xref: /dragonfly/sys/bus/cam/cam_periph.c (revision a3127495)
1 /*
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/buf.h>
39 #include <sys/proc.h>
40 #include <sys/devicestat.h>
41 #include <sys/bus.h>
42 #include <vm/vm.h>
43 #include <vm/vm_extern.h>
44 
45 #include <sys/thread2.h>
46 
47 #include "cam.h"
48 #include "cam_ccb.h"
49 #include "cam_xpt_periph.h"
50 #include "cam_periph.h"
51 #include "cam_debug.h"
52 #include "cam_sim.h"
53 
54 #include <bus/cam/scsi/scsi_all.h>
55 #include <bus/cam/scsi/scsi_message.h>
56 #include <bus/cam/scsi/scsi_pass.h>
57 
58 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
59 					  u_int newunit, int wired,
60 					  path_id_t pathid, target_id_t target,
61 					  lun_id_t lun);
62 static	u_int		camperiphunit(struct periph_driver *p_drv,
63 				      struct cam_sim *sim, path_id_t pathid,
64 				      target_id_t target, lun_id_t lun);
65 static	void		camperiphdone(struct cam_periph *periph,
66 					union ccb *done_ccb);
67 static  void		camperiphfree(struct cam_periph *periph);
68 static int		camperiphscsistatuserror(union ccb *ccb,
69 						 cam_flags camflags,
70 						 u_int32_t sense_flags,
71 						 union ccb *save_ccb,
72 						 int *openings,
73 						 u_int32_t *relsim_flags,
74 						 u_int32_t *timeout);
75 static	int		camperiphscsisenseerror(union ccb *ccb,
76 					        cam_flags camflags,
77 					        u_int32_t sense_flags,
78 					        union ccb *save_ccb,
79 					        int *openings,
80 					        u_int32_t *relsim_flags,
81 					        u_int32_t *timeout);
82 static void cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
83 				 u_int8_t ***data_ptrs, int numbufs);
84 
85 static int nperiph_drivers;
86 struct periph_driver **periph_drivers;
87 
88 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
89 
90 static int periph_selto_delay = 1000;
91 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
92 static int periph_noresrc_delay = 500;
93 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
94 static int periph_busy_delay = 500;
95 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
96 
97 
98 void
99 periphdriver_register(void *data)
100 {
101 	struct periph_driver **newdrivers, **old;
102 	int ndrivers;
103 
104 	ndrivers = nperiph_drivers + 2;
105 	newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
106 			     M_WAITOK);
107 	if (periph_drivers)
108 		bcopy(periph_drivers, newdrivers,
109 		      sizeof(*newdrivers) * nperiph_drivers);
110 	newdrivers[nperiph_drivers] = (struct periph_driver *)data;
111 	newdrivers[nperiph_drivers + 1] = NULL;
112 	old = periph_drivers;
113 	periph_drivers = newdrivers;
114 	if (old)
115 		kfree(old, M_CAMPERIPH);
116 	nperiph_drivers++;
117 }
118 
119 cam_status
120 cam_periph_alloc(periph_ctor_t *periph_ctor,
121 		 periph_oninv_t *periph_oninvalidate,
122 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
123 		 char *name, cam_periph_type type, struct cam_path *path,
124 		 ac_callback_t *ac_callback, ac_code code, void *arg)
125 {
126 	struct		periph_driver **p_drv;
127 	struct		cam_sim *sim;
128 	struct		cam_periph *periph;
129 	struct		cam_periph *cur_periph;
130 	path_id_t	path_id;
131 	target_id_t	target_id;
132 	lun_id_t	lun_id;
133 	cam_status	status;
134 	u_int		init_level;
135 
136 	init_level = 0;
137 	/*
138 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
139 	 * of our type assigned to this path, we are likely waiting for
140 	 * final close on an old, invalidated, peripheral.  If this is
141 	 * the case, queue up a deferred call to the peripheral's async
142 	 * handler.  If it looks like a mistaken re-allocation, complain.
143 	 */
144 	if ((periph = cam_periph_find(path, name)) != NULL) {
145 
146 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
147 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
148 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
149 			periph->deferred_callback = ac_callback;
150 			periph->deferred_ac = code;
151 			return (CAM_REQ_INPROG);
152 		} else {
153 			kprintf("cam_periph_alloc: attempt to re-allocate "
154 			       "valid device %s%d rejected\n",
155 			       periph->periph_name, periph->unit_number);
156 		}
157 		return (CAM_REQ_INVALID);
158 	}
159 
160 	periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
161 
162 	init_level++;	/* 1 */
163 
164 	xpt_lock_buses();
165 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
166 		if (strcmp((*p_drv)->driver_name, name) == 0)
167 			break;
168 	}
169 	xpt_unlock_buses();
170 
171 	sim = xpt_path_sim(path);
172 	CAM_SIM_LOCK(sim);
173 	path_id = xpt_path_path_id(path);
174 	target_id = xpt_path_target_id(path);
175 	lun_id = xpt_path_lun_id(path);
176 	cam_init_pinfo(&periph->pinfo);
177 	periph->periph_start = periph_start;
178 	periph->periph_dtor = periph_dtor;
179 	periph->periph_oninval = periph_oninvalidate;
180 	periph->type = type;
181 	periph->periph_name = name;
182 	periph->immediate_priority = CAM_PRIORITY_NONE;
183 	periph->refcount = 0;
184 	periph->sim = sim;
185 	SLIST_INIT(&periph->ccb_list);
186 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
187 	if (status != CAM_REQ_CMP)
188 		goto failure;
189 
190 	init_level++;	/* 2 */
191 
192 	periph->path = path;
193 
194 	/*
195 	 * Finalize with buses locked.  Allocate unit number and add to
196 	 * list to reserve the unit number.  Undo later if the XPT fails.
197 	 */
198 	xpt_lock_buses();
199 	periph->unit_number = camperiphunit(*p_drv, sim, path_id,
200 					    target_id, lun_id);
201 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
202 	while (cur_periph != NULL &&
203 	       cur_periph->unit_number < periph->unit_number) {
204 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
205 	}
206 	if (cur_periph != NULL) {
207 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
208 	} else {
209 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
210 		(*p_drv)->generation++;
211 	}
212 	xpt_unlock_buses();
213 
214 	status = xpt_add_periph(periph);
215 
216 	if (status != CAM_REQ_CMP)
217 		goto failure;
218 
219 	init_level++;	/* 3 */
220 
221 	status = periph_ctor(periph, arg);
222 
223 	if (status == CAM_REQ_CMP)
224 		init_level++; /* 4 */
225 
226 failure:
227 	switch (init_level) {
228 	case 4:
229 		/* Initialized successfully */
230 		CAM_SIM_UNLOCK(sim);
231 		break;
232 	case 3:
233 	case 2:
234 		xpt_lock_buses();
235 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
236 		xpt_unlock_buses();
237 		if (init_level == 3)
238 			xpt_remove_periph(periph);
239 		periph->path = NULL;
240 		/* FALLTHROUGH */
241 	case 1:
242 		CAM_SIM_UNLOCK(sim);	/* sim was retrieved from path */
243 		xpt_free_path(path);
244 		kfree(periph, M_CAMPERIPH);
245 		/* FALLTHROUGH */
246 	case 0:
247 		/* No cleanup to perform. */
248 		break;
249 	default:
250 		panic("cam_periph_alloc: Unknown init level");
251 	}
252 	return(status);
253 }
254 
255 /*
256  * Find a peripheral structure with the specified path, target, lun,
257  * and (optionally) type.  If the name is NULL, this function will return
258  * the first peripheral driver that matches the specified path.
