xref: /dragonfly/lib/libc/db/btree/bt_split.c (revision c03f08f3)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * @(#)bt_split.c	8.9 (Berkeley) 7/26/94
33  * $DragonFly: src/lib/libc/db/btree/bt_split.c,v 1.8 2005/11/19 20:46:32 swildner Exp $
34  */
35 
36 #include <sys/types.h>
37 
38 #include <limits.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 
43 #include <db.h>
44 #include "btree.h"
45 
46 static int	 bt_broot (BTREE *, PAGE *, PAGE *, PAGE *);
47 static PAGE	*bt_page
48 		    (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
49 static int	 bt_preserve (BTREE *, pgno_t);
50 static PAGE	*bt_psplit
51 		    (BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t);
52 static PAGE	*bt_root
53 		    (BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t);
54 static int	 bt_rroot (BTREE *, PAGE *, PAGE *, PAGE *);
55 static recno_t	 rec_total (PAGE *);
56 
57 #ifdef STATISTICS
58 u_long	bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
59 #endif
60 
61 /*
62  * __BT_SPLIT -- Split the tree.
63  *
64  * Parameters:
65  *	t:	tree
66  *	sp:	page to split
67  *	key:	key to insert
68  *	data:	data to insert
69  *	flags:	BIGKEY/BIGDATA flags
70  *	ilen:	insert length
71  *	skip:	index to leave open
72  *
73  * Returns:
74  *	RET_ERROR, RET_SUCCESS
75  */
76 int
77 __bt_split(BTREE *t, PAGE *sp, const DBT *key, const DBT *data, int flags,
78 	   size_t ilen, u_int32_t argskip)
79 {
80 	BINTERNAL *bi;
81 	BLEAF *bl, *tbl;
82 	DBT a, b;
83 	EPGNO *parent;
84 	PAGE *h, *l, *r, *lchild, *rchild;
85 	indx_t nxtindex;
86 	u_int16_t skip;
87 	u_int32_t n, nbytes, nksize;
88 	int parentsplit;
89 	char *dest;
90 
91 	bi = NULL;
92 	bl = NULL;
93 	nksize = 0;
94 	/*
95 	 * Split the page into two pages, l and r.  The split routines return
96 	 * a pointer to the page into which the key should be inserted and with
97 	 * skip set to the offset which should be used.  Additionally, l and r
98 	 * are pinned.
99 	 */
100 	skip = argskip;
101 	h = sp->pgno == P_ROOT ?
102 	    bt_root(t, sp, &l, &r, &skip, ilen) :
103 	    bt_page(t, sp, &l, &r, &skip, ilen);
104 	if (h == NULL)
105 		return (RET_ERROR);
106 
107 	/*
108 	 * Insert the new key/data pair into the leaf page.  (Key inserts
109 	 * always cause a leaf page to split first.)
110 	 */
111 	h->linp[skip] = h->upper -= ilen;
112 	dest = (char *)h + h->upper;
113 	if (F_ISSET(t, R_RECNO))
114 		WR_RLEAF(dest, data, flags)
115 	else
116 		WR_BLEAF(dest, key, data, flags)
117 
118 	/* If the root page was split, make it look right. */
119 	if (sp->pgno == P_ROOT &&
120 	    (F_ISSET(t, R_RECNO) ?
121 	    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
122 		goto err2;
123 
124 	/*
125 	 * Now we walk the parent page stack -- a LIFO stack of the pages that
126 	 * were traversed when we searched for the page that split.  Each stack
127 	 * entry is a page number and a page index offset.  The offset is for
128 	 * the page traversed on the search.  We've just split a page, so we
129 	 * have to insert a new key into the parent page.
130 	 *
131 	 * If the insert into the parent page causes it to split, may have to
132 	 * continue splitting all the way up the tree.  We stop if the root
133 	 * splits or the page inserted into didn't have to split to hold the
134 	 * new key.  Some algorithms replace the key for the old page as well
135 	 * as the new page.  We don't, as there's no reason to believe that the
136 	 * first key on the old page is any better than the key we have, and,
137 	 * in the case of a key being placed at index 0 causing the split, the
138 	 * key is unavailable.
