xref: /dragonfly/sbin/newfs/mkfs.c (revision 272b4ce8)
1 /*
2  * Copyright (c) 1980, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)mkfs.c	8.11 (Berkeley) 5/3/95
34  * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sbin/newfs/mkfs.c,v 1.14 2007/05/20 19:29:21 dillon Exp $
36  */
37 
38 #include "defs.h"
39 
40 #ifndef STANDALONE
41 #include <stdlib.h>
42 #else
43 
44 extern int atoi(char *);
45 extern char * getenv(char *);
46 
47 #ifdef FSIRAND
48 extern long random(void);
49 extern void srandomdev(void);
50 #endif
51 
52 #endif /* STANDALONE */
53 
54 /*
55  * make file system for cylinder-group style file systems
56  */
57 
58 /*
59  * We limit the size of the inode map to be no more than a
60  * third of the cylinder group space, since we must leave at
61  * least an equal amount of space for the block map.
62  *
63  * N.B.: MAXIPG must be a multiple of INOPB(fs).
64  */
65 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
66 
67 #define UMASK		0755
68 #define MAXINOPB	(MAXBSIZE / sizeof(struct ufs1_dinode))
69 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
70 
71 /*
72  * variables set up by front end.
73  */
74 extern int	mfs;		/* run as the memory based filesystem */
75 extern char	*mfs_mtpt;	/* mount point for mfs          */
76 extern struct stat mfs_mtstat;	/* stat prior to mount          */
77 extern int	Nflag;		/* run mkfs without writing file system */
78 extern int	Oflag;		/* format as an 4.3BSD file system */
79 extern int	Uflag;		/* enable soft updates for file system */
80 extern u_long	fssize;		/* file system size */
81 extern int	ntracks;	/* # tracks/cylinder */
82 extern int	nsectors;	/* # sectors/track */
83 extern int	nphyssectors;	/* # sectors/track including spares */
84 extern int	secpercyl;	/* sectors per cylinder */
85 extern int	sectorsize;	/* bytes/sector */
86 extern int	realsectorsize;	/* bytes/sector in hardware*/
87 extern int	rpm;		/* revolutions/minute of drive */
88 extern int	interleave;	/* hardware sector interleave */
89 extern int	trackskew;	/* sector 0 skew, per track */
90 extern int	fsize;		/* fragment size */
91 extern int	bsize;		/* block size */
92 extern int	cpg;		/* cylinders/cylinder group */
93 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
94 extern int	minfree;	/* free space threshold */
95 extern int	opt;		/* optimization preference (space or time) */
96 extern int	density;	/* number of bytes per inode */
97 extern int	maxcontig;	/* max contiguous blocks to allocate */
98 extern int	rotdelay;	/* rotational delay between blocks */
99 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
100 extern int	nrpos;		/* # of distinguished rotational positions */
101 extern int	bbsize;		/* boot block size */
102 extern int	sbsize;		/* superblock size */
103 extern int	avgfilesize;	/* expected average file size */
104 extern int	avgfilesperdir;	/* expected number of files per directory */
105 extern u_long	memleft;	/* virtual memory available */
106 extern caddr_t	membase;	/* start address of memory based filesystem */
107 extern char *	filename;
108 extern struct disktab geom;
109 
110 extern void fatal(const char *fmt, ...);
111 
112 union {
113 	struct fs fs;
114 	char pad[SBSIZE];
115 } fsun;
116 #define	sblock	fsun.fs
117 struct	csum *fscs;
118 
119 union {
120 	struct cg cg;
121 	char pad[MAXBSIZE];
122 } cgun;
123 #define	acg	cgun.cg
124 
125 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
126 
127 int	fsi, fso;
128 static fsnode_t copyroot;
129 static fsnode_t copyhlinks;
130 #ifdef FSIRAND
131 int     randinit;
132 #endif
133 daddr_t	alloc(int, int);
134 long	calcipg(long, long, off_t *);
135 static int charsperline(void);
136 void clrblock(struct fs *, unsigned char *, int);
137 void fsinit(time_t);
138 void initcg(int, time_t);
139 int isblock(struct fs *, unsigned char *, int);
140 void iput(struct ufs1_dinode *, ino_t);
141 int makedir(struct direct *, int);
142 void parentready(int);
143 void rdfs(daddr_t, int, char *);
144 void setblock(struct fs *, unsigned char *, int);
145 void started(int);
146 void wtfs(daddr_t, int, char *);
147 void wtfsflush(void);
148 
149 #ifndef STANDALONE
150 void get_memleft(void);
151 void raise_data_limit(void);
152 #else
153 void free(char *);
154 char * calloc(u_long, u_long);
155 caddr_t malloc(u_long);
156 caddr_t realloc(char *, u_long);
157 #endif
158 
159 int mfs_ppid = 0;
160 int parentready_signalled;
161 
162 void
163 mkfs(char *fsys, int fi, int fo, const char *mfscopy)
164 {
165 	long i, mincpc, mincpg, inospercg;
166 	long cylno, rpos, blk, j, emitwarn = 0;
167 	long used, mincpgcnt, bpcg;
168 	off_t usedb;
169 	long mapcramped, inodecramped;
170 	long postblsize, rotblsize, totalsbsize;
171 	int status, fd;
172 	time_t utime;
173 	quad_t sizepb;
174 	int width;
175 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
176 
177 #ifndef STANDALONE
178 	time(&utime);
179 #endif
180 #ifdef FSIRAND
181 	if (!randinit) {
182 		randinit = 1;
183 		srandomdev();
184 	}
185 #endif
186 	if (mfs) {
187 		int omask;
188 		pid_t child;
189 
190 		mfs_ppid = getpid();
191 		signal(SIGUSR1, parentready);
192 		if ((child = fork()) != 0) {
193 			/*
194 			 * Parent
195 			 */
196 			if (child == -1)
197 				err(10, "mfs");
198 			if (mfscopy)
199 			    copyroot = FSCopy(&copyhlinks, mfscopy);
200 			signal(SIGUSR1, started);
201 			kill(child, SIGUSR1);
202 			while (waitpid(child, &status, 0) != child)
203 				;
204 			exit(WEXITSTATUS(status));
205 			/* NOTREACHED */
206 		}
207 
208 		/*
209 		 * Child
210 		 */
211 		omask = sigblock(sigmask(SIGUSR1));
212 		while (parentready_signalled == 0)
213 			sigpause(omask);
214 		sigsetmask(omask);
215 #ifdef STANDALONE
216 		malloc(0);
217 #else
218 		raise_data_limit();
