xref: /dragonfly/sys/bus/cam/cam_periph.c (revision 9f3fc534)
1 /*
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30  * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.41 2008/07/18 00:07:21 dillon Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/devicestat.h>
42 #include <sys/bus.h>
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 
46 #include <sys/thread2.h>
47 
48 #include "cam.h"
49 #include "cam_ccb.h"
50 #include "cam_xpt_periph.h"
51 #include "cam_periph.h"
52 #include "cam_debug.h"
53 #include "cam_sim.h"
54 
55 #include <bus/cam/scsi/scsi_all.h>
56 #include <bus/cam/scsi/scsi_message.h>
57 #include <bus/cam/scsi/scsi_pass.h>
58 
59 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
60 					  u_int newunit, int wired,
61 					  path_id_t pathid, target_id_t target,
62 					  lun_id_t lun);
63 static	u_int		camperiphunit(struct periph_driver *p_drv,
64 				      struct cam_sim *sim, path_id_t pathid,
65 				      target_id_t target, lun_id_t lun);
66 static	void		camperiphdone(struct cam_periph *periph,
67 					union ccb *done_ccb);
68 static  void		camperiphfree(struct cam_periph *periph);
69 static int		camperiphscsistatuserror(union ccb *ccb,
70 						 cam_flags camflags,
71 						 u_int32_t sense_flags,
72 						 union ccb *save_ccb,
73 						 int *openings,
74 						 u_int32_t *relsim_flags,
75 						 u_int32_t *timeout);
76 static	int		camperiphscsisenseerror(union ccb *ccb,
77 					        cam_flags camflags,
78 					        u_int32_t sense_flags,
79 					        union ccb *save_ccb,
80 					        int *openings,
81 					        u_int32_t *relsim_flags,
82 					        u_int32_t *timeout);
83 static void cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
84 				 u_int8_t ***data_ptrs, int numbufs);
85 
86 static int nperiph_drivers;
87 struct periph_driver **periph_drivers;
88 
89 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
90 
91 static int periph_selto_delay = 1000;
92 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
93 static int periph_noresrc_delay = 500;
94 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
95 static int periph_busy_delay = 500;
96 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
97 
98 
99 void
100 periphdriver_register(void *data)
101 {
102 	struct periph_driver **newdrivers, **old;
103 	int ndrivers;
104 
105 	ndrivers = nperiph_drivers + 2;
106 	newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
107 			     M_WAITOK);
108 	if (periph_drivers)
109 		bcopy(periph_drivers, newdrivers,
110 		      sizeof(*newdrivers) * nperiph_drivers);
111 	newdrivers[nperiph_drivers] = (struct periph_driver *)data;
112 	newdrivers[nperiph_drivers + 1] = NULL;
113 	old = periph_drivers;
114 	periph_drivers = newdrivers;
115 	if (old)
116 		kfree(old, M_CAMPERIPH);
117 	nperiph_drivers++;
118 }
119 
120 cam_status
121 cam_periph_alloc(periph_ctor_t *periph_ctor,
122 		 periph_oninv_t *periph_oninvalidate,
123 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
124 		 char *name, cam_periph_type type, struct cam_path *path,
125 		 ac_callback_t *ac_callback, ac_code code, void *arg)
126 {
127 	struct		periph_driver **p_drv;
128 	struct		cam_sim *sim;
129 	struct		cam_periph *periph;
130 	struct		cam_periph *cur_periph;
131 	path_id_t	path_id;
132 	target_id_t	target_id;
133 	lun_id_t	lun_id;
134 	cam_status	status;
135 	u_int		init_level;
136 
137 	init_level = 0;
138 	/*
139 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
140 	 * of our type assigned to this path, we are likely waiting for
141 	 * final close on an old, invalidated, peripheral.  If this is
142 	 * the case, queue up a deferred call to the peripheral's async
143 	 * handler.  If it looks like a mistaken re-allocation, complain.
144 	 */
145 	if ((periph = cam_periph_find(path, name)) != NULL) {
146 
147 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
148 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
149 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
150 			periph->deferred_callback = ac_callback;
151 			periph->deferred_ac = code;
152 			return (CAM_REQ_INPROG);
153 		} else {
154 			kprintf("cam_periph_alloc: attempt to re-allocate "
155 			       "valid device %s%d rejected\n",
156 			       periph->periph_name, periph->unit_number);
157 		}
158 		return (CAM_REQ_INVALID);
159 	}
160 
161 	periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
162 
163 	init_level++;
164 
165 	xpt_lock_buses();
166 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
167 		if (strcmp((*p_drv)->driver_name, name) == 0)
168 			break;
169 	}
170 	xpt_unlock_buses();
171 
172 	sim = xpt_path_sim(path);
173 	path_id = xpt_path_path_id(path);
174 	target_id = xpt_path_target_id(path);
175 	lun_id = xpt_path_lun_id(path);
176 	cam_init_pinfo(&periph->pinfo);
177 	periph->periph_start = periph_start;
178 	periph->periph_dtor = periph_dtor;
179 	periph->periph_oninval = periph_oninvalidate;
180 	periph->type = type;
181 	periph->periph_name = name;
182 	periph->unit_number = camperiphunit(*p_drv, sim, path_id,
183 					    target_id, lun_id);
184 	periph->immediate_priority = CAM_PRIORITY_NONE;
185 	periph->refcount = 0;
186 	periph->sim = sim;
187 	SLIST_INIT(&periph->ccb_list);
188 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
189 	if (status != CAM_REQ_CMP)
190 		goto failure;
191 
192 	periph->path = path;
193 	init_level++;
194 
195 	status = xpt_add_periph(periph);
196 
197 	if (status != CAM_REQ_CMP)
198 		goto failure;
199 
200 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
201 	while (cur_periph != NULL
202 	    && cur_periph->unit_number < periph->unit_number)
203 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
204 
205 	if (cur_periph != NULL)
206 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
207 	else {
208 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
209 		(*p_drv)->generation++;
210 	}
211 
212 	init_level++;
213 
214 	status = periph_ctor(periph, arg);
215 
216 	if (status == CAM_REQ_CMP)
217 		init_level++;
218 
219 failure:
220 	switch (init_level) {
221 	case 4:
222 		/* Initialized successfully */
223 		break;
224 	case 3:
225 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
226 		xpt_remove_periph(periph);
227 		/* FALLTHROUGH */
228 	case 2:
229 		xpt_free_path(periph->path);
230 		/* FALLTHROUGH */
231 	case 1:
232 		kfree(periph, M_CAMPERIPH);
233 		/* FALLTHROUGH */
234 	case 0:
235 		/* No cleanup to perform. */
236 		break;
237 	default:
238 		panic("cam_periph_alloc: Unknown init level");
239 	}
240 	return(status);
241 }
242 
243 /*
244  * Find a peripheral structure with the specified path, target, lun,
245  * and (optionally) type.  If the name is NULL, this function will return
246  * the first peripheral driver that matches the specified path.
