xref: /dragonfly/lib/libc/db/btree/bt_seq.c (revision 984263bc)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)bt_seq.c	8.7 (Berkeley) 7/20/94";
39 #endif /* LIBC_SCCS and not lint */
40 
41 #include <sys/types.h>
42 
43 #include <errno.h>
44 #include <stddef.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 
48 #include <db.h>
49 #include "btree.h"
50 
51 static int __bt_first __P((BTREE *, const DBT *, EPG *, int *));
52 static int __bt_seqadv __P((BTREE *, EPG *, int));
53 static int __bt_seqset __P((BTREE *, EPG *, DBT *, int));
54 
55 /*
56  * Sequential scan support.
57  *
58  * The tree can be scanned sequentially, starting from either end of the
59  * tree or from any specific key.  A scan request before any scanning is
60  * done is initialized as starting from the least node.
61  */
62 
63 /*
64  * __bt_seq --
65  *	Btree sequential scan interface.
66  *
67  * Parameters:
68  *	dbp:	pointer to access method
69  *	key:	key for positioning and return value
70  *	data:	data return value
71  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
72  *
73  * Returns:
74  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
75  */
76 int
77 __bt_seq(dbp, key, data, flags)
78 	const DB *dbp;
79 	DBT *key, *data;
80 	u_int flags;
81 {
82 	BTREE *t;
83 	EPG e;
84 	int status;
85 
86 	t = dbp->internal;
87 
88 	/* Toss any page pinned across calls. */
89 	if (t->bt_pinned != NULL) {
90 		mpool_put(t->bt_mp, t->bt_pinned, 0);
91 		t->bt_pinned = NULL;
92 	}
93 
94 	/*
95 	 * If scan unitialized as yet, or starting at a specific record, set
96 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
97 	 * the page the cursor references if they're successful.
98 	 */
99 	switch (flags) {
100 	case R_NEXT:
101 	case R_PREV:
102 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
103 			status = __bt_seqadv(t, &e, flags);
104 			break;
105 		}
106 		/* FALLTHROUGH */
107 	case R_FIRST:
108 	case R_LAST:
109 	case R_CURSOR:
110 		status = __bt_seqset(t, &e, key, flags);
111 		break;
112 	default:
113 		errno = EINVAL;
114 		return (RET_ERROR);
115 	}
116 
117 	if (status == RET_SUCCESS) {
118 		__bt_setcur(t, e.page->pgno, e.index);
119 
120 		status =
121 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
122 
123 		/*
124 		 * If the user is doing concurrent access, we copied the
125 		 * key/data, toss the page.
126 		 */
127 		if (F_ISSET(t, B_DB_LOCK))
128 			mpool_put(t->bt_mp, e.page, 0);
129 		else
130 			t->bt_pinned = e.page;
131 	}
132 	return (status);
133 }
134 
135 /*
136  * __bt_seqset --
137  *	Set the sequential scan to a specific key.
138  *
139  * Parameters:
140  *	t:	tree
141  *	ep:	storage for returned key
142  *	key:	key for initial scan position
143  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
144  *
145  * Side effects:
146  *	Pins the page the cursor references.
147  *
148  * Returns:
149  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
150  */
151 static int
152 __bt_seqset(t, ep, key, flags)
153 	BTREE *t;
154 	EPG *ep;
155 	DBT *key;
156 	int flags;
157 {
158 	PAGE *h;
159 	pgno_t pg;
160 	int exact;
161 
162 	/*
163 	 * Find the first, last or specific key in the tree and point the
164 	 * cursor at it.  The cursor may not be moved until a new key has
165 	 * been found.
166 	 */
167 	switch (flags) {
168 	case R_CURSOR:				/* Keyed scan. */
169 		/*
170 		 * Find the first instance of the key or the smallest key
171 		 * which is greater than or equal to the specified key.