219 #endif
220 		if (filename != NULL) {
221 			unsigned char buf[BUFSIZ];
222 			unsigned long l, l1;
223 			ssize_t w;
224 
225 			fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
226 			if(fd < 0)
227 				err(12, "%s", filename);
228 			l1 = fssize * sectorsize;
229 			if (l1 > BUFSIZ)
230 				l1 = BUFSIZ;
231 			for (l = 0; l < fssize * (u_long)sectorsize; l += l1) {
232 				w = write(fd, buf, l1);
233 				if (w < 0 || (u_long)w != l1)
234 					err(12, "%s", filename);
235 			}
236 			membase = mmap(
237 				0,
238 				fssize * sectorsize,
239 				PROT_READ|PROT_WRITE,
240 				MAP_SHARED,
241 				fd,
242 				0);
243 			if(membase == MAP_FAILED)
244 				err(12, "mmap");
245 			close(fd);
246 		} else {
247 #ifndef STANDALONE
248 			get_memleft();
249 #endif
250 			if (fssize * (u_long)sectorsize > (memleft - 131072))
251 				fssize = (memleft - 131072) / sectorsize;
252 			if ((membase = malloc(fssize * sectorsize)) == NULL)
253 				errx(13, "malloc failed");
254 		}
255 	}
256 	fsi = fi;
257 	fso = fo;
258 	if (Oflag) {
259 		sblock.fs_inodefmt = FS_42INODEFMT;
260 		sblock.fs_maxsymlinklen = 0;
261 	} else {
262 		sblock.fs_inodefmt = FS_44INODEFMT;
263 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
264 	}
265 	if (Uflag)
266 		sblock.fs_flags |= FS_DOSOFTDEP;
267 	/*
268 	 * Validate the given file system size.
269 	 * Verify that its last block can actually be accessed.
270 	 */
271 	if (fssize == 0)
272 		printf("preposterous size %lu\n", fssize), exit(13);
273 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
274 		 (char *)&sblock);
275 	/*
276 	 * collect and verify the sector and track info
277 	 */
278 	sblock.fs_nsect = nsectors;
279 	sblock.fs_ntrak = ntracks;
280 	if (sblock.fs_ntrak <= 0)
281 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
282 	if (sblock.fs_nsect <= 0)
283 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
284 	/*
285 	 * collect and verify the filesystem density info
286 	 */
287 	sblock.fs_avgfilesize = avgfilesize;
288 	sblock.fs_avgfpdir = avgfilesperdir;
289 	if (sblock.fs_avgfilesize <= 0)
290 		printf("illegal expected average file size %d\n",
291 		    sblock.fs_avgfilesize), exit(14);
292 	if (sblock.fs_avgfpdir <= 0)
293 		printf("illegal expected number of files per directory %d\n",
294 		    sblock.fs_avgfpdir), exit(15);
295 	/*
296 	 * collect and verify the block and fragment sizes
297 	 */
298 	sblock.fs_bsize = bsize;
299 	sblock.fs_fsize = fsize;
300 	if (!POWEROF2(sblock.fs_bsize)) {
301 		printf("block size must be a power of 2, not %d\n",
302 		    sblock.fs_bsize);
303 		exit(16);
304 	}
305 	if (!POWEROF2(sblock.fs_fsize)) {
306 		printf("fragment size must be a power of 2, not %d\n",
307 		    sblock.fs_fsize);
308 		exit(17);
309 	}
310 	if (sblock.fs_fsize < sectorsize) {
311 		printf("fragment size %d is too small, minimum is %d\n",
312 		    sblock.fs_fsize, sectorsize);
313 		exit(18);
314 	}
315 	if (sblock.fs_bsize < MINBSIZE) {
316 		printf("block size %d is too small, minimum is %d\n",
317 		    sblock.fs_bsize, MINBSIZE);
318 		exit(19);
319 	}
320 	if (sblock.fs_bsize < sblock.fs_fsize) {
321 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
322 		    sblock.fs_bsize, sblock.fs_fsize);
323 		exit(20);
324 	}
325 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
326 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
327 	sblock.fs_qbmask = ~sblock.fs_bmask;
328 	sblock.fs_qfmask = ~sblock.fs_fmask;
329 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
330 		sblock.fs_bshift++;
331 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
332 		sblock.fs_fshift++;
333 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
334 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
335 		sblock.fs_fragshift++;
336 	if (sblock.fs_frag > MAXFRAG) {
337 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
338 		    sblock.fs_fsize, sblock.fs_bsize,
339 		    sblock.fs_bsize / MAXFRAG);
340 		exit(21);
341 	}
342 	sblock.fs_nrpos = nrpos;
343 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
344 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
345 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
346 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
347 		sblock.fs_fsbtodb++;
348 	sblock.fs_sblkno =
349 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
350 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
351 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
352 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
353 	sblock.fs_cgoffset = roundup(
354 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
355 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
356 		sblock.fs_cgmask <<= 1;
357 	if (!POWEROF2(sblock.fs_ntrak))
358 		sblock.fs_cgmask <<= 1;
359 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
360 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
361 		sizepb *= NINDIR(&sblock);
362 		sblock.fs_maxfilesize += sizepb;
363 	}
364 	/*
365 	 * Validate specified/determined secpercyl
366 	 * and calculate minimum cylinders per group.
367 	 */
368 	sblock.fs_spc = secpercyl;
369 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
370 	     sblock.fs_cpc > 1 && (i & 1) == 0;
371 	     sblock.fs_cpc >>= 1, i >>= 1)
372 		/* void */;
373 	mincpc = sblock.fs_cpc;
374 	bpcg = sblock.fs_spc * sectorsize;
375 	inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
376 	if (inospercg > MAXIPG(&sblock))
377 		inospercg = MAXIPG(&sblock);
378 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
379 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
380 	    sblock.fs_spc);
381 	mincpg = roundup(mincpgcnt, mincpc);
382 	/*
383 	 * Ensure that cylinder group with mincpg has enough space
384 	 * for block maps.
