xref: /dragonfly/sys/bus/cam/cam_periph.c (revision cc93b0eb)
1 /*
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30  * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.40 2008/05/18 20:30:19 pavalos Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/devicestat.h>
42 #include <sys/bus.h>
43 #include <vm/vm.h>
44 #include <vm/vm_extern.h>
45 
46 #include <sys/thread2.h>
47 
48 #include "cam.h"
49 #include "cam_ccb.h"
50 #include "cam_xpt_periph.h"
51 #include "cam_periph.h"
52 #include "cam_debug.h"
53 #include "cam_sim.h"
54 
55 #include <bus/cam/scsi/scsi_all.h>
56 #include <bus/cam/scsi/scsi_message.h>
57 #include <bus/cam/scsi/scsi_pass.h>
58 
59 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
60 					  u_int newunit, int wired,
61 					  path_id_t pathid, target_id_t target,
62 					  lun_id_t lun);
63 static	u_int		camperiphunit(struct periph_driver *p_drv,
64 				      path_id_t pathid, target_id_t target,
65 				      lun_id_t lun);
66 static	void		camperiphdone(struct cam_periph *periph,
67 					union ccb *done_ccb);
68 static  void		camperiphfree(struct cam_periph *periph);
69 static int		camperiphscsistatuserror(union ccb *ccb,
70 						 cam_flags camflags,
71 						 u_int32_t sense_flags,
72 						 union ccb *save_ccb,
73 						 int *openings,
74 						 u_int32_t *relsim_flags,
75 						 u_int32_t *timeout);
76 static	int		camperiphscsisenseerror(union ccb *ccb,
77 					        cam_flags camflags,
78 					        u_int32_t sense_flags,
79 					        union ccb *save_ccb,
80 					        int *openings,
81 					        u_int32_t *relsim_flags,
82 					        u_int32_t *timeout);
83 
84 static int nperiph_drivers;
85 struct periph_driver **periph_drivers;
86 
87 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
88 
89 static int periph_selto_delay = 1000;
90 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
91 static int periph_noresrc_delay = 500;
92 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
93 static int periph_busy_delay = 500;
94 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
95 
96 
97 void
98 periphdriver_register(void *data)
99 {
100 	struct periph_driver **newdrivers, **old;
101 	int ndrivers;
102 
103 	ndrivers = nperiph_drivers + 2;
104 	newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
105 			     M_WAITOK);
106 	if (periph_drivers)
107 		bcopy(periph_drivers, newdrivers,
108 		      sizeof(*newdrivers) * nperiph_drivers);
109 	newdrivers[nperiph_drivers] = (struct periph_driver *)data;
110 	newdrivers[nperiph_drivers + 1] = NULL;
111 	old = periph_drivers;
112 	periph_drivers = newdrivers;
113 	if (old)
114 		kfree(old, M_CAMPERIPH);
115 	nperiph_drivers++;
116 }
117 
118 cam_status
119 cam_periph_alloc(periph_ctor_t *periph_ctor,
120 		 periph_oninv_t *periph_oninvalidate,
121 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
122 		 char *name, cam_periph_type type, struct cam_path *path,
123 		 ac_callback_t *ac_callback, ac_code code, void *arg)
124 {
125 	struct		periph_driver **p_drv;
126 	struct		cam_sim *sim;
127 	struct		cam_periph *periph;
128 	struct		cam_periph *cur_periph;
129 	path_id_t	path_id;
130 	target_id_t	target_id;
131 	lun_id_t	lun_id;
132 	cam_status	status;
133 	u_int		init_level;
134 
135 	init_level = 0;
136 	/*
137 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
138 	 * of our type assigned to this path, we are likely waiting for
139 	 * final close on an old, invalidated, peripheral.  If this is
140 	 * the case, queue up a deferred call to the peripheral's async
141 	 * handler.  If it looks like a mistaken re-allocation, complain.
142 	 */
143 	if ((periph = cam_periph_find(path, name)) != NULL) {
144 
145 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
146 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
147 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
148 			periph->deferred_callback = ac_callback;
149 			periph->deferred_ac = code;
150 			return (CAM_REQ_INPROG);
151 		} else {
152 			kprintf("cam_periph_alloc: attempt to re-allocate "
153 			       "valid device %s%d rejected\n",
154 			       periph->periph_name, periph->unit_number);
155 		}
156 		return (CAM_REQ_INVALID);
157 	}
158 
159 	periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
160 
161 	init_level++;
162 
163 	xpt_lock_buses();
164 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
165 		if (strcmp((*p_drv)->driver_name, name) == 0)
166 			break;
167 	}
168 	xpt_unlock_buses();
169 
170 	sim = xpt_path_sim(path);
171 	path_id = xpt_path_path_id(path);
172 	target_id = xpt_path_target_id(path);
173 	lun_id = xpt_path_lun_id(path);
174 	cam_init_pinfo(&periph->pinfo);
175 	periph->periph_start = periph_start;
176 	periph->periph_dtor = periph_dtor;
177 	periph->periph_oninval = periph_oninvalidate;
178 	periph->type = type;
179 	periph->periph_name = name;
180 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
181 	periph->immediate_priority = CAM_PRIORITY_NONE;
182 	periph->refcount = 0;
183 	periph->sim = sim;
184 	SLIST_INIT(&periph->ccb_list);
185 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
186 	if (status != CAM_REQ_CMP)
187 		goto failure;
188 
189 	periph->path = path;
190 	init_level++;
191 
192 	status = xpt_add_periph(periph);
193 
194 	if (status != CAM_REQ_CMP)
195 		goto failure;
196 
197 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
198 	while (cur_periph != NULL
199 	    && cur_periph->unit_number < periph->unit_number)
200 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
201 
202 	if (cur_periph != NULL)
203 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
204 	else {
205 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
206 		(*p_drv)->generation++;
207 	}
208 
209 	init_level++;
210 
211 	status = periph_ctor(periph, arg);
212 
213 	if (status == CAM_REQ_CMP)
214 		init_level++;
215 
216 failure:
217 	switch (init_level) {
218 	case 4:
219 		/* Initialized successfully */
220 		break;
221 	case 3:
222 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
223 		xpt_remove_periph(periph);
224 		/* FALLTHROUGH */
225 	case 2:
226 		xpt_free_path(periph->path);
227 		/* FALLTHROUGH */
228 	case 1:
229 		kfree(periph, M_CAMPERIPH);
230 		/* FALLTHROUGH */
231 	case 0:
232 		/* No cleanup to perform. */
233 		break;
234 	default:
235 		panic("cam_periph_alloc: Unknown init level");
236 	}
237 	return(status);
238 }
239 
240 /*
241  * Find a peripheral structure with the specified path, target, lun,
242  * and (optionally) type.  If the name is NULL, this function will return
243  * the first peripheral driver that matches the specified path.
