xref: /dragonfly/sbin/newfs/mkfs.c (revision 50a61867)
1 /*
2  * Copyright (c) 1980, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)mkfs.c	8.11 (Berkeley) 5/3/95
34  * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sbin/newfs/mkfs.c,v 1.14 2007/05/20 19:29:21 dillon Exp $
36  */
37 
38 #include "defs.h"
39 
40 #include <inttypes.h>
41 #include <stdlib.h>
42 #include <sys/ioctl_compat.h>
43 
44 /*
45  * make file system for cylinder-group style file systems
46  */
47 
48 /*
49  * We limit the size of the inode map to be no more than a
50  * third of the cylinder group space, since we must leave at
51  * least an equal amount of space for the block map.
52  *
53  * N.B.: MAXIPG must be a multiple of INOPB(fs).
54  */
55 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
56 
57 #define UMASK		0755
58 #define MAXINOPB	(MAXBSIZE / sizeof(struct ufs1_dinode))
59 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
60 
61 #ifdef STANDALONE
62 #error "mkfs.c: STANDALONE compilation no longer supported"
63 #endif
64 
65 /*
66  * variables set up by front end.
67  */
68 extern int	mfs;		/* run as the memory based filesystem */
69 extern char	*mfs_mtpt;	/* mount point for mfs          */
70 extern struct stat mfs_mtstat;	/* stat prior to mount          */
71 extern int	Lflag;		/* add a volume label */
72 extern int	Nflag;		/* run mkfs without writing file system */
73 extern int	Oflag;		/* format as an 4.3BSD file system */
74 extern int	Uflag;		/* enable soft updates for file system */
75 extern int	Eflag;		/* erase contents using TRIM */
76 extern uint64_t	slice_offset;	/* Pysical device slice offset */
77 extern u_long	fssize;		/* file system size */
78 extern int	ntracks;	/* # tracks/cylinder */
79 extern int	nsectors;	/* # sectors/track */
80 extern int	nphyssectors;	/* # sectors/track including spares */
81 extern int	secpercyl;	/* sectors per cylinder */
82 extern int	sectorsize;	/* bytes/sector */
83 extern int	realsectorsize;	/* bytes/sector in hardware*/
84 extern int	rpm;		/* revolutions/minute of drive */
85 extern int	interleave;	/* hardware sector interleave */
86 extern int	trackskew;	/* sector 0 skew, per track */
87 extern int	fsize;		/* fragment size */
88 extern int	bsize;		/* block size */
89 extern int	cpg;		/* cylinders/cylinder group */
90 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
91 extern int	minfree;	/* free space threshold */
92 extern int	opt;		/* optimization preference (space or time) */
93 extern int	density;	/* number of bytes per inode */
94 extern int	maxcontig;	/* max contiguous blocks to allocate */
95 extern int	rotdelay;	/* rotational delay between blocks */
96 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
97 extern int	nrpos;		/* # of distinguished rotational positions */
98 extern int	bbsize;		/* boot block size */
99 extern int	sbsize;		/* superblock size */
100 extern int	avgfilesize;	/* expected average file size */
101 extern int	avgfilesperdir;	/* expected number of files per directory */
102 extern caddr_t	membase;	/* start address of memory based filesystem */
103 extern char *	filename;
104 extern u_char	*volumelabel;	/* volume label for filesystem */
105 extern struct disktab geom;
106 
107 extern void fatal(const char *fmt, ...);
108 
109 union {
110 	struct fs fs;
111 	char pad[SBSIZE];
112 } fsun;
113 #define	sblock	fsun.fs
114 struct	csum *fscs;
115 
116 union {
117 	struct cg cg;
118 	char pad[MAXBSIZE];
119 } cgun;
120 #define	acg	cgun.cg
121 
122 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
123 
124 int	fsi, fso;
125 static fsnode_t copyroot;
126 static fsnode_t copyhlinks;
127 #ifdef FSIRAND
128 int     randinit;
129 #endif
130 daddr_t	alloc(int, int);
131 long	calcipg(long, long, off_t *);
132 static int charsperline(void);
133 void clrblock(struct fs *, unsigned char *, int);
134 void fsinit(time_t);
135 void initcg(int, time_t);
136 int isblock(struct fs *, unsigned char *, int);
137 void iput(struct ufs1_dinode *, ino_t);
138 int makedir(struct direct *, int);
139 void parentready(int);
140 void rdfs(daddr_t, int, char *);
141 void setblock(struct fs *, unsigned char *, int);
142 void started(int);
143 void erfs(off_t, off_t);
144 void wtfs(daddr_t, int, char *);
145 void wtfsflush(void);
146 
147 int mfs_ppid = 0;
148 int parentready_signalled;
149 
150 void
151 mkfs(char *fsys, int fi, int fo, const char *mfscopy)
152 {
153 	long i, mincpc, mincpg, inospercg;
154 	long cylno, rpos, blk, j, emitwarn = 0;
155 	long used, mincpgcnt, bpcg;
156 	off_t usedb;
157 	long mapcramped, inodecramped;
158 	long postblsize, rotblsize, totalsbsize;
159 	int status, fd;
160 	time_t utime;
161 	quad_t sizepb;
162 	int width;
163 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
164 
165 	time(&utime);
166 #ifdef FSIRAND
167 	if (!randinit) {
168 		randinit = 1;
169 		srandomdev();
170 	}
171 #endif
172 	if (mfs) {
173 		int omask;
174 		pid_t child;
175 
176 		mfs_ppid = getpid();
177 		signal(SIGUSR1, parentready);
178 		if ((child = fork()) != 0) {
179 			/*
180 			 * Parent
181 			 */
182 			if (child == -1)
183 				err(10, "mfs");
184 			if (mfscopy)
185 			    copyroot = FSCopy(&copyhlinks, mfscopy);
186 			signal(SIGUSR1, started);
187 			kill(child, SIGUSR1);
188 			while (waitpid(child, &status, 0) != child)
189 				;
