xref: /dragonfly/sbin/growfs/growfs.c (revision 73e0051e)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41  * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
42  * $DragonFly: src/sbin/growfs/growfs.c,v 1.6 2007/05/20 23:21:36 dillon Exp $
43  */
44 
45 /* ********************************************************** INCLUDES ***** */
46 #include <sys/param.h>
47 #include <sys/diskslice.h>
48 #include <sys/ioctl.h>
49 #include <sys/stat.h>
50 
51 #include <stdio.h>
52 #include <paths.h>
53 #include <ctype.h>
54 #include <err.h>
55 #include <fcntl.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 #include <vfs/ufs/dinode.h>
60 #include <vfs/ufs/fs.h>
61 
62 #include "debug.h"
63 
64 /* *************************************************** GLOBALS & TYPES ***** */
65 #ifdef FS_DEBUG
66 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
67 #endif /* FS_DEBUG */
68 
69 static union {
70 	struct fs	fs;
71 	char	pad[SBSIZE];
72 } fsun1, fsun2;
73 #define	sblock	fsun1.fs	/* the new superblock */
74 #define	osblock	fsun2.fs	/* the old superblock */
75 
76 static union {
77 	struct cg	cg;
78 	char	pad[MAXBSIZE];
79 } cgun1, cgun2;
80 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
81 #define	aocg	cgun2.cg	/* an old cylinder group */
82 
83 static char	ablk[MAXBSIZE];		/* a block */
84 static char	i1blk[MAXBSIZE];	/* some indirect blocks */
85 static char	i2blk[MAXBSIZE];
86 static char	i3blk[MAXBSIZE];
87 
88 	/* where to write back updated blocks */
89 static daddr_t	in_src, i1_src, i2_src, i3_src;
90 
91 	/* what object contains the reference */
92 enum pointer_source {
93 	GFS_PS_INODE,
94 	GFS_PS_IND_BLK_LVL1,
95 	GFS_PS_IND_BLK_LVL2,
96 	GFS_PS_IND_BLK_LVL3
97 };
98 
99 static struct csum	*fscs;		/* cylinder summary */
100 
101 static struct ufs1_dinode	zino[MAXBSIZE/sizeof(struct ufs1_dinode)]; /* some inodes */
102 
103 /*
104  * An  array of elements of type struct gfs_bpp describes all blocks  to
105  * be relocated in order to free the space needed for the cylinder group
106  * summary for all cylinder groups located in the first cylinder group.
107  */
108 struct gfs_bpp {
109 	daddr_t	old;		/* old block number */
110 	daddr_t	new;		/* new block number */
111 #define GFS_FL_FIRST	1
112 #define GFS_FL_LAST	2
113 	unsigned int	flags;	/* special handling required */
114 	int	found;		/* how many references were updated */
115 };
116 
117 /* ******************************************************** PROTOTYPES ***** */
118 static void	growfs(int, int, unsigned int);
119 static void	rdfs(daddr_t, size_t, void *, int);
120 static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
121 static daddr_t	alloc(void);
122 static int	charsperline(void);
123 static void	usage(void);
124 static int	isblock(struct fs *, unsigned char *, int);
125 static void	clrblock(struct fs *, unsigned char *, int);
126 static void	setblock(struct fs *, unsigned char *, int);
127 static void	initcg(int, time_t, int, unsigned int);
128 static void	updjcg(int, time_t, int, int, unsigned int);
129 static void	updcsloc(time_t, int, int, unsigned int);
130 static struct ufs1_dinode	*ginode(ino_t, int, int);
131 static void	frag_adjust(daddr_t, int);
132 static void	cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
133     enum pointer_source, int, unsigned int);
134 static void	updclst(int);
135 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
136 
137 /* ************************************************************ growfs ***** */
138 /*
139  * Here  we actually start growing the filesystem. We basically  read  the
140  * cylinder  summary  from the first cylinder group as we want  to  update
141  * this  on  the fly during our various operations. First  we  handle  the
142  * changes in the former last cylinder group. Afterwards we create all new
143  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
144  * cylinder  summary  which  might result in a  relocation  of  the  whole
145  * structure.  In the end we write back the updated cylinder summary,  the
146  * new superblock, and slightly patched versions of the super block
147  * copies.
148  */
149 static void
150 growfs(int fsi, int fso, unsigned int Nflag)
151 {
152 	DBG_FUNC("growfs")
153 	int	i;
154 	int	cylno, j;
155 	time_t	utime;
156 	int	width;
157 	char	tmpbuf[100];
158 #ifdef FSIRAND
159 	static int	randinit=0;
160 
161 	DBG_ENTER;
162 
163 	if (!randinit) {
164 		randinit = 1;
165 		srandomdev();
166 	}
167 #else /* not FSIRAND */
168 
169 	DBG_ENTER;
170 
171 #endif /* FSIRAND */
172 	time(&utime);
173 
174 	/*
175 	 * Get the cylinder summary into the memory.
176 	 */
177 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
178 	if(fscs == NULL) {
179 		errx(1, "calloc failed");
180 	}
181 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
182 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
183 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
184 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
185 	}
186 
187 #ifdef FS_DEBUG
188 {
189 	struct csum	*dbg_csp;
190 	int	dbg_csc;
191 	char	dbg_line[80];
192 
193 	dbg_csp=fscs;
194 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
195 		snprintf(dbg_line, sizeof(dbg_line),
196 		    "%d. old csum in old location", dbg_csc);
197 		DBG_DUMP_CSUM(&osblock,
198 		    dbg_line,
199 		    dbg_csp++);
200 	}
201 }
202 #endif /* FS_DEBUG */
203 	DBG_PRINT0("fscs read\n");
204 
205 	/*
206 	 * Do all needed changes in the former last cylinder group.
207 	 */
208 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
209 
210 	/*
211 	 * Dump out summary information about file system.
212 	 */
213 	printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
214 	    sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
215 	    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
216 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
217 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
218 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
219 	    sblock.fs_ncg, sblock.fs_cpg,
220 	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
221 	    sblock.fs_ipg);
222 #undef B2MBFACTOR
223 
224 	/*
225 	 * Now build the cylinders group blocks and
226 	 * then print out indices of cylinder groups.
227 	 */
228 	printf("super-block backups (for fsck -b #) at:\n");
229 	i = 0;
230 	width = charsperline();
231 
232 	/*
233 	 * Iterate for only the new cylinder groups.
234 	 */
235 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
236 		initcg(cylno, utime, fso, Nflag);
237 		j = sprintf(tmpbuf, " %d%s",
238 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
239 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
240 		if (i + j >= width) {
241 			printf("\n");
242 			i = 0;
243 		}
244 		i += j;
245 		printf("%s", tmpbuf);
246 		fflush(stdout);
247 	}
248 	printf("\n");
249 
250 	/*
251 	 * Do all needed changes in the first cylinder group.
252 	 * allocate blocks in new location
253 	 */
254 	updcsloc(utime, fsi, fso, Nflag);
255 
256 	/*
257 	 * Now write the cylinder summary back to disk.
258 	 */
259 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
260 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
261 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
262 		    (void *)(((char *)fscs) + i), fso, Nflag);
263 	}
264 	DBG_PRINT0("fscs written\n");
265 
266 #ifdef FS_DEBUG
267 {
268 	struct csum	*dbg_csp;
269 	int	dbg_csc;
270 	char	dbg_line[80];
271 
272 	dbg_csp=fscs;
273 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
274 		snprintf(dbg_line, sizeof(dbg_line),
275 		    "%d. new csum in new location", dbg_csc);
276 		DBG_DUMP_CSUM(&sblock,
277 		    dbg_line,
278 		    dbg_csp++);
279 	}
280 }
281 #endif /* FS_DEBUG */
282 
283 	/*
284 	 * Now write the new superblock back to disk.
285 	 */
286 	sblock.fs_time = utime;
287 	wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
288 	    fso, Nflag);
289 	DBG_PRINT0("sblock written\n");
290 	DBG_DUMP_FS(&sblock,
291 	    "new initial sblock");
292 
293 	/*
294 	 * Clean up the dynamic fields in our superblock copies.
295 	 */
296 	sblock.fs_fmod = 0;
297 	sblock.fs_clean = 1;
298 	sblock.fs_ronly = 0;
299 	sblock.fs_cgrotor = 0;
300 	sblock.fs_state = 0;
301 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
302 	sblock.fs_flags &= FS_DOSOFTDEP;
303 
304 	/*
305 	 * XXX
306 	 * The following fields are currently distributed from the  superblock
307 	 * to the copies:
308 	 *     fs_minfree
309 	 *     fs_rotdelay
310 	 *     fs_maxcontig
311 	 *     fs_maxbpg
312 	 *     fs_minfree,
313 	 *     fs_optim
314 	 *     fs_flags regarding SOFTPDATES
315 	 *
316 	 * We probably should rather change the summary for the cylinder group
317 	 * statistics here to the value of what would be in there, if the file
318 	 * system were created initially with the new size. Therefor we  still
319 	 * need to find an easy way of calculating that.
320 	 * Possibly we can try to read the first superblock copy and apply the
321 	 * "diffed" stats between the old and new superblock by still  copying
322 	 * certain parameters onto that.
323 	 */
324 
325 	/*
326 	 * Write out the duplicate super blocks.
327 	 */
328 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
329 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
330 		    (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
331 	}
332 	DBG_PRINT0("sblock copies written\n");
333 	DBG_DUMP_FS(&sblock,
334 	    "new other sblocks");
335 
336 	DBG_LEAVE;
337 	return;
338 }
339 
340 /* ************************************************************ initcg ***** */
341 /*
342  * This creates a new cylinder group structure, for more details please  see
343  * the  source of newfs(8), as this function is taken over almost unchanged.
