xref: /dragonfly/libexec/rtld-elf/rtld.c (revision c03f08f3)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/libexec/rtld-elf/rtld.c,v 1.43.2.15 2003/02/20 20:42:46 kan Exp $
27  * $DragonFly: src/libexec/rtld-elf/rtld.c,v 1.27 2007/02/22 13:15:55 corecode Exp $
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/resident.h>
44 #include <sys/tls.h>
45 
46 #include <machine/tls.h>
47 
48 #include <dlfcn.h>
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <stdarg.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <unistd.h>
57 
58 #include "debug.h"
59 #include "rtld.h"
60 
61 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
62 #define LD_ARY_CACHE	16
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * This structure provides a reentrant way to keep a list of objects and
70  * check which ones have already been processed in some way.
71  */
72 typedef struct Struct_DoneList {
73     const Obj_Entry **objs;		/* Array of object pointers */
74     unsigned int num_alloc;		/* Allocated size of the array */
75     unsigned int num_used;		/* Number of array slots used */
76 } DoneList;
77 
78 /*
79  * Function declarations.
80  */
81 static void die(void);
82 static void digest_dynamic(Obj_Entry *, int);
83 static const char *_getenv_ld(const char *id);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
87 static bool donelist_check(DoneList *, const Obj_Entry *);
88 static void errmsg_restore(char *);
89 static char *errmsg_save(void);
90 static void *fill_search_info(const char *, size_t, void *);
91 static char *find_library(const char *, const Obj_Entry *);
92 static Obj_Entry *find_object(const char *);
93 static Obj_Entry *find_object2(const char *, int *, struct stat *);
94 static const char *gethints(void);
95 static void init_dag(Obj_Entry *);
96 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
97 static void init_rtld(caddr_t);
98 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
99 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
100   Objlist *list);
101 static bool is_exported(const Elf_Sym *);
102 static void linkmap_add(Obj_Entry *);
103 static void linkmap_delete(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(char *);
107 static void lock_check(void);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *);
110 static void objlist_call_init(Objlist *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void objlist_remove_unref(Objlist *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *name);
124 static void set_program_var(const char *, const void *);
125 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
126   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
127 static const Elf_Sym *symlook_list(const char *, unsigned long,
128   const Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
129 static const Elf_Sym *symlook_needed(const char *, unsigned long,
130   const Needed_Entry *, const Obj_Entry **, bool in_plt, DoneList *);
131 static void trace_loaded_objects(Obj_Entry *obj);
132 static void unlink_object(Obj_Entry *);
133 static void unload_object(Obj_Entry *);
134 static void unref_dag(Obj_Entry *);
135 
136 void r_debug_state(struct r_debug*, struct link_map*);
137 
138 /*
139  * Data declarations.
140  */
141 static char *error_message;	/* Message for dlerror(), or NULL */
142 struct r_debug r_debug;		/* for GDB; */
143 static bool trust;		/* False for setuid and setgid programs */
144 static const char *ld_bind_now;	/* Environment variable for immediate binding */
145 static const char *ld_debug;	/* Environment variable for debugging */
146 static const char *ld_library_path; /* Environment variable for search path */
147 static char *ld_preload;	/* Environment variable for libraries to
148 				   load first */
149 static const char *ld_tracing;	/* Called from ldd(1) to print libs */
150 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
151 static Obj_Entry **obj_tail;	/* Link field of last object in list */
152 static Obj_Entry **preload_tail;
153 static Obj_Entry *obj_main;	/* The main program shared object */
154 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
155 static unsigned int obj_count;	/* Number of objects in obj_list */
156 static int	ld_resident;	/* Non-zero if resident */
157 static const char *ld_ary[LD_ARY_CACHE];
158 static int	ld_index;
159 static Objlist initlist;
160 
161 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
162   STAILQ_HEAD_INITIALIZER(list_global);
163 static Objlist list_main =	/* Objects loaded at program startup */
164   STAILQ_HEAD_INITIALIZER(list_main);
165 static Objlist list_fini =	/* Objects needing fini() calls */
166   STAILQ_HEAD_INITIALIZER(list_fini);
167 
168 static LockInfo lockinfo;
169 
170 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
171 
172 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
173 
174 extern Elf_Dyn _DYNAMIC;
175 #pragma weak _DYNAMIC
176 
177 /*
178  * These are the functions the dynamic linker exports to application
179  * programs.  They are the only symbols the dynamic linker is willing
180  * to export from itself.
181  */
182 static func_ptr_type exports[] = {
183     (func_ptr_type) &_rtld_error,
184     (func_ptr_type) &dlclose,
185     (func_ptr_type) &dlerror,
186     (func_ptr_type) &dlopen,
187     (func_ptr_type) &dlsym,
188     (func_ptr_type) &dladdr,
189     (func_ptr_type) &dlinfo,
190 #ifdef __i386__
191     (func_ptr_type) &___tls_get_addr,
192 #endif
193     (func_ptr_type) &__tls_get_addr,
194     (func_ptr_type) &__tls_get_addr_tcb,
195     (func_ptr_type) &_rtld_allocate_tls,
196     (func_ptr_type) &_rtld_free_tls,
197     (func_ptr_type) &_rtld_call_init,
198     NULL
199 };
200 
201 /*
202  * Global declarations normally provided by crt1.  The dynamic linker is
203  * not built with crt1, so we have to provide them ourselves.
204  */
205 char *__progname;
206 char **environ;
207 
208 /*
209  * Globals to control TLS allocation.
210  */
211 size_t tls_last_offset;		/* Static TLS offset of last module */
212 size_t tls_last_size;		/* Static TLS size of last module */
213 size_t tls_static_space;	/* Static TLS space allocated */
214 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
215 int tls_max_index = 1;		/* Largest module index allocated */
216 
217 /*
218  * Fill in a DoneList with an allocation large enough to hold all of
219  * the currently-loaded objects.  Keep this as a macro since it calls
220  * alloca and we want that to occur within the scope of the caller.
221  */
222 #define donelist_init(dlp)					\
223     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
224     assert((dlp)->objs != NULL),				\
225     (dlp)->num_alloc = obj_count,				\
226     (dlp)->num_used = 0)
227 
228 static __inline void
229 rlock_acquire(void)
230 {
231     lockinfo.rlock_acquire(lockinfo.thelock);
232     atomic_incr_int(&lockinfo.rcount);
233     lock_check();
234 }
235 
236 static __inline void
237 wlock_acquire(void)
238 {
239     lockinfo.wlock_acquire(lockinfo.thelock);
240     atomic_incr_int(&lockinfo.wcount);
241     lock_check();
242 }
243 
244 static __inline void
245 rlock_release(void)
246 {
247     atomic_decr_int(&lockinfo.rcount);
248     lockinfo.rlock_release(lockinfo.thelock);
249 }
250 
251 static __inline void
252 wlock_release(void)
253 {
254     atomic_decr_int(&lockinfo.wcount);
255     lockinfo.wlock_release(lockinfo.thelock);
256 }
257 
258 /*
259  * Main entry point for dynamic linking.  The first argument is the
260  * stack pointer.  The stack is expected to be laid out as described
261  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
262  * Specifically, the stack pointer points to a word containing
263  * ARGC.  Following that in the stack is a null-terminated sequence
264  * of pointers to argument strings.  Then comes a null-terminated
265  * sequence of pointers to environment strings.  Finally, there is a
266  * sequence of "auxiliary vector" entries.
267  *
268  * The second argument points to a place to store the dynamic linker's
269  * exit procedure pointer and the third to a place to store the main
270  * program's object.
271  *
272  * The return value is the main program's entry point.
273  */
274 
275 func_ptr_type
276 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
277 {
278     Elf_Auxinfo *aux_info[AT_COUNT];
279     int i;
280     int argc;
281     char **argv;
282     char **env;
283     Elf_Auxinfo *aux;
284     Elf_Auxinfo *auxp;
285     const char *argv0;
286     Objlist_Entry *entry;
287     Obj_Entry *obj;
288 
289     ld_index = 0;	/* don't use old env cache in case we are resident */
290 
291     /*
292      * On entry, the dynamic linker itself has not been relocated yet.
293      * Be very careful not to reference any global data until after
294      * init_rtld has returned.  It is OK to reference file-scope statics
295      * and string constants, and to call static and global functions.
296      */
297 
298     /* Find the auxiliary vector on the stack. */
299     argc = *sp++;
300     argv = (char **) sp;
301     sp += argc + 1;	/* Skip over arguments and NULL terminator */
302     env = (char **) sp;
303 
304     /*
305      * If we aren't already resident we have to dig out some more info.
306      * Note that auxinfo does not exist when we are resident.
307      */
308     if (ld_resident == 0) {
309 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
310 	    ;
311 	aux = (Elf_Auxinfo *) sp;
312 
313 	/* Digest the auxiliary vector. */
314 	for (i = 0;  i < AT_COUNT;  i++)
315 	    aux_info[i] = NULL;
316 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
317 	    if (auxp->a_type < AT_COUNT)
318 		aux_info[auxp->a_type] = auxp;
319 	}
320 
321 	/* Initialize and relocate ourselves. */
322 	assert(aux_info[AT_BASE] != NULL);
323 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
324     }
325 
326     __progname = obj_rtld.path;
327     argv0 = argv[0] != NULL ? argv[0] : "(null)";
328     environ = env;
329 
330     trust = (geteuid() == getuid()) && (getegid() == getgid());
331 
332     ld_bind_now = _getenv_ld("LD_BIND_NOW");
333     if (trust) {
334 	ld_debug = _getenv_ld("LD_DEBUG");
335 	ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
336 	ld_preload = (char *)_getenv_ld("LD_PRELOAD");
337     }
338     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
339 
340     if (ld_debug != NULL && *ld_debug != '\0')
341 	debug = 1;
342     dbg("%s is initialized, base address = %p", __progname,
343 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
344     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
345     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
346 
347     /*
348      * If we are resident we can skip work that we have already done.
349      * Note that the stack is reset and there is no Elf_Auxinfo
350      * when running from a resident image, and the static globals setup
351      * between here and resident_skip will have already been setup.
352      */
353     if (ld_resident)
354 	goto resident_skip1;
355 
356     /*
357      * Load the main program, or process its program header if it is
358      * already loaded.
