1 /* 2 * Copyright (c) 1980, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)mkfs.c 8.11 (Berkeley) 5/3/95 34 * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $ 35 */ 36 37 #include "defs.h" 38 39 #include <inttypes.h> 40 #include <stdlib.h> 41 #include <sys/ioctl_compat.h> 42 43 /* 44 * make file system for cylinder-group style file systems 45 */ 46 47 /* 48 * We limit the size of the inode map to be no more than a 49 * third of the cylinder group space, since we must leave at 50 * least an equal amount of space for the block map. 51 * 52 * N.B.: MAXIPG must be a multiple of INOPB(fs). 53 */ 54 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 55 56 #define UMASK 0755 57 #define MAXINOPB (MAXBSIZE / sizeof(struct ufs1_dinode)) 58 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 59 60 #ifdef STANDALONE 61 #error "mkfs.c: STANDALONE compilation no longer supported" 62 #endif 63 64 /* 65 * variables set up by front end. 66 */ 67 extern int mfs; /* run as the memory based filesystem */ 68 extern char *mfs_mtpt; /* mount point for mfs */ 69 extern struct stat mfs_mtstat; /* stat prior to mount */ 70 extern int Lflag; /* add a volume label */ 71 extern int Nflag; /* run mkfs without writing file system */ 72 extern int Oflag; /* format as an 4.3BSD file system */ 73 extern int Uflag; /* enable soft updates for file system */ 74 extern int Eflag; /* erase contents using TRIM */ 75 extern uint64_t slice_offset; /* Pysical device slice offset */ 76 extern u_long fssize; /* file system size */ 77 extern int ntracks; /* # tracks/cylinder */ 78 extern int nsectors; /* # sectors/track */ 79 extern int nphyssectors; /* # sectors/track including spares */ 80 extern int secpercyl; /* sectors per cylinder */ 81 extern int sectorsize; /* bytes/sector */ 82 extern int realsectorsize; /* bytes/sector in hardware*/ 83 extern int rpm; /* revolutions/minute of drive */ 84 extern int interleave; /* hardware sector interleave */ 85 extern int trackskew; /* sector 0 skew, per track */ 86 extern int fsize; /* fragment size */ 87 extern int bsize; /* block size */ 88 extern int cpg; /* cylinders/cylinder group */ 89 extern int cpgflg; /* cylinders/cylinder group flag was given */ 90 extern int minfree; /* free space threshold */ 91 extern int opt; /* optimization preference (space or time) */ 92 extern int density; /* number of bytes per inode */ 93 extern int maxcontig; /* max contiguous blocks to allocate */ 94 extern int rotdelay; /* rotational delay between blocks */ 95 extern int maxbpg; /* maximum blocks per file in a cyl group */ 96 extern int nrpos; /* # of distinguished rotational positions */ 97 extern int bbsize; /* boot block size */ 98 extern int sbsize; /* superblock size */ 99 extern int avgfilesize; /* expected average file size */ 100 extern int avgfilesperdir; /* expected number of files per directory */ 101 extern caddr_t membase; /* start address of memory based filesystem */ 102 extern char * filename; 103 extern u_char *volumelabel; /* volume label for filesystem */ 104 extern struct disktab geom; 105 106 extern void fatal(const char *fmt, ...); 107 108 union { 109 struct fs fs; 110 char pad[SBSIZE]; 111 } fsun; 112 #define sblock fsun.fs 113 struct csum *fscs; 114 115 union { 116 struct cg cg; 117 char pad[MAXBSIZE]; 118 } cgun; 119 #define acg cgun.cg 120 121 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)]; 122 123 int fsi, fso; 124 static fsnode_t copyroot; 125 static fsnode_t copyhlinks; 126 #ifdef FSIRAND 127 int randinit; 128 #endif 129 daddr_t alloc(int, int); 130 long calcipg(long, long, off_t *); 131 static int charsperline(void); 132 void clrblock(struct fs *, unsigned char *, int); 133 void fsinit(time_t); 134 void initcg(int, time_t); 135 int isblock(struct fs *, unsigned char *, int); 136 void iput(struct ufs1_dinode *, ino_t); 137 int makedir(struct direct *, int); 138 void parentready(int); 139 void rdfs(daddr_t, int, char *); 140 void setblock(struct fs *, unsigned char *, int); 141 void started(int); 142 void erfs(off_t, off_t); 143 void wtfs(daddr_t, int, char *); 144 void wtfsflush(void); 145 146 int mfs_ppid = 0; 147 int parentready_signalled; 148 149 void 150 mkfs(char *fsys, int fi, int fo, const char *mfscopy) 151 { 152 long i, mincpc, mincpg, inospercg; 153 long cylno, rpos, blk, j, emitwarn = 0; 154 long used, mincpgcnt, bpcg; 155 off_t usedb; 156 long mapcramped, inodecramped; 157 long postblsize, rotblsize, totalsbsize; 158 int status, fd; 159 time_t utime; 160 quad_t sizepb; 161 int width; 162 char tmpbuf[100]; /* XXX this will break in about 2,500 years */ 163 164 time(&utime); 165 #ifdef FSIRAND 166 if (!randinit) { 167 randinit = 1; 168 srandomdev(); 169 } 170 #endif 171 if (mfs) { 172 int omask; 173 pid_t child; 174 175 mfs_ppid = getpid(); 176 signal(SIGUSR1, parentready); 177 if ((child = fork()) != 0) { 178 /* 179 * Parent 180 */ 181 if (child == -1) 182 err(10, "mfs"); 183 if (mfscopy) 184 copyroot = FSCopy(©hlinks, mfscopy); 185 signal(SIGUSR1, started); 186 kill(child, SIGUSR1); 187 while (waitpid(child, &status, 0) != child) 188 ; 189 exit(WEXITSTATUS(status)); 190 /* NOTREACHED */ 191 } 192 193 /* 194 * Child 195 */ 196 omask = sigblock(sigmask(SIGUSR1)); 