190 			exit(WEXITSTATUS(status));
191 			/* NOTREACHED */
192 		}
193 
194 		/*
195 		 * Child
196 		 */
197 		omask = sigblock(sigmask(SIGUSR1));
198 		while (parentready_signalled == 0)
199 			sigpause(omask);
200 		sigsetmask(omask);
201 		if (filename != NULL) {
202 			unsigned char buf[BUFSIZ];
203 			unsigned long l, l1;
204 			ssize_t w;
205 
206 			fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
207 			if(fd < 0)
208 				err(12, "%s", filename);
209 			l1 = fssize * sectorsize;
210 			if (l1 > BUFSIZ)
211 				l1 = BUFSIZ;
212 			for (l = 0; l < fssize * (u_long)sectorsize; l += l1) {
213 				w = write(fd, buf, l1);
214 				if (w < 0 || (u_long)w != l1)
215 					err(12, "%s", filename);
216 			}
217 			membase = mmap(NULL, fssize * sectorsize,
218 				       PROT_READ|PROT_WRITE,
219 				       MAP_SHARED, fd, 0);
220 			if (membase == MAP_FAILED)
221 				err(12, "mmap");
222 			close(fd);
223 		} else {
224 			membase = mmap(NULL, fssize * sectorsize,
225 				       PROT_READ|PROT_WRITE,
226 				       MAP_SHARED|MAP_ANON, -1, 0);
227 			if (membase == MAP_FAILED)
228 				errx(13, "mmap (anonymous memory) failed");
229 		}
230 	}
231 	fsi = fi;
232 	fso = fo;
233 	if (Oflag) {
234 		sblock.fs_inodefmt = FS_42INODEFMT;
235 		sblock.fs_maxsymlinklen = 0;
236 	} else {
237 		sblock.fs_inodefmt = FS_44INODEFMT;
238 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
239 	}
240 	if (Uflag)
241 		sblock.fs_flags |= FS_DOSOFTDEP;
242 	if (Lflag)
243 		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
244 
245 	/*
246 	 * Validate the given file system size.
247 	 * Verify that its last block can actually be accessed.
248 	 */
249 	if (fssize == 0)
250 		printf("preposterous size %lu\n", fssize), exit(13);
251 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
252 		 (char *)&sblock);
253 	/*
254 	 * collect and verify the sector and track info
255 	 */
256 	sblock.fs_nsect = nsectors;
257 	sblock.fs_ntrak = ntracks;
258 	if (sblock.fs_ntrak <= 0)
259 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
260 	if (sblock.fs_nsect <= 0)
261 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
262 	/*
263 	 * collect and verify the filesystem density info
264 	 */
265 	sblock.fs_avgfilesize = avgfilesize;
266 	sblock.fs_avgfpdir = avgfilesperdir;
267 	if (sblock.fs_avgfilesize <= 0)
268 		printf("illegal expected average file size %d\n",
269 		    sblock.fs_avgfilesize), exit(14);
270 	if (sblock.fs_avgfpdir <= 0)
271 		printf("illegal expected number of files per directory %d\n",
272 		    sblock.fs_avgfpdir), exit(15);
273 	/*
274 	 * collect and verify the block and fragment sizes
275 	 */
276 	sblock.fs_bsize = bsize;
277 	sblock.fs_fsize = fsize;
278 	if (!POWEROF2(sblock.fs_bsize)) {
279 		printf("block size must be a power of 2, not %d\n",
280 		    sblock.fs_bsize);
281 		exit(16);
282 	}
283 	if (!POWEROF2(sblock.fs_fsize)) {
284 		printf("fragment size must be a power of 2, not %d\n",
285 		    sblock.fs_fsize);
286 		exit(17);
287 	}
288 	if (sblock.fs_fsize < sectorsize) {
289 		printf("fragment size %d is too small, minimum is %d\n",
290 		    sblock.fs_fsize, sectorsize);
291 		exit(18);
292 	}
293 	if (sblock.fs_bsize < MINBSIZE) {
294 		printf("block size %d is too small, minimum is %d\n",
295 		    sblock.fs_bsize, MINBSIZE);
296 		exit(19);
297 	}
298 	if (sblock.fs_bsize < sblock.fs_fsize) {
299 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
300 		    sblock.fs_bsize, sblock.fs_fsize);
301 		exit(20);
302 	}
303 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
304 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
305 	sblock.fs_qbmask = ~sblock.fs_bmask;
306 	sblock.fs_qfmask = ~sblock.fs_fmask;
307 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
308 		sblock.fs_bshift++;
309 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
310 		sblock.fs_fshift++;
311 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
312 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
313 		sblock.fs_fragshift++;
314 	if (sblock.fs_frag > MAXFRAG) {
315 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
316 		    sblock.fs_fsize, sblock.fs_bsize,
317 		    sblock.fs_bsize / MAXFRAG);
318 		exit(21);
319 	}
320 	sblock.fs_nrpos = nrpos;
321 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
322 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
323 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
324 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
325 		sblock.fs_fsbtodb++;
326 	sblock.fs_sblkno =
327 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
328 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
329 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
330 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
331 	sblock.fs_cgoffset = roundup(
332 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
333 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
334 		sblock.fs_cgmask <<= 1;
335 	if (!POWEROF2(sblock.fs_ntrak))
336 		sblock.fs_cgmask <<= 1;
337 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
338 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
339 		sizepb *= NINDIR(&sblock);
340 		sblock.fs_maxfilesize += sizepb;
341 	}
342 	/*
343 	 * Validate specified/determined secpercyl
344 	 * and calculate minimum cylinders per group.