139 	 *
140 	 * There are a maximum of 5 pages pinned at any time.  We keep the left
141 	 * and right pages pinned while working on the parent.   The 5 are the
142 	 * two children, left parent and right parent (when the parent splits)
143 	 * and the root page or the overflow key page when calling bt_preserve.
144 	 * This code must make sure that all pins are released other than the
145 	 * root page or overflow page which is unlocked elsewhere.
146 	 */
147 	while ((parent = BT_POP(t)) != NULL) {
148 		lchild = l;
149 		rchild = r;
150 
151 		/* Get the parent page. */
152 		if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
153 			goto err2;
154 
155 	 	/*
156 		 * The new key goes ONE AFTER the index, because the split
157 		 * was to the right.
158 		 */
159 		skip = parent->index + 1;
160 
161 		/*
162 		 * Calculate the space needed on the parent page.
163 		 *
164 		 * Prefix trees: space hack when inserting into BINTERNAL
165 		 * pages.  Retain only what's needed to distinguish between
166 		 * the new entry and the LAST entry on the page to its left.
167 		 * If the keys compare equal, retain the entire key.  Note,
168 		 * we don't touch overflow keys, and the entire key must be
169 		 * retained for the next-to-left most key on the leftmost
170 		 * page of each level, or the search will fail.  Applicable
171 		 * ONLY to internal pages that have leaf pages as children.
172 		 * Further reduction of the key between pairs of internal
173 		 * pages loses too much information.
174 		 */
175 		switch (rchild->flags & P_TYPE) {
176 		case P_BINTERNAL:
177 			bi = GETBINTERNAL(rchild, 0);
178 			nbytes = NBINTERNAL(bi->ksize);
179 			break;
180 		case P_BLEAF:
181 			bl = GETBLEAF(rchild, 0);
182 			nbytes = NBINTERNAL(bl->ksize);
183 			if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
184 			    (h->prevpg != P_INVALID || skip > 1)) {
185 				tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
186 				a.size = tbl->ksize;
187 				a.data = tbl->bytes;
188 				b.size = bl->ksize;
189 				b.data = bl->bytes;
190 				nksize = t->bt_pfx(&a, &b);
191 				n = NBINTERNAL(nksize);
192 				if (n < nbytes) {
193 #ifdef STATISTICS
194 					bt_pfxsaved += nbytes - n;
195 #endif
196 					nbytes = n;
197 				} else
198 					nksize = 0;
199 			} else
200 				nksize = 0;
201 			break;
202 		case P_RINTERNAL:
203 		case P_RLEAF:
204 			nbytes = NRINTERNAL;
205 			break;
206 		default:
207 			abort();
208 		}
209 
210 		/* Split the parent page if necessary or shift the indices. */
211 		if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
212 			sp = h;
213 			h = h->pgno == P_ROOT ?
214 			    bt_root(t, h, &l, &r, &skip, nbytes) :
215 			    bt_page(t, h, &l, &r, &skip, nbytes);
216 			if (h == NULL)
217 				goto err1;
218 			parentsplit = 1;
219 		} else {
220 			if (skip < (nxtindex = NEXTINDEX(h)))
221 				memmove(h->linp + skip + 1, h->linp + skip,
222 				    (nxtindex - skip) * sizeof(indx_t));
223 			h->lower += sizeof(indx_t);
224 			parentsplit = 0;
225 		}
226 
227 		/* Insert the key into the parent page. */
228 		switch (rchild->flags & P_TYPE) {
229 		case P_BINTERNAL:
230 			h->linp[skip] = h->upper -= nbytes;
231 			dest = (char *)h + h->linp[skip];
232 			memmove(dest, bi, nbytes);
233 			((BINTERNAL *)dest)->pgno = rchild->pgno;
234 			break;
235 		case P_BLEAF:
236 			h->linp[skip] = h->upper -= nbytes;
237 			dest = (char *)h + h->linp[skip];
238 			WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
239 			    rchild->pgno, bl->flags & P_BIGKEY);
240 			memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
241 			if (bl->flags & P_BIGKEY &&
242 			    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
243 				goto err1;
244 			break;
245 		case P_RINTERNAL:
246 			/*
247 			 * Update the left page count.  If split
248 			 * added at index 0, fix the correct page.