259  */
260 struct cam_periph *
261 cam_periph_find(struct cam_path *path, char *name)
262 {
263 	struct periph_driver **p_drv;
264 	struct cam_periph *periph;
265 
266 	xpt_lock_buses();
267 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
268 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
269 			continue;
270 
271 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
272 			if (xpt_path_comp(periph->path, path) == 0) {
273 				xpt_unlock_buses();
274 				return(periph);
275 			}
276 		}
277 		if (name != NULL) {
278 			xpt_unlock_buses();
279 			return(NULL);
280 		}
281 	}
282 	xpt_unlock_buses();
283 	return(NULL);
284 }
285 
286 cam_status
287 cam_periph_acquire(struct cam_periph *periph)
288 {
289 	if (periph == NULL)
290 		return(CAM_REQ_CMP_ERR);
291 
292 	xpt_lock_buses();
293 	periph->refcount++;
294 	xpt_unlock_buses();
295 
296 	return(CAM_REQ_CMP);
297 }
298 
299 /*
300  * Release the peripheral.  The XPT is not locked and the SIM may or may
301  * not be locked on entry.
302  *
303  * The last release on a peripheral marked invalid frees it.  In this
304  * case we must be sure to hold both the XPT lock and the SIM lock,
305  * requiring a bit of fancy footwork if the SIM lock already happens
306  * to be held.
307  */
308 void
309 cam_periph_release(struct cam_periph *periph)
310 {
311 	struct cam_sim *sim;
312 	int doun;
313 
314 	while (periph) {
315 		/*
316 		 * First try the critical path case
317 		 */
318 		sim = periph->sim;
319 		xpt_lock_buses();
320 		if ((periph->flags & CAM_PERIPH_INVALID) == 0 ||
321 		    periph->refcount != 1) {
322 			--periph->refcount;
323 			xpt_unlock_buses();
324 			break;
325 		}
326 
327 		/*
328 		 * Otherwise we also need to free the peripheral and must
329 		 * acquire the sim lock and xpt lock in the correct order
330 		 * to do so.
331 		 *
332 		 * The condition must be re-checked after the locks have
333 		 * been reacquired.
334 		 */
335 		xpt_unlock_buses();
336 		doun = CAM_SIM_COND_LOCK(sim);
337 		xpt_lock_buses();
338 		--periph->refcount;
339 		if ((periph->flags & CAM_PERIPH_INVALID) &&
340 		    periph->refcount == 0) {
341 			camperiphfree(periph);
342 		}
343 		xpt_unlock_buses();
344 		CAM_SIM_COND_UNLOCK(sim, doun);
345 		break;
346 	}
347 }
348 
349 int
350 cam_periph_hold(struct cam_periph *periph, int flags)
351 {
352 	int error;
353 
354 	sim_lock_assert_owned(periph->sim->lock);
355 
356 	/*
357 	 * Increment the reference count on the peripheral
358 	 * while we wait for our lock attempt to succeed
359 	 * to ensure the peripheral doesn't disappear out
360 	 * from user us while we sleep.
361 	 */
362 
363 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
364 		return (ENXIO);
365 
366 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
367 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
368 		if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
369 					    periph->sim->lock)) != 0) {
370 			cam_periph_release(periph);
371 			return (error);
372 		}
373 	}
374 
375 	periph->flags |= CAM_PERIPH_LOCKED;
376 	return (0);
377 }
378 
379 void
380 cam_periph_unhold(struct cam_periph *periph, int unlock)
381 {
382 	struct cam_sim *sim;
383 
384 	sim_lock_assert_owned(periph->sim->lock);
385 	periph->flags &= ~CAM_PERIPH_LOCKED;
386 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
387 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
388 		wakeup(periph);
389 	}
390 	if (unlock) {
391 		sim = periph->sim;
392 		cam_periph_release(periph);
393 		/* periph may be garbage now */
394 		CAM_SIM_UNLOCK(sim);
395 	} else {
396 		cam_periph_release(periph);
397 	}
398 }
399 
400 /*
401  * Look for the next unit number that is not currently in use for this
402  * peripheral type starting at "newunit".  Also exclude unit numbers that
403  * are reserved by for future "hardwiring" unless we already know that this
404  * is a potential wired device.  Only assume that the device is "wired" the
405  * first time through the loop since after that we'll be looking at unit
406  * numbers that did not match a wiring entry.
407  */
408 static u_int
409 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
410 		  path_id_t pathid, target_id_t target, lun_id_t lun)
411 {
412 	struct	cam_periph *periph;
413 	char	*periph_name;
414 	int	i, val, dunit;
415 	const char *dname, *strval;
416 
417 	periph_name = p_drv->driver_name;
418 	for (;;) {
419 		for (periph = TAILQ_FIRST(&p_drv->units);
420 		     periph != NULL && periph->unit_number != newunit;
421 		     periph = TAILQ_NEXT(periph, unit_links))
422 			;
423 
424 		if (periph != NULL && periph->unit_number == newunit) {
425 			if (wired != 0) {
426 				xpt_print(periph->path, "Duplicate Wired "
427 				    "Device entry!\n");
428 				xpt_print(periph->path, "Second device (%s "
429 				    "device at scbus%d target %d lun %d) will "
430 				    "not be wired\n", periph_name, pathid,
431 				    target, lun);
432 				wired = 0;
433 			}
434 			++newunit;
435 			continue;
436 		}
437 		if (wired)
438 			break;
439 
440 		/*
441 		 * Don't match entries like "da 4" as a wired down
442 		 * device, but do match entries like "da 4 target 5"
443 		 * or even "da 4 scbus 1".
444 		 */
445 		i = -1;
446 		while ((i = resource_locate(i, periph_name)) != -1) {
447 			dname = resource_query_name(i);
448 			dunit = resource_query_unit(i);
449 			/* if no "target" and no specific scbus, skip */
450 			if (resource_int_value(dname, dunit, "target", &val) &&
451 			    (resource_string_value(dname, dunit, "at",&strval)||
452 			     strcmp(strval, "scbus") == 0)) {
453 				continue;
454 			}
455 			if (newunit == dunit)
456 				break;
457 		}
458 		if (i == -1)
459 			break;
460 		++newunit;
461 	}
462 	return (newunit);
463 }
464 
465 static u_int
466 camperiphunit(struct periph_driver *p_drv,
467 	      struct cam_sim *sim, path_id_t pathid,
468 	      target_id_t target, lun_id_t lun)
469 {
470 	u_int	unit;
471 	int	hit, i, val, dunit;
472 	const char *dname, *strval;
473 	char	pathbuf[32], *periph_name;
474 
475 	unit = 0;
476 
477 	periph_name = p_drv->driver_name;
478 	ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
479 	i = -1;
480 	for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
481 		dname = resource_query_name(i);
482 		dunit = resource_query_unit(i);
483 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
484 			if (strcmp(strval, pathbuf) != 0)
485 				continue;
486 			hit++;
487 		}
488 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
489 			if (val != target)
490 				continue;
491 			hit++;
492 		}
493 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
494 			if (val != lun)
495 				continue;
496 			hit++;
497 		}
498 		if (hit != 0) {
499 			unit = dunit;
500 			break;
501 		}
502 	}
503 
504 	/*
505 	 * If no wired units are in the kernel config do an auto unit
506 	 * start selection.  We want usb mass storage out of the way
507 	 * so it doesn't steal low numbered da%d slots from ahci, sili,
508 	 * or other scsi attachments.