345 	 */
346 	sblock.fs_spc = secpercyl;
347 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
348 	     sblock.fs_cpc > 1 && (i & 1) == 0;
349 	     sblock.fs_cpc >>= 1, i >>= 1)
350 		/* void */;
351 	mincpc = sblock.fs_cpc;
352 	bpcg = sblock.fs_spc * sectorsize;
353 	inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
354 	if (inospercg > MAXIPG(&sblock))
355 		inospercg = MAXIPG(&sblock);
356 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
357 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
358 	    sblock.fs_spc);
359 	mincpg = roundup(mincpgcnt, mincpc);
360 	/*
361 	 * Ensure that cylinder group with mincpg has enough space
362 	 * for block maps.
363 	 */
364 	sblock.fs_cpg = mincpg;
365 	sblock.fs_ipg = inospercg;
366 	if (maxcontig > 1)
367 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
368 	mapcramped = 0;
369 	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
370 		mapcramped = 1;
371 		if (sblock.fs_bsize < MAXBSIZE) {
372 			sblock.fs_bsize <<= 1;
373 			if ((i & 1) == 0) {
374 				i >>= 1;
375 			} else {
376 				sblock.fs_cpc <<= 1;
377 				mincpc <<= 1;
378 				mincpg = roundup(mincpgcnt, mincpc);
379 				sblock.fs_cpg = mincpg;
380 			}
381 			sblock.fs_frag <<= 1;
382 			sblock.fs_fragshift += 1;
383 			if (sblock.fs_frag <= MAXFRAG)
384 				continue;
385 		}
386 		if (sblock.fs_fsize == sblock.fs_bsize) {
387 			printf("There is no block size that");
388 			printf(" can support this disk\n");
389 			exit(22);
390 		}
391 		sblock.fs_frag >>= 1;
392 		sblock.fs_fragshift -= 1;
393 		sblock.fs_fsize <<= 1;
394 		sblock.fs_nspf <<= 1;
395 	}
396 	/*
397 	 * Ensure that cylinder group with mincpg has enough space for inodes.
398 	 */
399 	inodecramped = 0;
400 	inospercg = calcipg(mincpg, bpcg, &usedb);
401 	sblock.fs_ipg = inospercg;
402 	while (inospercg > MAXIPG(&sblock)) {
403 		inodecramped = 1;
404 		if (mincpc == 1 || sblock.fs_frag == 1 ||
405 		    sblock.fs_bsize == MINBSIZE)
406 			break;
407 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
408 		       "minimum bytes per inode is",
409 		       (int)((mincpg * (off_t)bpcg - usedb)
410 			     / MAXIPG(&sblock) + 1));
411 		sblock.fs_bsize >>= 1;
412 		sblock.fs_frag >>= 1;
413 		sblock.fs_fragshift -= 1;
414 		mincpc >>= 1;
415 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
416 		if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
417 			sblock.fs_bsize <<= 1;
418 			break;
419 		}
420 		mincpg = sblock.fs_cpg;
421 		inospercg = calcipg(mincpg, bpcg, &usedb);
422 		sblock.fs_ipg = inospercg;
423 	}
424 	if (inodecramped) {
425 		if (inospercg > MAXIPG(&sblock)) {
426 			printf("Minimum bytes per inode is %d\n",
427 			       (int)((mincpg * (off_t)bpcg - usedb)
428 				     / MAXIPG(&sblock) + 1));
429 		} else if (!mapcramped) {
430 			printf("With %d bytes per inode, ", density);
431 			printf("minimum cylinders per group is %ld\n", mincpg);
432 		}
433 	}
434 	if (mapcramped) {
435 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
436 		printf("minimum cylinders per group is %ld\n", mincpg);
437 	}
438 	if (inodecramped || mapcramped) {
439 		if (sblock.fs_bsize != bsize)
440 			printf("%s to be changed from %d to %d\n",
441 			    "This requires the block size",
442 			    bsize, sblock.fs_bsize);
443 		if (sblock.fs_fsize != fsize)
444 			printf("\t%s to be changed from %d to %d\n",
445 			    "and the fragment size",
446 			    fsize, sblock.fs_fsize);
447 		exit(23);
448 	}
449 	/*
450 	 * Calculate the number of cylinders per group
451 	 */
452 	sblock.fs_cpg = cpg;
453 	if (sblock.fs_cpg % mincpc != 0) {
454 		printf("%s groups must have a multiple of %ld cylinders\n",
455 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
456 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
457 		if (!cpgflg)
458 			cpg = sblock.fs_cpg;
459 	}
460 	/*
461 	 * Must ensure there is enough space for inodes.
462 	 */
463 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
464 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
465 		inodecramped = 1;
466 		sblock.fs_cpg -= mincpc;
467 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
468 	}
469 	/*
470 	 * Must ensure there is enough space to hold block map.
471 	 */
472 	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
473 		mapcramped = 1;
474 		sblock.fs_cpg -= mincpc;
475 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
476 	}
477 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
478 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
479 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
480 		exit(24);
481 	}
482 	if (sblock.fs_cpg < mincpg) {
483 		printf("cylinder groups must have at least %ld cylinders\n",
484 			mincpg);
485 		exit(25);
486 	} else if (sblock.fs_cpg != cpg) {
487 		if (!cpgflg && !mfs)
488 			printf("Warning: ");
489 		else if (!mapcramped && !inodecramped)
490 			exit(26);
491 		if (!mfs) {
492 		    if (mapcramped && inodecramped)
493 			printf("Block size and bytes per inode restrict");
494 		    else if (mapcramped)
495 			printf("Block size restricts");
496 		    else
497 			printf("Bytes per inode restrict");
498 		    printf(" cylinders per group to %d.\n", sblock.fs_cpg);
499 		}
500 		if (cpgflg)
501 			exit(27);
502 	}
503 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
504 	/*
505 	 * Now have size for file system and nsect and ntrak.
506 	 * Determine number of cylinders and blocks in the file system.