249 			 */
250 			if (skip > 0)
251 				dest = (char *)h + h->linp[skip - 1];
252 			else
253 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
254 			((RINTERNAL *)dest)->nrecs = rec_total(lchild);
255 			((RINTERNAL *)dest)->pgno = lchild->pgno;
256 
257 			/* Update the right page count. */
258 			h->linp[skip] = h->upper -= nbytes;
259 			dest = (char *)h + h->linp[skip];
260 			((RINTERNAL *)dest)->nrecs = rec_total(rchild);
261 			((RINTERNAL *)dest)->pgno = rchild->pgno;
262 			break;
263 		case P_RLEAF:
264 			/*
265 			 * Update the left page count.  If split
266 			 * added at index 0, fix the correct page.
267 			 */
268 			if (skip > 0)
269 				dest = (char *)h + h->linp[skip - 1];
270 			else
271 				dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
272 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
273 			((RINTERNAL *)dest)->pgno = lchild->pgno;
274 
275 			/* Update the right page count. */
276 			h->linp[skip] = h->upper -= nbytes;
277 			dest = (char *)h + h->linp[skip];
278 			((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
279 			((RINTERNAL *)dest)->pgno = rchild->pgno;
280 			break;
281 		default:
282 			abort();
283 		}
284 
285 		/* Unpin the held pages. */
286 		if (!parentsplit) {
287 			mpool_put(t->bt_mp, h, MPOOL_DIRTY);
288 			break;
289 		}
290 
291 		/* If the root page was split, make it look right. */
292 		if (sp->pgno == P_ROOT &&
293 		    (F_ISSET(t, R_RECNO) ?
294 		    bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
295 			goto err1;
296 
297 		mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
298 		mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
299 	}
300 
301 	/* Unpin the held pages. */
302 	mpool_put(t->bt_mp, l, MPOOL_DIRTY);
303 	mpool_put(t->bt_mp, r, MPOOL_DIRTY);
304 
305 	/* Clear any pages left on the stack. */
306 	return (RET_SUCCESS);
307 
308 	/*
309 	 * If something fails in the above loop we were already walking back
310 	 * up the tree and the tree is now inconsistent.  Nothing much we can
311 	 * do about it but release any memory we're holding.
312 	 */
313 err1:	mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
314 	mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
315 
316 err2:	mpool_put(t->bt_mp, l, 0);
317 	mpool_put(t->bt_mp, r, 0);
318 	__dbpanic(t->bt_dbp);
319 	return (RET_ERROR);
320 }
321 
322 /*
323  * BT_PAGE -- Split a non-root page of a btree.
324  *
325  * Parameters:
326  *	t:	tree
327  *	h:	root page
328  *	lp:	pointer to left page pointer
329  *	rp:	pointer to right page pointer
330  *	skip:	pointer to index to leave open
331  *	ilen:	insert length
332  *
333  * Returns:
334  *	Pointer to page in which to insert or NULL on error.
