xref: /dragonfly/lib/libc/stdlib/nmalloc.c (revision e293de53)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 /*
37  * This module implements a slab allocator drop-in replacement for the
38  * libc malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and overhead losses are limited to a fixed
43  * worst-case amount.
44  *
45  * The slab allocator does not have to pre-initialize the list of
46  * free chunks for each zone, and the underlying VM will not be
47  * touched at all beyond the zone header until an actual allocation
48  * needs it.
49  *
50  * Slab management and locking is done on a per-zone basis.
51  *
52  *	Alloc Size	Chunking        Number of zones
53  *	0-127		8		16
54  *	128-255		16		8
55  *	256-511		32		8
56  *	512-1023	64		8
57  *	1024-2047	128		8
58  *	2048-4095	256		8
59  *	4096-8191	512		8
60  *	8192-16383	1024		8
61  *	16384-32767	2048		8
62  *
63  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
64  *	is used to locate for free.  One and Two-page allocations use the
65  *	zone mechanic to avoid excessive mmap()/munmap() calls.
66  *
67  *			   API FEATURES AND SIDE EFFECTS
68  *
69  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
70  *	Above that power-of-2 sized allocations are page-aligned.  Non
71  *	power-of-2 sized allocations are aligned the same as the chunk
72  *	size for their zone.
73  *    + malloc(0) returns a special non-NULL value
74  *    + ability to allocate arbitrarily large chunks of memory
75  *    + realloc will reuse the passed pointer if possible, within the
76  *	limitations of the zone chunking.
77  */
78 
79 #include "libc_private.h"
80 
81 #include <sys/param.h>
82 #include <sys/types.h>
83 #include <sys/mman.h>
84 #include <stdio.h>
85 #include <stdlib.h>
86 #include <stdarg.h>
87 #include <stddef.h>
88 #include <unistd.h>
89 #include <string.h>
90 #include <fcntl.h>
91 #include <errno.h>
92 
93 #include "spinlock.h"
94 #include "un-namespace.h"
95 
96 /*
97  * Linked list of large allocations
98  */
99 typedef struct bigalloc {
100 	struct bigalloc *next;	/* hash link */
101 	void	*base;		/* base pointer */
102 	u_long	bytes;		/* bytes allocated */
103 	u_long	unused01;
104 } *bigalloc_t;
105 
106 /*
107  * Note that any allocations which are exact multiples of PAGE_SIZE, or
108  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
109  */
110 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
111 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
112 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
113 #define ZALLOC_ZONE_SIZE	(64 * 1024)
114 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
115 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
116 
117 #if ZALLOC_ZONE_LIMIT == 16384
118 #define NZONES			72
119 #elif ZALLOC_ZONE_LIMIT == 32768
120 #define NZONES			80
121 #else
122 #error "I couldn't figure out NZONES"
123 #endif
124 
125 /*
126  * Chunk structure for free elements
127  */
128 typedef struct slchunk {
129 	struct slchunk *c_Next;
130 } *slchunk_t;
131 
132 /*
133  * The IN-BAND zone header is placed at the beginning of each zone.
134  */
135 struct slglobaldata;
136 
137 typedef struct slzone {
138 	__int32_t	z_Magic;	/* magic number for sanity check */
139 	int		z_NFree;	/* total free chunks / ualloc space */
140 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
141 	struct slglobaldata *z_GlobalData;
142 	int		z_NMax;		/* maximum free chunks */
143 	char		*z_BasePtr;	/* pointer to start of chunk array */
144 	int		z_UIndex;	/* current initial allocation index */
145 	int		z_UEndIndex;	/* last (first) allocation index */
146 	int		z_ChunkSize;	/* chunk size for validation */
147 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
148 	int		z_ZoneIndex;
149 	int		z_Flags;
150 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
151 #if defined(INVARIANTS)
152 	__uint32_t	z_Bitmap[];	/* bitmap of free chunks / sanity */
153 #endif
154 } *slzone_t;
155 
156 typedef struct slglobaldata {
157 	spinlock_t	Spinlock;
158 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
159 	slzone_t	FreeZones;	/* whole zones that have become free */
160 	int		NFreeZones;	/* free zone count */
161 	int		JunkIndex;
162 } *slglobaldata_t;
163 
164 #define SLZF_UNOTZEROD		0x0001
165 
166 /*
167  * Misc constants.  Note that allocations that are exact multiples of
168  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
169  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
170  */
171 #define MIN_CHUNK_SIZE		8		/* in bytes */
172 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
173 #define ZONE_RELS_THRESH	4		/* threshold number of zones */
174 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
175 
176 /*
177  * The WEIRD_ADDR is used as known text to copy into free objects to
178  * try to create deterministic failure cases if the data is accessed after
179  * free.