197 while (parentready_signalled == 0) 198 sigpause(omask); 199 sigsetmask(omask); 200 if (filename != NULL) { 201 unsigned char buf[BUFSIZ]; 202 unsigned long l, l1; 203 ssize_t w; 204 205 fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644); 206 if(fd < 0) 207 err(12, "%s", filename); 208 l1 = fssize * sectorsize; 209 if (l1 > BUFSIZ) 210 l1 = BUFSIZ; 211 for (l = 0; l < fssize * (u_long)sectorsize; l += l1) { 212 w = write(fd, buf, l1); 213 if (w < 0 || (u_long)w != l1) 214 err(12, "%s", filename); 215 } 216 membase = mmap(NULL, fssize * sectorsize, 217 PROT_READ|PROT_WRITE, 218 MAP_SHARED, fd, 0); 219 if (membase == MAP_FAILED) 220 err(12, "mmap"); 221 close(fd); 222 } else { 223 membase = mmap(NULL, fssize * sectorsize, 224 PROT_READ|PROT_WRITE, 225 MAP_SHARED|MAP_ANON, -1, 0); 226 if (membase == MAP_FAILED) 227 errx(13, "mmap (anonymous memory) failed"); 228 } 229 } 230 fsi = fi; 231 fso = fo; 232 if (Oflag) { 233 sblock.fs_inodefmt = FS_42INODEFMT; 234 sblock.fs_maxsymlinklen = 0; 235 } else { 236 sblock.fs_inodefmt = FS_44INODEFMT; 237 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 238 } 239 if (Uflag) 240 sblock.fs_flags |= FS_DOSOFTDEP; 241 if (Lflag) 242 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN); 243 244 /* 245 * Validate the given file system size. 246 * Verify that its last block can actually be accessed. 247 */ 248 if (fssize == 0) 249 printf("preposterous size %lu\n", fssize), exit(13); 250 wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize, 251 (char *)&sblock); 252 /* 253 * collect and verify the sector and track info 254 */ 255 sblock.fs_nsect = nsectors; 256 sblock.fs_ntrak = ntracks; 257 if (sblock.fs_ntrak <= 0) 258 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 259 if (sblock.fs_nsect <= 0) 260 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 261 /* 262 * collect and verify the filesystem density info 263 */ 264 sblock.fs_avgfilesize = avgfilesize; 265 sblock.fs_avgfpdir = avgfilesperdir; 266 if (sblock.fs_avgfilesize <= 0) 267 printf("illegal expected average file size %d\n", 268 sblock.fs_avgfilesize), exit(14); 269 if (sblock.fs_avgfpdir <= 0) 270 printf("illegal expected number of files per directory %d\n", 271 sblock.fs_avgfpdir), exit(15); 272 /* 273 * collect and verify the block and fragment sizes 274 */ 275 sblock.fs_bsize = bsize; 276 sblock.fs_fsize = fsize; 277 if (!POWEROF2(sblock.fs_bsize)) { 278 printf("block size must be a power of 2, not %d\n", 279 sblock.fs_bsize); 280 exit(16); 281 } 282 if (!POWEROF2(sblock.fs_fsize)) { 283 printf("fragment size must be a power of 2, not %d\n", 284 sblock.fs_fsize); 285 exit(17); 286 } 287 if (sblock.fs_fsize < sectorsize) { 288 printf("fragment size %d is too small, minimum is %d\n", 289 sblock.fs_fsize, sectorsize); 290 exit(18); 291 } 292 if (sblock.fs_bsize < MINBSIZE) { 293 printf("block size %d is too small, minimum is %d\n", 294 sblock.fs_bsize, MINBSIZE); 295 exit(19); 296 } 297 if (sblock.fs_bsize < sblock.fs_fsize) { 298 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 299 sblock.fs_bsize, sblock.fs_fsize); 300 exit(20); 301 } 302 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 303 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 304 sblock.fs_qbmask = ~sblock.fs_bmask; 305 sblock.fs_qfmask = ~sblock.fs_fmask; 306 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 307 sblock.fs_bshift++; 308 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 309 sblock.fs_fshift++; 310 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 311 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 312 sblock.fs_fragshift++; 313 if (sblock.fs_frag > MAXFRAG) { 314 printf("fragment size %d is too small, minimum with block size %d is %d\n", 315 sblock.fs_fsize, sblock.fs_bsize, 316 sblock.fs_bsize / MAXFRAG); 317 exit(21); 318 } 319 sblock.fs_nrpos = nrpos; 320 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 321 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 322 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 323 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 324 sblock.fs_fsbtodb++; 325 sblock.fs_sblkno = 326 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 327 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 328 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 329 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 330 sblock.fs_cgoffset = roundup( 331 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 332 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 333 sblock.fs_cgmask <<= 1; 334 if (!POWEROF2(sblock.fs_ntrak)) 335 sblock.fs_cgmask <<= 1; 336 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 337 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 338 sizepb *= NINDIR(&sblock); 339 sblock.fs_maxfilesize += sizepb; 340 } 341 /* 342 * Validate specified/determined secpercyl 343 * and calculate minimum cylinders per group. 