244  */
245 struct cam_periph *
246 cam_periph_find(struct cam_path *path, char *name)
247 {
248 	struct periph_driver **p_drv;
249 	struct cam_periph *periph;
250 
251 	xpt_lock_buses();
252 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
253 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
254 			continue;
255 
256 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
257 			if (xpt_path_comp(periph->path, path) == 0) {
258 				xpt_unlock_buses();
259 				return(periph);
260 			}
261 		}
262 		if (name != NULL) {
263 			xpt_unlock_buses();
264 			return(NULL);
265 		}
266 	}
267 	xpt_unlock_buses();
268 	return(NULL);
269 }
270 
271 cam_status
272 cam_periph_acquire(struct cam_periph *periph)
273 {
274 	if (periph == NULL)
275 		return(CAM_REQ_CMP_ERR);
276 
277 	xpt_lock_buses();
278 	periph->refcount++;
279 	xpt_unlock_buses();
280 
281 	return(CAM_REQ_CMP);
282 }
283 
284 void
285 cam_periph_release(struct cam_periph *periph)
286 {
287 
288 	if (periph == NULL)
289 		return;
290 
291 	xpt_lock_buses();
292 	if ((--periph->refcount == 0)
293 	 && (periph->flags & CAM_PERIPH_INVALID)) {
294 		camperiphfree(periph);
295 	}
296 	xpt_unlock_buses();
297 
298 }
299 
300 int
301 cam_periph_hold(struct cam_periph *periph, int flags)
302 {
303 	int error;
304 
305 	sim_lock_assert_owned(periph->sim->lock);
306 
307 	/*
308 	 * Increment the reference count on the peripheral
309 	 * while we wait for our lock attempt to succeed
310 	 * to ensure the peripheral doesn't disappear out
311 	 * from user us while we sleep.
312 	 */
313 
314 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
315 		return (ENXIO);
316 
317 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
318 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
319 		if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
320 					    periph->sim->lock)) != 0) {
321 			cam_periph_release(periph);
322 			return (error);
323 		}
324 	}
325 
326 	periph->flags |= CAM_PERIPH_LOCKED;
327 	return (0);
328 }
329 
330 void
331 cam_periph_unhold(struct cam_periph *periph)
332 {
333 
334 	sim_lock_assert_owned(periph->sim->lock);
335 
336 	periph->flags &= ~CAM_PERIPH_LOCKED;
337 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
338 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
339 		wakeup(periph);
340 	}
341 
342 	cam_periph_release(periph);
343 }
344 
345 /*
346  * Look for the next unit number that is not currently in use for this
347  * peripheral type starting at "newunit".  Also exclude unit numbers that
348  * are reserved by for future "hardwiring" unless we already know that this
349  * is a potential wired device.  Only assume that the device is "wired" the
350  * first time through the loop since after that we'll be looking at unit
351  * numbers that did not match a wiring entry.
352  */
353 static u_int
354 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
355 		  path_id_t pathid, target_id_t target, lun_id_t lun)
356 {
357 	struct	cam_periph *periph;
358 	char	*periph_name, *strval;
359 	int	i, val, dunit;
360 	const char *dname;
361 
362 	periph_name = p_drv->driver_name;
363 	for (;;newunit++) {
364 
365 		for (periph = TAILQ_FIRST(&p_drv->units);
366 		     periph != NULL && periph->unit_number != newunit;
367 		     periph = TAILQ_NEXT(periph, unit_links))
368 			;
369 
370 		if (periph != NULL && periph->unit_number == newunit) {
371 			if (wired != 0) {
372 				xpt_print(periph->path, "Duplicate Wired "
373 				    "Device entry!\n");
374 				xpt_print(periph->path, "Second device (%s "
375 				    "device at scbus%d target %d lun %d) will "
376 				    "not be wired\n", periph_name, pathid,
377 				    target, lun);
378 				wired = 0;
379 			}
380 			continue;
381 		}
382 		if (wired)
383 			break;
384 
385 		/*
386 		 * Don't match entries like "da 4" as a wired down
387 		 * device, but do match entries like "da 4 target 5"
388 		 * or even "da 4 scbus 1".
389 		 */
390 		i = -1;
391 		while ((i = resource_locate(i, periph_name)) != -1) {
392 			dname = resource_query_name(i);
393 			dunit = resource_query_unit(i);
394 			/* if no "target" and no specific scbus, skip */
395 			if (resource_int_value(dname, dunit, "target", &val) &&
396 			    (resource_string_value(dname, dunit, "at",&strval)||
397 			     strcmp(strval, "scbus") == 0))
398 				continue;
399 			if (newunit == dunit)
400 				break;
401 		}
402 		if (i == -1)
403 			break;
404 	}
405 	return (newunit);
406 }
407 
408 static u_int
409 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
410 	      target_id_t target, lun_id_t lun)
411 {
412 	u_int	unit;
413 	int	hit, i, val, dunit;
414 	const char *dname;
415 	char	pathbuf[32], *strval, *periph_name;
416 
417 	unit = 0;
418 
419 	periph_name = p_drv->driver_name;
420 	ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
421 	i = -1;
422 	for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
423 		dname = resource_query_name(i);
424 		dunit = resource_query_unit(i);
425 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
426 			if (strcmp(strval, pathbuf) != 0)
427 				continue;
428 			hit++;
429 		}
430 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
431 			if (val != target)
432 				continue;
433 			hit++;
434 		}
435 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
436 			if (val != lun)
437 				continue;
438 			hit++;
439 		}
440 		if (hit != 0) {
441 			unit = dunit;
442 			break;
443 		}
444 	}
445 
446 	/*
447 	 * Either start from 0 looking for the next unit or from
448 	 * the unit number given in the resource config.  This way,
449 	 * if we have wildcard matches, we don't return the same
450 	 * unit number twice.
451 	 */
452 	unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
453 				 target, lun);
454 
455 	return (unit);
456 }
457 
458 void
459 cam_periph_invalidate(struct cam_periph *periph)
460 {
461 	/*
462 	 * We only call this routine the first time a peripheral is
463 	 * invalidated.