385 	 */
386 	sblock.fs_cpg = mincpg;
387 	sblock.fs_ipg = inospercg;
388 	if (maxcontig > 1)
389 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
390 	mapcramped = 0;
391 	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
392 		mapcramped = 1;
393 		if (sblock.fs_bsize < MAXBSIZE) {
394 			sblock.fs_bsize <<= 1;
395 			if ((i & 1) == 0) {
396 				i >>= 1;
397 			} else {
398 				sblock.fs_cpc <<= 1;
399 				mincpc <<= 1;
400 				mincpg = roundup(mincpgcnt, mincpc);
401 				sblock.fs_cpg = mincpg;
402 			}
403 			sblock.fs_frag <<= 1;
404 			sblock.fs_fragshift += 1;
405 			if (sblock.fs_frag <= MAXFRAG)
406 				continue;
407 		}
408 		if (sblock.fs_fsize == sblock.fs_bsize) {
409 			printf("There is no block size that");
410 			printf(" can support this disk\n");
411 			exit(22);
412 		}
413 		sblock.fs_frag >>= 1;
414 		sblock.fs_fragshift -= 1;
415 		sblock.fs_fsize <<= 1;
416 		sblock.fs_nspf <<= 1;
417 	}
418 	/*
419 	 * Ensure that cylinder group with mincpg has enough space for inodes.
420 	 */
421 	inodecramped = 0;
422 	inospercg = calcipg(mincpg, bpcg, &usedb);
423 	sblock.fs_ipg = inospercg;
424 	while (inospercg > MAXIPG(&sblock)) {
425 		inodecramped = 1;
426 		if (mincpc == 1 || sblock.fs_frag == 1 ||
427 		    sblock.fs_bsize == MINBSIZE)
428 			break;
429 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
430 		       "minimum bytes per inode is",
431 		       (int)((mincpg * (off_t)bpcg - usedb)
432 			     / MAXIPG(&sblock) + 1));
433 		sblock.fs_bsize >>= 1;
434 		sblock.fs_frag >>= 1;
435 		sblock.fs_fragshift -= 1;
436 		mincpc >>= 1;
437 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
438 		if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
439 			sblock.fs_bsize <<= 1;
440 			break;
441 		}
442 		mincpg = sblock.fs_cpg;
443 		inospercg = calcipg(mincpg, bpcg, &usedb);
444 		sblock.fs_ipg = inospercg;
445 	}
446 	if (inodecramped) {
447 		if (inospercg > MAXIPG(&sblock)) {
448 			printf("Minimum bytes per inode is %d\n",
449 			       (int)((mincpg * (off_t)bpcg - usedb)
450 				     / MAXIPG(&sblock) + 1));
451 		} else if (!mapcramped) {
452 			printf("With %d bytes per inode, ", density);
453 			printf("minimum cylinders per group is %ld\n", mincpg);
454 		}
455 	}
456 	if (mapcramped) {
457 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
458 		printf("minimum cylinders per group is %ld\n", mincpg);
459 	}
460 	if (inodecramped || mapcramped) {
461 		if (sblock.fs_bsize != bsize)
462 			printf("%s to be changed from %d to %d\n",
463 			    "This requires the block size",
464 			    bsize, sblock.fs_bsize);
465 		if (sblock.fs_fsize != fsize)
466 			printf("\t%s to be changed from %d to %d\n",
467 			    "and the fragment size",
468 			    fsize, sblock.fs_fsize);
469 		exit(23);
470 	}
471 	/*
472 	 * Calculate the number of cylinders per group
473 	 */
474 	sblock.fs_cpg = cpg;
475 	if (sblock.fs_cpg % mincpc != 0) {
476 		printf("%s groups must have a multiple of %ld cylinders\n",
477 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
478 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
479 		if (!cpgflg)
480 			cpg = sblock.fs_cpg;
481 	}
482 	/*
483 	 * Must ensure there is enough space for inodes.
484 	 */
485 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
486 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
487 		inodecramped = 1;
488 		sblock.fs_cpg -= mincpc;
489 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
490 	}
491 	/*
492 	 * Must ensure there is enough space to hold block map.
493 	 */
494 	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
495 		mapcramped = 1;
496 		sblock.fs_cpg -= mincpc;
497 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
498 	}
499 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
500 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
501 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
502 		exit(24);
503 	}
504 	if (sblock.fs_cpg < mincpg) {
505 		printf("cylinder groups must have at least %ld cylinders\n",
506 			mincpg);
507 		exit(25);
508 	} else if (sblock.fs_cpg != cpg) {
509 		if (!cpgflg && !mfs)
510 			printf("Warning: ");
511 		else if (!mapcramped && !inodecramped)
512 			exit(26);
513 		if (!mfs) {
514 		    if (mapcramped && inodecramped)
515 			printf("Block size and bytes per inode restrict");
516 		    else if (mapcramped)
517 			printf("Block size restricts");
518 		    else
519 			printf("Bytes per inode restrict");
520 		    printf(" cylinders per group to %d.\n", sblock.fs_cpg);
521 		}
522 		if (cpgflg)
523 			exit(27);
524 	}
525 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
526 	/*
527 	 * Now have size for file system and nsect and ntrak.
528 	 * Determine number of cylinders and blocks in the file system.
529 	 */
530 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
531 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
532 	if ((long)fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
533 		sblock.fs_ncyl++;
534 		emitwarn = 1;
535 	}
536 	if (sblock.fs_ncyl < 1) {
537 		printf("file systems must have at least one cylinder\n");
538 		exit(28);
539 	}
540 	/*
541 	 * Determine feasability/values of rotational layout tables.
542 	 *
543 	 * The size of the rotational layout tables is limited by the
544 	 * size of the superblock, SBSIZE. The amount of space available
545 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
546 	 * The size of these tables is inversely proportional to the block
547 	 * size of the file system. The size increases if sectors per track
548 	 * are not powers of two, because more cylinders must be described
549 	 * by the tables before the rotational pattern repeats (fs_cpc).