507 	 */
508 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
509 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
510 	if ((long)fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
511 		sblock.fs_ncyl++;
512 		emitwarn = 1;
513 	}
514 	if (sblock.fs_ncyl < 1) {
515 		printf("file systems must have at least one cylinder\n");
516 		exit(28);
517 	}
518 	/*
519 	 * Determine feasability/values of rotational layout tables.
520 	 *
521 	 * The size of the rotational layout tables is limited by the
522 	 * size of the superblock, SBSIZE. The amount of space available
523 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
524 	 * The size of these tables is inversely proportional to the block
525 	 * size of the file system. The size increases if sectors per track
526 	 * are not powers of two, because more cylinders must be described
527 	 * by the tables before the rotational pattern repeats (fs_cpc).
528 	 */
529 	sblock.fs_interleave = interleave;
530 	sblock.fs_trackskew = trackskew;
531 	sblock.fs_npsect = nphyssectors;
532 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
533 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
534 	if (sblock.fs_sbsize > SBSIZE)
535 		sblock.fs_sbsize = SBSIZE;
536 	if (sblock.fs_ntrak == 1) {
537 		sblock.fs_cpc = 0;
538 		goto next;
539 	}
540 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
541 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
542 	totalsbsize = sizeof(struct fs) + rotblsize;
543 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
544 		/* use old static table space */
545 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
546 		    (char *)(&sblock.fs_firstfield);
547 		sblock.fs_rotbloff = &sblock.fs_space[0] -
548 		    (u_char *)(&sblock.fs_firstfield);
549 	} else {
550 		/* use dynamic table space */
551 		sblock.fs_postbloff = &sblock.fs_space[0] -
552 		    (u_char *)(&sblock.fs_firstfield);
553 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
554 		totalsbsize += postblsize;
555 	}
556 	if (totalsbsize > SBSIZE ||
557 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
558 		printf("%s %s %d %s %d.%s",
559 		    "Warning: insufficient space in super block for\n",
560 		    "rotational layout tables with nsect", sblock.fs_nsect,
561 		    "and ntrak", sblock.fs_ntrak,
562 		    "\nFile system performance may be impaired.\n");
563 		sblock.fs_cpc = 0;
564 		goto next;
565 	}
566 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
567 	if (sblock.fs_sbsize > SBSIZE)
568 		sblock.fs_sbsize = SBSIZE;
569 	/*
570 	 * calculate the available blocks for each rotational position
571 	 */
572 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
573 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
574 			fs_postbl(&sblock, cylno)[rpos] = -1;
575 	for (i = (rotblsize - 1) * sblock.fs_frag;
576 	     i >= 0; i -= sblock.fs_frag) {
577 		cylno = cbtocylno(&sblock, i);
578 		rpos = cbtorpos(&sblock, i);
579 		blk = fragstoblks(&sblock, i);
580 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
581 			fs_rotbl(&sblock)[blk] = 0;
582 		else
583 			fs_rotbl(&sblock)[blk] =
584 			    fs_postbl(&sblock, cylno)[rpos] - blk;
585 		fs_postbl(&sblock, cylno)[rpos] = blk;
586 	}
587 next:
588 	/*
589 	 * Compute/validate number of cylinder groups.
590 	 */
591 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
592 	if (sblock.fs_ncyl % sblock.fs_cpg)
593 		sblock.fs_ncg++;
594 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
595 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
596 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
597 		printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
598 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
599 		    (long)(sblock.fs_fpg / sblock.fs_frag));
600 		printf("number of cylinders per cylinder group (%d) %s.\n",
601 		    sblock.fs_cpg, "must be increased");
602 		exit(29);
603 	}
604 	j = sblock.fs_ncg - 1;
605 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
606 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
607 		if (j == 0) {
608 			printf("Filesystem must have at least %d sectors\n",
609 			    NSPF(&sblock) *
610 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
611 			exit(30);
612 		}
613 		printf(
614 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
615 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
616 		    i / sblock.fs_frag);
617 		printf(
618 "    cylinder group. This implies %ld sector(s) cannot be allocated.\n",
619 		    i * NSPF(&sblock));
620 		sblock.fs_ncg--;
621 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
622 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
623 		    NSPF(&sblock);
624 		emitwarn = 0;
625 	}
626 	if (emitwarn && !mfs) {
627 		printf("Warning: %lu sector(s) in last cylinder unallocated\n",
628 		    sblock.fs_spc -
629 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
630 		    * sblock.fs_spc));
631 	}
632 	/*
633 	 * fill in remaining fields of the super block
634 	 */
635 	sblock.fs_csaddr = cgdmin(&sblock, 0);
636 	sblock.fs_cssize =
637 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
638 	/*
639 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
640 	 * longer used. However, we still initialise them so that the
641 	 * filesystem remains compatible with old kernels.
642 	 */
643 	i = sblock.fs_bsize / sizeof(struct csum);
644 	sblock.fs_csmask = ~(i - 1);
645 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
646 		sblock.fs_csshift++;
647 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
648 	if (fscs == NULL)
649 		errx(31, "calloc failed");
650 	sblock.fs_magic = FS_MAGIC;
651 	sblock.fs_rotdelay = rotdelay;
652 	sblock.fs_minfree = minfree;
653 	sblock.fs_maxcontig = maxcontig;
654 	sblock.fs_maxbpg = maxbpg;
655 	sblock.fs_rps = rpm / 60;
656 	sblock.fs_optim = opt;
657 	sblock.fs_cgrotor = 0;
658 	sblock.fs_cstotal.cs_ndir = 0;
659 	sblock.fs_cstotal.cs_nbfree = 0;
660 	sblock.fs_cstotal.cs_nifree = 0;
661 	sblock.fs_cstotal.cs_nffree = 0;
662 	sblock.fs_fmod = 0;
663 	sblock.fs_ronly = 0;
664 	sblock.fs_clean = 1;
665 #ifdef FSIRAND
666 	sblock.fs_id[0] = (long)utime;
667 	sblock.fs_id[1] = random();
668 #endif
669 
670 	/*
671 	 * Dump out summary information about file system.