344  * As  this  is  never called for the  first  cylinder  group,  the  special
345  * provisions for that case are removed here.
346  */
347 static void
348 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
349 {
350 	DBG_FUNC("initcg")
351 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
352 	int i;
353 	struct csum *cs;
354 #ifdef FSIRAND
355 	int j;
356 #endif
357 
358 	DBG_ENTER;
359 
360 	/*
361 	 * Determine block bounds for cylinder group.
362 	 */
363 	cbase = cgbase(&sblock, cylno);
364 	dmax = cbase + sblock.fs_fpg;
365 	if (dmax > sblock.fs_size) {
366 		dmax = sblock.fs_size;
367 	}
368 	dlower = cgsblock(&sblock, cylno) - cbase;
369 	dupper = cgdmin(&sblock, cylno) - cbase;
370 	if (cylno == 0) { /* XXX fscs may be relocated */
371 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
372 	}
373 	cs = fscs + cylno;
374 	memset(&acg, 0, (size_t)sblock.fs_cgsize);
375 	acg.cg_time = utime;
376 	acg.cg_magic = CG_MAGIC;
377 	acg.cg_cgx = cylno;
378 	if (cylno == sblock.fs_ncg - 1) {
379 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
380 	} else {
381 		acg.cg_ncyl = sblock.fs_cpg;
382 	}
383 	acg.cg_niblk = sblock.fs_ipg;
384 	acg.cg_ndblk = dmax - cbase;
385 	if (sblock.fs_contigsumsize > 0) {
386 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
387 	}
388 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
389 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
390 	acg.cg_iusedoff = acg.cg_boff +
391 	    sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
392 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
393 	if (sblock.fs_contigsumsize <= 0) {
394 		acg.cg_nextfreeoff = acg.cg_freeoff +
395 		    howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
396 	} else {
397 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
398 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
399 		    sizeof(u_int32_t);
400 		acg.cg_clustersumoff =
401 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
402 		acg.cg_clusteroff = acg.cg_clustersumoff +
403 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
404 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
405 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
406 	}
407 	if (acg.cg_nextfreeoff-(int)(&acg.cg_firstfield) > sblock.fs_cgsize) {
408 		/*
409 		 * XXX This should never happen as we would have had that panic
410 		 *     already on filesystem creation
411 		 */
412 		errx(37, "panic: cylinder group too big");
413 	}
414 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
415 	if (cylno == 0)
416 		for (i = 0; (size_t)i < ROOTINO; i++) {
417 			setbit(cg_inosused(&acg), i);
418 			acg.cg_cs.cs_nifree--;
419 		}
420 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
421 #ifdef FSIRAND
422 		for (j = 0; j < sblock.fs_bsize / sizeof(struct ufs1_dinode); j++) {
423 			zino[j].di_gen = random();
424 		}
425 #endif
426 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
427 		    (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
428 	}
429 	for (d = 0; d < dlower; d += sblock.fs_frag) {
430 		blkno = d / sblock.fs_frag;
431 		setblock(&sblock, cg_blksfree(&acg), blkno);
432 		if (sblock.fs_contigsumsize > 0) {
433 			setbit(cg_clustersfree(&acg), blkno);
434 		}
435 		acg.cg_cs.cs_nbfree++;
436 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
437 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
438 		    [cbtorpos(&sblock, d)]++;
439 	}
440 	sblock.fs_dsize += dlower;
441 	sblock.fs_dsize += acg.cg_ndblk - dupper;
442 	if ((i = dupper % sblock.fs_frag)) {
443 		acg.cg_frsum[sblock.fs_frag - i]++;
444 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
445 			setbit(cg_blksfree(&acg), dupper);
446 			acg.cg_cs.cs_nffree++;
447 		}
448 	}
449 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
450 		blkno = d / sblock.fs_frag;
451 		setblock(&sblock, cg_blksfree(&acg), blkno);
452 		if (sblock.fs_contigsumsize > 0) {
453 			setbit(cg_clustersfree(&acg), blkno);
454 		}
455 		acg.cg_cs.cs_nbfree++;
456 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
457 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
458 		    [cbtorpos(&sblock, d)]++;
459 		d += sblock.fs_frag;
460 	}
461 	if (d < dmax - cbase) {
462 		acg.cg_frsum[dmax - cbase - d]++;
463 		for (; d < dmax - cbase; d++) {
464 			setbit(cg_blksfree(&acg), d);
465 			acg.cg_cs.cs_nffree++;
466 		}
467 	}
468 	if (sblock.fs_contigsumsize > 0) {
469 		int32_t	*sump = cg_clustersum(&acg);
470 		u_char	*mapp = cg_clustersfree(&acg);
471 		int	map = *mapp++;
472 		int	bit = 1;
473 		int	run = 0;
474 
475 		for (i = 0; i < acg.cg_nclusterblks; i++) {
476 			if ((map & bit) != 0) {
477 				run++;
478 			} else if (run != 0) {
479 				if (run > sblock.fs_contigsumsize) {
480 					run = sblock.fs_contigsumsize;
481 				}
482 				sump[run]++;
483 				run = 0;
484 			}
485 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
486 				bit <<= 1;
487 			} else {
488 				map = *mapp++;
489 				bit = 1;
490 			}
491 		}
492 		if (run != 0) {
493 			if (run > sblock.fs_contigsumsize) {
494 				run = sblock.fs_contigsumsize;
495 			}
496 			sump[run]++;
497 		}
498 	}
499 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
500 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
501 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
502 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
503 	*cs = acg.cg_cs;
504 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
505 	    (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
506 	DBG_DUMP_CG(&sblock,
507 	    "new cg",
508 	    &acg);
509 
510 	DBG_LEAVE;
511 	return;
512 }
513 
514 /* ******************************************************* frag_adjust ***** */
515 /*
516  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
517  * block to or from the fragment statistics. By subtracting before and adding
518  * after  an operation on the free frag map we can easy update  the  fragment
519  * statistic, which seems to be otherwise an rather complex operation.
520  */
521 static void
522 frag_adjust(daddr_t frag, int sign)
523 {
524 	DBG_FUNC("frag_adjust")
525 	int fragsize;
526 	int f;
527 
528 	DBG_ENTER;
529 
530 	fragsize=0;
531 	/*
532 	 * Here frag only needs to point to any fragment in the block we want
533 	 * to examine.
534 	 */
535 	for(f=rounddown(frag, sblock.fs_frag);
536 	    f<roundup(frag+1, sblock.fs_frag);
537 	    f++) {
538 		/*
539 		 * Count contiguos free fragments.
540 		 */
541 		if(isset(cg_blksfree(&acg), f)) {
542 			fragsize++;
543 		} else {
544 			if(fragsize && fragsize<sblock.fs_frag) {
545 				/*
546 				 * We found something in between.
547 				 */
548 				acg.cg_frsum[fragsize]+=sign;
549 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
550 				    fragsize,
551 				    sign);
552 			}
553 			fragsize=0;
554 		}
555 	}
556 	if(fragsize && fragsize<sblock.fs_frag) {
557 		/*
558 		 * We found something.
559 		 */
560 		acg.cg_frsum[fragsize]+=sign;
561 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
562 		    fragsize,
563 		    sign);
564 	}
565 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
566 	    fragsize,
567 	    sign);
568 
569 	DBG_LEAVE;
570 	return;
571 }
572 
573 /* ******************************************************* cond_bl_upd ***** */
574 /*
575  * Here we conditionally update a pointer to a fragment. We check for all
576  * relocated blocks if any of it's fragments is referenced by the current
577  * field,  and update the pointer to the respective fragment in  our  new
578  * block.  If  we find a reference we write back the  block  immediately,
579  * as there is no easy way for our general block reading engine to figure
580  * out if a write back operation is needed.
581  */
582 static void
583 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
584     enum pointer_source source, int fso, unsigned int Nflag)
585 {
586 	DBG_FUNC("cond_bl_upd")
587 	struct gfs_bpp	*f;
588 	char *src;
589 	daddr_t dst=0;
590 
591 	DBG_ENTER;
592 
593 	f=field;
594 	while(f->old) { /* for all old blocks */
595 		if(*block/sblock.fs_frag == f->old) {
596 			/*
597 			 * The fragment is part of the block, so update.
598 			 */
599 			*block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
600 			f->found++;
601 			DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
602 			    f->old,
603 			    f->new,
604 			    *block%sblock.fs_frag);
605 
606 			/* Write the block back to disk immediately */
607 			switch (source) {
608 			case GFS_PS_INODE:
609 				src=ablk;
610 				dst=in_src;
611 				break;
612 			case GFS_PS_IND_BLK_LVL1:
613 				src=i1blk;
614 				dst=i1_src;
615 				break;
616 			case GFS_PS_IND_BLK_LVL2:
617 				src=i2blk;
618 				dst=i2_src;
619 				break;
620 			case GFS_PS_IND_BLK_LVL3:
621 				src=i3blk;
622 				dst=i3_src;
623 				break;
624 			default:	/* error */
625 				src=NULL;
626 				break;
627 			}
628 			if(src) {
629 				/*
630 				 * XXX	If src is not of type inode we have to
631 				 *	implement  copy on write here in  case
632 				 *	of active snapshots.
633 				 */
634 				wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
635 				    fso, Nflag);
636 			}
637 
638 			/*
639 			 * The same block can't be found again in this loop.
