xref: /dragonfly/lib/libc/stdlib/nmalloc.c (revision 3851e4b8)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009,2010 The DragonFly Project. All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com> and by
8  * Venkatesh Srinivas <me@endeavour.zapto.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $Id: nmalloc.c,v 1.37 2010/07/23 08:20:35 vsrinivas Exp $
38  */
39 /*
40  * This module implements a slab allocator drop-in replacement for the
41  * libc malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantaneous, and overhead losses are limited to a fixed
46  * worst-case amount.
47  *
48  * The slab allocator does not have to pre-initialize the list of
49  * free chunks for each zone, and the underlying VM will not be
50  * touched at all beyond the zone header until an actual allocation
51  * needs it.
52  *
53  * Slab management and locking is done on a per-zone basis.
54  *
55  *	Alloc Size	Chunking        Number of zones
56  *	0-127		8		16
57  *	128-255		16		8
58  *	256-511		32		8
59  *	512-1023	64		8
60  *	1024-2047	128		8
61  *	2048-4095	256		8
62  *	4096-8191	512		8
63  *	8192-16383	1024		8
64  *	16384-32767	2048		8
65  *
66  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
67  *	is used to locate for free.  One and Two-page allocations use the
68  *	zone mechanic to avoid excessive mmap()/munmap() calls.
69  *
70  *			   API FEATURES AND SIDE EFFECTS
71  *
72  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
73  *	Above that power-of-2 sized allocations are page-aligned.  Non
74  *	power-of-2 sized allocations are aligned the same as the chunk
75  *	size for their zone.
76  *    + malloc(0) returns a special non-NULL value
77  *    + ability to allocate arbitrarily large chunks of memory
78  *    + realloc will reuse the passed pointer if possible, within the
79  *	limitations of the zone chunking.
80  *
81  * Multithreaded enhancements for small allocations introduced August 2010.
82  * These are in the spirit of 'libumem'. See:
83  *	Bonwick, J.; Adams, J. (2001). "Magazines and Vmem: Extending the
84  *	slab allocator to many CPUs and arbitrary resources". In Proc. 2001
85  *	USENIX Technical Conference. USENIX Association.
86  *
87  * Oversized allocations employ the BIGCACHE mechanic whereby large
88  * allocations may be handed significantly larger buffers, allowing them
89  * to avoid mmap/munmap operations even through significant realloc()s.
90  * The excess space is only trimmed if too many large allocations have been
91  * given this treatment.
92  *
93  * TUNING
94  *
95  * The value of the environment variable MALLOC_OPTIONS is a character string
96  * containing various flags to tune nmalloc.
97  *
98  * 'U'   / ['u']	Generate / do not generate utrace entries for ktrace(1)
99  *			This will generate utrace events for all malloc,
100  *			realloc, and free calls. There are tools (mtrplay) to
101  *			replay and allocation pattern or to graph heap structure
102  *			(mtrgraph) which can interpret these logs.
103  * 'Z'   / ['z']	Zero out / do not zero all allocations.
104  *			Each new byte of memory allocated by malloc, realloc, or
105  *			reallocf will be initialized to 0. This is intended for
106  *			debugging and will affect performance negatively.
107  * 'H'	/  ['h']	Pass a hint to the kernel about pages unused by the
108  *			allocation functions.
109  */
110 
111 /* cc -shared -fPIC -g -O -I/usr/src/lib/libc/include -o nmalloc.so nmalloc.c */
112 
113 #include "libc_private.h"
114 
115 #include <sys/param.h>
116 #include <sys/types.h>
117 #include <sys/mman.h>
118 #include <sys/queue.h>
119 #include <sys/uio.h>
120 #include <sys/ktrace.h>
121 #include <stdio.h>
122 #include <stdint.h>
123 #include <stdlib.h>
124 #include <stdarg.h>
125 #include <stddef.h>
126 #include <unistd.h>
127 #include <string.h>
128 #include <fcntl.h>
129 #include <errno.h>
130 #include <pthread.h>
131 #include <machine/atomic.h>
132 
133 #include "spinlock.h"
134 #include "un-namespace.h"
135 
136 
137 /*
138  * Linked list of large allocations
139  */
140 typedef struct bigalloc {
141 	struct bigalloc *next;	/* hash link */
142 	void	*base;		/* base pointer */
143 	u_long	active;		/* bytes active */
144 	u_long	bytes;		/* bytes allocated */
145 } *bigalloc_t;
146 
147 /*
148  * Note that any allocations which are exact multiples of PAGE_SIZE, or
149  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
150  */
151 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
152 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
153 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
154 #define ZALLOC_ZONE_SIZE	(64 * 1024)
155 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
156 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
157 
158 #if ZALLOC_ZONE_LIMIT == 16384
159 #define NZONES			72
160 #elif ZALLOC_ZONE_LIMIT == 32768
161 #define NZONES			80
162 #else
163 #error "I couldn't figure out NZONES"
164 #endif
165 
166 /*
167  * Chunk structure for free elements
168  */
169 typedef struct slchunk {
170 	struct slchunk *c_Next;
171 } *slchunk_t;
172 
173 /*
174  * The IN-BAND zone header is placed at the beginning of each zone.
175  */
176 struct slglobaldata;
177 
178 typedef struct slzone {
179 	int32_t		z_Magic;	/* magic number for sanity check */
180 	int		z_NFree;	/* total free chunks / ualloc space */
181 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
182 	int		z_NMax;		/* maximum free chunks */
183 	char		*z_BasePtr;	/* pointer to start of chunk array */
184 	int		z_UIndex;	/* current initial allocation index */
185 	int		z_UEndIndex;	/* last (first) allocation index */
186 	int		z_ChunkSize;	/* chunk size for validation */
187 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
188 	int		z_ZoneIndex;
189 	int		z_Flags;
190 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
191 } *slzone_t;
192 
193 typedef struct slglobaldata {
194 	spinlock_t	Spinlock;
195 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
196 	int		JunkIndex;
197 } *slglobaldata_t;
198 
199 #define SLZF_UNOTZEROD		0x0001
200 
201 #define FASTSLABREALLOC		0x02
202 
203 /*
204  * Misc constants.  Note that allocations that are exact multiples of
205  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
206  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
207  */
208 #define MIN_CHUNK_SIZE		8		/* in bytes */
209 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
210 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
211 
212 /*
213  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
214  *	    not be larger then 64.
215  */
216 #define BIGHSHIFT	10			/* bigalloc hash table */
217 #define BIGHSIZE	(1 << BIGHSHIFT)
218 #define BIGHMASK	(BIGHSIZE - 1)
219 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
220 #define BIGXMASK	(BIGXSIZE - 1)
221 
222 /*
223  * BIGCACHE caches oversized allocations.  Note that a linear search is
224  * performed, so do not make the cache too large.
225  *
226  * BIGCACHE will garbage-collect excess space when the excess exceeds the
227  * specified value.  A relatively large number should be used here because
228  * garbage collection is expensive.