335  */
336 static PAGE *
337 bt_page(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
338 {
339 	PAGE *l, *r, *tp;
340 	pgno_t npg;
341 
342 #ifdef STATISTICS
343 	++bt_split;
344 #endif
345 	/* Put the new right page for the split into place. */
346 	if ((r = __bt_new(t, &npg)) == NULL)
347 		return (NULL);
348 	r->pgno = npg;
349 	r->lower = BTDATAOFF;
350 	r->upper = t->bt_psize;
351 	r->nextpg = h->nextpg;
352 	r->prevpg = h->pgno;
353 	r->flags = h->flags & P_TYPE;
354 
355 	/*
356 	 * If we're splitting the last page on a level because we're appending
357 	 * a key to it (skip is NEXTINDEX()), it's likely that the data is
358 	 * sorted.  Adding an empty page on the side of the level is less work
359 	 * and can push the fill factor much higher than normal.  If we're
360 	 * wrong it's no big deal, we'll just do the split the right way next
361 	 * time.  It may look like it's equally easy to do a similar hack for
362 	 * reverse sorted data, that is, split the tree left, but it's not.
363 	 * Don't even try.
364 	 */
365 	if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
366 #ifdef STATISTICS
367 		++bt_sortsplit;
368 #endif
369 		h->nextpg = r->pgno;
370 		r->lower = BTDATAOFF + sizeof(indx_t);
371 		*skip = 0;
372 		*lp = h;
373 		*rp = r;
374 		return (r);
375 	}
376 
377 	/* Put the new left page for the split into place. */
378 	if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
379 		mpool_put(t->bt_mp, r, 0);
380 		return (NULL);
381 	}
382 #ifdef PURIFY
383 	memset(l, 0xff, t->bt_psize);
384 #endif
385 	l->pgno = h->pgno;
386 	l->nextpg = r->pgno;
387 	l->prevpg = h->prevpg;
388 	l->lower = BTDATAOFF;
389 	l->upper = t->bt_psize;
390 	l->flags = h->flags & P_TYPE;
391 
392 	/* Fix up the previous pointer of the page after the split page. */
393 	if (h->nextpg != P_INVALID) {
394 		if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
395 			free(l);
396 			/* XXX mpool_free(t->bt_mp, r->pgno); */
397 			return (NULL);
398 		}
399 		tp->prevpg = r->pgno;
400 		mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
401 	}
402 
403 	/*
404 	 * Split right.  The key/data pairs aren't sorted in the btree page so
405 	 * it's simpler to copy the data from the split page onto two new pages
406 	 * instead of copying half the data to the right page and compacting
407 	 * the left page in place.  Since the left page can't change, we have
408 	 * to swap the original and the allocated left page after the split.
409 	 */
410 	tp = bt_psplit(t, h, l, r, skip, ilen);
411 
412 	/* Move the new left page onto the old left page. */
413 	memmove(h, l, t->bt_psize);
414 	if (tp == l)
415 		tp = h;
416 	free(l);
417 
418 	*lp = h;
419 	*rp = r;
420 	return (tp);
421 }
422 
423 /*
424  * BT_ROOT -- Split the root page of a btree.
425  *
426  * Parameters:
427  *	t:	tree
428  *	h:	root page
429  *	lp:	pointer to left page pointer
430  *	rp:	pointer to right page pointer
431  *	skip:	pointer to index to leave open
432  *	ilen:	insert length
433  *
434  * Returns:
435  *	Pointer to page in which to insert or NULL on error.
436  */
437 static PAGE *
438 bt_root(BTREE *t, PAGE *h, PAGE **lp, PAGE **rp, indx_t *skip, size_t ilen)
439 {
440 	PAGE *l, *r, *tp;
441 	pgno_t lnpg, rnpg;
442 
443 #ifdef STATISTICS
444 	++bt_split;
445 	++bt_rootsplit;
446 #endif
447 	/* Put the new left and right pages for the split into place. */
448 	if ((l = __bt_new(t, &lnpg)) == NULL ||
449 	    (r = __bt_new(t, &rnpg)) == NULL)
450 		return (NULL);
451 	l->pgno = lnpg;
452 	r->pgno = rnpg;
453 	l->nextpg = r->pgno;
454 	r->prevpg = l->pgno;
455 	l->prevpg = r->nextpg = P_INVALID;
456 	l->lower = r->lower = BTDATAOFF;
457 	l->upper = r->upper = t->bt_psize;
458 	l->flags = r->flags = h->flags & P_TYPE;
459 
460 	/* Split the root page. */
461 	tp = bt_psplit(t, h, l, r, skip, ilen);
462 
463 	*lp = l;
464 	*rp = r;
465 	return (tp);
466 }
467 
468 /*
469  * BT_RROOT -- Fix up the recno root page after it has been split.