509 	 */
510 	if (hit == 0 && sim) {
511 		if (strncmp(sim->sim_name, "umass", 4) == 0 && unit < 8)
512 			unit = 8;
513 	}
514 
515 	/*
516 	 * Either start from 0 looking for the next unit or from
517 	 * the unit number given in the resource config.  This way,
518 	 * if we have wildcard matches, we don't return the same
519 	 * unit number twice.
520 	 */
521 	unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
522 				 target, lun);
523 
524 	return (unit);
525 }
526 
527 void
528 cam_periph_invalidate(struct cam_periph *periph)
529 {
530 	/*
531 	 * We only call this routine the first time a peripheral is
532 	 * invalidated.
533 	 */
534 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
535 	 && (periph->periph_oninval != NULL))
536 		periph->periph_oninval(periph);
537 
538 	periph->flags |= CAM_PERIPH_INVALID;
539 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
540 
541 	xpt_lock_buses();
542 	if (periph->refcount == 0)
543 		camperiphfree(periph);
544 	else if (periph->refcount < 0)
545 		kprintf("cam_invalidate_periph: refcount < 0!!\n");
546 	xpt_unlock_buses();
547 }
548 
549 static void
550 camperiphfree(struct cam_periph *periph)
551 {
552 	struct periph_driver **p_drv;
553 
554 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
555 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
556 			break;
557 	}
558 
559 	if (*p_drv == NULL) {
560 		kprintf("camperiphfree: attempt to free non-existent periph\n");
561 		return;
562 	}
563 
564 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
565 	(*p_drv)->generation++;
566 	xpt_unlock_buses();
567 
568 	if (periph->periph_dtor != NULL)
569 		periph->periph_dtor(periph);
570 	xpt_remove_periph(periph);
571 
572 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
573 		union ccb ccb;
574 		void *arg;
575 
576 		switch (periph->deferred_ac) {
577 		case AC_FOUND_DEVICE:
578 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
579 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
580 			xpt_action(&ccb);
581 			arg = &ccb;
582 			break;
583 		case AC_PATH_REGISTERED:
584 			ccb.ccb_h.func_code = XPT_PATH_INQ;
585 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
586 			xpt_action(&ccb);
587 			arg = &ccb;
588 			break;
589 		default:
590 			arg = NULL;
591 			break;
592 		}
593 		periph->deferred_callback(NULL, periph->deferred_ac,
594 					  periph->path, arg);
595 	}
596 	xpt_free_path(periph->path);
597 	kfree(periph, M_CAMPERIPH);
598 	xpt_lock_buses();
599 }
600 
601 /*
602  * We don't map user pointers into KVM, instead we use pbufs.
603  *
604  * This won't work on physical pointers(?OLD), for now it's
605  * up to the caller to check for that.  (XXX KDM -- should we do that here
606  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
607  * buffers to map stuff in and out, we're limited to the buffer size.
608  */
609 int
610 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
611 {
612 	buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
613 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
614 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
615 	int numbufs;
616 	int error;
617 	int i;
618 	struct buf *bp;
619 
620 	switch(ccb->ccb_h.func_code) {
621 	case XPT_DEV_MATCH:
622 		if (ccb->cdm.match_buf_len == 0) {
623 			kprintf("cam_periph_mapmem: invalid match buffer "
624 			       "length 0\n");
625 			return(EINVAL);
626 		}
627 		if (ccb->cdm.pattern_buf_len > 0) {
628 			data_ptrs[0] = (void *)&ccb->cdm.patterns;
629 			lengths[0] = ccb->cdm.pattern_buf_len;
630 			mapinfo->dirs[0] = CAM_DIR_OUT;
631 			data_ptrs[1] = (void *)&ccb->cdm.matches;
632 			lengths[1] = ccb->cdm.match_buf_len;
633 			mapinfo->dirs[1] = CAM_DIR_IN;
634 			numbufs = 2;
635 		} else {
636 			data_ptrs[0] = (void *)&ccb->cdm.matches;
637 			lengths[0] = ccb->cdm.match_buf_len;
638 			mapinfo->dirs[0] = CAM_DIR_IN;
639 			numbufs = 1;
640 		}
641 		break;
642 	case XPT_SCSI_IO:
643 	case XPT_CONT_TARGET_IO:
644 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
645 			return(0);
646 
647 		data_ptrs[0] = &ccb->csio.data_ptr;
648 		lengths[0] = ccb->csio.dxfer_len;
649 		mapinfo->dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
650 		numbufs = 1;
651 		break;
652 	default:
653 		return(EINVAL);
654 		break; /* NOTREACHED */
655 	}
656 
657 	/*
658 	 * Check the transfer length and permissions first, so we don't
659 	 * have to unmap any previously mapped buffers.
660 	 */
661 	for (i = 0; i < numbufs; i++) {
662 		/*
663 		 * Its kinda bogus, we need a R+W command.  For now the
664 		 * buffer needs some sort of command.  Use BUF_CMD_WRITE
665 		 * to indicate a write and BUF_CMD_READ to indicate R+W.
666 		 */
667 		cmd[i] = BUF_CMD_WRITE;
668 
669 		if (lengths[i] > MAXPHYS) {
670 			kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
671 			       "which is greater than MAXPHYS(%d)\n",
672 			       (long)(lengths[i] +
673 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
674 			       MAXPHYS);
675 			return(E2BIG);
676 		}
677 
678 		if (mapinfo->dirs[i] & CAM_DIR_OUT) {
679 			if (!useracc(*data_ptrs[i], lengths[i],
680 				     VM_PROT_READ)) {
681 				kprintf("cam_periph_mapmem: error, "
682 					"address %p, length %lu isn't "
683 					"user accessible for READ\n",
684 					(void *)*data_ptrs[i],
685 					(u_long)lengths[i]);
686 				return(EACCES);
687 			}
688 		}
689 
690 		if (mapinfo->dirs[i] & CAM_DIR_IN) {
691 			cmd[i] = BUF_CMD_READ;
692 			if (!useracc(*data_ptrs[i], lengths[i],
693 				     VM_PROT_WRITE)) {
694 				kprintf("cam_periph_mapmem: error, "
695 					"address %p, length %lu isn't "
696 					"user accessible for WRITE\n",
697 					(void *)*data_ptrs[i],
698 					(u_long)lengths[i]);
699 
700 				return(EACCES);
701 			}
702 		}
703 
704 	}
705 
706 	for (i = 0; i < numbufs; i++) {
707 		/*
708 		 * Get the buffer.
