xref: /dragonfly/lib/libc/db/btree/btree.h (revision 984263bc)
1 /*-
2  * Copyright (c) 1991, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)btree.h	8.11 (Berkeley) 8/17/94
37  */
38 
39 /* Macros to set/clear/test flags. */
40 #define	F_SET(p, f)	(p)->flags |= (f)
41 #define	F_CLR(p, f)	(p)->flags &= ~(f)
42 #define	F_ISSET(p, f)	((p)->flags & (f))
43 
44 #include <mpool.h>
45 
46 #define	DEFMINKEYPAGE	(2)		/* Minimum keys per page */
47 #define	MINCACHE	(5)		/* Minimum cached pages */
48 #define	MINPSIZE	(512)		/* Minimum page size */
49 
50 /*
51  * Page 0 of a btree file contains a copy of the meta-data.  This page is also
52  * used as an out-of-band page, i.e. page pointers that point to nowhere point
53  * to page 0.  Page 1 is the root of the btree.
54  */
55 #define	P_INVALID	 0		/* Invalid tree page number. */
56 #define	P_META		 0		/* Tree metadata page number. */
57 #define	P_ROOT		 1		/* Tree root page number. */
58 
59 /*
60  * There are five page layouts in the btree: btree internal pages (BINTERNAL),
61  * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages
62  * (RLEAF) and overflow pages.  All five page types have a page header (PAGE).
63  * This implementation requires that values within structures NOT be padded.
64  * (ANSI C permits random padding.)  If your compiler pads randomly you'll have
65  * to do some work to get this package to run.
66  */
67 typedef struct _page {
68 	pgno_t	pgno;			/* this page's page number */
69 	pgno_t	prevpg;			/* left sibling */
70 	pgno_t	nextpg;			/* right sibling */
71 
72 #define	P_BINTERNAL	0x01		/* btree internal page */
73 #define	P_BLEAF		0x02		/* leaf page */
74 #define	P_OVERFLOW	0x04		/* overflow page */
75 #define	P_RINTERNAL	0x08		/* recno internal page */
76 #define	P_RLEAF		0x10		/* leaf page */
77 #define P_TYPE		0x1f		/* type mask */
78 #define	P_PRESERVE	0x20		/* never delete this chain of pages */
79 	u_int32_t flags;
80 
81 	indx_t	lower;			/* lower bound of free space on page */
82 	indx_t	upper;			/* upper bound of free space on page */
83 	indx_t	linp[1];		/* indx_t-aligned VAR. LENGTH DATA */
84 } PAGE;
85 
86 /* First and next index. */
87 #define	BTDATAOFF							\
88 	(sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) +		\
89 	    sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t))
90 #define	NEXTINDEX(p)	(((p)->lower - BTDATAOFF) / sizeof(indx_t))
91 
92 /*
93  * For pages other than overflow pages, there is an array of offsets into the
94  * rest of the page immediately following the page header.  Each offset is to
95  * an item which is unique to the type of page.  The h_lower offset is just
96  * past the last filled-in index.  The h_upper offset is the first item on the
97  * page.  Offsets are from the beginning of the page.
98  *
99  * If an item is too big to store on a single page, a flag is set and the item
100  * is a { page, size } pair such that the page is the first page of an overflow
101  * chain with size bytes of item.  Overflow pages are simply bytes without any
102  * external structure.
103  *
104  * The page number and size fields in the items are pgno_t-aligned so they can
105  * be manipulated without copying.  (This presumes that 32 bit items can be
106  * manipulated on this system.)
107  */
108 #define	LALIGN(n)	(((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1))
109 #define	NOVFLSIZE	(sizeof(pgno_t) + sizeof(u_int32_t))
110 
111 /*
112  * For the btree internal pages, the item is a key.  BINTERNALs are {key, pgno}
113  * pairs, such that the key compares less than or equal to all of the records
114  * on that page.  For a tree without duplicate keys, an internal page with two
115  * consecutive keys, a and b, will have all records greater than or equal to a
116  * and less than b stored on the page associated with a.  Duplicate keys are
117  * somewhat special and can cause duplicate internal and leaf page records and
118  * some minor modifications of the above rule.
