xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 89a89091)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
38  *
39  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
40  */
41 
42 /*
43  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44  * users of this code, so we've factored it out into a separate module.
45  * Thus, we keep this grunge out of the other kvm applications (i.e.,
46  * most other applications are interested only in open/close/read/nlist).
47  */
48 
49 #include <sys/user.h>	/* MUST BE FIRST */
50 #include <sys/conf.h>
51 #include <sys/param.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/globaldata.h>
56 #include <sys/ioctl.h>
57 #include <sys/tty.h>
58 #include <sys/file.h>
59 #include <sys/jail.h>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <unistd.h>
63 #include <nlist.h>
64 #include <kvm.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <vm/swap_pager.h>
69 
70 #include <sys/sysctl.h>
71 
72 #include <limits.h>
73 #include <memory.h>
74 #include <paths.h>
75 
76 #include "kvm_private.h"
77 
78 #if used
79 static char *
80 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
81 {
82 #if defined(__FreeBSD__) || defined(__DragonFly__)
83 	/* XXX Stubbed out, our vm system is differnet */
84 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
85 	return(0);
86 #endif
87 }
88 #endif
89 
90 #define KREAD(kd, addr, obj) \
91 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
92 #define KREADSTR(kd, addr) \
93 	kvm_readstr(kd, (u_long)addr, NULL, NULL)
94 
95 static struct kinfo_proc *
96 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
97 {
98 	if (bp < kd->procend)
99 		return bp;
100 
101 	size_t pos = bp - kd->procend;
102 	size_t size = kd->procend - kd->procbase;
103 
104 	if (size == 0)
105 		size = 8;
106 	else
107 		size *= 2;
108 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
109 	if (kd->procbase == NULL)
110 		return NULL;
111 	kd->procend = kd->procbase + size;
112 	bp = kd->procbase + pos;
113 	return bp;
114 }
115 
116 /*
117  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
118  * compiled by userland.
119  */
120 dev_t
121 dev2udev(cdev_t dev)
122 {
123 	if (dev == NULL)
124 		return NOUDEV;
125 	if ((dev->si_umajor & 0xffffff00) ||
126 	    (dev->si_uminor & 0x0000ff00)) {
127 		return NOUDEV;
128 	}
129 	return((dev->si_umajor << 8) | dev->si_uminor);
130 }
131 
132 /*
133  * Helper routine which traverses the left hand side of a red-black sub-tree.
134  */
135 static uintptr_t
136 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
137 {
138 	for (;;) {
139 		if (KREAD(kd, lwppos, lwp)) {
140 			_kvm_err(kd, kd->program, "can't read lwp at %p",
141 				 (void *)lwppos);
142 			return ((uintptr_t)-1);
143 		}
144 		if (lwp->u.lwp_rbnode.rbe_left == NULL)
145 			break;
146 		lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
147 	}
148 	return(lwppos);
149 }
150 
151 /*
152  * Iterate LWPs in a process.
153  *
154  * The first lwp in a red-black tree is a left-side traversal of the tree.
155  */
156 static uintptr_t
157 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
158 {
159 	return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
160 }
161 
162 /*
163  * If the current element is the left side of the parent the next element
164  * will be a left side traversal of the parent's right side.  If the parent
165  * has no right side the next element will be the parent.
166  *
167  * If the current element is the right side of the parent the next element
168  * is the parent.
169  *
170  * If the parent is NULL we are done.
171  */
172 static uintptr_t
173 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp, struct proc *proc)
174 {
175 	uintptr_t nextpos;
176 
177 	nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
178 	if (nextpos) {
179 		if (KREAD(kd, nextpos, lwp)) {
180 			_kvm_err(kd, kd->program, "can't read lwp at %p",
181 				 (void *)lwppos);
182 			return ((uintptr_t)-1);
183 		}
184 		if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
185 			/*
186 			 * If we had gone down the left side the next element
187 			 * is a left hand traversal of the parent's right
188 			 * side, or the parent itself if there is no right
189 			 * side.
190 			 */
191 			lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
192 			if (lwppos)
193 				nextpos = kvm_lwptraverse(kd, lwp, lwppos);
194 		} else {
195 			/*
196 			 * If we had gone down the right side the next
197 			 * element is the parent.