464 	 */
465 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
466 	 && (periph->periph_oninval != NULL))
467 		periph->periph_oninval(periph);
468 
469 	periph->flags |= CAM_PERIPH_INVALID;
470 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
471 
472 	xpt_lock_buses();
473 	if (periph->refcount == 0)
474 		camperiphfree(periph);
475 	else if (periph->refcount < 0)
476 		kprintf("cam_invalidate_periph: refcount < 0!!\n");
477 	xpt_unlock_buses();
478 }
479 
480 static void
481 camperiphfree(struct cam_periph *periph)
482 {
483 	struct periph_driver **p_drv;
484 
485 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
486 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
487 			break;
488 	}
489 
490 	if (*p_drv == NULL) {
491 		kprintf("camperiphfree: attempt to free non-existent periph\n");
492 		return;
493 	}
494 
495 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
496 	(*p_drv)->generation++;
497 	xpt_unlock_buses();
498 
499 	if (periph->periph_dtor != NULL)
500 		periph->periph_dtor(periph);
501 	xpt_remove_periph(periph);
502 
503 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
504 		union ccb ccb;
505 		void *arg;
506 
507 		switch (periph->deferred_ac) {
508 		case AC_FOUND_DEVICE:
509 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
510 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
511 			xpt_action(&ccb);
512 			arg = &ccb;
513 			break;
514 		case AC_PATH_REGISTERED:
515 			ccb.ccb_h.func_code = XPT_PATH_INQ;
516 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
517 			xpt_action(&ccb);
518 			arg = &ccb;
519 			break;
520 		default:
521 			arg = NULL;
522 			break;
523 		}
524 		periph->deferred_callback(NULL, periph->deferred_ac,
525 					  periph->path, arg);
526 	}
527 	xpt_free_path(periph->path);
528 	kfree(periph, M_CAMPERIPH);
529 	xpt_lock_buses();
530 }
531 
532 /*
533  * Map user virtual pointers into kernel virtual address space, so we can
534  * access the memory.  This won't work on physical pointers, for now it's
535  * up to the caller to check for that.  (XXX KDM -- should we do that here
536  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
537  * buffers to map stuff in and out, we're limited to the buffer size.
538  */
539 int
540 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
541 {
542 	int numbufs, i, j;
543 	buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
544 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
545 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
546 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
547 
548 	switch(ccb->ccb_h.func_code) {
549 	case XPT_DEV_MATCH:
550 		if (ccb->cdm.match_buf_len == 0) {
551 			kprintf("cam_periph_mapmem: invalid match buffer "
552 			       "length 0\n");
553 			return(EINVAL);
554 		}
555 		if (ccb->cdm.pattern_buf_len > 0) {
556 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
557 			lengths[0] = ccb->cdm.pattern_buf_len;
558 			dirs[0] = CAM_DIR_OUT;
559 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
560 			lengths[1] = ccb->cdm.match_buf_len;
561 			dirs[1] = CAM_DIR_IN;
562 			numbufs = 2;
563 		} else {
564 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
565 			lengths[0] = ccb->cdm.match_buf_len;
566 			dirs[0] = CAM_DIR_IN;
567 			numbufs = 1;
568 		}
569 		break;
570 	case XPT_SCSI_IO:
571 	case XPT_CONT_TARGET_IO:
572 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
573 			return(0);
574 
575 		data_ptrs[0] = &ccb->csio.data_ptr;
576 		lengths[0] = ccb->csio.dxfer_len;
577 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
578 		numbufs = 1;
579 		break;
580 	default:
581 		return(EINVAL);
582 		break; /* NOTREACHED */
583 	}
584 
585 	/*
586 	 * Check the transfer length and permissions first, so we don't
587 	 * have to unmap any previously mapped buffers.
588 	 */
589 	for (i = 0; i < numbufs; i++) {
590 		/*
591 		 * Its kinda bogus, we need a R+W command.  For now the
592 		 * buffer needs some sort of command.  Use BUF_CMD_WRITE
593 		 * to indicate a write and BUF_CMD_READ to indicate R+W.
594 		 */
595 		cmd[i] = BUF_CMD_WRITE;
596 
597 		/*
598 		 * The userland data pointer passed in may not be page
599 		 * aligned.  vmapbuf() truncates the address to a page
600 		 * boundary, so if the address isn't page aligned, we'll
601 		 * need enough space for the given transfer length, plus
602 		 * whatever extra space is necessary to make it to the page
603 		 * boundary.
604 		 */
605 		if ((lengths[i] +
606 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
607 			kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
608 			       "which is greater than DFLTPHYS(%d)\n",
609 			       (long)(lengths[i] +
610 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
611 			       DFLTPHYS);
612 			return(E2BIG);
613 		}
614 
615 		if (dirs[i] & CAM_DIR_OUT) {
616 			if (!useracc(*data_ptrs[i], lengths[i],
617 				     VM_PROT_READ)) {
618 				kprintf("cam_periph_mapmem: error, "
619 					"address %p, length %lu isn't "
620 					"user accessible for READ\n",
621 					(void *)*data_ptrs[i],
622 					(u_long)lengths[i]);
623 				return(EACCES);
624 			}
625 		}
626 
627 		if (dirs[i] & CAM_DIR_IN) {
628 			cmd[i] = BUF_CMD_READ;
629 			if (!useracc(*data_ptrs[i], lengths[i],
630 				     VM_PROT_WRITE)) {
631 				kprintf("cam_periph_mapmem: error, "
632 					"address %p, length %lu isn't "
633 					"user accessible for WRITE\n",
634 					(void *)*data_ptrs[i],
635 					(u_long)lengths[i]);
636 
637 				return(EACCES);
638 			}
639 		}
640 
641 	}
642 
643 	for (i = 0; i < numbufs; i++) {
644 		/*
645 		 * Get the buffer.
646 		 */
647 		mapinfo->bp[i] = getpbuf(NULL);
648 
649 		/* save the original user pointer */
650 		mapinfo->saved_ptrs[i] = *data_ptrs[i];
651 
652 		/* set the flags */
653 		mapinfo->bp[i]->b_cmd = cmd[i];
654 
655 		/* map the user buffer into kernel memory */
656 		if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i]) < 0) {
657 			kprintf("cam_periph_mapmem: error, "
658 				"address %p, length %lu isn't "
659 				"user accessible any more\n",
660 				(void *)*data_ptrs[i],
661 				(u_long)lengths[i]);
662 			for (j = 0; j < i; ++j) {
663 				*data_ptrs[j] = mapinfo->saved_ptrs[j];
664 				vunmapbuf(mapinfo->bp[j]);
665 				relpbuf(mapinfo->bp[j], NULL);
666 			}
667 			mapinfo->num_bufs_used -= i;
668 			return(EACCES);
669 		}
670 
671 		/* set our pointer to the new mapped area */
672 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
673 
674 		mapinfo->num_bufs_used++;
675 	}
676 
677 	return(0);
678 }
679 
680 /*
681  * Unmap memory segments mapped into kernel virtual address space by
682  * cam_periph_mapmem().