119  */
120 typedef struct _binternal {
121 	u_int32_t ksize;		/* key size */
122 	pgno_t	pgno;			/* page number stored on */
123 #define	P_BIGDATA	0x01		/* overflow data */
124 #define	P_BIGKEY	0x02		/* overflow key */
125 	u_char	flags;
126 	char	bytes[1];		/* data */
127 } BINTERNAL;
128 
129 /* Get the page's BINTERNAL structure at index indx. */
130 #define	GETBINTERNAL(pg, indx)						\
131 	((BINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
132 
133 /* Get the number of bytes in the entry. */
134 #define NBINTERNAL(len)							\
135 	LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len))
136 
137 /* Copy a BINTERNAL entry to the page. */
138 #define	WR_BINTERNAL(p, size, pgno, flags) {				\
139 	*(u_int32_t *)p = size;						\
140 	p += sizeof(u_int32_t);						\
141 	*(pgno_t *)p = pgno;						\
142 	p += sizeof(pgno_t);						\
143 	*(u_char *)p = flags;						\
144 	p += sizeof(u_char);						\
145 }
146 
147 /*
148  * For the recno internal pages, the item is a page number with the number of
149  * keys found on that page and below.
150  */
151 typedef struct _rinternal {
152 	recno_t	nrecs;			/* number of records */
153 	pgno_t	pgno;			/* page number stored below */
154 } RINTERNAL;
155 
156 /* Get the page's RINTERNAL structure at index indx. */
157 #define	GETRINTERNAL(pg, indx)						\
158 	((RINTERNAL *)((char *)(pg) + (pg)->linp[indx]))
159 
160 /* Get the number of bytes in the entry. */
161 #define NRINTERNAL							\
162 	LALIGN(sizeof(recno_t) + sizeof(pgno_t))
163 
164 /* Copy a RINTERAL entry to the page. */
165 #define	WR_RINTERNAL(p, nrecs, pgno) {					\
166 	*(recno_t *)p = nrecs;						\
167 	p += sizeof(recno_t);						\
168 	*(pgno_t *)p = pgno;						\
169 }
170 
171 /* For the btree leaf pages, the item is a key and data pair. */
172 typedef struct _bleaf {
173 	u_int32_t	ksize;		/* size of key */
174 	u_int32_t	dsize;		/* size of data */
175 	u_char	flags;			/* P_BIGDATA, P_BIGKEY */
176 	char	bytes[1];		/* data */
177 } BLEAF;
178 
179 /* Get the page's BLEAF structure at index indx. */
180 #define	GETBLEAF(pg, indx)						\
181 	((BLEAF *)((char *)(pg) + (pg)->linp[indx]))
182 
183 /* Get the number of bytes in the entry. */
184 #define NBLEAF(p)	NBLEAFDBT((p)->ksize, (p)->dsize)
185 
186 /* Get the number of bytes in the user's key/data pair. */
187 #define NBLEAFDBT(ksize, dsize)						\
188 	LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) +	\
189 	    (ksize) + (dsize))
190 
191 /* Copy a BLEAF entry to the page. */
192 #define	WR_BLEAF(p, key, data, flags) {					\
193 	*(u_int32_t *)p = key->size;					\
194 	p += sizeof(u_int32_t);						\
195 	*(u_int32_t *)p = data->size;					\
196 	p += sizeof(u_int32_t);						\
197 	*(u_char *)p = flags;						\
198 	p += sizeof(u_char);						\
199 	memmove(p, key->data, key->size);				\
200 	p += key->size;							\
201 	memmove(p, data->data, data->size);				\
202 }
203 
204 /* For the recno leaf pages, the item is a data entry. */
205 typedef struct _rleaf {
206 	u_int32_t	dsize;		/* size of data */
207 	u_char	flags;			/* P_BIGDATA */
208 	char	bytes[1];
209 } RLEAF;
210 
211 /* Get the page's RLEAF structure at index indx. */
212 #define	GETRLEAF(pg, indx)						\
213 	((RLEAF *)((char *)(pg) + (pg)->linp[indx]))
214 
215 /* Get the number of bytes in the entry. */
216 #define NRLEAF(p)	NRLEAFDBT((p)->dsize)
217 
218 /* Get the number of bytes from the user's data. */
219 #define	NRLEAFDBT(dsize)						\
220 	LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize))
221 
222 /* Copy a RLEAF entry to the page. */
223 #define	WR_RLEAF(p, data, flags) {					\
224 	*(u_int32_t *)p = data->size;					\
225 	p += sizeof(u_int32_t);						\
226 	*(u_char *)p = flags;						\
227 	p += sizeof(u_char);						\
228 	memmove(p, data->data, data->size);				\
229 }
230 
231 /*
232  * A record in the tree is either a pointer to a page and an index in the page
233  * or a page number and an index.  These structures are used as a cursor, stack
234  * entry and search returns as well as to pass records to other routines.