172 		 */
173 		if (key->data == NULL || key->size == 0) {
174 			errno = EINVAL;
175 			return (RET_ERROR);
176 		}
177 		return (__bt_first(t, key, ep, &exact));
178 	case R_FIRST:				/* First record. */
179 	case R_NEXT:
180 		/* Walk down the left-hand side of the tree. */
181 		for (pg = P_ROOT;;) {
182 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
183 				return (RET_ERROR);
184 
185 			/* Check for an empty tree. */
186 			if (NEXTINDEX(h) == 0) {
187 				mpool_put(t->bt_mp, h, 0);
188 				return (RET_SPECIAL);
189 			}
190 
191 			if (h->flags & (P_BLEAF | P_RLEAF))
192 				break;
193 			pg = GETBINTERNAL(h, 0)->pgno;
194 			mpool_put(t->bt_mp, h, 0);
195 		}
196 		ep->page = h;
197 		ep->index = 0;
198 		break;
199 	case R_LAST:				/* Last record. */
200 	case R_PREV:
201 		/* Walk down the right-hand side of the tree. */
202 		for (pg = P_ROOT;;) {
203 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
204 				return (RET_ERROR);
205 
206 			/* Check for an empty tree. */
207 			if (NEXTINDEX(h) == 0) {
208 				mpool_put(t->bt_mp, h, 0);
209 				return (RET_SPECIAL);
210 			}
211 
212 			if (h->flags & (P_BLEAF | P_RLEAF))
213 				break;
214 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
215 			mpool_put(t->bt_mp, h, 0);
216 		}
217 
218 		ep->page = h;
219 		ep->index = NEXTINDEX(h) - 1;
220 		break;
221 	}
222 	return (RET_SUCCESS);
223 }
224 
225 /*
226  * __bt_seqadvance --
227  *	Advance the sequential scan.
228  *
229  * Parameters:
230  *	t:	tree
231  *	flags:	R_NEXT, R_PREV
232  *
233  * Side effects:
234  *	Pins the page the new key/data record is on.
235  *
236  * Returns:
237  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
238  */
239 static int
240 __bt_seqadv(t, ep, flags)
241 	BTREE *t;
242 	EPG *ep;
243 	int flags;
244 {
245 	CURSOR *c;
246 	PAGE *h;
247 	indx_t index;
248 	pgno_t pg;
249 	int exact;
250 
251 	/*
252 	 * There are a couple of states that we can be in.  The cursor has
253 	 * been initialized by the time we get here, but that's all we know.
254 	 */
255 	c = &t->bt_cursor;
256 
257 	/*
258 	 * The cursor was deleted where there weren't any duplicate records,
259 	 * so the key was saved.  Find out where that key would go in the
260 	 * current tree.  It doesn't matter if the returned key is an exact
261 	 * match or not -- if it's an exact match, the record was added after
262 	 * the delete so we can just return it.  If not, as long as there's
263 	 * a record there, return it.
264 	 */
265 	if (F_ISSET(c, CURS_ACQUIRE))
266 		return (__bt_first(t, &c->key, ep, &exact));
267 
268 	/* Get the page referenced by the cursor. */
269 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
270 		return (RET_ERROR);
271 
272 	/*
273  	 * Find the next/previous record in the tree and point the cursor at
274 	 * it.  The cursor may not be moved until a new key has been found.
275 	 */
276 	switch (flags) {
277 	case R_NEXT:			/* Next record. */
278 		/*
279 		 * The cursor was deleted in duplicate records, and moved
280 		 * forward to a record that has yet to be returned.  Clear
281 		 * that flag, and return the record.
282 		 */
283 		if (F_ISSET(c, CURS_AFTER))
284 			goto usecurrent;
285 		index = c->pg.index;
286 		if (++index == NEXTINDEX(h)) {
287 			pg = h->nextpg;
288 			mpool_put(t->bt_mp, h, 0);
289 			if (pg == P_INVALID)
290 				return (RET_SPECIAL);
291 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
292 				return (RET_ERROR);
293 			index = 0;
294 		}
295 		break;
296 	case R_PREV:			/* Previous record. */
297 		/*
298 		 * The cursor was deleted in duplicate records, and moved
299 		 * backward to a record that has yet to be returned.  Clear
300 		 * that flag, and return the record.
301 		 */
302 		if (F_ISSET(c, CURS_BEFORE)) {
303 usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
304 			ep->page = h;
305 			ep->index = c->pg.index;
306 			return (RET_SUCCESS);
307 		}
308 		index = c->pg.index;
309 		if (index == 0) {
310 			pg = h->prevpg;
311 			mpool_put(t->bt_mp, h, 0);
312 			if (pg == P_INVALID)
313 				return (RET_SPECIAL);
314 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
315 				return (RET_ERROR);
316 			index = NEXTINDEX(h) - 1;
317 		} else
318 			--index;
319 		break;
320 	}
321 
322 	ep->page = h;
323 	ep->index = index;
324 	return (RET_SUCCESS);
325 }
326 
327 /*
328  * __bt_first --
329  *	Find the first entry.