470  *
471  * Parameters:
472  *	t:	tree
473  *	h:	root page
474  *	l:	left page
475  *	r:	right page
476  *
477  * Returns:
478  *	RET_ERROR, RET_SUCCESS
479  */
480 static int
481 bt_rroot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
482 {
483 	char *dest;
484 
485 	/* Insert the left and right keys, set the header information. */
486 	h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
487 	dest = (char *)h + h->upper;
488 	WR_RINTERNAL(dest,
489 	    l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
490 
491 	h->linp[1] = h->upper -= NRINTERNAL;
492 	dest = (char *)h + h->upper;
493 	WR_RINTERNAL(dest,
494 	    r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
495 
496 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
497 
498 	/* Unpin the root page, set to recno internal page. */
499 	h->flags &= ~P_TYPE;
500 	h->flags |= P_RINTERNAL;
501 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
502 
503 	return (RET_SUCCESS);
504 }
505 
506 /*
507  * BT_BROOT -- Fix up the btree root page after it has been split.
508  *
509  * Parameters:
510  *	t:	tree
511  *	h:	root page
512  *	l:	left page
513  *	r:	right page
514  *
515  * Returns:
516  *	RET_ERROR, RET_SUCCESS
517  */
518 static int
519 bt_broot(BTREE *t, PAGE *h, PAGE *l, PAGE *r)
520 {
521 	BINTERNAL *bi;
522 	BLEAF *bl;
523 	u_int32_t nbytes;
524 	char *dest;
525 
526 	/*
527 	 * If the root page was a leaf page, change it into an internal page.
528 	 * We copy the key we split on (but not the key's data, in the case of
529 	 * a leaf page) to the new root page.
530 	 *
531 	 * The btree comparison code guarantees that the left-most key on any
532 	 * level of the tree is never used, so it doesn't need to be filled in.
533 	 */
534 	nbytes = NBINTERNAL(0);
535 	h->linp[0] = h->upper = t->bt_psize - nbytes;
536 	dest = (char *)h + h->upper;
537 	WR_BINTERNAL(dest, 0, l->pgno, 0);
538 
539 	switch (h->flags & P_TYPE) {
540 	case P_BLEAF:
541 		bl = GETBLEAF(r, 0);
542 		nbytes = NBINTERNAL(bl->ksize);
543 		h->linp[1] = h->upper -= nbytes;
544 		dest = (char *)h + h->upper;
545 		WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
546 		memmove(dest, bl->bytes, bl->ksize);
547 
548 		/*
549 		 * If the key is on an overflow page, mark the overflow chain
550 		 * so it isn't deleted when the leaf copy of the key is deleted.
551 		 */
552 		if (bl->flags & P_BIGKEY &&
553 		    bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
554 			return (RET_ERROR);
555 		break;
556 	case P_BINTERNAL:
557 		bi = GETBINTERNAL(r, 0);
558 		nbytes = NBINTERNAL(bi->ksize);
559 		h->linp[1] = h->upper -= nbytes;
560 		dest = (char *)h + h->upper;
561 		memmove(dest, bi, nbytes);
562 		((BINTERNAL *)dest)->pgno = r->pgno;
563 		break;
564 	default:
565 		abort();
566 	}
567 
568 	/* There are two keys on the page. */
569 	h->lower = BTDATAOFF + 2 * sizeof(indx_t);
570 
571 	/* Unpin the root page, set to btree internal page. */
572 	h->flags &= ~P_TYPE;
573 	h->flags |= P_BINTERNAL;
574 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
575 
576 	return (RET_SUCCESS);
577 }
578 
579 /*
580  * BT_PSPLIT -- Do the real work of splitting the page.