709 		 */
710 		bp = getpbuf_mem(NULL);
711 
712 		/* save the original user pointer */
713 		mapinfo->saved_ptrs[i] = *data_ptrs[i];
714 
715 		/* set the flags */
716 		bp->b_cmd = cmd[i];
717 
718 		/*
719 		 * Always bounce the I/O through kernel memory.
720 		 */
721 		bp->b_bcount = lengths[i];
722 		if (mapinfo->dirs[i] & CAM_DIR_OUT) {
723 			error = copyin(*data_ptrs[i], bp->b_data, bp->b_bcount);
724 		} else {
725 			error = 0;
726 		}
727 		if (error) {
728 			relpbuf(bp, NULL);
729 			cam_periph_unmapbufs(mapinfo, data_ptrs, i);
730 			mapinfo->num_bufs_used -= i;
731 			return(error);
732 		}
733 
734 		/* set our pointer to the new mapped area */
735 		*data_ptrs[i] = bp->b_data;
736 
737 		mapinfo->bp[i] = bp;
738 		mapinfo->num_bufs_used++;
739 	}
740 
741 	return(0);
742 }
743 
744 /*
745  * Unmap memory segments mapped into kernel virtual address space by
746  * cam_periph_mapmem().
747  */
748 void
749 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
750 {
751 	int numbufs;
752 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
753 
754 	if (mapinfo->num_bufs_used <= 0) {
755 		/* allow ourselves to be swapped once again */
756 		return;
757 	}
758 
759 	switch (ccb->ccb_h.func_code) {
760 	case XPT_DEV_MATCH:
761 		numbufs = min(mapinfo->num_bufs_used, 2);
762 
763 		if (numbufs == 1) {
764 			data_ptrs[0] = (void *)&ccb->cdm.matches;
765 		} else {
766 			data_ptrs[0] = (void *)&ccb->cdm.patterns;
767 			data_ptrs[1] = (void *)&ccb->cdm.matches;
768 		}
769 		break;
770 	case XPT_SCSI_IO:
771 	case XPT_CONT_TARGET_IO:
772 		data_ptrs[0] = &ccb->csio.data_ptr;
773 		numbufs = min(mapinfo->num_bufs_used, 1);
774 		break;
775 	default:
776 		/* allow ourselves to be swapped once again */
777 		return;
778 		break; /* NOTREACHED */
779 	}
780 	cam_periph_unmapbufs(mapinfo, data_ptrs, numbufs);
781 }
782 
783 static void
784 cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
785 		     u_int8_t ***data_ptrs, int numbufs)
786 {
787 	struct buf *bp;
788 	int i;
789 
790 	for (i = 0; i < numbufs; i++) {
791 		bp = mapinfo->bp[i];
792 
793 		/* Set the user's pointer back to the original value */
794 		*data_ptrs[i] = mapinfo->saved_ptrs[i];
795 
796 		if (mapinfo->dirs[i] & CAM_DIR_IN) {
797 			/* XXX return error */
798 			copyout(bp->b_data, *data_ptrs[i], bp->b_bcount);
799 		}
800 		relpbuf(bp, NULL);
801 		mapinfo->bp[i] = NULL;
802 	}
803 }
804 
805 union ccb *
806 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
807 {
808 	struct ccb_hdr *ccb_h;
809 
810 	sim_lock_assert_owned(periph->sim->lock);
811 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
812 
813 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
814 		if (periph->immediate_priority > priority)
815 			periph->immediate_priority = priority;
816 		xpt_schedule(periph, priority);
817 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
818 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
819 			break;
820 		sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
821 			       periph->sim->lock);
822 	}
823 
824 	ccb_h = SLIST_FIRST(&periph->ccb_list);
825 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
826 	return ((union ccb *)ccb_h);
827 }
828 
829 void
830 cam_periph_ccbwait(union ccb *ccb)
831 {
832 	struct cam_sim *sim;
833 
834 	sim = xpt_path_sim(ccb->ccb_h.path);
835 	while ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
836 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) {
837 		sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
838 	}
839 }
840 
841 int
842 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
843 		 int (*error_routine)(union ccb *ccb,
844 				      cam_flags camflags,
845 				      u_int32_t sense_flags))
846 {
847 	union ccb 	     *ccb;
848 	int 		     error;
849 	int		     found;
850 
851 	error = found = 0;
852 
853 	switch(cmd){
854 	case CAMGETPASSTHRU:
855 		ccb = cam_periph_getccb(periph, /* priority */ 1);
856 		xpt_setup_ccb(&ccb->ccb_h,
857 			      ccb->ccb_h.path,
858 			      /*priority*/1);
859 		ccb->ccb_h.func_code = XPT_GDEVLIST;
860 
861 		/*
862 		 * Basically, the point of this is that we go through
863 		 * getting the list of devices, until we find a passthrough
864 		 * device.  In the current version of the CAM code, the
865 		 * only way to determine what type of device we're dealing
866 		 * with is by its name.
867 		 */
868 		while (found == 0) {
869 			ccb->cgdl.index = 0;
870 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
871 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
872 
873 				/* we want the next device in the list */
874 				xpt_action(ccb);
875 				if (strncmp(ccb->cgdl.periph_name,
876 				    "pass", 4) == 0){
877 					found = 1;
878 					break;
879 				}
880 			}
881 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
882 			    (found == 0)) {
883 				ccb->cgdl.periph_name[0] = '\0';
884 				ccb->cgdl.unit_number = 0;
885 				break;
886 			}
887 		}
888 
889 		/* copy the result back out */
890 		bcopy(ccb, addr, sizeof(union ccb));
891 
892 		/* and release the ccb */
893 		xpt_release_ccb(ccb);
894 
895 		break;
896 	default:
897 		error = ENOTTY;
898 		break;
899 	}
900 	return(error);
901 }
902 
903 int
904 cam_periph_runccb(union ccb *ccb,
905 		  int (*error_routine)(union ccb *ccb,
906 				       cam_flags camflags,
907 				       u_int32_t sense_flags),
908 		  cam_flags camflags, u_int32_t sense_flags,
909 		  struct devstat *ds)
910 {
911 	struct cam_sim *sim;
912 	int error;
913 
914 	error = 0;
915 	sim = xpt_path_sim(ccb->ccb_h.path);
916 	sim_lock_assert_owned(sim->lock);
917 
918 	/*
919 	 * If the user has supplied a stats structure, and if we understand
920 	 * this particular type of ccb, record the transaction start.