359      */
360     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
361 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
362 	dbg("loading main program");
363 	obj_main = map_object(fd, argv0, NULL);
364 	close(fd);
365 	if (obj_main == NULL)
366 	    die();
367     } else {				/* Main program already loaded. */
368 	const Elf_Phdr *phdr;
369 	int phnum;
370 	caddr_t entry;
371 
372 	dbg("processing main program's program header");
373 	assert(aux_info[AT_PHDR] != NULL);
374 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
375 	assert(aux_info[AT_PHNUM] != NULL);
376 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
377 	assert(aux_info[AT_PHENT] != NULL);
378 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
379 	assert(aux_info[AT_ENTRY] != NULL);
380 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
381 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
382 	    die();
383     }
384 
385     obj_main->path = xstrdup(argv0);
386     obj_main->mainprog = true;
387 
388     /*
389      * Get the actual dynamic linker pathname from the executable if
390      * possible.  (It should always be possible.)  That ensures that
391      * gdb will find the right dynamic linker even if a non-standard
392      * one is being used.
393      */
394     if (obj_main->interp != NULL &&
395       strcmp(obj_main->interp, obj_rtld.path) != 0) {
396 	free(obj_rtld.path);
397 	obj_rtld.path = xstrdup(obj_main->interp);
398 	__progname = obj_rtld.path;
399     }
400 
401     digest_dynamic(obj_main, 0);
402 
403     linkmap_add(obj_main);
404     linkmap_add(&obj_rtld);
405 
406     /* Link the main program into the list of objects. */
407     *obj_tail = obj_main;
408     obj_tail = &obj_main->next;
409     obj_count++;
410     obj_main->refcount++;
411     /* Make sure we don't call the main program's init and fini functions. */
412     obj_main->init = obj_main->fini = NULL;
413 
414     /* Initialize a fake symbol for resolving undefined weak references. */
415     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
416     sym_zero.st_shndx = SHN_ABS;
417 
418     dbg("loading LD_PRELOAD libraries");
419     if (load_preload_objects() == -1)
420 	die();
421     preload_tail = obj_tail;
422 
423     dbg("loading needed objects");
424     if (load_needed_objects(obj_main) == -1)
425 	die();
426 
427     /* Make a list of all objects loaded at startup. */
428     for (obj = obj_list;  obj != NULL;  obj = obj->next)
429 	objlist_push_tail(&list_main, obj);
430 
431 resident_skip1:
432 
433     if (ld_tracing) {		/* We're done */
434 	trace_loaded_objects(obj_main);
435 	exit(0);
436     }
437 
438     if (ld_resident)		/* XXX clean this up! */
439 	goto resident_skip2;
440 
441     if (getenv("LD_DUMP_REL_PRE") != NULL) {
442        dump_relocations(obj_main);
443        exit (0);
444     }
445 
446     /* setup TLS for main thread */
447     dbg("initializing initial thread local storage");
448     STAILQ_FOREACH(entry, &list_main, link) {
449 	/*
450 	 * Allocate all the initial objects out of the static TLS
451 	 * block even if they didn't ask for it.
452 	 */
453 	allocate_tls_offset(entry->obj);
454     }
455 
456     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
457 
458     /*
459      * Do not try to allocate the TLS here, let libc do it itself.
460      * (crt1 for the program will call _init_tls())
461      */
462 
463     if (relocate_objects(obj_main,
464 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
465 	die();
466 
467     dbg("doing copy relocations");
468     if (do_copy_relocations(obj_main) == -1)
469 	die();
470 
471 resident_skip2:
472 
473     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
474 	if (exec_sys_unregister(-1) < 0) {
475 	    dbg("exec_sys_unregister failed %d\n", errno);
476 	    exit(errno);
477 	}
478 	dbg("exec_sys_unregister success\n");
479 	exit(0);
480     }
481 
482     if (getenv("LD_DUMP_REL_POST") != NULL) {
483        dump_relocations(obj_main);
484        exit (0);
485     }
486 
487     dbg("initializing key program variables");
488     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
489     set_program_var("environ", env);
490 
491     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
492 	extern void resident_start(void);
493 	ld_resident = 1;
494 	if (exec_sys_register(resident_start) < 0) {
495 	    dbg("exec_sys_register failed %d\n", errno);
496 	    exit(errno);
497 	}
498 	dbg("exec_sys_register success\n");
499 	exit(0);
500     }
501 
502     dbg("initializing thread locks");
503     lockdflt_init(&lockinfo);
504     lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
505 
506     /* Make a list of init functions to call. */
507     objlist_init(&initlist);
508     initlist_add_objects(obj_list, preload_tail, &initlist);
509 
510     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
511 
512     /*
513      * Do NOT call the initlist here, give libc a chance to set up
514      * the initial TLS segment.  crt1 will then call _rtld_call_init().
515      */
516 
517     dbg("transferring control to program entry point = %p", obj_main->entry);
518 
519     /* Return the exit procedure and the program entry point. */
520     *exit_proc = rtld_exit;
521     *objp = obj_main;
522     return (func_ptr_type) obj_main->entry;
523 }
524 
525 /*
526  * Call the initialization list for dynamically loaded libraries.
527  * (called from crt1.c).
528  */
529 void
530 _rtld_call_init(void)
531 {
532     objlist_call_init(&initlist);
533     wlock_acquire();
534     objlist_clear(&initlist);
535     wlock_release();
536 }
537 
538 Elf_Addr
539 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
540 {
541     const Elf_Rel *rel;
542     const Elf_Sym *def;
543     const Obj_Entry *defobj;
544     Elf_Addr *where;
545     Elf_Addr target;
546 
547     rlock_acquire();
548     if (obj->pltrel)
549 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
550     else
551 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
552 
553     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
554     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
555     if (def == NULL)
556 	die();
557 
558     target = (Elf_Addr)(defobj->relocbase + def->st_value);
559 
560     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
561       defobj->strtab + def->st_name, basename(obj->path),
562       (void *)target, basename(defobj->path));
563 
564     reloc_jmpslot(where, target);
565     rlock_release();
566     return target;
567 }
568 
569 /*
570  * Error reporting function.  Use it like printf.  If formats the message
571  * into a buffer, and sets things up so that the next call to dlerror()
572  * will return the message.
573  */
574 void
575 _rtld_error(const char *fmt, ...)
576 {
577     static char buf[512];
578     va_list ap;
579 
580     va_start(ap, fmt);
581     vsnprintf(buf, sizeof buf, fmt, ap);
582     error_message = buf;
583     va_end(ap);
584 }
585 
586 /*
587  * Return a dynamically-allocated copy of the current error message, if any.
588  */
589 static char *
590 errmsg_save(void)
591 {
592     return error_message == NULL ? NULL : xstrdup(error_message);
593 }
594 
595 /*
596  * Restore the current error message from a copy which was previously saved
597  * by errmsg_save().  The copy is freed.
598  */
599 static void
600 errmsg_restore(char *saved_msg)
601 {
602     if (saved_msg == NULL)
603 	error_message = NULL;
604     else {
605 	_rtld_error("%s", saved_msg);
606 	free(saved_msg);
607     }
608 }
609 
610 const char *
611 basename(const char *name)
612 {
613     const char *p = strrchr(name, '/');
614     return p != NULL ? p + 1 : name;
615 }
616 
617 static void
618 die(void)
619 {
620     const char *msg = dlerror();
621 
622     if (msg == NULL)
623 	msg = "Fatal error";
624     errx(1, "%s", msg);
625 }
626 
627 /*
628  * Process a shared object's DYNAMIC section, and save the important
629  * information in its Obj_Entry structure.
630  */
631 static void
632 digest_dynamic(Obj_Entry *obj, int early)
633 {
634     const Elf_Dyn *dynp;
635     Needed_Entry **needed_tail = &obj->needed;
636     const Elf_Dyn *dyn_rpath = NULL;
637     int plttype = DT_REL;
638 
639     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
640 	switch (dynp->d_tag) {
641 
642 	case DT_REL:
643 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
644 	    break;
645 
646 	case DT_RELSZ:
647 	    obj->relsize = dynp->d_un.d_val;
648 	    break;
649 
650 	case DT_RELENT:
651 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
652 	    break;
653 
654 	case DT_JMPREL:
655 	    obj->pltrel = (const Elf_Rel *)
656 	      (obj->relocbase + dynp->d_un.d_ptr);
657 	    break;
658 
659 	case DT_PLTRELSZ:
660 	    obj->pltrelsize = dynp->d_un.d_val;
661 	    break;
662 
663 	case DT_RELA:
664 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
665 	    break;
666 
667 	case DT_RELASZ:
668 	    obj->relasize = dynp->d_un.d_val;
669 	    break;
670 
671 	case DT_RELAENT:
672 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
673 	    break;
674 
675 	case DT_PLTREL:
676 	    plttype = dynp->d_un.d_val;
677 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
678 	    break;
679 
680 	case DT_SYMTAB:
681 	    obj->symtab = (const Elf_Sym *)
682 	      (obj->relocbase + dynp->d_un.d_ptr);
683 	    break;
684 
685 	case DT_SYMENT:
686 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
687 	    break;
688 
689 	case DT_STRTAB:
690 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
691 	    break;
692 
693 	case DT_STRSZ:
694 	    obj->strsize = dynp->d_un.d_val;
695 	    break;
696 
697 	case DT_HASH:
698 	    {
699 		const Elf_Addr *hashtab = (const Elf_Addr *)
700 		  (obj->relocbase + dynp->d_un.d_ptr);
701 		obj->nbuckets = hashtab[0];
702 		obj->nchains = hashtab[1];
703 		obj->buckets = hashtab + 2;
704 		obj->chains = obj->buckets + obj->nbuckets;
705 	    }
706 	    break;
707 
708 	case DT_NEEDED:
709 	    if (!obj->rtld) {
710 		Needed_Entry *nep = NEW(Needed_Entry);
711 		nep->name = dynp->d_un.d_val;
712 		nep->obj = NULL;
713 		nep->next = NULL;
714 
715 		*needed_tail = nep;
716 		needed_tail = &nep->next;
717 	    }
718 	    break;
719 
720 	case DT_PLTGOT:
721 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
722 	    break;
723 
724 	case DT_TEXTREL:
725 	    obj->textrel = true;
726 	    break;
727 
728 	case DT_SYMBOLIC:
729 	    obj->symbolic = true;
730 	    break;
731 
732 	case DT_RPATH:
733 	case DT_RUNPATH:	/* XXX: process separately */
734 	    /*
735 	     * We have to wait until later to process this, because we
736 	     * might not have gotten the address of the string table yet.
