xref: /dragonfly/lib/libc/stdlib/nmalloc.c (revision a68e0df0)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 /*
37  * This module implements a slab allocator drop-in replacement for the
38  * libc malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and overhead losses are limited to a fixed
43  * worst-case amount.
44  *
45  * The slab allocator does not have to pre-initialize the list of
46  * free chunks for each zone, and the underlying VM will not be
47  * touched at all beyond the zone header until an actual allocation
48  * needs it.
49  *
50  * Slab management and locking is done on a per-zone basis.
51  *
52  *	Alloc Size	Chunking        Number of zones
53  *	0-127		8		16
54  *	128-255		16		8
55  *	256-511		32		8
56  *	512-1023	64		8
57  *	1024-2047	128		8
58  *	2048-4095	256		8
59  *	4096-8191	512		8
60  *	8192-16383	1024		8
61  *	16384-32767	2048		8
62  *
63  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
64  *	is used to locate for free.  One and Two-page allocations use the
65  *	zone mechanic to avoid excessive mmap()/munmap() calls.
66  *
67  *			   API FEATURES AND SIDE EFFECTS
68  *
69  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
70  *	Above that power-of-2 sized allocations are page-aligned.  Non
71  *	power-of-2 sized allocations are aligned the same as the chunk
72  *	size for their zone.
73  *    + malloc(0) returns a special non-NULL value
74  *    + ability to allocate arbitrarily large chunks of memory
75  *    + realloc will reuse the passed pointer if possible, within the
76  *	limitations of the zone chunking.
77  */
78 
79 #include "libc_private.h"
80 
81 #include <sys/param.h>
82 #include <sys/types.h>
83 #include <sys/mman.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <stdarg.h>
87 #include <stddef.h>
88 #include <unistd.h>
89 #include <string.h>
90 #include <fcntl.h>
91 #include <errno.h>
92 
93 #include "spinlock.h"
94 #include "un-namespace.h"
95 
96 /*
97  * Linked list of large allocations
98  */
99 typedef struct bigalloc {
100 	struct bigalloc *next;	/* hash link */
101 	void	*base;		/* base pointer */
102 	u_long	bytes;		/* bytes allocated */
103 	u_long	unused01;
104 } *bigalloc_t;
105 
106 /*
107  * Note that any allocations which are exact multiples of PAGE_SIZE, or
108  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
109  */
110 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
111 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
112 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
113 #define ZALLOC_ZONE_SIZE	(64 * 1024)
114 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
115 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
116 
117 #if ZALLOC_ZONE_LIMIT == 16384
118 #define NZONES			72
119 #elif ZALLOC_ZONE_LIMIT == 32768
120 #define NZONES			80
121 #else
122 #error "I couldn't figure out NZONES"
123 #endif
124 
125 /*
126  * Chunk structure for free elements
127  */
128 typedef struct slchunk {
129 	struct slchunk *c_Next;
130 } *slchunk_t;
131 
132 /*
133  * The IN-BAND zone header is placed at the beginning of each zone.
134  */
135 struct slglobaldata;
136 
137 typedef struct slzone {
138 	__int32_t	z_Magic;	/* magic number for sanity check */
139 	int		z_NFree;	/* total free chunks / ualloc space */
140 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
141 	struct slglobaldata *z_GlobalData;
142 	int		z_NMax;		/* maximum free chunks */
143 	char		*z_BasePtr;	/* pointer to start of chunk array */
144 	int		z_UIndex;	/* current initial allocation index */
145 	int		z_UEndIndex;	/* last (first) allocation index */
146 	int		z_ChunkSize;	/* chunk size for validation */
147 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
148 	int		z_ZoneIndex;
149 	int		z_Flags;
150 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
151 #if defined(INVARIANTS)
152 	__uint32_t	z_Bitmap[];	/* bitmap of free chunks / sanity */
153 #endif
154 } *slzone_t;
155 
156 typedef struct slglobaldata {
157 	spinlock_t	Spinlock;
158 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
159 	slzone_t	FreeZones;	/* whole zones that have become free */
160 	int		NFreeZones;	/* free zone count */
161 	int		JunkIndex;
162 } *slglobaldata_t;
163 
164 #define SLZF_UNOTZEROD		0x0001
165 
166 /*
167  * Misc constants.  Note that allocations that are exact multiples of
168  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
169  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
170  */
171 #define MIN_CHUNK_SIZE		8		/* in bytes */
172 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
173 #define ZONE_RELS_THRESH	4		/* threshold number of zones */
174 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
175 
176 /*
177  * The WEIRD_ADDR is used as known text to copy into free objects to
178  * try to create deterministic failure cases if the data is accessed after
179  * free.