581  *
582  * Parameters:
583  *	t:	tree
584  *	h:	page to be split
585  *	l:	page to put lower half of data
586  *	r:	page to put upper half of data
587  *	pskip:	pointer to index to leave open
588  *	ilen:	insert length
589  *
590  * Returns:
591  *	Pointer to page in which to insert.
592  */
593 static PAGE *
594 bt_psplit(BTREE *t, PAGE *h, PAGE *l, PAGE *r, indx_t *pskip, size_t ilen)
595 {
596 	BINTERNAL *bi;
597 	BLEAF *bl;
598 	CURSOR *c;
599 	RLEAF *rl;
600 	PAGE *rval;
601 	void *src;
602 	indx_t full, half, nxt, off, skip, top, used;
603 	u_int32_t nbytes;
604 	int bigkeycnt, isbigkey;
605 
606 	src = NULL;
607 	/*
608 	 * Split the data to the left and right pages.  Leave the skip index
609 	 * open.  Additionally, make some effort not to split on an overflow
610 	 * key.  This makes internal page processing faster and can save
611 	 * space as overflow keys used by internal pages are never deleted.
612 	 */
613 	bigkeycnt = 0;
614 	skip = *pskip;
615 	full = t->bt_psize - BTDATAOFF;
616 	half = full / 2;
617 	used = 0;
618 	for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
619 		if (skip == off) {
620 			nbytes = ilen;
621 			isbigkey = 0;		/* XXX: not really known. */
622 		} else
623 			switch (h->flags & P_TYPE) {
624 			case P_BINTERNAL:
625 				src = bi = GETBINTERNAL(h, nxt);
626 				nbytes = NBINTERNAL(bi->ksize);
627 				isbigkey = bi->flags & P_BIGKEY;
628 				break;
629 			case P_BLEAF:
630 				src = bl = GETBLEAF(h, nxt);
631 				nbytes = NBLEAF(bl);
632 				isbigkey = bl->flags & P_BIGKEY;
633 				break;
634 			case P_RINTERNAL:
635 				src = GETRINTERNAL(h, nxt);
636 				nbytes = NRINTERNAL;
637 				isbigkey = 0;
638 				break;
639 			case P_RLEAF:
640 				src = rl = GETRLEAF(h, nxt);
641 				nbytes = NRLEAF(rl);
642 				isbigkey = 0;
643 				break;
644 			default:
645 				abort();
646 			}
647 
648 		/*
649 		 * If the key/data pairs are substantial fractions of the max
650 		 * possible size for the page, it's possible to get situations
651 		 * where we decide to try and copy too much onto the left page.
652 		 * Make sure that doesn't happen.
653 		 */
654 		if ((skip <= off &&
655 		    used + nbytes + sizeof(indx_t) >= full) || nxt == top - 1) {
656 			--off;
657 			break;
658 		}
659 
660 		/* Copy the key/data pair, if not the skipped index. */
661 		if (skip != off) {
662 			++nxt;
663 
664 			l->linp[off] = l->upper -= nbytes;
665 			memmove((char *)l + l->upper, src, nbytes);
666 		}
667 
668 		used += nbytes + sizeof(indx_t);
669 		if (used >= half) {
670 			if (!isbigkey || bigkeycnt == 3)
671 				break;
672 			else
673 				++bigkeycnt;
674 		}
675 	}
676 
677 	/*
678 	 * Off is the last offset that's valid for the left page.
679 	 * Nxt is the first offset to be placed on the right page.