344 */ 345 sblock.fs_spc = secpercyl; 346 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 347 sblock.fs_cpc > 1 && (i & 1) == 0; 348 sblock.fs_cpc >>= 1, i >>= 1) 349 /* void */; 350 mincpc = sblock.fs_cpc; 351 bpcg = sblock.fs_spc * sectorsize; 352 inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock)); 353 if (inospercg > MAXIPG(&sblock)) 354 inospercg = MAXIPG(&sblock); 355 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 356 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 357 sblock.fs_spc); 358 mincpg = roundup(mincpgcnt, mincpc); 359 /* 360 * Ensure that cylinder group with mincpg has enough space 361 * for block maps. 362 */ 363 sblock.fs_cpg = mincpg; 364 sblock.fs_ipg = inospercg; 365 if (maxcontig > 1) 366 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 367 mapcramped = 0; 368 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) { 369 mapcramped = 1; 370 if (sblock.fs_bsize < MAXBSIZE) { 371 sblock.fs_bsize <<= 1; 372 if ((i & 1) == 0) { 373 i >>= 1; 374 } else { 375 sblock.fs_cpc <<= 1; 376 mincpc <<= 1; 377 mincpg = roundup(mincpgcnt, mincpc); 378 sblock.fs_cpg = mincpg; 379 } 380 sblock.fs_frag <<= 1; 381 sblock.fs_fragshift += 1; 382 if (sblock.fs_frag <= MAXFRAG) 383 continue; 384 } 385 if (sblock.fs_fsize == sblock.fs_bsize) { 386 printf("There is no block size that"); 387 printf(" can support this disk\n"); 388 exit(22); 389 } 390 sblock.fs_frag >>= 1; 391 sblock.fs_fragshift -= 1; 392 sblock.fs_fsize <<= 1; 393 sblock.fs_nspf <<= 1; 394 } 395 /* 396 * Ensure that cylinder group with mincpg has enough space for inodes. 397 */ 398 inodecramped = 0; 399 inospercg = calcipg(mincpg, bpcg, &usedb); 400 sblock.fs_ipg = inospercg; 401 while (inospercg > MAXIPG(&sblock)) { 402 inodecramped = 1; 403 if (mincpc == 1 || sblock.fs_frag == 1 || 404 sblock.fs_bsize == MINBSIZE) 405 break; 406 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 407 "minimum bytes per inode is", 408 (int)((mincpg * (off_t)bpcg - usedb) 409 / MAXIPG(&sblock) + 1)); 410 sblock.fs_bsize >>= 1; 411 sblock.fs_frag >>= 1; 412 sblock.fs_fragshift -= 1; 413 mincpc >>= 1; 414 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 415 if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) { 416 sblock.fs_bsize <<= 1; 417 break; 418 } 419 mincpg = sblock.fs_cpg; 420 inospercg = calcipg(mincpg, bpcg, &usedb); 421 sblock.fs_ipg = inospercg; 422 } 423 if (inodecramped) { 424 if (inospercg > MAXIPG(&sblock)) { 425 printf("Minimum bytes per inode is %d\n", 426 (int)((mincpg * (off_t)bpcg - usedb) 427 / MAXIPG(&sblock) + 1)); 428 } else if (!mapcramped) { 429 printf("With %d bytes per inode, ", density); 430 printf("minimum cylinders per group is %ld\n", mincpg); 431 } 432 } 433 if (mapcramped) { 434 printf("With %d sectors per cylinder, ", sblock.fs_spc); 435 printf("minimum cylinders per group is %ld\n", mincpg); 436 } 437 if (inodecramped || mapcramped) { 438 if (sblock.fs_bsize != bsize) 439 printf("%s to be changed from %d to %d\n", 440 "This requires the block size", 441 bsize, sblock.fs_bsize); 442 if (sblock.fs_fsize != fsize) 443 printf("\t%s to be changed from %d to %d\n", 444 "and the fragment size", 445 fsize, sblock.fs_fsize); 446 exit(23); 447 } 448 /* 449 * Calculate the number of cylinders per group 450 */ 451 sblock.fs_cpg = cpg; 452 if (sblock.fs_cpg % mincpc != 0) { 453 printf("%s groups must have a multiple of %ld cylinders\n", 454 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 455 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 456 if (!cpgflg) 457 cpg = sblock.fs_cpg; 458 } 459 /* 460 * Must ensure there is enough space for inodes. 461 */ 462 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 463 while (sblock.fs_ipg > MAXIPG(&sblock)) { 464 inodecramped = 1; 465 sblock.fs_cpg -= mincpc; 466 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 467 } 468 /* 469 * Must ensure there is enough space to hold block map. 470 */ 471 while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) { 472 mapcramped = 1; 473 sblock.fs_cpg -= mincpc; 474 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 475 } 476 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 477 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 478 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 479 exit(24); 480 } 481 if (sblock.fs_cpg < mincpg) { 482 printf("cylinder groups must have at least %ld cylinders\n", 483 mincpg); 484 exit(25); 485 } else if (sblock.fs_cpg != cpg) { 486 if (!cpgflg && !mfs) 487 printf("Warning: "); 488 else if (!mapcramped && !inodecramped) 489 exit(26); 490 if (!mfs) { 491 if (mapcramped && inodecramped) 492 printf("Block size and bytes per inode restrict"); 493 else if (mapcramped) 494 printf("Block size restricts"); 495 else 496 printf("Bytes per inode restrict"); 497 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 498 } 499 if (cpgflg) 500 exit(27); 501 } 502 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 503 /* 504 * Now have size for file system and nsect and ntrak. 505 * Determine number of cylinders and blocks in the file system. 506 */ 507 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 508 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 509 if ((long)fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 510 sblock.fs_ncyl++; 511 emitwarn = 1; 512 } 513 if (sblock.fs_ncyl < 1) { 514 printf("file systems must have at least one cylinder\n"); 515 exit(28); 516 } 517 /* 518 * Determine feasability/values of rotational layout tables. 