640 			 */
641 			break;
642 		}
643 		f++;
644 	}
645 
646 	DBG_LEAVE;
647 	return;
648 }
649 
650 /* ************************************************************ updjcg ***** */
651 /*
652  * Here we do all needed work for the former last cylinder group. It has to be
653  * changed  in  any case, even if the filesystem ended exactly on the  end  of
654  * this  group, as there is some slightly inconsistent handling of the  number
655  * of cylinders in the cylinder group. We start again by reading the  cylinder
656  * group from disk. If the last block was not fully available, we first handle
657  * the  missing  fragments, then we handle all new full blocks  in  that  file
658  * system  and  finally we handle the new last fragmented block  in  the  file
659  * system.  We again have to handle the fragment statistics rotational  layout
660  * tables and cluster summary during all those operations.
661  */
662 static void
663 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
664 {
665 	DBG_FUNC("updjcg")
666 	daddr_t	cbase, dmax, dupper;
667 	struct csum	*cs;
668 	int	i,k;
669 	int	j=0;
670 
671 	DBG_ENTER;
672 
673 	/*
674 	 * Read the former last (joining) cylinder group from disk, and make
675 	 * a copy.
676 	 */
677 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
678 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
679 	DBG_PRINT0("jcg read\n");
680 	DBG_DUMP_CG(&sblock,
681 	    "old joining cg",
682 	    &aocg);
683 
684 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
685 
686 	/*
687 	 * If  the  cylinder  group had already it's  new  final  size  almost
688 	 * nothing is to be done ... except:
689 	 * For some reason the value of cg_ncyl in the last cylinder group has
690 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
691 	 * cylinder group we have to change that value now to fs_cpg.
692 	 */
693 
694 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
695 		acg.cg_ncyl=sblock.fs_cpg;
696 
697 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
698 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
699 		DBG_PRINT0("jcg written\n");
700 		DBG_DUMP_CG(&sblock,
701 		    "new joining cg",
702 		    &acg);
703 
704 		DBG_LEAVE;
705 		return;
706 	}
707 
708 	/*
709 	 * Set up some variables needed later.
710 	 */
711 	cbase = cgbase(&sblock, cylno);
712 	dmax = cbase + sblock.fs_fpg;
713 	if (dmax > sblock.fs_size)
714 		dmax = sblock.fs_size;
715 	dupper = cgdmin(&sblock, cylno) - cbase;
716 	if (cylno == 0) { /* XXX fscs may be relocated */
717 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
718 	}
719 
720 	/*
721 	 * Set pointer to the cylinder summary for our cylinder group.
722 	 */
723 	cs = fscs + cylno;
724 
725 	/*
726 	 * Touch the cylinder group, update all fields in the cylinder group as
727 	 * needed, update the free space in the superblock.
728 	 */
729 	acg.cg_time = utime;
730 	if (cylno == sblock.fs_ncg - 1) {
731 		/*
732 		 * This is still the last cylinder group.
733 		 */
734 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
735 	} else {
736 		acg.cg_ncyl = sblock.fs_cpg;
737 	}
738 	DBG_PRINT4("jcg dbg: %d %u %d %u\n",
739 	    cylno,
740 	    sblock.fs_ncg,
741 	    acg.cg_ncyl,
742 	    sblock.fs_cpg);
743 	acg.cg_ndblk = dmax - cbase;
744 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
745 	if (sblock.fs_contigsumsize > 0) {
746 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
747 	}
748 
749 	/*
750 	 * Now  we have to update the free fragment bitmap for our new  free
751 	 * space.  There again we have to handle the fragmentation and  also
752 	 * the  rotational  layout tables and the cluster summary.  This  is
753 	 * also  done per fragment for the first new block if the  old  file
754 	 * system end was not on a block boundary, per fragment for the  new
755 	 * last block if the new file system end is not on a block boundary,
756 	 * and per block for all space in between.
757 	 *
758 	 * Handle the first new block here if it was partially available
759 	 * before.
760 	 */
761 	if(osblock.fs_size % sblock.fs_frag) {
762 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
763 			/*
764 			 * The new space is enough to fill at least this
765 			 * block
766 			 */
767 			j=0;
768 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
769 			    i>=osblock.fs_size-cbase;
770 			    i--) {
771 				setbit(cg_blksfree(&acg), i);
772 				acg.cg_cs.cs_nffree++;
773 				j++;
774 			}
775 
776 			/*
777 			 * Check  if the fragment just created could join  an
778 			 * already existing fragment at the former end of the
779 			 * file system.
780 			 */
781 			if(isblock(&sblock, cg_blksfree(&acg),
782 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
783 			    sblock.fs_frag))) {
784 				/*
785 				 * The block is now completely available
786 				 */
787 				DBG_PRINT0("block was\n");
788 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
789 				acg.cg_cs.cs_nbfree++;
790 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
791 				k=rounddown(osblock.fs_size-cbase,
792 				    sblock.fs_frag);
793 				cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
794 				cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
795 		   		    [cbtorpos(&sblock, k)]++;
796 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
797 			} else {
798 				/*
799 				 * Lets rejoin a possible partially growed
800 				 * fragment.
801 				 */
802 				k=0;
803 				while(isset(cg_blksfree(&acg), i) &&
804 				    (i>=rounddown(osblock.fs_size-cbase,
805 				    sblock.fs_frag))) {
806 					i--;
807 					k++;
808 				}
809 				if(k) {
810 					acg.cg_frsum[k]--;
811 				}
812 				acg.cg_frsum[k+j]++;
813 			}
814 		} else {
815 			/*
816 			 * We only grow by some fragments within this last
817 			 * block.
818 			 */
819 			for(i=sblock.fs_size-cbase-1;
820 				i>=osblock.fs_size-cbase;
821 				i--) {
822 				setbit(cg_blksfree(&acg), i);
823 				acg.cg_cs.cs_nffree++;
824 				j++;
825 			}
826 			/*
827 			 * Lets rejoin a possible partially growed fragment.
828 			 */
829 			k=0;
830 			while(isset(cg_blksfree(&acg), i) &&
831 			    (i>=rounddown(osblock.fs_size-cbase,
832 			    sblock.fs_frag))) {
833 				i--;
834 				k++;
835 			}
836 			if(k) {
837 				acg.cg_frsum[k]--;
838 			}
839 			acg.cg_frsum[k+j]++;
840 		}
841 	}
842 
843 	/*
844 	 * Handle all new complete blocks here.
845 	 */
846 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
847 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
848 	    i+=sblock.fs_frag) {
849 		j = i / sblock.fs_frag;
850 		setblock(&sblock, cg_blksfree(&acg), j);
851 		updclst(j);
852 		acg.cg_cs.cs_nbfree++;
853 		cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
854 		cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
855 		    [cbtorpos(&sblock, i)]++;
856 	}
857 
858 	/*
859 	 * Handle the last new block if there are stll some new fragments left.
860 	 * Here  we don't have to bother about the cluster summary or the  even
861 	 * the rotational layout table.
862 	 */
863 	if (i < (dmax - cbase)) {
864 		acg.cg_frsum[dmax - cbase - i]++;
865 		for (; i < dmax - cbase; i++) {
866 			setbit(cg_blksfree(&acg), i);
867 			acg.cg_cs.cs_nffree++;
868 		}
869 	}
870 
871 	sblock.fs_cstotal.cs_nffree +=
872 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
873 	sblock.fs_cstotal.cs_nbfree +=
874 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
875 	/*
876 	 * The following statistics are not changed here:
877 	 *     sblock.fs_cstotal.cs_ndir
878 	 *     sblock.fs_cstotal.cs_nifree
879 	 * As the statistics for this cylinder group are ready, copy it to
880 	 * the summary information array.
881 	 */
882 	*cs = acg.cg_cs;
883 
884 	/*
885 	 * Write the updated "joining" cylinder group back to disk.
886 	 */
887 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
888 	    (void *)&acg, fso, Nflag);
889 	DBG_PRINT0("jcg written\n");
890 	DBG_DUMP_CG(&sblock,
891 	    "new joining cg",
892 	    &acg);
893 
894 	DBG_LEAVE;
895 	return;
896 }
897 
898 /* ********************************************************** updcsloc ***** */
899 /*
900  * Here  we update the location of the cylinder summary. We have  two  possible
901  * ways of growing the cylinder summary.
902  * (1)	We can try to grow the summary in the current location, and  relocate
903  *	possibly used blocks within the current cylinder group.
904  * (2)	Alternatively we can relocate the whole cylinder summary to the first
905  *	new completely empty cylinder group. Once the cylinder summary is  no
906  *	longer in the beginning of the first cylinder group you should  never
907  *	use  a version of fsck which is not aware of the possibility to  have
908  *	this structure in a non standard place.
909  * Option (1) is considered to be less intrusive to the structure of the  file-
910  * system. So we try to stick to that whenever possible. If there is not enough
911  * space  in the cylinder group containing the cylinder summary we have to  use
912  * method  (2). In case of active snapshots in the filesystem we  probably  can
913  * completely avoid implementing copy on write if we stick to method (2) only.
914  */
915 static void
916 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
917 {
918 	DBG_FUNC("updcsloc")
919 	struct csum	*cs;
920 	int	ocscg, ncscg;
921 	int	blocks;
922 	daddr_t	cbase, dupper, odupper, d, f, g;
923 	int	ind;
924 	int	cylno, inc;
925 	struct gfs_bpp	*bp;
926 	int	i, l;
927 	int	lcs=0;
928 	int	block;
929 
930 	DBG_ENTER;
931 
932 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
933 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
934 		/*
935 		 * No new fragment needed.