180  *
181  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
182  *	    not be larger then 64.
183  */
184 #define WEIRD_ADDR      0xdeadc0de
185 #define MAX_COPY        sizeof(weirdary)
186 #define ZERO_LENGTH_PTR	((void *)-8)
187 
188 #define BIGHSHIFT	10			/* bigalloc hash table */
189 #define BIGHSIZE	(1 << BIGHSHIFT)
190 #define BIGHMASK	(BIGHSIZE - 1)
191 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
192 #define BIGXMASK	(BIGXSIZE - 1)
193 
194 #define SLGD_MAX	4			/* parallel allocations */
195 
196 #define SAFLAG_ZERO	0x0001
197 #define SAFLAG_PASSIVE	0x0002
198 
199 /*
200  * Thread control
201  */
202 
203 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
204 
205 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
206 				_mpanic("assertion: %s in %s",	\
207 				#exp, __func__);		\
208 			    } while (0)
209 
210 /*
211  * Fixed globals (not per-cpu)
212  */
213 static const int ZoneSize = ZALLOC_ZONE_SIZE;
214 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
215 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
216 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
217 
218 static struct slglobaldata	SLGlobalData[SLGD_MAX];
219 static bigalloc_t bigalloc_array[BIGHSIZE];
220 static spinlock_t bigspin_array[BIGXSIZE];
221 static int malloc_panic;
222 
223 static const int32_t weirdary[16] = {
224 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
225 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
226 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
227 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR
228 };
229 
230 static __thread slglobaldata_t LastSLGD = &SLGlobalData[0];
231 
232 static void *_slaballoc(size_t size, int flags);
233 static void *_slabrealloc(void *ptr, size_t size);
234 static void _slabfree(void *ptr);
235 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
236 static void _vmem_free(void *ptr, size_t bytes);
237 static void _mpanic(const char *ctl, ...);
238 #if defined(INVARIANTS)
239 static void chunk_mark_allocated(slzone_t z, void *chunk);
240 static void chunk_mark_free(slzone_t z, void *chunk);
241 #endif
242 
243 #ifdef INVARIANTS
244 /*
245  * If enabled any memory allocated without M_ZERO is initialized to -1.
246  */
247 static int  use_malloc_pattern;
248 #endif
249 
250 /*
251  * Thread locks.
252  *
253  * NOTE: slgd_trylock() returns 0 or EBUSY
254  */
255 static __inline void
256 slgd_lock(slglobaldata_t slgd)
257 {
258 	if (__isthreaded)
259 		_SPINLOCK(&slgd->Spinlock);
260 }
261 
262 static __inline int
263 slgd_trylock(slglobaldata_t slgd)
264 {
265 	if (__isthreaded)
266 		return(_SPINTRYLOCK(&slgd->Spinlock));
267 	return(0);
268 }
269 
270 static __inline void
271 slgd_unlock(slglobaldata_t slgd)
272 {
273 	if (__isthreaded)
274 		_SPINUNLOCK(&slgd->Spinlock);
275 }
276 
277 /*
278  * bigalloc hashing and locking support.
279  *
280  * Return an unmasked hash code for the passed pointer.
281  */
282 static __inline int
283 _bigalloc_hash(void *ptr)
284 {
285 	int hv;
286 
287 	hv = ((int)ptr >> PAGE_SHIFT) ^ ((int)ptr >> (PAGE_SHIFT + BIGHSHIFT));
288 
289 	return(hv);
290 }
291 
292 /*
293  * Lock the hash chain and return a pointer to its base for the specified
294  * address.
295  */
296 static __inline bigalloc_t *
297 bigalloc_lock(void *ptr)
298 {
299 	int hv = _bigalloc_hash(ptr);
300 	bigalloc_t *bigp;
301 
302 	bigp = &bigalloc_array[hv & BIGHMASK];
303 	if (__isthreaded)
304 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
305 	return(bigp);
306 }
307 
308 /*
309  * Lock the hash chain and return a pointer to its base for the specified
310  * address.
311  *
312  * BUT, if the hash chain is empty, just return NULL and do not bother
313  * to lock anything.