683  */
684 void
685 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
686 {
687 	int numbufs, i;
688 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
689 
690 	if (mapinfo->num_bufs_used <= 0) {
691 		/* allow ourselves to be swapped once again */
692 		return;
693 	}
694 
695 	switch (ccb->ccb_h.func_code) {
696 	case XPT_DEV_MATCH:
697 		numbufs = min(mapinfo->num_bufs_used, 2);
698 
699 		if (numbufs == 1) {
700 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
701 		} else {
702 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
703 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
704 		}
705 		break;
706 	case XPT_SCSI_IO:
707 	case XPT_CONT_TARGET_IO:
708 		data_ptrs[0] = &ccb->csio.data_ptr;
709 		numbufs = min(mapinfo->num_bufs_used, 1);
710 		break;
711 	default:
712 		/* allow ourselves to be swapped once again */
713 		return;
714 		break; /* NOTREACHED */
715 	}
716 
717 	for (i = 0; i < numbufs; i++) {
718 		/* Set the user's pointer back to the original value */
719 		*data_ptrs[i] = mapinfo->saved_ptrs[i];
720 
721 		/* unmap the buffer */
722 		vunmapbuf(mapinfo->bp[i]);
723 
724 		/* release the buffer */
725 		relpbuf(mapinfo->bp[i], NULL);
726 	}
727 
728 	/* allow ourselves to be swapped once again */
729 }
730 
731 union ccb *
732 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
733 {
734 	struct ccb_hdr *ccb_h;
735 
736 	sim_lock_assert_owned(periph->sim->lock);
737 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
738 
739 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
740 		if (periph->immediate_priority > priority)
741 			periph->immediate_priority = priority;
742 		xpt_schedule(periph, priority);
743 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
744 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
745 			break;
746 		sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
747 			       periph->sim->lock);
748 	}
749 
750 	ccb_h = SLIST_FIRST(&periph->ccb_list);
751 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
752 	return ((union ccb *)ccb_h);
753 }
754 
755 void
756 cam_periph_ccbwait(union ccb *ccb)
757 {
758 	struct cam_sim *sim;
759 
760 	sim = xpt_path_sim(ccb->ccb_h.path);
761 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
762 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
763 		sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
764 }
765 
766 int
767 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
768 		 int (*error_routine)(union ccb *ccb,
769 				      cam_flags camflags,
770 				      u_int32_t sense_flags))
771 {
772 	union ccb 	     *ccb;
773 	int 		     error;
774 	int		     found;
775 
776 	error = found = 0;
777 
778 	switch(cmd){
779 	case CAMGETPASSTHRU:
780 		ccb = cam_periph_getccb(periph, /* priority */ 1);
781 		xpt_setup_ccb(&ccb->ccb_h,
782 			      ccb->ccb_h.path,
783 			      /*priority*/1);
784 		ccb->ccb_h.func_code = XPT_GDEVLIST;
785 
786 		/*
787 		 * Basically, the point of this is that we go through
788 		 * getting the list of devices, until we find a passthrough
789 		 * device.  In the current version of the CAM code, the
790 		 * only way to determine what type of device we're dealing
791 		 * with is by its name.
792 		 */
793 		while (found == 0) {
794 			ccb->cgdl.index = 0;
795 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
796 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
797 
798 				/* we want the next device in the list */
799 				xpt_action(ccb);
800 				if (strncmp(ccb->cgdl.periph_name,
801 				    "pass", 4) == 0){
802 					found = 1;
803 					break;
804 				}
805 			}
806 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
807 			    (found == 0)) {
808 				ccb->cgdl.periph_name[0] = '\0';
809 				ccb->cgdl.unit_number = 0;
810 				break;
811 			}
812 		}
813 
814 		/* copy the result back out */
815 		bcopy(ccb, addr, sizeof(union ccb));
816 
817 		/* and release the ccb */
818 		xpt_release_ccb(ccb);
819 
820 		break;
821 	default:
822 		error = ENOTTY;
823 		break;
824 	}
825 	return(error);
826 }
827 
828 int
829 cam_periph_runccb(union ccb *ccb,
830 		  int (*error_routine)(union ccb *ccb,
831 				       cam_flags camflags,
832 				       u_int32_t sense_flags),
833 		  cam_flags camflags, u_int32_t sense_flags,
834 		  struct devstat *ds)
835 {
836 	struct cam_sim *sim;
837 	int error;
838 
839 	error = 0;
840 	sim = xpt_path_sim(ccb->ccb_h.path);
841 	sim_lock_assert_owned(sim->lock);
842 
843 	/*
844 	 * If the user has supplied a stats structure, and if we understand
845 	 * this particular type of ccb, record the transaction start.
846 	 */
847 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
848 		devstat_start_transaction(ds);
849 
850 	xpt_action(ccb);
851 
852 	do {
853 		cam_periph_ccbwait(ccb);
854 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
855 			error = 0;
856 		else if (error_routine != NULL)
857 			error = (*error_routine)(ccb, camflags, sense_flags);
858 		else
859 			error = 0;
860 
861 	} while (error == ERESTART);
862 
863 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
864 		cam_release_devq(ccb->ccb_h.path,
865 				 /* relsim_flags */0,
866 				 /* openings */0,
867 				 /* timeout */0,
868 				 /* getcount_only */ FALSE);
869 
870 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
871 		devstat_end_transaction(ds,
872 					ccb->csio.dxfer_len,
873 					ccb->csio.tag_action & 0xf,
874 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
875 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
876 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
877 					DEVSTAT_WRITE :
878 					DEVSTAT_READ);
879 
880 	return(error);
881 }
882 
883 void
884 cam_freeze_devq(struct cam_path *path)
885 {
886 	struct ccb_hdr ccb_h;
887 
888 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
889 	ccb_h.func_code = XPT_NOOP;
890 	ccb_h.flags = CAM_DEV_QFREEZE;
891 	xpt_action((union ccb *)&ccb_h);
892 }
893 
894 u_int32_t
895 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
896 		 u_int32_t openings, u_int32_t timeout,
897 		 int getcount_only)
898 {
899 	struct ccb_relsim crs;
900 
901 	xpt_setup_ccb(&crs.ccb_h, path,
902 		      /*priority*/1);
903 	crs.ccb_h.func_code = XPT_REL_SIMQ;
904 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
905 	crs.release_flags = relsim_flags;
906 	crs.openings = openings;
907 	crs.release_timeout = timeout;
908 	xpt_action((union ccb *)&crs);
909 	return (crs.qfrozen_cnt);
910 }
911 
912 #define saved_ccb_ptr ppriv_ptr0
913 static void
914 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
915 {
916 	union ccb      *saved_ccb;
917 	cam_status	status;
918 	int		frozen;
919 	int		sense;
920 	struct scsi_start_stop_unit *scsi_cmd;
921 	u_int32_t	relsim_flags, timeout;
922 	u_int32_t	qfrozen_cnt;
923 	int		xpt_done_ccb;
924 
925 	xpt_done_ccb = FALSE;
926 	status = done_ccb->ccb_h.status;
927 	frozen = (status & CAM_DEV_QFRZN) != 0;
928 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
929 	status &= CAM_STATUS_MASK;
930 
931 	timeout = 0;
932 	relsim_flags = 0;
933 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
934 
935 	/*
936 	 * Unfreeze the queue once if it is already frozen..
