res = mp_grow (c, max)) != MP_OKAY) { 319 return res; 320 } 321 } 322 olduse = c->used; 323 c->used = max; 324 325 { 326 register mp_digit u, *tmpa, *tmpb, *tmpc; 327 register int i; 328 329 /* alias for digit pointers */ 330 tmpa = a->dp; 331 tmpb = b->dp; 332 tmpc = c->dp; 333 334 /* set carry to zero */ 335 u = 0; 336 for (i = 0; i < min; i++) { 337 /* T[i] = A[i] - B[i] - U */ 338 *tmpc = *tmpa++ - *tmpb++ - u; 339 340 /* U = carry bit of T[i] 341 * Note this saves performing an AND operation since 342 * if a carry does occur it will propagate all the way to the 343 * MSB. As a result a single shift is enough to get the carry 344 */ 345 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); 346 347 /* Clear carry from T[i] */ 348 *tmpc++ &= MP_MASK; 349 } 350 351 /* now copy higher words if any, e.g. if A has more digits than B */ 352 for (; i < max; i++) { 353 /* T[i] = A[i] - U */ 354 *tmpc = *tmpa++ - u; 355 356 /* U = carry bit of T[i] */ 357 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); 358 359 /* Clear carry from T[i] */ 360 *tmpc++ &= MP_MASK; 361 } 362 363 /* clear digits above used (since we may not have grown result above) */ 364 for (i = c->used; i < olduse; i++) { 365 *tmpc++ = 0; 366 } 367 } 368 369 mp_clamp (c); 370 return MP_OKAY; 371 } 372 373 374 /* init a new mp_int */ 375 static int mp_init (mp_int * a) 376 { 377 int i; 378 379 /* allocate memory required and clear it */ 380 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC); 381 if (a->dp == NULL) { 382 return MP_MEM; 383 } 384 385 /* set the digits to zero */ 386 for (i = 0; i < MP_PREC; i++) { 387 a->dp[i] = 0; 388 } 389 390 /* set the used to zero, allocated digits to the default precision 391 * and sign to positive */ 392 a->used = 0; 393 a->alloc = MP_PREC; 394 a->sign = MP_ZPOS; 395 396 return MP_OKAY; 397 } 398 399 400 /* clear one (frees) */ 401 static void mp_clear (mp_int * a) 402 { 403 int i; 404 405 /* only do anything if a hasn't been freed previously */ 406 if (a->dp != NULL) { 407 /* first zero the digits */ 408 for (i = 0; i < a->used; i++) { 409 a->dp[i] = 0; 410 } 411 412 /* free ram */ 413 XFREE(a->dp); 414 415 /* reset members to make debugging easier */ 416 a->dp = NULL; 417 a->alloc = a->used = 0; 418 a->sign = MP_ZPOS; 419 } 420 } 421 422 423 /* high level addition (handles signs) */ 424 static int mp_add (mp_int * a, mp_int * b, mp_int * c) 425 { 426 int sa, sb, res; 427 428 /* get sign of both inputs */ 429 sa = a->sign; 430 sb = b->sign; 431 432 /* handle two cases, not four */ 433 if (sa == sb) { 434 /* both positive or both negative */ 435 /* add their magnitudes, copy the sign */ 436 c->sign = sa; 437 res = s_mp_add (a, b, c); 438 } else { 439 /* one positive, the other negative */ 440 /* subtract the one with the greater magnitude from */ 441 /* the one of the lesser magnitude. The result gets */ 442 /* the sign of the one with the greater magnitude. */ 443 if (mp_cmp_mag (a, b) == MP_LT) { 444 c->sign = sb; 445 res = s_mp_sub (b, a, c); 446 } else { 447 c->sign = sa; 448 res = s_mp_sub (a, b, c); 449 } 450 } 451 return res; 452 } 453 454 455 /* high level subtraction (handles signs) */ 456 static int mp_sub (mp_int * a, mp_int * b, mp_int * c) 457 { 458 int sa, sb, res; 459 460 sa = a->sign; 461 sb = b->sign; 462 463 if (sa != sb) { 464 /* subtract a negative from a positive, OR */ 465 /* subtract a positive from a negative. */ 466 /* In either case, ADD their magnitudes, */ 467 /* and use the sign of the first number. */ 468 c->sign = sa; 469 res = s_mp_add (a, b, c); 470 } else { 471 /* subtract a positive from a positive, OR */ 472 /* subtract a negative from a negative. */ 473 /* First, take the difference between their */ 474 /* magnitudes, then... */ 475 if (mp_cmp_mag (a, b) != MP_LT) { 476 /* Copy the sign from the first */ 477 c->sign = sa; 478 /* The first has a larger or equal magnitude */ 479 res = s_mp_sub (a, b, c); 480 } else { 481 /* The result has the *opposite* sign from */ 482 /* the first number. */ 483 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; 484 /* The second has a larger magnitude */ 485 res = s_mp_sub (b, a, c); 486 } 487 } 488 return res; 489 } 490 491 492 /* high level multiplication (handles sign) */ 493 static int mp_mul (mp_int * a, mp_int * b, mp_int * c) 494 { 495 int res, neg; 496 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; 497 498 /* use Toom-Cook? */ 499 #ifdef BN_MP_TOOM_MUL_C 500 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { 501 res = mp_toom_mul(a, b, c); 502 } else 503 #endif 504 #ifdef BN_MP_KARATSUBA_MUL_C 505 /* use Karatsuba? */ 506 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { 507 res = mp_karatsuba_mul (a, b, c); 508 } else 509 #endif 510 { 511 /* can we use the fast multiplier? 512 * 513 * The fast multiplier can be used if the output will 514 * have less than MP_WARRAY digits and the number of 515 * digits won't affect carry propagation 516 */ 517 #ifdef BN_FAST_S_MP_MUL_DIGS_C 518 int digs = a->used + b->used + 1; 519 520 if ((digs < MP_WARRAY) && 521 MIN(a->used, b->used) <= 522 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 523 res = fast_s_mp_mul_digs (a, b, c, digs); 524 } else 525 #endif 526 #ifdef BN_S_MP_MUL_DIGS_C 527 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ 528 #else 529 #error mp_mul could fail 530 res = MP_VAL; 531 #endif 532 533 } 534 c->sign = (c->used > 0) ? neg : MP_ZPOS; 535 return res; 536 } 537 538 539 /* d = a * b (mod c) */ 540 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) 541 { 542 int res; 543 mp_int t; 544 545 if ((res = mp_init (&t)) != MP_OKAY) { 546 return res; 547 } 548 549 if ((res = mp_mul (a, b, &t)) != MP_OKAY) { 550 mp_clear (&t); 551 return res; 552 } 553 res = mp_mod (&t, c, d); 554 mp_clear (&t); 555 return res; 556 } 557 558 559 /* c = a mod b, 0 <= c < b */ 560 static int mp_mod (mp_int * a, mp_int * b, mp_int * c) 561 { 562 mp_int t; 563 int res; 564 565 if ((res = mp_init (&t)) != MP_OKAY) { 566 return res; 567 } 568 569 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { 570 mp_clear (&t); 571 return res; 572 } 573 574 if (t.sign != b->sign) { 575 res = mp_add (b, &t, c); 576 } else { 577 res = MP_OKAY; 578 mp_exch (&t, c); 579 } 580 581 mp_clear (&t); 582 return res; 583 } 584 585 586 /* this is a shell function that calls either the normal or Montgomery 587 * exptmod functions. Originally the call to the montgomery code was 588 * embedded in the normal function but that wasted a lot of stack space 589 * for nothing (since 99% of the time the Montgomery code would be called) 590 */ 591 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) 592 { 593 int dr; 594 595 /* modulus P must be positive */ 596 if (P->sign == MP_NEG) { 597 return MP_VAL; 598 } 599 600 /* if exponent X is negative we have to recurse */ 601 if (X->sign == MP_NEG) { 602 #ifdef LTM_NO_NEG_EXP 603 return MP_VAL; 604 #else /* LTM_NO_NEG_EXP */ 605 #ifdef BN_MP_INVMOD_C 606 mp_int tmpG, tmpX; 607 int err; 608 609 /* first compute 1/G mod P */ 610 if ((err = mp_init(&tmpG)) != MP_OKAY) { 611 return err; 612 } 613 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { 614 mp_clear(&tmpG); 615 return err; 616 } 617 618 /* now get |X| */ 619 if ((err = mp_init(&tmpX)) != MP_OKAY) { 620 mp_clear(&tmpG); 621 return err; 622 } 623 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { 624 mp_clear_multi(&tmpG, &tmpX, NULL); 625 return err; 626 } 627 628 /* and now compute (1/G)**|X| instead of G**X [X < 0] */ 629 err = mp_exptmod(&tmpG, &tmpX, P, Y); 630 mp_clear_multi(&tmpG, &tmpX, NULL); 631 return err; 632 #else 633 #error mp_exptmod would always fail 634 /* no invmod */ 635 return MP_VAL; 636 #endif 637 #endif /* LTM_NO_NEG_EXP */ 638 } 639 640 /* modified diminished radix reduction */ 641 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) 642 if (mp_reduce_is_2k_l(P) == MP_YES) { 643 return s_mp_exptmod(G, X, P, Y, 1); 644 } 645 #endif 646 647 #ifdef BN_MP_DR_IS_MODULUS_C 648 /* is it a DR modulus? */ 649 dr = mp_dr_is_modulus(P); 650 #else 651 /* default to no */ 652 dr = 0; 653 #endif 654 655 #ifdef BN_MP_REDUCE_IS_2K_C 656 /* if not, is it a unrestricted DR modulus? */ 657 if (dr == 0) { 658 dr = mp_reduce_is_2k(P) << 1; 659 } 660 #endif 661 662 /* if the modulus is odd or dr != 0 use the montgomery method */ 663 #ifdef BN_MP_EXPTMOD_FAST_C 664 if (mp_isodd (P) == 1 || dr != 0) { 665 return mp_exptmod_fast (G, X, P, Y, dr); 666 } else { 667 #endif 668 #ifdef BN_S_MP_EXPTMOD_C 669 /* otherwise use the generic Barrett reduction technique */ 670 return s_mp_exptmod (G, X, P, Y, 0); 671 #else 672 #error mp_exptmod could fail 673 /* no exptmod for evens */ 674 return MP_VAL; 675 #endif 676 #ifdef BN_MP_EXPTMOD_FAST_C 677 } 678 #endif 679 if (dr == 0) { 680 /* avoid compiler warnings about possibly unused variable */ 681 } 682 } 683 684 685 /* compare two ints (signed)*/ 686 static int mp_cmp (mp_int * a, mp_int * b) 687 { 688 /* compare based on sign */ 689 if (a->sign != b->sign) { 690 if (a->sign == MP_NEG) { 691 return MP_LT; 692 } else { 693 return MP_GT; 694 } 695 } 696 697 /* compare digits */ 698 if (a->sign == MP_NEG) { 699 /* if negative compare opposite direction */ 700 return mp_cmp_mag(b, a); 701 } else { 702 return mp_cmp_mag(a, b); 703 } 704 } 705 706 707 /* compare a digit */ 708 static int mp_cmp_d(mp_int * a, mp_digit b) 709 { 710 /* compare based on sign */ 711 if (a->sign == MP_NEG) { 712 return MP_LT; 713 } 714 715 /* compare based on magnitude */ 716 if (a->used > 1) { 717 return MP_GT; 718 } 719 720 /* compare the only digit of a to b */ 721 if (a->dp[0] > b) { 722 return MP_GT; 723 } else if (a->dp[0] < b) { 724 return MP_LT; 725 } else { 726 return MP_EQ; 727 } 728 } 729 730 731 #ifndef LTM_NO_NEG_EXP 732 /* hac 14.61, pp608 */ 733 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c) 734 { 735 /* b cannot be negative */ 736 if (b->sign == MP_NEG || mp_iszero(b) == 1) { 737 return MP_VAL; 738 } 739 740 #ifdef BN_FAST_MP_INVMOD_C 741 /* if the modulus is odd we can use a faster routine instead */ 742 if (mp_isodd (b) == 1) { 743 return fast_mp_invmod (a, b, c); 744 } 745 #endif 746 747 #ifdef BN_MP_INVMOD_SLOW_C 748 return mp_invmod_slow(a, b, c); 749 #endif 750 751 #ifndef BN_FAST_MP_INVMOD_C 752 #ifndef BN_MP_INVMOD_SLOW_C 753 #error mp_invmod would always fail 754 #endif 755 #endif 756 return MP_VAL; 757 } 758 #endif /* LTM_NO_NEG_EXP */ 759 760 761 /* get the size for an unsigned equivalent */ 762 static int mp_unsigned_bin_size (mp_int * a) 763 { 764 int size = mp_count_bits (a); 765 return (size / 8 + ((size & 7) != 0 ? 