314  */
315 static __inline bigalloc_t *
316 bigalloc_check_and_lock(void *ptr)
317 {
318 	int hv = _bigalloc_hash(ptr);
319 	bigalloc_t *bigp;
320 
321 	bigp = &bigalloc_array[hv & BIGHMASK];
322 	if (*bigp == NULL)
323 		return(NULL);
324 	if (__isthreaded) {
325 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
326 	}
327 	return(bigp);
328 }
329 
330 static __inline void
331 bigalloc_unlock(void *ptr)
332 {
333 	int hv;
334 
335 	if (__isthreaded) {
336 		hv = _bigalloc_hash(ptr);
337 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
338 	}
339 }
340 
341 /*
342  * Calculate the zone index for the allocation request size and set the
343  * allocation request size to that particular zone's chunk size.
344  */
345 static __inline int
346 zoneindex(size_t *bytes, size_t *chunking)
347 {
348 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
349 	if (n < 128) {
350 		*bytes = n = (n + 7) & ~7;
351 		*chunking = 8;
352 		return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
353 	}
354 	if (n < 256) {
355 		*bytes = n = (n + 15) & ~15;
356 		*chunking = 16;
357 		return(n / 16 + 7);
358 	}
359 	if (n < 8192) {
360 		if (n < 512) {
361 			*bytes = n = (n + 31) & ~31;
362 			*chunking = 32;
363 			return(n / 32 + 15);
364 		}
365 		if (n < 1024) {
366 			*bytes = n = (n + 63) & ~63;
367 			*chunking = 64;
368 			return(n / 64 + 23);
369 		}
370 		if (n < 2048) {
371 			*bytes = n = (n + 127) & ~127;
372 			*chunking = 128;
373 			return(n / 128 + 31);
374 		}
375 		if (n < 4096) {
376 			*bytes = n = (n + 255) & ~255;
377 			*chunking = 256;
378 			return(n / 256 + 39);
379 		}
380 		*bytes = n = (n + 511) & ~511;
381 		*chunking = 512;
382 		return(n / 512 + 47);
383 	}
384 #if ZALLOC_ZONE_LIMIT > 8192
385 	if (n < 16384) {
386 		*bytes = n = (n + 1023) & ~1023;
387 		*chunking = 1024;
388 		return(n / 1024 + 55);
389 	}
390 #endif
391 #if ZALLOC_ZONE_LIMIT > 16384
392 	if (n < 32768) {
393 		*bytes = n = (n + 2047) & ~2047;
394 		*chunking = 2048;
395 		return(n / 2048 + 63);
396 	}
397 #endif
398 	_mpanic("Unexpected byte count %d", n);
399 	return(0);
400 }
401 
402 /*
403  * malloc() - call internal slab allocator
404  */
405 void *
406 malloc(size_t size)
407 {
408 	void *ptr;
409 
410 	ptr = _slaballoc(size, 0);
411 	if (ptr == NULL)
412 		errno = ENOMEM;
413 	return(ptr);
414 }
415 
416 /*
417  * calloc() - call internal slab allocator
418  */
419 void *
420 calloc(size_t number, size_t size)
421 {
422 	void *ptr;
423 
424 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
425 	if (ptr == NULL)
426 		errno = ENOMEM;
427 	return(ptr);
428 }
429 
430 /*
431  * realloc() (SLAB ALLOCATOR)
432  *
433  * We do not attempt to optimize this routine beyond reusing the same
434  * pointer if the new size fits within the chunking of the old pointer's
435  * zone.
436  */
437 void *
438 realloc(void *ptr, size_t size)
439 {
440 	ptr = _slabrealloc(ptr, size);
441 	if (ptr == NULL)
442 		errno = ENOMEM;
443 	return(ptr);
444 }
445 
446 /*
447  * posix_memalign()
448  *
449  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
450  * is a power of 2 >= sizeof(void *).
451  *
452  * The slab allocator will allocate on power-of-2 boundaries up to
453  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
454  * zone matching the requirements, and _vmem_alloc() otherwise.
455  */
456 int
457 posix_memalign(void **memptr, size_t alignment, size_t size)
458 {
459 	bigalloc_t *bigp;
460 	bigalloc_t big;
461 	int chunking;
462 	int zi;
463 
464 	/*
465 	 * OpenGroup spec issue 6 checks
466 	 */
467 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
468 		*memptr = NULL;
469 		return(EINVAL);
470 	}
471 	if (alignment < sizeof(void *)) {
472 		*memptr = NULL;
473 		return(EINVAL);
474 	}
475 
476 	/*
477 	 * Our zone mechanism guarantees same-sized alignment for any
478 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
479 	 * we can just call _slaballoc() and be done.  We round size up
480 	 * to the nearest alignment boundary to improve our odds of
481 	 * it becoming a power-of-2 if it wasn't before.