937 	 */
938 	if (frozen != 0) {
939 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
940 					      /*relsim_flags*/0,
941 					      /*openings*/0,
942 					      /*timeout*/0,
943 					      /*getcount_only*/0);
944 	}
945 
946 	switch (status) {
947 	case CAM_REQ_CMP:
948 	{
949 		/*
950 		 * If we have successfully taken a device from the not
951 		 * ready to ready state, re-scan the device and re-get
952 		 * the inquiry information.  Many devices (mostly disks)
953 		 * don't properly report their inquiry information unless
954 		 * they are spun up.
955 		 *
956 		 * If we manually retrieved sense into a CCB and got
957 		 * something other than "NO SENSE" send the updated CCB
958 		 * back to the client via xpt_done() to be processed via
959 		 * the error recovery code again.
960 		 */
961 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
962 			scsi_cmd = (struct scsi_start_stop_unit *)
963 					&done_ccb->csio.cdb_io.cdb_bytes;
964 
965 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
966 				xpt_async(AC_INQ_CHANGED,
967 					  done_ccb->ccb_h.path, NULL);
968 			if (scsi_cmd->opcode == REQUEST_SENSE) {
969 				u_int sense_key;
970 
971 				sense_key = saved_ccb->csio.sense_data.flags;
972 				sense_key &= SSD_KEY;
973 				if (sense_key != SSD_KEY_NO_SENSE) {
974 					saved_ccb->ccb_h.status |=
975 					    CAM_AUTOSNS_VALID;
976 #if 0
977 					xpt_print(saved_ccb->ccb_h.path,
978 					    "Recovered Sense\n");
979 					scsi_sense_print(&saved_ccb->csio);
980 					cam_error_print(saved_ccb, CAM_ESF_ALL,
981 							CAM_EPF_ALL);
982 #endif
983 					xpt_done_ccb = TRUE;
984 				}
985 			}
986 		}
987 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
988 		      sizeof(union ccb));
989 
990 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
991 
992 		if (xpt_done_ccb == FALSE)
993 			xpt_action(done_ccb);
994 
995 		break;
996 	}
997 	case CAM_SCSI_STATUS_ERROR:
998 		scsi_cmd = (struct scsi_start_stop_unit *)
999 				&done_ccb->csio.cdb_io.cdb_bytes;
1000 		if (sense != 0) {
1001 			struct ccb_getdev cgd;
1002 			struct scsi_sense_data *sense;
1003 			int    error_code, sense_key, asc, ascq;
1004 			scsi_sense_action err_action;
1005 
1006 			sense = &done_ccb->csio.sense_data;
1007 			scsi_extract_sense(sense, &error_code,
1008 					   &sense_key, &asc, &ascq);
1009 
1010 			/*
1011 			 * Grab the inquiry data for this device.
1012 			 */
1013 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1014 				      /*priority*/ 1);
1015 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1016 			xpt_action((union ccb *)&cgd);
1017 			err_action = scsi_error_action(&done_ccb->csio,
1018 						       &cgd.inq_data, 0);
1019 
1020 			/*
1021 	 		 * If the error is "invalid field in CDB",
1022 			 * and the load/eject flag is set, turn the
1023 			 * flag off and try again.  This is just in
1024 			 * case the drive in question barfs on the
1025 			 * load eject flag.  The CAM code should set
1026 			 * the load/eject flag by default for
1027 			 * removable media.
1028 			 */
1029 
1030 			/* XXX KDM
1031 			 * Should we check to see what the specific
1032 			 * scsi status is??  Or does it not matter
1033 			 * since we already know that there was an
1034 			 * error, and we know what the specific
1035 			 * error code was, and we know what the
1036 			 * opcode is..
1037 			 */
1038 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1039 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1040 			     (asc == 0x24) && (ascq == 0x00) &&
1041 			     (done_ccb->ccb_h.retry_count > 0)) {
1042 
1043 				scsi_cmd->how &= ~SSS_LOEJ;
1044 
1045 				xpt_action(done_ccb);
1046 
1047 			} else if ((done_ccb->ccb_h.retry_count > 1)
1048 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1049 
1050 				/*
1051 				 * In this case, the error recovery
1052 				 * command failed, but we've got
1053 				 * some retries left on it.  Give
1054 				 * it another try unless this is an
1055 				 * unretryable error.
1056 				 */
1057 
1058 				/* set the timeout to .5 sec */
1059 				relsim_flags =
1060 					RELSIM_RELEASE_AFTER_TIMEOUT;
1061 				timeout = 500;
1062 
1063 				xpt_action(done_ccb);
1064 
1065 				break;
1066 
1067 			} else {
1068 				/*
1069 				 * Perform the final retry with the original
1070 				 * CCB so that final error processing is
1071 				 * performed by the owner of the CCB.
1072 				 */
1073 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1074 				      done_ccb, sizeof(union ccb));
1075 
1076 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1077 
1078 				xpt_action(done_ccb);
1079 			}
1080 		} else {
1081 			/*
1082 			 * Eh??  The command failed, but we don't
1083 			 * have any sense.  What's up with that?
1084 			 * Fire the CCB again to return it to the
1085 			 * caller.
1086 			 */
1087 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1088 			      done_ccb, sizeof(union ccb));
1089 
1090 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1091 
1092 			xpt_action(done_ccb);
1093 
1094 		}
1095 		break;
1096 	default:
1097 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1098 		      sizeof(union ccb));
1099 
1100 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1101 
1102 		xpt_action(done_ccb);
1103 
1104 		break;
1105 	}
1106 
1107 	/* decrement the retry count */
1108 	/*
1109 	 * XXX This isn't appropriate in all cases.  Restructure,
1110 	 *     so that the retry count is only decremented on an
1111 	 *     actual retry.  Remeber that the orignal ccb had its
1112 	 *     retry count dropped before entering recovery, so
1113 	 *     doing it again is a bug.
1114 	 */
1115 	if (done_ccb->ccb_h.retry_count > 0)
1116 		done_ccb->ccb_h.retry_count--;
1117 
1118 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1119 				      /*relsim_flags*/relsim_flags,
1120 				      /*openings*/0,
1121 				      /*timeout*/timeout,
1122 				      /*getcount_only*/0);
1123 	if (xpt_done_ccb == TRUE)
1124 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1125 }
1126 
1127 /*
1128  * Generic Async Event handler.  Peripheral drivers usually
1129  * filter out the events that require personal attention,
1130  * and leave the rest to this function.