1 : 0)); 766 } 767 768 769 #ifndef LTM_NO_NEG_EXP 770 /* hac 14.61, pp608 */ 771 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) 772 { 773 mp_int x, y, u, v, A, B, C, D; 774 int res; 775 776 /* b cannot be negative */ 777 if (b->sign == MP_NEG || mp_iszero(b) == 1) { 778 return MP_VAL; 779 } 780 781 /* init temps */ 782 if ((res = mp_init_multi(&x, &y, &u, &v, 783 &A, &B, &C, &D, NULL)) != MP_OKAY) { 784 return res; 785 } 786 787 /* x = a, y = b */ 788 if ((res = mp_mod(a, b, &x)) != MP_OKAY) { 789 goto LBL_ERR; 790 } 791 if ((res = mp_copy (b, &y)) != MP_OKAY) { 792 goto LBL_ERR; 793 } 794 795 /* 2. [modified] if x,y are both even then return an error! */ 796 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { 797 res = MP_VAL; 798 goto LBL_ERR; 799 } 800 801 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ 802 if ((res = mp_copy (&x, &u)) != MP_OKAY) { 803 goto LBL_ERR; 804 } 805 if ((res = mp_copy (&y, &v)) != MP_OKAY) { 806 goto LBL_ERR; 807 } 808 mp_set (&A, 1); 809 mp_set (&D, 1); 810 811 top: 812 /* 4. while u is even do */ 813 while (mp_iseven (&u) == 1) { 814 /* 4.1 u = u/2 */ 815 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { 816 goto LBL_ERR; 817 } 818 /* 4.2 if A or B is odd then */ 819 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { 820 /* A = (A+y)/2, B = (B-x)/2 */ 821 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { 822 goto LBL_ERR; 823 } 824 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { 825 goto LBL_ERR; 826 } 827 } 828 /* A = A/2, B = B/2 */ 829 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { 830 goto LBL_ERR; 831 } 832 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { 833 goto LBL_ERR; 834 } 835 } 836 837 /* 5. while v is even do */ 838 while (mp_iseven (&v) == 1) { 839 /* 5.1 v = v/2 */ 840 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { 841 goto LBL_ERR; 842 } 843 /* 5.2 if C or D is odd then */ 844 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { 845 /* C = (C+y)/2, D = (D-x)/2 */ 846 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { 847 goto LBL_ERR; 848 } 849 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { 850 goto LBL_ERR; 851 } 852 } 853 /* C = C/2, D = D/2 */ 854 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { 855 goto LBL_ERR; 856 } 857 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { 858 goto LBL_ERR; 859 } 860 } 861 862 /* 6. if u >= v then */ 863 if (mp_cmp (&u, &v) != MP_LT) { 864 /* u = u - v, A = A - C, B = B - D */ 865 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { 866 goto LBL_ERR; 867 } 868 869 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { 870 goto LBL_ERR; 871 } 872 873 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { 874 goto LBL_ERR; 875 } 876 } else { 877 /* v - v - u, C = C - A, D = D - B */ 878 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { 879 goto LBL_ERR; 880 } 881 882 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { 883 goto LBL_ERR; 884 } 885 886 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { 887 goto LBL_ERR; 888 } 889 } 890 891 /* if not zero goto step 4 */ 892 if (mp_iszero (&u) == 0) 893 goto top; 894 895 /* now a = C, b = D, gcd == g*v */ 896 897 /* if v != 1 then there is no inverse */ 898 if (mp_cmp_d (&v, 1) != MP_EQ) { 899 res = MP_VAL; 900 goto LBL_ERR; 901 } 902 903 /* if its too low */ 904 while (mp_cmp_d(&C, 0) == MP_LT) { 905 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { 906 goto LBL_ERR; 907 } 908 } 909 910 /* too big */ 911 while (mp_cmp_mag(&C, b) != MP_LT) { 912 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { 913 goto LBL_ERR; 914 } 915 } 916 917 /* C is now the inverse */ 918 mp_exch (&C, c); 919 res = MP_OKAY; 920 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); 921 return res; 922 } 923 #endif /* LTM_NO_NEG_EXP */ 924 925 926 /* compare maginitude of two ints (unsigned) */ 927 static int mp_cmp_mag (mp_int * a, mp_int * b) 928 { 929 int n; 930 mp_digit *tmpa, *tmpb; 931 932 /* compare based on # of non-zero digits */ 933 if (a->used > b->used) { 934 return MP_GT; 935 } 936 937 if (a->used < b->used) { 938 return MP_LT; 939 } 940 941 /* alias for a */ 942 tmpa = a->dp + (a->used - 1); 943 944 /* alias for b */ 945 tmpb = b->dp + (a->used - 1); 946 947 /* compare based on digits */ 948 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { 949 if (*tmpa > *tmpb) { 950 return MP_GT; 951 } 952 953 if (*tmpa < *tmpb) { 954 return MP_LT; 955 } 956 } 957 return MP_EQ; 958 } 959 960 961 /* reads a unsigned char array, assumes the msb is stored first [big endian] */ 962 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) 963 { 964 int res; 965 966 /* make sure there are at least two digits */ 967 if (a->alloc < 2) { 968 if ((res = mp_grow(a, 2)) != MP_OKAY) { 969 return res; 970 } 971 } 972 973 /* zero the int */ 974 mp_zero (a); 975 976 /* read the bytes in */ 977 while (c-- > 0) { 978 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { 979 return res; 980 } 981 982 #ifndef MP_8BIT 983 a->dp[0] |= *b++; 984 a->used += 1; 985 #else 986 a->dp[0] = (*b & MP_MASK); 987 a->dp[1] |= ((*b++ >> 7U) & 1); 988 a->used += 2; 989 #endif 990 } 991 mp_clamp (a); 992 return MP_OKAY; 993 } 994 995 996 /* store in unsigned [big endian] format */ 997 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b) 998 { 999 int x, res; 1000 mp_int t; 1001 1002 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { 1003 return res; 1004 } 1005 1006 x = 0; 1007 while (mp_iszero (&t) == 0) { 1008 #ifndef MP_8BIT 1009 b[x++] = (unsigned char) (t.dp[0] & 255); 1010 #else 1011 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); 1012 #endif 1013 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { 1014 mp_clear (&t); 1015 return res; 1016 } 1017 } 1018 bn_reverse (b, x); 1019 mp_clear (&t); 1020 return MP_OKAY; 1021 } 1022 1023 1024 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ 1025 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) 1026 { 1027 mp_digit D, r, rr; 1028 int x, res; 1029 mp_int t; 1030 1031 1032 /* if the shift count is <= 0 then we do no work */ 1033 if (b <= 0) { 1034 res = mp_copy (a, c); 1035 if (d != NULL) { 1036 mp_zero (d); 1037 } 1038 return res; 1039 } 1040 1041 if ((res = mp_init (&t)) != MP_OKAY) { 1042 return res; 1043 } 1044 1045 /* get the remainder */ 1046 if (d != NULL) { 1047 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { 1048 mp_clear (&t); 1049 return res; 1050 } 1051 } 1052 1053 /* copy */ 1054 if ((res = mp_copy (a, c)) != MP_OKAY) { 1055 mp_clear (&t); 1056 return res; 1057 } 1058 1059 /* shift by as many digits in the bit count */ 1060 if (b >= (int)DIGIT_BIT) { 1061 mp_rshd (c, b / DIGIT_BIT); 1062 } 1063 1064 /* shift any bit count < DIGIT_BIT */ 1065 D = (mp_digit) (b % DIGIT_BIT); 1066 if (D != 0) { 1067 register mp_digit *tmpc, mask, shift; 1068 1069 /* mask */ 1070 mask = (((mp_digit)1) << D) - 1; 1071 1072 /* shift for lsb */ 1073 shift = DIGIT_BIT - D; 1074 1075 /* alias */ 1076 tmpc = c->dp + (c->used - 1); 1077 1078 /* carry */ 1079 r = 0; 1080 for (x = c->used - 1; x >= 0; x--) { 1081 /* get the lower bits of this word in a temp */ 1082 rr = *tmpc & mask; 1083 1084 /* shift the current word and mix in the carry bits from the previous word */ 1085 *tmpc = (*tmpc >> D) | (r << shift); 1086 --tmpc; 1087 1088 /* set the carry to the carry bits of the current word found above */ 1089 r = rr; 1090 } 1091 } 1092 mp_clamp (c); 1093 if (d != NULL) { 1094 mp_exch (&t, d); 1095 } 1096 mp_clear (&t); 1097 return MP_OKAY; 1098 } 1099 1100 1101 static int mp_init_copy (mp_int * a, mp_int * b) 1102 { 1103 int res; 1104 1105 if ((res = mp_init (a)) != MP_OKAY) { 1106 return res; 1107 } 1108 return mp_copy (b, a); 1109 } 1110 1111 1112 /* set to zero */ 1113 static void mp_zero (mp_int * a) 1114 { 1115 int n; 1116 mp_digit *tmp; 1117 1118 a->sign = MP_ZPOS; 1119 a->used = 0; 1120 1121 tmp = a->dp; 1122 for (n = 0; n < a->alloc; n++) { 1123 *tmp++ = 0; 1124 } 1125 } 1126 1127 1128 /* copy, b = a */ 1129 static int mp_copy (mp_int * a, mp_int * b) 1130 { 1131 int res, n; 1132 1133 /* if dst == src do nothing */ 1134 if (a == b) { 1135 return MP_OKAY; 1136 } 1137 1138 /* grow dest */ 1139 if (b->alloc < a->used) { 1140 if ((res = mp_grow (b, a->used)) != MP_OKAY) { 1141 return res; 1142 } 1143 } 1144 1145 /* zero b and copy the parameters over */ 1146 { 1147 register mp_digit *tmpa, *tmpb; 1148 1149 /* pointer aliases */ 1150 1151 /* source */ 1152 tmpa = a->dp; 1153 1154 /* destination */ 1155 tmpb = b->dp; 1156 1157 /* copy all the digits */ 1158 for (n = 0; n < a->used; n++) { 1159 *tmpb++ = *tmpa++; 1160 } 1161 1162 /* clear high digits */ 1163 for (; n < b->used; n++) { 1164 *tmpb++ = 0; 1165 } 1166 } 1167 1168 /* copy used count and sign */ 1169 b->used = a->used; 1170 b->sign = a->sign; 1171 return MP_OKAY; 1172 } 1173 1174 1175 /* shift right a certain amount of digits */ 1176 static void mp_rshd (mp_int * a, int b) 1177 { 1178 int x; 1179 1180 /* if b <= 0 then ignore it */ 1181 if (b <= 0) { 1182 return; 1183 } 1184 1185 /* if b > used then simply zero it and return */ 1186 if (a->used <= b) { 1187 mp_zero (a); 1188 return; 1189 } 1190 1191 { 1192 register mp_digit *bottom, *top; 1193 1194 /* shift the digits down */ 1195 1196 /* bottom */ 1197 bottom = a->dp; 1198 1199 /* top [offset into digits] */ 1200 top = a->dp + b; 1201 1202 /* this is implemented as a sliding window where 1203 * the window is b-digits long and digits from 1204 * the top of the window are copied to the bottom 1205 * 1206 * e.g. 1207 1208 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> 1209 /\ | ----> 1210 \-------------------/ ----> 1211 */ 1212 for (x = 0; x < (a->used - b); x++) { 1213 *bottom++ = *top++; 1214 } 1215 1216 /* zero the top digits */ 1217 for (; x < a->used; x++) { 1218 *bottom++ = 0; 1219 } 1220 } 1221 1222 /* remove excess digits */ 1223 a->used -= b; 1224 } 1225 1226 1227 /* swap the elements of two integers, for cases where you can't simply swap the 1228 * mp_int pointers around 1229 */ 1230 static void mp_exch (mp_int * a, mp_int * b) 1231 { 1232 mp_int t; 1233 1234 t = *a; 1235 *a = *b; 1236 *b = t; 1237 } 1238 1239 1240 /* trim unused digits 1241 * 1242 * This is used to ensure that leading zero digits are 1243 * trimed and the leading "used" digit will be non-zero 1244 * Typically very fast. Also fixes the sign if there 1245 * are no more leading digits 1246 */ 1247 static void mp_clamp (mp_int * a) 1248 { 1249 /* decrease used while the most significant digit is 1250 * zero. 1251 */ 1252 while (a->used > 0 && a->dp[a->used - 1] == 0) { 1253 --(a->used); 1254 } 1255 1256 /* reset the sign flag if used == 0 */ 1257 if (a->used == 0) { 1258 a->sign = MP_ZPOS; 1259 } 1260 } 1261 1262 1263 /* grow as required */ 1264 static int mp_grow (mp_int * a, int size) 1265 { 1266 int i; 1267 mp_digit *tmp; 1268 1269 /* if the alloc size is smaller alloc more ram */ 1270 if (a->alloc < size) { 1271 /* ensure there are always at least MP_PREC digits extra on top */ 1272 size += (MP_PREC * 2) - (size % MP_PREC); 1273 1274 /* reallocate the array a->dp 1275 * 1276 * We store the return in a temporary variable 1277 * in case the operation failed we don't want 1278 * to overwrite the dp member of a. 1279 */ 1280 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); 1281 if (tmp == NULL) { 1282 /* reallocation failed but "a" is still valid [can be freed] */ 1283 return MP_MEM; 1284 } 1285 1286 /* reallocation succeeded so set a->dp */ 1287 a->dp = tmp; 1288 1289 /* zero excess digits */ 1290 i = a->alloc; 1291 a->alloc = size; 1292 for (; i < a->alloc; i++) { 1293 a->dp[i] = 0; 1294 } 1295 } 1296 return MP_OKAY; 1297 } 1298 1299 1300 #ifdef BN_MP_ABS_C 1301 /* b = |a| 1302 * 1303 * Simple function copies the input and fixes the sign to positive 1304 */ 1305 static int mp_abs (mp_int * a, mp_int * b) 1306 { 1307 int res; 1308 1309 /* copy a to b */ 1310 if (a != b) { 1311 if ((res = mp_copy (a, b)) != MP_OKAY) { 1312 return res; 1313 } 1314 } 1315 1316 /* force the sign of b to positive */ 1317 b->sign = MP_ZPOS; 1318 1319 return MP_OKAY; 1320 } 1321 #endif 1322 1323 1324 /* set to a digit */ 1325 static void mp_set (mp_int * a, mp_digit b) 1326 { 1327 mp_zero (a); 1328 a->dp[0] = b & MP_MASK; 1329 a->used = (a->dp[0] != 0) ? 1 : 0; 1330 } 1331 1332 1333 #ifndef LTM_NO_NEG_EXP 1334 /* b = a/2 */ 1335 static int mp_div_2(mp_int * a, mp_int * b) 1336 { 1337 int x, res, oldused; 1338 1339 /* copy */ 1340 if (b->alloc < a->used) { 1341 if ((res = mp_grow (b, a->used)) != MP_OKAY) { 1342 return res; 1343 } 1344 } 1345 1346 oldused = b->used; 1347 b->used = a->used; 1348 { 1349 register mp_digit r, rr, *tmpa, *tmpb; 1350 1351 /* source alias */ 1352 tmpa = a->dp + b->used - 1; 1353 1354 /* dest alias */ 1355 tmpb = b->dp + b->used - 1; 1356 1357 /* carry */ 1358 r = 0; 1359 for (x = b->used - 1; x >= 0; x--) { 1360 /* get the carry for the next iteration */ 1361 rr = *tmpa & 1; 1362 1363 /* shift the current digit, add in carry and store */ 1364 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); 1365 1366 /* forward carry to next iteration */ 1367 r = rr; 1368 } 1369 1370 /* zero excess digits */ 1371 tmpb = b->dp + b->used; 1372 for (x = b->used; x < oldused; x++) { 1373 *tmpb++ = 0; 1374 } 1375 } 1376 b->sign = a->sign; 1377 mp_clamp (b); 1378 return MP_OKAY; 1379 } 1380 #endif /* LTM_NO_NEG_EXP */ 1381 1382 1383 /* shift left by a certain bit count */ 1384 static int mp_mul_2d (mp_int * a, int b, mp_int * c) 1385 { 1386 mp_digit d; 1387 int res; 1388 1389 /* copy */ 1390 if (a != c) { 1391 if ((res = mp_copy (a, c)) != MP_OKAY) { 1392 return res; 1393 } 1394 } 1395 1396 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { 1397 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { 1398 return res; 1399 } 1400 } 1401 1402 /* shift by as many digits in the bit count */ 1403 if (b >= (int)DIGIT_BIT) { 1404 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { 1405 return res; 1406 } 1407 } 1408 1409 /* shift any bit count < DIGIT_BIT */ 1410 d = (mp_digit) (b % DIGIT_BIT); 1411 if (d != 0) { 1412 register mp_digit *tmpc, shift, mask, r, rr; 1413 register int x; 1414 1415 /* bitmask for carries */ 1416 mask = (((mp_digit)1) << d) - 1; 1417 1418 /* shift for msbs */ 1419 shift = DIGIT_BIT - d; 1420 1421 /* alias */ 1422 tmpc = c->dp; 1423 1424 /* carry */ 1425 r = 0; 1426 for (x = 0; x < c->used; x++) { 1427 /* get the higher bits of the current word */ 1428 rr = (*tmpc >> shift) & mask; 1429 1430 /* shift the current word and OR in the carry */ 1431 *tmpc = ((*tmpc << d) | r) & MP_MASK; 1432 ++tmpc; 1433 1434 /* set the carry to the carry bits of the current word */ 1435 r = rr; 1436 } 1437 1438 /* set final carry */ 1439 if (r != 0) { 1440 c->dp[(c->used)++] = r; 1441 } 1442 } 1443 mp_clamp (c); 1444 return MP_OKAY; 1445 } 1446 1447 1448 #ifdef BN_MP_INIT_MULTI_C 1449 static int mp_init_multi(mp_int *mp, ...) 1450 { 1451 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ 1452 int n = 0; /* Number of ok inits */ 1453 mp_int* cur_arg = mp; 1454 va_list args; 1455 1456 va_start(args, mp); /* init args to next argument from caller */ 1457 while (cur_arg != NULL) { 1458 if (mp_init(cur_arg) != MP_OKAY) { 1459 /* Oops - error! Back-track and mp_clear what we already 1460 succeeded in init-ing, then return error. 1461 */ 1462 va_list clean_args; 1463 1464 /* end the current list */ 1465 va_end(args); 1466 1467 /* now start cleaning up */ 1468 cur_arg = mp; 1469 va_start(clean_args, mp); 1470 while (n--) { 1471 mp_clear(cur_arg); 1472 cur_arg = va_arg(clean_args, mp_int*); 1473 } 1474 va_end(clean_args); 1475 return MP_MEM; 1476 } 1477 n++; 1478 cur_arg = va_arg(args, mp_int*); 1479 } 1480 va_end(args); 1481 return res; /* Assumed ok, if error flagged above. */ 1482 } 1483 #endif 1484 1485 1486 #ifdef BN_MP_CLEAR_MULTI_C 1487 static void mp_clear_multi(mp_int *mp, ...) 1488 { 1489 mp_int* next_mp = mp; 1490 va_list args; 1491 va_start(args, mp); 1492 while (next_mp != NULL) { 1493 mp_clear(next_mp); 1494 next_mp = va_arg(args, mp_int*); 1495 } 1496 va_end(args); 1497 } 1498 #endif 1499 1500 1501 /* shift left a certain amount of digits */ 1502 static int mp_lshd (mp_int * a, int b) 1503 { 1504 int x, res; 1505 1506 /* if its less than zero return */ 1507 if (b <= 0) { 1508 return MP_OKAY; 1509 } 1510 1511 /* grow to fit the new digits */ 1512 if (a->alloc < a->used + b) { 1513 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { 1514 return res; 1515 } 1516 } 1517 1518 { 1519 register mp_digit *top, *bottom; 1520 1521 /* increment the used by the shift amount then copy upwards */ 1522 a->used += b; 1523 1524 /* top */ 1525 top = a->dp + a->used - 1; 1526 1527 /* base */ 1528 bottom = a->dp + a->used - 1 - b; 1529 1530 /* much like mp_rshd this is implemented using a sliding window 1531 * except the window goes the otherway around. Copying from 1532 * the bottom to the top. see bn_mp_rshd.c for more info. 1533 */ 1534 for (x = a->used - 1; x >= b; x--) { 1535 *top-- = *bottom--; 1536 } 1537 1538 /* zero the lower digits */ 1539 top = a->dp; 1540 for (x = 0; x < b; x++) { 1541 *top++ = 0; 1542 } 1543 } 1544 return MP_OKAY; 1545 } 1546 1547 1548 /* returns the number of bits in an int */ 1549 static int mp_count_bits (mp_int * a) 1550 { 1551 int r; 1552 mp_digit q; 1553 1554 /* shortcut */ 