229  */
230 #define BIGCACHE	16
231 #define BIGCACHE_MASK	(BIGCACHE - 1)
232 #define BIGCACHE_LIMIT	(1024 * 1024)		/* size limit */
233 #define BIGCACHE_EXCESS	(16 * 1024 * 1024)	/* garbage collect */
234 
235 #define SAFLAG_ZERO	0x0001
236 #define SAFLAG_PASSIVE	0x0002
237 
238 /*
239  * Thread control
240  */
241 
242 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
243 
244 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
245 				_mpanic("assertion: %s in %s",	\
246 				#exp, __func__);		\
247 			    } while (0)
248 
249 /*
250  * Magazines
251  */
252 
253 #define M_MAX_ROUNDS	64
254 #define M_ZONE_ROUNDS	64
255 #define M_LOW_ROUNDS	32
256 #define M_INIT_ROUNDS	8
257 #define M_BURST_FACTOR  8
258 #define M_BURST_NSCALE	2
259 
260 #define M_BURST		0x0001
261 #define M_BURST_EARLY	0x0002
262 
263 struct magazine {
264 	SLIST_ENTRY(magazine) nextmagazine;
265 
266 	int		flags;
267 	int		capacity;	/* Max rounds in this magazine */
268 	int		rounds;		/* Current number of free rounds */
269 	int		burst_factor;	/* Number of blocks to prefill with */
270 	int		low_factor;	/* Free till low_factor from full mag */
271 	void		*objects[M_MAX_ROUNDS];
272 };
273 
274 SLIST_HEAD(magazinelist, magazine);
275 
276 static spinlock_t zone_mag_lock;
277 static spinlock_t depot_spinlock;
278 static struct magazine zone_magazine = {
279 	.flags = M_BURST | M_BURST_EARLY,
280 	.capacity = M_ZONE_ROUNDS,
281 	.rounds = 0,
282 	.burst_factor = M_BURST_FACTOR,
283 	.low_factor = M_LOW_ROUNDS
284 };
285 
286 #define MAGAZINE_FULL(mp)	(mp->rounds == mp->capacity)
287 #define MAGAZINE_NOTFULL(mp)	(mp->rounds < mp->capacity)
288 #define MAGAZINE_EMPTY(mp)	(mp->rounds == 0)
289 #define MAGAZINE_NOTEMPTY(mp)	(mp->rounds != 0)
290 
291 /*
292  * Each thread will have a pair of magazines per size-class (NZONES)
293  * The loaded magazine will support immediate allocations, the previous
294  * magazine will either be full or empty and can be swapped at need
295  */
296 typedef struct magazine_pair {
297 	struct magazine	*loaded;
298 	struct magazine	*prev;
299 } magazine_pair;
300 
301 /* A depot is a collection of magazines for a single zone. */
302 typedef struct magazine_depot {
303 	struct magazinelist full;
304 	struct magazinelist empty;
305 	spinlock_t	lock;
306 } magazine_depot;
307 
308 typedef struct thr_mags {
309 	magazine_pair	mags[NZONES];
310 	struct magazine	*newmag;
311 	int		init;
312 } thr_mags;
313 
314 /*
315  * With this attribute set, do not require a function call for accessing
316  * this variable when the code is compiled -fPIC.
317  *
318  * Must be empty for libc_rtld (similar to __thread).
319  */
320 #ifdef __LIBC_RTLD
321 #define TLS_ATTRIBUTE
322 #else
323 #define TLS_ATTRIBUTE __attribute__ ((tls_model ("initial-exec")))
324 #endif
325 
326 static __thread thr_mags thread_mags TLS_ATTRIBUTE;
327 static pthread_key_t thread_mags_key;
328 static pthread_once_t thread_mags_once = PTHREAD_ONCE_INIT;
329 static magazine_depot depots[NZONES];
330 
331 /*
332  * Fixed globals (not per-cpu)
333  */
334 static const int ZoneSize = ZALLOC_ZONE_SIZE;
335 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
336 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
337 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
338 
339 static int opt_madvise = 0;
340 static int opt_utrace = 0;
341 static int g_malloc_flags = 0;
342 static struct slglobaldata	SLGlobalData;
343 static bigalloc_t bigalloc_array[BIGHSIZE];
344 static spinlock_t bigspin_array[BIGXSIZE];
345 static volatile void *bigcache_array[BIGCACHE];		/* atomic swap */
346 static volatile size_t bigcache_size_array[BIGCACHE];	/* SMP races ok */
347 static volatile int bigcache_index;			/* SMP races ok */
348 static int malloc_panic;
349 static size_t excess_alloc;				/* excess big allocs */
350 
351 static void *_slaballoc(size_t size, int flags);
352 static void *_slabrealloc(void *ptr, size_t size);
353 static void _slabfree(void *ptr, int, bigalloc_t *);
354 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
355 static void _vmem_free(void *ptr, size_t bytes);
356 static void *magazine_alloc(struct magazine *, int *);
357 static int magazine_free(struct magazine *, void *);
358 static void *mtmagazine_alloc(int zi);
359 static int mtmagazine_free(int zi, void *);
360 static void mtmagazine_init(void);
361 static void mtmagazine_destructor(void *);
362 static slzone_t zone_alloc(int flags);
363 static void zone_free(void *z);
364 static void _mpanic(const char *ctl, ...) __printflike(1, 2);
365 static void malloc_init(void) __constructor(101);
366 
367 struct nmalloc_utrace {
368 	void *p;
369 	size_t s;
370 	void *r;
371 };
372 
373 #define UTRACE(a, b, c)						\
374 	if (opt_utrace) {					\
375 		struct nmalloc_utrace ut = {			\
376 			.p = (a),				\
377 			.s = (b),				\
378 			.r = (c)				\
379 		};						\
380 		utrace(&ut, sizeof(ut));			\
381 	}
382 
383 static void
384 malloc_init(void)
385 {
386 	const char *p = NULL;
387 
388 	if (issetugid() == 0)
389 		p = getenv("MALLOC_OPTIONS");
390 
391 	for (; p != NULL && *p != '\0'; p++) {
392 		switch(*p) {
393 		case 'u':	opt_utrace = 0; break;
394 		case 'U':	opt_utrace = 1; break;
395 		case 'h':	opt_madvise = 0; break;
396 		case 'H':	opt_madvise = 1; break;
397 		case 'z':	g_malloc_flags = 0; break;
398 		case 'Z':	g_malloc_flags = SAFLAG_ZERO; break;
399 		default:
400 			break;
401 		}
402 	}
403 
404 	UTRACE((void *) -1, 0, NULL);
405 }
406 
407 /*
408  * We have to install a handler for nmalloc thread teardowns when
409  * the thread is created.  We cannot delay this because destructors in
410  * sophisticated userland programs can call malloc() for the first time
411  * during their thread exit.
412  *
413  * This routine is called directly from pthreads.
414  */
415 void
416 _nmalloc_thr_init(void)
417 {
418 	static int init_once;
419 	thr_mags *tp;
420 
421 	/*
422 	 * Disallow mtmagazine operations until the mtmagazine is
423 	 * initialized.
424 	 */
425 	tp = &thread_mags;
426 	tp->init = -1;
427 
428 	if (init_once == 0) {
429 		init_once = 1;
430 		pthread_once(&thread_mags_once, mtmagazine_init);
431 	}
432 	pthread_setspecific(thread_mags_key, tp);
433 	tp->init = 1;
434 }
435 
436 void
437 _nmalloc_thr_prepfork(void)
438 {
439 	if (__isthreaded) {
440 		_SPINLOCK(&zone_mag_lock);
441 		_SPINLOCK(&depot_spinlock);
442 	}
443 }
444 
445 void
446 _nmalloc_thr_parentfork(void)
447 {
448 	if (__isthreaded) {
449 		_SPINUNLOCK(&depot_spinlock);
450 		_SPINUNLOCK(&zone_mag_lock);
451 	}
452 }
453 
454 void
455 _nmalloc_thr_childfork(void)
456 {
457 	if (__isthreaded) {
458 		_SPINUNLOCK(&depot_spinlock);
459 		_SPINUNLOCK(&zone_mag_lock);
460 	}
461 }
462 
463 /*
464  * Thread locks.
465  */
466 static __inline void
467 slgd_lock(slglobaldata_t slgd)
468 {
469 	if (__isthreaded)
470 		_SPINLOCK(&slgd->Spinlock);
471 }
472 
473 static __inline void
474 slgd_unlock(slglobaldata_t slgd)
475 {
476 	if (__isthreaded)
477 		_SPINUNLOCK(&slgd->Spinlock);
478 }
479 
480 static __inline void
481 depot_lock(magazine_depot *dp)
482 {
483 	if (__isthreaded)
484 		_SPINLOCK(&depot_spinlock);
485 #if 0
486 	if (__isthreaded)
487 		_SPINLOCK(&dp->lock);
488 #endif
489 }
490 
491 static __inline void
492 depot_unlock(magazine_depot *dp)
493 {
494 	if (__isthreaded)
495 		_SPINUNLOCK(&depot_spinlock);
496 #if 0
497 	if (__isthreaded)
498 		_SPINUNLOCK(&dp->lock);
499 #endif
500 }
501 
502 static __inline void
503 zone_magazine_lock(void)
504 {
505 	if (__isthreaded)
506 		_SPINLOCK(&zone_mag_lock);
507 }
508 
509 static __inline void
510 zone_magazine_unlock(void)
511 {
512 	if (__isthreaded)
513 		_SPINUNLOCK(&zone_mag_lock);
514 }
515 
516 static __inline void
517 swap_mags(magazine_pair *mp)
518 {
519 	struct magazine *tmp;
520 	tmp = mp->loaded;
521 	mp->loaded = mp->prev;
522 	mp->prev = tmp;
523 }
524 
525 /*
526  * bigalloc hashing and locking support.