519 * 520 * The size of the rotational layout tables is limited by the 521 * size of the superblock, SBSIZE. The amount of space available 522 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 523 * The size of these tables is inversely proportional to the block 524 * size of the file system. The size increases if sectors per track 525 * are not powers of two, because more cylinders must be described 526 * by the tables before the rotational pattern repeats (fs_cpc). 527 */ 528 sblock.fs_interleave = interleave; 529 sblock.fs_trackskew = trackskew; 530 sblock.fs_npsect = nphyssectors; 531 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 532 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 533 if (sblock.fs_sbsize > SBSIZE) 534 sblock.fs_sbsize = SBSIZE; 535 if (sblock.fs_ntrak == 1) { 536 sblock.fs_cpc = 0; 537 goto next; 538 } 539 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 540 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 541 totalsbsize = sizeof(struct fs) + rotblsize; 542 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 543 /* use old static table space */ 544 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 545 (char *)(&sblock.fs_firstfield); 546 sblock.fs_rotbloff = &sblock.fs_space[0] - 547 (u_char *)(&sblock.fs_firstfield); 548 } else { 549 /* use dynamic table space */ 550 sblock.fs_postbloff = &sblock.fs_space[0] - 551 (u_char *)(&sblock.fs_firstfield); 552 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 553 totalsbsize += postblsize; 554 } 555 if (totalsbsize > SBSIZE || 556 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 557 printf("%s %s %d %s %d.%s", 558 "Warning: insufficient space in super block for\n", 559 "rotational layout tables with nsect", sblock.fs_nsect, 560 "and ntrak", sblock.fs_ntrak, 561 "\nFile system performance may be impaired.\n"); 562 sblock.fs_cpc = 0; 563 goto next; 564 } 565 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 566 if (sblock.fs_sbsize > SBSIZE) 567 sblock.fs_sbsize = SBSIZE; 568 /* 569 * calculate the available blocks for each rotational position 570 */ 571 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 572 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 573 fs_postbl(&sblock, cylno)[rpos] = -1; 574 for (i = (rotblsize - 1) * sblock.fs_frag; 575 i >= 0; i -= sblock.fs_frag) { 576 cylno = cbtocylno(&sblock, i); 577 rpos = cbtorpos(&sblock, i); 578 blk = fragstoblks(&sblock, i); 579 if (fs_postbl(&sblock, cylno)[rpos] == -1) 580 fs_rotbl(&sblock)[blk] = 0; 581 else 582 fs_rotbl(&sblock)[blk] = 583 fs_postbl(&sblock, cylno)[rpos] - blk; 584 fs_postbl(&sblock, cylno)[rpos] = blk; 585 } 586 next: 587 /* 588 * Compute/validate number of cylinder groups. 589 */ 590 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 591 if (sblock.fs_ncyl % sblock.fs_cpg) 592 sblock.fs_ncg++; 593 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 594 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 595 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 596 printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n", 597 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 598 (long)(sblock.fs_fpg / sblock.fs_frag)); 599 printf("number of cylinders per cylinder group (%d) %s.\n", 600 sblock.fs_cpg, "must be increased"); 601 exit(29); 602 } 603 j = sblock.fs_ncg - 1; 604 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 605 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 606 if (j == 0) { 607 printf("Filesystem must have at least %d sectors\n", 608 NSPF(&sblock) * 609 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 610 exit(30); 611 } 612 printf( 613 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n", 614 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 615 i / sblock.fs_frag); 616 printf( 617 " cylinder group. This implies %ld sector(s) cannot be allocated.\n", 618 i * NSPF(&sblock)); 619 sblock.fs_ncg--; 620 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 621 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 622 NSPF(&sblock); 623 emitwarn = 0; 624 } 625 if (emitwarn && !mfs) { 626 printf("Warning: %lu sector(s) in last cylinder unallocated\n", 627 sblock.fs_spc - 628 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 629 * sblock.fs_spc)); 630 } 631 /* 632 * fill in remaining fields of the super block 633 */ 634 sblock.fs_csaddr = cgdmin(&sblock, 0); 635 sblock.fs_cssize = 636 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 637 /* 638 * The superblock fields 'fs_csmask' and 'fs_csshift' are no 639 * longer used. However, we still initialise them so that the 640 * filesystem remains compatible with old kernels. 641 */ 642 i = sblock.fs_bsize / sizeof(struct csum); 643 sblock.fs_csmask = ~(i - 1); 644 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 645 sblock.fs_csshift++; 646 fscs = (struct csum *)calloc(1, sblock.fs_cssize); 647 if (fscs == NULL) 648 errx(31, "calloc failed"); 649 sblock.fs_magic = FS_MAGIC; 650 sblock.fs_rotdelay = rotdelay; 651 sblock.fs_minfree = minfree; 652 sblock.fs_maxcontig = maxcontig; 653 sblock.fs_maxbpg = maxbpg; 654 sblock.fs_rps = rpm / 60; 655 sblock.fs_optim = opt; 656 sblock.fs_cgrotor = 0; 657 sblock.fs_cstotal.cs_ndir = 0; 658 sblock.fs_cstotal.cs_nbfree = 0; 659 sblock.fs_cstotal.cs_nifree = 0; 660 sblock.fs_cstotal.cs_nffree = 0; 661 sblock.fs_fmod = 0; 662 sblock.fs_ronly = 0; 663 sblock.fs_clean = 1; 664 #ifdef FSIRAND 665 sblock.fs_id[0] = (long)utime; 666 sblock.fs_id[1] = random(); 667 #endif 668 669 /* 670 * Dump out summary information about file system. 