482 	 */
483 	if (size <= alignment)
484 		size = alignment;
485 	else
486 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
487 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
488 		*memptr = _slaballoc(size, 0);
489 		return(*memptr ? 0 : ENOMEM);
490 	}
491 
492 	/*
493 	 * Otherwise locate a zone with a chunking that matches
494 	 * the requested alignment, within reason.   Consider two cases:
495 	 *
496 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
497 	 *     we find will be the best fit because the chunking will be
498 	 *     greater or equal to the alignment.
499 	 *
500 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
501 	 *     the first zoneindex we find will be for 576 byte allocations
502 	 *     with a chunking of 64, which is not sufficient.  To fix this
503 	 *     we simply find the nearest power-of-2 >= size and use the
504 	 *     same side-effect of _slaballoc() which guarantees
505 	 *     same-alignment on a power-of-2 allocation.
506 	 */
507 	if (size < PAGE_SIZE) {
508 		zi = zoneindex(&size, &chunking);
509 		if (chunking >= alignment) {
510 			*memptr = _slaballoc(size, 0);
511 			return(*memptr ? 0 : ENOMEM);
512 		}
513 		if (size >= 1024)
514 			alignment = 1024;
515 		if (size >= 16384)
516 			alignment = 16384;
517 		while (alignment < size)
518 			alignment <<= 1;
519 		*memptr = _slaballoc(alignment, 0);
520 		return(*memptr ? 0 : ENOMEM);
521 	}
522 
523 	/*
524 	 * If the slab allocator cannot handle it use vmem_alloc().
525 	 *
526 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
527 	 */
528 	if (alignment < PAGE_SIZE)
529 		alignment = PAGE_SIZE;
530 	if (size < alignment)
531 		size = alignment;
532 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
533 	*memptr = _vmem_alloc(size, alignment, 0);
534 	if (*memptr == NULL)
535 		return(ENOMEM);
536 
537 	big = _slaballoc(sizeof(struct bigalloc), 0);
538 	if (big == NULL) {
539 		_vmem_free(*memptr, size);
540 		*memptr = NULL;
541 		return(ENOMEM);
542 	}
543 	bigp = bigalloc_lock(*memptr);
544 	big->base = *memptr;
545 	big->bytes = size;
546 	big->unused01 = 0;
547 	big->next = *bigp;
548 	*bigp = big;
549 	bigalloc_unlock(*memptr);
550 
551 	return(0);
552 }
553 
554 /*
555  * free() (SLAB ALLOCATOR) - do the obvious
556  */
557 void
558 free(void *ptr)
559 {
560 	_slabfree(ptr);
561 }
562 
563 /*
564  * _slaballoc()	(SLAB ALLOCATOR)
565  *
566  *	Allocate memory via the slab allocator.  If the request is too large,
567  *	or if it page-aligned beyond a certain size, we fall back to the
568  *	KMEM subsystem
569  */
570 static void *
571 _slaballoc(size_t size, int flags)
572 {
573 	slzone_t z;
574 	slchunk_t chunk;
575 	slglobaldata_t slgd;
576 	int chunking;
577 	int zi;
578 #ifdef INVARIANTS
579 	int i;
580 #endif
581 	int off;
582 
583 	/*
584 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
585 	 * Return a special pointer.  This is to maintain compatibility with
586 	 * the original malloc implementation.  Certain devices, such as the
587 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
588 	 * also realloc() later on.  Joy.
589 	 */
590 	if (size == 0)
591 		return(ZERO_LENGTH_PTR);
592 
593 	/*
594 	 * Handle large allocations directly.  There should not be very many
595 	 * of these so performance is not a big issue.
596 	 *
597 	 * The backend allocator is pretty nasty on a SMP system.   Use the
598 	 * slab allocator for one and two page-sized chunks even though we
599 	 * lose some efficiency.
600 	 */
601 	if (size >= ZoneLimit ||
602 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
603 		bigalloc_t big;
604 		bigalloc_t *bigp;
605 
606 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
607 		chunk = _vmem_alloc(size, PAGE_SIZE, flags);
608 		if (chunk == NULL)
609 			return(NULL);
610 
611 		big = _slaballoc(sizeof(struct bigalloc), 0);
612 		if (big == NULL) {
613 			_vmem_free(chunk, size);
614 			return(NULL);
615 		}
616 		bigp = bigalloc_lock(chunk);
617 		big->base = chunk;
618 		big->bytes = size;
619 		big->unused01 = 0;
620 		big->next = *bigp;
621 		*bigp = big;
622 		bigalloc_unlock(chunk);
623 
624 		return(chunk);
625 	}
626 
627 	/*
628 	 * Multi-threading support.  This needs work XXX.
