xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 0de61e28)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
34  *
35  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
36  */
37 
38 /*
39  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
40  * users of this code, so we've factored it out into a separate module.
41  * Thus, we keep this grunge out of the other kvm applications (i.e.,
42  * most other applications are interested only in open/close/read/nlist).
43  */
44 
45 #include <sys/user.h>	/* MUST BE FIRST */
46 #include <sys/conf.h>
47 #include <sys/param.h>
48 #include <sys/exec.h>
49 #include <sys/stat.h>
50 #include <sys/globaldata.h>
51 #include <sys/ioctl.h>
52 #include <sys/tty.h>
53 #include <sys/jail.h>
54 #include <fcntl.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <stddef.h>
58 #include <unistd.h>
59 #include <nlist.h>
60 
61 #include <cpu/pmap.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/swap_pager.h>
65 
66 #include <sys/sysctl.h>
67 
68 #include <limits.h>
69 #include <memory.h>
70 #include <paths.h>
71 
72 #include "kvm.h"
73 #include "kvm_private.h"
74 
75 dev_t	devid_from_dev(cdev_t dev);
76 
77 #define KREAD(kd, addr, obj) \
78 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
79 #define KREADSTR(kd, addr) \
80 	kvm_readstr(kd, (u_long)addr, NULL, NULL)
81 
82 static struct kinfo_proc *
83 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
84 {
85 	if (bp < kd->procend)
86 		return bp;
87 
88 	size_t pos = bp - kd->procend;
89 	size_t size = kd->procend - kd->procbase;
90 
91 	if (size == 0)
92 		size = 8;
93 	else
94 		size *= 2;
95 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
96 	if (kd->procbase == NULL)
97 		return NULL;
98 	kd->procend = kd->procbase + size;
99 	bp = kd->procbase + pos;
100 	return bp;
101 }
102 
103 /*
104  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
105  * compiled by userland.
106  */
107 dev_t
108 devid_from_dev(cdev_t dev)
109 {
110 	if (dev == NULL)
111 		return NOUDEV;
112 	if ((dev->si_umajor & 0xffffff00) ||
113 	    (dev->si_uminor & 0x0000ff00)) {
114 		return NOUDEV;
115 	}
116 	return((dev->si_umajor << 8) | dev->si_uminor);
117 }
118 
119 /*
120  * Helper routine which traverses the left hand side of a red-black sub-tree.
121  */
122 static uintptr_t
123 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
124 {
125 	for (;;) {
126 		if (KREAD(kd, lwppos, lwp)) {
127 			_kvm_err(kd, kd->program, "can't read lwp at %p",
128 				 (void *)lwppos);
129 			return ((uintptr_t)-1);
130 		}
131 		if (lwp->u.lwp_rbnode.rbe_left == NULL)
132 			break;
133 		lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
134 	}
135 	return(lwppos);
136 }
137 
138 /*
139  * Iterate LWPs in a process.
140  *
141  * The first lwp in a red-black tree is a left-side traversal of the tree.
142  */
143 static uintptr_t
144 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
145 {
146 	return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
147 }
148 
149 /*
150  * If the current element is the left side of the parent the next element
151  * will be a left side traversal of the parent's right side.  If the parent
152  * has no right side the next element will be the parent.
153  *
154  * If the current element is the right side of the parent the next element
155  * is the parent.
156  *
157  * If the parent is NULL we are done.
158  */
159 static uintptr_t
160 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp)
161 {
162 	uintptr_t nextpos;
163 
164 	nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
165 	if (nextpos) {
166 		if (KREAD(kd, nextpos, lwp)) {
167 			_kvm_err(kd, kd->program, "can't read lwp at %p",
168 				 (void *)lwppos);
169 			return ((uintptr_t)-1);
170 		}
171 		if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
172 			/*
173 			 * If we had gone down the left side the next element
174 			 * is a left hand traversal of the parent's right
175 			 * side, or the parent itself if there is no right
176 			 * side.