1131  */
1132 void
1133 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1134 		 struct cam_path *path, void *arg)
1135 {
1136 	switch (code) {
1137 	case AC_LOST_DEVICE:
1138 		cam_periph_invalidate(periph);
1139 		break;
1140 	case AC_SENT_BDR:
1141 	case AC_BUS_RESET:
1142 	{
1143 		cam_periph_bus_settle(periph, scsi_delay);
1144 		break;
1145 	}
1146 	default:
1147 		break;
1148 	}
1149 }
1150 
1151 void
1152 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1153 {
1154 	struct ccb_getdevstats cgds;
1155 
1156 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1157 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1158 	xpt_action((union ccb *)&cgds);
1159 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1160 }
1161 
1162 void
1163 cam_periph_freeze_after_event(struct cam_periph *periph,
1164 			      struct timeval* event_time, u_int duration_ms)
1165 {
1166 	struct timeval delta;
1167 	struct timeval duration_tv;
1168 
1169 	microuptime(&delta);
1170 	timevalsub(&delta, event_time);
1171 	duration_tv.tv_sec = duration_ms / 1000;
1172 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1173 	if (timevalcmp(&delta, &duration_tv, <)) {
1174 		timevalsub(&duration_tv, &delta);
1175 
1176 		duration_ms = duration_tv.tv_sec * 1000;
1177 		duration_ms += duration_tv.tv_usec / 1000;
1178 		cam_freeze_devq(periph->path);
1179 		cam_release_devq(periph->path,
1180 				RELSIM_RELEASE_AFTER_TIMEOUT,
1181 				/*reduction*/0,
1182 				/*timeout*/duration_ms,
1183 				/*getcount_only*/0);
1184 	}
1185 
1186 }
1187 
1188 static int
1189 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1190 			 u_int32_t sense_flags, union ccb *save_ccb,
1191 			 int *openings, u_int32_t *relsim_flags,
1192 			 u_int32_t *timeout)
1193 {
1194 	int error;
1195 
1196 	switch (ccb->csio.scsi_status) {
1197 	case SCSI_STATUS_OK:
1198 	case SCSI_STATUS_COND_MET:
1199 	case SCSI_STATUS_INTERMED:
1200 	case SCSI_STATUS_INTERMED_COND_MET:
1201 		error = 0;
1202 		break;
1203 	case SCSI_STATUS_CMD_TERMINATED:
1204 	case SCSI_STATUS_CHECK_COND:
1205 		error = camperiphscsisenseerror(ccb,
1206 					        camflags,
1207 					        sense_flags,
1208 					        save_ccb,
1209 					        openings,
1210 					        relsim_flags,
1211 					        timeout);
1212 		break;
1213 	case SCSI_STATUS_QUEUE_FULL:
1214 	{
1215 		/* no decrement */
1216 		struct ccb_getdevstats cgds;
1217 
1218 		/*
1219 		 * First off, find out what the current
1220 		 * transaction counts are.
1221 		 */
1222 		xpt_setup_ccb(&cgds.ccb_h,
1223 			      ccb->ccb_h.path,
1224 			      /*priority*/1);
1225 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1226 		xpt_action((union ccb *)&cgds);
1227 
1228 		/*
1229 		 * If we were the only transaction active, treat
1230 		 * the QUEUE FULL as if it were a BUSY condition.
1231 		 */
1232 		if (cgds.dev_active != 0) {
1233 			int total_openings;
1234 
1235 			/*
1236 			 * Reduce the number of openings to
1237 			 * be 1 less than the amount it took
1238 			 * to get a queue full bounded by the
1239 			 * minimum allowed tag count for this
1240 			 * device.
1241 			 */
1242 			total_openings = cgds.dev_active + cgds.dev_openings;
1243 			*openings = cgds.dev_active;
1244 			if (*openings < cgds.mintags)
1245 				*openings = cgds.mintags;
1246 			if (*openings < total_openings)
1247 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1248 			else {
1249 				/*
1250 				 * Some devices report queue full for
1251 				 * temporary resource shortages.  For
1252 				 * this reason, we allow a minimum
1253 				 * tag count to be entered via a
1254 				 * quirk entry to prevent the queue
1255 				 * count on these devices from falling
1256 				 * to a pessimisticly low value.  We
1257 				 * still wait for the next successful
1258 				 * completion, however, before queueing
1259 				 * more transactions to the device.
1260 				 */
1261 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1262 			}
1263 			*timeout = 0;
1264 			error = ERESTART;
1265 			if (bootverbose) {
1266 				xpt_print(ccb->ccb_h.path, "Queue Full\n");
1267 			}
1268 			break;
1269 		}
1270 		/* FALLTHROUGH */
1271 	}
1272 	case SCSI_STATUS_BUSY:
1273 		/*
1274 		 * Restart the queue after either another
1275 		 * command completes or a 1 second timeout.
1276 		 */
1277 		if (bootverbose) {
1278 			xpt_print(ccb->ccb_h.path, "Device Busy\n");
1279 		}
1280 		if (ccb->ccb_h.retry_count > 0) {
1281 			ccb->ccb_h.retry_count--;
1282 			error = ERESTART;
1283 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1284 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1285 			*timeout = 1000;
1286 		} else {
1287 			error = EIO;
1288 		}
1289 		break;
1290 	case SCSI_STATUS_RESERV_CONFLICT:
1291 		xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1292 		error = EIO;
1293 		break;
1294 	default:
1295 		xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1296 		    ccb->csio.scsi_status);
1297 		error = EIO;
1298 		break;
1299 	}
1300 	return (error);
1301 }
1302 
1303 static int
1304 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1305 			u_int32_t sense_flags, union ccb *save_ccb,
1306 		       int *openings, u_int32_t *relsim_flags,
1307 		       u_int32_t *timeout)
1308 {
1309 	struct cam_periph *periph;
1310 	int error;
1311 
1312 	periph = xpt_path_periph(ccb->ccb_h.path);
1313 	if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1314 
1315 		/*
1316 		 * If error recovery is already in progress, don't attempt
1317 		 * to process this error, but requeue it unconditionally
1318 		 * and attempt to process it once error recovery has
1319 		 * completed.  This failed command is probably related to
1320 		 * the error that caused the currently active error recovery
1321 		 * action so our  current recovery efforts should also
1322 		 * address this command.  Be aware that the error recovery
1323 		 * code assumes that only one recovery action is in progress
1324 		 * on a particular peripheral instance at any given time
1325 		 * (e.g. only one saved CCB for error recovery) so it is
1326 		 * imperitive that we don't violate this assumption.
1327 		 */
1328 		error = ERESTART;
1329 	} else {
1330 		scsi_sense_action err_action;
1331 		struct ccb_getdev cgd;
1332 		const char *action_string;
1333 		union ccb* print_ccb;
1334 
1335 		/* A description of the error recovery action performed */
1336 		action_string = NULL;
1337 
1338 		/*
1339 		 * The location of the orignal ccb
1340 		 * for sense printing purposes.