629 	 *
630 	 * Choose a globaldata structure to allocate from.  If we cannot
631 	 * immediately get the lock try a different one.
632 	 *
633 	 * LastSLGD is a per-thread global.
634 	 */
635 	slgd = LastSLGD;
636 	if (slgd_trylock(slgd) != 0) {
637 		if (++slgd == &SLGlobalData[SLGD_MAX])
638 			slgd = &SLGlobalData[0];
639 		LastSLGD = slgd;
640 		slgd_lock(slgd);
641 	}
642 
643 	/*
644 	 * Attempt to allocate out of an existing zone.  If all zones are
645 	 * exhausted pull one off the free list or allocate a new one.
646 	 *
647 	 * Note: zoneindex() will panic of size is too large.
648 	 */
649 	zi = zoneindex(&size, &chunking);
650 	MASSERT(zi < NZONES);
651 
652 	if ((z = slgd->ZoneAry[zi]) == NULL) {
653 		/*
654 		 * Pull the zone off the free list.  If the zone on
655 		 * the free list happens to be correctly set up we
656 		 * do not have to reinitialize it.
657 		 */
658 		if ((z = slgd->FreeZones) != NULL) {
659 			slgd->FreeZones = z->z_Next;
660 			--slgd->NFreeZones;
661 			if (z->z_ChunkSize == size) {
662 				z->z_Magic = ZALLOC_SLAB_MAGIC;
663 				z->z_Next = slgd->ZoneAry[zi];
664 				slgd->ZoneAry[zi] = z;
665 				goto have_zone;
666 			}
667 			bzero(z, sizeof(struct slzone));
668 			z->z_Flags |= SLZF_UNOTZEROD;
669 		} else {
670 			z = _vmem_alloc(ZoneSize, ZoneSize, flags);
671 			if (z == NULL)
672 				goto fail;
673 		}
674 
675 		/*
676 		 * How big is the base structure?
677 		 */
678 #if defined(INVARIANTS)
679 		/*
680 		 * Make room for z_Bitmap.  An exact calculation is
681 		 * somewhat more complicated so don't make an exact
682 		 * calculation.
683 		 */
684 		off = offsetof(struct slzone,
685 				z_Bitmap[(ZoneSize / size + 31) / 32]);
686 		bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
687 #else
688 		off = sizeof(struct slzone);
689 #endif
690 
691 		/*
692 		 * Align the storage in the zone based on the chunking.
693 		 *
694 		 * Guarentee power-of-2 alignment for power-of-2-sized
695 		 * chunks.  Otherwise align based on the chunking size
696 		 * (typically 8 or 16 bytes for small allocations).
697 		 *
698 		 * NOTE: Allocations >= ZoneLimit are governed by the
699 		 * bigalloc code and typically only guarantee page-alignment.
700 		 *
701 		 * Set initial conditions for UIndex near the zone header
702 		 * to reduce unecessary page faults, vs semi-randomization
703 		 * to improve L1 cache saturation.
704 		 */
705 		if ((size | (size - 1)) + 1 == (size << 1))
706 			off = (off + size - 1) & ~(size - 1);
707 		else
708 			off = (off + chunking - 1) & ~(chunking - 1);
709 		z->z_Magic = ZALLOC_SLAB_MAGIC;
710 		z->z_GlobalData = slgd;
711 		z->z_ZoneIndex = zi;
712 		z->z_NMax = (ZoneSize - off) / size;
713 		z->z_NFree = z->z_NMax;
714 		z->z_BasePtr = (char *)z + off;
715 		/*z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;*/
716 		z->z_UIndex = z->z_UEndIndex = 0;
717 		z->z_ChunkSize = size;
718 		z->z_FirstFreePg = ZonePageCount;
719 		z->z_Next = slgd->ZoneAry[zi];
720 		slgd->ZoneAry[zi] = z;
721 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
722 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
723 			flags |= SAFLAG_PASSIVE;
724 		}
725 
726 		/*
727 		 * Slide the base index for initial allocations out of the
728 		 * next zone we create so we do not over-weight the lower
729 		 * part of the cpu memory caches.