550 	 */
551 	sblock.fs_interleave = interleave;
552 	sblock.fs_trackskew = trackskew;
553 	sblock.fs_npsect = nphyssectors;
554 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
555 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
556 	if (sblock.fs_sbsize > SBSIZE)
557 		sblock.fs_sbsize = SBSIZE;
558 	if (sblock.fs_ntrak == 1) {
559 		sblock.fs_cpc = 0;
560 		goto next;
561 	}
562 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
563 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
564 	totalsbsize = sizeof(struct fs) + rotblsize;
565 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
566 		/* use old static table space */
567 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
568 		    (char *)(&sblock.fs_firstfield);
569 		sblock.fs_rotbloff = &sblock.fs_space[0] -
570 		    (u_char *)(&sblock.fs_firstfield);
571 	} else {
572 		/* use dynamic table space */
573 		sblock.fs_postbloff = &sblock.fs_space[0] -
574 		    (u_char *)(&sblock.fs_firstfield);
575 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
576 		totalsbsize += postblsize;
577 	}
578 	if (totalsbsize > SBSIZE ||
579 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
580 		printf("%s %s %d %s %d.%s",
581 		    "Warning: insufficient space in super block for\n",
582 		    "rotational layout tables with nsect", sblock.fs_nsect,
583 		    "and ntrak", sblock.fs_ntrak,
584 		    "\nFile system performance may be impaired.\n");
585 		sblock.fs_cpc = 0;
586 		goto next;
587 	}
588 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
589 	if (sblock.fs_sbsize > SBSIZE)
590 		sblock.fs_sbsize = SBSIZE;
591 	/*
592 	 * calculate the available blocks for each rotational position
593 	 */
594 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
595 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
596 			fs_postbl(&sblock, cylno)[rpos] = -1;
597 	for (i = (rotblsize - 1) * sblock.fs_frag;
598 	     i >= 0; i -= sblock.fs_frag) {
599 		cylno = cbtocylno(&sblock, i);
600 		rpos = cbtorpos(&sblock, i);
601 		blk = fragstoblks(&sblock, i);
602 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
603 			fs_rotbl(&sblock)[blk] = 0;
604 		else
605 			fs_rotbl(&sblock)[blk] =
606 			    fs_postbl(&sblock, cylno)[rpos] - blk;
607 		fs_postbl(&sblock, cylno)[rpos] = blk;
608 	}
609 next:
610 	/*
611 	 * Compute/validate number of cylinder groups.
612 	 */
613 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
614 	if (sblock.fs_ncyl % sblock.fs_cpg)
615 		sblock.fs_ncg++;
616 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
617 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
618 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
619 		printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
620 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
621 		    (long)(sblock.fs_fpg / sblock.fs_frag));
622 		printf("number of cylinders per cylinder group (%d) %s.\n",
623 		    sblock.fs_cpg, "must be increased");
624 		exit(29);
625 	}
626 	j = sblock.fs_ncg - 1;
627 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
628 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
629 		if (j == 0) {
630 			printf("Filesystem must have at least %d sectors\n",
631 			    NSPF(&sblock) *
632 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
633 			exit(30);
634 		}
635 		printf(
636 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
637 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
638 		    i / sblock.fs_frag);
639 		printf(
640 "    cylinder group. This implies %ld sector(s) cannot be allocated.\n",
641 		    i * NSPF(&sblock));
642 		sblock.fs_ncg--;
643 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
644 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
645 		    NSPF(&sblock);
646 		emitwarn = 0;
647 	}
648 	if (emitwarn && !mfs) {
649 		printf("Warning: %lu sector(s) in last cylinder unallocated\n",
650 		    sblock.fs_spc -
651 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
652 		    * sblock.fs_spc));
653 	}
654 	/*
655 	 * fill in remaining fields of the super block
656 	 */
657 	sblock.fs_csaddr = cgdmin(&sblock, 0);
658 	sblock.fs_cssize =
659 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
660 	/*
661 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
662 	 * longer used. However, we still initialise them so that the
663 	 * filesystem remains compatible with old kernels.
664 	 */
665 	i = sblock.fs_bsize / sizeof(struct csum);
666 	sblock.fs_csmask = ~(i - 1);
667 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
668 		sblock.fs_csshift++;
669 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
670 	if (fscs == NULL)
671 		errx(31, "calloc failed");
672 	sblock.fs_magic = FS_MAGIC;
673 	sblock.fs_rotdelay = rotdelay;
674 	sblock.fs_minfree = minfree;
675 	sblock.fs_maxcontig = maxcontig;
676 	sblock.fs_maxbpg = maxbpg;
677 	sblock.fs_rps = rpm / 60;
678 	sblock.fs_optim = opt;
679 	sblock.fs_cgrotor = 0;
680 	sblock.fs_cstotal.cs_ndir = 0;
681 	sblock.fs_cstotal.cs_nbfree = 0;
682 	sblock.fs_cstotal.cs_nifree = 0;
683 	sblock.fs_cstotal.cs_nffree = 0;
684 	sblock.fs_fmod = 0;
685 	sblock.fs_ronly = 0;
686 	sblock.fs_clean = 1;
687 #ifdef FSIRAND
688 	sblock.fs_id[0] = (long)utime;
689 	sblock.fs_id[1] = random();
690 #endif
691 
692 	/*
693 	 * Dump out summary information about file system.
694 	 */
695 	if (!mfs) {
696 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
697 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
698 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
699 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
700 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
701 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
702 		    sblock.fs_ncg, sblock.fs_cpg,
703 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
704 		    sblock.fs_ipg,
705 			sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
706 #undef B2MBFACTOR
707 	}
708 	/*
709 	 * Now build the cylinders group blocks and
710 	 * then print out indices of cylinder groups.
711 	 */
712 	if (!mfs)
713 		printf("super-block backups (for fsck -b #) at:\n");
714 	i = 0;
715 	width = charsperline();
716 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
717 		initcg(cylno, utime);
718 		if (mfs)
719 			continue;
720 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
721 		    fsbtodb(&sblock, cgsblock(&sblock, cylno)),
722 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
723 		if (i + j >= width) {
724 			printf("\n");
725 			i = 0;
726 		}
727 		i += j;
728 		printf("%s", tmpbuf);
729 		fflush(stdout);
730 	}
731 	if (!mfs)
732 		printf("\n");
733 	if (Nflag && !mfs)
734 		exit(0);
735 	/*
736 	 * Now construct the initial file system,
737 	 * then write out the super-block.