235  *
236  * One comment about searches.  Internal page searches must find the largest
237  * record less than key in the tree so that descents work.  Leaf page searches
238  * must find the smallest record greater than key so that the returned index
239  * is the record's correct position for insertion.
240  */
241 typedef struct _epgno {
242 	pgno_t	pgno;			/* the page number */
243 	indx_t	index;			/* the index on the page */
244 } EPGNO;
245 
246 typedef struct _epg {
247 	PAGE	*page;			/* the (pinned) page */
248 	indx_t	 index;			/* the index on the page */
249 } EPG;
250 
251 /*
252  * About cursors.  The cursor (and the page that contained the key/data pair
253  * that it referenced) can be deleted, which makes things a bit tricky.  If
254  * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set
255  * or there simply aren't any duplicates of the key) we copy the key that it
256  * referenced when it's deleted, and reacquire a new cursor key if the cursor
257  * is used again.  If there are duplicates keys, we move to the next/previous
258  * key, and set a flag so that we know what happened.  NOTE: if duplicate (to
259  * the cursor) keys are added to the tree during this process, it is undefined
260  * if they will be returned or not in a cursor scan.
261  *
262  * The flags determine the possible states of the cursor:
263  *
264  * CURS_INIT	The cursor references *something*.
265  * CURS_ACQUIRE	The cursor was deleted, and a key has been saved so that
266  *		we can reacquire the right position in the tree.
267  * CURS_AFTER, CURS_BEFORE
268  *		The cursor was deleted, and now references a key/data pair
269  *		that has not yet been returned, either before or after the
270  *		deleted key/data pair.
271  * XXX
272  * This structure is broken out so that we can eventually offer multiple
273  * cursors as part of the DB interface.
274  */
275 typedef struct _cursor {
276 	EPGNO	 pg;			/* B: Saved tree reference. */
277 	DBT	 key;			/* B: Saved key, or key.data == NULL. */
278 	recno_t	 rcursor;		/* R: recno cursor (1-based) */
279 
280 #define	CURS_ACQUIRE	0x01		/*  B: Cursor needs to be reacquired. */
281 #define	CURS_AFTER	0x02		/*  B: Unreturned cursor after key. */
282 #define	CURS_BEFORE	0x04		/*  B: Unreturned cursor before key. */
283 #define	CURS_INIT	0x08		/* RB: Cursor initialized. */
284 	u_int8_t flags;
285 } CURSOR;
286 
287 /*
288  * The metadata of the tree.  The nrecs field is used only by the RECNO code.
289  * This is because the btree doesn't really need it and it requires that every
290  * put or delete call modify the metadata.