1555 if (a->used == 0) { 1556 return 0; 1557 } 1558 1559 /* get number of digits and add that */ 1560 r = (a->used - 1) * DIGIT_BIT; 1561 1562 /* take the last digit and count the bits in it */ 1563 q = a->dp[a->used - 1]; 1564 while (q > ((mp_digit) 0)) { 1565 ++r; 1566 q >>= ((mp_digit) 1); 1567 } 1568 return r; 1569 } 1570 1571 1572 /* calc a value mod 2**b */ 1573 static int mp_mod_2d (mp_int * a, int b, mp_int * c) 1574 { 1575 int x, res; 1576 1577 /* if b is <= 0 then zero the int */ 1578 if (b <= 0) { 1579 mp_zero (c); 1580 return MP_OKAY; 1581 } 1582 1583 /* if the modulus is larger than the value than return */ 1584 if (b >= (int) (a->used * DIGIT_BIT)) { 1585 res = mp_copy (a, c); 1586 return res; 1587 } 1588 1589 /* copy */ 1590 if ((res = mp_copy (a, c)) != MP_OKAY) { 1591 return res; 1592 } 1593 1594 /* zero digits above the last digit of the modulus */ 1595 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { 1596 c->dp[x] = 0; 1597 } 1598 /* clear the digit that is not completely outside/inside the modulus */ 1599 c->dp[b / DIGIT_BIT] &= 1600 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); 1601 mp_clamp (c); 1602 return MP_OKAY; 1603 } 1604 1605 1606 #ifdef BN_MP_DIV_SMALL 1607 1608 /* slower bit-bang division... also smaller */ 1609 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) 1610 { 1611 mp_int ta, tb, tq, q; 1612 int res, n, n2; 1613 1614 /* is divisor zero ? */ 1615 if (mp_iszero (b) == 1) { 1616 return MP_VAL; 1617 } 1618 1619 /* if a < b then q=0, r = a */ 1620 if (mp_cmp_mag (a, b) == MP_LT) { 1621 if (d != NULL) { 1622 res = mp_copy (a, d); 1623 } else { 1624 res = MP_OKAY; 1625 } 1626 if (c != NULL) { 1627 mp_zero (c); 1628 } 1629 return res; 1630 } 1631 1632 /* init our temps */ 1633 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { 1634 return res; 1635 } 1636 1637 1638 mp_set(&tq, 1); 1639 n = mp_count_bits(a) - mp_count_bits(b); 1640 if (((res = mp_abs(a, &ta)) != MP_OKAY) || 1641 ((res = mp_abs(b, &tb)) != MP_OKAY) || 1642 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || 1643 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { 1644 goto LBL_ERR; 1645 } 1646 1647 while (n-- >= 0) { 1648 if (mp_cmp(&tb, &ta) != MP_GT) { 1649 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || 1650 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { 1651 goto LBL_ERR; 1652 } 1653 } 1654 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || 1655 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { 1656 goto LBL_ERR; 1657 } 1658 } 1659 1660 /* now q == quotient and ta == remainder */ 1661 n = a->sign; 1662 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); 1663 if (c != NULL) { 1664 mp_exch(c, &q); 1665 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; 1666 } 1667 if (d != NULL) { 1668 mp_exch(d, &ta); 1669 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; 1670 } 1671 LBL_ERR: 1672 mp_clear_multi(&ta, &tb, &tq, &q, NULL); 1673 return res; 1674 } 1675 1676 #else 1677 1678 /* integer signed division. 1679 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] 1680 * HAC pp.598 Algorithm 14.20 1681 * 1682 * Note that the description in HAC is horribly 1683 * incomplete. For example, it doesn't consider 1684 * the case where digits are removed from 'x' in 1685 * the inner loop. It also doesn't consider the 1686 * case that y has fewer than three digits, etc.. 1687 * 1688 * The overall algorithm is as described as 1689 * 14.20 from HAC but fixed to treat these cases. 1690 */ 1691 static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) 1692 { 1693 mp_int q, x, y, t1, t2; 1694 int res, n, t, i, norm, neg; 1695 1696 /* is divisor zero ? */ 1697 if (mp_iszero (b) == 1) { 1698 return MP_VAL; 1699 } 1700 1701 /* if a < b then q=0, r = a */ 1702 if (mp_cmp_mag (a, b) == MP_LT) { 1703 if (d != NULL) { 1704 res = mp_copy (a, d); 1705 } else { 1706 res = MP_OKAY; 1707 } 1708 if (c != NULL) { 1709 mp_zero (c); 1710 } 1711 return res; 1712 } 1713 1714 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { 1715 return res; 1716 } 1717 q.used = a->used + 2; 1718 1719 if ((res = mp_init (&t1)) != MP_OKAY) { 1720 goto LBL_Q; 1721 } 1722 1723 if ((res = mp_init (&t2)) != MP_OKAY) { 1724 goto LBL_T1; 1725 } 1726 1727 if ((res = mp_init_copy (&x, a)) != MP_OKAY) { 1728 goto LBL_T2; 1729 } 1730 1731 if ((res = mp_init_copy (&y, b)) != MP_OKAY) { 1732 goto LBL_X; 1733 } 1734 1735 /* fix the sign */ 1736 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; 1737 x.sign = y.sign = MP_ZPOS; 1738 1739 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ 1740 norm = mp_count_bits(&y) % DIGIT_BIT; 1741 if (norm < (int)(DIGIT_BIT-1)) { 1742 norm = (DIGIT_BIT-1) - norm; 1743 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { 1744 goto LBL_Y; 1745 } 1746 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { 1747 goto LBL_Y; 1748 } 1749 } else { 1750 norm = 0; 1751 } 1752 1753 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ 1754 n = x.used - 1; 1755 t = y.used - 1; 1756 1757 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ 1758 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ 1759 goto LBL_Y; 1760 } 1761 1762 while (mp_cmp (&x, &y) != MP_LT) { 1763 ++(q.dp[n - t]); 1764 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { 1765 goto LBL_Y; 1766 } 1767 } 1768 1769 /* reset y by shifting it back down */ 1770 mp_rshd (&y, n - t); 1771 1772 /* step 3. for i from n down to (t + 1) */ 1773 for (i = n; i >= (t + 1); i--) { 1774 if (i > x.used) { 1775 continue; 1776 } 1777 1778 /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 1779 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ 1780 if (x.dp[i] == y.dp[t]) { 1781 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); 1782 } else { 1783 mp_word tmp; 1784 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); 1785 tmp |= ((mp_word) x.dp[i - 1]); 1786 tmp /= ((mp_word) y.dp[t]); 1787 if (tmp > (mp_word) MP_MASK) 1788 tmp = MP_MASK; 1789 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); 1790 } 1791 1792 /* while (q{i-t-1} * (yt * b + y{t-1})) > 1793 xi * b**2 + xi-1 * b + xi-2 1794 1795 do q{i-t-1} -= 1; 1796 */ 1797 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; 1798 do { 1799 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; 1800 1801 /* find left hand */ 1802 mp_zero (&t1); 1803 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; 1804 t1.dp[1] = y.dp[t]; 1805 t1.used = 2; 1806 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { 1807 goto LBL_Y; 1808 } 1809 1810 /* find right hand */ 1811 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; 1812 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; 1813 t2.dp[2] = x.dp[i]; 1814 t2.used = 3; 1815 } while (mp_cmp_mag(&t1, &t2) == MP_GT); 1816 1817 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ 1818 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { 1819 goto LBL_Y; 1820 } 1821 1822 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { 1823 goto LBL_Y; 1824 } 1825 1826 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { 1827 goto LBL_Y; 1828 } 1829 1830 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ 1831 if (x.sign == MP_NEG) { 1832 if ((res = mp_copy (&y, &t1)) != MP_OKAY) { 1833 goto LBL_Y; 1834 } 1835 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { 1836 goto LBL_Y; 1837 } 1838 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { 1839 goto LBL_Y; 1840 } 1841 1842 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; 1843 } 1844 } 1845 1846 /* now q is the quotient and x is the remainder 1847 * [which we have to normalize] 1848 */ 1849 1850 /* get sign before writing to c */ 1851 x.sign = x.used == 0 ? MP_ZPOS : a->sign; 1852 1853 if (c != NULL) { 1854 mp_clamp (&q); 1855 mp_exch (&q, c); 1856 c->sign = neg; 1857 } 1858 1859 if (d != NULL) { 1860 mp_div_2d (&x, norm, &x, NULL); 1861 mp_exch (&x, d); 1862 } 1863 1864 res = MP_OKAY; 1865 1866 LBL_Y:mp_clear (&y); 1867 LBL_X:mp_clear (&x); 1868 LBL_T2:mp_clear (&t2); 1869 LBL_T1:mp_clear (&t1); 1870 LBL_Q:mp_clear (&q); 1871 return res; 1872 } 1873 1874 #endif 1875 1876 1877 #ifdef MP_LOW_MEM 1878 #define TAB_SIZE 32 1879 #else 1880 #define TAB_SIZE 256 1881 #endif 1882 1883 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 1884 { 1885 mp_int M[TAB_SIZE], res, mu; 1886 mp_digit buf; 1887 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 1888 int (*redux)(mp_int*,mp_int*,mp_int*); 1889 1890 /* find window size */ 1891 x = mp_count_bits (X); 1892 if (x <= 7) { 1893 winsize = 2; 1894 } else if (x <= 36) { 1895 winsize = 3; 1896 } else if (x <= 140) { 1897 winsize = 4; 1898 } else if (x <= 450) { 1899 winsize = 5; 1900 } else if (x <= 1303) { 1901 winsize = 6; 1902 } else if (x <= 3529) { 1903 winsize = 7; 1904 } else { 1905 winsize = 8; 1906 } 1907 1908 #ifdef MP_LOW_MEM 1909 if (winsize > 5) { 1910 winsize = 5; 1911 } 1912 #endif 1913 1914 /* init M array */ 1915 /* init first cell */ 1916 if ((err = mp_init(&M[1])) != MP_OKAY) { 1917 return err; 1918 } 1919 1920 /* now init the second half of the array */ 1921 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 1922 if ((err = mp_init(&M[x])) != MP_OKAY) { 1923 for (y = 1<<(winsize-1); y < x; y++) { 1924 mp_clear (&M[y]); 1925 } 1926 mp_clear(&M[1]); 1927 return err; 1928 } 1929 } 1930 1931 /* create mu, used for Barrett