730 		 */
731 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
732 					& (ZALLOC_MAX_ZONE_SIZE - 1);
733 	}
734 
735 	/*
736 	 * Ok, we have a zone from which at least one chunk is available.
737 	 *
738 	 * Remove us from the ZoneAry[] when we become empty
739 	 */
740 have_zone:
741 	MASSERT(z->z_NFree > 0);
742 
743 	if (--z->z_NFree == 0) {
744 		slgd->ZoneAry[zi] = z->z_Next;
745 		z->z_Next = NULL;
746 	}
747 
748 	/*
749 	 * Locate a chunk in a free page.  This attempts to localize
750 	 * reallocations into earlier pages without us having to sort
751 	 * the chunk list.  A chunk may still overlap a page boundary.
752 	 */
753 	while (z->z_FirstFreePg < ZonePageCount) {
754 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
755 #ifdef DIAGNOSTIC
756 			/*
757 			 * Diagnostic: c_Next is not total garbage.
758 			 */
759 			MASSERT(chunk->c_Next == NULL ||
760 			    ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
761 			    ((intptr_t)chunk & IN_SAME_PAGE_MASK));
762 #endif
763 #ifdef INVARIANTS
764 			chunk_mark_allocated(z, chunk);
765 #endif
766 			MASSERT((uintptr_t)chunk & ZoneMask);
767 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
768 			goto done;
769 		}
770 		++z->z_FirstFreePg;
771 	}
772 
773 	/*
774 	 * No chunks are available but NFree said we had some memory,
775 	 * so it must be available in the never-before-used-memory
776 	 * area governed by UIndex.  The consequences are very
777 	 * serious if our zone got corrupted so we use an explicit
778 	 * panic rather then a KASSERT.
779 	 */
780 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
781 
782 	if (++z->z_UIndex == z->z_NMax)
783 		z->z_UIndex = 0;
784 	if (z->z_UIndex == z->z_UEndIndex) {
785 		if (z->z_NFree != 0)
786 			_mpanic("slaballoc: corrupted zone");
787 	}
788 
789 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
790 		flags &= ~SAFLAG_ZERO;
791 		flags |= SAFLAG_PASSIVE;
792 	}
793 #if defined(INVARIANTS)
794 	chunk_mark_allocated(z, chunk);
795 #endif
796 
797 done:
798 	slgd_unlock(slgd);
799 	if (flags & SAFLAG_ZERO) {
800 		bzero(chunk, size);
801 #ifdef INVARIANTS
802 	} else if ((flags & (SAFLAG_ZERO|SAFLAG_PASSIVE)) == 0) {
803 		if (use_malloc_pattern) {
804 			for (i = 0; i < size; i += sizeof(int)) {
805 				*(int *)((char *)chunk + i) = -1;
806 			}
807 		}
808 		/* avoid accidental double-free check */
809 		chunk->c_Next = (void *)-1;
810 #endif
811 	}
812 	return(chunk);
813 fail:
814 	slgd_unlock(slgd);
815 	return(NULL);
816 }
817 
818 /*
819  * Reallocate memory within the chunk
820  */
821 static void *
822 _slabrealloc(void *ptr, size_t size)
823 {
824 	bigalloc_t *bigp;
825 	void *nptr;
826 	slzone_t z;
827 	size_t chunking;
828 
829 	if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
830 		return(_slaballoc(size, 0));
831 
832 	if (size == 0) {
833 	    free(ptr);
834 	    return(ZERO_LENGTH_PTR);
835 	}
836 
837 	/*
838 	 * Handle oversized allocations.  XXX we really should require
839 	 * that a size be passed to free() instead of this nonsense.
840 	 */
841 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
842 		bigalloc_t big;
843 		size_t bigbytes;
844 
845 		while ((big = *bigp) != NULL) {
846 			if (big->base == ptr) {
847 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
848 				bigbytes = big->bytes;
849 				bigalloc_unlock(ptr);
850 				if (bigbytes == size)
851 					return(ptr);
852 				if ((nptr = _slaballoc(size, 0)) == NULL)
853 					return(NULL);
854 				if (size > bigbytes)
855 					size = bigbytes;
856 				bcopy(ptr, nptr, size);
857 				_slabfree(ptr);
858 				return(nptr);
859 			}
860 			bigp = &big->next;
861 		}
862 		bigalloc_unlock(ptr);
863 	}
864 
865 	/*
866 	 * Get the original allocation's zone.  If the new request winds
867 	 * up using the same chunk size we do not have to do anything.