672 	 */
673 	if (!mfs) {
674 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
675 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
676 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
677 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
678 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
679 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
680 		    sblock.fs_ncg, sblock.fs_cpg,
681 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
682 		    sblock.fs_ipg,
683 			sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
684 #undef B2MBFACTOR
685 	}
686 
687 	if (Eflag && !Nflag) {
688 		printf("Erasing sectors [%"PRIu64" --- %"PRIu64"]\n",
689 		    (SBOFF + slice_offset) / sectorsize,
690 		    fsbtodb(&sblock,sblock.fs_size) -
691 		    ((SBOFF + slice_offset) / sectorsize) - 1);
692 		erfs(SBOFF + slice_offset, (fsbtodb(&sblock,sblock.fs_size) -
693 		    ((SBOFF + slice_offset)/ sectorsize) - 1) *
694 		    (unsigned long long)sectorsize);
695 	}
696 	/*
697 	 * Now build the cylinders group blocks and
698 	 * then print out indices of cylinder groups.
699 	 */
700 	if (!mfs)
701 		printf("super-block backups (for fsck -b #) at:\n");
702 	i = 0;
703 	width = charsperline();
704 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
705 		initcg(cylno, utime);
706 		if (mfs)
707 			continue;
708 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
709 		    fsbtodb(&sblock, cgsblock(&sblock, cylno)),
710 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
711 		if (i + j >= width) {
712 			printf("\n");
713 			i = 0;
714 		}
715 		i += j;
716 		printf("%s", tmpbuf);
717 		fflush(stdout);
718 	}
719 	if (!mfs)
720 		printf("\n");
721 	if (Nflag && !mfs)
722 		exit(0);
723 	/*
724 	 * Now construct the initial file system,
725 	 * then write out the super-block.
726 	 */
727 	fsinit(utime);
728 	sblock.fs_time = utime;
729 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
730 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
731 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
732 			sblock.fs_cssize - i < sblock.fs_bsize ?
733 			    sblock.fs_cssize - i : sblock.fs_bsize,
734 			((char *)fscs) + i);
735 	/*
736 	 * Write out the duplicate super blocks
737 	 */
738 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
739 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
740 		    sbsize, (char *)&sblock);
741 	wtfsflush();
742 
743 	/*
744 	 * NOTE: we no longer update information in the disklabel
745 	 */
746 
747 	/*
748 	 * Notify parent process of success.
749 	 * Dissociate from session and tty.
750 	 *
751 	 * NOTE: We are the child and may receive a SIGINT due
752 	 *	 to losing the tty session? XXX
753 	 */
754 	if (mfs) {
755 		/* YYY */
756 		kill(mfs_ppid, SIGUSR1);
757 		setsid();
758 		close(0);
759 		close(1);
760 		close(2);
761 		chdir("/");
762 		/* returns to mount_mfs (newfs) and issues the mount */
763 	}
764 }
765 
766 /*
767  * Initialize a cylinder group.
768  */
769 void
770 initcg(int cylno, time_t utime)
771 {
772 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
773 	long i;
774 	unsigned long k;
775 	struct csum *cs;
776 #ifdef FSIRAND
777 	uint32_t j;
778 #endif
779 
780 	/*
781 	 * Determine block bounds for cylinder group.
782 	 * Allow space for super block summary information in first
783 	 * cylinder group.
784 	 */
785 	cbase = cgbase(&sblock, cylno);
786 	dmax = cbase + sblock.fs_fpg;
787 	if (dmax > sblock.fs_size)
788 		dmax = sblock.fs_size;
789 	dlower = cgsblock(&sblock, cylno) - cbase;
790 	dupper = cgdmin(&sblock, cylno) - cbase;
791 	if (cylno == 0)
792 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
793 	cs = fscs + cylno;
794 	memset(&acg, 0, sblock.fs_cgsize);
795 	acg.cg_time = utime;
796 	acg.cg_magic = CG_MAGIC;
797 	acg.cg_cgx = cylno;
798 	if (cylno == sblock.fs_ncg - 1)
799 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
800 	else
801 		acg.cg_ncyl = sblock.fs_cpg;
802 	acg.cg_niblk = sblock.fs_ipg;
803 	acg.cg_ndblk = dmax - cbase;
804 	if (sblock.fs_contigsumsize > 0)
805 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
806 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
807 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
808 	acg.cg_iusedoff = acg.cg_boff +
809 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
810 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
811 	if (sblock.fs_contigsumsize <= 0) {
812 		acg.cg_nextfreeoff = acg.cg_freeoff +
813 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
814 	} else {
815 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
816 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
817 		    sizeof(u_int32_t);
818 		acg.cg_clustersumoff =
819 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
820 		acg.cg_clusteroff = acg.cg_clustersumoff +
821 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
822 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
823 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
824 	}
825 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
826 		printf("Panic: cylinder group too big\n");
827 		exit(37);
828 	}
829 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
830 	if (cylno == 0) {
831 		for (k = 0; k < ROOTINO; k++) {
832 			setbit(cg_inosused(&acg), k);
833 			acg.cg_cs.cs_nifree--;
834 		}
835 	}
836 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
837 #ifdef FSIRAND
838 		for (j = 0;
839 		     j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
840 		     j++) {
841 			zino[j].di_gen = random();
842 		}
843 #endif
844 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
845 		    sblock.fs_bsize, (char *)zino);
846 	}
847 	if (cylno > 0) {
848 		/*
849 		 * In cylno 0, beginning space is reserved
850 		 * for boot and super blocks.