reduction */ 1932 if ((err = mp_init (&mu)) != MP_OKAY) { 1933 goto LBL_M; 1934 } 1935 1936 if (redmode == 0) { 1937 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { 1938 goto LBL_MU; 1939 } 1940 redux = mp_reduce; 1941 } else { 1942 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { 1943 goto LBL_MU; 1944 } 1945 redux = mp_reduce_2k_l; 1946 } 1947 1948 /* create M table 1949 * 1950 * The M table contains powers of the base, 1951 * e.g. M[x] = G**x mod P 1952 * 1953 * The first half of the table is not 1954 * computed though accept for M[0] and M[1] 1955 */ 1956 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { 1957 goto LBL_MU; 1958 } 1959 1960 /* compute the value at M[1<<(winsize-1)] by squaring 1961 * M[1] (winsize-1) times 1962 */ 1963 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 1964 goto LBL_MU; 1965 } 1966 1967 for (x = 0; x < (winsize - 1); x++) { 1968 /* square it */ 1969 if ((err = mp_sqr (&M[1 << (winsize - 1)], 1970 &M[1 << (winsize - 1)])) != MP_OKAY) { 1971 goto LBL_MU; 1972 } 1973 1974 /* reduce modulo P */ 1975 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { 1976 goto LBL_MU; 1977 } 1978 } 1979 1980 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) 1981 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) 1982 */ 1983 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 1984 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 1985 goto LBL_MU; 1986 } 1987 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { 1988 goto LBL_MU; 1989 } 1990 } 1991 1992 /* setup result */ 1993 if ((err = mp_init (&res)) != MP_OKAY) { 1994 goto LBL_MU; 1995 } 1996 mp_set (&res, 1); 1997 1998 /* set initial mode and bit cnt */ 1999 mode = 0; 2000 bitcnt = 1; 2001 buf = 0; 2002 digidx = X->used - 1; 2003 bitcpy = 0; 2004 bitbuf = 0; 2005 2006 for (;;) { 2007 /* grab next digit as required */ 2008 if (--bitcnt == 0) { 2009 /* if digidx == -1 we are out of digits */ 2010 if (digidx == -1) { 2011 break; 2012 } 2013 /* read next digit and reset the bitcnt */ 2014 buf = X->dp[digidx--]; 2015 bitcnt = (int) DIGIT_BIT; 2016 } 2017 2018 /* grab the next msb from the exponent */ 2019 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; 2020 buf <<= (mp_digit)1; 2021 2022 /* if the bit is zero and mode == 0 then we ignore it 2023 * These represent the leading zero bits before the first 1 bit 2024 * in the exponent. Technically this opt is not required but it 2025 * does lower the # of trivial squaring/reductions used 2026 */ 2027 if (mode == 0 && y == 0) { 2028 continue; 2029 } 2030 2031 /* if the bit is zero and mode == 1 then we square */ 2032 if (mode == 1 && y == 0) { 2033 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2034 goto LBL_RES; 2035 } 2036 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2037 goto LBL_RES; 2038 } 2039 continue; 2040 } 2041 2042 /* else we add it to the window */ 2043 bitbuf |= (y << (winsize - ++bitcpy)); 2044 mode = 2; 2045 2046 if (bitcpy == winsize) { 2047 /* ok window is filled so square as required and multiply */ 2048 /* square first */ 2049 for (x = 0; x < winsize; x++) { 2050 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2051 goto LBL_RES; 2052 } 2053 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2054 goto LBL_RES; 2055 } 2056 } 2057 2058 /* then multiply */ 2059 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 2060 goto LBL_RES; 2061 } 2062 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2063 goto LBL_RES; 2064 } 2065 2066 /* empty window and reset */ 2067 bitcpy = 0; 2068 bitbuf = 0; 2069 mode = 1; 2070 } 2071 } 2072 2073 /* if bits remain then square/multiply */ 2074 if (mode == 2 && bitcpy > 0) { 2075 /* square then multiply if the bit is set */ 2076 for (x = 0; x < bitcpy; x++) { 2077 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2078 goto LBL_RES; 2079 } 2080 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2081 goto LBL_RES; 2082 } 2083 2084 bitbuf <<= 1; 2085 if ((bitbuf & (1 << winsize)) != 0) { 2086 /* then multiply */ 2087 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 2088 goto LBL_RES; 2089 } 2090 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2091 goto LBL_RES; 2092 } 2093 } 2094 } 2095 } 2096 2097 mp_exch (&res, Y); 2098 err = MP_OKAY; 2099 LBL_RES:mp_clear (&res); 2100 LBL_MU:mp_clear (&mu); 2101 LBL_M: 2102 mp_clear(&M[1]); 2103 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 2104 mp_clear (&M[x]); 2105 } 2106 return err; 2107 } 2108 2109 2110 /* computes b = a*a */ 2111 static int mp_sqr (mp_int * a, mp_int * b) 2112 { 2113 int res; 2114 2115 #ifdef BN_MP_TOOM_SQR_C 2116 /* use Toom-Cook? */ 2117 if (a->used >= TOOM_SQR_CUTOFF) { 2118 res = mp_toom_sqr(a, b); 2119 /* Karatsuba? */ 2120 } else 2121 #endif 2122 #ifdef BN_MP_KARATSUBA_SQR_C 2123 if (a->used >= KARATSUBA_SQR_CUTOFF) { 2124 res = mp_karatsuba_sqr (a, b); 2125 } else 2126 #endif 2127 { 2128 #ifdef BN_FAST_S_MP_SQR_C 2129 /* can we use the fast comba multiplier? */ 2130 if ((a->used * 2 + 1) < MP_WARRAY && 2131 a->used < 2132 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { 2133 res = fast_s_mp_sqr (a, b); 2134 } else 2135 #endif 2136 #ifdef BN_S_MP_SQR_C 2137 res = s_mp_sqr (a, b); 2138 #else 2139 #error mp_sqr could fail 2140 res = MP_VAL; 2141 #endif 2142 } 2143 b->sign = MP_ZPOS; 2144 return res; 2145 } 2146 2147 2148 /* reduces a modulo n where n is of the form 2**p - d 2149 This differs from reduce_2k since "d" can be larger 2150 than a single digit. 2151 */ 2152 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) 2153 { 2154 mp_int q; 2155 int p, res; 2156 2157 if ((res = mp_init(&q)) != MP_OKAY) { 2158 return res; 2159 } 2160 2161 p = mp_count_bits(n); 2162 top: 2163 /* q = a/2**p, a = a mod 2**p */ 2164 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { 2165 goto ERR; 2166 } 2167 2168 /* q = q * d */ 2169 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 2170 goto ERR; 2171 } 2172 2173 /* a = a + q */ 2174 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { 2175 goto ERR; 2176 } 2177 2178 if (mp_cmp_mag(a, n) != MP_LT) { 2179 s_mp_sub(a, n, a); 2180 goto top; 2181 } 2182 2183 ERR: 2184 mp_clear(&q); 2185 return res; 2186 } 2187 2188 2189 /* determines the setup value */ 2190 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) 2191 { 2192 int res; 2193 mp_int tmp; 2194 2195 if ((res = mp_init(&tmp)) != MP_OKAY) { 2196 return res; 2197 } 2198 2199 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { 2200 goto ERR; 2201 } 2202 2203 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { 2204 goto ERR; 2205 } 2206 2207 ERR: 2208 mp_clear(&tmp); 2209 return res; 2210 } 2211 2212 2213 /* computes a = 2**b 2214 * 2215 * Simple algorithm which zeroes the int, grows it then just sets one bit 2216 * as required. 2217 */ 2218 static int mp_2expt (mp_int * a, int b) 2219 { 2220 int res; 2221 2222 /* zero a as per default */ 2223 mp_zero (a); 2224 2225 /* grow a to accommodate the single bit */ 2226 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { 2227 return res; 2228 } 2229 2230 /* set the used count of where the bit will go */ 2231 a->used = b / DIGIT_BIT + 1; 2232 2233 /* put the single bit in its place */ 2234 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); 2235 2236 return MP_OKAY; 2237 } 2238 2239 2240 /* pre-calculate the value required for Barrett reduction 2241 * For a given modulus "b" it calulates the value required in "a" 2242 */ 2243 static int mp_reduce_setup (mp_int * a, mp_int * b) 2244 { 2245 int res; 2246 2247 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { 2248 return res; 2249 } 2250 return mp_div (a, b, a, NULL); 2251 } 2252 2253 2254 /* reduces x mod m, assumes 0 < x < m**2, mu is 2255 * precomputed via mp_reduce_setup. 2256 * From HAC pp.604 Algorithm 14.42 2257 */ 2258 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) 2259 { 2260 mp_int q; 2261 int res, um = m->used; 2262 2263 /* q = x */ 2264 if ((res = mp_init_copy (&q, x)) != MP_OKAY) { 2265 return res; 2266 } 2267 2268 /* q1 = x / b**(k-1) */ 2269 mp_rshd (&q, um - 1); 2270 2271 /* according to HAC this optimization is ok */ 2272 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { 2273 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { 2274 goto CLEANUP; 2275 } 2276 } else { 2277 #ifdef BN_S_MP_MUL_HIGH_DIGS_C 2278 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { 2279 goto CLEANUP; 2280 } 2281 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) 2282 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { 2283 goto CLEANUP; 2284 } 2285 #else 2286 { 2287 #error mp_reduce would always fail 2288 res = MP_VAL; 2289 goto CLEANUP; 2290 } 2291 #endif 2292 } 2293 2294 /* q3 = q2 / b**(k+1) */ 2295 mp_rshd (&q, um + 1); 2296 2297 /* x = x mod b**(k+1), quick (no division) */ 2298 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { 2299 goto CLEANUP; 2300 } 2301 2302 /* q = q * m mod b**(k+1), quick (no division) */ 2303 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { 2304 goto CLEANUP; 2305 } 2306 2307 /* x = x - q */ 2308 if ((res = mp_sub (x, &q, x)) != MP_OKAY) { 2309 goto CLEANUP; 2310 } 2311 2312 /* If x < 0, add b**(k+1) to it */ 2313 if (mp_cmp_d (x, 0) == MP_LT) { 2314 mp_set (&q, 1); 2315 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) { 2316 goto CLEANUP; 2317 } 2318 if ((res = mp_add (x, &q, x)) != MP_OKAY) { 2319 goto CLEANUP; 2320 } 2321 } 2322 2323 /* Back off if it's too big */ 2324 while (mp_cmp (x, m) != MP_LT) { 2325 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { 2326 goto CLEANUP; 2327 } 2328 } 2329 2330 CLEANUP: 2331 mp_clear (&q); 2332 2333 return res; 2334 } 2335 2336 2337 /* multiplies |a| * |b| and only computes up to digs digits of result 2338 * HAC pp. 595, Algorithm 14.12 Modified so you can control how 2339 * many digits of output are created. 