247  */
248 struct cam_periph *
249 cam_periph_find(struct cam_path *path, char *name)
250 {
251 	struct periph_driver **p_drv;
252 	struct cam_periph *periph;
253 
254 	xpt_lock_buses();
255 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
256 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
257 			continue;
258 
259 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
260 			if (xpt_path_comp(periph->path, path) == 0) {
261 				xpt_unlock_buses();
262 				return(periph);
263 			}
264 		}
265 		if (name != NULL) {
266 			xpt_unlock_buses();
267 			return(NULL);
268 		}
269 	}
270 	xpt_unlock_buses();
271 	return(NULL);
272 }
273 
274 cam_status
275 cam_periph_acquire(struct cam_periph *periph)
276 {
277 	if (periph == NULL)
278 		return(CAM_REQ_CMP_ERR);
279 
280 	xpt_lock_buses();
281 	periph->refcount++;
282 	xpt_unlock_buses();
283 
284 	return(CAM_REQ_CMP);
285 }
286 
287 void
288 cam_periph_release(struct cam_periph *periph)
289 {
290 
291 	if (periph == NULL)
292 		return;
293 
294 	xpt_lock_buses();
295 	if ((--periph->refcount == 0)
296 	 && (periph->flags & CAM_PERIPH_INVALID)) {
297 		camperiphfree(periph);
298 	}
299 	xpt_unlock_buses();
300 
301 }
302 
303 int
304 cam_periph_hold(struct cam_periph *periph, int flags)
305 {
306 	int error;
307 
308 	sim_lock_assert_owned(periph->sim->lock);
309 
310 	/*
311 	 * Increment the reference count on the peripheral
312 	 * while we wait for our lock attempt to succeed
313 	 * to ensure the peripheral doesn't disappear out
314 	 * from user us while we sleep.
315 	 */
316 
317 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
318 		return (ENXIO);
319 
320 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
321 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
322 		if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
323 					    periph->sim->lock)) != 0) {
324 			cam_periph_release(periph);
325 			return (error);
326 		}
327 	}
328 
329 	periph->flags |= CAM_PERIPH_LOCKED;
330 	return (0);
331 }
332 
333 void
334 cam_periph_unhold(struct cam_periph *periph, int unlock)
335 {
336 	struct cam_sim *sim;
337 
338 	sim_lock_assert_owned(periph->sim->lock);
339 	periph->flags &= ~CAM_PERIPH_LOCKED;
340 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
341 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
342 		wakeup(periph);
343 	}
344 	if (unlock) {
345 		sim = periph->sim;
346 		cam_periph_release(periph);
347 		/* periph may be garbage now */
348 		CAM_SIM_UNLOCK(sim);
349 	} else {
350 		cam_periph_release(periph);
351 	}
352 }
353 
354 /*
355  * Look for the next unit number that is not currently in use for this
356  * peripheral type starting at "newunit".  Also exclude unit numbers that
357  * are reserved by for future "hardwiring" unless we already know that this
358  * is a potential wired device.  Only assume that the device is "wired" the
359  * first time through the loop since after that we'll be looking at unit
360  * numbers that did not match a wiring entry.
361  */
362 static u_int
363 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
364 		  path_id_t pathid, target_id_t target, lun_id_t lun)
365 {
366 	struct	cam_periph *periph;
367 	char	*periph_name, *strval;
368 	int	i, val, dunit;
369 	const char *dname;
370 
371 	periph_name = p_drv->driver_name;
372 	for (;;newunit++) {
373 
374 		for (periph = TAILQ_FIRST(&p_drv->units);
375 		     periph != NULL && periph->unit_number != newunit;
376 		     periph = TAILQ_NEXT(periph, unit_links))
377 			;
378 
379 		if (periph != NULL && periph->unit_number == newunit) {
380 			if (wired != 0) {
381 				xpt_print(periph->path, "Duplicate Wired "
382 				    "Device entry!\n");
383 				xpt_print(periph->path, "Second device (%s "
384 				    "device at scbus%d target %d lun %d) will "
385 				    "not be wired\n", periph_name, pathid,
386 				    target, lun);
387 				wired = 0;
388 			}
389 			continue;
390 		}
391 		if (wired)
392 			break;
393 
394 		/*
395 		 * Don't match entries like "da 4" as a wired down
396 		 * device, but do match entries like "da 4 target 5"
397 		 * or even "da 4 scbus 1".
398 		 */
399 		i = -1;
400 		while ((i = resource_locate(i, periph_name)) != -1) {
401 			dname = resource_query_name(i);
402 			dunit = resource_query_unit(i);
403 			/* if no "target" and no specific scbus, skip */
404 			if (resource_int_value(dname, dunit, "target", &val) &&
405 			    (resource_string_value(dname, dunit, "at",&strval)||
406 			     strcmp(strval, "scbus") == 0))
407 				continue;
408 			if (newunit == dunit)
409 				break;
410 		}
411 		if (i == -1)
412 			break;
413 	}
414 	return (newunit);
415 }
416 
417 static u_int
418 camperiphunit(struct periph_driver *p_drv,
419 	      struct cam_sim *sim, path_id_t pathid,
420 	      target_id_t target, lun_id_t lun)
421 {
422 	u_int	unit;
423 	int	hit, i, val, dunit;
424 	const char *dname;
425 	char	pathbuf[32], *strval, *periph_name;
426 
427 	unit = 0;
428 
429 	periph_name = p_drv->driver_name;
430 	ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
431 	i = -1;
432 	for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
433 		dname = resource_query_name(i);
434 		dunit = resource_query_unit(i);
435 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
436 			if (strcmp(strval, pathbuf) != 0)
437 				continue;
438 			hit++;
439 		}
440 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
441 			if (val != target)
442 				continue;
443 			hit++;
444 		}
445 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
446 			if (val != lun)
447 				continue;
448 			hit++;
449 		}
450 		if (hit != 0) {
451 			unit = dunit;
452 			break;
453 		}
454 	}
455 
456 	/*
457 	 * If no wired units are in the kernel config do an auto unit
458 	 * start selection.  We want usb mass storage out of the way
459 	 * so it doesn't steal low numbered da%d slots from ahci, sili,
460 	 * or other scsi attachments.
461 	 */
462 	if (hit == 0 && sim) {
463 		if (strncmp(sim->sim_name, "umass", 4) == 0 && unit < 8)
464 			unit = 8;
465 	}
466 
467 	/*
468 	 * Either start from 0 looking for the next unit or from
469 	 * the unit number given in the resource config.  This way,
470 	 * if we have wildcard matches, we don't return the same
471 	 * unit number twice.
472 	 */
473 	unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
474 				 target, lun);
475 
476 	return (unit);
477 }
478 
479 void
480 cam_periph_invalidate(struct cam_periph *periph)
481 {
482 	/*
483 	 * We only call this routine the first time a peripheral is
484 	 * invalidated.