851 		 */
852 		for (d = 0; d < dlower; d += sblock.fs_frag) {
853 			blkno = d / sblock.fs_frag;
854 			setblock(&sblock, cg_blksfree(&acg), blkno);
855 			if (sblock.fs_contigsumsize > 0)
856 				setbit(cg_clustersfree(&acg), blkno);
857 			acg.cg_cs.cs_nbfree++;
858 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
859 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
860 			    [cbtorpos(&sblock, d)]++;
861 		}
862 		sblock.fs_dsize += dlower;
863 	}
864 	sblock.fs_dsize += acg.cg_ndblk - dupper;
865 	if ((i = dupper % sblock.fs_frag)) {
866 		acg.cg_frsum[sblock.fs_frag - i]++;
867 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
868 			setbit(cg_blksfree(&acg), dupper);
869 			acg.cg_cs.cs_nffree++;
870 		}
871 	}
872 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
873 		blkno = d / sblock.fs_frag;
874 		setblock(&sblock, cg_blksfree(&acg), blkno);
875 		if (sblock.fs_contigsumsize > 0)
876 			setbit(cg_clustersfree(&acg), blkno);
877 		acg.cg_cs.cs_nbfree++;
878 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
879 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
880 		    [cbtorpos(&sblock, d)]++;
881 		d += sblock.fs_frag;
882 	}
883 	if (d < dmax - cbase) {
884 		acg.cg_frsum[dmax - cbase - d]++;
885 		for (; d < dmax - cbase; d++) {
886 			setbit(cg_blksfree(&acg), d);
887 			acg.cg_cs.cs_nffree++;
888 		}
889 	}
890 	if (sblock.fs_contigsumsize > 0) {
891 		int32_t *sump = cg_clustersum(&acg);
892 		u_char *mapp = cg_clustersfree(&acg);
893 		int map = *mapp++;
894 		int bit = 1;
895 		int run = 0;
896 
897 		for (i = 0; i < acg.cg_nclusterblks; i++) {
898 			if ((map & bit) != 0) {
899 				run++;
900 			} else if (run != 0) {
901 				if (run > sblock.fs_contigsumsize)
902 					run = sblock.fs_contigsumsize;
903 				sump[run]++;
904 				run = 0;
905 			}
906 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
907 				bit <<= 1;
908 			} else {
909 				map = *mapp++;
910 				bit = 1;
911 			}
912 		}
913 		if (run != 0) {
914 			if (run > sblock.fs_contigsumsize)
915 				run = sblock.fs_contigsumsize;
916 			sump[run]++;
917 		}
918 	}
919 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
920 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
921 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
922 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
923 	*cs = acg.cg_cs;
924 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
925 		sblock.fs_bsize, (char *)&acg);
926 }
927 
928 /*
929  * initialize the file system
930  */
931 struct ufs1_dinode node;
932 
933 #ifdef LOSTDIR
934 #define PREDEFDIR 3
935 #else
936 #define PREDEFDIR 2
937 #endif
938 
939 struct direct root_dir[] = {
940 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
941 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
942 #ifdef LOSTDIR
943 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
944 #endif
945 };
946 struct odirect {
947 	u_long	d_ino;
948 	u_short	d_reclen;
949 	u_short	d_namlen;
950 	u_char	d_name[MAXNAMLEN + 1];
951 } oroot_dir[] = {
952 	{ ROOTINO, sizeof(struct direct), 1, "." },
953 	{ ROOTINO, sizeof(struct direct), 2, ".." },
954 #ifdef LOSTDIR
955 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
956 #endif
957 };
958 #ifdef LOSTDIR
959 struct direct lost_found_dir[] = {
960 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
961 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
962 	{ 0, DIRBLKSIZ, 0, 0, 0 },
963 };
964 struct odirect olost_found_dir[] = {
965 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
966 	{ ROOTINO, sizeof(struct direct), 2, ".." },
967 	{ 0, DIRBLKSIZ, 0, 0 },
968 };
969 #endif
970 char buf[MAXBSIZE];
971 
972 void
973 fsinit(time_t utime)
974 {
975 #ifdef LOSTDIR
976 	int i;
977 #endif
978 
979 	/*
980 	 * initialize the node
981 	 */
982 	node.di_atime = utime;
983 	node.di_mtime = utime;
984 	node.di_ctime = utime;
985 #ifdef LOSTDIR
986 	/*
987 	 * create the lost+found directory
988 	 */
989 	if (Oflag) {
990 		makedir((struct direct *)olost_found_dir, 2);
991 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
992 			memmove(&buf[i], &olost_found_dir[2],
993 			    DIRSIZ(0, &olost_found_dir[2]));
994 	} else {
995 		makedir(lost_found_dir, 2);
996 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
997 			memmove(&buf[i], &lost_found_dir[2],
998 			    DIRSIZ(0, &lost_found_dir[2]));
999 	}
1000 	node.di_mode = IFDIR | UMASK;
1001 	node.di_nlink = 2;
1002 	node.di_size = sblock.fs_bsize;
1003 	node.di_db[0] = alloc(node.di_size, node.di_mode);
1004 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1005 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1006 	iput(&node, LOSTFOUNDINO);
1007 #endif
1008 	/*
1009 	 * create the root directory
1010 	 */
1011 	if (mfs)
1012 		node.di_mode = IFDIR | 01777;
1013 	else
1014 		node.di_mode = IFDIR | UMASK;
1015 	node.di_nlink = PREDEFDIR;
1016 	if (Oflag)
1017 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1018 	else
1019 		node.di_size = makedir(root_dir, PREDEFDIR);
1020 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1021 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1022 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1023 	iput(&node, ROOTINO);
1024 }
1025 
1026 /*
1027  * construct a set of directory entries in "buf".
1028  * return size of directory.