527  *
528  * Return an unmasked hash code for the passed pointer.
529  */
530 static __inline int
531 _bigalloc_hash(void *ptr)
532 {
533 	int hv;
534 
535 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
536 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
537 
538 	return(hv);
539 }
540 
541 /*
542  * Lock the hash chain and return a pointer to its base for the specified
543  * address.
544  */
545 static __inline bigalloc_t *
546 bigalloc_lock(void *ptr)
547 {
548 	int hv = _bigalloc_hash(ptr);
549 	bigalloc_t *bigp;
550 
551 	bigp = &bigalloc_array[hv & BIGHMASK];
552 	if (__isthreaded)
553 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
554 	return(bigp);
555 }
556 
557 /*
558  * Lock the hash chain and return a pointer to its base for the specified
559  * address.
560  *
561  * BUT, if the hash chain is empty, just return NULL and do not bother
562  * to lock anything.
563  */
564 static __inline bigalloc_t *
565 bigalloc_check_and_lock(void *ptr)
566 {
567 	int hv = _bigalloc_hash(ptr);
568 	bigalloc_t *bigp;
569 
570 	bigp = &bigalloc_array[hv & BIGHMASK];
571 	if (*bigp == NULL)
572 		return(NULL);
573 	if (__isthreaded) {
574 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
575 	}
576 	return(bigp);
577 }
578 
579 static __inline void
580 bigalloc_unlock(void *ptr)
581 {
582 	int hv;
583 
584 	if (__isthreaded) {
585 		hv = _bigalloc_hash(ptr);
586 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
587 	}
588 }
589 
590 /*
591  * Find a bigcache entry that might work for the allocation.  SMP races are
592  * ok here except for the swap (that is, it is ok if bigcache_size_array[i]
593  * is wrong or if a NULL or too-small big is returned).
594  *
595  * Generally speaking it is ok to find a large entry even if the bytes
596  * requested are relatively small (but still oversized), because we really
597  * don't know *what* the application is going to do with the buffer.
598  */
599 static __inline
600 bigalloc_t
601 bigcache_find_alloc(size_t bytes)
602 {
603 	bigalloc_t big = NULL;
604 	size_t test;
605 	int i;
606 
607 	for (i = 0; i < BIGCACHE; ++i) {
608 		test = bigcache_size_array[i];
609 		if (bytes <= test) {
610 			bigcache_size_array[i] = 0;
611 			big = atomic_swap_ptr(&bigcache_array[i], NULL);
612 			break;
613 		}
614 	}
615 	return big;
616 }
617 
618 /*
619  * Free a bigcache entry, possibly returning one that the caller really must
620  * free.  This is used to cache recent oversized memory blocks.  Only
621  * big blocks smaller than BIGCACHE_LIMIT will be cached this way, so try
622  * to collect the biggest ones we can that are under the limit.
623  */
624 static __inline
625 bigalloc_t
626 bigcache_find_free(bigalloc_t big)
627 {
628 	int i;
629 	int j;
630 	int b;
631 
632 	b = ++bigcache_index;
633 	for (i = 0; i < BIGCACHE; ++i) {
634 		j = (b + i) & BIGCACHE_MASK;
635 		if (bigcache_size_array[j] < big->bytes) {
636 			bigcache_size_array[j] = big->bytes;
637 			big = atomic_swap_ptr(&bigcache_array[j], big);
638 			break;
639 		}
640 	}
641 	return big;
642 }
643 
644 static __inline
645 void
646 handle_excess_big(void)
647 {
648 	int i;
649 	bigalloc_t big;
650 	bigalloc_t *bigp;
651 
652 	if (excess_alloc <= BIGCACHE_EXCESS)
653 		return;
654 
655 	for (i = 0; i < BIGHSIZE; ++i) {
656 		bigp = &bigalloc_array[i];
657 		if (*bigp == NULL)
658 			continue;
659 		if (__isthreaded)
660 			_SPINLOCK(&bigspin_array[i & BIGXMASK]);
661 		for (big = *bigp; big; big = big->next) {
662 			if (big->active < big->bytes) {
663 				MASSERT((big->active & PAGE_MASK) == 0);
664 				MASSERT((big->bytes & PAGE_MASK) == 0);
665 				munmap((char *)big->base + big->active,
666 				       big->bytes - big->active);
667 				atomic_add_long(&excess_alloc,
668 						big->active - big->bytes);
669 				big->bytes = big->active;
670 			}
671 		}
672 		if (__isthreaded)
673 			_SPINUNLOCK(&bigspin_array[i & BIGXMASK]);
674 	}
675 }
676 
677 /*
678  * Calculate the zone index for the allocation request size and set the
679  * allocation request size to that particular zone's chunk size.
680  */
681 static __inline int
682 zoneindex(size_t *bytes, size_t *chunking)
683 {
684 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
685 
686 	/*
687 	 * This used to be 8-byte chunks and 16 zones for n < 128.
688 	 * However some instructions may require 16-byte alignment
689 	 * (aka SIMD) and programs might not request an aligned size
690 	 * (aka GCC-7), so change this as follows:
691 	 *
692 	 * 0-15 bytes	8-byte alignment in two zones	(0-1)
693 	 * 16-127 bytes	16-byte alignment in four zones	(3-10)
694 	 * zone index 2 and 11-15 are currently unused.
695 	 */
696 	if (n < 16) {
697 		*bytes = n = (n + 7) & ~7;
698 		*chunking = 8;
699 		return(n / 8 - 1);		/* 8 byte chunks, 2 zones */
700 		/* zones 0,1, zone 2 is unused */
701 	}
702 	if (n < 128) {
703 		*bytes = n = (n + 15) & ~15;
704 		*chunking = 16;
705 		return(n / 16 + 2);		/* 16 byte chunks, 8 zones */
706 		/* zones 3-10, zones 11-15 unused */
707 	}
708 	if (n < 256) {
709 		*bytes = n = (n + 15) & ~15;
710 		*chunking = 16;
711 		return(n / 16 + 7);
712 	}
713 	if (n < 8192) {
714 		if (n < 512) {
715 			*bytes = n = (n + 31) & ~31;
716 			*chunking = 32;
717 			return(n / 32 + 15);
718 		}
719 		if (n < 1024) {
720 			*bytes = n = (n + 63) & ~63;
721 			*chunking = 64;
722 			return(n / 64 + 23);
723 		}
724 		if (n < 2048) {
725 			*bytes = n = (n + 127) & ~127;
726 			*chunking = 128;
727 			return(n / 128 + 31);
728 		}
729 		if (n < 4096) {
730 			*bytes = n = (n + 255) & ~255;
731 			*chunking = 256;
732 			return(n / 256 + 39);
733 		}
734 		*bytes = n = (n + 511) & ~511;
735 		*chunking = 512;
736 		return(n / 512 + 47);
737 	}
738 #if ZALLOC_ZONE_LIMIT > 8192
739 	if (n < 16384) {
740 		*bytes = n = (n + 1023) & ~1023;
741 		*chunking = 1024;
742 		return(n / 1024 + 55);
743 	}
744 #endif
745 #if ZALLOC_ZONE_LIMIT > 16384
746 	if (n < 32768) {
747 		*bytes = n = (n + 2047) & ~2047;
748 		*chunking = 2048;
749 		return(n / 2048 + 63);
750 	}
751 #endif
752 	_mpanic("Unexpected byte count %zu", n);
753 	return(0);
754 }
755 
756 /*
757  * malloc() - call internal slab allocator
758  */
759 void *
760 __malloc(size_t size)
761 {
762 	void *ptr;
763 
764 	ptr = _slaballoc(size, 0);
765 	if (ptr == NULL)
766 		errno = ENOMEM;
767 	else
768 		UTRACE(0, size, ptr);
769 	return(ptr);
770 }
771 
772 #define MUL_NO_OVERFLOW	(1UL << (sizeof(size_t) * 4))
773 
774 /*
775  * calloc() - call internal slab allocator
776  */
777 void *
778 __calloc(size_t number, size_t size)
779 {
780 	void *ptr;
781 
782 	if ((number >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
783 	     number > 0 && SIZE_MAX / number < size) {
784 		errno = ENOMEM;
785 		return(NULL);
786 	}
787 
788 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
789 	if (ptr == NULL)
790 		errno = ENOMEM;
791 	else
792 		UTRACE(0, number * size, ptr);
793 	return(ptr);
794 }
795 
796 /*
797  * realloc() (SLAB ALLOCATOR)
798  *
799  * We do not attempt to optimize this routine beyond reusing the same
800  * pointer if the new size fits within the chunking of the old pointer's
801  * zone.