485 	 */
486 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
487 	 && (periph->periph_oninval != NULL))
488 		periph->periph_oninval(periph);
489 
490 	periph->flags |= CAM_PERIPH_INVALID;
491 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
492 
493 	xpt_lock_buses();
494 	if (periph->refcount == 0)
495 		camperiphfree(periph);
496 	else if (periph->refcount < 0)
497 		kprintf("cam_invalidate_periph: refcount < 0!!\n");
498 	xpt_unlock_buses();
499 }
500 
501 static void
502 camperiphfree(struct cam_periph *periph)
503 {
504 	struct periph_driver **p_drv;
505 
506 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
507 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
508 			break;
509 	}
510 
511 	if (*p_drv == NULL) {
512 		kprintf("camperiphfree: attempt to free non-existent periph\n");
513 		return;
514 	}
515 
516 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
517 	(*p_drv)->generation++;
518 	xpt_unlock_buses();
519 
520 	if (periph->periph_dtor != NULL)
521 		periph->periph_dtor(periph);
522 	xpt_remove_periph(periph);
523 
524 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
525 		union ccb ccb;
526 		void *arg;
527 
528 		switch (periph->deferred_ac) {
529 		case AC_FOUND_DEVICE:
530 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
531 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
532 			xpt_action(&ccb);
533 			arg = &ccb;
534 			break;
535 		case AC_PATH_REGISTERED:
536 			ccb.ccb_h.func_code = XPT_PATH_INQ;
537 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
538 			xpt_action(&ccb);
539 			arg = &ccb;
540 			break;
541 		default:
542 			arg = NULL;
543 			break;
544 		}
545 		periph->deferred_callback(NULL, periph->deferred_ac,
546 					  periph->path, arg);
547 	}
548 	xpt_free_path(periph->path);
549 	kfree(periph, M_CAMPERIPH);
550 	xpt_lock_buses();
551 }
552 
553 /*
554  * Map user virtual pointers into kernel virtual address space, so we can
555  * access the memory.  This won't work on physical pointers, for now it's
556  * up to the caller to check for that.  (XXX KDM -- should we do that here
557  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
558  * buffers to map stuff in and out, we're limited to the buffer size.
559  */
560 int
561 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
562 {
563 	buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
564 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
565 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
566 	int numbufs;
567 	int error;
568 	int i;
569 	struct buf *bp;
570 
571 	switch(ccb->ccb_h.func_code) {
572 	case XPT_DEV_MATCH:
573 		if (ccb->cdm.match_buf_len == 0) {
574 			kprintf("cam_periph_mapmem: invalid match buffer "
575 			       "length 0\n");
576 			return(EINVAL);
577 		}
578 		if (ccb->cdm.pattern_buf_len > 0) {
579 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
580 			lengths[0] = ccb->cdm.pattern_buf_len;
581 			mapinfo->dirs[0] = CAM_DIR_OUT;
582 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
583 			lengths[1] = ccb->cdm.match_buf_len;
584 			mapinfo->dirs[1] = CAM_DIR_IN;
585 			numbufs = 2;
586 		} else {
587 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
588 			lengths[0] = ccb->cdm.match_buf_len;
589 			mapinfo->dirs[0] = CAM_DIR_IN;
590 			numbufs = 1;
591 		}
592 		break;
593 	case XPT_SCSI_IO:
594 	case XPT_CONT_TARGET_IO:
595 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
596 			return(0);
597 
598 		data_ptrs[0] = &ccb->csio.data_ptr;
599 		lengths[0] = ccb->csio.dxfer_len;
600 		mapinfo->dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
601 		numbufs = 1;
602 		break;
603 	default:
604 		return(EINVAL);
605 		break; /* NOTREACHED */
606 	}
607 
608 	/*
609 	 * Check the transfer length and permissions first, so we don't
610 	 * have to unmap any previously mapped buffers.
611 	 */
612 	for (i = 0; i < numbufs; i++) {
613 		/*
614 		 * Its kinda bogus, we need a R+W command.  For now the
615 		 * buffer needs some sort of command.  Use BUF_CMD_WRITE
616 		 * to indicate a write and BUF_CMD_READ to indicate R+W.
617 		 */
618 		cmd[i] = BUF_CMD_WRITE;
619 
620 		/*
621 		 * The userland data pointer passed in may not be page
622 		 * aligned.  vmapbuf() truncates the address to a page
623 		 * boundary, so if the address isn't page aligned, we'll
624 		 * need enough space for the given transfer length, plus
625 		 * whatever extra space is necessary to make it to the page
626 		 * boundary.
627 		 */
628 		if ((lengths[i] +
629 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
630 			kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
631 			       "which is greater than DFLTPHYS(%d)\n",
632 			       (long)(lengths[i] +
633 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
634 			       DFLTPHYS);
635 			return(E2BIG);
636 		}
637 
638 		if (mapinfo->dirs[i] & CAM_DIR_OUT) {
639 			if (!useracc(*data_ptrs[i], lengths[i],
640 				     VM_PROT_READ)) {
641 				kprintf("cam_periph_mapmem: error, "
642 					"address %p, length %lu isn't "
643 					"user accessible for READ\n",
644 					(void *)*data_ptrs[i],
645 					(u_long)lengths[i]);
646 				return(EACCES);
647 			}
648 		}
649 
650 		if (mapinfo->dirs[i] & CAM_DIR_IN) {
651 			cmd[i] = BUF_CMD_READ;
652 			if (!useracc(*data_ptrs[i], lengths[i],
653 				     VM_PROT_WRITE)) {
654 				kprintf("cam_periph_mapmem: error, "
655 					"address %p, length %lu isn't "
656 					"user accessible for WRITE\n",
657 					(void *)*data_ptrs[i],
658 					(u_long)lengths[i]);
659 
660 				return(EACCES);
661 			}
662 		}
663 
664 	}
665 
666 	for (i = 0; i < numbufs; i++) {
667 		/*
668 		 * Get the buffer.
669 		 */
670 		bp = getpbuf(NULL);
671 
672 		/* save the original user pointer */
673 		mapinfo->saved_ptrs[i] = *data_ptrs[i];
674 
675 		/* set the flags */
676 		bp->b_cmd = cmd[i];
677 
678 		/*
679 		 * Require 16-byte alignment and bounce if we don't get it.
680 		 * (NATA does not realign buffers for DMA).
681 		 */
682 		if ((intptr_t)*data_ptrs[i] & 15)
683 			mapinfo->bounce[i] = 1;
684 		else
685 			mapinfo->bounce[i] = 0;
686 
687 		/*
688 		 * Map the user buffer into kernel memory.  If the user
689 		 * buffer is not aligned we have to allocate a bounce buffer
690 		 * and copy.
691 		 */
692 		if (mapinfo->bounce[i]) {
693 			bp->b_data = bp->b_kvabase;
694 			bp->b_bcount = lengths[i];
695 			vm_hold_load_pages(bp, (vm_offset_t)bp->b_data,
696 				       (vm_offset_t)bp->b_data + bp->b_bcount);
697 			if (mapinfo->dirs[i] & CAM_DIR_OUT) {
698 				error = copyin(*data_ptrs[i], bp->b_data, bp->b_bcount);
699 				if (error) {
700 					vm_hold_free_pages(bp, (vm_offset_t)bp->b_data, (vm_offset_t)bp->b_data + bp->b_bcount);
701 				}
702 			} else {
703 				error = 0;
704 			}
705 		} else if (vmapbuf(bp, *data_ptrs[i], lengths[i]) < 0) {
706 			kprintf("cam_periph_mapmem: error, "
707 				"address %p, length %lu isn't "
708 				"user accessible any more\n",
709 				(void *)*data_ptrs[i],
710 				(u_long)lengths[i]);
711 			error = EACCES;
712 		} else {
713 			error = 0;
714 		}
715 		if (error) {
716 			relpbuf(bp, NULL);
717 			cam_periph_unmapbufs(mapinfo, data_ptrs, i);
718 			mapinfo->num_bufs_used -= i;
719 			return(error);
720 		}
721 
722 		/* set our pointer to the new mapped area */
723 		*data_ptrs[i] = bp->b_data;
724 
725 		mapinfo->bp[i] = bp;
726 		mapinfo->num_bufs_used++;
727 	}
728 
729 	return(0);
730 }
731 
732 /*
733  * Unmap memory segments mapped into kernel virtual address space by
734  * cam_periph_mapmem().