737 	     */
738 	    dyn_rpath = dynp;
739 	    break;
740 
741 	case DT_SONAME:
742 	    /* Not used by the dynamic linker. */
743 	    break;
744 
745 	case DT_INIT:
746 	    obj->init = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
747 	    break;
748 
749 	case DT_FINI:
750 	    obj->fini = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
751 	    break;
752 
753 	case DT_DEBUG:
754 	    /* XXX - not implemented yet */
755 	    if (!early)
756 		dbg("Filling in DT_DEBUG entry");
757 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
758 	    break;
759 
760 	case DT_FLAGS:
761 		if (dynp->d_un.d_val & DF_ORIGIN) {
762 		    obj->origin_path = xmalloc(PATH_MAX);
763 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
764 			die();
765 		}
766 		if (dynp->d_un.d_val & DF_SYMBOLIC)
767 		    obj->symbolic = true;
768 		if (dynp->d_un.d_val & DF_TEXTREL)
769 		    obj->textrel = true;
770 		if (dynp->d_un.d_val & DF_BIND_NOW)
771 		    obj->bind_now = true;
772 		if (dynp->d_un.d_val & DF_STATIC_TLS)
773 		    ;
774 	    break;
775 
776 	default:
777 	    if (!early)
778 		dbg("Ignoring d_tag %d = %#x", dynp->d_tag, dynp->d_tag);
779 	    break;
780 	}
781     }
782 
783     obj->traced = false;
784 
785     if (plttype == DT_RELA) {
786 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
787 	obj->pltrel = NULL;
788 	obj->pltrelasize = obj->pltrelsize;
789 	obj->pltrelsize = 0;
790     }
791 
792     if (dyn_rpath != NULL)
793 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
794 }
795 
796 /*
797  * Process a shared object's program header.  This is used only for the
798  * main program, when the kernel has already loaded the main program
799  * into memory before calling the dynamic linker.  It creates and
800  * returns an Obj_Entry structure.
801  */
802 static Obj_Entry *
803 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
804 {
805     Obj_Entry *obj;
806     const Elf_Phdr *phlimit = phdr + phnum;
807     const Elf_Phdr *ph;
808     int nsegs = 0;
809 
810     obj = obj_new();
811     for (ph = phdr;  ph < phlimit;  ph++) {
812 	switch (ph->p_type) {
813 
814 	case PT_PHDR:
815 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
816 		_rtld_error("%s: invalid PT_PHDR", path);
817 		return NULL;
818 	    }
819 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
820 	    obj->phsize = ph->p_memsz;
821 	    break;
822 
823 	case PT_INTERP:
824 	    obj->interp = (const char *) ph->p_vaddr;
825 	    break;
826 
827 	case PT_LOAD:
828 	    if (nsegs == 0) {	/* First load segment */
829 		obj->vaddrbase = trunc_page(ph->p_vaddr);
830 		obj->mapbase = (caddr_t) obj->vaddrbase;
831 		obj->relocbase = obj->mapbase - obj->vaddrbase;
832 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
833 		  obj->vaddrbase;
834 	    } else {		/* Last load segment */
835 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
836 		  obj->vaddrbase;
837 	    }
838 	    nsegs++;
839 	    break;
840 
841 	case PT_DYNAMIC:
842 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
843 	    break;
844 
845 	case PT_TLS:
846 	    obj->tlsindex = 1;
847 	    obj->tlssize = ph->p_memsz;
848 	    obj->tlsalign = ph->p_align;
849 	    obj->tlsinitsize = ph->p_filesz;
850 	    obj->tlsinit = (void*) ph->p_vaddr;
851 	    break;
852 	}
853     }
854     if (nsegs < 1) {
855 	_rtld_error("%s: too few PT_LOAD segments", path);
856 	return NULL;
857     }
858 
859     obj->entry = entry;
860     return obj;
861 }
862 
863 static Obj_Entry *
864 dlcheck(void *handle)
865 {
866     Obj_Entry *obj;
867 
868     for (obj = obj_list;  obj != NULL;  obj = obj->next)
869 	if (obj == (Obj_Entry *) handle)
870 	    break;
871 
872     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
873 	_rtld_error("Invalid shared object handle %p", handle);
874 	return NULL;
875     }
876     return obj;
877 }
878 
879 /*
880  * If the given object is already in the donelist, return true.  Otherwise
881  * add the object to the list and return false.
882  */
883 static bool
884 donelist_check(DoneList *dlp, const Obj_Entry *obj)
885 {
886     unsigned int i;
887 
888     for (i = 0;  i < dlp->num_used;  i++)
889 	if (dlp->objs[i] == obj)
890 	    return true;
891     /*
892      * Our donelist allocation should always be sufficient.  But if
893      * our threads locking isn't working properly, more shared objects
894      * could have been loaded since we allocated the list.  That should
895      * never happen, but we'll handle it properly just in case it does.
896      */
897     if (dlp->num_used < dlp->num_alloc)
898 	dlp->objs[dlp->num_used++] = obj;
899     return false;
900 }
901 
902 /*
903  * Hash function for symbol table lookup.  Don't even think about changing
904  * this.  It is specified by the System V ABI.
905  */
906 unsigned long
907 elf_hash(const char *name)
908 {
909     const unsigned char *p = (const unsigned char *) name;
910     unsigned long h = 0;
911     unsigned long g;
912 
913     while (*p != '\0') {
914 	h = (h << 4) + *p++;
915 	if ((g = h & 0xf0000000) != 0)
916 	    h ^= g >> 24;
917 	h &= ~g;
918     }
919     return h;
920 }
921 
922 /*
923  * Find the library with the given name, and return its full pathname.
924  * The returned string is dynamically allocated.  Generates an error
925  * message and returns NULL if the library cannot be found.
926  *
927  * If the second argument is non-NULL, then it refers to an already-
928  * loaded shared object, whose library search path will be searched.
929  *
930  * The search order is:
931  *   LD_LIBRARY_PATH
932  *   rpath in the referencing file
933  *   ldconfig hints
934  *   /usr/lib
935  */
936 static char *
937 find_library(const char *name, const Obj_Entry *refobj)
938 {
939     char *pathname;
940 
941     if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
942 	if (name[0] != '/' && !trust) {
943 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
944 	      name);
945 	    return NULL;
946 	}
947 	return xstrdup(name);
948     }
949 
950     dbg(" Searching for \"%s\"", name);
951 
952     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
953       (refobj != NULL &&
954       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
955       (pathname = search_library_path(name, gethints())) != NULL ||
956       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
957 	return pathname;
958 
959     if(refobj != NULL && refobj->path != NULL) {
960 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
961 	  name, basename(refobj->path));
962     } else {
963 	_rtld_error("Shared object \"%s\" not found", name);
964     }
965     return NULL;
966 }
967 
968 /*
969  * Given a symbol number in a referencing object, find the corresponding
970  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
971  * no definition was found.  Returns a pointer to the Obj_Entry of the
972  * defining object via the reference parameter DEFOBJ_OUT.
973  */
974 const Elf_Sym *
975 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
976     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
977 {
978     const Elf_Sym *ref;
979     const Elf_Sym *def;
980     const Obj_Entry *defobj;
981     const char *name;
982     unsigned long hash;
983 
984     /*
985      * If we have already found this symbol, get the information from
986      * the cache.
987      */
988     if (symnum >= refobj->nchains)
989 	return NULL;	/* Bad object */
990     if (cache != NULL && cache[symnum].sym != NULL) {
991 	*defobj_out = cache[symnum].obj;
992 	return cache[symnum].sym;
993     }
994 
995     ref = refobj->symtab + symnum;
996     name = refobj->strtab + ref->st_name;
997     defobj = NULL;
998 
999     /*
1000      * We don't have to do a full scale lookup if the symbol is local.
1001      * We know it will bind to the instance in this load module; to
1002      * which we already have a pointer (ie ref). By not doing a lookup,
1003      * we not only improve performance, but it also avoids unresolvable
1004      * symbols when local symbols are not in the hash table.
1005      *
1006      * This might occur for TLS module relocations, which simply use
1007      * symbol 0.
1008      */
1009     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1010 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1011 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1012 		symnum);
1013 	}
1014 	hash = elf_hash(name);
1015 	def = symlook_default(name, hash, refobj, &defobj, in_plt);
1016     } else {
1017 	def = ref;
1018 	defobj = refobj;
1019     }
1020 
1021     /*
1022      * If we found no definition and the reference is weak, treat the
1023      * symbol as having the value zero.
1024      */
1025     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1026 	def = &sym_zero;
1027 	defobj = obj_main;
1028     }
1029 
1030     if (def != NULL) {
1031 	*defobj_out = defobj;
1032 	/* Record the information in the cache to avoid subsequent lookups. */
1033 	if (cache != NULL) {
1034 	    cache[symnum].sym = def;
1035 	    cache[symnum].obj = defobj;
1036 	}
1037     } else
1038 	_rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1039     return def;
1040 }
1041 
1042 /*
1043  * Return the search path from the ldconfig hints file, reading it if
1044  * necessary.  Returns NULL if there are problems with the hints file,
1045  * or if the search path there is empty.
1046  */
1047 static const char *
1048 gethints(void)
1049 {
1050     static char *hints;
1051 
1052     if (hints == NULL) {
1053 	int fd;
1054 	struct elfhints_hdr hdr;
1055 	char *p;
1056 
1057 	/* Keep from trying again in case the hints file is bad. */
1058 	hints = "";
1059 
1060 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
1061 	    return NULL;
1062 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1063 	  hdr.magic != ELFHINTS_MAGIC ||
1064 	  hdr.version != 1) {
1065 	    close(fd);
1066 	    return NULL;
1067 	}
1068 	p = xmalloc(hdr.dirlistlen + 1);
1069 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1070 	  read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) {
1071 	    free(p);
1072 	    close(fd);
1073 	    return NULL;
1074 	}
1075 	hints = p;
1076 	close(fd);
1077     }
1078     return hints[0] != '\0' ? hints : NULL;
1079 }
1080 
1081 static void
1082 init_dag(Obj_Entry *root)
1083 {
1084     DoneList donelist;
1085 
1086     donelist_init(&donelist);
1087     init_dag1(root, root, &donelist);
1088 }
1089 
1090 static void
1091 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1092 {
1093     const Needed_Entry *needed;
1094 
1095     if (donelist_check(dlp, obj))
1096 	return;
1097     objlist_push_tail(&obj->dldags, root);
1098     objlist_push_tail(&root->dagmembers, obj);
1099     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1100 	if (needed->obj != NULL)
1101 	    init_dag1(root, needed->obj, dlp);
1102 }
1103 
1104 /*
1105  * Initialize the dynamic linker.  The argument is the address at which
1106  * the dynamic linker has been mapped into memory.  The primary task of
1107  * this function is to relocate the dynamic linker.