680 	 */
681 	l->lower += (off + 1) * sizeof(indx_t);
682 
683 	/*
684 	 * If splitting the page that the cursor was on, the cursor has to be
685 	 * adjusted to point to the same record as before the split.  If the
686 	 * cursor is at or past the skipped slot, the cursor is incremented by
687 	 * one.  If the cursor is on the right page, it is decremented by the
688 	 * number of records split to the left page.
689 	 */
690 	c = &t->bt_cursor;
691 	if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
692 		if (c->pg.index >= skip)
693 			++c->pg.index;
694 		if (c->pg.index < nxt)			/* Left page. */
695 			c->pg.pgno = l->pgno;
696 		else {					/* Right page. */
697 			c->pg.pgno = r->pgno;
698 			c->pg.index -= nxt;
699 		}
700 	}
701 
702 	/*
703 	 * If the skipped index was on the left page, just return that page.
704 	 * Otherwise, adjust the skip index to reflect the new position on
705 	 * the right page.
706 	 */
707 	if (skip <= off) {
708 		skip = MAX_PAGE_OFFSET;
709 		rval = l;
710 	} else {
711 		rval = r;
712 		*pskip -= nxt;
713 	}
714 
715 	for (off = 0; nxt < top; ++off) {
716 		if (skip == nxt) {
717 			++off;
718 			skip = MAX_PAGE_OFFSET;
719 		}
720 		switch (h->flags & P_TYPE) {
721 		case P_BINTERNAL:
722 			src = bi = GETBINTERNAL(h, nxt);
723 			nbytes = NBINTERNAL(bi->ksize);
724 			break;
725 		case P_BLEAF:
726 			src = bl = GETBLEAF(h, nxt);
727 			nbytes = NBLEAF(bl);
728 			break;
729 		case P_RINTERNAL:
730 			src = GETRINTERNAL(h, nxt);
731 			nbytes = NRINTERNAL;
732 			break;
733 		case P_RLEAF:
734 			src = rl = GETRLEAF(h, nxt);
735 			nbytes = NRLEAF(rl);
736 			break;
737 		default:
738 			abort();
739 		}
740 		++nxt;
741 		r->linp[off] = r->upper -= nbytes;
742 		memmove((char *)r + r->upper, src, nbytes);
743 	}
744 	r->lower += off * sizeof(indx_t);
745 
746 	/* If the key is being appended to the page, adjust the index. */
747 	if (skip == top)
748 		r->lower += sizeof(indx_t);
749 
750 	return (rval);
751 }
752 
753 /*
754  * BT_PRESERVE -- Mark a chain of pages as used by an internal node.
755  *
756  * Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
757  * record that references them gets deleted.  Chains pointed to by internal
758  * pages never get deleted.  This routine marks a chain as pointed to by an
759  * internal page.
760  *
761  * Parameters:
762  *	t:	tree
763  *	pg:	page number of first page in the chain.
764  *
765  * Returns:
766  *	RET_SUCCESS, RET_ERROR.
767  */
768 static int
769 bt_preserve(BTREE *t, pgno_t pg)
770 {
771 	PAGE *h;
772 
773 	if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
774 		return (RET_ERROR);
775 	h->flags |= P_PRESERVE;
776 	mpool_put(t->bt_mp, h, MPOOL_DIRTY);
777 	return (RET_SUCCESS);
778 }
779 
780 /*
781  * REC_TOTAL -- Return the number of recno entries below a page.
782  *
783  * Parameters:
784  *	h:	page
785  *
786  * Returns:
787  *	The number of recno entries below a page.
788  *
789  * XXX
790  * These values could be set by the bt_psplit routine.  The problem is that the
791  * entry has to be popped off of the stack etc. or the values have to be passed
792  * all the way back to bt_split/bt_rroot and it's not very clean.
793  */
794 static recno_t
795 rec_total(PAGE *h)
796 {
797 	recno_t recs;
798 	indx_t nxt, top;
799 
800 	for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
801 		recs += GETRINTERNAL(h, nxt)->nrecs;
802 	return (recs);
803 }
804