198 			 */
199 			/* nextpos = nextpos */
200 		}
201 	}
202 	return(nextpos);
203 }
204 
205 /*
206  * Read proc's from memory file into buffer bp, which has space to hold
207  * at most maxcnt procs.
208  */
209 static int
210 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
211 	     struct kinfo_proc *bp)
212 {
213 	struct pgrp pgrp;
214 	struct pgrp tpgrp;
215 	struct globaldata gdata;
216 	struct session sess;
217 	struct session tsess;
218 	struct tty tty;
219 	struct proc proc;
220 	struct ucred ucred;
221 	struct thread thread;
222 	struct proc pproc;
223 	struct cdev cdev;
224 	struct vmspace vmspace;
225 	struct prison prison;
226 	struct sigacts sigacts;
227 	struct lwp lwp;
228 	uintptr_t lwppos;
229 	int count;
230 	char *wmesg;
231 
232 	count = 0;
233 
234 	for (; p != NULL; p = proc.p_list.le_next) {
235 		if (KREAD(kd, (u_long)p, &proc)) {
236 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
237 			return (-1);
238 		}
239 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
240 			_kvm_err(kd, kd->program, "can't read ucred at %p",
241 				 proc.p_ucred);
242 			return (-1);
243 		}
244 		proc.p_ucred = &ucred;
245 
246 		switch(what & ~KERN_PROC_FLAGMASK) {
247 
248 		case KERN_PROC_PID:
249 			if (proc.p_pid != (pid_t)arg)
250 				continue;
251 			break;
252 
253 		case KERN_PROC_UID:
254 			if (ucred.cr_uid != (uid_t)arg)
255 				continue;
256 			break;
257 
258 		case KERN_PROC_RUID:
259 			if (ucred.cr_ruid != (uid_t)arg)
260 				continue;
261 			break;
262 		}
263 
264 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
265 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
266 				 proc.p_pgrp);
267 			return (-1);
268 		}
269 		proc.p_pgrp = &pgrp;
270 		if (proc.p_pptr) {
271 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
272 			_kvm_err(kd, kd->program, "can't read pproc at %p",
273 				 proc.p_pptr);
274 			return (-1);
275 		  }
276 		  proc.p_pptr = &pproc;
277 		}
278 
279 		if (proc.p_sigacts) {
280 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
281 				_kvm_err(kd, kd->program,
282 					 "can't read sigacts at %p",
283 					 proc.p_sigacts);
284 				return (-1);
285 			}
286 			proc.p_sigacts = &sigacts;
287 		}
288 
289 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
290 			_kvm_err(kd, kd->program, "can't read session at %p",
291 				pgrp.pg_session);
292 			return (-1);
293 		}
294 		pgrp.pg_session = &sess;
295 
296 		if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
297 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
298 				_kvm_err(kd, kd->program,
299 					 "can't read tty at %p", sess.s_ttyp);
300 				return (-1);
301 			}
302 			sess.s_ttyp = &tty;
303 			if (tty.t_dev && tty.t_dev != NULL) {
304 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
305 					tty.t_dev = NULL;
306 				else
307 					tty.t_dev = &cdev;
308 			}
309 			if (tty.t_pgrp != NULL) {
310 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
311 					_kvm_err(kd, kd->program,
312 						 "can't read tpgrp at %p",
313 						tty.t_pgrp);
314 					return (-1);
315 				}
316 				tty.t_pgrp = &tpgrp;
317 			}
318 			if (tty.t_session != NULL) {
319 				if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
320 					_kvm_err(kd, kd->program,
321 						 "can't read tsess at %p",
322 						tty.t_session);
323 					return (-1);
324 				}
325 				tty.t_session = &tsess;
326 			}
327 		}
328 
329 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
330 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
331 				 proc.p_vmspace);
332 			return (-1);
333 		}
334 		proc.p_vmspace = &vmspace;
335 