180  *
181  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
182  *	    not be larger then 64.
183  */
184 #define WEIRD_ADDR      0xdeadc0de
185 #define MAX_COPY        sizeof(weirdary)
186 #define ZERO_LENGTH_PTR	((void *)&malloc_dummy_pointer)
187 
188 #define BIGHSHIFT	10			/* bigalloc hash table */
189 #define BIGHSIZE	(1 << BIGHSHIFT)
190 #define BIGHMASK	(BIGHSIZE - 1)
191 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
192 #define BIGXMASK	(BIGXSIZE - 1)
193 
194 #define SLGD_MAX	4			/* parallel allocations */
195 
196 #define SAFLAG_ZERO	0x0001
197 #define SAFLAG_PASSIVE	0x0002
198 
199 /*
200  * Thread control
201  */
202 
203 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
204 
205 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
206 				_mpanic("assertion: %s in %s",	\
207 				#exp, __func__);		\
208 			    } while (0)
209 
210 /*
211  * Fixed globals (not per-cpu)
212  */
213 static const int ZoneSize = ZALLOC_ZONE_SIZE;
214 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
215 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
216 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
217 
218 static struct slglobaldata	SLGlobalData[SLGD_MAX];
219 static bigalloc_t bigalloc_array[BIGHSIZE];
220 static spinlock_t bigspin_array[BIGXSIZE];
221 static int malloc_panic;
222 static int malloc_dummy_pointer;
223 
224 static const int32_t weirdary[16] = {
225 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
226 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
227 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
228 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR
229 };
230 
231 static __thread slglobaldata_t LastSLGD = &SLGlobalData[0];
232 
233 static void *_slaballoc(size_t size, int flags);
234 static void *_slabrealloc(void *ptr, size_t size);
235 static void _slabfree(void *ptr);
236 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
237 static void _vmem_free(void *ptr, size_t bytes);
238 static void _mpanic(const char *ctl, ...);
239 #if defined(INVARIANTS)
240 static void chunk_mark_allocated(slzone_t z, void *chunk);
241 static void chunk_mark_free(slzone_t z, void *chunk);
242 #endif
243 
244 #ifdef INVARIANTS
245 /*
246  * If enabled any memory allocated without M_ZERO is initialized to -1.
247  */
248 static int  use_malloc_pattern;
249 #endif
250 
251 /*
252  * Thread locks.
253  *
254  * NOTE: slgd_trylock() returns 0 or EBUSY
255  */
256 static __inline void
257 slgd_lock(slglobaldata_t slgd)
258 {
259 	if (__isthreaded)
260 		_SPINLOCK(&slgd->Spinlock);
261 }
262 
263 static __inline int
264 slgd_trylock(slglobaldata_t slgd)
265 {
266 	if (__isthreaded)
267 		return(_SPINTRYLOCK(&slgd->Spinlock));
268 	return(0);
269 }
270 
271 static __inline void
272 slgd_unlock(slglobaldata_t slgd)
273 {
274 	if (__isthreaded)
275 		_SPINUNLOCK(&slgd->Spinlock);
276 }
277 
278 /*
279  * bigalloc hashing and locking support.
280  *
281  * Return an unmasked hash code for the passed pointer.
282  */
283 static __inline int
284 _bigalloc_hash(void *ptr)
285 {
286 	int hv;
287 
288 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
289 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
290 
291 	return(hv);
292 }
293 
294 /*
295  * Lock the hash chain and return a pointer to its base for the specified
296  * address.
297  */
298 static __inline bigalloc_t *
299 bigalloc_lock(void *ptr)
300 {
301 	int hv = _bigalloc_hash(ptr);
302 	bigalloc_t *bigp;
303 
304 	bigp = &bigalloc_array[hv & BIGHMASK];
305 	if (__isthreaded)
306 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
307 	return(bigp);
308 }
309 
310 /*
311  * Lock the hash chain and return a pointer to its base for the specified
312  * address.
313  *
314  * BUT, if the hash chain is empty, just return NULL and do not bother
315  * to lock anything.