2340 */ 2341 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2342 { 2343 mp_int t; 2344 int res, pa, pb, ix, iy; 2345 mp_digit u; 2346 mp_word r; 2347 mp_digit tmpx, *tmpt, *tmpy; 2348 2349 #ifdef BN_FAST_S_MP_MUL_DIGS_C 2350 /* can we use the fast multiplier? */ 2351 if (((digs) < MP_WARRAY) && 2352 MIN (a->used, b->used) < 2353 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 2354 return fast_s_mp_mul_digs (a, b, c, digs); 2355 } 2356 #endif 2357 2358 if ((res = mp_init_size (&t, digs)) != MP_OKAY) { 2359 return res; 2360 } 2361 t.used = digs; 2362 2363 /* compute the digits of the product directly */ 2364 pa = a->used; 2365 for (ix = 0; ix < pa; ix++) { 2366 /* set the carry to zero */ 2367 u = 0; 2368 2369 /* limit ourselves to making digs digits of output */ 2370 pb = MIN (b->used, digs - ix); 2371 2372 /* setup some aliases */ 2373 /* copy of the digit from a used within the nested loop */ 2374 tmpx = a->dp[ix]; 2375 2376 /* an alias for the destination shifted ix places */ 2377 tmpt = t.dp + ix; 2378 2379 /* an alias for the digits of b */ 2380 tmpy = b->dp; 2381 2382 /* compute the columns of the output and propagate the carry */ 2383 for (iy = 0; iy < pb; iy++) { 2384 /* compute the column as a mp_word */ 2385 r = ((mp_word)*tmpt) + 2386 ((mp_word)tmpx) * ((mp_word)*tmpy++) + 2387 ((mp_word) u); 2388 2389 /* the new column is the lower part of the result */ 2390 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2391 2392 /* get the carry word from the result */ 2393 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 2394 } 2395 /* set carry if it is placed below digs */ 2396 if (ix + iy < digs) { 2397 *tmpt = u; 2398 } 2399 } 2400 2401 mp_clamp (&t); 2402 mp_exch (&t, c); 2403 2404 mp_clear (&t); 2405 return MP_OKAY; 2406 } 2407 2408 2409 #ifdef BN_FAST_S_MP_MUL_DIGS_C 2410 /* Fast (comba) multiplier 2411 * 2412 * This is the fast column-array [comba] multiplier. It is 2413 * designed to compute the columns of the product first 2414 * then handle the carries afterwards. This has the effect 2415 * of making the nested loops that compute the columns very 2416 * simple and schedulable on super-scalar processors. 2417 * 2418 * This has been modified to produce a variable number of 2419 * digits of output so if say only a half-product is required 2420 * you don't have to compute the upper half (a feature 2421 * required for fast Barrett reduction). 2422 * 2423 * Based on Algorithm 14.12 on pp.595 of HAC. 2424 * 2425 */ 2426 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2427 { 2428 int olduse, res, pa, ix, iz; 2429 mp_digit W[MP_WARRAY]; 2430 register mp_word _W; 2431 2432 /* grow the destination as required */ 2433 if (c->alloc < digs) { 2434 if ((res = mp_grow (c, digs)) != MP_OKAY) { 2435 return res; 2436 } 2437 } 2438 2439 /* number of output digits to produce */ 2440 pa = MIN(digs, a->used + b->used); 2441 2442 /* clear the carry */ 2443 _W = 0; 2444 os_memset(W, 0, sizeof(W)); 2445 for (ix = 0; ix < pa; ix++) { 2446 int tx, ty; 2447 int iy; 2448 mp_digit *tmpx, *tmpy; 2449 2450 /* get offsets into the two bignums */ 2451 ty = MIN(b->used-1, ix); 2452 tx = ix - ty; 2453 2454 /* setup temp aliases */ 2455 tmpx = a->dp + tx; 2456 tmpy = b->dp + ty; 2457 2458 /* this is the number of times the loop will iterrate, essentially 2459 while (tx++ < a->used && ty-- >= 0) { ... } 2460 */ 2461 iy = MIN(a->used-tx, ty+1); 2462 2463 /* execute loop */ 2464 for (iz = 0; iz < iy; ++iz) { 2465 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); 2466 2467 } 2468 2469 /* store term */ 2470 W[ix] = ((mp_digit)_W) & MP_MASK; 2471 2472 /* make next carry */ 2473 _W = _W >> ((mp_word)DIGIT_BIT); 2474 } 2475 2476 /* setup dest */ 2477 olduse = c->used; 2478 c->used = pa; 2479 2480 { 2481 register mp_digit *tmpc; 2482 tmpc = c->dp; 2483 for (ix = 0; ix < pa+1; ix++) { 2484 /* now extract the previous digit [below the carry] */ 2485 *tmpc++ = W[ix]; 2486 } 2487 2488 /* clear unused digits [that existed in the old copy of c] */ 2489 for (; ix < olduse; ix++) { 2490 *tmpc++ = 0; 2491 } 2492 } 2493 mp_clamp (c); 2494 return MP_OKAY; 2495 } 2496 #endif /* BN_FAST_S_MP_MUL_DIGS_C */ 2497 2498 2499 /* init an mp_init for a given size */ 2500 static int mp_init_size (mp_int * a, int size) 2501 { 2502 int x; 2503 2504 /* pad size so there are always extra digits */ 2505 size += (MP_PREC * 2) - (size % MP_PREC); 2506 2507 /* alloc mem */ 2508 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); 2509 if (a->dp == NULL) { 2510 return MP_MEM; 2511 } 2512 2513 /* set the members */ 2514 a->used = 0; 2515 a->alloc = size; 2516 a->sign = MP_ZPOS; 2517 2518 /* zero the digits */ 2519 for (x = 0; x < size; x++) { 2520 a->dp[x] = 0; 2521 } 2522 2523 return MP_OKAY; 2524 } 2525 2526 2527 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ 2528 static int s_mp_sqr (mp_int * a, mp_int * b) 2529 { 2530 mp_int t; 2531 int res, ix, iy, pa; 2532 mp_word r; 2533 mp_digit u, tmpx, *tmpt; 2534 2535 pa = a->used; 2536 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { 2537 return res; 2538 } 2539 2540 /* default used is maximum possible size */ 2541 t.used = 2*pa + 1; 2542 2543 for (ix = 0; ix < pa; ix++) { 2544 /* first calculate the digit at 2*ix */ 2545 /* calculate double precision result */ 2546 r = ((mp_word) t.dp[2*ix]) + 2547 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); 2548 2549 /* store lower part in result */ 2550 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); 2551 2552 /* get the carry */ 2553 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2554 2555 /* left hand side of A[ix] * A[iy] */ 2556 tmpx = a->dp[ix]; 2557 2558 /* alias for where to store the results */ 2559 tmpt = t.dp + (2*ix + 1); 2560 2561 for (iy = ix + 1; iy < pa; iy++) { 2562 /* first calculate the product */ 2563 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); 2564 2565 /* now calculate the double precision result, note we use 2566 * addition instead of *2 since it's easier to optimize 2567 */ 2568 r = ((mp_word) *tmpt) + r + r + ((mp_word) u); 2569 2570 /* store lower part */ 2571 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2572 2573 /* get carry */ 2574 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2575 } 2576 /* propagate upwards */ 2577 while (u != ((mp_digit) 0)) { 2578 r = ((mp_word) *tmpt) + ((mp_word) u); 2579 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2580 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2581 } 2582 } 2583 2584 mp_clamp (&t); 2585 mp_exch (&t, b); 2586 mp_clear (&t); 2587 return MP_OKAY; 2588 } 2589 2590 2591 /* multiplies |a| * |b| and does not compute the lower digs digits 2592 * [meant to get the higher part of the product] 2593 */ 2594 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2595 { 2596 mp_int t; 2597 int res, pa, pb, ix, iy; 2598 mp_digit u; 2599 mp_word r; 2600 mp_digit tmpx, *tmpt, *tmpy; 2601 2602 /* can we use the fast multiplier? */ 2603 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C 2604 if (((a->used + b->used + 1) < MP_WARRAY) 2605 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 2606 return fast_s_mp_mul_high_digs (a, b, c, digs); 2607 } 2608 #endif 2609 2610 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { 2611 return res; 2612 } 2613 t.used = a->used + b->used + 1; 2614 2615 pa = a->used; 2616 pb = b->used; 2617 for (ix = 0; ix < pa; ix++) { 2618 /* clear the carry */ 2619 u = 0; 2620 2621 /* left hand side of A[ix] * B[iy] */ 2622 tmpx = a->dp[ix]; 2623 2624 /* alias to the address of where the digits will be stored */ 2625 tmpt = &(t.dp[digs]); 2626 2627 /* alias for where to read the right hand side from */ 2628 tmpy = b->dp + (digs - ix); 2629 2630 for (iy = digs - ix; iy < pb; iy++) { 2631 /* calculate the double precision result */ 2632 r = ((mp_word)*tmpt) + 2633 ((mp_word)tmpx) * ((mp_word)*tmpy++) + 2634 ((mp_word) u); 2635 2636 /* get the lower part */ 2637 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2638 2639 /* carry the carry */ 2640 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 2641 } 2642 *tmpt = u; 2643 } 2644 mp_clamp (&t); 2645 mp_exch (&t, c); 2646 mp_clear (&t); 2647 return MP_OKAY; 2648 } 2649 2650 2651 #ifdef BN_MP_MONTGOMERY_SETUP_C 2652 /* setups the montgomery reduction stuff */ 2653 static int 2654 mp_montgomery_setup (mp_int * n, mp_digit * rho) 2655 { 2656 mp_digit x, b; 2657 2658 /* fast inversion mod 2**k 2659 * 2660 * Based on the fact that 2661 * 2662 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) 2663 * => 2*X*A - X*X*A*A = 1 2664 * => 2*(1) - (1) = 1 2665 */ 2666 b = n->dp[0]; 2667 2668 if ((b & 1) == 0) { 2669 return MP_VAL; 2670 } 2671 2672 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ 2673 x *= 2 - b * x; /* here x*a==1 mod 2**8 */ 2674 #if !defined(MP_8BIT) 2675 x *= 2 - b * x; /* here x*a==1 mod 2**16 */ 2676 #endif 2677 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) 2678 x *= 2 - b * x; /* here x*a==1 mod 2**32 */ 2679 #endif 2680 #ifdef MP_64BIT 2681 x *= 2 - b * x; /* here x*a==1 mod 2**64 */ 2682 #endif 2683 2684 /* rho = -1/m mod b */ 2685 *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; 2686 2687 return MP_OKAY; 2688 } 2689 #endif 2690 2691 2692 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C 2693 /* computes xR**-1 == x (mod N) via Montgomery Reduction 2694 * 2695 * This is an optimized implementation of montgomery_reduce 2696 * which uses the comba method to quickly calculate the columns of the 2697 * reduction. 