1108  */
1109 static void
1110 init_rtld(caddr_t mapbase)
1111 {
1112     Obj_Entry objtmp;	/* Temporary rtld object */
1113 
1114     /*
1115      * Conjure up an Obj_Entry structure for the dynamic linker.
1116      *
1117      * The "path" member can't be initialized yet because string constatns
1118      * cannot yet be acessed. Below we will set it correctly.
1119      */
1120     objtmp.path = NULL;
1121     objtmp.rtld = true;
1122     objtmp.mapbase = mapbase;
1123 #ifdef PIC
1124     objtmp.relocbase = mapbase;
1125 #endif
1126     if (&_DYNAMIC != 0) {
1127 	objtmp.dynamic = rtld_dynamic(&objtmp);
1128 	digest_dynamic(&objtmp, 1);
1129 	assert(objtmp.needed == NULL);
1130 	assert(!objtmp.textrel);
1131 
1132 	/*
1133 	 * Temporarily put the dynamic linker entry into the object list, so
1134 	 * that symbols can be found.
1135 	 */
1136 
1137 	relocate_objects(&objtmp, true, &objtmp);
1138     }
1139 
1140     /* Initialize the object list. */
1141     obj_tail = &obj_list;
1142 
1143     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1144     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1145 
1146     /* Replace the path with a dynamically allocated copy. */
1147     obj_rtld.path = xstrdup(PATH_RTLD);
1148 
1149     r_debug.r_brk = r_debug_state;
1150     r_debug.r_state = RT_CONSISTENT;
1151 }
1152 
1153 /*
1154  * Add the init functions from a needed object list (and its recursive
1155  * needed objects) to "list".  This is not used directly; it is a helper
1156  * function for initlist_add_objects().  The write lock must be held
1157  * when this function is called.
1158  */
1159 static void
1160 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1161 {
1162     /* Recursively process the successor needed objects. */
1163     if (needed->next != NULL)
1164 	initlist_add_neededs(needed->next, list);
1165 
1166     /* Process the current needed object. */
1167     if (needed->obj != NULL)
1168 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1169 }
1170 
1171 /*
1172  * Scan all of the DAGs rooted in the range of objects from "obj" to
1173  * "tail" and add their init functions to "list".  This recurses over
1174  * the DAGs and ensure the proper init ordering such that each object's
1175  * needed libraries are initialized before the object itself.  At the
1176  * same time, this function adds the objects to the global finalization
1177  * list "list_fini" in the opposite order.  The write lock must be
1178  * held when this function is called.
1179  */
1180 static void
1181 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1182 {
1183     if (obj->init_done)
1184 	return;
1185     obj->init_done = true;
1186 
1187     /* Recursively process the successor objects. */
1188     if (&obj->next != tail)
1189 	initlist_add_objects(obj->next, tail, list);
1190 
1191     /* Recursively process the needed objects. */
1192     if (obj->needed != NULL)
1193 	initlist_add_neededs(obj->needed, list);
1194 
1195     /* Add the object to the init list. */
1196     if (obj->init != NULL)
1197 	objlist_push_tail(list, obj);
1198 
1199     /* Add the object to the global fini list in the reverse order. */
1200     if (obj->fini != NULL)
1201 	objlist_push_head(&list_fini, obj);
1202 }
1203 
1204 static bool
1205 is_exported(const Elf_Sym *def)
1206 {
1207     func_ptr_type value;
1208     const func_ptr_type *p;
1209 
1210     value = (func_ptr_type)(obj_rtld.relocbase + def->st_value);
1211     for (p = exports;  *p != NULL;  p++)
1212 	if (*p == value)
1213 	    return true;
1214     return false;
1215 }
1216 
1217 /*
1218  * Given a shared object, traverse its list of needed objects, and load
1219  * each of them.  Returns 0 on success.  Generates an error message and
1220  * returns -1 on failure.
1221  */
1222 static int
1223 load_needed_objects(Obj_Entry *first)
1224 {
1225     Obj_Entry *obj;
1226 
1227     for (obj = first;  obj != NULL;  obj = obj->next) {
1228 	Needed_Entry *needed;
1229 
1230 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1231 	    const char *name = obj->strtab + needed->name;
1232 	    char *path = find_library(name, obj);
1233 
1234 	    needed->obj = NULL;
1235 	    if (path == NULL && !ld_tracing)
1236 		return -1;
1237 
1238 	    if (path) {
1239 		needed->obj = load_object(path);
1240 		if (needed->obj == NULL && !ld_tracing)
1241 		    return -1;		/* XXX - cleanup */
1242 	    }
1243 	}
1244     }
1245 
1246     return 0;
1247 }
1248 
1249 static int
1250 load_preload_objects(void)
1251 {
1252     char *p = ld_preload;
1253     static const char delim[] = " \t:;";
1254 
1255     if (p == NULL)
1256 	return NULL;
1257 
1258     p += strspn(p, delim);
1259     while (*p != '\0') {
1260 	size_t len = strcspn(p, delim);
1261 	char *path;
1262 	char savech;
1263 
1264 	savech = p[len];
1265 	p[len] = '\0';
1266 	if ((path = find_library(p, NULL)) == NULL)
1267 	    return -1;
1268 	if (load_object(path) == NULL)
1269 	    return -1;	/* XXX - cleanup */
1270 	p[len] = savech;
1271 	p += len;
1272 	p += strspn(p, delim);
1273     }
1274     return 0;
1275 }
1276 
1277 /*
1278  * Returns a pointer to the Obj_Entry for the object with the given path.
1279  * Returns NULL if no matching object was found.
1280  */
1281 static Obj_Entry *
1282 find_object(const char *path)
1283 {
1284     Obj_Entry *obj;
1285 
1286     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1287 	if (strcmp(obj->path, path) == 0)
1288 	    return(obj);
1289     }
1290     return(NULL);
1291 }
1292 
1293 /*
1294  * Returns a pointer to the Obj_Entry for the object matching device and
1295  * inode of the given path. If no matching object was found, the descriptor
1296  * is returned in fd.
1297  * Returns with obj == NULL && fd == -1 on error.
1298  */
1299 static Obj_Entry *
1300 find_object2(const char *path, int *fd, struct stat *sb)
1301 {
1302     Obj_Entry *obj;
1303 
1304     if ((*fd = open(path, O_RDONLY)) == -1) {
1305 	_rtld_error("Cannot open \"%s\"", path);
1306 	return(NULL);
1307     }
1308 
1309     if (fstat(*fd, sb) == -1) {
1310 	_rtld_error("Cannot fstat \"%s\"", path);
1311 	close(*fd);
1312 	*fd = -1;
1313 	return NULL;
1314     }
1315 
1316     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1317 	if (obj->ino == sb->st_ino && obj->dev == sb->st_dev) {
1318 	    close(*fd);
1319 	    break;
1320 	}
1321     }
1322 
1323     return(obj);
1324 }
1325 
1326 /*
1327  * Load a shared object into memory, if it is not already loaded.  The
1328  * argument must be a string allocated on the heap.  This function assumes
1329  * responsibility for freeing it when necessary.
1330  *
1331  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1332  * on failure.
1333  */
1334 static Obj_Entry *
1335 load_object(char *path)
1336 {
1337     Obj_Entry *obj;
1338     int fd = -1;
1339     struct stat sb;
1340 
1341     obj = find_object(path);
1342     if (obj != NULL) {
1343 	obj->refcount++;
1344 	free(path);
1345 	return(obj);
1346     }
1347 
1348     obj = find_object2(path, &fd, &sb);
1349     if (obj != NULL) {
1350 	obj->refcount++;
1351 	free(path);
1352 	return(obj);
1353     } else if (fd == -1) {
1354 	free(path);
1355 	return(NULL);
1356     }
1357 
1358     dbg("loading \"%s\"", path);
1359     obj = map_object(fd, path, &sb);
1360     close(fd);
1361     if (obj == NULL) {
1362 	free(path);
1363         return NULL;
1364     }
1365 
1366     obj->path = path;
1367     digest_dynamic(obj, 0);
1368 
1369     *obj_tail = obj;
1370     obj_tail = &obj->next;
1371     obj_count++;
1372     linkmap_add(obj);	/* for GDB & dlinfo() */
1373 
1374     dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
1375 	obj->path);
1376     if (obj->textrel)
1377         dbg("  WARNING: %s has impure text", obj->path);
1378 
1379     obj->refcount++;
1380     return obj;
1381 }
1382 
1383 /*
1384  * Check for locking violations and die if one is found.
1385  */
1386 static void
1387 lock_check(void)
1388 {
1389     int rcount, wcount;
1390 
1391     rcount = lockinfo.rcount;
1392     wcount = lockinfo.wcount;
1393     assert(rcount >= 0);
1394     assert(wcount >= 0);
1395     if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1396 	_rtld_error("Application locking error: %d readers and %d writers"
1397 	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1398 	  rcount, wcount);
1399 	die();
1400     }
1401 }
1402 
1403 static Obj_Entry *
1404 obj_from_addr(const void *addr)
1405 {
1406     Obj_Entry *obj;
1407 
1408     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1409 	if (addr < (void *) obj->mapbase)
1410 	    continue;
1411 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1412 	    return obj;
1413     }
1414     return NULL;
1415 }
1416 
1417 /*
1418  * Call the finalization functions for each of the objects in "list"
1419  * which are unreferenced.  All of the objects are expected to have
1420  * non-NULL fini functions.
1421  */
1422 static void
1423 objlist_call_fini(Objlist *list)
1424 {
1425     Objlist_Entry *elm;
1426     char *saved_msg;
1427 
1428     /*
1429      * Preserve the current error message since a fini function might
1430      * call into the dynamic linker and overwrite it.
1431      */
1432     saved_msg = errmsg_save();
1433     STAILQ_FOREACH(elm, list, link) {
1434 	if (elm->obj->refcount == 0) {
1435 	    dbg("calling fini function for %s", elm->obj->path);
1436 	    (*elm->obj->fini)();
1437 	}
1438     }
1439     errmsg_restore(saved_msg);
1440 }
1441 
1442 /*
1443  * Call the initialization functions for each of the objects in
1444  * "list".  All of the objects are expected to have non-NULL init
1445  * functions.
1446  */
1447 static void
1448 objlist_call_init(Objlist *list)
1449 {
1450     Objlist_Entry *elm;
1451     char *saved_msg;
1452 
1453     /*
1454      * Preserve the current error message since an init function might
1455      * call into the dynamic linker and overwrite it.