921 	 */
922 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
923 		devstat_start_transaction(ds);
924 
925 	xpt_action(ccb);
926 
927 	do {
928 		cam_periph_ccbwait(ccb);
929 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
930 			error = 0;
931 		else if (error_routine != NULL)
932 			error = (*error_routine)(ccb, camflags, sense_flags);
933 		else
934 			error = 0;
935 
936 	} while (error == ERESTART);
937 
938 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
939 		cam_release_devq(ccb->ccb_h.path,
940 				 /* relsim_flags */0,
941 				 /* openings */0,
942 				 /* timeout */0,
943 				 /* getcount_only */ FALSE);
944 
945 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
946 		devstat_end_transaction(ds,
947 					ccb->csio.dxfer_len,
948 					ccb->csio.tag_action & 0xf,
949 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
950 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
951 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
952 					DEVSTAT_WRITE :
953 					DEVSTAT_READ);
954 
955 	return(error);
956 }
957 
958 void
959 cam_freeze_devq(struct cam_path *path)
960 {
961 	struct ccb_hdr ccb_h;
962 
963 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
964 	ccb_h.func_code = XPT_NOOP;
965 	ccb_h.flags = CAM_DEV_QFREEZE;
966 	xpt_action((union ccb *)&ccb_h);
967 }
968 
969 u_int32_t
970 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
971 		 u_int32_t openings, u_int32_t timeout,
972 		 int getcount_only)
973 {
974 	struct ccb_relsim crs;
975 
976 	xpt_setup_ccb(&crs.ccb_h, path,
977 		      /*priority*/1);
978 	crs.ccb_h.func_code = XPT_REL_SIMQ;
979 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
980 	crs.release_flags = relsim_flags;
981 	crs.openings = openings;
982 	crs.release_timeout = timeout;
983 	xpt_action((union ccb *)&crs);
984 	return (crs.qfrozen_cnt);
985 }
986 
987 #define saved_ccb_ptr ppriv_ptr0
988 static void
989 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
990 {
991 	union ccb      *saved_ccb;
992 	cam_status	status;
993 	int		frozen;
994 	int		sense;
995 	struct scsi_start_stop_unit *scsi_cmd;
996 	u_int32_t	relsim_flags, timeout;
997 	u_int32_t	qfrozen_cnt;
998 	int		xpt_done_ccb;
999 
1000 	xpt_done_ccb = FALSE;
1001 	status = done_ccb->ccb_h.status;
1002 	frozen = (status & CAM_DEV_QFRZN) != 0;
1003 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
1004 	status &= CAM_STATUS_MASK;
1005 
1006 	timeout = 0;
1007 	relsim_flags = 0;
1008 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1009 
1010 	/*
1011 	 * Unfreeze the queue once if it is already frozen..
1012 	 */
1013 	if (frozen != 0) {
1014 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1015 					      /*relsim_flags*/0,
1016 					      /*openings*/0,
1017 					      /*timeout*/0,
1018 					      /*getcount_only*/0);
1019 	}
1020 
1021 	switch (status) {
1022 	case CAM_REQ_CMP:
1023 	{
1024 		/*
1025 		 * If we have successfully taken a device from the not
1026 		 * ready to ready state, re-scan the device and re-get
1027 		 * the inquiry information.  Many devices (mostly disks)
1028 		 * don't properly report their inquiry information unless
1029 		 * they are spun up.
1030 		 *
1031 		 * If we manually retrieved sense into a CCB and got
1032 		 * something other than "NO SENSE" send the updated CCB
1033 		 * back to the client via xpt_done() to be processed via
1034 		 * the error recovery code again.
1035 		 */
1036 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
1037 			scsi_cmd = (struct scsi_start_stop_unit *)
1038 					&done_ccb->csio.cdb_io.cdb_bytes;
1039 
1040 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
1041 				xpt_async(AC_INQ_CHANGED,
1042 					  done_ccb->ccb_h.path, NULL);
1043 			if (scsi_cmd->opcode == REQUEST_SENSE) {
1044 				u_int sense_key;
1045 
1046 				sense_key = saved_ccb->csio.sense_data.flags;
1047 				sense_key &= SSD_KEY;
1048 				if (sense_key != SSD_KEY_NO_SENSE) {
1049 					saved_ccb->ccb_h.status |=
1050 					    CAM_AUTOSNS_VALID;
1051 #if 0
1052 					xpt_print(saved_ccb->ccb_h.path,
1053 					    "Recovered Sense\n");
1054 					scsi_sense_print(&saved_ccb->csio);
1055 					cam_error_print(saved_ccb, CAM_ESF_ALL,
1056 							CAM_EPF_ALL);
1057 #endif
1058 					xpt_done_ccb = TRUE;
1059 				}
1060 			}
1061 		}
1062 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1063 		      sizeof(union ccb));
1064 
1065 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1066 
1067 		if (xpt_done_ccb == FALSE)
1068 			xpt_action(done_ccb);
1069 
1070 		break;
1071 	}
1072 	case CAM_SCSI_STATUS_ERROR:
1073 		scsi_cmd = (struct scsi_start_stop_unit *)
1074 				&done_ccb->csio.cdb_io.cdb_bytes;
1075 		if (sense != 0) {
1076 			struct ccb_getdev cgd;
1077 			struct scsi_sense_data *sense;
1078 			int    error_code, sense_key, asc, ascq;
1079 			scsi_sense_action err_action;
1080 
1081 			sense = &done_ccb->csio.sense_data;
1082 			scsi_extract_sense(sense, &error_code,
1083 					   &sense_key, &asc, &ascq);
1084 
1085 			/*
1086 			 * Grab the inquiry data for this device.
1087 			 */
1088 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1089 				      /*priority*/ 1);
1090 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1091 			xpt_action((union ccb *)&cgd);
1092 			err_action = scsi_error_action(&done_ccb->csio,
1093 						       &cgd.inq_data, 0);
1094 
1095 			/*
1096 	 		 * If the error is "invalid field in CDB",
1097 			 * and the load/eject flag is set, turn the
1098 			 * flag off and try again.  This is just in
1099 			 * case the drive in question barfs on the
1100 			 * load eject flag.  The CAM code should set
1101 			 * the load/eject flag by default for
1102 			 * removable media.
1103 			 */
1104 
1105 			/* XXX KDM
1106 			 * Should we check to see what the specific
1107 			 * scsi status is??  Or does it not matter
1108 			 * since we already know that there was an
1109 			 * error, and we know what the specific
1110 			 * error code was, and we know what the
1111 			 * opcode is..
1112 			 */
1113 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1114 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1115 			     (asc == 0x24) && (ascq == 0x00) &&
1116 			     (done_ccb->ccb_h.retry_count > 0)) {
1117 
1118 				scsi_cmd->how &= ~SSS_LOEJ;
1119 
1120 				xpt_action(done_ccb);
1121 
1122 			} else if ((done_ccb->ccb_h.retry_count > 1)
1123 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1124 
1125 				/*
1126 				 * In this case, the error recovery
1127 				 * command failed, but we've got
1128 				 * some retries left on it.  Give
1129 				 * it another try unless this is an
1130 				 * unretryable error.
1131 				 */
1132 
1133 				/* set the timeout to .5 sec */
1134 				relsim_flags =
1135 					RELSIM_RELEASE_AFTER_TIMEOUT;
1136 				timeout = 500;
1137 
1138 				xpt_action(done_ccb);
1139 
1140 				break;
1141 
1142 			} else {
1143 				/*
1144 				 * Perform the final retry with the original
1145 				 * CCB so that final error processing is
1146 				 * performed by the owner of the CCB.
1147 				 */
1148 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1149 				      done_ccb, sizeof(union ccb));
1150 
1151 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1152 
1153 				xpt_action(done_ccb);
1154 			}
1155 		} else {
1156 			/*
1157 			 * Eh??  The command failed, but we don't
1158 			 * have any sense.  What's up with that?
1159 			 * Fire the CCB again to return it to the
1160 			 * caller.