316  */
317 static __inline bigalloc_t *
318 bigalloc_check_and_lock(void *ptr)
319 {
320 	int hv = _bigalloc_hash(ptr);
321 	bigalloc_t *bigp;
322 
323 	bigp = &bigalloc_array[hv & BIGHMASK];
324 	if (*bigp == NULL)
325 		return(NULL);
326 	if (__isthreaded) {
327 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
328 	}
329 	return(bigp);
330 }
331 
332 static __inline void
333 bigalloc_unlock(void *ptr)
334 {
335 	int hv;
336 
337 	if (__isthreaded) {
338 		hv = _bigalloc_hash(ptr);
339 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
340 	}
341 }
342 
343 /*
344  * Calculate the zone index for the allocation request size and set the
345  * allocation request size to that particular zone's chunk size.
346  */
347 static __inline int
348 zoneindex(size_t *bytes, size_t *chunking)
349 {
350 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
351 	if (n < 128) {
352 		*bytes = n = (n + 7) & ~7;
353 		*chunking = 8;
354 		return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
355 	}
356 	if (n < 256) {
357 		*bytes = n = (n + 15) & ~15;
358 		*chunking = 16;
359 		return(n / 16 + 7);
360 	}
361 	if (n < 8192) {
362 		if (n < 512) {
363 			*bytes = n = (n + 31) & ~31;
364 			*chunking = 32;
365 			return(n / 32 + 15);
366 		}
367 		if (n < 1024) {
368 			*bytes = n = (n + 63) & ~63;
369 			*chunking = 64;
370 			return(n / 64 + 23);
371 		}
372 		if (n < 2048) {
373 			*bytes = n = (n + 127) & ~127;
374 			*chunking = 128;
375 			return(n / 128 + 31);
376 		}
377 		if (n < 4096) {
378 			*bytes = n = (n + 255) & ~255;
379 			*chunking = 256;
380 			return(n / 256 + 39);
381 		}
382 		*bytes = n = (n + 511) & ~511;
383 		*chunking = 512;
384 		return(n / 512 + 47);
385 	}
386 #if ZALLOC_ZONE_LIMIT > 8192
387 	if (n < 16384) {
388 		*bytes = n = (n + 1023) & ~1023;
389 		*chunking = 1024;
390 		return(n / 1024 + 55);
391 	}
392 #endif
393 #if ZALLOC_ZONE_LIMIT > 16384
394 	if (n < 32768) {
395 		*bytes = n = (n + 2047) & ~2047;
396 		*chunking = 2048;
397 		return(n / 2048 + 63);
398 	}
399 #endif
400 	_mpanic("Unexpected byte count %d", n);
401 	return(0);
402 }
403 
404 /*
405  * malloc() - call internal slab allocator
406  */
407 void *
408 malloc(size_t size)
409 {
410 	void *ptr;
411 
412 	ptr = _slaballoc(size, 0);
413 	if (ptr == NULL)
414 		errno = ENOMEM;
415 	return(ptr);
416 }
417 
418 /*
419  * calloc() - call internal slab allocator
420  */
421 void *
422 calloc(size_t number, size_t size)
423 {
424 	void *ptr;
425 
426 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
427 	if (ptr == NULL)
428 		errno = ENOMEM;
429 	return(ptr);
430 }
431 
432 /*
433  * realloc() (SLAB ALLOCATOR)
434  *
435  * We do not attempt to optimize this routine beyond reusing the same
436  * pointer if the new size fits within the chunking of the old pointer's
437  * zone.
438  */
439 void *
440 realloc(void *ptr, size_t size)
441 {
442 	ptr = _slabrealloc(ptr, size);
443 	if (ptr == NULL)
444 		errno = ENOMEM;
445 	return(ptr);
446 }
447 
448 /*
449  * posix_memalign()
450  *
451  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
452  * is a power of 2 >= sizeof(void *).
453  *
454  * The slab allocator will allocate on power-of-2 boundaries up to
455  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
456  * zone matching the requirements, and _vmem_alloc() otherwise.
457  */
458 int
459 posix_memalign(void **memptr, size_t alignment, size_t size)
460 {
461 	bigalloc_t *bigp;
462 	bigalloc_t big;
463 	size_t chunking;
464 	int zi;
465 
466 	/*
467 	 * OpenGroup spec issue 6 checks
468 	 */
469 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
470 		*memptr = NULL;
471 		return(EINVAL);
472 	}
473 	if (alignment < sizeof(void *)) {
474 		*memptr = NULL;
475 		return(EINVAL);
476 	}
477 
478 	/*
479 	 * Our zone mechanism guarantees same-sized alignment for any
480 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
481 	 * we can just call _slaballoc() and be done.  We round size up
482 	 * to the nearest alignment boundary to improve our odds of
483 	 * it becoming a power-of-2 if it wasn't before.