1341 		 */
1342 		print_ccb = ccb;
1343 
1344 		/*
1345 		 * Grab the inquiry data for this device.
1346 		 */
1347 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1348 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1349 		xpt_action((union ccb *)&cgd);
1350 
1351 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1352 			err_action = scsi_error_action(&ccb->csio,
1353 						       &cgd.inq_data,
1354 						       sense_flags);
1355 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1356 			err_action = SS_REQSENSE;
1357 		else
1358 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1359 
1360 		error = err_action & SS_ERRMASK;
1361 
1362 		/*
1363 		 * If the recovery action will consume a retry,
1364 		 * make sure we actually have retries available.
1365 		 */
1366 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1367 			if (ccb->ccb_h.retry_count > 0)
1368 				ccb->ccb_h.retry_count--;
1369 			else {
1370 				action_string = "Retries Exhausted";
1371 				goto sense_error_done;
1372 			}
1373 		}
1374 
1375 		if ((err_action & SS_MASK) >= SS_START) {
1376 			/*
1377 			 * Do common portions of commands that
1378 			 * use recovery CCBs.
1379 			 */
1380 			if (save_ccb == NULL) {
1381 				action_string = "No recovery CCB supplied";
1382 				goto sense_error_done;
1383 			}
1384 			bcopy(ccb, save_ccb, sizeof(*save_ccb));
1385 			print_ccb = save_ccb;
1386 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1387 		}
1388 
1389 		switch (err_action & SS_MASK) {
1390 		case SS_NOP:
1391 			action_string = "No Recovery Action Needed";
1392 			error = 0;
1393 			break;
1394 		case SS_RETRY:
1395 			action_string = "Retrying Command (per Sense Data)";
1396 			error = ERESTART;
1397 			break;
1398 		case SS_FAIL:
1399 			action_string = "Unretryable error";
1400 			break;
1401 		case SS_START:
1402 		{
1403 			int le;
1404 
1405 			/*
1406 			 * Send a start unit command to the device, and
1407 			 * then retry the command.
1408 			 */
1409 			action_string = "Attempting to Start Unit";
1410 
1411 			/*
1412 			 * Check for removable media and set
1413 			 * load/eject flag appropriately.
1414 			 */
1415 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1416 				le = TRUE;
1417 			else
1418 				le = FALSE;
1419 
1420 			scsi_start_stop(&ccb->csio,
1421 					/*retries*/1,
1422 					camperiphdone,
1423 					MSG_SIMPLE_Q_TAG,
1424 					/*start*/TRUE,
1425 					/*load/eject*/le,
1426 					/*immediate*/FALSE,
1427 					SSD_FULL_SIZE,
1428 					/*timeout*/50000);
1429 			break;
1430 		}
1431 		case SS_TUR:
1432 		{
1433 			/*
1434 			 * Send a Test Unit Ready to the device.
1435 			 * If the 'many' flag is set, we send 120
1436 			 * test unit ready commands, one every half
1437 			 * second.  Otherwise, we just send one TUR.
1438 			 * We only want to do this if the retry
1439 			 * count has not been exhausted.
1440 			 */
1441 			int retries;
1442 
1443 			if ((err_action & SSQ_MANY) != 0) {
1444 				action_string = "Polling device for readiness";
1445 				retries = 120;
1446 			} else {
1447 				action_string = "Testing device for readiness";
1448 				retries = 1;
1449 			}
1450 			scsi_test_unit_ready(&ccb->csio,
1451 					     retries,
1452 					     camperiphdone,
1453 					     MSG_SIMPLE_Q_TAG,
1454 					     SSD_FULL_SIZE,
1455 					     /*timeout*/5000);
1456 
1457 			/*
1458 			 * Accomplish our 500ms delay by deferring
1459 			 * the release of our device queue appropriately.
1460 			 */
1461 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1462 			*timeout = 500;
1463 			break;
1464 		}
1465 		case SS_REQSENSE:
1466 		{
1467 			/*
1468 			 * Send a Request Sense to the device.  We
1469 			 * assume that we are in a contingent allegiance
1470 			 * condition so we do not tag this request.
1471 			 */
1472 			scsi_request_sense(&ccb->csio, /*retries*/1,
1473 					   camperiphdone,
1474 					   &save_ccb->csio.sense_data,
1475 					   sizeof(save_ccb->csio.sense_data),
1476 					   CAM_TAG_ACTION_NONE,
1477 					   /*sense_len*/SSD_FULL_SIZE,
1478 					   /*timeout*/5000);
1479 			break;
1480 		}
1481 		default:
1482 			panic("Unhandled error action %x", err_action);
1483 		}
1484 
1485 		if ((err_action & SS_MASK) >= SS_START) {
1486 			/*
1487 			 * Drop the priority to 0 so that the recovery
1488 			 * CCB is the first to execute.  Freeze the queue
1489 			 * after this command is sent so that we can
1490 			 * restore the old csio and have it queued in
1491 			 * the proper order before we release normal
1492 			 * transactions to the device.
1493 			 */
1494 			ccb->ccb_h.pinfo.priority = 0;
1495 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1496 			ccb->ccb_h.saved_ccb_ptr = save_ccb;
1497 			error = ERESTART;
1498 		}
1499 
1500 sense_error_done:
1501 		if ((err_action & SSQ_PRINT_SENSE) != 0
1502 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1503 			cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1504 			xpt_print_path(ccb->ccb_h.path);
1505 			if (bootverbose)
1506 				scsi_sense_print(&print_ccb->csio);
1507 			kprintf("%s\n", action_string);
1508 		}
1509 	}
1510 	return (error);
1511 }
1512 
1513 /*
1514  * Generic error handler.  Peripheral drivers usually filter
1515  * out the errors that they handle in a unique mannor, then
1516  * call this function.