336 		if (ucred.cr_prison != NULL) {
337 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
338 				_kvm_err(kd, kd->program, "can't read prison at %p",
339 					 ucred.cr_prison);
340 				return (-1);
341 			}
342 			ucred.cr_prison = &prison;
343 		}
344 
345 		switch (what & ~KERN_PROC_FLAGMASK) {
346 
347 		case KERN_PROC_PGRP:
348 			if (proc.p_pgrp->pg_id != (pid_t)arg)
349 				continue;
350 			break;
351 
352 		case KERN_PROC_TTY:
353 			if ((proc.p_flags & P_CONTROLT) == 0 ||
354 			    dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
355 					!= (dev_t)arg)
356 				continue;
357 			break;
358 		}
359 
360 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
361 			return (-1);
362 		fill_kinfo_proc(&proc, bp);
363 		bp->kp_paddr = (uintptr_t)p;
364 
365 		lwppos = kvm_firstlwp(kd, &lwp, &proc);
366 		if (lwppos == 0) {
367 			bp++;		/* Just export the proc then */
368 			count++;
369 		}
370 		while (lwppos && lwppos != (uintptr_t)-1) {
371 			if (p != lwp.lwp_proc) {
372 				_kvm_err(kd, kd->program, "lwp has wrong parent");
373 				return (-1);
374 			}
375 			lwp.lwp_proc = &proc;
376 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
377 				_kvm_err(kd, kd->program, "can't read thread at %p",
378 				    lwp.lwp_thread);
379 				return (-1);
380 			}
381 			lwp.lwp_thread = &thread;
382 
383 			if (thread.td_gd) {
384 				if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
385 					_kvm_err(kd, kd->program, "can't read"
386 						  " gd at %p",
387 						  thread.td_gd);
388 					return(-1);
389 				}
390 				thread.td_gd = &gdata;
391 			}
392 			if (thread.td_wmesg) {
393 				wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
394 				if (wmesg == NULL) {
395 					_kvm_err(kd, kd->program, "can't read"
396 						  " wmesg %p",
397 						  thread.td_wmesg);
398 					return(-1);
399 				}
400 				thread.td_wmesg = wmesg;
401 			} else {
402 				wmesg = NULL;
403 			}
404 
405 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
406 				return (-1);
407 			fill_kinfo_proc(&proc, bp);
408 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
409 			bp->kp_paddr = (uintptr_t)p;
410 			bp++;
411 			count++;
412 			if (wmesg)
413 				free(wmesg);
414 			if ((what & KERN_PROC_FLAG_LWP) == 0)
415 				break;
416 			lwppos = kvm_nextlwp(kd, lwppos, &lwp, &proc);
417 		}
418 		if (lwppos == (uintptr_t)-1)
419 			return(-1);
420 	}
421 	return (count);
422 }
423 
424 /*
425  * Build proc info array by reading in proc list from a crash dump.
426  * We reallocate kd->procbase as necessary.
427  */
428 static int
429 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
430 	      u_long a_zombproc)
431 {
432 	struct kinfo_proc *bp = kd->procbase;
433 	int acnt, zcnt;
434 	struct proc *p;
435 
436 	if (KREAD(kd, a_allproc, &p)) {
437 		_kvm_err(kd, kd->program, "cannot read allproc");
438 		return (-1);
439 	}
440 	acnt = kvm_proclist(kd, what, arg, p, bp);
441 	if (acnt < 0)
442 		return (acnt);
443 
444 	if (KREAD(kd, a_zombproc, &p)) {
445 		_kvm_err(kd, kd->program, "cannot read zombproc");
446 		return (-1);
447 	}
448 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt);
449 	if (zcnt < 0)
450 		zcnt = 0;
451 
452 	return (acnt + zcnt);
453 }
454 
455 struct kinfo_proc *
456 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
457 {
458 	int mib[4], st, nprocs;
459 	int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
460 	size_t size;
461 
462 	if (kd->procbase != 0) {
463 		free((void *)kd->procbase);
464 		/*
465 		 * Clear this pointer in case this call fails.  Otherwise,
466 		 * kvm_close() will free it again.