738 	 */
739 	fsinit(utime);
740 	sblock.fs_time = utime;
741 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
742 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
743 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
744 			sblock.fs_cssize - i < sblock.fs_bsize ?
745 			    sblock.fs_cssize - i : sblock.fs_bsize,
746 			((char *)fscs) + i);
747 	/*
748 	 * Write out the duplicate super blocks
749 	 */
750 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
751 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
752 		    sbsize, (char *)&sblock);
753 	wtfsflush();
754 
755 	/*
756 	 * NOTE: we no longer update information in the disklabel
757 	 */
758 
759 	/*
760 	 * Notify parent process of success.
761 	 * Dissociate from session and tty.
762 	 *
763 	 * NOTE: We are the child and may receive a SIGINT due
764 	 *	 to losing the tty session? XXX
765 	 */
766 	if (mfs) {
767 		/* YYY */
768 		kill(mfs_ppid, SIGUSR1);
769 		setsid();
770 		close(0);
771 		close(1);
772 		close(2);
773 		chdir("/");
774 		/* returns to mount_mfs (newfs) and issues the mount */
775 	}
776 }
777 
778 /*
779  * Initialize a cylinder group.
780  */
781 void
782 initcg(int cylno, time_t utime)
783 {
784 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
785 	long i;
786 	unsigned long k;
787 	struct csum *cs;
788 #ifdef FSIRAND
789 	uint32_t j;
790 #endif
791 
792 	/*
793 	 * Determine block bounds for cylinder group.
794 	 * Allow space for super block summary information in first
795 	 * cylinder group.
796 	 */
797 	cbase = cgbase(&sblock, cylno);
798 	dmax = cbase + sblock.fs_fpg;
799 	if (dmax > sblock.fs_size)
800 		dmax = sblock.fs_size;
801 	dlower = cgsblock(&sblock, cylno) - cbase;
802 	dupper = cgdmin(&sblock, cylno) - cbase;
803 	if (cylno == 0)
804 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
805 	cs = fscs + cylno;
806 	memset(&acg, 0, sblock.fs_cgsize);
807 	acg.cg_time = utime;
808 	acg.cg_magic = CG_MAGIC;
809 	acg.cg_cgx = cylno;
810 	if (cylno == sblock.fs_ncg - 1)
811 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
812 	else
813 		acg.cg_ncyl = sblock.fs_cpg;
814 	acg.cg_niblk = sblock.fs_ipg;
815 	acg.cg_ndblk = dmax - cbase;
816 	if (sblock.fs_contigsumsize > 0)
817 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
818 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
819 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
820 	acg.cg_iusedoff = acg.cg_boff +
821 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
822 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
823 	if (sblock.fs_contigsumsize <= 0) {
824 		acg.cg_nextfreeoff = acg.cg_freeoff +
825 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
826 	} else {
827 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
828 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
829 		    sizeof(u_int32_t);
830 		acg.cg_clustersumoff =
831 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
832 		acg.cg_clusteroff = acg.cg_clustersumoff +
833 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
834 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
835 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
836 	}
837 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
838 		printf("Panic: cylinder group too big\n");
839 		exit(37);
840 	}
841 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
842 	if (cylno == 0) {
843 		for (k = 0; k < ROOTINO; k++) {
844 			setbit(cg_inosused(&acg), k);
845 			acg.cg_cs.cs_nifree--;
846 		}
847 	}
848 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
849 #ifdef FSIRAND
850 		for (j = 0;
851 		     j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
852 		     j++) {
853 			zino[j].di_gen = random();
854 		}
855 #endif
856 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
857 		    sblock.fs_bsize, (char *)zino);
858 	}
859 	if (cylno > 0) {
860 		/*
861 		 * In cylno 0, beginning space is reserved
862 		 * for boot and super blocks.
863 		 */
864 		for (d = 0; d < dlower; d += sblock.fs_frag) {
865 			blkno = d / sblock.fs_frag;
866 			setblock(&sblock, cg_blksfree(&acg), blkno);
867 			if (sblock.fs_contigsumsize > 0)
868 				setbit(cg_clustersfree(&acg), blkno);
869 			acg.cg_cs.cs_nbfree++;
870 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
871 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
872 			    [cbtorpos(&sblock, d)]++;
873 		}
874 		sblock.fs_dsize += dlower;
875 	}
876 	sblock.fs_dsize += acg.cg_ndblk - dupper;
877 	if ((i = dupper % sblock.fs_frag)) {
878 		acg.cg_frsum[sblock.fs_frag - i]++;
879 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
880 			setbit(cg_blksfree(&acg), dupper);
881 			acg.cg_cs.cs_nffree++;
882 		}
883 	}
884 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
885 		blkno = d / sblock.fs_frag;
886 		setblock(&sblock, cg_blksfree(&acg), blkno);
887 		if (sblock.fs_contigsumsize > 0)
888 			setbit(cg_clustersfree(&acg), blkno);
889 		acg.cg_cs.cs_nbfree++;
890 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
891 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
892 		    [cbtorpos(&sblock, d)]++;
893 		d += sblock.fs_frag;
894 	}
895 	if (d < dmax - cbase) {
896 		acg.cg_frsum[dmax - cbase - d]++;
897 		for (; d < dmax - cbase; d++) {
898 			setbit(cg_blksfree(&acg), d);
899 			acg.cg_cs.cs_nffree++;
900 		}
901 	}
902 	if (sblock.fs_contigsumsize > 0) {
903 		int32_t *sump = cg_clustersum(&acg);
904 		u_char *mapp = cg_clustersfree(&acg);
905 		int map = *mapp++;
906 		int bit = 1;
907 		int run = 0;
908 
909 		for (i = 0; i < acg.cg_nclusterblks; i++) {
910 			if ((map & bit) != 0) {
911 				run++;
912 			} else if (run != 0) {
913 				if (run > sblock.fs_contigsumsize)
914 					run = sblock.fs_contigsumsize;
915 				sump[run]++;
916 				run = 0;
917 			}