802  */
803 void *
804 __realloc(void *ptr, size_t size)
805 {
806 	void *ret;
807 	ret = _slabrealloc(ptr, size);
808 	if (ret == NULL)
809 		errno = ENOMEM;
810 	else
811 		UTRACE(ptr, size, ret);
812 	return(ret);
813 }
814 
815 /*
816  * posix_memalign()
817  *
818  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
819  * is a power of 2 >= sizeof(void *).
820  *
821  * The slab allocator will allocate on power-of-2 boundaries up to
822  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
823  * zone matching the requirements, and _vmem_alloc() otherwise.
824  */
825 int
826 __posix_memalign(void **memptr, size_t alignment, size_t size)
827 {
828 	bigalloc_t *bigp;
829 	bigalloc_t big;
830 	size_t chunking;
831 	int zi __unused;
832 
833 	/*
834 	 * OpenGroup spec issue 6 checks
835 	 */
836 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
837 		*memptr = NULL;
838 		return(EINVAL);
839 	}
840 	if (alignment < sizeof(void *)) {
841 		*memptr = NULL;
842 		return(EINVAL);
843 	}
844 
845 	/*
846 	 * Our zone mechanism guarantees same-sized alignment for any
847 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
848 	 * we can just call _slaballoc() and be done.  We round size up
849 	 * to the nearest alignment boundary to improve our odds of
850 	 * it becoming a power-of-2 if it wasn't before.
851 	 */
852 	if (size <= alignment)
853 		size = alignment;
854 	else
855 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
856 
857 	/*
858 	 * If we have overflowed above when rounding to the nearest alignment
859 	 * boundary, just return ENOMEM, size should be == N * sizeof(void *).
860 	 *
861 	 * Power-of-2 allocations up to 8KB will be aligned to the allocation
862 	 * size and _slaballoc() can simply be used.  Please see line 1082
863 	 * for this special case: 'Align the storage in the zone based on
864 	 * the chunking' has a special case for powers of 2.
865 	 */
866 	if (size == 0)
867 		return(ENOMEM);
868 
869 	if (size <= PAGE_SIZE*2 && (size | (size - 1)) + 1 == (size << 1)) {
870 		*memptr = _slaballoc(size, 0);
871 		return(*memptr ? 0 : ENOMEM);
872 	}
873 
874 	/*
875 	 * Otherwise locate a zone with a chunking that matches
876 	 * the requested alignment, within reason.   Consider two cases:
877 	 *
878 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
879 	 *     we find will be the best fit because the chunking will be
880 	 *     greater or equal to the alignment.
881 	 *
882 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
883 	 *     the first zoneindex we find will be for 576 byte allocations
884 	 *     with a chunking of 64, which is not sufficient.  To fix this
885 	 *     we simply find the nearest power-of-2 >= size and use the
886 	 *     same side-effect of _slaballoc() which guarantees
887 	 *     same-alignment on a power-of-2 allocation.
888 	 */
889 	if (size < PAGE_SIZE) {
890 		zi = zoneindex(&size, &chunking);
891 		if (chunking >= alignment) {
892 			*memptr = _slaballoc(size, 0);
893 			return(*memptr ? 0 : ENOMEM);
894 		}
895 		if (size >= 1024)
896 			alignment = 1024;
897 		if (size >= 16384)
898 			alignment = 16384;
899 		while (alignment < size)
900 			alignment <<= 1;
901 		*memptr = _slaballoc(alignment, 0);
902 		return(*memptr ? 0 : ENOMEM);
903 	}
904 
905 	/*
906 	 * If the slab allocator cannot handle it use vmem_alloc().
907 	 *
908 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
909 	 */
910 	if (alignment < PAGE_SIZE)
911 		alignment = PAGE_SIZE;
912 	if (size < alignment)
913 		size = alignment;
914 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
915 	if (alignment == PAGE_SIZE && size <= BIGCACHE_LIMIT) {
916 		big = bigcache_find_alloc(size);
917 		if (big && big->bytes < size) {
918 			_slabfree(big->base, FASTSLABREALLOC, &big);
919 			big = NULL;
920 		}
921 		if (big) {
922 			*memptr = big->base;
923 			big->active = size;
924 			if (big->active < big->bytes) {
925 				atomic_add_long(&excess_alloc,
926 						big->bytes - big->active);
927 			}
928 			bigp = bigalloc_lock(*memptr);
929 			big->next = *bigp;
930 			*bigp = big;
931 			bigalloc_unlock(*memptr);
932 			handle_excess_big();
933 			return(0);
934 		}
935 	}
936 	*memptr = _vmem_alloc(size, alignment, 0);
937 	if (*memptr == NULL)
938 		return(ENOMEM);
939 
940 	big = _slaballoc(sizeof(struct bigalloc), 0);
941 	if (big == NULL) {
942 		_vmem_free(*memptr, size);
943 		*memptr = NULL;
944 		return(ENOMEM);
945 	}
946 	bigp = bigalloc_lock(*memptr);
947 	big->base = *memptr;
948 	big->active = size;
949 	big->bytes = size;		/* no excess */
950 	big->next = *bigp;
951 	*bigp = big;
952 	bigalloc_unlock(*memptr);
953 
954 	return(0);
955 }
956 
957 /*
958  * free() (SLAB ALLOCATOR) - do the obvious
959  */
960 void
961 __free(void *ptr)
962 {
963 	UTRACE(ptr, 0, 0);
964 	_slabfree(ptr, 0, NULL);
965 }
966 
967 /*
968  * _slaballoc()	(SLAB ALLOCATOR)
969  *
970  *	Allocate memory via the slab allocator.  If the request is too large,
971  *	or if it page-aligned beyond a certain size, we fall back to the
972  *	KMEM subsystem
973  */
974 static void *
975 _slaballoc(size_t size, int flags)
976 {
977 	slzone_t z;
978 	slchunk_t chunk;
979 	slglobaldata_t slgd;
980 	size_t chunking;
981 	int zi;
982 	int off;
983 	void *obj;
984 
985 	/*
986 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
987 	 * Return a special pointer.  This is to maintain compatibility with
988 	 * the original malloc implementation.  Certain devices, such as the
989 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
990 	 * also realloc() later on.  Joy.
991 	 */
992 	if (size == 0)
993 		size = 1;
994 
995 	/* Capture global flags */
996 	flags |= g_malloc_flags;
997 
998 	/*
999 	 * Handle large allocations directly.  There should not be very many
1000 	 * of these so performance is not a big issue.
1001 	 *
1002 	 * The backend allocator is pretty nasty on a SMP system.   Use the
1003 	 * slab allocator for one and two page-sized chunks even though we
1004 	 * lose some efficiency.
1005 	 *
1006 	 * NOTE: Please see posix_memalign around line 864, which assumes
1007 	 *	 that power-of-2 allocations of PAGE_SIZE and PAGE_SIZE*2
1008 	 *	 can use _slaballoc() and be aligned to the same.  The
1009 	 *	 zone cache can be used for this case, bigalloc does not
1010 	 *	 have to be used.