936 		 */
937 		DBG_LEAVE;
938 		return;
939 	}
940 	ocscg=dtog(&osblock, osblock.fs_csaddr);
941 	cs=fscs+ocscg;
942 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
943 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
944 
945 	/*
946 	 * Read original cylinder group from disk, and make a copy.
947 	 * XXX	If Nflag is set in some very rare cases we now miss
948 	 *	some changes done in updjcg by reading the unmodified
949 	 *	block from disk.
950 	 */
951 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
952 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
953 	DBG_PRINT0("oscg read\n");
954 	DBG_DUMP_CG(&sblock,
955 	    "old summary cg",
956 	    &aocg);
957 
958 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
959 
960 	/*
961 	 * Touch the cylinder group, set up local variables needed later
962 	 * and update the superblock.
963 	 */
964 	acg.cg_time = utime;
965 
966 	/*
967 	 * XXX	In the case of having active snapshots we may need much more
968 	 *	blocks for the copy on write. We need each block twice,  and
969 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
970 	 *	references.
971 	 */
972 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
973 		/*
974 		 * There  is  not enough space in the old cylinder  group  to
975 		 * relocate  all blocks as needed, so we relocate  the  whole
976 		 * cylinder  group summary to a new group. We try to use  the
977 		 * first complete new cylinder group just created. Within the
978 		 * cylinder  group we allign the area immediately  after  the
979 		 * cylinder  group  information location in order  to  be  as
980 		 * close as possible to the original implementation of ffs.
981 		 *
982 		 * First  we have to make sure we'll find enough space in  the
983 		 * new  cylinder  group. If not, then we  currently  give  up.
984 		 * We  start  with freeing everything which was  used  by  the
985 		 * fragments of the old cylinder summary in the current group.
986 		 * Now  we write back the group meta data, read in the  needed
987 		 * meta data from the new cylinder group, and start allocating
988 		 * within  that  group. Here we can assume, the  group  to  be
989 		 * completely empty. Which makes the handling of fragments and
990 		 * clusters a lot easier.
991 		 */
992 		DBG_TRC;
993 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
994 			errx(2, "panic: not enough space");
995 		}
996 
997 		/*
998 		 * Point "d" to the first fragment not used by the cylinder
999 		 * summary.
1000 		 */
1001 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1002 
1003 		/*
1004 		 * Set up last cluster size ("lcs") already here. Calculate
1005 		 * the size for the trailing cluster just behind where  "d"
1006 		 * points to.
1007 		 */
1008 		if(sblock.fs_contigsumsize > 0) {
1009 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1010 			    lcs=0; lcs<sblock.fs_contigsumsize;
1011 			    block++, lcs++) {
1012 				if(isclr(cg_clustersfree(&acg), block)){
1013 					break;
1014 				}
1015 			}
1016 		}
1017 
1018 		/*
1019 		 * Point "d" to the last frag used by the cylinder summary.
1020 		 */
1021 		d--;
1022 
1023 		DBG_PRINT1("d=%d\n",
1024 		    d);
1025 		if((d+1)%sblock.fs_frag) {
1026 			/*
1027 			 * The end of the cylinder summary is not a complete
1028 			 * block.
1029 			 */
1030 			DBG_TRC;
1031 			frag_adjust(d%sblock.fs_fpg, -1);
1032 			for(; (d+1)%sblock.fs_frag; d--) {
1033 				DBG_PRINT1("d=%d\n",
1034 				    d);
1035 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1036 				acg.cg_cs.cs_nffree++;
1037 				sblock.fs_cstotal.cs_nffree++;
1038 			}
1039 			/*
1040 			 * Point  "d" to the last fragment of the  last
1041 			 * (incomplete) block of the clinder summary.
1042 			 */
1043 			d++;
1044 			frag_adjust(d%sblock.fs_fpg, 1);
1045 
1046 			if(isblock(&sblock, cg_blksfree(&acg),
1047 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1048 				DBG_PRINT1("d=%d\n",
1049 				    d);
1050 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1051 				acg.cg_cs.cs_nbfree++;
1052 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1053 				sblock.fs_cstotal.cs_nbfree++;
1054 				cg_blktot(&acg)[cbtocylno(&sblock,
1055 				    d%sblock.fs_fpg)]++;
1056 				cg_blks(&sblock, &acg, cbtocylno(&sblock,
1057 				    d%sblock.fs_fpg))[cbtorpos(&sblock,
1058 				    d%sblock.fs_fpg)]++;
1059 				if(sblock.fs_contigsumsize > 0) {
1060 					setbit(cg_clustersfree(&acg),
1061 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1062 					if(lcs < sblock.fs_contigsumsize) {
1063 						if(lcs) {
1064 							cg_clustersum(&acg)
1065 							    [lcs]--;
1066 						}
1067 						lcs++;
1068 						cg_clustersum(&acg)[lcs]++;
1069 					}
1070 				}
1071 			}
1072 			/*
1073 			 * Point "d" to the first fragment of the block before
1074 			 * the last incomplete block.
1075 			 */
1076 			d--;
1077 		}
1078 
1079 		DBG_PRINT1("d=%d\n",
1080 		    d);
1081 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1082 		    d-=sblock.fs_frag) {
1083 			DBG_TRC;
1084 			DBG_PRINT1("d=%d\n",
1085 			    d);
1086 			setblock(&sblock, cg_blksfree(&acg),
1087 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1088 			acg.cg_cs.cs_nbfree++;
1089 			sblock.fs_cstotal.cs_nbfree++;
1090 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1091 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1092 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1093 			    d%sblock.fs_fpg)]++;
1094 			if(sblock.fs_contigsumsize > 0) {
1095 				setbit(cg_clustersfree(&acg),
1096 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1097 				/*
1098 				 * The last cluster size is already set up.
1099 				 */
1100 				if(lcs < sblock.fs_contigsumsize) {
1101 					if(lcs) {
1102 						cg_clustersum(&acg)[lcs]--;
1103 					}
1104 					lcs++;
1105 					cg_clustersum(&acg)[lcs]++;
1106 				}
1107 			}
1108 		}
1109 		*cs = acg.cg_cs;
1110 
1111 		/*
1112 		 * Now write the former cylinder group containing the cylinder
1113 		 * summary back to disk.
1114 		 */
1115 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1116 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1117 		DBG_PRINT0("oscg written\n");
1118 		DBG_DUMP_CG(&sblock,
1119 		    "old summary cg",
1120 		    &acg);
1121 
1122 		/*
1123 		 * Find the beginning of the new cylinder group containing the
1124 		 * cylinder summary.
1125 		 */
1126 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1127 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1128 		cs=fscs+ncscg;
1129 
1130 
1131 		/*
1132 		 * If Nflag is specified, we would now read random data instead
1133 		 * of an empty cg structure from disk. So we can't simulate that
1134 		 * part for now.
1135 		 */
1136 		if(Nflag) {
1137 			DBG_PRINT0("nscg update skipped\n");
1138 			DBG_LEAVE;
1139 			return;
1140 		}
1141 
1142 		/*
1143 		 * Read the future cylinder group containing the cylinder
1144 		 * summary from disk, and make a copy.
1145 		 */
1146 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1147 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1148 		DBG_PRINT0("nscg read\n");
1149 		DBG_DUMP_CG(&sblock,
1150 		    "new summary cg",
1151 		    &aocg);
1152 
1153 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1154 
1155 		/*
1156 		 * Allocate all complete blocks used by the new cylinder
1157 		 * summary.
1158 		 */
1159 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1160 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1161 		    d+=sblock.fs_frag) {
1162 			clrblock(&sblock, cg_blksfree(&acg),
1163 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1164 			acg.cg_cs.cs_nbfree--;
1165 			sblock.fs_cstotal.cs_nbfree--;
1166 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1167 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1168 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1169 			    d%sblock.fs_fpg)]--;
1170 			if(sblock.fs_contigsumsize > 0) {
1171 				clrbit(cg_clustersfree(&acg),
1172 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1173 			}
1174 		}
1175 
1176 		/*
1177 		 * Allocate all fragments used by the cylinder summary in the
1178 		 * last block.
1179 		 */
1180 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1181 			for(; d-sblock.fs_csaddr<
1182 			    sblock.fs_cssize/sblock.fs_fsize;
1183 			    d++) {
1184 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1185 				acg.cg_cs.cs_nffree--;
1186 				sblock.fs_cstotal.cs_nffree--;
1187 			}
1188 			acg.cg_cs.cs_nbfree--;
1189 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1190 			sblock.fs_cstotal.cs_nbfree--;
1191 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1192 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1193 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1194 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1195 			    d%sblock.fs_fpg)]--;
1196 			if(sblock.fs_contigsumsize > 0) {
1197 				clrbit(cg_clustersfree(&acg),
1198 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1199 			}
1200 
1201 			frag_adjust(d%sblock.fs_fpg, +1);
1202 		}
1203 		/*
1204 		 * XXX	Handle the cluster statistics here in the case  this
1205 		 *	cylinder group is now almost full, and the remaining
1206 		 *	space is less then the maximum cluster size. This is
1207 		 *	probably not needed, as you would hardly find a file
1208 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1209 		 *	space right behind the cylinder group information in
1210 		 *	any new cylinder group.
1211 		 */
1212 
1213 		/*
1214 		 * Update our statistics in the cylinder summary.
1215 		 */
1216 		*cs = acg.cg_cs;
1217 
1218 		/*
1219 		 * Write the new cylinder group containing the cylinder summary
1220 		 * back to disk.
1221 		 */
1222 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1223 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1224 		DBG_PRINT0("nscg written\n");
1225 		DBG_DUMP_CG(&sblock,
1226 		    "new summary cg",
1227 		    &acg);
1228 
1229 		DBG_LEAVE;
1230 		return;
1231 	}
1232 	/*
1233 	 * We have got enough of space in the current cylinder group, so we
1234 	 * can relocate just a few blocks, and let the summary  information
1235 	 * grow in place where it is right now.