484 	 */
485 	if (size <= alignment)
486 		size = alignment;
487 	else
488 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
489 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
490 		*memptr = _slaballoc(size, 0);
491 		return(*memptr ? 0 : ENOMEM);
492 	}
493 
494 	/*
495 	 * Otherwise locate a zone with a chunking that matches
496 	 * the requested alignment, within reason.   Consider two cases:
497 	 *
498 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
499 	 *     we find will be the best fit because the chunking will be
500 	 *     greater or equal to the alignment.
501 	 *
502 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
503 	 *     the first zoneindex we find will be for 576 byte allocations
504 	 *     with a chunking of 64, which is not sufficient.  To fix this
505 	 *     we simply find the nearest power-of-2 >= size and use the
506 	 *     same side-effect of _slaballoc() which guarantees
507 	 *     same-alignment on a power-of-2 allocation.
508 	 */
509 	if (size < PAGE_SIZE) {
510 		zi = zoneindex(&size, &chunking);
511 		if (chunking >= alignment) {
512 			*memptr = _slaballoc(size, 0);
513 			return(*memptr ? 0 : ENOMEM);
514 		}
515 		if (size >= 1024)
516 			alignment = 1024;
517 		if (size >= 16384)
518 			alignment = 16384;
519 		while (alignment < size)
520 			alignment <<= 1;
521 		*memptr = _slaballoc(alignment, 0);
522 		return(*memptr ? 0 : ENOMEM);
523 	}
524 
525 	/*
526 	 * If the slab allocator cannot handle it use vmem_alloc().
527 	 *
528 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
529 	 */
530 	if (alignment < PAGE_SIZE)
531 		alignment = PAGE_SIZE;
532 	if (size < alignment)
533 		size = alignment;
534 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
535 	*memptr = _vmem_alloc(size, alignment, 0);
536 	if (*memptr == NULL)
537 		return(ENOMEM);
538 
539 	big = _slaballoc(sizeof(struct bigalloc), 0);
540 	if (big == NULL) {
541 		_vmem_free(*memptr, size);
542 		*memptr = NULL;
543 		return(ENOMEM);
544 	}
545 	bigp = bigalloc_lock(*memptr);
546 	big->base = *memptr;
547 	big->bytes = size;
548 	big->unused01 = 0;
549 	big->next = *bigp;
550 	*bigp = big;
551 	bigalloc_unlock(*memptr);
552 
553 	return(0);
554 }
555 
556 /*
557  * free() (SLAB ALLOCATOR) - do the obvious
558  */
559 void
560 free(void *ptr)
561 {
562 	_slabfree(ptr);
563 }
564 
565 /*
566  * _slaballoc()	(SLAB ALLOCATOR)
567  *
568  *	Allocate memory via the slab allocator.  If the request is too large,
569  *	or if it page-aligned beyond a certain size, we fall back to the
570  *	KMEM subsystem
571  */
572 static void *
573 _slaballoc(size_t size, int flags)
574 {
575 	slzone_t z;
576 	slchunk_t chunk;
577 	slglobaldata_t slgd;
578 	size_t chunking;
579 	int zi;
580 #ifdef INVARIANTS
581 	int i;
582 #endif
583 	int off;
584 
585 	/*
586 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
587 	 * Return a special pointer.  This is to maintain compatibility with
588 	 * the original malloc implementation.  Certain devices, such as the
589 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
590 	 * also realloc() later on.  Joy.
591 	 */
592 	if (size == 0)
593 		return(ZERO_LENGTH_PTR);
594 
595 	/*
596 	 * Handle large allocations directly.  There should not be very many
597 	 * of these so performance is not a big issue.
598 	 *
599 	 * The backend allocator is pretty nasty on a SMP system.   Use the
600 	 * slab allocator for one and two page-sized chunks even though we
601 	 * lose some efficiency.
602 	 */
603 	if (size >= ZoneLimit ||
604 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
605 		bigalloc_t big;
606 		bigalloc_t *bigp;
607 
608 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
609 		chunk = _vmem_alloc(size, PAGE_SIZE, flags);
610 		if (chunk == NULL)
611 			return(NULL);
612 
613 		big = _slaballoc(sizeof(struct bigalloc), 0);
614 		if (big == NULL) {
615 			_vmem_free(chunk, size);
616 			return(NULL);
617 		}
618 		bigp = bigalloc_lock(chunk);
619 		big->base = chunk;
620 		big->bytes = size;
621 		big->unused01 = 0;
622 		big->next = *bigp;
623 		*bigp = big;
624 		bigalloc_unlock(chunk);
625 
626 		return(chunk);
627 	}
628 
629 	/*
630 	 * Multi-threading support.  This needs work XXX.