1456      */
1457     saved_msg = errmsg_save();
1458     STAILQ_FOREACH(elm, list, link) {
1459 	dbg("calling init function for %s", elm->obj->path);
1460 	(*elm->obj->init)();
1461     }
1462     errmsg_restore(saved_msg);
1463 }
1464 
1465 static void
1466 objlist_clear(Objlist *list)
1467 {
1468     Objlist_Entry *elm;
1469 
1470     while (!STAILQ_EMPTY(list)) {
1471 	elm = STAILQ_FIRST(list);
1472 	STAILQ_REMOVE_HEAD(list, link);
1473 	free(elm);
1474     }
1475 }
1476 
1477 static Objlist_Entry *
1478 objlist_find(Objlist *list, const Obj_Entry *obj)
1479 {
1480     Objlist_Entry *elm;
1481 
1482     STAILQ_FOREACH(elm, list, link)
1483 	if (elm->obj == obj)
1484 	    return elm;
1485     return NULL;
1486 }
1487 
1488 static void
1489 objlist_init(Objlist *list)
1490 {
1491     STAILQ_INIT(list);
1492 }
1493 
1494 static void
1495 objlist_push_head(Objlist *list, Obj_Entry *obj)
1496 {
1497     Objlist_Entry *elm;
1498 
1499     elm = NEW(Objlist_Entry);
1500     elm->obj = obj;
1501     STAILQ_INSERT_HEAD(list, elm, link);
1502 }
1503 
1504 static void
1505 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1506 {
1507     Objlist_Entry *elm;
1508 
1509     elm = NEW(Objlist_Entry);
1510     elm->obj = obj;
1511     STAILQ_INSERT_TAIL(list, elm, link);
1512 }
1513 
1514 static void
1515 objlist_remove(Objlist *list, Obj_Entry *obj)
1516 {
1517     Objlist_Entry *elm;
1518 
1519     if ((elm = objlist_find(list, obj)) != NULL) {
1520 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1521 	free(elm);
1522     }
1523 }
1524 
1525 /*
1526  * Remove all of the unreferenced objects from "list".
1527  */
1528 static void
1529 objlist_remove_unref(Objlist *list)
1530 {
1531     Objlist newlist;
1532     Objlist_Entry *elm;
1533 
1534     STAILQ_INIT(&newlist);
1535     while (!STAILQ_EMPTY(list)) {
1536 	elm = STAILQ_FIRST(list);
1537 	STAILQ_REMOVE_HEAD(list, link);
1538 	if (elm->obj->refcount == 0)
1539 	    free(elm);
1540 	else
1541 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1542     }
1543     *list = newlist;
1544 }
1545 
1546 /*
1547  * Relocate newly-loaded shared objects.  The argument is a pointer to
1548  * the Obj_Entry for the first such object.  All objects from the first
1549  * to the end of the list of objects are relocated.  Returns 0 on success,
1550  * or -1 on failure.
1551  */
1552 static int
1553 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1554 {
1555     Obj_Entry *obj;
1556 
1557     for (obj = first;  obj != NULL;  obj = obj->next) {
1558 	if (obj != rtldobj)
1559 	    dbg("relocating \"%s\"", obj->path);
1560 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1561 	    obj->symtab == NULL || obj->strtab == NULL) {
1562 	    _rtld_error("%s: Shared object has no run-time symbol table",
1563 	      obj->path);
1564 	    return -1;
1565 	}
1566 
1567 	if (obj->textrel) {
1568 	    /* There are relocations to the write-protected text segment. */
1569 	    if (mprotect(obj->mapbase, obj->textsize,
1570 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1571 		_rtld_error("%s: Cannot write-enable text segment: %s",
1572 		  obj->path, strerror(errno));
1573 		return -1;
1574 	    }
1575 	}
1576 
1577 	/* Process the non-PLT relocations. */
1578 	if (reloc_non_plt(obj, rtldobj))
1579 		return -1;
1580 
1581 	/*
1582 	 * Reprotect the text segment.  Make sure it is included in the
1583 	 * core dump since we modified it.  This unfortunately causes the
1584 	 * entire text segment to core-out but we don't have much of a
1585 	 * choice.  We could try to only reenable core dumps on pages
1586 	 * in which relocations occured but that is likely most of the text
1587 	 * pages anyway, and even that would not work because the rest of
1588 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
1589 	 * (created due to our modifications) backed by the original OBJT_VNODE
1590 	 * object, and the ELF coredump code is currently only able to dump
1591 	 * vnode records for pure vnode-backed mappings, not vnode backings
1592 	 * to memory objects.
1593 	 */
1594 	if (obj->textrel) {
1595 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
1596 	    if (mprotect(obj->mapbase, obj->textsize,
1597 	      PROT_READ|PROT_EXEC) == -1) {
1598 		_rtld_error("%s: Cannot write-protect text segment: %s",
1599 		  obj->path, strerror(errno));
1600 		return -1;
1601 	    }
1602 	}
1603 
1604 	/* Process the PLT relocations. */
1605 	if (reloc_plt(obj) == -1)
1606 	    return -1;
1607 	/* Relocate the jump slots if we are doing immediate binding. */
1608 	if (obj->bind_now || bind_now)
1609 	    if (reloc_jmpslots(obj) == -1)
1610 		return -1;
1611 
1612 
1613 	/*
1614 	 * Set up the magic number and version in the Obj_Entry.  These
1615 	 * were checked in the crt1.o from the original ElfKit, so we
1616 	 * set them for backward compatibility.
1617 	 */
1618 	obj->magic = RTLD_MAGIC;
1619 	obj->version = RTLD_VERSION;
1620 
1621 	/* Set the special PLT or GOT entries. */
1622 	init_pltgot(obj);
1623     }
1624 
1625     return 0;
1626 }
1627 
1628 /*
1629  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1630  * before the process exits.
1631  */
1632 static void
1633 rtld_exit(void)
1634 {
1635     Obj_Entry *obj;
1636 
1637     dbg("rtld_exit()");
1638     /* Clear all the reference counts so the fini functions will be called. */
1639     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1640 	obj->refcount = 0;
1641     objlist_call_fini(&list_fini);
1642     /* No need to remove the items from the list, since we are exiting. */
1643 }
1644 
1645 static void *
1646 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1647 {
1648     if (path == NULL)
1649 	return (NULL);
1650 
1651     path += strspn(path, ":;");
1652     while (*path != '\0') {
1653 	size_t len;
1654 	char  *res;
1655 
1656 	len = strcspn(path, ":;");
1657 	res = callback(path, len, arg);
1658 
1659 	if (res != NULL)
1660 	    return (res);
1661 
1662 	path += len;
1663 	path += strspn(path, ":;");
1664     }
1665 
1666     return (NULL);
1667 }
1668 
1669 struct try_library_args {
1670     const char	*name;
1671     size_t	 namelen;
1672     char	*buffer;
1673     size_t	 buflen;
1674 };
1675 
1676 static void *
1677 try_library_path(const char *dir, size_t dirlen, void *param)
1678 {
1679     struct try_library_args *arg;
1680 
1681     arg = param;
1682     if (*dir == '/' || trust) {
1683 	char *pathname;
1684 
1685 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1686 		return (NULL);
1687 
1688 	pathname = arg->buffer;
1689 	strncpy(pathname, dir, dirlen);
1690 	pathname[dirlen] = '/';
1691 	strcpy(pathname + dirlen + 1, arg->name);
1692 
1693 	dbg("  Trying \"%s\"", pathname);
1694 	if (access(pathname, F_OK) == 0) {		/* We found it */
1695 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1696 	    strcpy(pathname, arg->buffer);
1697 	    return (pathname);
1698 	}
1699     }
1700     return (NULL);
1701 }
1702 
1703 static char *
1704 search_library_path(const char *name, const char *path)
1705 {
1706     char *p;
1707     struct try_library_args arg;
1708 
1709     if (path == NULL)
1710 	return NULL;
1711 
1712     arg.name = name;
1713     arg.namelen = strlen(name);
1714     arg.buffer = xmalloc(PATH_MAX);
1715     arg.buflen = PATH_MAX;
1716 
1717     p = path_enumerate(path, try_library_path, &arg);
1718 
1719     free(arg.buffer);
1720 
1721     return (p);
1722 }
1723 
1724 int
1725 dlclose(void *handle)
1726 {
1727     Obj_Entry *root;
1728 
1729     wlock_acquire();
1730     root = dlcheck(handle);
1731     if (root == NULL) {
1732 	wlock_release();
1733 	return -1;
1734     }
1735 
1736     /* Unreference the object and its dependencies. */
1737     root->dl_refcount--;
1738     unref_dag(root);
1739 
1740     if (root->refcount == 0) {
1741 	/*
1742 	 * The object is no longer referenced, so we must unload it.
1743 	 * First, call the fini functions with no locks held.