1236 	 */
1237 	DBG_TRC;
1238 
1239 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1240 	dupper = sblock.fs_csaddr - cbase +
1241 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1242 	odupper = osblock.fs_csaddr - cbase +
1243 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1244 
1245 	sblock.fs_dsize -= dupper-odupper;
1246 
1247 	/*
1248 	 * Allocate the space for the array of blocks to be relocated.
1249 	 */
1250  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1251 	    sizeof(struct gfs_bpp));
1252 	if(bp == NULL) {
1253 		errx(1, "malloc failed");
1254 	}
1255 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1256 	    sizeof(struct gfs_bpp));
1257 
1258 	/*
1259 	 * Lock all new frags needed for the cylinder group summary. This  is
1260 	 * done per fragment in the first and last block of the new  required
1261 	 * area, and per block for all other blocks.
1262 	 *
1263 	 * Handle the first new  block here (but only if some fragments where
1264 	 * already used for the cylinder summary).
1265 	 */
1266 	ind=0;
1267 	frag_adjust(odupper, -1);
1268 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1269 		DBG_PRINT1("scg first frag check loop d=%d\n",
1270 		    d);
1271 		if(isclr(cg_blksfree(&acg), d)) {
1272 			if (!ind) {
1273 				bp[ind].old=d/sblock.fs_frag;
1274 				bp[ind].flags|=GFS_FL_FIRST;
1275 				if(roundup(d, sblock.fs_frag) >= dupper) {
1276 					bp[ind].flags|=GFS_FL_LAST;
1277 				}
1278 				ind++;
1279 			}
1280 		} else {
1281 			clrbit(cg_blksfree(&acg), d);
1282 			acg.cg_cs.cs_nffree--;
1283 			sblock.fs_cstotal.cs_nffree--;
1284 		}
1285 		/*
1286 		 * No cluster handling is needed here, as there was at least
1287 		 * one  fragment in use by the cylinder summary in  the  old
1288 		 * file system.
1289 		 * No block-free counter handling here as this block was not
1290 		 * a free block.
1291 		 */
1292 	}
1293 	frag_adjust(odupper, 1);
1294 
1295 	/*
1296 	 * Handle all needed complete blocks here.
1297 	 */
1298 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1299 		DBG_PRINT1("scg block check loop d=%d\n",
1300 		    d);
1301 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1302 			for(f=d; f<d+sblock.fs_frag; f++) {
1303 				if(isset(cg_blksfree(&aocg), f)) {
1304 					acg.cg_cs.cs_nffree--;
1305 					sblock.fs_cstotal.cs_nffree--;
1306 				}
1307 			}
1308 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1309 			bp[ind].old=d/sblock.fs_frag;
1310 			ind++;
1311 		} else {
1312 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1313 			acg.cg_cs.cs_nbfree--;
1314 			sblock.fs_cstotal.cs_nbfree--;
1315 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1316 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1317 			    [cbtorpos(&sblock, d)]--;
1318 			if(sblock.fs_contigsumsize > 0) {
1319 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1320 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1321 				    lcs<sblock.fs_contigsumsize;
1322 				    l++, lcs++ ) {
1323 					if(isclr(cg_clustersfree(&acg),l)){
1324 						break;
1325 					}
1326 				}
1327 				if(lcs < sblock.fs_contigsumsize) {
1328 					cg_clustersum(&acg)[lcs+1]--;
1329 					if(lcs) {
1330 						cg_clustersum(&acg)[lcs]++;
1331 					}
1332 				}
1333 			}
1334 		}
1335 		/*
1336 		 * No fragment counter handling is needed here, as this finally
1337 		 * doesn't change after the relocation.
1338 		 */
1339 	}
1340 
1341 	/*
1342 	 * Handle all fragments needed in the last new affected block.
1343 	 */
1344 	if(d<dupper) {
1345 		frag_adjust(dupper-1, -1);
1346 
1347 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1348 			acg.cg_cs.cs_nbfree--;
1349 			sblock.fs_cstotal.cs_nbfree--;
1350 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1351 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1352 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1353 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1354 			    [cbtorpos(&sblock, d)]--;
1355 			if(sblock.fs_contigsumsize > 0) {
1356 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1357 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1358 				    lcs<sblock.fs_contigsumsize;
1359 				    l++, lcs++ ) {
1360 					if(isclr(cg_clustersfree(&acg),l)){
1361 						break;
1362 					}
1363 				}
1364 				if(lcs < sblock.fs_contigsumsize) {
1365 					cg_clustersum(&acg)[lcs+1]--;
1366 					if(lcs) {
1367 						cg_clustersum(&acg)[lcs]++;
1368 					}
1369 				}
1370 			}
1371 		}
1372 
1373 		for(; d<dupper; d++) {
1374 			DBG_PRINT1("scg second frag check loop d=%d\n",
1375 			    d);
1376 			if(isclr(cg_blksfree(&acg), d)) {
1377 				bp[ind].old=d/sblock.fs_frag;
1378 				bp[ind].flags|=GFS_FL_LAST;
1379 			} else {
1380 				clrbit(cg_blksfree(&acg), d);
1381 				acg.cg_cs.cs_nffree--;
1382 				sblock.fs_cstotal.cs_nffree--;
1383 			}
1384 		}
1385 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1386 			ind++;
1387 		}
1388 		frag_adjust(dupper-1, 1);
1389 	}
1390 
1391 	/*
1392 	 * If we found a block to relocate just do so.
1393 	 */
1394 	if(ind) {
1395 		for(i=0; i<ind; i++) {
1396 			if(!bp[i].old) { /* no more blocks listed */
1397 				/*
1398 				 * XXX	A relative blocknumber should not be
1399 				 *	zero,   which  is   not   explicitly
1400 				 *	guaranteed by our code.
1401 				 */
1402 				break;
1403 			}
1404 			/*
1405 			 * Allocate a complete block in the same (current)
1406 			 * cylinder group.
1407 			 */
1408 			bp[i].new=alloc()/sblock.fs_frag;
1409 
1410 			/*
1411 			 * There is no frag_adjust() needed for the new block
1412 			 * as it will have no fragments yet :-).
1413 			 */
1414 			for(f=bp[i].old*sblock.fs_frag,
1415 			    g=bp[i].new*sblock.fs_frag;
1416 			    f<(bp[i].old+1)*sblock.fs_frag;
1417 			    f++, g++) {
1418 				if(isset(cg_blksfree(&aocg), f)) {
1419 					setbit(cg_blksfree(&acg), g);
1420 					acg.cg_cs.cs_nffree++;
1421 					sblock.fs_cstotal.cs_nffree++;
1422 				}
1423 			}
1424 
1425 			/*
1426 			 * Special handling is required if this was the  first
1427 			 * block. We have to consider the fragments which were
1428 			 * used by the cylinder summary in the original  block
1429 			 * which  re to be free in the copy of our  block.  We
1430 			 * have  to be careful if this first block happens  to
1431 			 * be also the last block to be relocated.
1432 			 */
1433 			if(bp[i].flags & GFS_FL_FIRST) {
1434 				for(f=bp[i].old*sblock.fs_frag,
1435 				    g=bp[i].new*sblock.fs_frag;
1436 				    f<odupper;
1437 				    f++, g++) {
1438 					setbit(cg_blksfree(&acg), g);
1439 					acg.cg_cs.cs_nffree++;
1440 					sblock.fs_cstotal.cs_nffree++;
1441 				}
1442 				if(!(bp[i].flags & GFS_FL_LAST)) {
1443 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1444 				}
1445 
1446 			}
1447 
1448 			/*
1449 			 * Special handling is required if this is the last
1450 			 * block to be relocated.
1451 			 */
1452 			if(bp[i].flags & GFS_FL_LAST) {
1453 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1454 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1455 				for(f=dupper;
1456 				    f<roundup(dupper, sblock.fs_frag);
1457 				    f++) {
1458 					if(isclr(cg_blksfree(&acg), f)) {
1459 						setbit(cg_blksfree(&acg), f);
1460 						acg.cg_cs.cs_nffree++;
1461 						sblock.fs_cstotal.cs_nffree++;
1462 					}
1463 				}
1464 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1465 			}
1466 
1467 			/*
1468 			 * !!! Attach the cylindergroup offset here.
1469 			 */
1470 			bp[i].old+=cbase/sblock.fs_frag;
1471 			bp[i].new+=cbase/sblock.fs_frag;
1472 
1473 			/*
1474 			 * Copy the content of the block.
1475 			 */
1476 			/*
1477 			 * XXX	Here we will have to implement a copy on write
1478 			 *	in the case we have any active snapshots.
1479 			 */
1480 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1481 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1482 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1483 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1484 			DBG_DUMP_HEX(&sblock,
1485 			    "copied full block",
1486 			    (unsigned char *)&ablk);
1487 
1488 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1489 			    bp[i].old,
1490 			    bp[i].new);
1491 		}
1492 
1493 		/*
1494 		 * Now we have to update all references to any fragment which
1495 		 * belongs  to any block relocated. We iterate now  over  all
1496 		 * cylinder  groups,  within those over all non  zero  length
1497 		 * inodes.
1498 		 */
1499 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1500 			DBG_PRINT1("scg doing cg (%d)\n",
1501 			    cylno);
1502 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1503 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1504 			}
1505 		}
1506 
1507 		/*
1508 		 * All inodes are checked, now make sure the number of
1509 		 * references found make sense.