671 */ 672 if (!mfs) { 673 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 674 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 675 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 676 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 677 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n", 678 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 679 sblock.fs_ncg, sblock.fs_cpg, 680 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 681 sblock.fs_ipg, 682 sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : ""); 683 #undef B2MBFACTOR 684 } 685 686 if (Eflag && !Nflag) { 687 printf("Erasing sectors [%"PRIu64" --- %"PRIu64"]\n", 688 (SBOFF + slice_offset) / sectorsize, 689 fsbtodb(&sblock,sblock.fs_size) - 690 ((SBOFF + slice_offset) / sectorsize) - 1); 691 erfs(SBOFF + slice_offset, (fsbtodb(&sblock,sblock.fs_size) - 692 ((SBOFF + slice_offset)/ sectorsize) - 1) * 693 (unsigned long long)sectorsize); 694 } 695 /* 696 * Now build the cylinders group blocks and 697 * then print out indices of cylinder groups. 698 */ 699 if (!mfs) 700 printf("super-block backups (for fsck -b #) at:\n"); 701 i = 0; 702 width = charsperline(); 703 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 704 initcg(cylno, utime); 705 if (mfs) 706 continue; 707 j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s", 708 fsbtodb(&sblock, cgsblock(&sblock, cylno)), 709 cylno < (sblock.fs_ncg-1) ? "," : "" ); 710 if (i + j >= width) { 711 printf("\n"); 712 i = 0; 713 } 714 i += j; 715 printf("%s", tmpbuf); 716 fflush(stdout); 717 } 718 if (!mfs) 719 printf("\n"); 720 if (Nflag && !mfs) 721 exit(0); 722 /* 723 * Now construct the initial file system, 724 * then write out the super-block. 725 */ 726 fsinit(utime); 727 sblock.fs_time = utime; 728 wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock); 729 for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) 730 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)), 731 sblock.fs_cssize - i < sblock.fs_bsize ? 732 sblock.fs_cssize - i : sblock.fs_bsize, 733 ((char *)fscs) + i); 734 /* 735 * Write out the duplicate super blocks 736 */ 737 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 738 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), 739 sbsize, (char *)&sblock); 740 wtfsflush(); 741 742 /* 743 * NOTE: we no longer update information in the disklabel 744 */ 745 746 /* 747 * Notify parent process of success. 748 * Dissociate from session and tty. 749 * 750 * NOTE: We are the child and may receive a SIGINT due 751 * to losing the tty session? XXX 752 */ 753 if (mfs) { 754 /* YYY */ 755 kill(mfs_ppid, SIGUSR1); 756 setsid(); 757 close(0); 758 close(1); 759 close(2); 760 chdir("/"); 761 /* returns to mount_mfs (newfs) and issues the mount */ 762 } 763 } 764 765 /* 766 * Initialize a cylinder group. 767 */ 768 void 769 initcg(int cylno, time_t utime) 770 { 771 daddr_t cbase, d, dlower, dupper, dmax, blkno; 772 long i; 773 unsigned long k; 774 struct csum *cs; 775 #ifdef FSIRAND 776 uint32_t j; 777 #endif 778 779 /* 780 * Determine block bounds for cylinder group. 781 * Allow space for super block summary information in first 782 * cylinder group. 783 */ 784 cbase = cgbase(&sblock, cylno); 785 dmax = cbase + sblock.fs_fpg; 786 if (dmax > sblock.fs_size) 787 dmax = sblock.fs_size; 788 dlower = cgsblock(&sblock, cylno) - cbase; 789 dupper = cgdmin(&sblock, cylno) - cbase; 790 if (cylno == 0) 791 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 792 cs = fscs + cylno; 793 memset(&acg, 0, sblock.fs_cgsize); 794 acg.cg_time = utime; 795 acg.cg_magic = CG_MAGIC; 796 acg.cg_cgx = cylno; 797 if (cylno == sblock.fs_ncg - 1) 798 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 799 else 800 acg.cg_ncyl = sblock.fs_cpg; 801 acg.cg_niblk = sblock.fs_ipg; 802 acg.cg_ndblk = dmax - cbase; 803 if (sblock.fs_contigsumsize > 0) 804 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 805 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 806 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 807 acg.cg_iusedoff = acg.cg_boff + 808 sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t); 809 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 810 if (sblock.fs_contigsumsize <= 0) { 811 acg.cg_nextfreeoff = acg.cg_freeoff + 812 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 813 } else { 814 acg.cg_clustersumoff = acg.cg_freeoff + howmany 815 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 816 sizeof(u_int32_t); 817 acg.cg_clustersumoff = 818 roundup(acg.cg_clustersumoff, sizeof(u_int32_t)); 819 acg.cg_clusteroff = acg.cg_clustersumoff + 820 (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t); 821 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 822 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 823 } 824 if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) { 825 printf("Panic: cylinder group too big\n"); 826 exit(37); 827 } 828 acg.cg_cs.cs_nifree += sblock.fs_ipg; 829 if (cylno == 0) { 830 for (k = 0; k < ROOTINO; k++) { 831 setbit(cg_inosused(&acg), k); 832 acg.cg_cs.cs_nifree--; 833 } 834 } 835 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) { 836 #ifdef FSIRAND 837 for (j = 0; 838 j < sblock.fs_bsize / sizeof(struct ufs1_dinode); 839 j++) { 840 zino[j].di_gen = random(); 841 } 842 #endif 843 wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 844 sblock.fs_bsize, (char *)zino); 845 } 846 if (cylno > 0) { 847 /* 848 * In cylno 0, beginning space is reserved 849 * for boot and super blocks. 