330  *
331  * Parameters:
332  *	t:	the tree
333  *    key:	the key
334  *  erval:	return EPG
335  * exactp:	pointer to exact match flag
336  *
337  * Returns:
338  *	The first entry in the tree greater than or equal to key,
339  *	or RET_SPECIAL if no such key exists.
340  */
341 static int
342 __bt_first(t, key, erval, exactp)
343 	BTREE *t;
344 	const DBT *key;
345 	EPG *erval;
346 	int *exactp;
347 {
348 	PAGE *h;
349 	EPG *ep, save;
350 	pgno_t pg;
351 
352 	/*
353 	 * Find any matching record; __bt_search pins the page.
354 	 *
355 	 * If it's an exact match and duplicates are possible, walk backwards
356 	 * in the tree until we find the first one.  Otherwise, make sure it's
357 	 * a valid key (__bt_search may return an index just past the end of a
358 	 * page) and return it.
359 	 */
360 	if ((ep = __bt_search(t, key, exactp)) == NULL)
361 		return (0);
362 	if (*exactp) {
363 		if (F_ISSET(t, B_NODUPS)) {
364 			*erval = *ep;
365 			return (RET_SUCCESS);
366 		}
367 
368 		/*
369 		 * Walk backwards, as long as the entry matches and there are
370 		 * keys left in the tree.  Save a copy of each match in case
371 		 * we go too far.
372 		 */
373 		save = *ep;
374 		h = ep->page;
375 		do {
376 			if (save.page->pgno != ep->page->pgno) {
377 				mpool_put(t->bt_mp, save.page, 0);
378 				save = *ep;
379 			} else
380 				save.index = ep->index;
381 
382 			/*
383 			 * Don't unpin the page the last (or original) match
384 			 * was on, but make sure it's unpinned if an error
385 			 * occurs.
386 			 */
387 			if (ep->index == 0) {
388 				if (h->prevpg == P_INVALID)
389 					break;
390 				if (h->pgno != save.page->pgno)
391 					mpool_put(t->bt_mp, h, 0);
392 				if ((h = mpool_get(t->bt_mp,
393 				    h->prevpg, 0)) == NULL) {
394 					if (h->pgno == save.page->pgno)
395 						mpool_put(t->bt_mp,
396 						    save.page, 0);
397 					return (RET_ERROR);
398 				}
399 				ep->page = h;
400 				ep->index = NEXTINDEX(h);
401 			}
402 			--ep->index;
403 		} while (__bt_cmp(t, key, ep) == 0);
404 
405 		/*
406 		 * Reach here with the last page that was looked at pinned,
407 		 * which may or may not be the same as the last (or original)
408 		 * match page.  If it's not useful, release it.
409 		 */
410 		if (h->pgno != save.page->pgno)
411 			mpool_put(t->bt_mp, h, 0);
412 
413 		*erval = save;
414 		return (RET_SUCCESS);
415 	}
416 
417 	/* If at the end of a page, find the next entry. */
418 	if (ep->index == NEXTINDEX(ep->page)) {
419 		h = ep->page;
420 		pg = h->nextpg;
421 		mpool_put(t->bt_mp, h, 0);
422 		if (pg == P_INVALID)
423 			return (RET_SPECIAL);
424 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
425 			return (RET_ERROR);
426 		ep->index = 0;
427 		ep->page = h;
428 	}
429 	*erval = *ep;
430 	return (RET_SUCCESS);
431 }
432 
433 /*
434  * __bt_setcur --
435  *	Set the cursor to an entry in the tree.
436  *
437  * Parameters:
438  *	t:	the tree
439  *   pgno:	page number
440  *  index:	page index
441  */
442 void
443 __bt_setcur(t, pgno, index)
444 	BTREE *t;
445 	pgno_t pgno;
446 	u_int index;
447 {
448 	/* Lose any already deleted key. */
449 	if (t->bt_cursor.key.data != NULL) {
450 		free(t->bt_cursor.key.data);
451 		t->bt_cursor.key.size = 0;
452 		t->bt_cursor.key.data = NULL;
453 	}
454 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
455 
456 	/* Update the cursor. */
457 	t->bt_cursor.pg.pgno = pgno;
458 	t->bt_cursor.pg.index = index;
459 	F_SET(&t->bt_cursor, CURS_INIT);
460 }
461