467 		 */
468 		kd->procbase = 0;
469 	}
470 	if (kvm_ishost(kd)) {
471 		size = 0;
472 		mib[0] = CTL_KERN;
473 		mib[1] = KERN_PROC;
474 		mib[2] = op;
475 		mib[3] = arg;
476 		st = sysctl(mib, miblen, NULL, &size, NULL, 0);
477 		if (st == -1) {
478 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
479 			return (0);
480 		}
481 		do {
482 			size += size / 10;
483 			kd->procbase = (struct kinfo_proc *)
484 			    _kvm_realloc(kd, kd->procbase, size);
485 			if (kd->procbase == 0)
486 				return (0);
487 			st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
488 		} while (st == -1 && errno == ENOMEM);
489 		if (st == -1) {
490 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
491 			return (0);
492 		}
493 		if (size % sizeof(struct kinfo_proc) != 0) {
494 			_kvm_err(kd, kd->program,
495 				"proc size mismatch (%zd total, %zd chunks)",
496 				size, sizeof(struct kinfo_proc));
497 			return (0);
498 		}
499 		nprocs = size / sizeof(struct kinfo_proc);
500 	} else {
501 		struct nlist nl[4], *p;
502 
503 		nl[0].n_name = "_nprocs";
504 		nl[1].n_name = "_allproc";
505 		nl[2].n_name = "_zombproc";
506 		nl[3].n_name = 0;
507 
508 		if (kvm_nlist(kd, nl) != 0) {
509 			for (p = nl; p->n_type != 0; ++p)
510 				;
511 			_kvm_err(kd, kd->program,
512 				 "%s: no such symbol", p->n_name);
513 			return (0);
514 		}
515 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
516 			_kvm_err(kd, kd->program, "can't read nprocs");
517 			return (0);
518 		}
519 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
520 				      nl[2].n_value);
521 #ifdef notdef
522 		size = nprocs * sizeof(struct kinfo_proc);
523 		(void)realloc(kd->procbase, size);
524 #endif
525 	}
526 	*cnt = nprocs;
527 	return (kd->procbase);
528 }
529 
530 void
531 _kvm_freeprocs(kvm_t *kd)
532 {
533 	if (kd->procbase) {
534 		free(kd->procbase);
535 		kd->procbase = 0;
536 	}
537 }
538 
539 void *
540 _kvm_realloc(kvm_t *kd, void *p, size_t n)
541 {
542 	void *np = (void *)realloc(p, n);
543 
544 	if (np == NULL) {
545 		free(p);
546 		_kvm_err(kd, kd->program, "out of memory");
547 	}
548 	return (np);
549 }
550 
551 #ifndef MAX
552 #define MAX(a, b) ((a) > (b) ? (a) : (b))
553 #endif
554 
555 /*
556  * Read in an argument vector from the user address space of process pid.
557  * addr if the user-space base address of narg null-terminated contiguous
558  * strings.  This is used to read in both the command arguments and
559  * environment strings.  Read at most maxcnt characters of strings.
560  */
561 static char **
562 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
563 {
564 	char *np, *cp, *ep, *ap;
565 	u_long oaddr = -1;
566 	int len, cc;
567 	char **argv;
568 
569 	/*
570 	 * Check that there aren't an unreasonable number of agruments,
571 	 * and that the address is in user space.
572 	 */
573 	if (narg > 512 ||
574 	    addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
575 		return (0);
576 	}
577 
578 	/*
579 	 * kd->argv : work space for fetching the strings from the target
580 	 *            process's space, and is converted for returning to caller
581 	 */
582 	if (kd->argv == 0) {
583 		/*
584 		 * Try to avoid reallocs.
585 		 */
586 		kd->argc = MAX(narg + 1, 32);
587 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
588 						sizeof(*kd->argv));
589 		if (kd->argv == 0)
590 			return (0);
591 	} else if (narg + 1 > kd->argc) {
592 		kd->argc = MAX(2 * kd->argc, narg + 1);
593 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
594 						sizeof(*kd->argv));
595 		if (kd->argv == 0)
596 			return (0);
597 	}
598 	/*
599 	 * kd->argspc : returned to user, this is where the kd->argv
600 	 *              arrays are left pointing to the collected strings.
601 	 */
602 	if (kd->argspc == 0) {
603 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
604 		if (kd->argspc == 0)
605 			return (0);
606 		kd->arglen = PAGE_SIZE;
607 	}
608 	/*
609 	 * kd->argbuf : used to pull in pages from the target process.
610 	 *              the strings are copied out of here.
611 	 */
612 	if (kd->argbuf == 0) {
613 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
614 		if (kd->argbuf == 0)
615 			return (0);
616 	}
617 
618 	/* Pull in the target process'es argv vector */
619 	cc = sizeof(char *) * narg;
620 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
621 		return (0);
622 	/*
623 	 * ap : saved start address of string we're working on in kd->argspc
624 	 * np : pointer to next place to write in kd->argspc
625 	 * len: length of data in kd->argspc
626 	 * argv: pointer to the argv vector that we are hunting around the
627 	 *       target process space for, and converting to addresses in
628 	 *       our address space (kd->argspc).