177 			 */
178 			lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
179 			if (lwppos)
180 				nextpos = kvm_lwptraverse(kd, lwp, lwppos);
181 		} else {
182 			/*
183 			 * If we had gone down the right side the next
184 			 * element is the parent.
185 			 */
186 			/* nextpos = nextpos */
187 		}
188 	}
189 	return(nextpos);
190 }
191 
192 /*
193  * Read proc's from memory file into buffer bp, which has space to hold
194  * at most maxcnt procs.
195  */
196 static int
197 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
198 	     struct kinfo_proc *bp)
199 {
200 	struct pgrp pgrp;
201 	struct pgrp tpgrp;
202 	struct globaldata gdata;
203 	struct session sess;
204 	struct session tsess;
205 	struct tty tty;
206 	struct proc proc;
207 	struct ucred ucred;
208 	struct thread thread;
209 	struct proc pproc;
210 	struct cdev cdev;
211 	struct vmspace vmspace;
212 	struct prison prison;
213 	struct sigacts sigacts;
214 	struct lwp lwp;
215 	uintptr_t lwppos;
216 	int count;
217 	char *wmesg;
218 
219 	count = 0;
220 
221 	for (; p != NULL; p = proc.p_list.le_next) {
222 		if (KREAD(kd, (u_long)p, &proc)) {
223 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
224 			return (-1);
225 		}
226 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
227 			_kvm_err(kd, kd->program, "can't read ucred at %p",
228 				 proc.p_ucred);
229 			return (-1);
230 		}
231 		proc.p_ucred = &ucred;
232 
233 		switch(what & ~KERN_PROC_FLAGMASK) {
234 
235 		case KERN_PROC_PID:
236 			if (proc.p_pid != (pid_t)arg)
237 				continue;
238 			break;
239 
240 		case KERN_PROC_UID:
241 			if (ucred.cr_uid != (uid_t)arg)
242 				continue;
243 			break;
244 
245 		case KERN_PROC_RUID:
246 			if (ucred.cr_ruid != (uid_t)arg)
247 				continue;
248 			break;
249 		}
250 
251 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
252 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
253 				 proc.p_pgrp);
254 			return (-1);
255 		}
256 		proc.p_pgrp = &pgrp;
257 		if (proc.p_pptr) {
258 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
259 			_kvm_err(kd, kd->program, "can't read pproc at %p",
260 				 proc.p_pptr);
261 			return (-1);
262 		  }
263 		  proc.p_pptr = &pproc;
264 		}
265 
266 		if (proc.p_sigacts) {
267 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
268 				_kvm_err(kd, kd->program,
269 					 "can't read sigacts at %p",
270 					 proc.p_sigacts);
271 				return (-1);
272 			}
273 			proc.p_sigacts = &sigacts;
274 		}
275 
276 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
277 			_kvm_err(kd, kd->program, "can't read session at %p",
278 				pgrp.pg_session);
279 			return (-1);
280 		}
281 		pgrp.pg_session = &sess;
282 
283 		if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
284 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
285 				_kvm_err(kd, kd->program,
286 					 "can't read tty at %p", sess.s_ttyp);
287 				return (-1);
288 			}
289 			sess.s_ttyp = &tty;
290 			if (tty.t_dev != NULL) {
291 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
292 					tty.t_dev = NULL;
293 				else
294 					tty.t_dev = &cdev;
295 			}
296 			if (tty.t_pgrp != NULL) {
297 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
298 					_kvm_err(kd, kd->program,
299 						 "can't read tpgrp at %p",
300 						tty.t_pgrp);
301 					return (-1);
302 				}
303 				tty.t_pgrp = &tpgrp;
304 			}
305 			if (tty.t_session != NULL) {