868 	 *
869 	 * NOTE: We don't have to lock the globaldata here, the fields we
870 	 * access here will not change at least as long as we have control
871 	 * over the allocation.
872 	 */
873 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
874 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
875 
876 	/*
877 	 * Use zoneindex() to chunk-align the new size, as long as the
878 	 * new size is not too large.
879 	 */
880 	if (size < ZoneLimit) {
881 		zoneindex(&size, &chunking);
882 		if (z->z_ChunkSize == size)
883 			return(ptr);
884 	}
885 
886 	/*
887 	 * Allocate memory for the new request size and copy as appropriate.
888 	 */
889 	if ((nptr = _slaballoc(size, 0)) != NULL) {
890 		if (size > z->z_ChunkSize)
891 			size = z->z_ChunkSize;
892 		bcopy(ptr, nptr, size);
893 		_slabfree(ptr);
894 	}
895 
896 	return(nptr);
897 }
898 
899 /*
900  * free (SLAB ALLOCATOR)
901  *
902  * Free a memory block previously allocated by malloc.  Note that we do not
903  * attempt to uplodate ks_loosememuse as MP races could prevent us from
904  * checking memory limits in malloc.
905  *
906  * MPSAFE
907  */
908 static void
909 _slabfree(void *ptr)
910 {
911 	slzone_t z;
912 	slchunk_t chunk;
913 	bigalloc_t big;
914 	bigalloc_t *bigp;
915 	slglobaldata_t slgd;
916 	size_t size;
917 	int pgno;
918 
919 	/*
920 	 * Handle NULL frees and special 0-byte allocations
921 	 */
922 	if (ptr == NULL)
923 		return;
924 	if (ptr == ZERO_LENGTH_PTR)
925 		return;
926 
927 	/*
928 	 * Handle oversized allocations.
929 	 */
930 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
931 		while ((big = *bigp) != NULL) {
932 			if (big->base == ptr) {
933 				*bigp = big->next;
934 				bigalloc_unlock(ptr);
935 				size = big->bytes;
936 				_slabfree(big);
937 #ifdef INVARIANTS
938 				MASSERT(sizeof(weirdary) <= size);
939 				bcopy(weirdary, ptr, sizeof(weirdary));
940 #endif
941 				_vmem_free(ptr, size);
942 				return;
943 			}
944 			bigp = &big->next;
945 		}
946 		bigalloc_unlock(ptr);
947 	}
948 
949 	/*
950 	 * Zone case.  Figure out the zone based on the fact that it is
951 	 * ZoneSize aligned.
952 	 */
953 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
954 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
955 
956 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
957 	chunk = ptr;
958 	slgd = z->z_GlobalData;
959 	slgd_lock(slgd);
960 
961 #ifdef INVARIANTS
962 	/*
963 	 * Attempt to detect a double-free.  To reduce overhead we only check
964 	 * if there appears to be link pointer at the base of the data.
965 	 */
966 	if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
967 		slchunk_t scan;
968 
969 		for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
970 			if (scan == chunk)
971 				_mpanic("Double free at %p", chunk);
972 		}
973 	}
974 	chunk_mark_free(z, chunk);
975 #endif
976 
977 	/*
978 	 * Put weird data into the memory to detect modifications after
979 	 * freeing, illegal pointer use after freeing (we should fault on
980 	 * the odd address), and so forth.
981 	 */
982 #ifdef INVARIANTS
983 	if (z->z_ChunkSize < sizeof(weirdary))
984 		bcopy(weirdary, chunk, z->z_ChunkSize);
985 	else
986 		bcopy(weirdary, chunk, sizeof(weirdary));
987 #endif
988 
989 	/*
990 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
991 	 * z_FirstFreePg.
992 	 */
993 	chunk->c_Next = z->z_PageAry[pgno];
994 	z->z_PageAry[pgno] = chunk;
995 	if (z->z_FirstFreePg > pgno)
996 		z->z_FirstFreePg = pgno;
997 
998 	/*
999 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1000 	 * must be added back onto the appropriate list.
1001 	 */
1002 	if (z->z_NFree++ == 0) {
1003 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1004 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1005 	}
1006 
1007 	/*
1008 	 * If the zone becomes totally free then move this zone to
1009 	 * the FreeZones list.
1010 	 *
1011 	 * Do not madvise here, avoiding the edge case where a malloc/free
1012 	 * loop is sitting on the edge of a new zone.