918 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
919 				bit <<= 1;
920 			} else {
921 				map = *mapp++;
922 				bit = 1;
923 			}
924 		}
925 		if (run != 0) {
926 			if (run > sblock.fs_contigsumsize)
927 				run = sblock.fs_contigsumsize;
928 			sump[run]++;
929 		}
930 	}
931 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
932 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
933 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
934 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
935 	*cs = acg.cg_cs;
936 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
937 		sblock.fs_bsize, (char *)&acg);
938 }
939 
940 /*
941  * initialize the file system
942  */
943 struct ufs1_dinode node;
944 
945 #ifdef LOSTDIR
946 #define PREDEFDIR 3
947 #else
948 #define PREDEFDIR 2
949 #endif
950 
951 struct direct root_dir[] = {
952 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
953 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
954 #ifdef LOSTDIR
955 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
956 #endif
957 };
958 struct odirect {
959 	u_long	d_ino;
960 	u_short	d_reclen;
961 	u_short	d_namlen;
962 	u_char	d_name[MAXNAMLEN + 1];
963 } oroot_dir[] = {
964 	{ ROOTINO, sizeof(struct direct), 1, "." },
965 	{ ROOTINO, sizeof(struct direct), 2, ".." },
966 #ifdef LOSTDIR
967 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
968 #endif
969 };
970 #ifdef LOSTDIR
971 struct direct lost_found_dir[] = {
972 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
973 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
974 	{ 0, DIRBLKSIZ, 0, 0, 0 },
975 };
976 struct odirect olost_found_dir[] = {
977 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
978 	{ ROOTINO, sizeof(struct direct), 2, ".." },
979 	{ 0, DIRBLKSIZ, 0, 0 },
980 };
981 #endif
982 char buf[MAXBSIZE];
983 
984 void
985 fsinit(time_t utime)
986 {
987 #ifdef LOSTDIR
988 	int i;
989 #endif
990 
991 	/*
992 	 * initialize the node
993 	 */
994 	node.di_atime = utime;
995 	node.di_mtime = utime;
996 	node.di_ctime = utime;
997 #ifdef LOSTDIR
998 	/*
999 	 * create the lost+found directory
1000 	 */
1001 	if (Oflag) {
1002 		makedir((struct direct *)olost_found_dir, 2);
1003 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1004 			memmove(&buf[i], &olost_found_dir[2],
1005 			    DIRSIZ(0, &olost_found_dir[2]));
1006 	} else {
1007 		makedir(lost_found_dir, 2);
1008 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1009 			memmove(&buf[i], &lost_found_dir[2],
1010 			    DIRSIZ(0, &lost_found_dir[2]));
1011 	}
1012 	node.di_mode = IFDIR | UMASK;
1013 	node.di_nlink = 2;
1014 	node.di_size = sblock.fs_bsize;
1015 	node.di_db[0] = alloc(node.di_size, node.di_mode);
1016 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1017 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1018 	iput(&node, LOSTFOUNDINO);
1019 #endif
1020 	/*
1021 	 * create the root directory
1022 	 */
1023 	if (mfs)
1024 		node.di_mode = IFDIR | 01777;
1025 	else
1026 		node.di_mode = IFDIR | UMASK;
1027 	node.di_nlink = PREDEFDIR;
1028 	if (Oflag)
1029 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1030 	else
1031 		node.di_size = makedir(root_dir, PREDEFDIR);
1032 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1033 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1034 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1035 	iput(&node, ROOTINO);
1036 }
1037 
1038 /*
1039  * construct a set of directory entries in "buf".
1040  * return size of directory.
1041  */
1042 int
1043 makedir(struct direct *protodir, int entries)
1044 {
1045 	char *cp;
1046 	int i, spcleft;
1047 
1048 	spcleft = DIRBLKSIZ;
1049 	for (cp = buf, i = 0; i < entries - 1; i++) {
1050 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1051 		memmove(cp, &protodir[i], protodir[i].d_reclen);
1052 		cp += protodir[i].d_reclen;
1053 		spcleft -= protodir[i].d_reclen;
1054 	}
1055 	protodir[i].d_reclen = spcleft;
1056 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1057 	return (DIRBLKSIZ);
1058 }
1059 
1060 /*
1061  * allocate a block or frag
1062  */
1063 daddr_t
1064 alloc(int size, int mode)
1065 {
1066 	int i, frag;
1067 	daddr_t d, blkno;
1068 
1069 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1070 	    (char *)&acg);
1071 	if (acg.cg_magic != CG_MAGIC) {
1072 		printf("cg 0: bad magic number\n");
1073 		return (0);
1074 	}
1075 	if (acg.cg_cs.cs_nbfree == 0) {
1076 		printf("first cylinder group ran out of space\n");
1077 		return (0);
1078 	}
1079 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1080 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1081 			goto goth;
1082 	printf("internal error: can't find block in cyl 0\n");
1083 	return (0);
1084 goth:
1085 	blkno = fragstoblks(&sblock, d);
1086 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1087 	if (sblock.fs_contigsumsize > 0)
1088 		clrbit(cg_clustersfree(&acg), blkno);
1089 	acg.cg_cs.cs_nbfree--;
1090 	sblock.fs_cstotal.cs_nbfree--;
1091 	fscs[0].cs_nbfree--;
1092 	if (mode & IFDIR) {
1093 		acg.cg_cs.cs_ndir++;
1094 		sblock.fs_cstotal.cs_ndir++;
1095 		fscs[0].cs_ndir++;
1096 	}
1097 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1098 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1099 	if (size != sblock.fs_bsize) {
1100 		frag = howmany(size, sblock.fs_fsize);
1101 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1102 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1103 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1104 		acg.cg_frsum[sblock.fs_frag - frag]++;
1105 		for (i = frag; i < sblock.fs_frag; i++)
1106 			setbit(cg_blksfree(&acg), d + i);
1107 	}
1108 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1109 	    (char *)&acg);
1110 	return (d);
1111 }
1112 
1113 /*
1114  * Calculate number of inodes per group.