2698 * 2699 * Based on Algorithm 14.32 on pp.601 of HAC. 2700 */ 2701 static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) 2702 { 2703 int ix, res, olduse; 2704 mp_word W[MP_WARRAY]; 2705 2706 /* get old used count */ 2707 olduse = x->used; 2708 2709 /* grow a as required */ 2710 if (x->alloc < n->used + 1) { 2711 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { 2712 return res; 2713 } 2714 } 2715 2716 /* first we have to get the digits of the input into 2717 * an array of double precision words W[...] 2718 */ 2719 { 2720 register mp_word *_W; 2721 register mp_digit *tmpx; 2722 2723 /* alias for the W[] array */ 2724 _W = W; 2725 2726 /* alias for the digits of x*/ 2727 tmpx = x->dp; 2728 2729 /* copy the digits of a into W[0..a->used-1] */ 2730 for (ix = 0; ix < x->used; ix++) { 2731 *_W++ = *tmpx++; 2732 } 2733 2734 /* zero the high words of W[a->used..m->used*2] */ 2735 for (; ix < n->used * 2 + 1; ix++) { 2736 *_W++ = 0; 2737 } 2738 } 2739 2740 /* now we proceed to zero successive digits 2741 * from the least significant upwards 2742 */ 2743 for (ix = 0; ix < n->used; ix++) { 2744 /* mu = ai * m' mod b 2745 * 2746 * We avoid a double precision multiplication (which isn't required) 2747 * by casting the value down to a mp_digit. Note this requires 2748 * that W[ix-1] have the carry cleared (see after the inner loop) 2749 */ 2750 register mp_digit mu; 2751 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); 2752 2753 /* a = a + mu * m * b**i 2754 * 2755 * This is computed in place and on the fly. The multiplication 2756 * by b**i is handled by offseting which columns the results 2757 * are added to. 2758 * 2759 * Note the comba method normally doesn't handle carries in the 2760 * inner loop In this case we fix the carry from the previous 2761 * column since the Montgomery reduction requires digits of the 2762 * result (so far) [see above] to work. This is 2763 * handled by fixing up one carry after the inner loop. The 2764 * carry fixups are done in order so after these loops the 2765 * first m->used words of W[] have the carries fixed 2766 */ 2767 { 2768 register int iy; 2769 register mp_digit *tmpn; 2770 register mp_word *_W; 2771 2772 /* alias for the digits of the modulus */ 2773 tmpn = n->dp; 2774 2775 /* Alias for the columns set by an offset of ix */ 2776 _W = W + ix; 2777 2778 /* inner loop */ 2779 for (iy = 0; iy < n->used; iy++) { 2780 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); 2781 } 2782 } 2783 2784 /* now fix carry for next digit, W[ix+1] */ 2785 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); 2786 } 2787 2788 /* now we have to propagate the carries and 2789 * shift the words downward [all those least 2790 * significant digits we zeroed]. 2791 */ 2792 { 2793 register mp_digit *tmpx; 2794 register mp_word *_W, *_W1; 2795 2796 /* nox fix rest of carries */ 2797 2798 /* alias for current word */ 2799 _W1 = W + ix; 2800 2801 /* alias for next word, where the carry goes */ 2802 _W = W + ++ix; 2803 2804 for (; ix <= n->used * 2 + 1; ix++) { 2805 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); 2806 } 2807 2808 /* copy out, A = A/b**n 2809 * 2810 * The result is A/b**n but instead of converting from an 2811 * array of mp_word to mp_digit than calling mp_rshd 2812 * we just copy them in the right order 2813 */ 2814 2815 /* alias for destination word */ 2816 tmpx = x->dp; 2817 2818 /* alias for shifted double precision result */ 2819 _W = W + n->used; 2820 2821 for (ix = 0; ix < n->used + 1; ix++) { 2822 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); 2823 } 2824 2825 /* zero oldused digits, if the input a was larger than 2826 * m->used+1 we'll have to clear the digits 2827 */ 2828 for (; ix < olduse; ix++) { 2829 *tmpx++ = 0; 2830 } 2831 } 2832 2833 /* set the max used and clamp */ 2834 x->used = n->used + 1; 2835 mp_clamp (x); 2836 2837 /* if A >= m then A = A - m */ 2838 if (mp_cmp_mag (x, n) != MP_LT) { 2839 return s_mp_sub (x, n, x); 2840 } 2841 return MP_OKAY; 2842 } 2843 #endif 2844 2845 2846 #ifdef BN_MP_MUL_2_C 2847 /* b = a*2 */ 2848 static int mp_mul_2(mp_int * a, mp_int * b) 2849 { 2850 int x, res, oldused; 2851 2852 /* grow to accommodate result */ 2853 if (b->alloc < a->used + 1) { 2854 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { 2855 return res; 2856 } 2857 } 2858 2859 oldused = b->used; 2860 b->used = a->used; 2861 2862 { 2863 register mp_digit r, rr, *tmpa, *tmpb; 2864 2865 /* alias for source */ 2866 tmpa = a->dp; 2867 2868 /* alias for dest */ 2869 tmpb = b->dp; 2870 2871 /* carry */ 2872 r = 0; 2873 for (x = 0; x < a->used; x++) { 2874 2875 /* get what will be the *next* carry bit from the 2876 * MSB of the current digit 2877 */ 2878 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); 2879 2880 /* now shift up this digit, add in the carry [from the previous] */ 2881 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; 2882 2883 /* copy the carry that would be from the source 2884 * digit into the next iteration 2885 */ 2886 r = rr; 2887 } 2888 2889 /* new leading digit? */ 2890 if (r != 0) { 2891 /* add a MSB which is always 1 at this point */ 2892 *tmpb = 1; 2893 ++(b->used); 2894 } 2895 2896 /* now zero any excess digits on the destination 2897 * that we didn't write to 2898 */ 2899 tmpb = b->dp + b->used; 2900 for (x = b->used; x < oldused; x++) { 2901 *tmpb++ = 0; 2902 } 2903 } 2904 b->sign = a->sign; 2905 return MP_OKAY; 2906 } 2907 #endif 2908 2909 2910 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 2911 /* 2912 * shifts with subtractions when the result is greater than b. 2913 * 2914 * The method is slightly modified to shift B unconditionally up to just under 2915 * the leading bit of b. This saves a lot of multiple precision shifting. 2916 */ 2917 static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) 2918 { 2919 int x, bits, res; 2920 2921 /* how many bits of last digit does b use */ 2922 bits = mp_count_bits (b) % DIGIT_BIT; 2923 2924 if (b->used > 1) { 2925 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { 2926 return res; 2927 } 2928 } else { 2929 mp_set(a, 1); 2930 bits = 1; 2931 } 2932 2933 2934 /* now compute C = A * B mod b */ 2935 for (x = bits - 1; x < (int)DIGIT_BIT; x++) { 2936 if ((res = mp_mul_2 (a, a)) != MP_OKAY) { 2937 return res; 2938 } 2939 if (mp_cmp_mag (a, b) != MP_LT) { 2940 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { 2941 return res; 2942 } 2943 } 2944 } 2945 2946 return MP_OKAY; 2947 } 2948 #endif 2949 2950 2951 #ifdef BN_MP_EXPTMOD_FAST_C 2952 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 2953 * 2954 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. 2955 * The value of k changes based on the size of the exponent. 2956 * 2957 * Uses Montgomery or Diminished Radix reduction [whichever appropriate] 2958 */ 2959 2960 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 2961 { 2962 mp_int M[TAB_SIZE], res; 2963 mp_digit buf, mp; 2964 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 2965 2966 /* use a pointer to the reduction algorithm. This allows us to use 2967 * one of many reduction algorithms without modding the guts of 2968 * the code with if statements everywhere. 2969 */ 2970 int (*redux)(mp_int*,mp_int*,mp_digit); 2971 2972 /* find window size */ 2973 x = mp_count_bits (X); 2974 if (x <= 7) { 2975 winsize = 2; 2976 } else if (x <= 36) { 2977 winsize = 3; 2978 } else if (x <= 140) { 2979 winsize = 4; 2980 } else if (x <= 450) { 2981 winsize = 5; 2982 } else if (x <= 1303) { 2983 winsize = 6; 2984 } else if (x <= 3529) { 2985 winsize = 7; 2986 } else { 2987 winsize = 8; 2988 } 2989 2990 #ifdef MP_LOW_MEM 2991 if (winsize > 5) { 2992 winsize = 5; 2993 } 2994 #endif 2995 2996 /* init M array */ 2997 /* init first cell */ 2998 if ((err = mp_init(&M[1])) != MP_OKAY) { 2999 return err; 3000 } 3001 3002 /* now init the second half of the array */ 3003 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 3004 if ((err = mp_init(&M[x])) != MP_OKAY) { 3005 for (y = 1<<(winsize-1); y < x; y++) { 3006 mp_clear (&M[y]); 3007 } 3008 mp_clear(&M[1]); 3009 return err; 3010 } 3011 } 3012 3013 /* determine and setup reduction code */ 3014 if (redmode == 0) { 3015 #ifdef BN_MP_MONTGOMERY_SETUP_C 3016 /* now setup montgomery */ 3017 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { 3018 goto LBL_M; 3019 } 3020 #else 3021 err = MP_VAL; 3022 goto LBL_M; 3023 #endif 3024 3025 /* automatically pick the comba one if available (saves quite a few calls/ifs) */ 3026 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C 3027 if (((P->used * 2 + 1) < MP_WARRAY) && 3028 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 3029 