306 				if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
307 					_kvm_err(kd, kd->program,
308 						 "can't read tsess at %p",
309 						tty.t_session);
310 					return (-1);
311 				}
312 				tty.t_session = &tsess;
313 			}
314 		}
315 
316 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
317 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
318 				 proc.p_vmspace);
319 			return (-1);
320 		}
321 		proc.p_vmspace = &vmspace;
322 
323 		if (ucred.cr_prison != NULL) {
324 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
325 				_kvm_err(kd, kd->program, "can't read prison at %p",
326 					 ucred.cr_prison);
327 				return (-1);
328 			}
329 			ucred.cr_prison = &prison;
330 		}
331 
332 		switch (what & ~KERN_PROC_FLAGMASK) {
333 
334 		case KERN_PROC_PGRP:
335 			if (proc.p_pgrp->pg_id != (pid_t)arg)
336 				continue;
337 			break;
338 
339 		case KERN_PROC_TTY:
340 			if ((proc.p_flags & P_CONTROLT) == 0 ||
341 			    devid_from_dev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
342 					!= (dev_t)arg)
343 				continue;
344 			break;
345 		}
346 
347 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
348 			return (-1);
349 		fill_kinfo_proc(&proc, bp);
350 		bp->kp_paddr = (uintptr_t)p;
351 
352 		lwppos = kvm_firstlwp(kd, &lwp, &proc);
353 		if (lwppos == 0) {
354 			bp++;		/* Just export the proc then */
355 			count++;
356 		}
357 		while (lwppos && lwppos != (uintptr_t)-1) {
358 			if (p != lwp.lwp_proc) {
359 				_kvm_err(kd, kd->program, "lwp has wrong parent");
360 				return (-1);
361 			}
362 			lwp.lwp_proc = &proc;
363 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
364 				_kvm_err(kd, kd->program, "can't read thread at %p",
365 				    lwp.lwp_thread);
366 				return (-1);
367 			}
368 			lwp.lwp_thread = &thread;
369 
370 			if (thread.td_gd) {
371 				if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
372 					_kvm_err(kd, kd->program, "can't read"
373 						  " gd at %p",
374 						  thread.td_gd);
375 					return(-1);
376 				}
377 				thread.td_gd = &gdata;
378 			}
379 			if (thread.td_wmesg) {
380 				wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
381 				if (wmesg == NULL) {
382 					_kvm_err(kd, kd->program, "can't read"
383 						  " wmesg %p",
384 						  thread.td_wmesg);
385 					return(-1);
386 				}
387 				thread.td_wmesg = wmesg;
388 			} else {
389 				wmesg = NULL;
390 			}
391 
392 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
393 				return (-1);
394 			fill_kinfo_proc(&proc, bp);
395 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
396 			bp->kp_paddr = (uintptr_t)p;
397 			bp++;
398 			count++;
399 			if (wmesg)
400 				free(wmesg);
401 			if ((what & KERN_PROC_FLAG_LWP) == 0)
402 				break;
403 			lwppos = kvm_nextlwp(kd, lwppos, &lwp);
404 		}
405 		if (lwppos == (uintptr_t)-1)
406 			return(-1);
407 	}
408 	return (count);
409 }
410 
411 /*
412  * Build proc info array by reading in proc list from a crash dump.
413  * We reallocate kd->procbase as necessary.
414  */
415 static int
416 kvm_deadprocs(kvm_t *kd, int what, int arg, int allproc_hsize, long procglob)
417 {
418 	struct kinfo_proc *bp;
419 	struct proc *p;
420 	struct proclist **pl;
421 	int cnt, partcnt, n;
422 	u_long nextoff;
423 	u_long a_allproc;
424 
425 	cnt = partcnt = 0;
426 	nextoff = 0;
427 
428 	/*
429 	 * Dynamically allocate space for all the elements of the
430 	 * allprocs array and KREAD() them.