735  */
736 void
737 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
738 {
739 	int numbufs;
740 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
741 
742 	if (mapinfo->num_bufs_used <= 0) {
743 		/* allow ourselves to be swapped once again */
744 		return;
745 	}
746 
747 	switch (ccb->ccb_h.func_code) {
748 	case XPT_DEV_MATCH:
749 		numbufs = min(mapinfo->num_bufs_used, 2);
750 
751 		if (numbufs == 1) {
752 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
753 		} else {
754 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
755 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
756 		}
757 		break;
758 	case XPT_SCSI_IO:
759 	case XPT_CONT_TARGET_IO:
760 		data_ptrs[0] = &ccb->csio.data_ptr;
761 		numbufs = min(mapinfo->num_bufs_used, 1);
762 		break;
763 	default:
764 		/* allow ourselves to be swapped once again */
765 		return;
766 		break; /* NOTREACHED */
767 	}
768 	cam_periph_unmapbufs(mapinfo, data_ptrs, numbufs);
769 }
770 
771 static void
772 cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
773 		     u_int8_t ***data_ptrs, int numbufs)
774 {
775 	struct buf *bp;
776 	int i;
777 
778 	for (i = 0; i < numbufs; i++) {
779 		bp = mapinfo->bp[i];
780 
781 		/* Set the user's pointer back to the original value */
782 		*data_ptrs[i] = mapinfo->saved_ptrs[i];
783 
784 		/* unmap the buffer */
785 		if (mapinfo->bounce[i]) {
786 			if (mapinfo->dirs[i] & CAM_DIR_IN) {
787 				/* XXX return error */
788 				copyout(bp->b_data, *data_ptrs[i],
789 					bp->b_bcount);
790 			}
791 			vm_hold_free_pages(bp, (vm_offset_t)bp->b_data,
792 				   (vm_offset_t)bp->b_data + bp->b_bcount);
793 		} else {
794 			vunmapbuf(bp);
795 		}
796 		relpbuf(bp, NULL);
797 		mapinfo->bp[i] = NULL;
798 	}
799 }
800 
801 union ccb *
802 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
803 {
804 	struct ccb_hdr *ccb_h;
805 
806 	sim_lock_assert_owned(periph->sim->lock);
807 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
808 
809 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
810 		if (periph->immediate_priority > priority)
811 			periph->immediate_priority = priority;
812 		xpt_schedule(periph, priority);
813 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
814 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
815 			break;
816 		sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
817 			       periph->sim->lock);
818 	}
819 
820 	ccb_h = SLIST_FIRST(&periph->ccb_list);
821 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
822 	return ((union ccb *)ccb_h);
823 }
824 
825 void
826 cam_periph_ccbwait(union ccb *ccb)
827 {
828 	struct cam_sim *sim;
829 
830 	sim = xpt_path_sim(ccb->ccb_h.path);
831 	while ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
832 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) {
833 		sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
834 	}
835 }
836 
837 int
838 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
839 		 int (*error_routine)(union ccb *ccb,
840 				      cam_flags camflags,
841 				      u_int32_t sense_flags))
842 {
843 	union ccb 	     *ccb;
844 	int 		     error;
845 	int		     found;
846 
847 	error = found = 0;
848 
849 	switch(cmd){
850 	case CAMGETPASSTHRU:
851 		ccb = cam_periph_getccb(periph, /* priority */ 1);
852 		xpt_setup_ccb(&ccb->ccb_h,
853 			      ccb->ccb_h.path,
854 			      /*priority*/1);
855 		ccb->ccb_h.func_code = XPT_GDEVLIST;
856 
857 		/*
858 		 * Basically, the point of this is that we go through
859 		 * getting the list of devices, until we find a passthrough
860 		 * device.  In the current version of the CAM code, the
861 		 * only way to determine what type of device we're dealing
862 		 * with is by its name.
863 		 */
864 		while (found == 0) {
865 			ccb->cgdl.index = 0;
866 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
867 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
868 
869 				/* we want the next device in the list */
870 				xpt_action(ccb);
871 				if (strncmp(ccb->cgdl.periph_name,
872 				    "pass", 4) == 0){
873 					found = 1;
874 					break;
875 				}
876 			}
877 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
878 			    (found == 0)) {
879 				ccb->cgdl.periph_name[0] = '\0';
880 				ccb->cgdl.unit_number = 0;
881 				break;
882 			}
883 		}
884 
885 		/* copy the result back out */
886 		bcopy(ccb, addr, sizeof(union ccb));
887 
888 		/* and release the ccb */
889 		xpt_release_ccb(ccb);
890 
891 		break;
892 	default:
893 		error = ENOTTY;
894 		break;
895 	}
896 	return(error);
897 }
898 
899 int
900 cam_periph_runccb(union ccb *ccb,
901 		  int (*error_routine)(union ccb *ccb,
902 				       cam_flags camflags,
903 				       u_int32_t sense_flags),
904 		  cam_flags camflags, u_int32_t sense_flags,
905 		  struct devstat *ds)
906 {
907 	struct cam_sim *sim;
908 	int error;
909 
910 	error = 0;
911 	sim = xpt_path_sim(ccb->ccb_h.path);
912 	sim_lock_assert_owned(sim->lock);
913 
914 	/*
915 	 * If the user has supplied a stats structure, and if we understand
916 	 * this particular type of ccb, record the transaction start.