1510 		 */
1511 		for(i=0; i<ind; i++) {
1512 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1513 				warnx("error: %d refs found for block %d.",
1514 				    bp[i].found, bp[i].old);
1515 			}
1516 
1517 		}
1518 	}
1519 	/*
1520 	 * The following statistics are not changed here:
1521 	 *     sblock.fs_cstotal.cs_ndir
1522 	 *     sblock.fs_cstotal.cs_nifree
1523 	 * The following statistics were already updated on the fly:
1524 	 *     sblock.fs_cstotal.cs_nffree
1525 	 *     sblock.fs_cstotal.cs_nbfree
1526 	 * As the statistics for this cylinder group are ready, copy it to
1527 	 * the summary information array.
1528 	 */
1529 
1530 	*cs = acg.cg_cs;
1531 
1532 	/*
1533 	 * Write summary cylinder group back to disk.
1534 	 */
1535 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1536 	    (void *)&acg, fso, Nflag);
1537 	DBG_PRINT0("scg written\n");
1538 	DBG_DUMP_CG(&sblock,
1539 	    "new summary cg",
1540 	    &acg);
1541 
1542 	DBG_LEAVE;
1543 	return;
1544 }
1545 
1546 /* ************************************************************** rdfs ***** */
1547 /*
1548  * Here we read some block(s) from disk.
1549  */
1550 static void
1551 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1552 {
1553 	DBG_FUNC("rdfs")
1554 	ssize_t	n;
1555 
1556 	DBG_ENTER;
1557 
1558 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1559 		err(33, "rdfs: seek error: %ld", (long)bno);
1560 	}
1561 	n = read(fsi, bf, size);
1562 	if (n != (ssize_t)size) {
1563 		err(34, "rdfs: read error: %ld", (long)bno);
1564 	}
1565 
1566 	DBG_LEAVE;
1567 	return;
1568 }
1569 
1570 /* ************************************************************** wtfs ***** */
1571 /*
1572  * Here we write some block(s) to disk.
1573  */
1574 static void
1575 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1576 {
1577 	DBG_FUNC("wtfs")
1578 	ssize_t	n;
1579 
1580 	DBG_ENTER;
1581 
1582 	if (Nflag) {
1583 		DBG_LEAVE;
1584 		return;
1585 	}
1586 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1587 		err(35, "wtfs: seek error: %ld", (long)bno);
1588 	}
1589 	n = write(fso, bf, size);
1590 	if (n != (ssize_t)size) {
1591 		err(36, "wtfs: write error: %ld", (long)bno);
1592 	}
1593 
1594 	DBG_LEAVE;
1595 	return;
1596 }
1597 
1598 /* ************************************************************* alloc ***** */
1599 /*
1600  * Here we allocate a free block in the current cylinder group. It is assumed,
1601  * that  acg contains the current cylinder group. As we may take a block  from
1602  * somewhere in the filesystem we have to handle cluster summary here.
1603  */
1604 static daddr_t
1605 alloc(void)
1606 {
1607 	DBG_FUNC("alloc")
1608 	daddr_t	d, blkno;
1609 	int	lcs1, lcs2;
1610 	int	l;
1611 	int	csmin, csmax;
1612 	int	dlower, dupper, dmax;
1613 
1614 	DBG_ENTER;
1615 
1616 	if (acg.cg_magic != CG_MAGIC) {
1617 		warnx("acg: bad magic number");
1618 		DBG_LEAVE;
1619 		return (0);
1620 	}
1621 	if (acg.cg_cs.cs_nbfree == 0) {
1622 		warnx("error: cylinder group ran out of space");
1623 		DBG_LEAVE;
1624 		return (0);
1625 	}
1626 	/*
1627 	 * We start seeking for free blocks only from the space available after
1628 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1629 	 * block here which we have to relocate a couple of seconds later again
1630 	 * again, and we are not prepared to to this anyway.
1631 	 */
1632 	blkno=-1;
1633 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1635 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1636 	if (dmax > sblock.fs_size) {
1637 		dmax = sblock.fs_size;
1638 	}
1639 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1640 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1641 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1642 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1643 	    dlower,
1644 	    dupper,
1645 	    dmax);
1646 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1647 	    csmin,
1648 	    csmax);
1649 
1650 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1651 		if(d>=csmin && d<=csmax) {
1652 			continue;
1653 		}
1654 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1655 		    d))) {
1656 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1657 			break;
1658 		}
1659 	}
1660 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1661 		if(d>=csmin && d<=csmax) {
1662 			continue;
1663 		}
1664 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1665 		    d))) {
1666 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1667 			break;
1668 		}
1669 	}
1670 	if(blkno==-1) {
1671 		warnx("internal error: couldn't find promised block in cg");
1672 		DBG_LEAVE;
1673 		return (0);
1674 	}
1675 
1676 	/*
1677 	 * This is needed if the block was found already in the first loop.
1678 	 */
1679 	d=blkstofrags(&sblock, blkno);
1680 
1681 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1682 	if (sblock.fs_contigsumsize > 0) {
1683 		/*
1684 		 * Handle the cluster allocation bitmap.
1685 		 */
1686 		clrbit(cg_clustersfree(&acg), blkno);
1687 		/*
1688 		 * We  possibly have split a cluster here, so we have  to  do
1689 		 * recalculate the sizes of the remaining cluster halves now,
1690 		 * and use them for updating the cluster summary information.
1691 		 *
1692 		 * Lets start with the blocks before our allocated block ...
1693 		 */
1694 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1695 		    l--, lcs1++ ) {
1696 			if(isclr(cg_clustersfree(&acg),l)){
1697 				break;
1698 			}
1699 		}
1700 		/*
1701 		 * ... and continue with the blocks right after our allocated
1702 		 * block.
1703 		 */
1704 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1705 		    l++, lcs2++ ) {
1706 			if(isclr(cg_clustersfree(&acg),l)){
1707 				break;
1708 			}
1709 		}
1710 
1711 		/*
1712 		 * Now update all counters.
1713 		 */
1714 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1715 		if(lcs1) {
1716 			cg_clustersum(&acg)[lcs1]++;
1717 		}
1718 		if(lcs2) {
1719 			cg_clustersum(&acg)[lcs2]++;
1720 		}
1721 	}
1722 	/*
1723 	 * Update all statistics based on blocks.
1724 	 */
1725 	acg.cg_cs.cs_nbfree--;
1726 	sblock.fs_cstotal.cs_nbfree--;
1727 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1728 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1729 
1730 	DBG_LEAVE;
1731 	return (d);
1732 }
1733 
1734 /* *********************************************************** isblock ***** */
1735 /*
1736  * Here  we check if all frags of a block are free. For more details  again
1737  * please see the source of newfs(8), as this function is taken over almost
1738  * unchanged.
1739  */
1740 static int
1741 isblock(struct fs *fs, unsigned char *cp, int h)
1742 {
1743 	DBG_FUNC("isblock")
1744 	unsigned char	mask;
1745 
1746 	DBG_ENTER;
1747 
1748 	switch (fs->fs_frag) {
1749 	case 8:
1750 		DBG_LEAVE;
1751 		return (cp[h] == 0xff);
1752 	case 4:
1753 		mask = 0x0f << ((h & 0x1) << 2);
1754 		DBG_LEAVE;
1755 		return ((cp[h >> 1] & mask) == mask);
1756 	case 2:
1757 		mask = 0x03 << ((h & 0x3) << 1);
1758 		DBG_LEAVE;
1759 		return ((cp[h >> 2] & mask) == mask);
1760 	case 1:
1761 		mask = 0x01 << (h & 0x7);
1762 		DBG_LEAVE;
1763 		return ((cp[h >> 3] & mask) == mask);
1764 	default:
1765 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1766 		DBG_LEAVE;
1767 		return (0);
1768 	}
1769 }
1770 
1771 /* ********************************************************** clrblock ***** */
1772 /*
1773  * Here we allocate a complete block in the block map. For more details again
1774  * please  see the source of newfs(8), as this function is taken over  almost
1775  * unchanged.
1776  */
1777 static void
1778 clrblock(struct fs *fs, unsigned char *cp, int h)
1779 {
1780 	DBG_FUNC("clrblock")
1781 
1782 	DBG_ENTER;
1783 
1784 	switch ((fs)->fs_frag) {
1785 	case 8:
1786 		cp[h] = 0;
1787 		break;
1788 	case 4:
1789 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1790 		break;
1791 	case 2:
1792 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1793 		break;
1794 	case 1:
1795 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1796 		break;
1797 	default:
1798 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1799 		break;
1800 	}
1801 
1802 	DBG_LEAVE;
1803 	return;
1804 }
1805 
1806 /* ********************************************************** setblock ***** */
1807 /*
1808  * Here we free a complete block in the free block map. For more details again
1809  * please  see the source of newfs(8), as this function is taken  over  almost
1810  * unchanged.
1811  */
1812 static void
1813 setblock(struct fs *fs, unsigned char *cp, int h)
1814 {
1815 	DBG_FUNC("setblock")
1816 
1817 	DBG_ENTER;
1818 
1819 	switch (fs->fs_frag) {
1820 	case 8:
1821 		cp[h] = 0xff;
1822 		break;
1823 	case 4:
1824 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1825 		break;
1826 	case 2:
1827 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1828 		break;
1829 	case 1:
1830 		cp[h >> 3] |= (0x01 << (h & 0x7));
1831 		break;
1832 	default:
1833 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1834 		break;
1835 	}
1836 
1837 	DBG_LEAVE;
1838 	return;
1839 }
1840 
1841 /* ************************************************************ ginode ***** */
1842 /*
1843  * This function provides access to an individual inode. We find out in which
1844  * block  the  requested inode is located, read it from disk if  needed,  and
1845  * return  the pointer into that block. We maintain a cache of one  block  to
1846  * not  read the same block again and again if we iterate linearly  over  all
1847  * inodes.