431 	 */
432 	pl = _kvm_malloc(kd, allproc_hsize * sizeof(struct proclist *));
433 	for (n = 0; n < allproc_hsize; n++) {
434 		pl[n] = _kvm_malloc(kd, sizeof(struct proclist));
435 		a_allproc = procglob +
436 			    sizeof(struct procglob) * n +
437 			    offsetof(struct procglob, allproc);
438 		nextoff = a_allproc;
439 		if (KREAD(kd, (u_long)nextoff, pl[n])) {
440 			_kvm_err(kd, kd->program, "can't read proclist at 0x%lx",
441 				a_allproc);
442 			return (-1);
443 		}
444 
445 		/* Ignore empty proclists */
446 		if (LIST_EMPTY(pl[n]))
447 			continue;
448 
449 		bp = kd->procbase + cnt;
450 		p = pl[n]->lh_first;
451 		partcnt = kvm_proclist(kd, what, arg, p, bp);
452 		if (partcnt < 0) {
453 			free(pl[n]);
454 			return (partcnt);
455 		}
456 
457 		cnt += partcnt;
458 		free(pl[n]);
459 	}
460 
461 	return (cnt);
462 }
463 
464 struct kinfo_proc *
465 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
466 {
467 	int mib[4], st, nprocs, allproc_hsize;
468 	int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
469 	size_t size;
470 
471 	if (kd->procbase != NULL) {
472 		free(kd->procbase);
473 		kd->procbase = NULL;
474 	}
475 	if (kvm_ishost(kd)) {
476 		size = 0;
477 		mib[0] = CTL_KERN;
478 		mib[1] = KERN_PROC;
479 		mib[2] = op;
480 		mib[3] = arg;
481 		st = sysctl(mib, miblen, NULL, &size, NULL, 0);
482 		if (st == -1) {
483 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
484 			return (0);
485 		}
486 		do {
487 			size += size / 10;
488 			kd->procbase = (struct kinfo_proc *)
489 			    _kvm_realloc(kd, kd->procbase, size);
490 			if (kd->procbase == 0)
491 				return (0);
492 			st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
493 		} while (st == -1 && errno == ENOMEM);
494 		if (st == -1) {
495 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
496 			return (0);
497 		}
498 		if (size % sizeof(struct kinfo_proc) != 0) {
499 			_kvm_err(kd, kd->program,
500 				"proc size mismatch (%zd total, %zd chunks)",
501 				size, sizeof(struct kinfo_proc));
502 			return (0);
503 		}
504 		nprocs = size / sizeof(struct kinfo_proc);
505 	} else {
506 		struct nlist nl[4], *p;
507 		u_long procglob;
508 
509 		nl[0].n_name = "_nprocs";
510 		nl[1].n_name = "_procglob";
511 		nl[2].n_name = "_allproc_hsize";
512 		nl[3].n_name = 0;
513 
514 		if (kvm_nlist(kd, nl) != 0) {
515 			for (p = nl; p->n_type != 0; ++p)
516 				;
517 			_kvm_err(kd, kd->program,
518 				 "%s: no such symbol", p->n_name);
519 			return (0);
520 		}
521 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
522 			_kvm_err(kd, kd->program, "can't read nprocs");
523 			return (0);
524 		}
525 		if (KREAD(kd, nl[2].n_value, &allproc_hsize)) {
526 			_kvm_err(kd, kd->program, "can't read allproc_hsize");
527 			return (0);
528 		}
529 		procglob = nl[1].n_value;
530 		nprocs = kvm_deadprocs(kd, op, arg, allproc_hsize, procglob);
531 #ifdef notdef
532 		size = nprocs * sizeof(struct kinfo_proc);
533 		(void)realloc(kd->procbase, size);
534 #endif
535 	}
536 	*cnt = nprocs;
537 	return (kd->procbase);
538 }
539 
540 void
541 _kvm_freeprocs(kvm_t *kd)
542 {
543 	if (kd->procbase) {
544 		free(kd->procbase);
545 		kd->procbase = 0;
546 	}
547 }
548 
549 void *
550 _kvm_realloc(kvm_t *kd, void *p, size_t n)
551 {
552 	void *np = (void *)realloc(p, n);
553 
554 	if (np == NULL) {
555 		free(p);
556 		_kvm_err(kd, kd->program, "out of memory");
557 	}
558 	return (np);
559 }
560 
561 #ifndef MAX
562 #define MAX(a, b) ((a) > (b) ? (a) : (b))
563 #endif
564 
565 /*
566  * Read in an argument vector from the user address space of process pid.