917 	 */
918 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
919 		devstat_start_transaction(ds);
920 
921 	xpt_action(ccb);
922 
923 	do {
924 		cam_periph_ccbwait(ccb);
925 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
926 			error = 0;
927 		else if (error_routine != NULL)
928 			error = (*error_routine)(ccb, camflags, sense_flags);
929 		else
930 			error = 0;
931 
932 	} while (error == ERESTART);
933 
934 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
935 		cam_release_devq(ccb->ccb_h.path,
936 				 /* relsim_flags */0,
937 				 /* openings */0,
938 				 /* timeout */0,
939 				 /* getcount_only */ FALSE);
940 
941 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
942 		devstat_end_transaction(ds,
943 					ccb->csio.dxfer_len,
944 					ccb->csio.tag_action & 0xf,
945 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
946 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
947 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
948 					DEVSTAT_WRITE :
949 					DEVSTAT_READ);
950 
951 	return(error);
952 }
953 
954 void
955 cam_freeze_devq(struct cam_path *path)
956 {
957 	struct ccb_hdr ccb_h;
958 
959 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
960 	ccb_h.func_code = XPT_NOOP;
961 	ccb_h.flags = CAM_DEV_QFREEZE;
962 	xpt_action((union ccb *)&ccb_h);
963 }
964 
965 u_int32_t
966 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
967 		 u_int32_t openings, u_int32_t timeout,
968 		 int getcount_only)
969 {
970 	struct ccb_relsim crs;
971 
972 	xpt_setup_ccb(&crs.ccb_h, path,
973 		      /*priority*/1);
974 	crs.ccb_h.func_code = XPT_REL_SIMQ;
975 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
976 	crs.release_flags = relsim_flags;
977 	crs.openings = openings;
978 	crs.release_timeout = timeout;
979 	xpt_action((union ccb *)&crs);
980 	return (crs.qfrozen_cnt);
981 }
982 
983 #define saved_ccb_ptr ppriv_ptr0
984 static void
985 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
986 {
987 	union ccb      *saved_ccb;
988 	cam_status	status;
989 	int		frozen;
990 	int		sense;
991 	struct scsi_start_stop_unit *scsi_cmd;
992 	u_int32_t	relsim_flags, timeout;
993 	u_int32_t	qfrozen_cnt;
994 	int		xpt_done_ccb;
995 
996 	xpt_done_ccb = FALSE;
997 	status = done_ccb->ccb_h.status;
998 	frozen = (status & CAM_DEV_QFRZN) != 0;
999 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
1000 	status &= CAM_STATUS_MASK;
1001 
1002 	timeout = 0;
1003 	relsim_flags = 0;
1004 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1005 
1006 	/*
1007 	 * Unfreeze the queue once if it is already frozen..
1008 	 */
1009 	if (frozen != 0) {
1010 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1011 					      /*relsim_flags*/0,
1012 					      /*openings*/0,
1013 					      /*timeout*/0,
1014 					      /*getcount_only*/0);
1015 	}
1016 
1017 	switch (status) {
1018 	case CAM_REQ_CMP:
1019 	{
1020 		/*
1021 		 * If we have successfully taken a device from the not
1022 		 * ready to ready state, re-scan the device and re-get
1023 		 * the inquiry information.  Many devices (mostly disks)
1024 		 * don't properly report their inquiry information unless
1025 		 * they are spun up.
1026 		 *
1027 		 * If we manually retrieved sense into a CCB and got
1028 		 * something other than "NO SENSE" send the updated CCB
1029 		 * back to the client via xpt_done() to be processed via
1030 		 * the error recovery code again.
1031 		 */
1032 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
1033 			scsi_cmd = (struct scsi_start_stop_unit *)
1034 					&done_ccb->csio.cdb_io.cdb_bytes;
1035 
1036 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
1037 				xpt_async(AC_INQ_CHANGED,
1038 					  done_ccb->ccb_h.path, NULL);
1039 			if (scsi_cmd->opcode == REQUEST_SENSE) {
1040 				u_int sense_key;
1041 
1042 				sense_key = saved_ccb->csio.sense_data.flags;
1043 				sense_key &= SSD_KEY;
1044 				if (sense_key != SSD_KEY_NO_SENSE) {
1045 					saved_ccb->ccb_h.status |=
1046 					    CAM_AUTOSNS_VALID;
1047 #if 0
1048 					xpt_print(saved_ccb->ccb_h.path,
1049 					    "Recovered Sense\n");
1050 					scsi_sense_print(&saved_ccb->csio);
1051 					cam_error_print(saved_ccb, CAM_ESF_ALL,
1052 							CAM_EPF_ALL);
1053 #endif
1054 					xpt_done_ccb = TRUE;
1055 				}
1056 			}
1057 		}
1058 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1059 		      sizeof(union ccb));
1060 
1061 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1062 
1063 		if (xpt_done_ccb == FALSE)
1064 			xpt_action(done_ccb);
1065 
1066 		break;
1067 	}
1068 	case CAM_SCSI_STATUS_ERROR:
1069 		scsi_cmd = (struct scsi_start_stop_unit *)
1070 				&done_ccb->csio.cdb_io.cdb_bytes;
1071 		if (sense != 0) {
1072 			struct ccb_getdev cgd;
1073 			struct scsi_sense_data *sense;
1074 			int    error_code, sense_key, asc, ascq;
1075 			scsi_sense_action err_action;
1076 
1077 			sense = &done_ccb->csio.sense_data;
1078 			scsi_extract_sense(sense, &error_code,
1079 					   &sense_key, &asc, &ascq);
1080 
1081 			/*
1082 			 * Grab the inquiry data for this device.
1083 			 */
1084 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1085 				      /*priority*/ 1);
1086 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1087 			xpt_action((union ccb *)&cgd);
1088 			err_action = scsi_error_action(&done_ccb->csio,
1089 						       &cgd.inq_data, 0);
1090 
1091 			/*
1092 	 		 * If the error is "invalid field in CDB",
1093 			 * and the load/eject flag is set, turn the
1094 			 * flag off and try again.  This is just in
1095 			 * case the drive in question barfs on the
1096 			 * load eject flag.  The CAM code should set
1097 			 * the load/eject flag by default for
1098 			 * removable media.
1099 			 */
1100 
1101 			/* XXX KDM
1102 			 * Should we check to see what the specific
1103 			 * scsi status is??  Or does it not matter
1104 			 * since we already know that there was an
1105 			 * error, and we know what the specific
1106 			 * error code was, and we know what the
1107 			 * opcode is..
1108 			 */
1109 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1110 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1111 			     (asc == 0x24) && (ascq == 0x00) &&
1112 			     (done_ccb->ccb_h.retry_count > 0)) {
1113 
1114 				scsi_cmd->how &= ~SSS_LOEJ;
1115 
1116 				xpt_action(done_ccb);
1117 
1118 			} else if ((done_ccb->ccb_h.retry_count > 1)
1119 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1120 
1121 				/*
1122 				 * In this case, the error recovery
1123 				 * command failed, but we've got
1124 				 * some retries left on it.  Give
1125 				 * it another try unless this is an
1126 				 * unretryable error.
1127 				 */
1128 
1129 				/* set the timeout to .5 sec */
1130 				relsim_flags =
1131 					RELSIM_RELEASE_AFTER_TIMEOUT;
1132 				timeout = 500;
1133 
1134 				xpt_action(done_ccb);
1135 
1136 				break;
1137 
1138 			} else {
1139 				/*
1140 				 * Perform the final retry with the original
1141 				 * CCB so that final error processing is
1142 				 * performed by the owner of the CCB.
1143 				 */
1144 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1145 				      done_ccb, sizeof(union ccb));
1146 
1147 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1148 
1149 				xpt_action(done_ccb);
1150 			}
1151 		} else {
1152 			/*
1153 			 * Eh??  The command failed, but we don't
1154 			 * have any sense.  What's up with that?
1155 			 * Fire the CCB again to return it to the
1156 			 * caller.