1029  */
1030 int
1031 makedir(struct direct *protodir, int entries)
1032 {
1033 	char *cp;
1034 	int i, spcleft;
1035 
1036 	spcleft = DIRBLKSIZ;
1037 	for (cp = buf, i = 0; i < entries - 1; i++) {
1038 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1039 		memmove(cp, &protodir[i], protodir[i].d_reclen);
1040 		cp += protodir[i].d_reclen;
1041 		spcleft -= protodir[i].d_reclen;
1042 	}
1043 	protodir[i].d_reclen = spcleft;
1044 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1045 	return (DIRBLKSIZ);
1046 }
1047 
1048 /*
1049  * allocate a block or frag
1050  */
1051 daddr_t
1052 alloc(int size, int mode)
1053 {
1054 	int i, frag;
1055 	daddr_t d, blkno;
1056 
1057 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1058 	    (char *)&acg);
1059 	if (acg.cg_magic != CG_MAGIC) {
1060 		printf("cg 0: bad magic number\n");
1061 		return (0);
1062 	}
1063 	if (acg.cg_cs.cs_nbfree == 0) {
1064 		printf("first cylinder group ran out of space\n");
1065 		return (0);
1066 	}
1067 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1068 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1069 			goto goth;
1070 	printf("internal error: can't find block in cyl 0\n");
1071 	return (0);
1072 goth:
1073 	blkno = fragstoblks(&sblock, d);
1074 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1075 	if (sblock.fs_contigsumsize > 0)
1076 		clrbit(cg_clustersfree(&acg), blkno);
1077 	acg.cg_cs.cs_nbfree--;
1078 	sblock.fs_cstotal.cs_nbfree--;
1079 	fscs[0].cs_nbfree--;
1080 	if (mode & IFDIR) {
1081 		acg.cg_cs.cs_ndir++;
1082 		sblock.fs_cstotal.cs_ndir++;
1083 		fscs[0].cs_ndir++;
1084 	}
1085 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1086 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1087 	if (size != sblock.fs_bsize) {
1088 		frag = howmany(size, sblock.fs_fsize);
1089 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1090 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1091 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1092 		acg.cg_frsum[sblock.fs_frag - frag]++;
1093 		for (i = frag; i < sblock.fs_frag; i++)
1094 			setbit(cg_blksfree(&acg), d + i);
1095 	}
1096 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1097 	    (char *)&acg);
1098 	return (d);
1099 }
1100 
1101 /*
1102  * Calculate number of inodes per group.
1103  */
1104 long
1105 calcipg(long cylspg, long bpcg, off_t *usedbp)
1106 {
1107 	int i;
1108 	long ipg, new_ipg, ncg, ncyl;
1109 	off_t usedb;
1110 
1111 	/*
1112 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1113 	 * Note that fssize is still in sectors, not filesystem blocks.
1114 	 */
1115 	ncyl = howmany(fssize, (u_int)secpercyl);
1116 	ncg = howmany(ncyl, cylspg);
1117 	/*
1118 	 * Iterate a few times to allow for ipg depending on itself.
1119 	 */
1120 	ipg = 0;
1121 	for (i = 0; i < 10; i++) {
1122 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1123 			* NSPF(&sblock) * (off_t)sectorsize;
1124 		new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1125 			  / ncg / secpercyl / cylspg;
1126 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1127 		if (new_ipg == ipg)
1128 			break;
1129 		ipg = new_ipg;
1130 	}
1131 	*usedbp = usedb;
1132 	return (ipg);
1133 }
1134 
1135 /*
1136  * Allocate an inode on the disk
1137  */
1138 void
1139 iput(struct ufs1_dinode *ip, ino_t ino)
1140 {
1141 	struct ufs1_dinode inobuf[MAXINOPB];
1142 	daddr_t d;
1143 	int __unused c;
1144 
1145 #ifdef FSIRAND
1146 	ip->di_gen = random();
1147 #endif
1148 	c = ino_to_cg(&sblock, ino);
1149 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1150 	    (char *)&acg);
1151 	if (acg.cg_magic != CG_MAGIC) {
1152 		printf("cg 0: bad magic number\n");
1153 		exit(31);
1154 	}
1155 	acg.cg_cs.cs_nifree--;
1156 	setbit(cg_inosused(&acg), ino);
1157 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1158 	    (char *)&acg);
1159 	sblock.fs_cstotal.cs_nifree--;
1160 	fscs[0].cs_nifree--;
1161 	if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1162 		printf("fsinit: inode value out of range (%ju).\n",
1163 		    (uintmax_t)ino);
1164 		exit(32);
1165 	}
1166 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1167 	rdfs(d, sblock.fs_bsize, (char *)inobuf);
1168 	inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1169 	wtfs(d, sblock.fs_bsize, (char *)inobuf);
1170 }
1171 
1172 /*
1173  * Parent notifies child that it can proceed with the newfs and mount
1174  * operation (occurs after parent has copied the underlying filesystem
1175  * if the -C option was specified (for MFS), or immediately after the
1176  * parent forked the child otherwise).
1177  */
1178 void
1179 parentready(__unused int signo)
1180 {
1181   	parentready_signalled = 1;
1182 }
1183 
1184 /*
1185  * Notify parent process that the filesystem has created itself successfully.
1186  *
1187  * We have to wait until the mount has actually completed!