1161 			 */
1162 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1163 			      done_ccb, sizeof(union ccb));
1164 
1165 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1166 
1167 			xpt_action(done_ccb);
1168 
1169 		}
1170 		break;
1171 	default:
1172 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1173 		      sizeof(union ccb));
1174 
1175 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1176 
1177 		xpt_action(done_ccb);
1178 
1179 		break;
1180 	}
1181 
1182 	/* decrement the retry count */
1183 	/*
1184 	 * XXX This isn't appropriate in all cases.  Restructure,
1185 	 *     so that the retry count is only decremented on an
1186 	 *     actual retry.  Remeber that the orignal ccb had its
1187 	 *     retry count dropped before entering recovery, so
1188 	 *     doing it again is a bug.
1189 	 */
1190 	if (done_ccb->ccb_h.retry_count > 0)
1191 		done_ccb->ccb_h.retry_count--;
1192 
1193 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1194 				      /*relsim_flags*/relsim_flags,
1195 				      /*openings*/0,
1196 				      /*timeout*/timeout,
1197 				      /*getcount_only*/0);
1198 	if (xpt_done_ccb == TRUE)
1199 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1200 }
1201 
1202 /*
1203  * Generic Async Event handler.  Peripheral drivers usually
1204  * filter out the events that require personal attention,
1205  * and leave the rest to this function.
1206  */
1207 void
1208 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1209 		 struct cam_path *path, void *arg)
1210 {
1211 	switch (code) {
1212 	case AC_LOST_DEVICE:
1213 		cam_periph_invalidate(periph);
1214 		break;
1215 	case AC_SENT_BDR:
1216 	case AC_BUS_RESET:
1217 	{
1218 		cam_periph_bus_settle(periph, scsi_delay);
1219 		break;
1220 	}
1221 	default:
1222 		break;
1223 	}
1224 }
1225 
1226 void
1227 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1228 {
1229 	struct ccb_getdevstats cgds;
1230 
1231 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1232 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1233 	xpt_action((union ccb *)&cgds);
1234 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1235 }
1236 
1237 void
1238 cam_periph_freeze_after_event(struct cam_periph *periph,
1239 			      struct timeval* event_time, u_int duration_ms)
1240 {
1241 	struct timeval delta;
1242 	struct timeval duration_tv;
1243 
1244 	microuptime(&delta);
1245 	timevalsub(&delta, event_time);
1246 	duration_tv.tv_sec = duration_ms / 1000;
1247 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1248 	if (timevalcmp(&delta, &duration_tv, <)) {
1249 		timevalsub(&duration_tv, &delta);
1250 
1251 		duration_ms = duration_tv.tv_sec * 1000;
1252 		duration_ms += duration_tv.tv_usec / 1000;
1253 		cam_freeze_devq(periph->path);
1254 		cam_release_devq(periph->path,
1255 				RELSIM_RELEASE_AFTER_TIMEOUT,
1256 				/*reduction*/0,
1257 				/*timeout*/duration_ms,
1258 				/*getcount_only*/0);
1259 	}
1260 
1261 }
1262 
1263 static int
1264 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1265 			 u_int32_t sense_flags, union ccb *save_ccb,
1266 			 int *openings, u_int32_t *relsim_flags,
1267 			 u_int32_t *timeout)
1268 {
1269 	int error;
1270 
1271 	switch (ccb->csio.scsi_status) {
1272 	case SCSI_STATUS_OK:
1273 	case SCSI_STATUS_COND_MET:
1274 	case SCSI_STATUS_INTERMED:
1275 	case SCSI_STATUS_INTERMED_COND_MET:
1276 		error = 0;
1277 		break;
1278 	case SCSI_STATUS_CMD_TERMINATED:
1279 	case SCSI_STATUS_CHECK_COND:
1280 		error = camperiphscsisenseerror(ccb,
1281 					        camflags,
1282 					        sense_flags,
1283 					        save_ccb,
1284 					        openings,
1285 					        relsim_flags,
1286 					        timeout);
1287 		break;
1288 	case SCSI_STATUS_QUEUE_FULL:
1289 	{
1290 		/* no decrement */
1291 		struct ccb_getdevstats cgds;
1292 
1293 		/*
1294 		 * First off, find out what the current
1295 		 * transaction counts are.
1296 		 */
1297 		xpt_setup_ccb(&cgds.ccb_h,
1298 			      ccb->ccb_h.path,
1299 			      /*priority*/1);
1300 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1301 		xpt_action((union ccb *)&cgds);
1302 
1303 		/*
1304 		 * If we were the only transaction active, treat
1305 		 * the QUEUE FULL as if it were a BUSY condition.
1306 		 */
1307 		if (cgds.dev_active != 0) {
1308 			int total_openings;
1309 
1310 			/*
1311 			 * Reduce the number of openings to
1312 			 * be 1 less than the amount it took
1313 			 * to get a queue full bounded by the
1314 			 * minimum allowed tag count for this
1315 			 * device.
1316 			 */
1317 			total_openings = cgds.dev_active + cgds.dev_openings;
1318 			*openings = cgds.dev_active;
1319 			if (*openings < cgds.mintags)
1320 				*openings = cgds.mintags;
1321 			if (*openings < total_openings)
1322 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1323 			else {
1324 				/*
1325 				 * Some devices report queue full for
1326 				 * temporary resource shortages.  For
1327 				 * this reason, we allow a minimum
1328 				 * tag count to be entered via a
1329 				 * quirk entry to prevent the queue
1330 				 * count on these devices from falling
1331 				 * to a pessimisticly low value.  We
1332 				 * still wait for the next successful
1333 				 * completion, however, before queueing
1334 				 * more transactions to the device.
1335 				 */
1336 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1337 			}
1338 			*timeout = 0;
1339 			error = ERESTART;
1340 			if (bootverbose) {
1341 				xpt_print(ccb->ccb_h.path, "Queue Full\n");
1342 			}
1343 			break;
1344 		}
1345 		/* FALLTHROUGH */
1346 	}
1347 	case SCSI_STATUS_BUSY:
1348 		/*
1349 		 * Restart the queue after either another
1350 		 * command completes or a 1 second timeout.
1351 		 */
1352 		if (bootverbose) {
1353 			xpt_print(ccb->ccb_h.path, "Device Busy\n");
1354 		}
1355 		if (ccb->ccb_h.retry_count > 0) {
1356 			ccb->ccb_h.retry_count--;
1357 			error = ERESTART;
1358 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1359 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1360 			*timeout = 1000;
1361 		} else {
1362 			error = EIO;
1363 		}
1364 		break;
1365 	case SCSI_STATUS_RESERV_CONFLICT:
1366 		xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1367 		error = EIO;
1368 		break;
1369 	default:
1370 		xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1371 		    ccb->csio.scsi_status);
1372 		error = EIO;
1373 		break;
1374 	}
1375 	return (error);
1376 }
1377 
1378 static int
1379 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1380 			u_int32_t sense_flags, union ccb *save_ccb,
1381 		       int *openings, u_int32_t *relsim_flags,
1382 		       u_int32_t *timeout)
1383 {
1384 	struct cam_periph *periph;
1385 	int error;
1386 
1387 	periph = xpt_path_periph(ccb->ccb_h.path);
1388 	if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1389 
1390 		/*
1391 		 * If error recovery is already in progress, don't attempt
1392 		 * to process this error, but requeue it unconditionally
1393 		 * and attempt to process it once error recovery has
1394 		 * completed.  This failed command is probably related to
1395 		 * the error that caused the currently active error recovery
1396 		 * action so our  current recovery efforts should also
1397 		 * address this command.  Be aware that the error recovery
1398 		 * code assumes that only one recovery action is in progress
1399 		 * on a particular peripheral instance at any given time
1400 		 * (e.g. only one saved CCB for error recovery) so it is
1401 		 * imperitive that we don't violate this assumption.