1011 	 */
1012 	if (size >= ZoneLimit ||
1013 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
1014 		bigalloc_t big;
1015 		bigalloc_t *bigp;
1016 
1017 		/*
1018 		 * Page-align and cache-color in case of virtually indexed
1019 		 * physically tagged L1 caches (aka SandyBridge).  No sweat
1020 		 * otherwise, so just do it.
1021 		 *
1022 		 * (don't count as excess).
1023 		 */
1024 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1025 
1026 		/*
1027 		 * If we have overflowed above when rounding to the page
1028 		 * boundary, something has passed us (size_t)[-PAGE_MASK..-1]
1029 		 * so just return NULL, size at this point should be >= 0.
1030 		*/
1031 		if (size == 0)
1032 			return (NULL);
1033 
1034 		if ((size & (PAGE_SIZE * 2 - 1)) == 0)
1035 			size += PAGE_SIZE;
1036 
1037 		/*
1038 		 * Try to reuse a cached big block to avoid mmap'ing.  If it
1039 		 * turns out not to fit our requirements we throw it away
1040 		 * and allocate normally.
1041 		 */
1042 		big = NULL;
1043 		if (size <= BIGCACHE_LIMIT) {
1044 			big = bigcache_find_alloc(size);
1045 			if (big && big->bytes < size) {
1046 				_slabfree(big->base, FASTSLABREALLOC, &big);
1047 				big = NULL;
1048 			}
1049 		}
1050 		if (big) {
1051 			chunk = big->base;
1052 			if (flags & SAFLAG_ZERO)
1053 				bzero(chunk, size);
1054 		} else {
1055 			chunk = _vmem_alloc(size, PAGE_SIZE, flags);
1056 			if (chunk == NULL)
1057 				return(NULL);
1058 
1059 			big = _slaballoc(sizeof(struct bigalloc), 0);
1060 			if (big == NULL) {
1061 				_vmem_free(chunk, size);
1062 				return(NULL);
1063 			}
1064 			big->base = chunk;
1065 			big->bytes = size;
1066 		}
1067 		big->active = size;
1068 
1069 		bigp = bigalloc_lock(chunk);
1070 		if (big->active < big->bytes) {
1071 			atomic_add_long(&excess_alloc,
1072 					big->bytes - big->active);
1073 		}
1074 		big->next = *bigp;
1075 		*bigp = big;
1076 		bigalloc_unlock(chunk);
1077 		handle_excess_big();
1078 
1079 		return(chunk);
1080 	}
1081 
1082 	/* Compute allocation zone; zoneindex will panic on excessive sizes */
1083 	zi = zoneindex(&size, &chunking);
1084 	MASSERT(zi < NZONES);
1085 
1086 	obj = mtmagazine_alloc(zi);
1087 	if (obj != NULL) {
1088 		if (flags & SAFLAG_ZERO)
1089 			bzero(obj, size);
1090 		return (obj);
1091 	}
1092 
1093 	slgd = &SLGlobalData;
1094 	slgd_lock(slgd);
1095 
1096 	/*
1097 	 * Attempt to allocate out of an existing zone.  If all zones are
1098 	 * exhausted pull one off the free list or allocate a new one.
1099 	 */
1100 	if ((z = slgd->ZoneAry[zi]) == NULL) {
1101 		z = zone_alloc(flags);
1102 		if (z == NULL)
1103 			goto fail;
1104 
1105 		/*
1106 		 * How big is the base structure?
1107 		 */
1108 		off = sizeof(struct slzone);
1109 
1110 		/*
1111 		 * Align the storage in the zone based on the chunking.
1112 		 *
1113 		 * Guarantee power-of-2 alignment for power-of-2-sized
1114 		 * chunks.  Otherwise align based on the chunking size
1115 		 * (typically 8 or 16 bytes for small allocations).
1116 		 *
1117 		 * NOTE: Allocations >= ZoneLimit are governed by the
1118 		 * bigalloc code and typically only guarantee page-alignment.
1119 		 *
1120 		 * Set initial conditions for UIndex near the zone header
1121 		 * to reduce unecessary page faults, vs semi-randomization
1122 		 * to improve L1 cache saturation.
1123 		 *
1124 		 * NOTE: Please see posix_memalign around line 864-ish, which
1125 		 *	 assumes that power-of-2 allocations of PAGE_SIZE
1126 		 *	 and PAGE_SIZE*2 can use _slaballoc() and be aligned
1127 		 *	 to the same.  The zone cache can be used for this
1128 		 *	 case, bigalloc does not have to be used.
1129 		 *
1130 		 *	 ALL power-of-2 requests that fall through to this
1131 		 *	 code use this rule (conditionals above limit this
1132 		 *	 to <= PAGE_SIZE*2.
1133 		 */
1134 		if ((size | (size - 1)) + 1 == (size << 1))
1135 			off = roundup2(off, size);
1136 		else
1137 			off = roundup2(off, chunking);
1138 		z->z_Magic = ZALLOC_SLAB_MAGIC;
1139 		z->z_ZoneIndex = zi;
1140 		z->z_NMax = (ZoneSize - off) / size;
1141 		z->z_NFree = z->z_NMax;
1142 		z->z_BasePtr = (char *)z + off;
1143 		z->z_UIndex = z->z_UEndIndex = 0;
1144 		z->z_ChunkSize = size;
1145 		z->z_FirstFreePg = ZonePageCount;
1146 		z->z_Next = slgd->ZoneAry[zi];
1147 		slgd->ZoneAry[zi] = z;
1148 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1149 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
1150 			flags |= SAFLAG_PASSIVE;
1151 		}
1152 
1153 		/*
1154 		 * Slide the base index for initial allocations out of the
1155 		 * next zone we create so we do not over-weight the lower
1156 		 * part of the cpu memory caches.
1157 		 */
1158 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1159 					& (ZALLOC_MAX_ZONE_SIZE - 1);
1160 	}
1161 
1162 	/*
1163 	 * Ok, we have a zone from which at least one chunk is available.
1164 	 *
1165 	 * Remove us from the ZoneAry[] when we become empty
1166 	 */
1167 	MASSERT(z->z_NFree > 0);
1168 
1169 	if (--z->z_NFree == 0) {
1170 		slgd->ZoneAry[zi] = z->z_Next;
1171 		z->z_Next = NULL;
1172 	}
1173 
1174 	/*
1175 	 * Locate a chunk in a free page.  This attempts to localize
1176 	 * reallocations into earlier pages without us having to sort
1177 	 * the chunk list.  A chunk may still overlap a page boundary.
1178 	 */
1179 	while (z->z_FirstFreePg < ZonePageCount) {
1180 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
1181 			MASSERT((uintptr_t)chunk & ZoneMask);
1182 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
1183 			goto done;
1184 		}
1185 		++z->z_FirstFreePg;
1186 	}
1187 
1188 	/*
1189 	 * No chunks are available but NFree said we had some memory,
1190 	 * so it must be available in the never-before-used-memory
1191 	 * area governed by UIndex.  The consequences are very
1192 	 * serious if our zone got corrupted so we use an explicit
1193 	 * panic rather then a KASSERT.
1194 	 */
1195 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
1196 
1197 	if (++z->z_UIndex == z->z_NMax)
1198 		z->z_UIndex = 0;
1199 	if (z->z_UIndex == z->z_UEndIndex) {
1200 		if (z->z_NFree != 0)
1201 			_mpanic("slaballoc: corrupted zone");
1202 	}
1203 
1204 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1205 		flags &= ~SAFLAG_ZERO;
1206 		flags |= SAFLAG_PASSIVE;
1207 	}
1208 
1209 done:
1210 	slgd_unlock(slgd);
1211 	if (flags & SAFLAG_ZERO)
1212 		bzero(chunk, size);
1213 	return(chunk);
1214 fail:
1215 	slgd_unlock(slgd);
1216 	return(NULL);
1217 }
1218 
1219 /*
1220  * Reallocate memory within the chunk
1221  */
1222 static void *
1223 _slabrealloc(void *ptr, size_t size)
1224 {
1225 	bigalloc_t *bigp;
1226 	void *nptr;
1227 	slzone_t z;
1228 	size_t chunking;
1229 
1230 	if (ptr == NULL) {
1231 		return(_slaballoc(size, 0));
1232 	}
1233 
1234 	if (size == 0)
1235 		size = 1;
1236 
1237 	/*
1238 	 * Handle oversized allocations.