1188  */
1189 void
1190 started(__unused int signo)
1191 {
1192 	int retry = 100;	/* 10 seconds, 100ms */
1193 
1194 	while (mfs_ppid && retry) {
1195 		struct stat st;
1196 
1197 		if (
1198 		    stat(mfs_mtpt, &st) < 0 ||
1199 		    st.st_dev != mfs_mtstat.st_dev
1200 		) {
1201 			break;
1202 		}
1203 		usleep(100*1000);
1204 		--retry;
1205 	}
1206 	if (retry == 0) {
1207 		fatal("mfs mount failed waiting for mount to go active");
1208 	} else if (copyroot) {
1209 		FSPaste(mfs_mtpt, copyroot, copyhlinks);
1210 	}
1211 	exit(0);
1212 }
1213 
1214 /*
1215  * read a block from the file system
1216  */
1217 void
1218 rdfs(daddr_t bno, int size, char *bf)
1219 {
1220 	int n;
1221 
1222 	wtfsflush();
1223 	if (mfs) {
1224 		memmove(bf, membase + bno * sectorsize, size);
1225 		return;
1226 	}
1227 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1228 		printf("seek error: %ld\n", (long)bno);
1229 		err(33, "rdfs");
1230 	}
1231 	n = read(fsi, bf, size);
1232 	if (n != size) {
1233 		printf("read error: %ld\n", (long)bno);
1234 		err(34, "rdfs");
1235 	}
1236 }
1237 
1238 #define WCSIZE (128 * 1024)
1239 daddr_t wc_sect;		/* units of sectorsize */
1240 int wc_end;			/* bytes */
1241 static char wc[WCSIZE];		/* bytes */
1242 
1243 /*
1244  * Flush dirty write behind buffer.
1245  */
1246 void
1247 wtfsflush(void)
1248 {
1249 	int n;
1250 	if (wc_end) {
1251 		if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1252 			printf("seek error: %ld\n", (long)wc_sect);
1253 			err(35, "wtfs - writecombine");
1254 		}
1255 		n = write(fso, wc, wc_end);
1256 		if (n != wc_end) {
1257 			printf("write error: %ld\n", (long)wc_sect);
1258 			err(36, "wtfs - writecombine");
1259 		}
1260 		wc_end = 0;
1261 	}
1262 }
1263 
1264 /*
1265  * Issue ioctl to erase range of sectors using TRIM
1266  */
1267 void
1268 erfs(off_t byte_start, off_t size)
1269 {
1270 	off_t ioarg[2];
1271 	ioarg[0] = byte_start;
1272 	ioarg[1] = size;
1273 	if (ioctl(fsi, IOCTLTRIM, ioarg) < 0) {
1274 		err(37, "Device trim failed\n");
1275 	}
1276 }
1277 
1278 /*
1279  * write a block to the file system
1280  */
1281 void
1282 wtfs(daddr_t bno, int size, char *bf)
1283 {
1284 	int n;
1285 	int done;
1286 
1287 	if (mfs) {
1288 		memmove(membase + bno * sectorsize, bf, size);
1289 		return;
1290 	}
1291 	if (Nflag)
1292 		return;
1293 	done = 0;
1294 	if (wc_end == 0 && size <= WCSIZE) {
1295 		wc_sect = bno;
1296 		bcopy(bf, wc, size);
1297 		wc_end = size;
1298 		if (wc_end < WCSIZE)
1299 			return;
1300 		done = 1;
1301 	}
1302 	if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1303 	    wc_end + size <= WCSIZE) {
1304 		bcopy(bf, wc + wc_end, size);
1305 		wc_end += size;
1306 		if (wc_end < WCSIZE)
1307 			return;
1308 		done = 1;
1309 	}
1310 	wtfsflush();
1311 	if (done)
1312 		return;
1313 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1314 		printf("seek error: %ld\n", (long)bno);
1315 		err(35, "wtfs");
1316 	}
1317 	n = write(fso, bf, size);
1318 	if (n != size) {
1319 		printf("write error: fso %d blk %ld %d/%d\n",
1320 			fso, (long)bno, n, size);
1321 		err(36, "wtfs");
1322 	}
1323 }
1324 
1325 /*
1326  * check if a block is available
1327  */
1328 int
1329 isblock(struct fs *fs, unsigned char *cp, int h)
1330 {
1331 	unsigned char mask;
1332 
1333 	switch (fs->fs_frag) {
1334 	case 8:
1335 		return (cp[h] == 0xff);
1336 	case 4:
1337 		mask = 0x0f << ((h & 0x1) << 2);
1338 		return ((cp[h >> 1] & mask) == mask);
1339 	case 2:
1340 		mask = 0x03 << ((h & 0x3) << 1);
1341 		return ((cp[h >> 2] & mask) == mask);
1342 	case 1:
1343 		mask = 0x01 << (h & 0x7);
1344 		return ((cp[h >> 3] & mask) == mask);
1345 	default:
1346 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1347 		return (0);
1348 	}
1349 }
1350 
1351 /*
1352  * take a block out of the map
1353  */
1354 void
1355 clrblock(struct fs *fs, unsigned char *cp, int h)
1356 {
1357 	switch ((fs)->fs_frag) {
1358 	case 8:
1359 		cp[h] = 0;
1360 		return;
1361 	case 4:
1362 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1363 		return;
1364 	case 2:
1365 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1366 		return;
1367 	case 1:
1368 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1369 		return;
1370 	default:
1371 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1372 		return;
1373 	}
1374 }
1375 
1376 /*
1377  * put a block into the map
1378  */
1379 void
1380 setblock(struct fs *fs, unsigned char *cp, int h)
1381 {
1382 	switch (fs->fs_frag) {
1383 	case 8:
1384 		cp[h] = 0xff;
1385 		return;
1386 	case 4:
1387 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1388 		return;
1389 	case 2:
1390 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1391 		return;
1392 	case 1:
1393 		cp[h >> 3] |= (0x01 << (h & 0x7));
1394 		return;
1395 	default:
1396 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1397 		return;
1398 	}
1399 }
1400 
1401 /*
1402  * Determine the number of characters in a
1403  * single line.
1404  */
1405 
1406 static int
1407 charsperline(void)
1408 {
1409 	int columns;
1410 	char *cp;
1411 	struct winsize ws;
1412 
1413 	columns = 0;
1414 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1415 		columns = ws.ws_col;
1416 	if (columns == 0 && (cp = getenv("COLUMNS")))
1417 		columns = atoi(cp);
1418 	if (columns == 0)
1419 		columns = 80;	/* last resort */
1420 	return columns;
1421 }
1422