1744 	 */
1745 	wlock_release();
1746 	objlist_call_fini(&list_fini);
1747 	wlock_acquire();
1748 	objlist_remove_unref(&list_fini);
1749 
1750 	/* Finish cleaning up the newly-unreferenced objects. */
1751 	GDB_STATE(RT_DELETE,&root->linkmap);
1752 	unload_object(root);
1753 	GDB_STATE(RT_CONSISTENT,NULL);
1754     }
1755     wlock_release();
1756     return 0;
1757 }
1758 
1759 const char *
1760 dlerror(void)
1761 {
1762     char *msg = error_message;
1763     error_message = NULL;
1764     return msg;
1765 }
1766 
1767 void *
1768 dlopen(const char *name, int mode)
1769 {
1770     Obj_Entry **old_obj_tail;
1771     Obj_Entry *obj;
1772     Objlist initlist;
1773     int result;
1774 
1775     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1776     if (ld_tracing != NULL)
1777 	environ = (char **)*get_program_var_addr("environ");
1778 
1779     objlist_init(&initlist);
1780 
1781     wlock_acquire();
1782     GDB_STATE(RT_ADD,NULL);
1783 
1784     old_obj_tail = obj_tail;
1785     obj = NULL;
1786     if (name == NULL) {
1787 	obj = obj_main;
1788 	obj->refcount++;
1789     } else {
1790 	char *path = find_library(name, obj_main);
1791 	if (path != NULL)
1792 	    obj = load_object(path);
1793     }
1794 
1795     if (obj) {
1796 	obj->dl_refcount++;
1797 	if ((mode & RTLD_GLOBAL) && objlist_find(&list_global, obj) == NULL)
1798 	    objlist_push_tail(&list_global, obj);
1799 	mode &= RTLD_MODEMASK;
1800 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1801 	    assert(*old_obj_tail == obj);
1802 
1803 	    result = load_needed_objects(obj);
1804 	    if (result != -1 && ld_tracing)
1805 		goto trace;
1806 
1807 	    if (result == -1 ||
1808 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1809 	       &obj_rtld)) == -1) {
1810 		obj->dl_refcount--;
1811 		unref_dag(obj);
1812 		if (obj->refcount == 0)
1813 		    unload_object(obj);
1814 		obj = NULL;
1815 	    } else {
1816 		/* Make list of init functions to call. */
1817 		initlist_add_objects(obj, &obj->next, &initlist);
1818 	    }
1819 	} else if (ld_tracing)
1820 	    goto trace;
1821     }
1822 
1823     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1824 
1825     /* Call the init functions with no locks held. */
1826     wlock_release();
1827     objlist_call_init(&initlist);
1828     wlock_acquire();
1829     objlist_clear(&initlist);
1830     wlock_release();
1831     return obj;
1832 trace:
1833     trace_loaded_objects(obj);
1834     wlock_release();
1835     exit(0);
1836 }
1837 
1838 void *
1839 dlsym(void *handle, const char *name)
1840 {
1841     const Obj_Entry *obj;
1842     unsigned long hash;
1843     const Elf_Sym *def;
1844     const Obj_Entry *defobj;
1845 
1846     hash = elf_hash(name);
1847     def = NULL;
1848     defobj = NULL;
1849 
1850     rlock_acquire();
1851     if (handle == NULL || handle == RTLD_NEXT ||
1852 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1853 	void *retaddr;
1854 
1855 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1856 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1857 	    _rtld_error("Cannot determine caller's shared object");
1858 	    rlock_release();
1859 	    return NULL;
1860 	}
1861 	if (handle == NULL) {	/* Just the caller's shared object. */
1862 	    def = symlook_obj(name, hash, obj, true);
1863 	    defobj = obj;
1864 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1865 		   handle == RTLD_SELF) { /* ... caller included */
1866 	    if (handle == RTLD_NEXT)
1867 		obj = obj->next;
1868 	    for (; obj != NULL; obj = obj->next) {
1869 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1870 		    defobj = obj;
1871 		    break;
1872 		}
1873 	    }
1874 	} else {
1875 	    assert(handle == RTLD_DEFAULT);
1876 	    def = symlook_default(name, hash, obj, &defobj, true);
1877 	}
1878     } else {
1879 	DoneList donelist;
1880 
1881 	if ((obj = dlcheck(handle)) == NULL) {
1882 	    rlock_release();
1883 	    return NULL;
1884 	}
1885 
1886 	donelist_init(&donelist);
1887 	if (obj->mainprog) {
1888 	    /* Search main program and all libraries loaded by it. */
1889 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1890 	      &donelist);
1891 	} else {
1892 	    Needed_Entry fake;
1893 
1894 	    /* Search the given object and its needed objects. */
1895 	    fake.next = NULL;
1896 	    fake.obj = (Obj_Entry *)obj;
1897 	    fake.name = 0;
1898 	    def = symlook_needed(name, hash, &fake, &defobj, true,
1899 	      &donelist);
1900 	}
1901     }
1902 
1903     if (def != NULL) {
1904 	rlock_release();
1905 	return defobj->relocbase + def->st_value;
1906     }
1907 
1908     _rtld_error("Undefined symbol \"%s\"", name);
1909     rlock_release();
1910     return NULL;
1911 }
1912 
1913 int
1914 dladdr(const void *addr, Dl_info *info)
1915 {
1916     const Obj_Entry *obj;
1917     const Elf_Sym *def;
1918     void *symbol_addr;
1919     unsigned long symoffset;
1920 
1921     rlock_acquire();
1922     obj = obj_from_addr(addr);
1923     if (obj == NULL) {
1924         _rtld_error("No shared object contains address");
1925 	rlock_release();
1926         return 0;
1927     }
1928     info->dli_fname = obj->path;
1929     info->dli_fbase = obj->mapbase;
1930     info->dli_saddr = (void *)0;
1931     info->dli_sname = NULL;
1932 
1933     /*
1934      * Walk the symbol list looking for the symbol whose address is
1935      * closest to the address sent in.
1936      */
1937     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1938         def = obj->symtab + symoffset;
1939 
1940         /*
1941          * For skip the symbol if st_shndx is either SHN_UNDEF or
1942          * SHN_COMMON.
1943          */
1944         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1945             continue;
1946 
1947         /*
1948          * If the symbol is greater than the specified address, or if it
1949          * is further away from addr than the current nearest symbol,
1950          * then reject it.
1951          */
1952         symbol_addr = obj->relocbase + def->st_value;
1953         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1954             continue;
1955 
1956         /* Update our idea of the nearest symbol. */
1957         info->dli_sname = obj->strtab + def->st_name;
1958         info->dli_saddr = symbol_addr;
1959 
1960         /* Exact match? */
1961         if (info->dli_saddr == addr)
1962             break;
1963     }
1964     rlock_release();
1965     return 1;
1966 }
1967 
1968 int
1969 dlinfo(void *handle, int request, void *p)
1970 {
1971     const Obj_Entry *obj;
1972     int error;
1973 
1974     rlock_acquire();
1975 
1976     if (handle == NULL || handle == RTLD_SELF) {
1977 	void *retaddr;
1978 
1979 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1980 	if ((obj = obj_from_addr(retaddr)) == NULL)
1981 	    _rtld_error("Cannot determine caller's shared object");
1982     } else
1983 	obj = dlcheck(handle);
1984 
1985     if (obj == NULL) {
1986 	rlock_release();
1987 	return (-1);
1988     }
1989 
1990     error = 0;
1991     switch (request) {
1992     case RTLD_DI_LINKMAP:
1993 	*((struct link_map const **)p) = &obj->linkmap;
1994 	break;
1995     case RTLD_DI_ORIGIN:
1996 	error = rtld_dirname(obj->path, p);
1997 	break;
1998 
1999     case RTLD_DI_SERINFOSIZE:
2000     case RTLD_DI_SERINFO:
2001 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2002 	break;
2003 
2004     default:
2005 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2006 	error = -1;
2007     }
2008 
2009     rlock_release();
2010 
2011     return (error);
2012 }
2013 
2014 struct fill_search_info_args {
2015     int		 request;
2016     unsigned int flags;
2017     Dl_serinfo  *serinfo;
2018     Dl_serpath  *serpath;
2019     char	*strspace;
2020 };
2021 
2022 static void *
2023 fill_search_info(const char *dir, size_t dirlen, void *param)
2024 {
2025     struct fill_search_info_args *arg;
2026 
2027     arg = param;
2028 
2029     if (arg->request == RTLD_DI_SERINFOSIZE) {
2030 	arg->serinfo->dls_cnt ++;
2031 	arg->serinfo->dls_size += dirlen + 1;
2032     } else {
2033 	struct dl_serpath *s_entry;
2034 
2035 	s_entry = arg->serpath;
2036 	s_entry->dls_name  = arg->strspace;
2037 	s_entry->dls_flags = arg->flags;
2038 
2039 	strncpy(arg->strspace, dir, dirlen);
2040 	arg->strspace[dirlen] = '\0';
2041 
2042 	arg->strspace += dirlen + 1;
2043 	arg->serpath++;
2044     }
2045 
2046     return (NULL);
2047 }
2048 
2049 static int
2050 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2051 {
2052     struct dl_serinfo _info;
2053     struct fill_search_info_args args;
2054 
2055     args.request = RTLD_DI_SERINFOSIZE;
2056     args.serinfo = &_info;
2057 
2058     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2059     _info.dls_cnt  = 0;
2060 
2061     path_enumerate(ld_library_path, fill_search_info, &args);
2062     path_enumerate(obj->rpath, fill_search_info, &args);
2063     path_enumerate(gethints(), fill_search_info, &args);
2064     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2065 
2066 
2067     if (request == RTLD_DI_SERINFOSIZE) {
2068 	info->dls_size = _info.dls_size;
2069 	info->dls_cnt = _info.dls_cnt;
2070 	return (0);
2071     }
2072 
2073     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2074 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2075 	return (-1);
2076     }
2077 
2078     args.request  = RTLD_DI_SERINFO;
2079     args.serinfo  = info;
2080     args.serpath  = &info->dls_serpath[0];
2081     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2082 
2083     args.flags = LA_SER_LIBPATH;
2084     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2085 	return (-1);
2086 
2087     args.flags = LA_SER_RUNPATH;
2088     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2089 	return (-1);
2090 
2091     args.flags = LA_SER_CONFIG;
2092     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2093 	return (-1);
2094 
2095     args.flags = LA_SER_DEFAULT;
2096     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2097 	return (-1);
2098     return (0);
2099 }
2100 
2101 static int
2102 rtld_dirname(const char *path, char *bname)
2103 {
2104     const char *endp;
2105 
2106     /* Empty or NULL string gets treated as "." */
2107     if (path == NULL || *path == '\0') {
2108 	bname[0] = '.';
2109 	bname[1] = '\0';
2110 	return (0);
2111     }
2112 
2113     /* Strip trailing slashes */
2114     endp = path + strlen(path) - 1;
2115     while (endp > path && *endp == '/')
2116 	endp--;
2117 
2118     /* Find the start of the dir */
2119     while (endp > path && *endp != '/')
2120 	endp--;
2121 
2122     /* Either the dir is "/" or there are no slashes */
2123     if (endp == path) {
2124 	bname[0] = *endp == '/' ? '/' : '.';
2125 	bname[1] = '\0';
2126 	return (0);
2127     } else {
2128 	do {
2129 	    endp--;
2130 	} while (endp > path && *endp == '/');
2131     }
2132 
2133     if (endp - path + 2 > PATH_MAX)
2134     {
2135 	_rtld_error("Filename is too long: %s", path);
2136 	return(-1);
2137     }
2138 
2139     strncpy(bname, path, endp - path + 1);
2140     bname[endp - path + 1] = '\0';
2141     return (0);
2142 }
2143 
2144 static void
2145 linkmap_add(Obj_Entry *obj)
2146 {
2147     struct link_map *l = &obj->linkmap;
2148     struct link_map *prev;
2149 
2150     obj->linkmap.l_name = obj->path;
2151     obj->linkmap.l_addr = obj->mapbase;
2152     obj->linkmap.l_ld = obj->dynamic;
2153 #ifdef __mips__
2154     /* GDB needs load offset on MIPS to use the symbols */
2155     obj->linkmap.l_offs = obj->relocbase;
2156 #endif
2157 
2158     if (r_debug.r_map == NULL) {
2159 	r_debug.r_map = l;
2160 	return;
2161     }
2162 
2163     /*
2164      * Scan to the end of the list, but not past the entry for the
2165      * dynamic linker, which we want to keep at the very end.