1239 	 */
1240 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1241 		bigalloc_t big;
1242 		size_t bigbytes;
1243 
1244 		while ((big = *bigp) != NULL) {
1245 			if (big->base == ptr) {
1246 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1247 				bigbytes = big->bytes;
1248 
1249 				/*
1250 				 * If it already fits determine if it makes
1251 				 * sense to shrink/reallocate.  Try to optimize
1252 				 * programs which stupidly make incremental
1253 				 * reallocations larger or smaller by scaling
1254 				 * the allocation.  Also deal with potential
1255 				 * coloring.
1256 				 */
1257 				if (size >= (bigbytes >> 1) &&
1258 				    size <= bigbytes) {
1259 					if (big->active != size) {
1260 						atomic_add_long(&excess_alloc,
1261 								big->active -
1262 								size);
1263 					}
1264 					big->active = size;
1265 					bigalloc_unlock(ptr);
1266 					return(ptr);
1267 				}
1268 
1269 				/*
1270 				 * For large reallocations, allocate more space
1271 				 * than we need to try to avoid excessive
1272 				 * reallocations later on.
1273 				 */
1274 				chunking = size + (size >> 3);
1275 				chunking = (chunking + PAGE_MASK) &
1276 					   ~(size_t)PAGE_MASK;
1277 
1278 				/*
1279 				 * Try to allocate adjacently in case the
1280 				 * program is idiotically realloc()ing a
1281 				 * huge memory block just slightly bigger.
1282 				 * (llvm's llc tends to do this a lot).
1283 				 *
1284 				 * (MAP_TRYFIXED forces mmap to fail if there
1285 				 *  is already something at the address).
1286 				 */
1287 				if (chunking > bigbytes) {
1288 					char *addr;
1289 					int errno_save = errno;
1290 
1291 					addr = mmap((char *)ptr + bigbytes,
1292 						    chunking - bigbytes,
1293 						    PROT_READ|PROT_WRITE,
1294 						    MAP_PRIVATE|MAP_ANON|
1295 						    MAP_TRYFIXED,
1296 						    -1, 0);
1297 					errno = errno_save;
1298 					if (addr == (char *)ptr + bigbytes) {
1299 						atomic_add_long(&excess_alloc,
1300 								big->active -
1301 								big->bytes +
1302 								chunking -
1303 								size);
1304 						big->bytes = chunking;
1305 						big->active = size;
1306 						bigalloc_unlock(ptr);
1307 
1308 						return(ptr);
1309 					}
1310 					MASSERT((void *)addr == MAP_FAILED);
1311 				}
1312 
1313 				/*
1314 				 * Failed, unlink big and allocate fresh.
1315 				 * (note that we have to leave (big) intact
1316 				 * in case the slaballoc fails).
1317 				 */
1318 				*bigp = big->next;
1319 				bigalloc_unlock(ptr);
1320 				if ((nptr = _slaballoc(size, 0)) == NULL) {
1321 					/* Relink block */
1322 					bigp = bigalloc_lock(ptr);
1323 					big->next = *bigp;
1324 					*bigp = big;
1325 					bigalloc_unlock(ptr);
1326 					return(NULL);
1327 				}
1328 				if (size > bigbytes)
1329 					size = bigbytes;
1330 				bcopy(ptr, nptr, size);
1331 				atomic_add_long(&excess_alloc, big->active -
1332 							       big->bytes);
1333 				_slabfree(ptr, FASTSLABREALLOC, &big);
1334 
1335 				return(nptr);
1336 			}
1337 			bigp = &big->next;
1338 		}
1339 		bigalloc_unlock(ptr);
1340 		handle_excess_big();
1341 	}
1342 
1343 	/*
1344 	 * Get the original allocation's zone.  If the new request winds
1345 	 * up using the same chunk size we do not have to do anything.
1346 	 *
1347 	 * NOTE: We don't have to lock the globaldata here, the fields we
1348 	 * access here will not change at least as long as we have control
1349 	 * over the allocation.
1350 	 */
1351 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1352 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1353 
1354 	/*
1355 	 * Use zoneindex() to chunk-align the new size, as long as the
1356 	 * new size is not too large.
1357 	 */
1358 	if (size < ZoneLimit) {
1359 		zoneindex(&size, &chunking);
1360 		if (z->z_ChunkSize == size) {
1361 			return(ptr);
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * Allocate memory for the new request size and copy as appropriate.
1367 	 */
1368 	if ((nptr = _slaballoc(size, 0)) != NULL) {
1369 		if (size > z->z_ChunkSize)
1370 			size = z->z_ChunkSize;
1371 		bcopy(ptr, nptr, size);
1372 		_slabfree(ptr, 0, NULL);
1373 	}
1374 
1375 	return(nptr);
1376 }
1377 
1378 /*
1379  * free (SLAB ALLOCATOR)
1380  *
1381  * Free a memory block previously allocated by malloc.  Note that we do not
1382  * attempt to uplodate ks_loosememuse as MP races could prevent us from
1383  * checking memory limits in malloc.
1384  *
1385  * flags:
1386  *	FASTSLABREALLOC		Fast call from realloc, *rbigp already
1387  *				unlinked.
1388  *
1389  * MPSAFE
1390  */
1391 static void
1392 _slabfree(void *ptr, int flags, bigalloc_t *rbigp)
1393 {
1394 	slzone_t z;
1395 	slchunk_t chunk;
1396 	bigalloc_t big;
1397 	bigalloc_t *bigp;
1398 	slglobaldata_t slgd;
1399 	size_t size;
1400 	int zi;
1401 	int pgno;
1402 
1403 	/* Fast realloc path for big allocations */
1404 	if (flags & FASTSLABREALLOC) {
1405 		big = *rbigp;
1406 		goto fastslabrealloc;
1407 	}
1408 
1409 	/*
1410 	 * Handle NULL frees and special 0-byte allocations
1411 	 */
1412 	if (ptr == NULL)
1413 		return;
1414 
1415 	/*
1416 	 * Handle oversized allocations.
1417 	 */
1418 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1419 		while ((big = *bigp) != NULL) {
1420 			if (big->base == ptr) {
1421 				*bigp = big->next;
1422 				atomic_add_long(&excess_alloc, big->active -
1423 							       big->bytes);
1424 				bigalloc_unlock(ptr);
1425 
1426 				/*
1427 				 * Try to stash the block we are freeing,
1428 				 * potentially receiving another block in
1429 				 * return which must be freed.
1430 				 */
1431 fastslabrealloc:
1432 				if (big->bytes <= BIGCACHE_LIMIT) {
1433 					big = bigcache_find_free(big);
1434 					if (big == NULL)
1435 						return;
1436 				}
1437 				ptr = big->base;	/* reload */
1438 				size = big->bytes;
1439 				_slabfree(big, 0, NULL);
1440 				_vmem_free(ptr, size);
1441 				return;
1442 			}
1443 			bigp = &big->next;
1444 		}
1445 		bigalloc_unlock(ptr);
1446 		handle_excess_big();
1447 	}
1448 
1449 	/*
1450 	 * Zone case.  Figure out the zone based on the fact that it is
1451 	 * ZoneSize aligned.
1452 	 */
1453 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1454 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1455 
1456 	size = z->z_ChunkSize;
1457 	zi = z->z_ZoneIndex;
1458 
1459 	if (g_malloc_flags & SAFLAG_ZERO)
1460 		bzero(ptr, size);
1461 
1462 	if (mtmagazine_free(zi, ptr) == 0)
1463 		return;
1464 
1465 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
1466 	chunk = ptr;
1467 	slgd = &SLGlobalData;
1468 	slgd_lock(slgd);
1469 
1470 	/*
1471 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1472 	 * z_FirstFreePg.