1115  */
1116 long
1117 calcipg(long cylspg, long bpcg, off_t *usedbp)
1118 {
1119 	int i;
1120 	long ipg, new_ipg, ncg, ncyl;
1121 	off_t usedb;
1122 
1123 	/*
1124 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1125 	 * Note that fssize is still in sectors, not filesystem blocks.
1126 	 */
1127 	ncyl = howmany(fssize, (u_int)secpercyl);
1128 	ncg = howmany(ncyl, cylspg);
1129 	/*
1130 	 * Iterate a few times to allow for ipg depending on itself.
1131 	 */
1132 	ipg = 0;
1133 	for (i = 0; i < 10; i++) {
1134 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1135 			* NSPF(&sblock) * (off_t)sectorsize;
1136 		new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1137 			  / ncg / secpercyl / cylspg;
1138 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1139 		if (new_ipg == ipg)
1140 			break;
1141 		ipg = new_ipg;
1142 	}
1143 	*usedbp = usedb;
1144 	return (ipg);
1145 }
1146 
1147 /*
1148  * Allocate an inode on the disk
1149  */
1150 void
1151 iput(struct ufs1_dinode *ip, ino_t ino)
1152 {
1153 	struct ufs1_dinode inobuf[MAXINOPB];
1154 	daddr_t d;
1155 	int c;
1156 
1157 #ifdef FSIRAND
1158 	ip->di_gen = random();
1159 #endif
1160 	c = ino_to_cg(&sblock, ino);
1161 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1162 	    (char *)&acg);
1163 	if (acg.cg_magic != CG_MAGIC) {
1164 		printf("cg 0: bad magic number\n");
1165 		exit(31);
1166 	}
1167 	acg.cg_cs.cs_nifree--;
1168 	setbit(cg_inosused(&acg), ino);
1169 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1170 	    (char *)&acg);
1171 	sblock.fs_cstotal.cs_nifree--;
1172 	fscs[0].cs_nifree--;
1173 	if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1174 		printf("fsinit: inode value out of range (%ju).\n",
1175 		    (uintmax_t)ino);
1176 		exit(32);
1177 	}
1178 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1179 	rdfs(d, sblock.fs_bsize, (char *)inobuf);
1180 	inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1181 	wtfs(d, sblock.fs_bsize, (char *)inobuf);
1182 }
1183 
1184 /*
1185  * Parent notifies child that it can proceed with the newfs and mount
1186  * operation (occurs after parent has copied the underlying filesystem
1187  * if the -C option was specified (for MFS), or immediately after the
1188  * parent forked the child otherwise).
1189  */
1190 void
1191 parentready(__unused int signo)
1192 {
1193   	parentready_signalled = 1;
1194 }
1195 
1196 /*
1197  * Notify parent process that the filesystem has created itself successfully.
1198  *
1199  * We have to wait until the mount has actually completed!
1200  */
1201 void
1202 started(__unused int signo)
1203 {
1204 	int retry = 100;	/* 10 seconds, 100ms */
1205 
1206 	while (mfs_ppid && retry) {
1207 		struct stat st;
1208 
1209 		if (
1210 		    stat(mfs_mtpt, &st) < 0 ||
1211 		    st.st_dev != mfs_mtstat.st_dev
1212 		) {
1213 			break;
1214 		}
1215 		usleep(100*1000);
1216 		--retry;
1217 	}
1218 	if (retry == 0) {
1219 		fatal("mfs mount failed waiting for mount to go active");
1220 	} else if (copyroot) {
1221 		FSPaste(mfs_mtpt, copyroot, copyhlinks);
1222 	}
1223 	exit(0);
1224 }
1225 
1226 #ifdef STANDALONE
1227 /*
1228  * Replace libc function with one suited to our needs.
1229  */
1230 caddr_t
1231 malloc(u_long size)
1232 {
1233 	char *base, *i;
1234 	static u_long pgsz;
1235 	struct rlimit rlp;
1236 
1237 	if (pgsz == 0) {
1238 		base = sbrk(0);
1239 		pgsz = getpagesize() - 1;
1240 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1241 		base = sbrk(i - base);
1242 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1243 			warn("getrlimit");
1244 		rlp.rlim_cur = rlp.rlim_max;
1245 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1246 			warn("setrlimit");
1247 		memleft = rlp.rlim_max - (u_long)base;
1248 	}
1249 	size = (size + pgsz) &~ pgsz;
1250 	if (size > memleft)
1251 		size = memleft;
1252 	memleft -= size;
1253 	if (size == 0)
1254 		return (0);
1255 	return ((caddr_t)sbrk(size));
1256 }
1257 
1258 /*
1259  * Replace libc function with one suited to our needs.
1260  */
1261 caddr_t
1262 realloc(char *ptr, u_long size)
1263 {
1264 	void *p;
1265 
1266 	if ((p = malloc(size)) == NULL)
1267 		return (NULL);
1268 	memmove(p, ptr, size);
1269 	free(ptr);
1270 	return (p);
1271 }
1272 
1273 /*
1274  * Replace libc function with one suited to our needs.
1275  */
1276 char *
1277 calloc(u_long size, u_long numelm)
1278 {
1279 	caddr_t base;
1280 
1281 	size *= numelm;
1282 	if ((base = malloc(size)) == NULL)
1283 		return (NULL);
1284 	memset(base, 0, size);
1285 	return (base);
1286 }
1287 
1288 /*
1289  * Replace libc function with one suited to our needs.