631 	 *
632 	 * Choose a globaldata structure to allocate from.  If we cannot
633 	 * immediately get the lock try a different one.
634 	 *
635 	 * LastSLGD is a per-thread global.
636 	 */
637 	slgd = LastSLGD;
638 	if (slgd_trylock(slgd) != 0) {
639 		if (++slgd == &SLGlobalData[SLGD_MAX])
640 			slgd = &SLGlobalData[0];
641 		LastSLGD = slgd;
642 		slgd_lock(slgd);
643 	}
644 
645 	/*
646 	 * Attempt to allocate out of an existing zone.  If all zones are
647 	 * exhausted pull one off the free list or allocate a new one.
648 	 *
649 	 * Note: zoneindex() will panic of size is too large.
650 	 */
651 	zi = zoneindex(&size, &chunking);
652 	MASSERT(zi < NZONES);
653 
654 	if ((z = slgd->ZoneAry[zi]) == NULL) {
655 		/*
656 		 * Pull the zone off the free list.  If the zone on
657 		 * the free list happens to be correctly set up we
658 		 * do not have to reinitialize it.
659 		 */
660 		if ((z = slgd->FreeZones) != NULL) {
661 			slgd->FreeZones = z->z_Next;
662 			--slgd->NFreeZones;
663 			if (z->z_ChunkSize == size) {
664 				z->z_Magic = ZALLOC_SLAB_MAGIC;
665 				z->z_Next = slgd->ZoneAry[zi];
666 				slgd->ZoneAry[zi] = z;
667 				goto have_zone;
668 			}
669 			bzero(z, sizeof(struct slzone));
670 			z->z_Flags |= SLZF_UNOTZEROD;
671 		} else {
672 			z = _vmem_alloc(ZoneSize, ZoneSize, flags);
673 			if (z == NULL)
674 				goto fail;
675 		}
676 
677 		/*
678 		 * How big is the base structure?
679 		 */
680 #if defined(INVARIANTS)
681 		/*
682 		 * Make room for z_Bitmap.  An exact calculation is
683 		 * somewhat more complicated so don't make an exact
684 		 * calculation.
685 		 */
686 		off = offsetof(struct slzone,
687 				z_Bitmap[(ZoneSize / size + 31) / 32]);
688 		bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
689 #else
690 		off = sizeof(struct slzone);
691 #endif
692 
693 		/*
694 		 * Align the storage in the zone based on the chunking.
695 		 *
696 		 * Guarentee power-of-2 alignment for power-of-2-sized
697 		 * chunks.  Otherwise align based on the chunking size
698 		 * (typically 8 or 16 bytes for small allocations).
699 		 *
700 		 * NOTE: Allocations >= ZoneLimit are governed by the
701 		 * bigalloc code and typically only guarantee page-alignment.
702 		 *
703 		 * Set initial conditions for UIndex near the zone header
704 		 * to reduce unecessary page faults, vs semi-randomization
705 		 * to improve L1 cache saturation.
706 		 */
707 		if ((size | (size - 1)) + 1 == (size << 1))
708 			off = (off + size - 1) & ~(size - 1);
709 		else
710 			off = (off + chunking - 1) & ~(chunking - 1);
711 		z->z_Magic = ZALLOC_SLAB_MAGIC;
712 		z->z_GlobalData = slgd;
713 		z->z_ZoneIndex = zi;
714 		z->z_NMax = (ZoneSize - off) / size;
715 		z->z_NFree = z->z_NMax;
716 		z->z_BasePtr = (char *)z + off;
717 		/*z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;*/
718 		z->z_UIndex = z->z_UEndIndex = 0;
719 		z->z_ChunkSize = size;
720 		z->z_FirstFreePg = ZonePageCount;
721 		z->z_Next = slgd->ZoneAry[zi];
722 		slgd->ZoneAry[zi] = z;
723 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
724 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
725 			flags |= SAFLAG_PASSIVE;
726 		}
727 
728 		/*
729 		 * Slide the base index for initial allocations out of the
730 		 * next zone we create so we do not over-weight the lower
731 		 * part of the cpu memory caches.