1157 			 */
1158 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1159 			      done_ccb, sizeof(union ccb));
1160 
1161 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1162 
1163 			xpt_action(done_ccb);
1164 
1165 		}
1166 		break;
1167 	default:
1168 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1169 		      sizeof(union ccb));
1170 
1171 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1172 
1173 		xpt_action(done_ccb);
1174 
1175 		break;
1176 	}
1177 
1178 	/* decrement the retry count */
1179 	/*
1180 	 * XXX This isn't appropriate in all cases.  Restructure,
1181 	 *     so that the retry count is only decremented on an
1182 	 *     actual retry.  Remeber that the orignal ccb had its
1183 	 *     retry count dropped before entering recovery, so
1184 	 *     doing it again is a bug.
1185 	 */
1186 	if (done_ccb->ccb_h.retry_count > 0)
1187 		done_ccb->ccb_h.retry_count--;
1188 
1189 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1190 				      /*relsim_flags*/relsim_flags,
1191 				      /*openings*/0,
1192 				      /*timeout*/timeout,
1193 				      /*getcount_only*/0);
1194 	if (xpt_done_ccb == TRUE)
1195 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1196 }
1197 
1198 /*
1199  * Generic Async Event handler.  Peripheral drivers usually
1200  * filter out the events that require personal attention,
1201  * and leave the rest to this function.
1202  */
1203 void
1204 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1205 		 struct cam_path *path, void *arg)
1206 {
1207 	switch (code) {
1208 	case AC_LOST_DEVICE:
1209 		cam_periph_invalidate(periph);
1210 		break;
1211 	case AC_SENT_BDR:
1212 	case AC_BUS_RESET:
1213 	{
1214 		cam_periph_bus_settle(periph, scsi_delay);
1215 		break;
1216 	}
1217 	default:
1218 		break;
1219 	}
1220 }
1221 
1222 void
1223 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1224 {
1225 	struct ccb_getdevstats cgds;
1226 
1227 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1228 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1229 	xpt_action((union ccb *)&cgds);
1230 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1231 }
1232 
1233 void
1234 cam_periph_freeze_after_event(struct cam_periph *periph,
1235 			      struct timeval* event_time, u_int duration_ms)
1236 {
1237 	struct timeval delta;
1238 	struct timeval duration_tv;
1239 
1240 	microuptime(&delta);
1241 	timevalsub(&delta, event_time);
1242 	duration_tv.tv_sec = duration_ms / 1000;
1243 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1244 	if (timevalcmp(&delta, &duration_tv, <)) {
1245 		timevalsub(&duration_tv, &delta);
1246 
1247 		duration_ms = duration_tv.tv_sec * 1000;
1248 		duration_ms += duration_tv.tv_usec / 1000;
1249 		cam_freeze_devq(periph->path);
1250 		cam_release_devq(periph->path,
1251 				RELSIM_RELEASE_AFTER_TIMEOUT,
1252 				/*reduction*/0,
1253 				/*timeout*/duration_ms,
1254 				/*getcount_only*/0);
1255 	}
1256 
1257 }
1258 
1259 static int
1260 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1261 			 u_int32_t sense_flags, union ccb *save_ccb,
1262 			 int *openings, u_int32_t *relsim_flags,
1263 			 u_int32_t *timeout)
1264 {
1265 	int error;
1266 
1267 	switch (ccb->csio.scsi_status) {
1268 	case SCSI_STATUS_OK:
1269 	case SCSI_STATUS_COND_MET:
1270 	case SCSI_STATUS_INTERMED:
1271 	case SCSI_STATUS_INTERMED_COND_MET:
1272 		error = 0;
1273 		break;
1274 	case SCSI_STATUS_CMD_TERMINATED:
1275 	case SCSI_STATUS_CHECK_COND:
1276 		error = camperiphscsisenseerror(ccb,
1277 					        camflags,
1278 					        sense_flags,
1279 					        save_ccb,
1280 					        openings,
1281 					        relsim_flags,
1282 					        timeout);
1283 		break;
1284 	case SCSI_STATUS_QUEUE_FULL:
1285 	{
1286 		/* no decrement */
1287 		struct ccb_getdevstats cgds;
1288 
1289 		/*
1290 		 * First off, find out what the current
1291 		 * transaction counts are.
1292 		 */
1293 		xpt_setup_ccb(&cgds.ccb_h,
1294 			      ccb->ccb_h.path,
1295 			      /*priority*/1);
1296 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1297 		xpt_action((union ccb *)&cgds);
1298 
1299 		/*
1300 		 * If we were the only transaction active, treat
1301 		 * the QUEUE FULL as if it were a BUSY condition.
1302 		 */
1303 		if (cgds.dev_active != 0) {
1304 			int total_openings;
1305 
1306 			/*
1307 			 * Reduce the number of openings to
1308 			 * be 1 less than the amount it took
1309 			 * to get a queue full bounded by the
1310 			 * minimum allowed tag count for this
1311 			 * device.
1312 			 */
1313 			total_openings = cgds.dev_active + cgds.dev_openings;
1314 			*openings = cgds.dev_active;
1315 			if (*openings < cgds.mintags)
1316 				*openings = cgds.mintags;
1317 			if (*openings < total_openings)
1318 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1319 			else {
1320 				/*
1321 				 * Some devices report queue full for
1322 				 * temporary resource shortages.  For
1323 				 * this reason, we allow a minimum
1324 				 * tag count to be entered via a
1325 				 * quirk entry to prevent the queue
1326 				 * count on these devices from falling
1327 				 * to a pessimisticly low value.  We
1328 				 * still wait for the next successful
1329 				 * completion, however, before queueing
1330 				 * more transactions to the device.
1331 				 */
1332 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1333 			}
1334 			*timeout = 0;
1335 			error = ERESTART;
1336 			if (bootverbose) {
1337 				xpt_print(ccb->ccb_h.path, "Queue Full\n");
1338 			}
1339 			break;
1340 		}
1341 		/* FALLTHROUGH */
1342 	}
1343 	case SCSI_STATUS_BUSY:
1344 		/*
1345 		 * Restart the queue after either another
1346 		 * command completes or a 1 second timeout.
1347 		 */
1348 		if (bootverbose) {
1349 			xpt_print(ccb->ccb_h.path, "Device Busy\n");
1350 		}
1351 		if (ccb->ccb_h.retry_count > 0) {
1352 			ccb->ccb_h.retry_count--;
1353 			error = ERESTART;
1354 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1355 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1356 			*timeout = 1000;
1357 		} else {
1358 			error = EIO;
1359 		}
1360 		break;
1361 	case SCSI_STATUS_RESERV_CONFLICT:
1362 		xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1363 		error = EIO;
1364 		break;
1365 	default:
1366 		xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1367 		    ccb->csio.scsi_status);
1368 		error = EIO;
1369 		break;
1370 	}
1371 	return (error);
1372 }
1373 
1374 static int
1375 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1376 			u_int32_t sense_flags, union ccb *save_ccb,
1377 		       int *openings, u_int32_t *relsim_flags,
1378 		       u_int32_t *timeout)
1379 {
1380 	struct cam_periph *periph;
1381 	int error;
1382 
1383 	periph = xpt_path_periph(ccb->ccb_h.path);
1384 	if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1385 
1386 		/*
1387 		 * If error recovery is already in progress, don't attempt
1388 		 * to process this error, but requeue it unconditionally
1389 		 * and attempt to process it once error recovery has
1390 		 * completed.  This failed command is probably related to
1391 		 * the error that caused the currently active error recovery
1392 		 * action so our  current recovery efforts should also
1393 		 * address this command.  Be aware that the error recovery
1394 		 * code assumes that only one recovery action is in progress
1395 		 * on a particular peripheral instance at any given time
1396 		 * (e.g. only one saved CCB for error recovery) so it is
1397 		 * imperitive that we don't violate this assumption.