1473 	 */
1474 	chunk->c_Next = z->z_PageAry[pgno];
1475 	z->z_PageAry[pgno] = chunk;
1476 	if (z->z_FirstFreePg > pgno)
1477 		z->z_FirstFreePg = pgno;
1478 
1479 	/*
1480 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1481 	 * must be added back onto the appropriate list.
1482 	 */
1483 	if (z->z_NFree++ == 0) {
1484 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1485 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1486 	}
1487 
1488 	/*
1489 	 * If the zone becomes totally free then release it.
1490 	 */
1491 	if (z->z_NFree == z->z_NMax) {
1492 		slzone_t *pz;
1493 
1494 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1495 		while (z != *pz)
1496 			pz = &(*pz)->z_Next;
1497 		*pz = z->z_Next;
1498 		z->z_Magic = -1;
1499 		z->z_Next = NULL;
1500 		zone_free(z);
1501 		/* slgd lock released */
1502 		return;
1503 	}
1504 	slgd_unlock(slgd);
1505 }
1506 
1507 /*
1508  * Allocate and return a magazine.  NULL is returned and *burst is adjusted
1509  * if the magazine is empty.
1510  */
1511 static __inline void *
1512 magazine_alloc(struct magazine *mp, int *burst)
1513 {
1514 	void *obj;
1515 
1516 	if (mp == NULL)
1517 		return(NULL);
1518 	if (MAGAZINE_NOTEMPTY(mp)) {
1519 		obj = mp->objects[--mp->rounds];
1520 		return(obj);
1521 	}
1522 
1523 	/*
1524 	 * Return burst factor to caller along with NULL
1525 	 */
1526 	if ((mp->flags & M_BURST) && (burst != NULL)) {
1527 		*burst = mp->burst_factor;
1528 	}
1529 	/* Reduce burst factor by NSCALE; if it hits 1, disable BURST */
1530 	if ((mp->flags & M_BURST) && (mp->flags & M_BURST_EARLY) &&
1531 	    (burst != NULL)) {
1532 		mp->burst_factor -= M_BURST_NSCALE;
1533 		if (mp->burst_factor <= 1) {
1534 			mp->burst_factor = 1;
1535 			mp->flags &= ~(M_BURST);
1536 			mp->flags &= ~(M_BURST_EARLY);
1537 		}
1538 	}
1539 	return (NULL);
1540 }
1541 
1542 static __inline int
1543 magazine_free(struct magazine *mp, void *p)
1544 {
1545 	if (mp != NULL && MAGAZINE_NOTFULL(mp)) {
1546 		mp->objects[mp->rounds++] = p;
1547 		return 0;
1548 	}
1549 
1550 	return -1;
1551 }
1552 
1553 static void *
1554 mtmagazine_alloc(int zi)
1555 {
1556 	thr_mags *tp;
1557 	struct magazine *mp, *emptymag;
1558 	magazine_depot *d;
1559 	void *obj;
1560 
1561 	/*
1562 	 * Do not try to access per-thread magazines while the mtmagazine
1563 	 * is being initialized or destroyed.
1564 	 */
1565 	tp = &thread_mags;
1566 	if (tp->init < 0)
1567 		return(NULL);
1568 
1569 	/*
1570 	 * Primary per-thread allocation loop
1571 	 */
1572 	for (;;) {
1573 		/*
1574 		 * If the loaded magazine has rounds, allocate and return
1575 		 */
1576 		mp = tp->mags[zi].loaded;
1577 		obj = magazine_alloc(mp, NULL);
1578 		if (obj)
1579 			break;
1580 
1581 		/*
1582 		 * If the prev magazine is full, swap with the loaded
1583 		 * magazine and retry.
1584 		 */
1585 		mp = tp->mags[zi].prev;
1586 		if (mp && MAGAZINE_FULL(mp)) {
1587 			MASSERT(mp->rounds != 0);
1588 			swap_mags(&tp->mags[zi]);	/* prev now empty */
1589 			continue;
1590 		}
1591 
1592 		/*
1593 		 * Try to get a full magazine from the depot.  Cycle
1594 		 * through depot(full)->loaded->prev->depot(empty).
1595 		 * Retry if a full magazine was available from the depot.
1596 		 *
1597 		 * Return NULL (caller will fall through) if no magazines
1598 		 * can be found anywhere.
1599 		 */
1600 		d = &depots[zi];
1601 		depot_lock(d);
1602 		emptymag = tp->mags[zi].prev;
1603 		if (emptymag)
1604 			SLIST_INSERT_HEAD(&d->empty, emptymag, nextmagazine);
1605 		tp->mags[zi].prev = tp->mags[zi].loaded;
1606 		mp = SLIST_FIRST(&d->full);	/* loaded magazine */
1607 		tp->mags[zi].loaded = mp;
1608 		if (mp) {
1609 			SLIST_REMOVE_HEAD(&d->full, nextmagazine);
1610 			MASSERT(MAGAZINE_NOTEMPTY(mp));
1611 			depot_unlock(d);
1612 			continue;
1613 		}
1614 		depot_unlock(d);
1615 		break;
1616 	}
1617 
1618 	return (obj);
1619 }
1620 
1621 static int
1622 mtmagazine_free(int zi, void *ptr)
1623 {
1624 	thr_mags *tp;
1625 	struct magazine *mp, *loadedmag;
1626 	magazine_depot *d;
1627 	int rc = -1;
1628 
1629 	/*
1630 	 * Do not try to access per-thread magazines while the mtmagazine
1631 	 * is being initialized or destroyed.
1632 	 */
1633 	tp = &thread_mags;
1634 	if (tp->init < 0)
1635 		return(-1);
1636 
1637 	/*
1638 	 * Primary per-thread freeing loop
1639 	 */
1640 	for (;;) {
1641 		/*
1642 		 * Make sure a new magazine is available in case we have
1643 		 * to use it.  Staging the newmag allows us to avoid
1644 		 * some locking/reentrancy complexity.
1645 		 *
1646 		 * Temporarily disable the per-thread caches for this
1647 		 * allocation to avoid reentrancy and/or to avoid a
1648 		 * stack overflow if the [zi] happens to be the same that
1649 		 * would be used to allocate the new magazine.
1650 		 */
1651 		if (tp->newmag == NULL) {
1652 			tp->init = -1;
1653 			tp->newmag = _slaballoc(sizeof(struct magazine),
1654 						SAFLAG_ZERO);
1655 			tp->init = 1;
1656 			if (tp->newmag == NULL) {
1657 				rc = -1;
1658 				break;
1659 			}
1660 		}
1661 
1662 		/*
1663 		 * If the loaded magazine has space, free directly to it
1664 		 */
1665 		rc = magazine_free(tp->mags[zi].loaded, ptr);
1666 		if (rc == 0)
1667 			break;
1668 
1669 		/*
1670 		 * If the prev magazine is empty, swap with the loaded
1671 		 * magazine and retry.
1672 		 */
1673 		mp = tp->mags[zi].prev;
1674 		if (mp && MAGAZINE_EMPTY(mp)) {
1675 			MASSERT(mp->rounds == 0);
1676 			swap_mags(&tp->mags[zi]);	/* prev now full */
1677 			continue;
1678 		}
1679 
1680 		/*
1681 		 * Try to get an empty magazine from the depot.  Cycle
1682 		 * through depot(empty)->loaded->prev->depot(full).
1683 		 * Retry if an empty magazine was available from the depot.