732 		 */
733 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
734 					& (ZALLOC_MAX_ZONE_SIZE - 1);
735 	}
736 
737 	/*
738 	 * Ok, we have a zone from which at least one chunk is available.
739 	 *
740 	 * Remove us from the ZoneAry[] when we become empty
741 	 */
742 have_zone:
743 	MASSERT(z->z_NFree > 0);
744 
745 	if (--z->z_NFree == 0) {
746 		slgd->ZoneAry[zi] = z->z_Next;
747 		z->z_Next = NULL;
748 	}
749 
750 	/*
751 	 * Locate a chunk in a free page.  This attempts to localize
752 	 * reallocations into earlier pages without us having to sort
753 	 * the chunk list.  A chunk may still overlap a page boundary.
754 	 */
755 	while (z->z_FirstFreePg < ZonePageCount) {
756 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
757 #ifdef DIAGNOSTIC
758 			/*
759 			 * Diagnostic: c_Next is not total garbage.
760 			 */
761 			MASSERT(chunk->c_Next == NULL ||
762 			    ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
763 			    ((intptr_t)chunk & IN_SAME_PAGE_MASK));
764 #endif
765 #ifdef INVARIANTS
766 			chunk_mark_allocated(z, chunk);
767 #endif
768 			MASSERT((uintptr_t)chunk & ZoneMask);
769 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
770 			goto done;
771 		}
772 		++z->z_FirstFreePg;
773 	}
774 
775 	/*
776 	 * No chunks are available but NFree said we had some memory,
777 	 * so it must be available in the never-before-used-memory
778 	 * area governed by UIndex.  The consequences are very
779 	 * serious if our zone got corrupted so we use an explicit
780 	 * panic rather then a KASSERT.
781 	 */
782 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
783 
784 	if (++z->z_UIndex == z->z_NMax)
785 		z->z_UIndex = 0;
786 	if (z->z_UIndex == z->z_UEndIndex) {
787 		if (z->z_NFree != 0)
788 			_mpanic("slaballoc: corrupted zone");
789 	}
790 
791 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
792 		flags &= ~SAFLAG_ZERO;
793 		flags |= SAFLAG_PASSIVE;
794 	}
795 #if defined(INVARIANTS)
796 	chunk_mark_allocated(z, chunk);
797 #endif
798 
799 done:
800 	slgd_unlock(slgd);
801 	if (flags & SAFLAG_ZERO) {
802 		bzero(chunk, size);
803 #ifdef INVARIANTS
804 	} else if ((flags & (SAFLAG_ZERO|SAFLAG_PASSIVE)) == 0) {
805 		if (use_malloc_pattern) {
806 			for (i = 0; i < size; i += sizeof(int)) {
807 				*(int *)((char *)chunk + i) = -1;
808 			}
809 		}
810 		/* avoid accidental double-free check */
811 		chunk->c_Next = (void *)-1;
812 #endif
813 	}
814 	return(chunk);
815 fail:
816 	slgd_unlock(slgd);
817 	return(NULL);
818 }
819 
820 /*
821  * Reallocate memory within the chunk
822  */
823 static void *
824 _slabrealloc(void *ptr, size_t size)
825 {
826 	bigalloc_t *bigp;
827 	void *nptr;
828 	slzone_t z;
829 	size_t chunking;
830 
831 	if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
832 		return(_slaballoc(size, 0));
833 
834 	if (size == 0) {
835 	    free(ptr);
836 	    return(ZERO_LENGTH_PTR);
837 	}
838 
839 	/*
840 	 * Handle oversized allocations.  XXX we really should require
841 	 * that a size be passed to free() instead of this nonsense.
842 	 */
843 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
844 		bigalloc_t big;
845 		size_t bigbytes;
846 
847 		while ((big = *bigp) != NULL) {
848 			if (big->base == ptr) {
849 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
850 				bigbytes = big->bytes;
851 				bigalloc_unlock(ptr);
852 				if (bigbytes == size)
853 					return(ptr);
854 				if ((nptr = _slaballoc(size, 0)) == NULL)
855 					return(NULL);
856 				if (size > bigbytes)
857 					size = bigbytes;
858 				bcopy(ptr, nptr, size);
859 				_slabfree(ptr);
860 				return(nptr);
861 			}
862 			bigp = &big->next;
863 		}
864 		bigalloc_unlock(ptr);
865 	}
866 
867 	/*
868 	 * Get the original allocation's zone.  If the new request winds
869 	 * up using the same chunk size we do not have to do anything.