567  * addr if the user-space base address of narg null-terminated contiguous
568  * strings.  This is used to read in both the command arguments and
569  * environment strings.  Read at most maxcnt characters of strings.
570  */
571 static char **
572 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
573 {
574 	char *np, *cp, *ep, *ap;
575 	u_long oaddr = -1;
576 	u_long addr_min = VM_MIN_USER_ADDRESS;
577 	u_long addr_max = VM_MAX_USER_ADDRESS;
578 	int len, cc;
579 	char **argv;
580 
581 	/*
582 	 * Check that there aren't an unreasonable number of agruments,
583 	 * and that the address is in user space.
584 	 */
585 	if (narg > 512 || addr < addr_min || addr >= addr_max)
586 		return (0);
587 
588 	/*
589 	 * kd->argv : work space for fetching the strings from the target
590 	 *            process's space, and is converted for returning to caller
591 	 */
592 	if (kd->argv == 0) {
593 		/*
594 		 * Try to avoid reallocs.
595 		 */
596 		kd->argc = MAX(narg + 1, 32);
597 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
598 						sizeof(*kd->argv));
599 		if (kd->argv == 0)
600 			return (0);
601 	} else if (narg + 1 > kd->argc) {
602 		kd->argc = MAX(2 * kd->argc, narg + 1);
603 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
604 						sizeof(*kd->argv));
605 		if (kd->argv == 0)
606 			return (0);
607 	}
608 	/*
609 	 * kd->argspc : returned to user, this is where the kd->argv
610 	 *              arrays are left pointing to the collected strings.
611 	 */
612 	if (kd->argspc == 0) {
613 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
614 		if (kd->argspc == 0)
615 			return (0);
616 		kd->arglen = PAGE_SIZE;
617 	}
618 	/*
619 	 * kd->argbuf : used to pull in pages from the target process.
620 	 *              the strings are copied out of here.
621 	 */
622 	if (kd->argbuf == 0) {
623 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
624 		if (kd->argbuf == 0)
625 			return (0);
626 	}
627 
628 	/* Pull in the target process'es argv vector */
629 	cc = sizeof(char *) * narg;
630 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
631 		return (0);
632 	/*
633 	 * ap : saved start address of string we're working on in kd->argspc
634 	 * np : pointer to next place to write in kd->argspc
635 	 * len: length of data in kd->argspc
636 	 * argv: pointer to the argv vector that we are hunting around the
637 	 *       target process space for, and converting to addresses in
638 	 *       our address space (kd->argspc).
639 	 */
640 	ap = np = kd->argspc;
641 	argv = kd->argv;
642 	len = 0;
643 	/*
644 	 * Loop over pages, filling in the argument vector.
645 	 * Note that the argv strings could be pointing *anywhere* in
646 	 * the user address space and are no longer contiguous.
647 	 * Note that *argv is modified when we are going to fetch a string
648 	 * that crosses a page boundary.  We copy the next part of the string
649 	 * into to "np" and eventually convert the pointer.
650 	 */
651 	while (argv < kd->argv + narg && *argv != NULL) {
652 
653 		/* get the address that the current argv string is on */
654 		addr = rounddown2((u_long)*argv, PAGE_SIZE);
655 
656 		/* is it the same page as the last one? */
657 		if (addr != oaddr) {
658 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
659 			    PAGE_SIZE)
660 				return (0);
661 			oaddr = addr;
662 		}
663 
664 		/* offset within the page... kd->argbuf */
665 		addr = (u_long)*argv & (PAGE_SIZE - 1);
666 
667 		/* cp = start of string, cc = count of chars in this chunk */
668 		cp = kd->argbuf + addr;
669 		cc = PAGE_SIZE - addr;
670 
671 		/* dont get more than asked for by user process */
672 		if (maxcnt > 0 && cc > maxcnt - len)
673 			cc = maxcnt - len;
674 
675 		/* pointer to end of string if we found it in this page */
676 		ep = memchr(cp, '\0', cc);
677 		if (ep != NULL)
678 			cc = ep - cp + 1;
679 		/*
680 		 * at this point, cc is the count of the chars that we are
681 		 * going to retrieve this time. we may or may not have found
682 		 * the end of it.  (ep points to the null if the end is known)
683 		 */
684 
685 		/* will we exceed the malloc/realloced buffer? */
686 		if (len + cc > kd->arglen) {
687 			size_t off;
688 			char **pp;
689 			char *op = kd->argspc;
690 
691 			kd->arglen *= 2;
692 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
693 							  kd->arglen);
694 			if (kd->argspc == 0)
695 				return (0);
696 			/*
697 			 * Adjust argv pointers in case realloc moved
698 			 * the string space.