850 */ 851 for (d = 0; d < dlower; d += sblock.fs_frag) { 852 blkno = d / sblock.fs_frag; 853 setblock(&sblock, cg_blksfree(&acg), blkno); 854 if (sblock.fs_contigsumsize > 0) 855 setbit(cg_clustersfree(&acg), blkno); 856 acg.cg_cs.cs_nbfree++; 857 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 858 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 859 [cbtorpos(&sblock, d)]++; 860 } 861 sblock.fs_dsize += dlower; 862 } 863 sblock.fs_dsize += acg.cg_ndblk - dupper; 864 if ((i = dupper % sblock.fs_frag)) { 865 acg.cg_frsum[sblock.fs_frag - i]++; 866 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 867 setbit(cg_blksfree(&acg), dupper); 868 acg.cg_cs.cs_nffree++; 869 } 870 } 871 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 872 blkno = d / sblock.fs_frag; 873 setblock(&sblock, cg_blksfree(&acg), blkno); 874 if (sblock.fs_contigsumsize > 0) 875 setbit(cg_clustersfree(&acg), blkno); 876 acg.cg_cs.cs_nbfree++; 877 cg_blktot(&acg)[cbtocylno(&sblock, d)]++; 878 cg_blks(&sblock, &acg, cbtocylno(&sblock, d)) 879 [cbtorpos(&sblock, d)]++; 880 d += sblock.fs_frag; 881 } 882 if (d < dmax - cbase) { 883 acg.cg_frsum[dmax - cbase - d]++; 884 for (; d < dmax - cbase; d++) { 885 setbit(cg_blksfree(&acg), d); 886 acg.cg_cs.cs_nffree++; 887 } 888 } 889 if (sblock.fs_contigsumsize > 0) { 890 int32_t *sump = cg_clustersum(&acg); 891 u_char *mapp = cg_clustersfree(&acg); 892 int map = *mapp++; 893 int bit = 1; 894 int run = 0; 895 896 for (i = 0; i < acg.cg_nclusterblks; i++) { 897 if ((map & bit) != 0) { 898 run++; 899 } else if (run != 0) { 900 if (run > sblock.fs_contigsumsize) 901 run = sblock.fs_contigsumsize; 902 sump[run]++; 903 run = 0; 904 } 905 if ((i & (NBBY - 1)) != (NBBY - 1)) { 906 bit <<= 1; 907 } else { 908 map = *mapp++; 909 bit = 1; 910 } 911 } 912 if (run != 0) { 913 if (run > sblock.fs_contigsumsize) 914 run = sblock.fs_contigsumsize; 915 sump[run]++; 916 } 917 } 918 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 919 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 920 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 921 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 922 *cs = acg.cg_cs; 923 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 924 sblock.fs_bsize, (char *)&acg); 925 } 926 927 /* 928 * initialize the file system 929 */ 930 struct ufs1_dinode node; 931 932 #ifdef LOSTDIR 933 #define PREDEFDIR 3 934 #else 935 #define PREDEFDIR 2 936 #endif 937 938 struct direct root_dir[] = { 939 { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." }, 940 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 941 #ifdef LOSTDIR 942 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" }, 943 #endif 944 }; 945 struct odirect { 946 u_long d_ino; 947 u_short d_reclen; 948 u_short d_namlen; 949 u_char d_name[MAXNAMLEN + 1]; 950 } oroot_dir[] = { 951 { ROOTINO, sizeof(struct direct), 1, "." }, 952 { ROOTINO, sizeof(struct direct), 2, ".." }, 953 #ifdef LOSTDIR 954 { LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" }, 955 #endif 956 }; 957 #ifdef LOSTDIR 958 struct direct lost_found_dir[] = { 959 { LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." }, 960 { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." }, 961 { 0, DIRBLKSIZ, 0, 0, 0 }, 962 }; 963 struct odirect olost_found_dir[] = { 964 { LOSTFOUNDINO, sizeof(struct direct), 1, "." }, 965 { ROOTINO, sizeof(struct direct), 2, ".." }, 966 { 0, DIRBLKSIZ, 0, 0 }, 967 }; 968 #endif 969 char buf[MAXBSIZE]; 970 971 void 972 fsinit(time_t utime) 973 { 974 #ifdef LOSTDIR 975 int i; 976 #endif 977 978 /* 979 * initialize the node 980 */ 981 node.di_atime = utime; 982 node.di_mtime = utime; 983 node.di_ctime = utime; 984 #ifdef LOSTDIR 985 /* 986 * create the lost+found directory 987 */ 988 if (Oflag) { 989 makedir((struct direct *)olost_found_dir, 2); 990 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 991 memmove(&buf[i], &olost_found_dir[2], 992 DIRSIZ(0, &olost_found_dir[2])); 993 } else { 994 makedir(lost_found_dir, 2); 995 for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) 996 memmove(&buf[i], &lost_found_dir[2], 997 DIRSIZ(0, &lost_found_dir[2])); 998 } 999 node.di_mode = IFDIR | UMASK; 1000 node.di_nlink = 2; 1001 node.di_size = sblock.fs_bsize; 1002 node.di_db[0] = alloc(node.di_size, node.di_mode); 1003 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 1004 wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf); 1005 iput(&node, LOSTFOUNDINO); 1006 #endif 1007 /* 1008 * create the root directory 1009 */ 1010 if (mfs) 1011 node.di_mode = IFDIR | 01777; 1012 else 1013 node.di_mode = IFDIR | UMASK; 1014 node.di_nlink = PREDEFDIR; 1015 if (Oflag) 1016 node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR); 1017 else 1018 node.di_size = makedir(root_dir, PREDEFDIR); 1019 node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode); 1020 node.di_blocks = btodb(fragroundup(&sblock, node.di_size)); 1021 wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf); 1022 iput(&node, ROOTINO); 1023 } 1024 1025 /* 1026 * construct a set of directory entries in "buf". 