1398 		 */
1399 		error = ERESTART;
1400 	} else {
1401 		scsi_sense_action err_action;
1402 		struct ccb_getdev cgd;
1403 		const char *action_string;
1404 		union ccb* print_ccb;
1405 
1406 		/* A description of the error recovery action performed */
1407 		action_string = NULL;
1408 
1409 		/*
1410 		 * The location of the orignal ccb
1411 		 * for sense printing purposes.
1412 		 */
1413 		print_ccb = ccb;
1414 
1415 		/*
1416 		 * Grab the inquiry data for this device.
1417 		 */
1418 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1419 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1420 		xpt_action((union ccb *)&cgd);
1421 
1422 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1423 			err_action = scsi_error_action(&ccb->csio,
1424 						       &cgd.inq_data,
1425 						       sense_flags);
1426 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1427 			err_action = SS_REQSENSE;
1428 		else
1429 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1430 
1431 		error = err_action & SS_ERRMASK;
1432 
1433 		/*
1434 		 * If the recovery action will consume a retry,
1435 		 * make sure we actually have retries available.
1436 		 */
1437 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1438 			if (ccb->ccb_h.retry_count > 0)
1439 				ccb->ccb_h.retry_count--;
1440 			else {
1441 				action_string = "Retries Exhausted";
1442 				goto sense_error_done;
1443 			}
1444 		}
1445 
1446 		if ((err_action & SS_MASK) >= SS_START) {
1447 			/*
1448 			 * Do common portions of commands that
1449 			 * use recovery CCBs.
1450 			 */
1451 			if (save_ccb == NULL) {
1452 				action_string = "No recovery CCB supplied";
1453 				goto sense_error_done;
1454 			}
1455 			bcopy(ccb, save_ccb, sizeof(*save_ccb));
1456 			print_ccb = save_ccb;
1457 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1458 		}
1459 
1460 		switch (err_action & SS_MASK) {
1461 		case SS_NOP:
1462 			action_string = "No Recovery Action Needed";
1463 			error = 0;
1464 			break;
1465 		case SS_RETRY:
1466 			action_string = "Retrying Command (per Sense Data)";
1467 			error = ERESTART;
1468 			break;
1469 		case SS_FAIL:
1470 			action_string = "Unretryable error";
1471 			break;
1472 		case SS_START:
1473 		{
1474 			int le;
1475 
1476 			/*
1477 			 * Send a start unit command to the device, and
1478 			 * then retry the command.
1479 			 */
1480 			action_string = "Attempting to Start Unit";
1481 
1482 			/*
1483 			 * Check for removable media and set
1484 			 * load/eject flag appropriately.
1485 			 */
1486 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1487 				le = TRUE;
1488 			else
1489 				le = FALSE;
1490 
1491 			scsi_start_stop(&ccb->csio,
1492 					/*retries*/1,
1493 					camperiphdone,
1494 					MSG_SIMPLE_Q_TAG,
1495 					/*start*/TRUE,
1496 					/*load/eject*/le,
1497 					/*immediate*/FALSE,
1498 					SSD_FULL_SIZE,
1499 					/*timeout*/50000);
1500 			break;
1501 		}
1502 		case SS_TUR:
1503 		{
1504 			/*
1505 			 * Send a Test Unit Ready to the device.
1506 			 * If the 'many' flag is set, we send 120
1507 			 * test unit ready commands, one every half
1508 			 * second.  Otherwise, we just send one TUR.
1509 			 * We only want to do this if the retry
1510 			 * count has not been exhausted.
1511 			 */
1512 			int retries;
1513 
1514 			if ((err_action & SSQ_MANY) != 0) {
1515 				action_string = "Polling device for readiness";
1516 				retries = 120;
1517 			} else {
1518 				action_string = "Testing device for readiness";
1519 				retries = 1;
1520 			}
1521 			scsi_test_unit_ready(&ccb->csio,
1522 					     retries,
1523 					     camperiphdone,
1524 					     MSG_SIMPLE_Q_TAG,
1525 					     SSD_FULL_SIZE,
1526 					     /*timeout*/5000);
1527 
1528 			/*
1529 			 * Accomplish our 500ms delay by deferring
1530 			 * the release of our device queue appropriately.
1531 			 */
1532 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1533 			*timeout = 500;
1534 			break;
1535 		}
1536 		case SS_REQSENSE:
1537 		{
1538 			/*
1539 			 * Send a Request Sense to the device.  We
1540 			 * assume that we are in a contingent allegiance
1541 			 * condition so we do not tag this request.
1542 			 */
1543 			scsi_request_sense(&ccb->csio, /*retries*/1,
1544 					   camperiphdone,
1545 					   &save_ccb->csio.sense_data,
1546 					   sizeof(save_ccb->csio.sense_data),
1547 					   CAM_TAG_ACTION_NONE,
1548 					   /*sense_len*/SSD_FULL_SIZE,
1549 					   /*timeout*/5000);
1550 			break;
1551 		}
1552 		default:
1553 			panic("Unhandled error action %x", err_action);
1554 		}
1555 
1556 		if ((err_action & SS_MASK) >= SS_START) {
1557 			/*
1558 			 * Drop the priority to 0 so that the recovery
1559 			 * CCB is the first to execute.  Freeze the queue
1560 			 * after this command is sent so that we can
1561 			 * restore the old csio and have it queued in
1562 			 * the proper order before we release normal
1563 			 * transactions to the device.
1564 			 */
1565 			ccb->ccb_h.pinfo.priority = 0;
1566 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1567 			ccb->ccb_h.saved_ccb_ptr = save_ccb;
1568 			error = ERESTART;
1569 		}
1570 
1571 sense_error_done:
1572 		if ((err_action & SSQ_PRINT_SENSE) != 0
1573 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1574 			cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1575 			xpt_print_path(ccb->ccb_h.path);
1576 			if (bootverbose)
1577 				scsi_sense_print(&print_ccb->csio);
1578 			kprintf("%s\n", action_string);
1579 		}
1580 	}
1581 	return (error);
1582 }
1583 
1584 /*
1585  * Generic error handler.  Peripheral drivers usually filter
1586  * out the errors that they handle in a unique mannor, then
1587  * call this function.