1402 		 */
1403 		error = ERESTART;
1404 	} else {
1405 		scsi_sense_action err_action;
1406 		struct ccb_getdev cgd;
1407 		const char *action_string;
1408 		union ccb* print_ccb;
1409 
1410 		/* A description of the error recovery action performed */
1411 		action_string = NULL;
1412 
1413 		/*
1414 		 * The location of the orignal ccb
1415 		 * for sense printing purposes.
1416 		 */
1417 		print_ccb = ccb;
1418 
1419 		/*
1420 		 * Grab the inquiry data for this device.
1421 		 */
1422 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1423 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1424 		xpt_action((union ccb *)&cgd);
1425 
1426 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1427 			err_action = scsi_error_action(&ccb->csio,
1428 						       &cgd.inq_data,
1429 						       sense_flags);
1430 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1431 			err_action = SS_REQSENSE;
1432 		else
1433 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1434 
1435 		error = err_action & SS_ERRMASK;
1436 
1437 		/*
1438 		 * If the recovery action will consume a retry,
1439 		 * make sure we actually have retries available.
1440 		 */
1441 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1442 			if (ccb->ccb_h.retry_count > 0)
1443 				ccb->ccb_h.retry_count--;
1444 			else {
1445 				action_string = "Retries Exhausted";
1446 				goto sense_error_done;
1447 			}
1448 		}
1449 
1450 		if ((err_action & SS_MASK) >= SS_START) {
1451 			/*
1452 			 * Do common portions of commands that
1453 			 * use recovery CCBs.
1454 			 */
1455 			if (save_ccb == NULL) {
1456 				action_string = "No recovery CCB supplied";
1457 				goto sense_error_done;
1458 			}
1459 			bcopy(ccb, save_ccb, sizeof(*save_ccb));
1460 			print_ccb = save_ccb;
1461 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1462 		}
1463 
1464 		switch (err_action & SS_MASK) {
1465 		case SS_NOP:
1466 			action_string = "No Recovery Action Needed";
1467 			error = 0;
1468 			break;
1469 		case SS_RETRY:
1470 			action_string = "Retrying Command (per Sense Data)";
1471 			error = ERESTART;
1472 			break;
1473 		case SS_FAIL:
1474 			action_string = "Unretryable error";
1475 			break;
1476 		case SS_START:
1477 		{
1478 			int le;
1479 
1480 			/*
1481 			 * Send a start unit command to the device, and
1482 			 * then retry the command.
1483 			 */
1484 			action_string = "Attempting to Start Unit";
1485 
1486 			/*
1487 			 * Check for removable media and set
1488 			 * load/eject flag appropriately.
1489 			 */
1490 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1491 				le = TRUE;
1492 			else
1493 				le = FALSE;
1494 
1495 			scsi_start_stop(&ccb->csio,
1496 					/*retries*/1,
1497 					camperiphdone,
1498 					MSG_SIMPLE_Q_TAG,
1499 					/*start*/TRUE,
1500 					/*load/eject*/le,
1501 					/*immediate*/FALSE,
1502 					SSD_FULL_SIZE,
1503 					/*timeout*/50000);
1504 			break;
1505 		}
1506 		case SS_TUR:
1507 		{
1508 			/*
1509 			 * Send a Test Unit Ready to the device.
1510 			 * If the 'many' flag is set, we send 120
1511 			 * test unit ready commands, one every half
1512 			 * second.  Otherwise, we just send one TUR.
1513 			 * We only want to do this if the retry
1514 			 * count has not been exhausted.
1515 			 */
1516 			int retries;
1517 
1518 			if ((err_action & SSQ_MANY) != 0) {
1519 				action_string = "Polling device for readiness";
1520 				retries = 120;
1521 			} else {
1522 				action_string = "Testing device for readiness";
1523 				retries = 1;
1524 			}
1525 			scsi_test_unit_ready(&ccb->csio,
1526 					     retries,
1527 					     camperiphdone,
1528 					     MSG_SIMPLE_Q_TAG,
1529 					     SSD_FULL_SIZE,
1530 					     /*timeout*/5000);
1531 
1532 			/*
1533 			 * Accomplish our 500ms delay by deferring
1534 			 * the release of our device queue appropriately.
1535 			 */
1536 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1537 			*timeout = 500;
1538 			break;
1539 		}
1540 		case SS_REQSENSE:
1541 		{
1542 			/*
1543 			 * Send a Request Sense to the device.  We
1544 			 * assume that we are in a contingent allegiance
1545 			 * condition so we do not tag this request.
1546 			 */
1547 			scsi_request_sense(&ccb->csio, /*retries*/1,
1548 					   camperiphdone,
1549 					   &save_ccb->csio.sense_data,
1550 					   sizeof(save_ccb->csio.sense_data),
1551 					   CAM_TAG_ACTION_NONE,
1552 					   /*sense_len*/SSD_FULL_SIZE,
1553 					   /*timeout*/5000);
1554 			break;
1555 		}
1556 		default:
1557 			panic("Unhandled error action %x", err_action);
1558 		}
1559 
1560 		if ((err_action & SS_MASK) >= SS_START) {
1561 			/*
1562 			 * Drop the priority to 0 so that the recovery
1563 			 * CCB is the first to execute.  Freeze the queue
1564 			 * after this command is sent so that we can
1565 			 * restore the old csio and have it queued in
1566 			 * the proper order before we release normal
1567 			 * transactions to the device.
1568 			 */
1569 			ccb->ccb_h.pinfo.priority = 0;
1570 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1571 			ccb->ccb_h.saved_ccb_ptr = save_ccb;
1572 			error = ERESTART;
1573 		}
1574 
1575 sense_error_done:
1576 		if ((err_action & SSQ_PRINT_SENSE) != 0
1577 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1578 			cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1579 			xpt_print_path(ccb->ccb_h.path);
1580 			if (bootverbose)
1581 				scsi_sense_print(&print_ccb->csio);
1582 			kprintf("%s\n", action_string);
1583 		}
1584 	}
1585 	return (error);
1586 }
1587 
1588 /*
1589  * Generic error handler.  Peripheral drivers usually filter
1590  * out the errors that they handle in a unique mannor, then
1591  * call this function.