1027 * return size of directory. 1028 */ 1029 int 1030 makedir(struct direct *protodir, int entries) 1031 { 1032 char *cp; 1033 int i, spcleft; 1034 1035 spcleft = DIRBLKSIZ; 1036 for (cp = buf, i = 0; i < entries - 1; i++) { 1037 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]); 1038 memmove(cp, &protodir[i], protodir[i].d_reclen); 1039 cp += protodir[i].d_reclen; 1040 spcleft -= protodir[i].d_reclen; 1041 } 1042 protodir[i].d_reclen = spcleft; 1043 memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i])); 1044 return (DIRBLKSIZ); 1045 } 1046 1047 /* 1048 * allocate a block or frag 1049 */ 1050 daddr_t 1051 alloc(int size, int mode) 1052 { 1053 int i, frag; 1054 daddr_t d, blkno; 1055 1056 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1057 (char *)&acg); 1058 if (acg.cg_magic != CG_MAGIC) { 1059 printf("cg 0: bad magic number\n"); 1060 return (0); 1061 } 1062 if (acg.cg_cs.cs_nbfree == 0) { 1063 printf("first cylinder group ran out of space\n"); 1064 return (0); 1065 } 1066 for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag) 1067 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag)) 1068 goto goth; 1069 printf("internal error: can't find block in cyl 0\n"); 1070 return (0); 1071 goth: 1072 blkno = fragstoblks(&sblock, d); 1073 clrblock(&sblock, cg_blksfree(&acg), blkno); 1074 if (sblock.fs_contigsumsize > 0) 1075 clrbit(cg_clustersfree(&acg), blkno); 1076 acg.cg_cs.cs_nbfree--; 1077 sblock.fs_cstotal.cs_nbfree--; 1078 fscs[0].cs_nbfree--; 1079 if (mode & IFDIR) { 1080 acg.cg_cs.cs_ndir++; 1081 sblock.fs_cstotal.cs_ndir++; 1082 fscs[0].cs_ndir++; 1083 } 1084 cg_blktot(&acg)[cbtocylno(&sblock, d)]--; 1085 cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--; 1086 if (size != sblock.fs_bsize) { 1087 frag = howmany(size, sblock.fs_fsize); 1088 fscs[0].cs_nffree += sblock.fs_frag - frag; 1089 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag; 1090 acg.cg_cs.cs_nffree += sblock.fs_frag - frag; 1091 acg.cg_frsum[sblock.fs_frag - frag]++; 1092 for (i = frag; i < sblock.fs_frag; i++) 1093 setbit(cg_blksfree(&acg), d + i); 1094 } 1095 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1096 (char *)&acg); 1097 return (d); 1098 } 1099 1100 /* 1101 * Calculate number of inodes per group. 1102 */ 1103 long 1104 calcipg(long cylspg, long bpcg, off_t *usedbp) 1105 { 1106 int i; 1107 long ipg, new_ipg, ncg, ncyl; 1108 off_t usedb; 1109 1110 /* 1111 * Prepare to scale by fssize / (number of sectors in cylinder groups). 1112 * Note that fssize is still in sectors, not filesystem blocks. 1113 */ 1114 ncyl = howmany(fssize, (u_int)secpercyl); 1115 ncg = howmany(ncyl, cylspg); 1116 /* 1117 * Iterate a few times to allow for ipg depending on itself. 1118 */ 1119 ipg = 0; 1120 for (i = 0; i < 10; i++) { 1121 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 1122 * NSPF(&sblock) * (off_t)sectorsize; 1123 new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize 1124 / ncg / secpercyl / cylspg; 1125 new_ipg = roundup(new_ipg, INOPB(&sblock)); 1126 if (new_ipg == ipg) 1127 break; 1128 ipg = new_ipg; 1129 } 1130 *usedbp = usedb; 1131 return (ipg); 1132 } 1133 1134 /* 1135 * Allocate an inode on the disk 1136 */ 1137 void 1138 iput(struct ufs1_dinode *ip, ino_t ino) 1139 { 1140 struct ufs1_dinode inobuf[MAXINOPB]; 1141 daddr_t d; 1142 1143 #ifdef FSIRAND 1144 ip->di_gen = random(); 1145 #endif 1146 rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1147 (char *)&acg); 1148 if (acg.cg_magic != CG_MAGIC) { 1149 printf("cg 0: bad magic number\n"); 1150 exit(31); 1151 } 1152 acg.cg_cs.cs_nifree--; 1153 setbit(cg_inosused(&acg), ino); 1154 wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize, 1155 (char *)&acg); 1156 sblock.fs_cstotal.cs_nifree--; 1157 fscs[0].cs_nifree--; 1158 if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) { 1159 printf("fsinit: inode value out of range (%ju).\n", 1160 (uintmax_t)ino); 1161 exit(32); 1162 } 1163 d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino)); 1164 rdfs(d, sblock.fs_bsize, (char *)inobuf); 1165 inobuf[ino_to_fsbo(&sblock, ino)] = *ip; 1166 wtfs(d, sblock.fs_bsize, (char *)inobuf); 1167 } 1168 1169 /* 1170 * Parent notifies child that it can proceed with the newfs and mount 1171 * operation (occurs after parent has copied the underlying filesystem 1172 * if the -C option was specified (for MFS), or immediately after the 1173 * parent forked the child otherwise). 1174 */ 1175 void 1176 parentready(__unused int signo) 1177 { 1178 parentready_signalled = 1; 1179 } 1180 1181 /* 1182 * Notify parent process that the filesystem has created itself successfully. 