1588  */
1589 int
1590 cam_periph_error(union ccb *ccb, cam_flags camflags,
1591 		 u_int32_t sense_flags, union ccb *save_ccb)
1592 {
1593 	const char *action_string;
1594 	cam_status  status;
1595 	int	    frozen;
1596 	int	    error, printed = 0;
1597 	int         openings;
1598 	u_int32_t   relsim_flags;
1599 	u_int32_t   timeout = 0;
1600 
1601 	action_string = NULL;
1602 	status = ccb->ccb_h.status;
1603 	frozen = (status & CAM_DEV_QFRZN) != 0;
1604 	status &= CAM_STATUS_MASK;
1605 	openings = relsim_flags = 0;
1606 
1607 	switch (status) {
1608 	case CAM_REQ_CMP:
1609 		error = 0;
1610 		break;
1611 	case CAM_SCSI_STATUS_ERROR:
1612 		error = camperiphscsistatuserror(ccb,
1613 						 camflags,
1614 						 sense_flags,
1615 						 save_ccb,
1616 						 &openings,
1617 						 &relsim_flags,
1618 						 &timeout);
1619 		break;
1620 	case CAM_AUTOSENSE_FAIL:
1621 		xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1622 		error = EIO;	/* we have to kill the command */
1623 		break;
1624 	case CAM_REQ_CMP_ERR:
1625 		if (bootverbose && printed == 0) {
1626 			xpt_print(ccb->ccb_h.path,
1627 			    "Request completed with CAM_REQ_CMP_ERR\n");
1628 			printed++;
1629 		}
1630 		/* FALLTHROUGH */
1631 	case CAM_CMD_TIMEOUT:
1632 		if (bootverbose && printed == 0) {
1633 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1634 			printed++;
1635 		}
1636 		/* FALLTHROUGH */
1637 	case CAM_UNEXP_BUSFREE:
1638 		if (bootverbose && printed == 0) {
1639 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1640 			printed++;
1641 		}
1642 		/* FALLTHROUGH */
1643 	case CAM_UNCOR_PARITY:
1644 		if (bootverbose && printed == 0) {
1645 			xpt_print(ccb->ccb_h.path,
1646 			    "Uncorrected Parity Error\n");
1647 			printed++;
1648 		}
1649 		/* FALLTHROUGH */
1650 	case CAM_DATA_RUN_ERR:
1651 		if (bootverbose && printed == 0) {
1652 			xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1653 			printed++;
1654 		}
1655 		error = EIO;	/* we have to kill the command */
1656 		/* decrement the number of retries */
1657 		if (ccb->ccb_h.retry_count > 0) {
1658 			ccb->ccb_h.retry_count--;
1659 			error = ERESTART;
1660 		} else {
1661 			action_string = "Retries Exhausted";
1662 			error = EIO;
1663 		}
1664 		break;
1665 	case CAM_UA_ABORT:
1666 	case CAM_UA_TERMIO:
1667 	case CAM_MSG_REJECT_REC:
1668 		/* XXX Don't know that these are correct */
1669 		error = EIO;
1670 		break;
1671 	case CAM_SEL_TIMEOUT:
1672 	{
1673 		struct cam_path *newpath;
1674 
1675 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1676 			if (ccb->ccb_h.retry_count > 0) {
1677 
1678 				ccb->ccb_h.retry_count--;
1679 				error = ERESTART;
1680 				if (bootverbose && printed == 0) {
1681 					xpt_print(ccb->ccb_h.path,
1682 					    "Selection Timeout\n");
1683 					printed++;
1684 				}
1685 
1686 				/*
1687 				 * Wait a bit to give the device
1688 				 * time to recover before we try again.
1689 				 */
1690 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1691 				timeout = periph_selto_delay;
1692 				break;
1693 			}
1694 		}
1695 		error = ENXIO;
1696 		/* Should we do more if we can't create the path?? */
1697 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1698 				    xpt_path_path_id(ccb->ccb_h.path),
1699 				    xpt_path_target_id(ccb->ccb_h.path),
1700 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1701 			break;
1702 
1703 		/*
1704 		 * Let peripheral drivers know that this device has gone
1705 		 * away.
1706 		 */
1707 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1708 		xpt_free_path(newpath);
1709 		break;
1710 	}
1711 	case CAM_REQ_INVALID:
1712 	case CAM_PATH_INVALID:
1713 	case CAM_DEV_NOT_THERE:
1714 	case CAM_NO_HBA:
1715 	case CAM_PROVIDE_FAIL:
1716 	case CAM_REQ_TOO_BIG:
1717 	case CAM_LUN_INVALID:
1718 	case CAM_TID_INVALID:
1719 		error = EINVAL;
1720 		break;
1721 	case CAM_SCSI_BUS_RESET:
1722 	case CAM_BDR_SENT:
1723 		/*
1724 		 * Commands that repeatedly timeout and cause these
1725 		 * kinds of error recovery actions, should return
1726 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1727 		 * that this command was an innocent bystander to
1728 		 * these events and should be unconditionally
1729 		 * retried.
1730 		 */
1731 		if (bootverbose && printed == 0) {
1732 			xpt_print_path(ccb->ccb_h.path);
1733 			if (status == CAM_BDR_SENT)
1734 				kprintf("Bus Device Reset sent\n");
1735 			else
1736 				kprintf("Bus Reset issued\n");
1737 			printed++;
1738 		}
1739 		/* FALLTHROUGH */
1740 	case CAM_REQUEUE_REQ:
1741 		/* Unconditional requeue */
1742 		error = ERESTART;
1743 		if (bootverbose && printed == 0) {
1744 			xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1745 			printed++;
1746 		}
1747 		break;
1748 	case CAM_RESRC_UNAVAIL:
1749 		/* Wait a bit for the resource shortage to abate. */
1750 		timeout = periph_noresrc_delay;
1751 		/* FALLTHROUGH */
1752 	case CAM_BUSY:
1753 		if (timeout == 0) {
1754 			/* Wait a bit for the busy condition to abate. */
1755 			timeout = periph_busy_delay;
1756 		}
1757 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1758 		/* FALLTHROUGH */
1759 	default:
1760 		/* decrement the number of retries */
1761 		if (ccb->ccb_h.retry_count > 0) {
1762 			ccb->ccb_h.retry_count--;
1763 			error = ERESTART;
1764 			if (bootverbose && printed == 0) {
1765 				xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1766 				    status);
1767 				printed++;
1768 			}
1769 		} else {
1770 			error = EIO;
1771 			action_string = "Retries Exhausted";
1772 		}
1773 		break;
1774 	}
1775 
1776 	/* Attempt a retry */
1777 	if (error == ERESTART || error == 0) {
1778 		if (frozen != 0)
1779 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1780 
1781 		if (error == ERESTART) {
1782 			action_string = "Retrying Command";
1783 			xpt_action(ccb);
1784 		}
1785 
1786 		if (frozen != 0)
1787 			cam_release_devq(ccb->ccb_h.path,
1788 					 relsim_flags,
1789 					 openings,
1790 					 timeout,
1791 					 /*getcount_only*/0);
1792 	}
1793 
1794 	/*
1795 	 * If we have an error and are booting verbosely, whine
1796 	 * *unless* this was a non-retryable selection timeout.
1797 	 */
1798 	if (error != 0 && bootverbose &&
1799 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1800 
1801 
1802 		if (action_string == NULL)
1803 			action_string = "Unretryable Error";
1804 		if (error != ERESTART) {
1805 			xpt_print(ccb->ccb_h.path, "error %d\n", error);
1806 		}
1807 		xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1808 	}
1809 
1810 	return (error);
1811 }
1812