699 			 */
700 			off = kd->argspc - op;
701 			for (pp = kd->argv; pp < argv; pp++)
702 				*pp += off;
703 			ap += off;
704 			np += off;
705 		}
706 		/* np = where to put the next part of the string in kd->argspc*/
707 		/* np is kinda redundant.. could use "kd->argspc + len" */
708 		memcpy(np, cp, cc);
709 		np += cc;	/* inc counters */
710 		len += cc;
711 
712 		/*
713 		 * if end of string found, set the *argv pointer to the
714 		 * saved beginning of string, and advance. argv points to
715 		 * somewhere in kd->argv..  This is initially relative
716 		 * to the target process, but when we close it off, we set
717 		 * it to point in our address space.
718 		 */
719 		if (ep != NULL) {
720 			*argv++ = ap;
721 			ap = np;
722 		} else {
723 			/* update the address relative to the target process */
724 			*argv += cc;
725 		}
726 
727 		if (maxcnt > 0 && len >= maxcnt) {
728 			/*
729 			 * We're stopping prematurely.  Terminate the
730 			 * current string.
731 			 */
732 			if (ep == NULL) {
733 				*np = '\0';
734 				*argv++ = ap;
735 			}
736 			break;
737 		}
738 	}
739 	/* Make sure argv is terminated. */
740 	*argv = NULL;
741 	return (kd->argv);
742 }
743 
744 static void
745 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
746 {
747 	*addr = (u_long)p->ps_argvstr;
748 	*n = p->ps_nargvstr;
749 }
750 
751 static void
752 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
753 {
754 	*addr = (u_long)p->ps_envstr;
755 	*n = p->ps_nenvstr;
756 }
757 
758 /*
759  * Determine if the proc indicated by p is still active.
760  * This test is not 100% foolproof in theory, but chances of
761  * being wrong are very low.
762  */
763 static int
764 proc_verify(const struct kinfo_proc *p)
765 {
766 	struct kinfo_proc kp;
767 	int mib[4];
768 	size_t len;
769 	int error;
770 
771 	mib[0] = CTL_KERN;
772 	mib[1] = KERN_PROC;
773 	mib[2] = KERN_PROC_PID;
774 	mib[3] = p->kp_pid;
775 
776 	len = sizeof(kp);
777 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
778 	if (error)
779 		return (0);
780 
781 	error = (p->kp_pid == kp.kp_pid &&
782 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
783 	return (error);
784 }
785 
786 static char **
787 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
788 	   void (*info)(struct ps_strings *, u_long *, int *))
789 {
790 	char **ap;
791 	u_long addr;
792 	int cnt;
793 	static struct ps_strings arginfo;
794 	static u_long ps_strings;
795 	size_t len;
796 
797 	if (ps_strings == 0) {
798 		len = sizeof(ps_strings);
799 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
800 		    0) == -1)
801 			ps_strings = PS_STRINGS;
802 	}
803 
804 	/*
805 	 * Pointers are stored at the top of the user stack.
806 	 */
807 	if (kp->kp_stat == SZOMB ||
808 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
809 		      sizeof(arginfo)) != sizeof(arginfo))
810 		return (0);
811 
812 	(*info)(&arginfo, &addr, &cnt);
813 	if (cnt == 0)
814 		return (0);
815 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
816 	/*
817 	 * For live kernels, make sure this process didn't go away.