1684 		 */
1685 		d = &depots[zi];
1686 		depot_lock(d);
1687 
1688 		if ((loadedmag = tp->mags[zi].prev) != NULL)
1689 			SLIST_INSERT_HEAD(&d->full, loadedmag, nextmagazine);
1690 		tp->mags[zi].prev = tp->mags[zi].loaded;
1691 		mp = SLIST_FIRST(&d->empty);
1692 		if (mp) {
1693 			tp->mags[zi].loaded = mp;
1694 			SLIST_REMOVE_HEAD(&d->empty, nextmagazine);
1695 			MASSERT(MAGAZINE_NOTFULL(mp));
1696 		} else {
1697 			mp = tp->newmag;
1698 			tp->newmag = NULL;
1699 			mp->capacity = M_MAX_ROUNDS;
1700 			mp->rounds = 0;
1701 			mp->flags = 0;
1702 			tp->mags[zi].loaded = mp;
1703 		}
1704 		depot_unlock(d);
1705 	}
1706 
1707 	return rc;
1708 }
1709 
1710 static void
1711 mtmagazine_init(void)
1712 {
1713 	int error;
1714 
1715 	error = pthread_key_create(&thread_mags_key, mtmagazine_destructor);
1716 	if (error)
1717 		abort();
1718 }
1719 
1720 /*
1721  * This function is only used by the thread exit destructor
1722  */
1723 static void
1724 mtmagazine_drain(struct magazine *mp)
1725 {
1726 	void *obj;
1727 
1728 	while (MAGAZINE_NOTEMPTY(mp)) {
1729 		obj = magazine_alloc(mp, NULL);
1730 		_slabfree(obj, 0, NULL);
1731 	}
1732 }
1733 
1734 /*
1735  * mtmagazine_destructor()
1736  *
1737  * When a thread exits, we reclaim all its resources; all its magazines are
1738  * drained and the structures are freed.
1739  *
1740  * WARNING!  The destructor can be called multiple times if the larger user
1741  *	     program has its own destructors which run after ours which
1742  *	     allocate or free memory.
1743  */
1744 static void
1745 mtmagazine_destructor(void *thrp)
1746 {
1747 	thr_mags *tp = thrp;
1748 	struct magazine *mp;
1749 	int i;
1750 
1751 	/*
1752 	 * Prevent further use of mtmagazines while we are destructing
1753 	 * them, as well as for any destructors which are run after us
1754 	 * prior to the thread actually being destroyed.
1755 	 */
1756 	tp->init = -1;
1757 
1758 	for (i = 0; i < NZONES; i++) {
1759 		mp = tp->mags[i].loaded;
1760 		tp->mags[i].loaded = NULL;
1761 		if (mp) {
1762 			if (MAGAZINE_NOTEMPTY(mp))
1763 				mtmagazine_drain(mp);
1764 			_slabfree(mp, 0, NULL);
1765 		}
1766 
1767 		mp = tp->mags[i].prev;
1768 		tp->mags[i].prev = NULL;
1769 		if (mp) {
1770 			if (MAGAZINE_NOTEMPTY(mp))
1771 				mtmagazine_drain(mp);
1772 			_slabfree(mp, 0, NULL);
1773 		}
1774 	}
1775 
1776 	if (tp->newmag) {
1777 		mp = tp->newmag;
1778 		tp->newmag = NULL;
1779 		_slabfree(mp, 0, NULL);
1780 	}
1781 }
1782 
1783 /*
1784  * zone_alloc()
1785  *
1786  * Attempt to allocate a zone from the zone magazine; the zone magazine has
1787  * M_BURST_EARLY enabled, so honor the burst request from the magazine.
1788  */
1789 static slzone_t
1790 zone_alloc(int flags)
1791 {
1792 	slglobaldata_t slgd = &SLGlobalData;
1793 	int burst = 1;
1794 	int i, j;
1795 	slzone_t z;
1796 
1797 	zone_magazine_lock();
1798 	slgd_unlock(slgd);
1799 
1800 	z = magazine_alloc(&zone_magazine, &burst);
1801 	if (z == NULL && burst == 1) {
1802 		zone_magazine_unlock();
1803 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1804 	} else if (z == NULL) {
1805 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1806 		if (z) {
1807 			for (i = 1; i < burst; i++) {
1808 				j = magazine_free(&zone_magazine,
1809 						  (char *) z + (ZoneSize * i));
1810 				MASSERT(j == 0);
1811 			}
1812 		}
1813 		zone_magazine_unlock();
1814 	} else {
1815 		z->z_Flags |= SLZF_UNOTZEROD;
1816 		zone_magazine_unlock();
1817 	}
1818 	slgd_lock(slgd);
1819 	return z;
1820 }
1821 
1822 /*
1823  * zone_free()
1824  *
1825  * Release a zone and unlock the slgd lock.
1826  */
1827 static void
1828 zone_free(void *z)
1829 {
1830 	slglobaldata_t slgd = &SLGlobalData;
1831 	void *excess[M_ZONE_ROUNDS - M_LOW_ROUNDS] = {};
1832 	int i, j;
1833 
1834 	zone_magazine_lock();
1835 	slgd_unlock(slgd);
1836 
1837 	bzero(z, sizeof(struct slzone));
1838 
1839 	if (opt_madvise)
1840 		madvise(z, ZoneSize, MADV_FREE);
1841 
1842 	i = magazine_free(&zone_magazine, z);
1843 
1844 	/*
1845 	 * If we failed to free, collect excess magazines; release the zone
1846 	 * magazine lock, and then free to the system via _vmem_free. Re-enable
1847 	 * BURST mode for the magazine.
1848 	 */
1849 	if (i == -1) {
1850 		j = zone_magazine.rounds - zone_magazine.low_factor;
1851 		for (i = 0; i < j; i++) {
1852 			excess[i] = magazine_alloc(&zone_magazine, NULL);
1853 			MASSERT(excess[i] !=  NULL);
1854 		}
1855 
1856 		zone_magazine_unlock();
1857 
1858 		for (i = 0; i < j; i++)
1859 			_vmem_free(excess[i], ZoneSize);
1860 
1861 		_vmem_free(z, ZoneSize);
1862 	} else {
1863 		zone_magazine_unlock();
1864 	}
1865 }
1866 
1867 /*
1868  * _vmem_alloc()
1869  *
1870  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1871  *	alignment.
1872  *
1873  *	Alignment must be a multiple of PAGE_SIZE.
1874  *
1875  *	Size must be >= alignment.
1876  */
1877 static void *
1878 _vmem_alloc(size_t size, size_t align, int flags)
1879 {
1880 	char *addr;
1881 	char *save;
1882 	size_t excess;
1883 
1884 	/*
1885 	 * Map anonymous private memory.
1886 	 */
1887 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1888 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1889 	if (addr == MAP_FAILED)
1890 		return(NULL);
1891 
1892 	/*
1893 	 * Check alignment.  The misaligned offset is also the excess
1894 	 * amount.  If misaligned unmap the excess so we have a chance of
1895 	 * mapping at the next alignment point and recursively try again.
1896 	 *
1897 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1898 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1899 	 *   xxxxxxxxx				final excess calculation
1900 	 *   ^ returned address
1901 	 */
1902 	excess = (uintptr_t)addr & (align - 1);
1903 
1904 	if (excess) {
1905 		excess = align - excess;
1906 		save = addr;
1907 
1908 		munmap(save + excess, size - excess);
1909 		addr = _vmem_alloc(size, align, flags);
1910 		munmap(save, excess);
1911 	}
1912 	return((void *)addr);
1913 }
1914 
1915 /*
1916  * _vmem_free()
1917  *
1918  *	Free a chunk of memory allocated with _vmem_alloc()
1919  */
1920 static void
1921 _vmem_free(void *ptr, size_t size)
1922 {
1923 	munmap(ptr, size);
1924 }
1925 
1926 /*
1927  * Panic on fatal conditions
1928  */
1929 static void
1930 _mpanic(const char *ctl, ...)
1931 {
1932 	va_list va;
1933 
1934 	if (malloc_panic == 0) {
1935 		malloc_panic = 1;
1936 		va_start(va, ctl);
1937 		vfprintf(stderr, ctl, va);
1938 		fprintf(stderr, "\n");
1939 		fflush(stderr);
1940 		va_end(va);
1941 	}
1942 	abort();
1943 }
1944 
1945 __weak_reference(__malloc, malloc);
1946 __weak_reference(__calloc, calloc);
1947 __weak_reference(__posix_memalign, posix_memalign);
1948 __weak_reference(__realloc, realloc);
1949 __weak_reference(__free, free);
1950