870 	 *
871 	 * NOTE: We don't have to lock the globaldata here, the fields we
872 	 * access here will not change at least as long as we have control
873 	 * over the allocation.
874 	 */
875 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
876 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
877 
878 	/*
879 	 * Use zoneindex() to chunk-align the new size, as long as the
880 	 * new size is not too large.
881 	 */
882 	if (size < ZoneLimit) {
883 		zoneindex(&size, &chunking);
884 		if (z->z_ChunkSize == size)
885 			return(ptr);
886 	}
887 
888 	/*
889 	 * Allocate memory for the new request size and copy as appropriate.
890 	 */
891 	if ((nptr = _slaballoc(size, 0)) != NULL) {
892 		if (size > z->z_ChunkSize)
893 			size = z->z_ChunkSize;
894 		bcopy(ptr, nptr, size);
895 		_slabfree(ptr);
896 	}
897 
898 	return(nptr);
899 }
900 
901 /*
902  * free (SLAB ALLOCATOR)
903  *
904  * Free a memory block previously allocated by malloc.  Note that we do not
905  * attempt to uplodate ks_loosememuse as MP races could prevent us from
906  * checking memory limits in malloc.
907  *
908  * MPSAFE
909  */
910 static void
911 _slabfree(void *ptr)
912 {
913 	slzone_t z;
914 	slchunk_t chunk;
915 	bigalloc_t big;
916 	bigalloc_t *bigp;
917 	slglobaldata_t slgd;
918 	size_t size;
919 	int pgno;
920 
921 	/*
922 	 * Handle NULL frees and special 0-byte allocations
923 	 */
924 	if (ptr == NULL)
925 		return;
926 	if (ptr == ZERO_LENGTH_PTR)
927 		return;
928 
929 	/*
930 	 * Handle oversized allocations.
931 	 */
932 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
933 		while ((big = *bigp) != NULL) {
934 			if (big->base == ptr) {
935 				*bigp = big->next;
936 				bigalloc_unlock(ptr);
937 				size = big->bytes;
938 				_slabfree(big);
939 #ifdef INVARIANTS
940 				MASSERT(sizeof(weirdary) <= size);
941 				bcopy(weirdary, ptr, sizeof(weirdary));
942 #endif
943 				_vmem_free(ptr, size);
944 				return;
945 			}
946 			bigp = &big->next;
947 		}
948 		bigalloc_unlock(ptr);
949 	}
950 
951 	/*
952 	 * Zone case.  Figure out the zone based on the fact that it is
953 	 * ZoneSize aligned.
954 	 */
955 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
956 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
957 
958 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
959 	chunk = ptr;
960 	slgd = z->z_GlobalData;
961 	slgd_lock(slgd);
962 
963 #ifdef INVARIANTS
964 	/*
965 	 * Attempt to detect a double-free.  To reduce overhead we only check
966 	 * if there appears to be link pointer at the base of the data.
967 	 */
968 	if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
969 		slchunk_t scan;
970 
971 		for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
972 			if (scan == chunk)
973 				_mpanic("Double free at %p", chunk);
974 		}
975 	}
976 	chunk_mark_free(z, chunk);
977 #endif
978 
979 	/*
980 	 * Put weird data into the memory to detect modifications after
981 	 * freeing, illegal pointer use after freeing (we should fault on
982 	 * the odd address), and so forth.
983 	 */
984 #ifdef INVARIANTS
985 	if (z->z_ChunkSize < sizeof(weirdary))
986 		bcopy(weirdary, chunk, z->z_ChunkSize);
987 	else
988 		bcopy(weirdary, chunk, sizeof(weirdary));
989 #endif
990 
991 	/*
992 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
993 	 * z_FirstFreePg.
994 	 */
995 	chunk->c_Next = z->z_PageAry[pgno];
996 	z->z_PageAry[pgno] = chunk;
997 	if (z->z_FirstFreePg > pgno)
998 		z->z_FirstFreePg = pgno;
999 
1000 	/*
1001 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1002 	 * must be added back onto the appropriate list.
1003 	 */
1004 	if (z->z_NFree++ == 0) {
1005 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1006 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1007 	}
1008 
1009 	/*
1010 	 * If the zone becomes totally free then move this zone to
1011 	 * the FreeZones list.
1012 	 *
1013 	 * Do not madvise here, avoiding the edge case where a malloc/free
1014 	 * loop is sitting on the edge of a new zone.