redux = fast_mp_montgomery_reduce; 3030 } else 3031 #endif 3032 { 3033 #ifdef BN_MP_MONTGOMERY_REDUCE_C 3034 /* use slower baseline Montgomery method */ 3035 redux = mp_montgomery_reduce; 3036 #else 3037 err = MP_VAL; 3038 goto LBL_M; 3039 #endif 3040 } 3041 } else if (redmode == 1) { 3042 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) 3043 /* setup DR reduction for moduli of the form B**k - b */ 3044 mp_dr_setup(P, &mp); 3045 redux = mp_dr_reduce; 3046 #else 3047 err = MP_VAL; 3048 goto LBL_M; 3049 #endif 3050 } else { 3051 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) 3052 /* setup DR reduction for moduli of the form 2**k - b */ 3053 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { 3054 goto LBL_M; 3055 } 3056 redux = mp_reduce_2k; 3057 #else 3058 err = MP_VAL; 3059 goto LBL_M; 3060 #endif 3061 } 3062 3063 /* setup result */ 3064 if ((err = mp_init (&res)) != MP_OKAY) { 3065 goto LBL_M; 3066 } 3067 3068 /* create M table 3069 * 3070 3071 * 3072 * The first half of the table is not computed though accept for M[0] and M[1] 3073 */ 3074 3075 if (redmode == 0) { 3076 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 3077 /* now we need R mod m */ 3078 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { 3079 goto LBL_RES; 3080 } 3081 #else 3082 err = MP_VAL; 3083 goto LBL_RES; 3084 #endif 3085 3086 /* now set M[1] to G * R mod m */ 3087 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { 3088 goto LBL_RES; 3089 } 3090 } else { 3091 mp_set(&res, 1); 3092 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { 3093 goto LBL_RES; 3094 } 3095 } 3096 3097 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ 3098 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 3099 goto LBL_RES; 3100 } 3101 3102 for (x = 0; x < (winsize - 1); x++) { 3103 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { 3104 goto LBL_RES; 3105 } 3106 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { 3107 goto LBL_RES; 3108 } 3109 } 3110 3111 /* create upper table */ 3112 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 3113 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 3114 goto LBL_RES; 3115 } 3116 if ((err = redux (&M[x], P, mp)) != MP_OKAY) { 3117 goto LBL_RES; 3118 } 3119 } 3120 3121 /* set initial mode and bit cnt */ 3122 mode = 0; 3123 bitcnt = 1; 3124 buf = 0; 3125 digidx = X->used - 1; 3126 bitcpy = 0; 3127 bitbuf = 0; 3128 3129 for (;;) { 3130 /* grab next digit as required */ 3131 if (--bitcnt == 0) { 3132 /* if digidx == -1 we are out of digits so break */ 3133 if (digidx == -1) { 3134 break; 3135 } 3136 /* read next digit and reset bitcnt */ 3137 buf = X->dp[digidx--]; 3138 bitcnt = (int)DIGIT_BIT; 3139 } 3140 3141 /* grab the next msb from the exponent */ 3142 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; 3143 buf <<= (mp_digit)1; 3144 3145 /* if the bit is zero and mode == 0 then we ignore it 3146 * These represent the leading zero bits before the first 1 bit 3147 * in the exponent. Technically this opt is not required but it 3148 * does lower the # of trivial squaring/reductions used 3149 */ 3150 if (mode == 0 && y == 0) { 3151 continue; 3152 } 3153 3154 /* if the bit is zero and mode == 1 then we square */ 3155 if (mode == 1 && y == 0) { 3156 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3157 goto LBL_RES; 3158 } 3159 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3160 goto LBL_RES; 3161 } 3162 continue; 3163 } 3164 3165 /* else we add it to the window */ 3166 bitbuf |= (y << (winsize - ++bitcpy)); 3167 mode = 2; 3168 3169 if (bitcpy == winsize) { 3170 /* ok window is filled so square as required and multiply */ 3171 /* square first */ 3172 for (x = 0; x < winsize; x++) { 3173 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3174 goto LBL_RES; 3175 } 3176 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3177 goto LBL_RES; 3178 } 3179 } 3180 3181 /* then multiply */ 3182 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 3183 goto LBL_RES; 3184 } 3185 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3186 goto LBL_RES; 3187 } 3188 3189 /* empty window and reset */ 3190 bitcpy = 0; 3191 bitbuf = 0; 3192 mode = 1; 3193 } 3194 } 3195 3196 /* if bits remain then square/multiply */ 3197 if (mode == 2 && bitcpy > 0) { 3198 /* square then multiply if the bit is set */ 3199 for (x = 0; x < bitcpy; x++) { 3200 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3201 goto LBL_RES; 3202 } 3203 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3204 goto LBL_RES; 3205 } 3206 3207 /* get next bit of the window */ 3208 bitbuf <<= 1; 3209 if ((bitbuf & (1 << winsize)) != 0) { 3210 /* then multiply */ 3211 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 3212 goto LBL_RES; 3213 } 3214 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3215 goto LBL_RES; 3216 } 3217 } 3218 } 3219 } 3220 3221 if (redmode == 0) { 3222 /* fixup result if Montgomery reduction is used 3223 * recall that any value in a Montgomery system is 3224 * actually multiplied by R mod n. So we have 3225 * to reduce one more time to cancel out the factor 3226 * of R. 3227 */ 3228 if ((err = redux(&res, P, mp)) != MP_OKAY) { 3229 goto LBL_RES; 3230 } 3231 } 3232 3233 /* swap res with Y */ 3234 mp_exch (&res, Y); 3235 err = MP_OKAY; 3236 LBL_RES:mp_clear (&res); 3237 LBL_M: 3238 mp_clear(&M[1]); 3239 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 3240 mp_clear (&M[x]); 3241 } 3242 return err; 3243 } 3244 #endif 3245 3246 3247 #ifdef BN_FAST_S_MP_SQR_C 3248 /* the jist of squaring... 3249 * you do like mult except the offset of the tmpx [one that 3250 * starts closer to zero] can't equal the offset of tmpy. 3251 * So basically you set up iy like before then you min it with 3252 * (ty-tx) so that it never happens. You double all those 3253 * you add in the inner loop 3254 3255 After that loop you do the squares and add them in. 3256 */ 3257 3258 static int fast_s_mp_sqr (mp_int * a, mp_int * b) 3259 { 3260 int olduse, res, pa, ix, iz; 3261 mp_digit W[MP_WARRAY], *tmpx; 3262 mp_word W1; 3263 3264 /* grow the destination as required */ 3265 pa = a->used + a->used; 3266 if (b->alloc < pa) { 3267 if ((res = mp_grow (b, pa)) != MP_OKAY) { 3268 return res; 3269 } 3270 } 3271 3272 /* number of output digits to produce */ 3273 W1 = 0; 3274 for (ix = 0; ix < pa; ix++) { 3275 int tx, ty, iy; 3276 mp_word _W; 3277 mp_digit *tmpy; 3278 3279 /* clear counter */ 3280 _W = 0; 3281 3282 /* get offsets into the two bignums */ 3283 ty = MIN(a->used-1, ix); 3284 tx = ix - ty; 3285 3286 /* setup temp aliases */ 3287 tmpx = a->dp + tx; 3288 tmpy = a->dp + ty; 3289 3290 /* this is the number of times the loop will iterrate, essentially 3291 while (tx++ < a->used && ty-- >= 0) { ... } 3292 */ 3293 iy = MIN(a->used-tx, ty+1); 3294 3295 /* now for squaring tx can never equal ty 3296 * we halve the distance since they approach at a rate of 2x 3297 * and we have to round because odd cases need to be executed 3298 */ 3299 iy = MIN(iy, (ty-tx+1)>>1); 3300 3301 /* execute loop */ 3302 for (iz = 0; iz < iy; iz++) { 3303 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); 3304 } 3305 3306 /* double the inner product and add carry */ 3307 _W = _W + _W + W1; 3308 3309 /* even columns have the square term in them */ 3310 if ((ix&1) == 0) { 3311 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); 3312 } 3313 3314 /* store it */ 3315 W[ix] = (mp_digit)(_W & MP_MASK); 3316 3317 /* make next carry */ 3318 W1 = _W >> ((mp_word)DIGIT_BIT); 3319 } 3320 3321 /* setup dest */ 3322 olduse = b->used; 3323 b->used = a->used+a->used; 3324 3325 { 3326 mp_digit *tmpb; 3327 tmpb = b->dp; 3328 for (ix = 0; ix < pa; ix++) { 3329 *tmpb++ = W[ix] & MP_MASK; 3330 } 3331 3332 /* clear unused digits [that existed in the old copy of c] */ 3333 for (; ix < olduse; ix++) { 3334 *tmpb++ = 0; 3335 } 3336 } 3337 mp_clamp (b); 3338 return MP_OKAY; 3339 } 3340 #endif 3341 3342 3343 #ifdef BN_MP_MUL_D_C 3344 /* multiply by a digit */ 3345 static int 3346 mp_mul_d (mp_int * a, mp_digit b, mp_int * c) 3347 { 3348 mp_digit u, *tmpa, *tmpc; 3349 mp_word r; 3350 int ix, res, olduse; 3351 3352 /* make sure c is big enough to hold a*b */ 3353 if (c->alloc < a->used + 1) { 3354 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { 3355 return res; 3356 } 3357 } 3358 3359 /* get the original destinations used count */ 3360 olduse = c->used; 3361 3362 /* set the sign */ 3363 c->sign = a->sign; 3364 3365 /* alias for a->dp [source] */ 3366 tmpa = a->dp; 3367 3368 /* alias for c->dp [dest] */ 3369 tmpc = c->dp; 3370 3371 /* zero carry */ 3372 u = 0; 3373 3374 /* compute columns */ 3375 for (ix = 0; ix < a->used; ix++) { 3376 /* compute product and carry sum for this term */ 3377 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); 3378 3379 /* mask off higher bits to get a single digit */ 3380 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); 3381 3382 /* send carry into next iteration */ 3383 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 3384 } 3385 3386 /* store final carry [if any] and increment ix offset */ 3387 *tmpc++ = u; 3388 ++ix; 3389 3390 /* now zero digits above the top */ 3391 while (ix++ < olduse) { 3392 *tmpc++ = 0; 3393 } 3394 3395 /* set used count */ 3396 c->used = a->used + 1; 3397 mp_clamp(c); 3398 3399 return MP_OKAY; 3400 } 3401 #endif 3402