1848  */
1849 static struct ufs1_dinode *
1850 ginode(ino_t inumber, int fsi, int cg)
1851 {
1852 	DBG_FUNC("ginode")
1853 	ufs_daddr_t	iblk;
1854 	static ino_t	startinum=0;	/* first inode in cached block */
1855 	struct ufs1_dinode	*pi;
1856 
1857 	DBG_ENTER;
1858 
1859 	pi=(struct ufs1_dinode *)(void *)ablk;
1860 	inumber+=(cg * sblock.fs_ipg);
1861 	if (startinum == 0 || inumber < startinum ||
1862 	    inumber >= startinum + INOPB(&sblock)) {
1863 		/*
1864 		 * The block needed is not cached, so we have to read it from
1865 		 * disk now.
1866 		 */
1867 		iblk = ino_to_fsba(&sblock, inumber);
1868 		in_src=fsbtodb(&sblock, iblk);
1869 		rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1870 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1871 	}
1872 
1873 	DBG_LEAVE;
1874 	return (&(pi[inumber % INOPB(&sblock)]));
1875 }
1876 
1877 /* ****************************************************** charsperline ***** */
1878 /*
1879  * Figure out how many lines our current terminal has. For more details again
1880  * please  see the source of newfs(8), as this function is taken over  almost
1881  * unchanged.
1882  */
1883 static int
1884 charsperline(void)
1885 {
1886 	DBG_FUNC("charsperline")
1887 	int	columns;
1888 	char	*cp;
1889 	struct winsize	ws;
1890 
1891 	DBG_ENTER;
1892 
1893 	columns = 0;
1894 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1895 		columns = ws.ws_col;
1896 	}
1897 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1898 		columns = atoi(cp);
1899 	}
1900 	if (columns == 0) {
1901 		columns = 80;	/* last resort */
1902 	}
1903 
1904 	DBG_LEAVE;
1905 	return columns;
1906 }
1907 
1908 /* ************************************************************** main ***** */
1909 /*
1910  * growfs(8)  is a utility which allows to increase the size of  an  existing
1911  * ufs filesystem. Currently this can only be done on unmounted file  system.
1912  * It  recognizes some command line options to specify the new desired  size,
1913  * and  it does some basic checkings. The old file system size is  determined
1914  * and  after some more checks like we can really access the new  last  block
1915  * on the disk etc. we calculate the new parameters for the superblock. After
1916  * having  done  this we just call growfs() which will do  the  work.  Before
1917  * we finish the only thing left is to update the disklabel.
1918  * We still have to provide support for snapshots. Therefore we first have to
1919  * understand  what data structures are always replicated in the snapshot  on
1920  * creation,  for all other blocks we touch during our procedure, we have  to
1921  * keep the old blocks unchanged somewhere available for the snapshots. If we
1922  * are lucky, then we only have to handle our blocks to be relocated in  that
1923  * way.
1924  * Also  we  have to consider in what order we actually update  the  critical
1925  * data structures of the filesystem to make sure, that in case of a disaster
1926  * fsck(8) is still able to restore any lost data.
1927  * The  foreseen last step then will be to provide for growing  even  mounted
1928  * file  systems. There we have to extend the mount() system call to  provide
1929  * userland access to the file system locking facility.
1930  */
1931 int
1932 main(int argc, char **argv)
1933 {
1934 	DBG_FUNC("main")
1935 	struct partinfo pinfo;
1936 	char	*device, *special, *cp;
1937 	char	ch;
1938 	unsigned int	size=0;
1939 	size_t	len;
1940 	unsigned int	Nflag=0;
1941 	int	ExpertFlag=0;
1942 	struct stat	st;
1943 	int	fsi,fso;
1944 	char	reply[5];
1945 #ifdef FSMAXSNAP
1946 	int	j;
1947 #endif /* FSMAXSNAP */
1948 
1949 	DBG_ENTER;
1950 
1951 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1952 		switch(ch) {
1953 		case 'N':
1954 			Nflag=1;
1955 			break;
1956 		case 's':
1957 			size=(size_t)atol(optarg);
1958 			if(size<1) {
1959 				usage();
1960 			}
1961 			break;
1962 		case 'v': /* for compatibility to newfs */
1963 			break;
1964 		case 'y':
1965 			ExpertFlag=1;
1966 			break;
1967 		case '?':
1968 			/* FALLTHROUGH */
1969 		default:
1970 			usage();
1971 		}
1972 	}
1973 	argc -= optind;
1974 	argv += optind;
1975 
1976 	if(argc != 1) {
1977 		usage();
1978 	}
1979 	device=*argv;
1980 
1981 	/*
1982 	 * Now try to guess the (raw)device name.
1983 	 */
1984 	if (0 == strrchr(device, '/')) {
1985 		/*
1986 		 * No path prefix was given, so try in that order:
1987 		 *     /dev/r%s
1988 		 *     /dev/%s
1989 		 *     /dev/vinum/r%s
1990 		 *     /dev/vinum/%s.
1991 		 *
1992 		 * FreeBSD now doesn't distinguish between raw and  block
1993 		 * devices any longer, but it should still work this way.
1994 		 */
1995 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1996 		special=(char *)malloc(len);
1997 		if(special == NULL) {
1998 			errx(1, "malloc failed");
1999 		}
2000 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2001 		if (stat(special, &st) == -1) {
2002 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2003 			if (stat(special, &st) == -1) {
2004 				snprintf(special, len, "%svinum/r%s",
2005 				    _PATH_DEV, device);
2006 				if (stat(special, &st) == -1) {
2007 					/* For now this is the 'last resort' */
2008 					snprintf(special, len, "%svinum/%s",
2009 					    _PATH_DEV, device);
2010 				}
2011 			}
2012 		}
2013 		device = special;
2014 	}
2015 
2016 	/*
2017 	 * Try to access our devices for writing ...
2018 	 */
2019 	if (Nflag) {
2020 		fso = -1;
2021 	} else {
2022 		fso = open(device, O_WRONLY);
2023 		if (fso < 0) {
2024 			err(1, "%s", device);
2025 		}
2026 	}
2027 
2028 	/*
2029 	 * ... and reading.
2030 	 */
2031 	fsi = open(device, O_RDONLY);
2032 	if (fsi < 0) {
2033 		err(1, "%s", device);
2034 	}
2035 
2036 	/*
2037 	 * Try  to read a label and gess the slice if not  specified.  This
2038 	 * code  should guess the right thing and avaid to bother the  user
2039 	 * user with the task of specifying the option -v on vinum volumes.
2040 	 */
2041 	cp=device+strlen(device)-1;
2042 
2043 	if (ioctl(fsi, DIOCGPART, &pinfo) < 0) {
2044 		if (fstat(fsi, &st) < 0)
2045 			err(1, "unable to figure out the partition size");
2046 		pinfo.media_blocks  = st.st_size / DEV_BSIZE;
2047 		pinfo.media_blksize = DEV_BSIZE;
2048 	}
2049 
2050 	/*
2051 	 * Check if that partition looks suited for growing a file system.
2052 	 */
2053 	if (pinfo.media_blocks < 1) {
2054 		errx(1, "partition is unavailable");
2055 	}
2056 
2057 	/*
2058 	 * Read the current superblock, and take a backup.
2059 	 */
2060 	rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2061 	    fsi);
2062 	if (osblock.fs_magic != FS_MAGIC) {
2063 		errx(1, "superblock not recognized");
2064 	}
2065 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2066 
2067 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2068 	DBG_DUMP_FS(&sblock,
2069 	    "old sblock");
2070 
2071 	/*
2072 	 * Determine size to grow to. Default to the full size specified in
2073 	 * the disk label.
2074 	 */
2075 	sblock.fs_size = dbtofsb(&osblock, pinfo.media_blocks);
2076 	if (size != 0) {
2077 		if (size > pinfo.media_blocks){
2078 			errx(1, "There is not enough space (%ju < %d)",
2079 			     (intmax_t)pinfo.media_blocks, size);
2080 		}
2081 		sblock.fs_size = dbtofsb(&osblock, size);
2082 	}
2083 
2084 	/*
2085 	 * Are we really growing ?
2086 	 */
2087 	if(osblock.fs_size >= sblock.fs_size) {
2088 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2089 		    sblock.fs_size);
2090 	}
2091 
2092 
2093 #ifdef FSMAXSNAP
2094 	/*
2095 	 * Check if we find an active snapshot.
2096 	 */
2097 	if(ExpertFlag == 0) {
2098 		for(j=0; j<FSMAXSNAP; j++) {
2099 			if(sblock.fs_snapinum[j]) {
2100 				errx(1, "active snapshot found in filesystem\n"
2101 				    "	please remove all snapshots before "
2102 				    "using growfs\n");
2103 			}
2104 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2105 				break;
2106 			}
2107 		}
2108 	}
2109 #endif
2110 
2111 	if (ExpertFlag == 0 && Nflag == 0) {
2112 		printf("We strongly recommend you to make a backup "
2113 		    "before growing the Filesystem\n\n"
2114 		    " Did you backup your data (Yes/No) ? ");
2115 		fgets(reply, (int)sizeof(reply), stdin);
2116 		if (strcmp(reply, "Yes\n")){
2117 			printf("\n Nothing done \n");
2118 			exit (0);
2119 		}
2120 	}
2121 
2122 	printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2123 
2124 	/*
2125 	 * Try to access our new last block in the filesystem. Even if we
2126 	 * later on realize we have to abort our operation, on that block
2127 	 * there should be no data, so we can't destroy something yet.