1517  */
1518 int
1519 cam_periph_error(union ccb *ccb, cam_flags camflags,
1520 		 u_int32_t sense_flags, union ccb *save_ccb)
1521 {
1522 	const char *action_string;
1523 	cam_status  status;
1524 	int	    frozen;
1525 	int	    error, printed = 0;
1526 	int         openings;
1527 	u_int32_t   relsim_flags;
1528 	u_int32_t   timeout = 0;
1529 
1530 	action_string = NULL;
1531 	status = ccb->ccb_h.status;
1532 	frozen = (status & CAM_DEV_QFRZN) != 0;
1533 	status &= CAM_STATUS_MASK;
1534 	openings = relsim_flags = 0;
1535 
1536 	switch (status) {
1537 	case CAM_REQ_CMP:
1538 		error = 0;
1539 		break;
1540 	case CAM_SCSI_STATUS_ERROR:
1541 		error = camperiphscsistatuserror(ccb,
1542 						 camflags,
1543 						 sense_flags,
1544 						 save_ccb,
1545 						 &openings,
1546 						 &relsim_flags,
1547 						 &timeout);
1548 		break;
1549 	case CAM_AUTOSENSE_FAIL:
1550 		xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1551 		error = EIO;	/* we have to kill the command */
1552 		break;
1553 	case CAM_REQ_CMP_ERR:
1554 		if (bootverbose && printed == 0) {
1555 			xpt_print(ccb->ccb_h.path,
1556 			    "Request completed with CAM_REQ_CMP_ERR\n");
1557 			printed++;
1558 		}
1559 		/* FALLTHROUGH */
1560 	case CAM_CMD_TIMEOUT:
1561 		if (bootverbose && printed == 0) {
1562 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1563 			printed++;
1564 		}
1565 		/* FALLTHROUGH */
1566 	case CAM_UNEXP_BUSFREE:
1567 		if (bootverbose && printed == 0) {
1568 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1569 			printed++;
1570 		}
1571 		/* FALLTHROUGH */
1572 	case CAM_UNCOR_PARITY:
1573 		if (bootverbose && printed == 0) {
1574 			xpt_print(ccb->ccb_h.path,
1575 			    "Uncorrected Parity Error\n");
1576 			printed++;
1577 		}
1578 		/* FALLTHROUGH */
1579 	case CAM_DATA_RUN_ERR:
1580 		if (bootverbose && printed == 0) {
1581 			xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1582 			printed++;
1583 		}
1584 		error = EIO;	/* we have to kill the command */
1585 		/* decrement the number of retries */
1586 		if (ccb->ccb_h.retry_count > 0) {
1587 			ccb->ccb_h.retry_count--;
1588 			error = ERESTART;
1589 		} else {
1590 			action_string = "Retries Exhausted";
1591 			error = EIO;
1592 		}
1593 		break;
1594 	case CAM_UA_ABORT:
1595 	case CAM_UA_TERMIO:
1596 	case CAM_MSG_REJECT_REC:
1597 		/* XXX Don't know that these are correct */
1598 		error = EIO;
1599 		break;
1600 	case CAM_SEL_TIMEOUT:
1601 	{
1602 		struct cam_path *newpath;
1603 
1604 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1605 			if (ccb->ccb_h.retry_count > 0) {
1606 
1607 				ccb->ccb_h.retry_count--;
1608 				error = ERESTART;
1609 				if (bootverbose && printed == 0) {
1610 					xpt_print(ccb->ccb_h.path,
1611 					    "Selection Timeout\n");
1612 					printed++;
1613 				}
1614 
1615 				/*
1616 				 * Wait a bit to give the device
1617 				 * time to recover before we try again.
1618 				 */
1619 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1620 				timeout = periph_selto_delay;
1621 				break;
1622 			}
1623 		}
1624 		error = ENXIO;
1625 		/* Should we do more if we can't create the path?? */
1626 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1627 				    xpt_path_path_id(ccb->ccb_h.path),
1628 				    xpt_path_target_id(ccb->ccb_h.path),
1629 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1630 			break;
1631 
1632 		/*
1633 		 * Let peripheral drivers know that this device has gone
1634 		 * away.
1635 		 */
1636 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1637 		xpt_free_path(newpath);
1638 		break;
1639 	}
1640 	case CAM_REQ_INVALID:
1641 	case CAM_PATH_INVALID:
1642 	case CAM_DEV_NOT_THERE:
1643 	case CAM_NO_HBA:
1644 	case CAM_PROVIDE_FAIL:
1645 	case CAM_REQ_TOO_BIG:
1646 	case CAM_LUN_INVALID:
1647 	case CAM_TID_INVALID:
1648 		error = EINVAL;
1649 		break;
1650 	case CAM_SCSI_BUS_RESET:
1651 	case CAM_BDR_SENT:
1652 		/*
1653 		 * Commands that repeatedly timeout and cause these
1654 		 * kinds of error recovery actions, should return
1655 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1656 		 * that this command was an innocent bystander to
1657 		 * these events and should be unconditionally
1658 		 * retried.
1659 		 */
1660 		if (bootverbose && printed == 0) {
1661 			xpt_print_path(ccb->ccb_h.path);
1662 			if (status == CAM_BDR_SENT)
1663 				kprintf("Bus Device Reset sent\n");
1664 			else
1665 				kprintf("Bus Reset issued\n");
1666 			printed++;
1667 		}
1668 		/* FALLTHROUGH */
1669 	case CAM_REQUEUE_REQ:
1670 		/* Unconditional requeue */
1671 		error = ERESTART;
1672 		if (bootverbose && printed == 0) {
1673 			xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1674 			printed++;
1675 		}
1676 		break;
1677 	case CAM_RESRC_UNAVAIL:
1678 		/* Wait a bit for the resource shortage to abate. */
1679 		timeout = periph_noresrc_delay;
1680 		/* FALLTHROUGH */
1681 	case CAM_BUSY:
1682 		if (timeout == 0) {
1683 			/* Wait a bit for the busy condition to abate. */
1684 			timeout = periph_busy_delay;
1685 		}
1686 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1687 		/* FALLTHROUGH */
1688 	default:
1689 		/* decrement the number of retries */
1690 		if (ccb->ccb_h.retry_count > 0) {
1691 			ccb->ccb_h.retry_count--;
1692 			error = ERESTART;
1693 			if (bootverbose && printed == 0) {
1694 				xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1695 				    status);
1696 				printed++;
1697 			}
1698 		} else {
1699 			error = EIO;
1700 			action_string = "Retries Exhausted";
1701 		}
1702 		break;
1703 	}
1704 
1705 	/* Attempt a retry */
1706 	if (error == ERESTART || error == 0) {
1707 		if (frozen != 0)
1708 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1709 
1710 		if (error == ERESTART) {
1711 			action_string = "Retrying Command";
1712 			xpt_action(ccb);
1713 		}
1714 
1715 		if (frozen != 0)
1716 			cam_release_devq(ccb->ccb_h.path,
1717 					 relsim_flags,
1718 					 openings,
1719 					 timeout,
1720 					 /*getcount_only*/0);
1721 	}
1722 
1723 	/*
1724 	 * If we have an error and are booting verbosely, whine
1725 	 * *unless* this was a non-retryable selection timeout.
1726 	 */
1727 	if (error != 0 && bootverbose &&
1728 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1729 
1730 
1731 		if (action_string == NULL)
1732 			action_string = "Unretryable Error";
1733 		if (error != ERESTART) {
1734 			xpt_print(ccb->ccb_h.path, "error %d\n", error);
1735 		}
1736 		xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1737 	}
1738 
1739 	return (error);
1740 }
1741