629 	 */
630 	ap = np = kd->argspc;
631 	argv = kd->argv;
632 	len = 0;
633 	/*
634 	 * Loop over pages, filling in the argument vector.
635 	 * Note that the argv strings could be pointing *anywhere* in
636 	 * the user address space and are no longer contiguous.
637 	 * Note that *argv is modified when we are going to fetch a string
638 	 * that crosses a page boundary.  We copy the next part of the string
639 	 * into to "np" and eventually convert the pointer.
640 	 */
641 	while (argv < kd->argv + narg && *argv != NULL) {
642 
643 		/* get the address that the current argv string is on */
644 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
645 
646 		/* is it the same page as the last one? */
647 		if (addr != oaddr) {
648 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
649 			    PAGE_SIZE)
650 				return (0);
651 			oaddr = addr;
652 		}
653 
654 		/* offset within the page... kd->argbuf */
655 		addr = (u_long)*argv & (PAGE_SIZE - 1);
656 
657 		/* cp = start of string, cc = count of chars in this chunk */
658 		cp = kd->argbuf + addr;
659 		cc = PAGE_SIZE - addr;
660 
661 		/* dont get more than asked for by user process */
662 		if (maxcnt > 0 && cc > maxcnt - len)
663 			cc = maxcnt - len;
664 
665 		/* pointer to end of string if we found it in this page */
666 		ep = memchr(cp, '\0', cc);
667 		if (ep != NULL)
668 			cc = ep - cp + 1;
669 		/*
670 		 * at this point, cc is the count of the chars that we are
671 		 * going to retrieve this time. we may or may not have found
672 		 * the end of it.  (ep points to the null if the end is known)
673 		 */
674 
675 		/* will we exceed the malloc/realloced buffer? */
676 		if (len + cc > kd->arglen) {
677 			size_t off;
678 			char **pp;
679 			char *op = kd->argspc;
680 
681 			kd->arglen *= 2;
682 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
683 							  kd->arglen);
684 			if (kd->argspc == 0)
685 				return (0);
686 			/*
687 			 * Adjust argv pointers in case realloc moved
688 			 * the string space.
689 			 */
690 			off = kd->argspc - op;
691 			for (pp = kd->argv; pp < argv; pp++)
692 				*pp += off;
693 			ap += off;
694 			np += off;
695 		}
696 		/* np = where to put the next part of the string in kd->argspc*/
697 		/* np is kinda redundant.. could use "kd->argspc + len" */
698 		memcpy(np, cp, cc);
699 		np += cc;	/* inc counters */
700 		len += cc;
701 
702 		/*
703 		 * if end of string found, set the *argv pointer to the
704 		 * saved beginning of string, and advance. argv points to
705 		 * somewhere in kd->argv..  This is initially relative
706 		 * to the target process, but when we close it off, we set
707 		 * it to point in our address space.
708 		 */
709 		if (ep != NULL) {
710 			*argv++ = ap;
711 			ap = np;
712 		} else {
713 			/* update the address relative to the target process */
714 			*argv += cc;
715 		}
716 
717 		if (maxcnt > 0 && len >= maxcnt) {
718 			/*
719 			 * We're stopping prematurely.  Terminate the
720 			 * current string.
721 			 */
722 			if (ep == NULL) {
723 				*np = '\0';
724 				*argv++ = ap;
725 			}
726 			break;
727 		}
728 	}
729 	/* Make sure argv is terminated. */
730 	*argv = NULL;
731 	return (kd->argv);
732 }
733 
734 static void
735 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
736 {
737 	*addr = (u_long)p->ps_argvstr;
738 	*n = p->ps_nargvstr;
739 }
740 
741 static void
742 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
743 {
744 	*addr = (u_long)p->ps_envstr;
745 	*n = p->ps_nenvstr;
746 }
747 
748 /*
749  * Determine if the proc indicated by p is still active.
750  * This test is not 100% foolproof in theory, but chances of
751  * being wrong are very low.