1290  */
1291 void
1292 free(char *ptr)
1293 {
1294 
1295 	/* do not worry about it for now */
1296 }
1297 
1298 #else   /* !STANDALONE */
1299 
1300 void
1301 raise_data_limit(void)
1302 {
1303 	struct rlimit rlp;
1304 
1305 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1306 		warn("getrlimit");
1307 	rlp.rlim_cur = rlp.rlim_max;
1308 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1309 		warn("setrlimit");
1310 }
1311 
1312 #ifdef __ELF__
1313 extern char *_etext;
1314 #define etext _etext
1315 #else
1316 extern char *etext;
1317 #endif
1318 
1319 void
1320 get_memleft(void)
1321 {
1322 	static u_long pgsz;
1323 	struct rlimit rlp;
1324 	u_long freestart;
1325 	u_long dstart;
1326 	u_long memused;
1327 
1328 	pgsz = getpagesize() - 1;
1329 	dstart = ((u_long)&etext) &~ pgsz;
1330 	freestart = ((u_long)((char *)sbrk(0) + pgsz) &~ pgsz);
1331 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1332 		warn("getrlimit");
1333 	memused = freestart - dstart;
1334 	memleft = rlp.rlim_cur - memused;
1335 }
1336 #endif  /* STANDALONE */
1337 
1338 /*
1339  * read a block from the file system
1340  */
1341 void
1342 rdfs(daddr_t bno, int size, char *bf)
1343 {
1344 	int n;
1345 
1346 	wtfsflush();
1347 	if (mfs) {
1348 		memmove(bf, membase + bno * sectorsize, size);
1349 		return;
1350 	}
1351 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1352 		printf("seek error: %ld\n", (long)bno);
1353 		err(33, "rdfs");
1354 	}
1355 	n = read(fsi, bf, size);
1356 	if (n != size) {
1357 		printf("read error: %ld\n", (long)bno);
1358 		err(34, "rdfs");
1359 	}
1360 }
1361 
1362 #define WCSIZE (128 * 1024)
1363 daddr_t wc_sect;		/* units of sectorsize */
1364 int wc_end;			/* bytes */
1365 static char wc[WCSIZE];		/* bytes */
1366 
1367 /*
1368  * Flush dirty write behind buffer.
1369  */
1370 void
1371 wtfsflush(void)
1372 {
1373 	int n;
1374 	if (wc_end) {
1375 		if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1376 			printf("seek error: %ld\n", (long)wc_sect);
1377 			err(35, "wtfs - writecombine");
1378 		}
1379 		n = write(fso, wc, wc_end);
1380 		if (n != wc_end) {
1381 			printf("write error: %ld\n", (long)wc_sect);
1382 			err(36, "wtfs - writecombine");
1383 		}
1384 		wc_end = 0;
1385 	}
1386 }
1387 
1388 /*
1389  * write a block to the file system
1390  */
1391 void
1392 wtfs(daddr_t bno, int size, char *bf)
1393 {
1394 	int n;
1395 	int done;
1396 
1397 	if (mfs) {
1398 		memmove(membase + bno * sectorsize, bf, size);
1399 		return;
1400 	}
1401 	if (Nflag)
1402 		return;
1403 	done = 0;
1404 	if (wc_end == 0 && size <= WCSIZE) {
1405 		wc_sect = bno;
1406 		bcopy(bf, wc, size);
1407 		wc_end = size;
1408 		if (wc_end < WCSIZE)
1409 			return;
1410 		done = 1;
1411 	}
1412 	if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1413 	    wc_end + size <= WCSIZE) {
1414 		bcopy(bf, wc + wc_end, size);
1415 		wc_end += size;
1416 		if (wc_end < WCSIZE)
1417 			return;
1418 		done = 1;
1419 	}
1420 	wtfsflush();
1421 	if (done)
1422 		return;
1423 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1424 		printf("seek error: %ld\n", (long)bno);
1425 		err(35, "wtfs");
1426 	}
1427 	n = write(fso, bf, size);
1428 	if (n != size) {
1429 		printf("write error: fso %d blk %ld %d/%d\n",
1430 			fso, (long)bno, n, size);
1431 		err(36, "wtfs");
1432 	}
1433 }
1434 
1435 /*
1436  * check if a block is available
1437  */
1438 int
1439 isblock(struct fs *fs, unsigned char *cp, int h)
1440 {
1441 	unsigned char mask;
1442 
1443 	switch (fs->fs_frag) {
1444 	case 8:
1445 		return (cp[h] == 0xff);
1446 	case 4:
1447 		mask = 0x0f << ((h & 0x1) << 2);
1448 		return ((cp[h >> 1] & mask) == mask);
1449 	case 2:
1450 		mask = 0x03 << ((h & 0x3) << 1);
1451 		return ((cp[h >> 2] & mask) == mask);
1452 	case 1:
1453 		mask = 0x01 << (h & 0x7);
1454 		return ((cp[h >> 3] & mask) == mask);
1455 	default:
1456 #ifdef STANDALONE
1457 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1458 #else
1459 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1460 #endif
1461 		return (0);
1462 	}
1463 }
1464 
1465 /*
1466  * take a block out of the map
1467  */
1468 void
1469 clrblock(struct fs *fs, unsigned char *cp, int h)
1470 {
1471 	switch ((fs)->fs_frag) {
1472 	case 8:
1473 		cp[h] = 0;
1474 		return;
1475 	case 4:
1476 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1477 		return;
1478 	case 2:
1479 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1480 		return;
1481 	case 1:
1482 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1483 		return;
1484 	default:
1485 #ifdef STANDALONE
1486 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1487 #else
1488 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1489 #endif
1490 		return;
1491 	}
1492 }
1493 
1494 /*
1495  * put a block into the map
1496  */
1497 void
1498 setblock(struct fs *fs, unsigned char *cp, int h)
1499 {
1500 	switch (fs->fs_frag) {
1501 	case 8:
1502 		cp[h] = 0xff;
1503 		return;
1504 	case 4:
1505 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1506 		return;
1507 	case 2:
1508 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1509 		return;
1510 	case 1:
1511 		cp[h >> 3] |= (0x01 << (h & 0x7));
1512 		return;
1513 	default:
1514 #ifdef STANDALONE
1515 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1516 #else
1517 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1518 #endif
1519 		return;
1520 	}
1521 }
1522 
1523 /*
1524  * Determine the number of characters in a
1525  * single line.
1526  */
1527 
1528 static int
1529 charsperline(void)
1530 {
1531 	int columns;
1532 	char *cp;
1533 	struct winsize ws;
1534 
1535 	columns = 0;
1536 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1537 		columns = ws.ws_col;
1538 	if (columns == 0 && (cp = getenv("COLUMNS")))
1539 		columns = atoi(cp);
1540 	if (columns == 0)
1541 		columns = 80;	/* last resort */
1542 	return columns;
1543 }
1544