1015 	 *
1016 	 * We could leave at least one zone in the ZoneAry for the index,
1017 	 * using something like the below, but while this might be fine
1018 	 * for the kernel (who cares about ~10MB of wasted memory), it
1019 	 * probably isn't such a good idea for a user program.
1020 	 *
1021 	 * 	&& (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1022 	 */
1023 	if (z->z_NFree == z->z_NMax) {
1024 		slzone_t *pz;
1025 
1026 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1027 		while (z != *pz)
1028 			pz = &(*pz)->z_Next;
1029 		*pz = z->z_Next;
1030 		z->z_Magic = -1;
1031 		z->z_Next = slgd->FreeZones;
1032 		slgd->FreeZones = z;
1033 		++slgd->NFreeZones;
1034 	}
1035 
1036 	/*
1037 	 * Limit the number of zones we keep cached.
1038 	 */
1039 	while (slgd->NFreeZones > ZONE_RELS_THRESH) {
1040 		z = slgd->FreeZones;
1041 		slgd->FreeZones = z->z_Next;
1042 		--slgd->NFreeZones;
1043 		slgd_unlock(slgd);
1044 		_vmem_free(z, ZoneSize);
1045 		slgd_lock(slgd);
1046 	}
1047 	slgd_unlock(slgd);
1048 }
1049 
1050 #if defined(INVARIANTS)
1051 /*
1052  * Helper routines for sanity checks
1053  */
1054 static
1055 void
1056 chunk_mark_allocated(slzone_t z, void *chunk)
1057 {
1058 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1059 	__uint32_t *bitptr;
1060 
1061 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1062 	bitptr = &z->z_Bitmap[bitdex >> 5];
1063 	bitdex &= 31;
1064 	MASSERT((*bitptr & (1 << bitdex)) == 0);
1065 	*bitptr |= 1 << bitdex;
1066 }
1067 
1068 static
1069 void
1070 chunk_mark_free(slzone_t z, void *chunk)
1071 {
1072 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1073 	__uint32_t *bitptr;
1074 
1075 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1076 	bitptr = &z->z_Bitmap[bitdex >> 5];
1077 	bitdex &= 31;
1078 	MASSERT((*bitptr & (1 << bitdex)) != 0);
1079 	*bitptr &= ~(1 << bitdex);
1080 }
1081 
1082 #endif
1083 
1084 /*
1085  * _vmem_alloc()
1086  *
1087  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1088  *	alignment.
1089  *
1090  *	Alignment must be a multiple of PAGE_SIZE.
1091  *
1092  *	Size must be >= alignment.
1093  */
1094 static void *
1095 _vmem_alloc(size_t size, size_t align, int flags)
1096 {
1097 	char *addr;
1098 	char *save;
1099 	size_t excess;
1100 
1101 	/*
1102 	 * Map anonymous private memory.
1103 	 */
1104 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1105 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1106 	if (addr == MAP_FAILED)
1107 		return(NULL);
1108 
1109 	/*
1110 	 * Check alignment.  The misaligned offset is also the excess
1111 	 * amount.  If misaligned unmap the excess so we have a chance of
1112 	 * mapping at the next alignment point and recursively try again.
1113 	 *
1114 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1115 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1116 	 *   xxxxxxxxx				final excess calculation
1117 	 *   ^ returned address
1118 	 */
1119 	excess = (uintptr_t)addr & (align - 1);
1120 
1121 	if (excess) {
1122 		excess = align - excess;
1123 		save = addr;
1124 
1125 		munmap(save + excess, size - excess);
1126 		addr = _vmem_alloc(size, align, flags);
1127 		munmap(save, excess);
1128 	}
1129 	return((void *)addr);
1130 }
1131 
1132 /*
1133  * _vmem_free()
1134  *
1135  *	Free a chunk of memory allocated with _vmem_alloc()
1136  */
1137 static void
1138 _vmem_free(void *ptr, size_t size)
1139 {
1140 	munmap(ptr, size);
1141 }
1142 
1143 /*
1144  * Panic on fatal conditions
1145  */
1146 static void
1147 _mpanic(const char *ctl, ...)
1148 {
1149 	va_list va;
1150 
1151 	if (malloc_panic == 0) {
1152 		malloc_panic = 1;
1153 		va_start(va, ctl);
1154 		vfprintf(stderr, ctl, va);
1155 		fprintf(stderr, "\n");
1156 		fflush(stderr);
1157 		va_end(va);
1158 	}
1159 	abort();
1160 }
1161