1013 	 *
1014 	 * We could leave at least one zone in the ZoneAry for the index,
1015 	 * using something like the below, but while this might be fine
1016 	 * for the kernel (who cares about ~10MB of wasted memory), it
1017 	 * probably isn't such a good idea for a user program.
1018 	 *
1019 	 * 	&& (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1020 	 */
1021 	if (z->z_NFree == z->z_NMax) {
1022 		slzone_t *pz;
1023 
1024 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1025 		while (z != *pz)
1026 			pz = &(*pz)->z_Next;
1027 		*pz = z->z_Next;
1028 		z->z_Magic = -1;
1029 		z->z_Next = slgd->FreeZones;
1030 		slgd->FreeZones = z;
1031 		++slgd->NFreeZones;
1032 	}
1033 
1034 	/*
1035 	 * Limit the number of zones we keep cached.
1036 	 */
1037 	while (slgd->NFreeZones > ZONE_RELS_THRESH) {
1038 		z = slgd->FreeZones;
1039 		slgd->FreeZones = z->z_Next;
1040 		--slgd->NFreeZones;
1041 		slgd_unlock(slgd);
1042 		_vmem_free(z, ZoneSize);
1043 		slgd_lock(slgd);
1044 	}
1045 	slgd_unlock(slgd);
1046 }
1047 
1048 #if defined(INVARIANTS)
1049 /*
1050  * Helper routines for sanity checks
1051  */
1052 static
1053 void
1054 chunk_mark_allocated(slzone_t z, void *chunk)
1055 {
1056 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1057 	__uint32_t *bitptr;
1058 
1059 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1060 	bitptr = &z->z_Bitmap[bitdex >> 5];
1061 	bitdex &= 31;
1062 	MASSERT((*bitptr & (1 << bitdex)) == 0);
1063 	*bitptr |= 1 << bitdex;
1064 }
1065 
1066 static
1067 void
1068 chunk_mark_free(slzone_t z, void *chunk)
1069 {
1070 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1071 	__uint32_t *bitptr;
1072 
1073 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1074 	bitptr = &z->z_Bitmap[bitdex >> 5];
1075 	bitdex &= 31;
1076 	MASSERT((*bitptr & (1 << bitdex)) != 0);
1077 	*bitptr &= ~(1 << bitdex);
1078 }
1079 
1080 #endif
1081 
1082 /*
1083  * _vmem_alloc()
1084  *
1085  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1086  *	alignment.
1087  *
1088  *	Alignment must be a multiple of PAGE_SIZE.
1089  *
1090  *	Size must be >= alignment.
1091  */
1092 static void *
1093 _vmem_alloc(size_t size, size_t align, int flags)
1094 {
1095 	char *addr;
1096 	char *save;
1097 	size_t excess;
1098 
1099 	/*
1100 	 * Map anonymous private memory.
1101 	 */
1102 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1103 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1104 	if (addr == MAP_FAILED)
1105 		return(NULL);
1106 
1107 	/*
1108 	 * Check alignment.  The misaligned offset is also the excess
1109 	 * amount.  If misaligned unmap the excess so we have a chance of
1110 	 * mapping at the next alignment point and recursively try again.
1111 	 *
1112 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1113 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1114 	 *   xxxxxxxxx				final excess calculation
1115 	 *   ^ returned address
1116 	 */
1117 	excess = (uintptr_t)addr & (align - 1);
1118 
1119 	if (excess) {
1120 		excess = align - excess;
1121 		save = addr;
1122 
1123 		munmap(save + excess, size - excess);
1124 		addr = _vmem_alloc(size, align, flags);
1125 		munmap(save, excess);
1126 	}
1127 	return((void *)addr);
1128 }
1129 
1130 /*
1131  * _vmem_free()
1132  *
1133  *	Free a chunk of memory allocated with _vmem_alloc()
1134  */
1135 static void
1136 _vmem_free(void *ptr, vm_size_t size)
1137 {
1138 	munmap(ptr, size);
1139 }
1140 
1141 /*
1142  * Panic on fatal conditions
1143  */
1144 static void
1145 _mpanic(const char *ctl, ...)
1146 {
1147 	va_list va;
1148 
1149 	if (malloc_panic == 0) {
1150 		malloc_panic = 1;
1151 		va_start(va, ctl);
1152 		vfprintf(stderr, ctl, va);
1153 		fprintf(stderr, "\n");
1154 		fflush(stderr);
1155 		va_end(va);
1156 	}
1157 	abort();
1158 }
1159