1183 * 1184 * We have to wait until the mount has actually completed! 1185 */ 1186 void 1187 started(__unused int signo) 1188 { 1189 int retry = 100; /* 10 seconds, 100ms */ 1190 1191 while (mfs_ppid && retry) { 1192 struct stat st; 1193 1194 if ( 1195 stat(mfs_mtpt, &st) < 0 || 1196 st.st_dev != mfs_mtstat.st_dev 1197 ) { 1198 break; 1199 } 1200 usleep(100*1000); 1201 --retry; 1202 } 1203 if (retry == 0) { 1204 fatal("mfs mount failed waiting for mount to go active"); 1205 } else if (copyroot) { 1206 FSPaste(mfs_mtpt, copyroot, copyhlinks); 1207 } 1208 exit(0); 1209 } 1210 1211 /* 1212 * read a block from the file system 1213 */ 1214 void 1215 rdfs(daddr_t bno, int size, char *bf) 1216 { 1217 int n; 1218 1219 wtfsflush(); 1220 if (mfs) { 1221 memmove(bf, membase + bno * sectorsize, size); 1222 return; 1223 } 1224 if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) { 1225 printf("seek error: %ld\n", (long)bno); 1226 err(33, "rdfs"); 1227 } 1228 n = read(fsi, bf, size); 1229 if (n != size) { 1230 printf("read error: %ld\n", (long)bno); 1231 err(34, "rdfs"); 1232 } 1233 } 1234 1235 #define WCSIZE (128 * 1024) 1236 daddr_t wc_sect; /* units of sectorsize */ 1237 int wc_end; /* bytes */ 1238 static char wc[WCSIZE]; /* bytes */ 1239 1240 /* 1241 * Flush dirty write behind buffer. 1242 */ 1243 void 1244 wtfsflush(void) 1245 { 1246 int n; 1247 if (wc_end) { 1248 if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) { 1249 printf("seek error: %ld\n", (long)wc_sect); 1250 err(35, "wtfs - writecombine"); 1251 } 1252 n = write(fso, wc, wc_end); 1253 if (n != wc_end) { 1254 printf("write error: %ld\n", (long)wc_sect); 1255 err(36, "wtfs - writecombine"); 1256 } 1257 wc_end = 0; 1258 } 1259 } 1260 1261 /* 1262 * Issue ioctl to erase range of sectors using TRIM 1263 */ 1264 void 1265 erfs(off_t byte_start, off_t size) 1266 { 1267 off_t ioarg[2]; 1268 ioarg[0] = byte_start; 1269 ioarg[1] = size; 1270 if (ioctl(fsi, IOCTLTRIM, ioarg) < 0) { 1271 err(37, "Device trim failed\n"); 1272 } 1273 } 1274 1275 /* 1276 * write a block to the file system 1277 */ 1278 void 1279 wtfs(daddr_t bno, int size, char *bf) 1280 { 1281 int n; 1282 int done; 1283 1284 if (mfs) { 1285 memmove(membase + bno * sectorsize, bf, size); 1286 return; 1287 } 1288 if (Nflag) 1289 return; 1290 done = 0; 1291 if (wc_end == 0 && size <= WCSIZE) { 1292 wc_sect = bno; 1293 bcopy(bf, wc, size); 1294 wc_end = size; 1295 if (wc_end < WCSIZE) 1296 return; 1297 done = 1; 1298 } 1299 if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize && 1300 wc_end + size <= WCSIZE) { 1301 bcopy(bf, wc + wc_end, size); 1302 wc_end += size; 1303 if (wc_end < WCSIZE) 1304 return; 1305 done = 1; 1306 } 1307 wtfsflush(); 1308 if (done) 1309 return; 1310 if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) { 1311 printf("seek error: %ld\n", (long)bno); 1312 err(35, "wtfs"); 1313 } 1314 n = write(fso, bf, size); 1315 if (n != size) { 1316 printf("write error: fso %d blk %ld %d/%d\n", 1317 fso, (long)bno, n, size); 1318 err(36, "wtfs"); 1319 } 1320 } 1321 1322 /* 1323 * check if a block is available 1324 */ 1325 int 1326 isblock(struct fs *fs, unsigned char *cp, int h) 1327 { 1328 unsigned char mask; 1329 1330 switch (fs->fs_frag) { 1331 case 8: 1332 return (cp[h] == 0xff); 1333 case 4: 1334 mask = 0x0f << ((h & 0x1) << 2); 1335 return ((cp[h >> 1] & mask) == mask); 1336 case 2: 1337 mask = 0x03 << ((h & 0x3) << 1); 1338 return ((cp[h >> 2] & mask) == mask); 1339 case 1: 1340 mask = 0x01 << (h & 0x7); 1341 return ((cp[h >> 3] & mask) == mask); 1342 default: 1343 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag); 1344 return (0); 1345 } 1346 } 1347 1348 /* 1349 * take a block out of the map 1350 */ 1351 void 1352 clrblock(struct fs *fs, unsigned char *cp, int h) 1353 { 1354 switch ((fs)->fs_frag) { 1355 case 8: 1356 cp[h] = 0; 1357 return; 1358 case 4: 1359 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 1360 return; 1361 case 2: 1362 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 1363 return; 1364 case 1: 1365 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 1366 return; 1367 default: 1368 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag); 1369 return; 1370 } 1371 } 1372 1373 /* 1374 * put a block into the map 1375 */ 1376 void 1377 setblock(struct fs *fs, unsigned char *cp, int h) 1378 { 1379 switch (fs->fs_frag) { 1380 case 8: 1381 cp[h] = 0xff; 1382 return; 1383 case 4: 1384 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 1385 return; 1386 case 2: 1387 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 1388 return; 1389 case 1: 1390 cp[h >> 3] |= (0x01 << (h & 0x7)); 1391 return; 1392 default: 1393 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag); 1394 return; 1395 } 1396 } 1397 1398 /* 1399 * Determine the number of characters in a 1400 * single line. 1401 */ 1402 1403 static int 1404 charsperline(void) 1405 { 1406 int columns; 1407 char *cp; 1408 struct winsize ws; 1409 1410 columns = 0; 1411 if (ioctl(0, TIOCGWINSZ, &ws) != -1) 1412 columns = ws.ws_col; 1413 if (columns == 0 && (cp = getenv("COLUMNS"))) 1414 columns = atoi(cp); 1415 if (columns == 0) 1416 columns = 80; /* last resort */ 1417 return columns; 1418 } 1419