1592  */
1593 int
1594 cam_periph_error(union ccb *ccb, cam_flags camflags,
1595 		 u_int32_t sense_flags, union ccb *save_ccb)
1596 {
1597 	const char *action_string;
1598 	cam_status  status;
1599 	int	    frozen;
1600 	int	    error, printed = 0;
1601 	int         openings;
1602 	u_int32_t   relsim_flags;
1603 	u_int32_t   timeout = 0;
1604 
1605 	action_string = NULL;
1606 	status = ccb->ccb_h.status;
1607 	frozen = (status & CAM_DEV_QFRZN) != 0;
1608 	status &= CAM_STATUS_MASK;
1609 	openings = relsim_flags = 0;
1610 
1611 	switch (status) {
1612 	case CAM_REQ_CMP:
1613 		error = 0;
1614 		break;
1615 	case CAM_SCSI_STATUS_ERROR:
1616 		error = camperiphscsistatuserror(ccb,
1617 						 camflags,
1618 						 sense_flags,
1619 						 save_ccb,
1620 						 &openings,
1621 						 &relsim_flags,
1622 						 &timeout);
1623 		break;
1624 	case CAM_AUTOSENSE_FAIL:
1625 		xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1626 		error = EIO;	/* we have to kill the command */
1627 		break;
1628 	case CAM_REQ_CMP_ERR:
1629 		if (bootverbose && printed == 0) {
1630 			xpt_print(ccb->ccb_h.path,
1631 			    "Request completed with CAM_REQ_CMP_ERR\n");
1632 			printed++;
1633 		}
1634 		/* FALLTHROUGH */
1635 	case CAM_CMD_TIMEOUT:
1636 		if (bootverbose && printed == 0) {
1637 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1638 			printed++;
1639 		}
1640 		/* FALLTHROUGH */
1641 	case CAM_UNEXP_BUSFREE:
1642 		if (bootverbose && printed == 0) {
1643 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1644 			printed++;
1645 		}
1646 		/* FALLTHROUGH */
1647 	case CAM_UNCOR_PARITY:
1648 		if (bootverbose && printed == 0) {
1649 			xpt_print(ccb->ccb_h.path,
1650 			    "Uncorrected Parity Error\n");
1651 			printed++;
1652 		}
1653 		/* FALLTHROUGH */
1654 	case CAM_DATA_RUN_ERR:
1655 		if (bootverbose && printed == 0) {
1656 			xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1657 			printed++;
1658 		}
1659 		error = EIO;	/* we have to kill the command */
1660 		/* decrement the number of retries */
1661 		if (ccb->ccb_h.retry_count > 0) {
1662 			ccb->ccb_h.retry_count--;
1663 			error = ERESTART;
1664 		} else {
1665 			action_string = "Retries Exhausted";
1666 			error = EIO;
1667 		}
1668 		break;
1669 	case CAM_UA_ABORT:
1670 	case CAM_UA_TERMIO:
1671 	case CAM_MSG_REJECT_REC:
1672 		/* XXX Don't know that these are correct */
1673 		error = EIO;
1674 		break;
1675 	case CAM_SEL_TIMEOUT:
1676 	{
1677 		struct cam_path *newpath;
1678 
1679 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1680 			if (ccb->ccb_h.retry_count > 0) {
1681 
1682 				ccb->ccb_h.retry_count--;
1683 				error = ERESTART;
1684 				if (bootverbose && printed == 0) {
1685 					xpt_print(ccb->ccb_h.path,
1686 					    "Selection Timeout\n");
1687 					printed++;
1688 				}
1689 
1690 				/*
1691 				 * Wait a bit to give the device
1692 				 * time to recover before we try again.
1693 				 */
1694 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1695 				timeout = periph_selto_delay;
1696 				break;
1697 			}
1698 		}
1699 		error = ENXIO;
1700 		/* Should we do more if we can't create the path?? */
1701 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1702 				    xpt_path_path_id(ccb->ccb_h.path),
1703 				    xpt_path_target_id(ccb->ccb_h.path),
1704 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1705 			break;
1706 
1707 		/*
1708 		 * Let peripheral drivers know that this device has gone
1709 		 * away.
1710 		 */
1711 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1712 		xpt_free_path(newpath);
1713 		break;
1714 	}
1715 	case CAM_REQ_INVALID:
1716 	case CAM_PATH_INVALID:
1717 	case CAM_DEV_NOT_THERE:
1718 	case CAM_NO_HBA:
1719 	case CAM_PROVIDE_FAIL:
1720 	case CAM_REQ_TOO_BIG:
1721 	case CAM_LUN_INVALID:
1722 	case CAM_TID_INVALID:
1723 		error = EINVAL;
1724 		break;
1725 	case CAM_SCSI_BUS_RESET:
1726 	case CAM_BDR_SENT:
1727 		/*
1728 		 * Commands that repeatedly timeout and cause these
1729 		 * kinds of error recovery actions, should return
1730 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1731 		 * that this command was an innocent bystander to
1732 		 * these events and should be unconditionally
1733 		 * retried.
1734 		 */
1735 		if (bootverbose && printed == 0) {
1736 			xpt_print_path(ccb->ccb_h.path);
1737 			if (status == CAM_BDR_SENT)
1738 				kprintf("Bus Device Reset sent\n");
1739 			else
1740 				kprintf("Bus Reset issued\n");
1741 			printed++;
1742 		}
1743 		/* FALLTHROUGH */
1744 	case CAM_REQUEUE_REQ:
1745 		/* Unconditional requeue */
1746 		error = ERESTART;
1747 		if (bootverbose && printed == 0) {
1748 			xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1749 			printed++;
1750 		}
1751 		break;
1752 	case CAM_RESRC_UNAVAIL:
1753 		/* Wait a bit for the resource shortage to abate. */
1754 		timeout = periph_noresrc_delay;
1755 		/* FALLTHROUGH */
1756 	case CAM_BUSY:
1757 		if (timeout == 0) {
1758 			/* Wait a bit for the busy condition to abate. */
1759 			timeout = periph_busy_delay;
1760 		}
1761 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1762 		/* FALLTHROUGH */
1763 	default:
1764 		/* decrement the number of retries */
1765 		if (ccb->ccb_h.retry_count > 0) {
1766 			ccb->ccb_h.retry_count--;
1767 			error = ERESTART;
1768 			if (bootverbose && printed == 0) {
1769 				xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1770 				    status);
1771 				printed++;
1772 			}
1773 		} else {
1774 			error = EIO;
1775 			action_string = "Retries Exhausted";
1776 		}
1777 		break;
1778 	}
1779 
1780 	/* Attempt a retry */
1781 	if (error == ERESTART || error == 0) {
1782 		if (frozen != 0)
1783 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1784 
1785 		if (error == ERESTART) {
1786 			action_string = "Retrying Command";
1787 			xpt_action(ccb);
1788 		}
1789 
1790 		if (frozen != 0)
1791 			cam_release_devq(ccb->ccb_h.path,
1792 					 relsim_flags,
1793 					 openings,
1794 					 timeout,
1795 					 /*getcount_only*/0);
1796 	}
1797 
1798 	/*
1799 	 * If we have an error and are booting verbosely, whine
1800 	 * *unless* this was a non-retryable selection timeout.
1801 	 */
1802 	if (error != 0 && bootverbose && (sense_flags & SF_NO_PRINT) == 0 &&
1803 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1804 
1805 
1806 		if (action_string == NULL)
1807 			action_string = "Unretryable Error";
1808 		if (error != ERESTART) {
1809 			xpt_print(ccb->ccb_h.path, "error %d\n", error);
1810 		}
1811 		xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1812 	}
1813 
1814 	return (error);
1815 }
1816