818 	 */
819 	if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
820 	    !proc_verify(kp))
821 		ap = NULL;
822 	return (ap);
823 }
824 
825 /*
826  * Get the command args.  This code is now machine independent.
827  */
828 char **
829 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
830 {
831 	int oid[8];
832 	int i;
833 	size_t bufsz;
834 	static unsigned long buflen;
835 	static char *buf, *p;
836 	static char **bufp;
837 	static int argc;
838 
839 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
840 		_kvm_err(kd, kd->program,
841 		    "cannot read user space from dead kernel");
842 		return (0);
843 	}
844 
845 	if (!buflen) {
846 		bufsz = sizeof(buflen);
847 		i = sysctlbyname("kern.ps_arg_cache_limit",
848 				 &buflen, &bufsz, NULL, 0);
849 		if (i == -1) {
850 			buflen = 0;
851 		} else {
852 			buf = malloc(buflen);
853 			if (buf == NULL)
854 				buflen = 0;
855 			argc = 32;
856 			bufp = malloc(sizeof(char *) * argc);
857 		}
858 	}
859 	if (buf != NULL) {
860 		oid[0] = CTL_KERN;
861 		oid[1] = KERN_PROC;
862 		oid[2] = KERN_PROC_ARGS;
863 		oid[3] = kp->kp_pid;
864 		oid[4] = kp->kp_lwp.kl_tid;
865 
866 		/*
867 		 * sysctl can take a pid in 5.7 or earlier.  In late
868 		 * 5.7 the sysctl can take a pid (4 args) or pid + tid
869 		 * (5 args).
870 		 */
871 		i = -1;
872 		if (kp->kp_lwp.kl_tid > 0) {
873 			bufsz = buflen;
874 			i = sysctl(oid, 5, buf, &bufsz, 0, 0);
875 		}
876 		if (i < 0) {
877 			bufsz = buflen;
878 			i = sysctl(oid, 4, buf, &bufsz, 0, 0);
879 		}
880 
881 		if (i == 0 && bufsz > 0) {
882 			i = 0;
883 			p = buf;
884 			do {
885 				bufp[i++] = p;
886 				p += strlen(p) + 1;
887 				if (i >= argc) {
888 					argc += argc;
889 					bufp = realloc(bufp,
890 					    sizeof(char *) * argc);
891 				}
892 			} while (p < buf + bufsz);
893 			bufp[i++] = NULL;
894 			return (bufp);
895 		}
896 	}
897 	if (kp->kp_flags & P_SYSTEM)
898 		return (NULL);
899 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
900 }
901 
902 char **
903 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
904 {
905 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
906 }
907 
908 /*
909  * Read from user space.  The user context is given by pid.
910  */
911 ssize_t
912 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
913 {
914 	char *cp;
915 	char procfile[MAXPATHLEN];
916 	ssize_t amount;
917 	int fd;
918 
919 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
920 		_kvm_err(kd, kd->program,
921 		    "cannot read user space from dead kernel");
922 		return (0);
923 	}
924 
925 	sprintf(procfile, "/proc/%d/mem", pid);
926 	fd = open(procfile, O_RDONLY, 0);
927 	if (fd < 0) {
928 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
929 		close(fd);
930 		return (0);
931 	}
932 
933 	cp = buf;
934 	while (len > 0) {
935 		errno = 0;
936 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
937 			_kvm_err(kd, kd->program, "invalid address (%lx) in %s",
938 			    uva, procfile);
939 			break;
940 		}
941 		amount = read(fd, cp, len);
942 		if (amount < 0) {
943 			_kvm_syserr(kd, kd->program, "error reading %s",
944 			    procfile);
945 			break;
946 		}
947 		if (amount == 0) {
948 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
949 			break;
950 		}
951 		cp += amount;
952 		uva += amount;
953 		len -= amount;
954 	}
955 
956 	close(fd);
957 	return ((ssize_t)(cp - buf));
958 }
959