2128 	 */
2129 	wtfs((daddr_t)pinfo.media_blocks-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2130 	    Nflag);
2131 
2132 	/*
2133 	 * Now calculate new superblock values and check for reasonable
2134 	 * bound for new file system size:
2135 	 *     fs_size:    is derived from label or user input
2136 	 *     fs_dsize:   should get updated in the routines creating or
2137 	 *                 updating the cylinder groups on the fly
2138 	 *     fs_cstotal: should get updated in the routines creating or
2139 	 *                 updating the cylinder groups
2140 	 */
2141 
2142 	/*
2143 	 * Update the number of cylinders in the filesystem.
2144 	 */
2145 	sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2146 	if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2147 		sblock.fs_ncyl++;
2148 	}
2149 
2150 	/*
2151 	 * Update the number of cylinder groups in the filesystem.
2152 	 */
2153 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2154 	if (sblock.fs_ncyl % sblock.fs_cpg) {
2155 		sblock.fs_ncg++;
2156 	}
2157 
2158 	if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2159 	    sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2160 	    cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2161 	    (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2162 		/*
2163 		 * The space in the new last cylinder group is too small,
2164 		 * so revert back.
2165 		 */
2166 		sblock.fs_ncg--;
2167 #if 1 /* this is a bit more safe */
2168 		sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2169 #else
2170 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2171 #endif
2172 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2173 		printf( "Warning: %d sector(s) cannot be allocated.\n",
2174 		    (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2175 		    NSPF(&sblock));
2176 		sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2177 	}
2178 
2179 	/*
2180 	 * Update the space for the cylinder group summary information in the
2181 	 * respective cylinder group data area.
2182 	 */
2183 	sblock.fs_cssize =
2184 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2185 
2186 	if(osblock.fs_size >= sblock.fs_size) {
2187 		errx(1, "not enough new space");
2188 	}
2189 
2190 	DBG_PRINT0("sblock calculated\n");
2191 
2192 	/*
2193 	 * Ok, everything prepared, so now let's do the tricks.
2194 	 */
2195 	growfs(fsi, fso, Nflag);
2196 
2197 	close(fsi);
2198 	if(fso>-1) close(fso);
2199 
2200 	DBG_CLOSE;
2201 
2202 	DBG_LEAVE;
2203 	return 0;
2204 }
2205 
2206 /* ************************************************************* usage ***** */
2207 /*
2208  * Dump a line of usage.
2209  */
2210 static void
2211 usage(void)
2212 {
2213 	DBG_FUNC("usage")
2214 
2215 	DBG_ENTER;
2216 
2217 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2218 
2219 	DBG_LEAVE;
2220 	exit(1);
2221 }
2222 
2223 /* *********************************************************** updclst ***** */
2224 /*
2225  * This updates most paramters and the bitmap related to cluster. We have to
2226  * assume, that sblock, osblock, acg are set up.
2227  */
2228 static void
2229 updclst(int block)
2230 {
2231 	DBG_FUNC("updclst")
2232 	static int	lcs=0;
2233 
2234 	DBG_ENTER;
2235 
2236 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2237 		return;
2238 	}
2239 	/*
2240 	 * update cluster allocation map
2241 	 */
2242 	setbit(cg_clustersfree(&acg), block);
2243 
2244 	/*
2245 	 * update cluster summary table
2246 	 */
2247 	if(!lcs) {
2248 		/*
2249 		 * calculate size for the trailing cluster
2250 		 */
2251 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2252 			if(isclr(cg_clustersfree(&acg), block)){
2253 				break;
2254 			}
2255 		}
2256 	}
2257 	if(lcs < sblock.fs_contigsumsize) {
2258 		if(lcs) {
2259 			cg_clustersum(&acg)[lcs]--;
2260 		}
2261 		lcs++;
2262 		cg_clustersum(&acg)[lcs]++;
2263 	}
2264 
2265 	DBG_LEAVE;
2266 	return;
2267 }
2268 
2269 /* *********************************************************** updrefs ***** */
2270 /*
2271  * This updates all references to relocated blocks for the given inode.  The
2272  * inode is given as number within the cylinder group, and the number of the
2273  * cylinder group.
2274  */
2275 static void
2276 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2277     Nflag)
2278 {
2279 	DBG_FUNC("updrefs")
2280 	unsigned int	ictr, ind2ctr, ind3ctr;
2281 	ufs_daddr_t	*iptr, *ind2ptr, *ind3ptr;
2282 	struct ufs1_dinode	*ino;
2283 	int	remaining_blocks;
2284 
2285 	DBG_ENTER;
2286 
2287 	/*
2288 	 * XXX We should skip unused inodes even from beeing read from disk
2289 	 *     here by using the bitmap.
2290 	 */
2291 	ino=ginode(in, fsi, cg);
2292 	if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2293 	    (ino->di_mode & IFMT)==IFLNK)) {
2294 		DBG_LEAVE;
2295 		return; /* only check DIR, FILE, LINK */
2296 	}
2297 	if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2298 		DBG_LEAVE;
2299 		return;	/* skip short symlinks */
2300 	}
2301 	if(!ino->di_size) {
2302 		DBG_LEAVE;
2303 		return;	/* skip empty file */
2304 	}
2305 	if(!ino->di_blocks) {
2306 		DBG_LEAVE;
2307 		return;	/* skip empty swiss cheesy file or old fastlink */
2308 	}
2309 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2310 	    in,
2311 	    cg);
2312 
2313 	/*
2314 	 * Start checking all direct blocks.
2315 	 */
2316 	remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2317 	for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2318 	    ictr++) {
2319 		iptr=&(ino->di_db[ictr]);
2320 		if(*iptr) {
2321 			cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2322 		}
2323 	}
2324 	DBG_PRINT0("~~scg direct blocks checked\n");
2325 
2326 	remaining_blocks-=NDADDR;
2327 	if(remaining_blocks<0) {
2328 		DBG_LEAVE;
2329 		return;
2330 	}
2331 	if(ino->di_ib[0]) {
2332 		/*
2333 		 * Start checking first indirect block
2334 		 */
2335 		cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2336 		i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2337 		rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2338 		for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2339 		    sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2340 		    ictr++) {
2341 			iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2342 			if(*iptr) {
2343 				cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2344 				    fso, Nflag);
2345 			}
2346 		}
2347 	}
2348 	DBG_PRINT0("scg indirect_1 blocks checked\n");
2349 
2350 	remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2351 	if(remaining_blocks<0) {
2352 		DBG_LEAVE;
2353 		return;
2354 	}
2355 	if(ino->di_ib[1]) {
2356 		/*
2357 		 * Start checking second indirect block
2358 		 */
2359 		cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2360 		i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2361 		rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2362 		for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2363 		    sizeof(ufs_daddr_t)); ind2ctr++) {
2364 			ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2365 			if(!*ind2ptr) {
2366 				continue;
2367 			}
2368 			cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2369 			    Nflag);
2370 			i1_src=fsbtodb(&sblock, *ind2ptr);
2371 			rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2372 			    fsi);
2373 			for(ictr=0; ictr<MIN(howmany((unsigned int)
2374 			    sblock.fs_bsize, sizeof(ufs_daddr_t)),
2375 			    (unsigned int)remaining_blocks); ictr++) {
2376 				iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2377 				if(*iptr) {
2378 					cond_bl_upd(iptr, bp,
2379 					    GFS_PS_IND_BLK_LVL1, fso, Nflag);
2380 				}
2381 			}
2382 		}
2383 	}
2384 	DBG_PRINT0("scg indirect_2 blocks checked\n");
2385 
2386 #define SQUARE(a) ((a)*(a))
2387 	remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2388 #undef SQUARE
2389 	if(remaining_blocks<0) {
2390 		DBG_LEAVE;
2391 		return;
2392 	}
2393 
2394 	if(ino->di_ib[2]) {
2395 		/*
2396 		 * Start checking third indirect block
2397 		 */
2398 		cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2399 		i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2400 		rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2401 		for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2402 		    sizeof(ufs_daddr_t)); ind3ctr ++) {
2403 			ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2404 			if(!*ind3ptr) {
2405 				continue;
2406 			}
2407 			cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2408 			    Nflag);
2409 			i2_src=fsbtodb(&sblock, *ind3ptr);
2410 			rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2411 			    fsi);
2412 			for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2413 			    sizeof(ufs_daddr_t)); ind2ctr ++) {
2414 				ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2415 				    [ind2ctr];
2416 				if(!*ind2ptr) {
2417 					continue;
2418 				}
2419 				cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2420 				    fso, Nflag);
2421 				i1_src=fsbtodb(&sblock, *ind2ptr);
2422 				rdfs(i1_src, (size_t)sblock.fs_bsize,
2423 				    (void *)&i1blk, fsi);
2424 				for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2425 				    sizeof(ufs_daddr_t)),
2426 				    (unsigned int)remaining_blocks); ictr++) {
2427 					iptr=&((ufs_daddr_t *)(void *)&i1blk)
2428 					    [ictr];
2429 					if(*iptr) {
2430 						cond_bl_upd(iptr, bp,
2431 						    GFS_PS_IND_BLK_LVL1, fso,
2432 						    Nflag);
2433 					}
2434 				}
2435 			}
2436 		}
2437 	}
2438 
2439 	DBG_PRINT0("scg indirect_3 blocks checked\n");
2440 
2441 	DBG_LEAVE;
2442 	return;
2443 }
2444 
2445