291  */
292 typedef struct _btmeta {
293 	u_int32_t	magic;		/* magic number */
294 	u_int32_t	version;	/* version */
295 	u_int32_t	psize;		/* page size */
296 	u_int32_t	free;		/* page number of first free page */
297 	u_int32_t	nrecs;		/* R: number of records */
298 
299 #define	SAVEMETA	(B_NODUPS | R_RECNO)
300 	u_int32_t	flags;		/* bt_flags & SAVEMETA */
301 } BTMETA;
302 
303 /* The in-memory btree/recno data structure. */
304 typedef struct _btree {
305 	MPOOL	 *bt_mp;		/* memory pool cookie */
306 
307 	DB	 *bt_dbp;		/* pointer to enclosing DB */
308 
309 	EPG	  bt_cur;		/* current (pinned) page */
310 	PAGE	 *bt_pinned;		/* page pinned across calls */
311 
312 	CURSOR	  bt_cursor;		/* cursor */
313 
314 #define	BT_PUSH(t, p, i) {						\
315 	t->bt_sp->pgno = p; 						\
316 	t->bt_sp->index = i; 						\
317 	++t->bt_sp;							\
318 }
319 #define	BT_POP(t)	(t->bt_sp == t->bt_stack ? NULL : --t->bt_sp)
320 #define	BT_CLR(t)	(t->bt_sp = t->bt_stack)
321 	EPGNO	  bt_stack[50];		/* stack of parent pages */
322 	EPGNO	 *bt_sp;		/* current stack pointer */
323 
324 	DBT	  bt_rkey;		/* returned key */
325 	DBT	  bt_rdata;		/* returned data */
326 
327 	int	  bt_fd;		/* tree file descriptor */
328 
329 	pgno_t	  bt_free;		/* next free page */
330 	u_int32_t bt_psize;		/* page size */
331 	indx_t	  bt_ovflsize;		/* cut-off for key/data overflow */
332 	int	  bt_lorder;		/* byte order */
333 					/* sorted order */
334 	enum { NOT, BACK, FORWARD } bt_order;
335 	EPGNO	  bt_last;		/* last insert */
336 
337 					/* B: key comparison function */
338 	int	(*bt_cmp) __P((const DBT *, const DBT *));
339 					/* B: prefix comparison function */
340 	size_t	(*bt_pfx) __P((const DBT *, const DBT *));
341 					/* R: recno input function */
342 	int	(*bt_irec) __P((struct _btree *, recno_t));
343 
344 	FILE	 *bt_rfp;		/* R: record FILE pointer */
345 	int	  bt_rfd;		/* R: record file descriptor */
346 
347 	caddr_t	  bt_cmap;		/* R: current point in mapped space */
348 	caddr_t	  bt_smap;		/* R: start of mapped space */
349 	caddr_t   bt_emap;		/* R: end of mapped space */
350 	size_t	  bt_msize;		/* R: size of mapped region. */
351 
352 	recno_t	  bt_nrecs;		/* R: number of records */
353 	size_t	  bt_reclen;		/* R: fixed record length */
354 	u_char	  bt_bval;		/* R: delimiting byte/pad character */
355 
356 /*
357  * NB:
358  * B_NODUPS and R_RECNO are stored on disk, and may not be changed.
359  */
360 #define	B_INMEM		0x00001		/* in-memory tree */
361 #define	B_METADIRTY	0x00002		/* need to write metadata */
362 #define	B_MODIFIED	0x00004		/* tree modified */
363 #define	B_NEEDSWAP	0x00008		/* if byte order requires swapping */
364 #define	B_RDONLY	0x00010		/* read-only tree */
365 
366 #define	B_NODUPS	0x00020		/* no duplicate keys permitted */
367 #define	R_RECNO		0x00080		/* record oriented tree */
368 
369 #define	R_CLOSEFP	0x00040		/* opened a file pointer */
370 #define	R_EOF		0x00100		/* end of input file reached. */
371 #define	R_FIXLEN	0x00200		/* fixed length records */
372 #define	R_MEMMAPPED	0x00400		/* memory mapped file. */
373 #define	R_INMEM		0x00800		/* in-memory file */
374 #define	R_MODIFIED	0x01000		/* modified file */
375 #define	R_RDONLY	0x02000		/* read-only file */
376 
377 #define	B_DB_LOCK	0x04000		/* DB_LOCK specified. */
378 #define	B_DB_SHMEM	0x08000		/* DB_SHMEM specified. */
379 #define	B_DB_TXN	0x10000		/* DB_TXN specified. */
380 	u_int32_t flags;
381 } BTREE;
382 
383 #include "extern.h"
384