2166      */
2167     for (prev = r_debug.r_map;
2168       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2169       prev = prev->l_next)
2170 	;
2171 
2172     /* Link in the new entry. */
2173     l->l_prev = prev;
2174     l->l_next = prev->l_next;
2175     if (l->l_next != NULL)
2176 	l->l_next->l_prev = l;
2177     prev->l_next = l;
2178 }
2179 
2180 static void
2181 linkmap_delete(Obj_Entry *obj)
2182 {
2183     struct link_map *l = &obj->linkmap;
2184 
2185     if (l->l_prev == NULL) {
2186 	if ((r_debug.r_map = l->l_next) != NULL)
2187 	    l->l_next->l_prev = NULL;
2188 	return;
2189     }
2190 
2191     if ((l->l_prev->l_next = l->l_next) != NULL)
2192 	l->l_next->l_prev = l->l_prev;
2193 }
2194 
2195 /*
2196  * Function for the debugger to set a breakpoint on to gain control.
2197  *
2198  * The two parameters allow the debugger to easily find and determine
2199  * what the runtime loader is doing and to whom it is doing it.
2200  *
2201  * When the loadhook trap is hit (r_debug_state, set at program
2202  * initialization), the arguments can be found on the stack:
2203  *
2204  *  +8   struct link_map *m
2205  *  +4   struct r_debug  *rd
2206  *  +0   RetAddr
2207  */
2208 void
2209 r_debug_state(struct r_debug* rd, struct link_map *m)
2210 {
2211 }
2212 
2213 /*
2214  * Get address of the pointer variable in the main program.
2215  */
2216 static const void **
2217 get_program_var_addr(const char *name)
2218 {
2219     const Obj_Entry *obj;
2220     unsigned long hash;
2221 
2222     hash = elf_hash(name);
2223     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2224 	const Elf_Sym *def;
2225 
2226 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2227 	    const void **addr;
2228 
2229 	    addr = (const void **)(obj->relocbase + def->st_value);
2230 	    return addr;
2231 	}
2232     }
2233     return NULL;
2234 }
2235 
2236 /*
2237  * Set a pointer variable in the main program to the given value.  This
2238  * is used to set key variables such as "environ" before any of the
2239  * init functions are called.
2240  */
2241 static void
2242 set_program_var(const char *name, const void *value)
2243 {
2244     const void **addr;
2245 
2246     if ((addr = get_program_var_addr(name)) != NULL) {
2247 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2248 	*addr = value;
2249     }
2250 }
2251 
2252 /*
2253  * This is a special version of getenv which is far more efficient
2254  * at finding LD_ environment vars.
2255  */
2256 static
2257 const char *
2258 _getenv_ld(const char *id)
2259 {
2260     const char *envp;
2261     int i, j;
2262     int idlen = strlen(id);
2263 
2264     if (ld_index == LD_ARY_CACHE)
2265 	return(getenv(id));
2266     if (ld_index == 0) {
2267 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
2268 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
2269 		ld_ary[j++] = envp;
2270 	}
2271 	if (j == 0)
2272 		ld_ary[j++] = "";
2273 	ld_index = j;
2274     }
2275     for (i = ld_index - 1; i >= 0; --i) {
2276 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
2277 	    return(ld_ary[i] + idlen + 1);
2278     }
2279     return(NULL);
2280 }
2281 
2282 /*
2283  * Given a symbol name in a referencing object, find the corresponding
2284  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2285  * no definition was found.  Returns a pointer to the Obj_Entry of the
2286  * defining object via the reference parameter DEFOBJ_OUT.
2287  */
2288 static const Elf_Sym *
2289 symlook_default(const char *name, unsigned long hash,
2290     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2291 {
2292     DoneList donelist;
2293     const Elf_Sym *def;
2294     const Elf_Sym *symp;
2295     const Obj_Entry *obj;
2296     const Obj_Entry *defobj;
2297     const Objlist_Entry *elm;
2298     def = NULL;
2299     defobj = NULL;
2300     donelist_init(&donelist);
2301 
2302     /* Look first in the referencing object if linked symbolically. */
2303     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2304 	symp = symlook_obj(name, hash, refobj, in_plt);
2305 	if (symp != NULL) {
2306 	    def = symp;
2307 	    defobj = refobj;
2308 	}
2309     }
2310 
2311     /* Search all objects loaded at program start up. */
2312     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2313 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2314 	if (symp != NULL &&
2315 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2316 	    def = symp;
2317 	    defobj = obj;
2318 	}
2319     }
2320 
2321     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2322     STAILQ_FOREACH(elm, &list_global, link) {
2323        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2324            break;
2325        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2326          &donelist);
2327 	if (symp != NULL &&
2328 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2329 	    def = symp;
2330 	    defobj = obj;
2331 	}
2332     }
2333 
2334     /* Search all dlopened DAGs containing the referencing object. */
2335     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2336 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2337 	    break;
2338 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2339 	  &donelist);
2340 	if (symp != NULL &&
2341 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2342 	    def = symp;
2343 	    defobj = obj;
2344 	}
2345     }
2346 
2347     /*
2348      * Search the dynamic linker itself, and possibly resolve the
2349      * symbol from there.  This is how the application links to
2350      * dynamic linker services such as dlopen.  Only the values listed
2351      * in the "exports" array can be resolved from the dynamic linker.
2352      */
2353     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2354 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2355 	if (symp != NULL && is_exported(symp)) {
2356 	    def = symp;
2357 	    defobj = &obj_rtld;
2358 	}
2359     }
2360 
2361     if (def != NULL)
2362 	*defobj_out = defobj;
2363     return def;
2364 }
2365 
2366 static const Elf_Sym *
2367 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2368   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2369 {
2370     const Elf_Sym *symp;
2371     const Elf_Sym *def;
2372     const Obj_Entry *defobj;
2373     const Objlist_Entry *elm;
2374 
2375     def = NULL;
2376     defobj = NULL;
2377     STAILQ_FOREACH(elm, objlist, link) {
2378 	if (donelist_check(dlp, elm->obj))
2379 	    continue;
2380 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2381 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2382 		def = symp;
2383 		defobj = elm->obj;
2384 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2385 		    break;
2386 	    }
2387 	}
2388     }
2389     if (def != NULL)
2390 	*defobj_out = defobj;
2391     return def;
2392 }
2393 
2394 /*
2395  * Search the symbol table of a shared object and all objects needed
2396  * by it for a symbol of the given name.  Search order is
2397  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2398  * definition was found.
2399  */
2400 static const Elf_Sym *
2401 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2402   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2403 {
2404     const Elf_Sym *def, *def_w;
2405     const Needed_Entry *n;
2406     const Obj_Entry *obj, *defobj, *defobj1;
2407 
2408     def = def_w = NULL;
2409     defobj = NULL;
2410     for (n = needed; n != NULL; n = n->next) {
2411         if ((obj = n->obj) == NULL ||
2412             donelist_check(dlp, obj) ||
2413             (def = symlook_obj(name, hash, obj, in_plt)) == NULL)
2414                 continue;
2415         defobj = obj;
2416         if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2417             *defobj_out = defobj;
2418             return (def);
2419 	}
2420     }
2421     /*
2422      * There we come when either symbol definition is not found in
2423      * directly needed objects, or found symbol is weak.
2424      */
2425     for (n = needed; n != NULL; n = n->next) {
2426         if ((obj = n->obj) == NULL)
2427             continue;
2428         def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2429 			       in_plt, dlp);
2430         if (def_w == NULL)
2431             continue;
2432         if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2433             def = def_w;
2434             defobj = defobj1;
2435         }
2436         if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2437             break;
2438     }
2439     if (def != NULL)
2440         *defobj_out = defobj;
2441     return def;
2442 }
2443 
2444 /*
2445  * Search the symbol table of a single shared object for a symbol of
2446  * the given name.  Returns a pointer to the symbol, or NULL if no
2447  * definition was found.
2448  *
2449  * The symbol's hash value is passed in for efficiency reasons; that
2450  * eliminates many recomputations of the hash value.
2451  */
2452 const Elf_Sym *
2453 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2454   bool in_plt)
2455 {
2456     if (obj->buckets != NULL) {
2457 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2458 
2459 	while (symnum != STN_UNDEF) {
2460 	    const Elf_Sym *symp;
2461 	    const char *strp;
2462 
2463 	    if (symnum >= obj->nchains)
2464 		return NULL;	/* Bad object */
2465 	    symp = obj->symtab + symnum;
2466 	    strp = obj->strtab + symp->st_name;
2467 
2468 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2469 		return symp->st_shndx != SHN_UNDEF ||
2470 		  (!in_plt && symp->st_value != 0 &&
2471 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2472 
2473 	    symnum = obj->chains[symnum];
2474 	}
2475     }
2476     return NULL;
2477 }
2478 
2479 static void
2480 trace_loaded_objects(Obj_Entry *obj)
2481 {
2482     const char *fmt1, *fmt2, *fmt, *main_local;
2483     int		c;
2484 
2485     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2486 	main_local = "";
2487 
2488     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2489 	fmt1 = "\t%o => %p (%x)\n";
2490 
2491     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2492 	fmt2 = "\t%o (%x)\n";
2493 
2494     for (; obj; obj = obj->next) {
2495 	Needed_Entry		*needed;
2496 	char			*name, *path;
2497 	bool			is_lib;
2498 
2499 	for (needed = obj->needed; needed; needed = needed->next) {
2500 	    if (needed->obj != NULL) {
2501 		if (needed->obj->traced)
2502 		    continue;
2503 		needed->obj->traced = true;
2504 		path = needed->obj->path;
2505 	    } else
2506 		path = "not found";
2507 
2508 	    name = (char *)obj->strtab + needed->name;
2509 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2510 
2511 	    fmt = is_lib ? fmt1 : fmt2;
2512 	    while ((c = *fmt++) != '\0') {
2513 		switch (c) {
2514 		default:
2515 		    putchar(c);
2516 		    continue;
2517 		case '\\':
2518 		    switch (c = *fmt) {
2519 		    case '\0':
2520 			continue;
2521 		    case 'n':
2522 			putchar('\n');
2523 			break;
2524 		    case 't':
2525 			putchar('\t');
2526 			break;
2527 		    }
2528 		    break;
2529 		case '%':
2530 		    switch (c = *fmt) {
2531 		    case '\0':
2532 			continue;
2533 		    case '%':
2534 		    default:
2535 			putchar(c);
2536 			break;
2537 		    case 'A':
2538 			printf("%s", main_local);
2539 			break;
2540 		    case 'a':
2541 			printf("%s", obj_main->path);
2542 			break;
2543 		    case 'o':
2544 			printf("%s", name);
2545 			break;
2546 #if 0
2547 		    case 'm':
2548 			printf("%d", sodp->sod_major);
2549 			break;
2550 		    case 'n':
2551 			printf("%d", sodp->sod_minor);
2552 			break;
2553 #endif
2554 		    case 'p':
2555 			printf("%s", path);
2556 			break;
2557 		    case 'x':
2558 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2559 			break;
2560 		    }
2561 		    break;
2562 		}
2563 		++fmt;
2564 	    }
2565 	}
2566     }
2567 }
2568 
2569 /*
2570  * Unload a dlopened object and its dependencies from memory and from
2571  * our data structures.  It is assumed that the DAG rooted in the
2572  * object has already been unreferenced, and that the object has a
2573  * reference count of 0.