752  */
753 static int
754 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
755 {
756 	struct kinfo_proc kp;
757 	int mib[4];
758 	size_t len;
759 	int error;
760 
761 	mib[0] = CTL_KERN;
762 	mib[1] = KERN_PROC;
763 	mib[2] = KERN_PROC_PID;
764 	mib[3] = p->kp_pid;
765 
766 	len = sizeof(kp);
767 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
768 	if (error)
769 		return (0);
770 
771 	error = (p->kp_pid == kp.kp_pid &&
772 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
773 	return (error);
774 }
775 
776 static char **
777 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
778 	   void (*info)(struct ps_strings *, u_long *, int *))
779 {
780 	char **ap;
781 	u_long addr;
782 	int cnt;
783 	static struct ps_strings arginfo;
784 	static u_long ps_strings;
785 	size_t len;
786 
787 	if (ps_strings == 0) {
788 		len = sizeof(ps_strings);
789 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
790 		    0) == -1)
791 			ps_strings = PS_STRINGS;
792 	}
793 
794 	/*
795 	 * Pointers are stored at the top of the user stack.
796 	 */
797 	if (kp->kp_stat == SZOMB ||
798 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
799 		      sizeof(arginfo)) != sizeof(arginfo))
800 		return (0);
801 
802 	(*info)(&arginfo, &addr, &cnt);
803 	if (cnt == 0)
804 		return (0);
805 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
806 	/*
807 	 * For live kernels, make sure this process didn't go away.
808 	 */
809 	if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
810 	    !proc_verify(kd, kp))
811 		ap = NULL;
812 	return (ap);
813 }
814 
815 /*
816  * Get the command args.  This code is now machine independent.
817  */
818 char **
819 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
820 {
821 	int oid[4];
822 	int i;
823 	size_t bufsz;
824 	static unsigned long buflen;
825 	static char *buf, *p;
826 	static char **bufp;
827 	static int argc;
828 
829 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
830 		_kvm_err(kd, kd->program,
831 		    "cannot read user space from dead kernel");
832 		return (0);
833 	}
834 
835 	if (!buflen) {
836 		bufsz = sizeof(buflen);
837 		i = sysctlbyname("kern.ps_arg_cache_limit",
838 		    &buflen, &bufsz, NULL, 0);
839 		if (i == -1) {
840 			buflen = 0;
841 		} else {
842 			buf = malloc(buflen);
843 			if (buf == NULL)
844 				buflen = 0;
845 			argc = 32;
846 			bufp = malloc(sizeof(char *) * argc);
847 		}
848 	}
849 	if (buf != NULL) {
850 		oid[0] = CTL_KERN;
851 		oid[1] = KERN_PROC;
852 		oid[2] = KERN_PROC_ARGS;
853 		oid[3] = kp->kp_pid;
854 		bufsz = buflen;
855 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
856 		if (i == 0 && bufsz > 0) {
857 			i = 0;
858 			p = buf;
859 			do {
860 				bufp[i++] = p;
861 				p += strlen(p) + 1;
862 				if (i >= argc) {
863 					argc += argc;
864 					bufp = realloc(bufp,
865 					    sizeof(char *) * argc);
866 				}
867 			} while (p < buf + bufsz);
868 			bufp[i++] = NULL;
869 			return (bufp);
870 		}
871 	}
872 	if (kp->kp_flags & P_SYSTEM)
873 		return (NULL);
874 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
875 }
876 
877 char **
878 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
879 {
880 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
881 }
882 
883 /*
884  * Read from user space.  The user context is given by pid.
885  */
886 ssize_t
887 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
888 {
889 	char *cp;
890 	char procfile[MAXPATHLEN];
891 	ssize_t amount;
892 	int fd;
893 
894 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
895 		_kvm_err(kd, kd->program,
896 		    "cannot read user space from dead kernel");
897 		return (0);
898 	}
899 
900 	sprintf(procfile, "/proc/%d/mem", pid);
901 	fd = open(procfile, O_RDONLY, 0);
902 	if (fd < 0) {
903 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
904 		close(fd);
905 		return (0);
906 	}
907 
908 	cp = buf;
909 	while (len > 0) {
910 		errno = 0;
911 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
912 			_kvm_err(kd, kd->program, "invalid address (%lx) in %s",
913 			    uva, procfile);
914 			break;
915 		}
916 		amount = read(fd, cp, len);
917 		if (amount < 0) {
918 			_kvm_syserr(kd, kd->program, "error reading %s",
919 			    procfile);
920 			break;
921 		}
922 		if (amount == 0) {
923 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
924 			break;
925 		}
926 		cp += amount;
927 		uva += amount;
928 		len -= amount;
929 	}
930 
931 	close(fd);
932 	return ((ssize_t)(cp - buf));
933 }
934