2574  */
2575 static void
2576 unload_object(Obj_Entry *root)
2577 {
2578     Obj_Entry *obj;
2579     Obj_Entry **linkp;
2580 
2581     assert(root->refcount == 0);
2582 
2583     /*
2584      * Pass over the DAG removing unreferenced objects from
2585      * appropriate lists.
2586      */
2587     unlink_object(root);
2588 
2589     /* Unmap all objects that are no longer referenced. */
2590     linkp = &obj_list->next;
2591     while ((obj = *linkp) != NULL) {
2592 	if (obj->refcount == 0) {
2593 	    dbg("unloading \"%s\"", obj->path);
2594 	    munmap(obj->mapbase, obj->mapsize);
2595 	    linkmap_delete(obj);
2596 	    *linkp = obj->next;
2597 	    obj_count--;
2598 	    obj_free(obj);
2599 	} else
2600 	    linkp = &obj->next;
2601     }
2602     obj_tail = linkp;
2603 }
2604 
2605 static void
2606 unlink_object(Obj_Entry *root)
2607 {
2608     const Needed_Entry *needed;
2609     Objlist_Entry *elm;
2610 
2611     if (root->refcount == 0) {
2612 	/* Remove the object from the RTLD_GLOBAL list. */
2613 	objlist_remove(&list_global, root);
2614 
2615     	/* Remove the object from all objects' DAG lists. */
2616     	STAILQ_FOREACH(elm, &root->dagmembers , link)
2617 	    objlist_remove(&elm->obj->dldags, root);
2618     }
2619 
2620     for (needed = root->needed;  needed != NULL;  needed = needed->next)
2621 	if (needed->obj != NULL)
2622 	    unlink_object(needed->obj);
2623 }
2624 
2625 static void
2626 unref_dag(Obj_Entry *root)
2627 {
2628     const Needed_Entry *needed;
2629 
2630     if (root->refcount == 0)
2631 	return;
2632     root->refcount--;
2633     if (root->refcount == 0)
2634 	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2635 	    if (needed->obj != NULL)
2636 		unref_dag(needed->obj);
2637 }
2638 
2639 /*
2640  * Common code for MD __tls_get_addr().
2641  */
2642 void *
2643 tls_get_addr_common(void **dtvp, int index, size_t offset)
2644 {
2645     Elf_Addr* dtv = *dtvp;
2646 
2647     /* Check dtv generation in case new modules have arrived */
2648     if (dtv[0] != tls_dtv_generation) {
2649 	Elf_Addr* newdtv;
2650 	int to_copy;
2651 
2652 	wlock_acquire();
2653 
2654 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2655 	to_copy = dtv[1];
2656 	if (to_copy > tls_max_index)
2657 	    to_copy = tls_max_index;
2658 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2659 	newdtv[0] = tls_dtv_generation;
2660 	newdtv[1] = tls_max_index;
2661 	free(dtv);
2662 	*dtvp = newdtv;
2663 
2664 	wlock_release();
2665     }
2666 
2667     /* Dynamically allocate module TLS if necessary */
2668     if (!dtv[index + 1]) {
2669 	/* XXX
2670 	 * here we should avoid to be re-entered by signal handler
2671 	 * code, I assume wlock_acquire will masked all signals,
2672 	 * otherwise there is race and dead lock thread itself.
2673 	 */
2674 	wlock_acquire();
2675     	if (!dtv[index + 1])
2676 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2677 	wlock_release();
2678     }
2679 
2680     return (void*) (dtv[index + 1] + offset);
2681 }
2682 
2683 #if defined(RTLD_STATIC_TLS_VARIANT_II)
2684 
2685 /*
2686  * Allocate the static TLS area.  Return a pointer to the TCB.  The
2687  * static area is based on negative offsets relative to the tcb.
2688  *
2689  * The TCB contains an errno pointer for the system call layer, but because
2690  * we are the RTLD we really have no idea how the caller was compiled so
2691  * the information has to be passed in.  errno can either be:
2692  *
2693  *	type 0	errno is a simple non-TLS global pointer.
2694  *		(special case for e.g. libc_rtld)
2695  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
2696  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
2697  */
2698 struct tls_tcb *
2699 allocate_tls(Obj_Entry *objs)
2700 {
2701     Obj_Entry *obj;
2702     size_t data_size;
2703     size_t dtv_size;
2704     struct tls_tcb *tcb;
2705     Elf_Addr *dtv;
2706     Elf_Addr addr;
2707 
2708     /*
2709      * Allocate the new TCB.  static TLS storage is placed just before the
2710      * TCB to support the %gs:OFFSET (negative offset) model.
2711      */
2712     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
2713 		~RTLD_STATIC_TLS_ALIGN_MASK;
2714     tcb = malloc(data_size + sizeof(*tcb));
2715     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
2716 
2717     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
2718     dtv = malloc(dtv_size);
2719     bzero(dtv, dtv_size);
2720 
2721 #ifdef RTLD_TCB_HAS_SELF_POINTER
2722     tcb->tcb_self = tcb;
2723 #endif
2724     tcb->tcb_dtv = dtv;
2725     tcb->tcb_pthread = NULL;
2726 
2727     dtv[0] = tls_dtv_generation;
2728     dtv[1] = tls_max_index;
2729 
2730     for (obj = objs; obj; obj = obj->next) {
2731 	if (obj->tlsoffset) {
2732 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
2733 	    memset((void *)(addr + obj->tlsinitsize),
2734 		   0, obj->tlssize - obj->tlsinitsize);
2735 	    if (obj->tlsinit)
2736 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2737 	    dtv[obj->tlsindex + 1] = addr;
2738 	}
2739     }
2740     return(tcb);
2741 }
2742 
2743 void
2744 free_tls(struct tls_tcb *tcb)
2745 {
2746     Elf_Addr *dtv;
2747     int dtv_size, i;
2748     Elf_Addr tls_start, tls_end;
2749     size_t data_size;
2750 
2751     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
2752 		~RTLD_STATIC_TLS_ALIGN_MASK;
2753     dtv = tcb->tcb_dtv;
2754     dtv_size = dtv[1];
2755     tls_end = (Elf_Addr)tcb;
2756     tls_start = (Elf_Addr)tcb - data_size;
2757     for (i = 0; i < dtv_size; i++) {
2758 	if (dtv[i+2] != NULL && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
2759 	    free((void *)dtv[i+2]);
2760 	}
2761     }
2762     free((void *)tls_start);
2763 }
2764 
2765 #else
2766 #error "Unsupported TLS layout"
2767 #endif
2768 
2769 /*
2770  * Allocate TLS block for module with given index.
2771  */
2772 void *
2773 allocate_module_tls(int index)
2774 {
2775     Obj_Entry* obj;
2776     char* p;
2777 
2778     for (obj = obj_list; obj; obj = obj->next) {
2779 	if (obj->tlsindex == index)
2780 	    break;
2781     }
2782     if (!obj) {
2783 	_rtld_error("Can't find module with TLS index %d", index);
2784 	die();
2785     }
2786 
2787     p = malloc(obj->tlssize);
2788     memcpy(p, obj->tlsinit, obj->tlsinitsize);
2789     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
2790 
2791     return p;
2792 }
2793 
2794 bool
2795 allocate_tls_offset(Obj_Entry *obj)
2796 {
2797     size_t off;
2798 
2799     if (obj->tls_done)
2800 	return true;
2801 
2802     if (obj->tlssize == 0) {
2803 	obj->tls_done = true;
2804 	return true;
2805     }
2806 
2807     if (obj->tlsindex == 1)
2808 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
2809     else
2810 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
2811 				   obj->tlssize, obj->tlsalign);
2812 
2813     /*
2814      * If we have already fixed the size of the static TLS block, we
2815      * must stay within that size. When allocating the static TLS, we
2816      * leave a small amount of space spare to be used for dynamically
2817      * loading modules which use static TLS.
2818      */
2819     if (tls_static_space) {
2820 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
2821 	    return false;
2822     }
2823 
2824     tls_last_offset = obj->tlsoffset = off;
2825     tls_last_size = obj->tlssize;
2826     obj->tls_done = true;
2827 
2828     return true;
2829 }
2830 
2831 void
2832 free_tls_offset(Obj_Entry *obj)
2833 {
2834 #ifdef RTLD_STATIC_TLS_VARIANT_II
2835     /*
2836      * If we were the last thing to allocate out of the static TLS
2837      * block, we give our space back to the 'allocator'. This is a
2838      * simplistic workaround to allow libGL.so.1 to be loaded and
2839      * unloaded multiple times. We only handle the Variant II
2840      * mechanism for now - this really needs a proper allocator.
2841      */
2842     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
2843 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
2844 	tls_last_offset -= obj->tlssize;
2845 	tls_last_size = 0;
2846     }
2847 #endif
2848 }
2849 
2850 struct tls_tcb *
2851 _rtld_allocate_tls(void)
2852 {
2853     struct tls_tcb *new_tcb;
2854 
2855     wlock_acquire();
2856     new_tcb = allocate_tls(obj_list);
2857     wlock_release();
2858 
2859     return (new_tcb);
2860 }
2861 
2862 void
2863 _rtld_free_tls(struct tls_tcb *tcb)
2864 {
2865     wlock_acquire();
2866     free_tls(tcb);
2867     wlock_release();
2868 }
2869 
2870