xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 1847e88f)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.28 2006/01/22 14:03:51 swildner Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/bus.h>
44 #include <sys/thread.h>
45 #include <sys/thread2.h>
46 
47 #include <machine/clock.h>
48 #include <machine/ipl.h>
49 
50 #include "cam.h"
51 #include "cam_ccb.h"
52 #include "cam_periph.h"
53 #include "cam_sim.h"
54 #include "cam_xpt.h"
55 #include "cam_xpt_sim.h"
56 #include "cam_xpt_periph.h"
57 #include "cam_debug.h"
58 
59 #include "scsi/scsi_all.h"
60 #include "scsi/scsi_message.h"
61 #include "scsi/scsi_pass.h"
62 #include "opt_cam.h"
63 
64 /* Datastructures internal to the xpt layer */
65 
66 /*
67  * Definition of an async handler callback block.  These are used to add
68  * SIMs and peripherals to the async callback lists.
69  */
70 struct async_node {
71 	SLIST_ENTRY(async_node)	links;
72 	u_int32_t	event_enable;	/* Async Event enables */
73 	void		(*callback)(void *arg, u_int32_t code,
74 				    struct cam_path *path, void *args);
75 	void		*callback_arg;
76 };
77 
78 SLIST_HEAD(async_list, async_node);
79 SLIST_HEAD(periph_list, cam_periph);
80 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
81 
82 /*
83  * This is the maximum number of high powered commands (e.g. start unit)
84  * that can be outstanding at a particular time.
85  */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER  4
88 #endif
89 
90 /* number of high powered commands that can go through right now */
91 static int num_highpower = CAM_MAX_HIGHPOWER;
92 
93 /*
94  * Structure for queueing a device in a run queue.
95  * There is one run queue for allocating new ccbs,
96  * and another for sending ccbs to the controller.
97  */
98 struct cam_ed_qinfo {
99 	cam_pinfo pinfo;
100 	struct	  cam_ed *device;
101 };
102 
103 /*
104  * The CAM EDT (Existing Device Table) contains the device information for
105  * all devices for all busses in the system.  The table contains a
106  * cam_ed structure for each device on the bus.
107  */
108 struct cam_ed {
109 	TAILQ_ENTRY(cam_ed) links;
110 	struct	cam_ed_qinfo alloc_ccb_entry;
111 	struct	cam_ed_qinfo send_ccb_entry;
112 	struct	cam_et	 *target;
113 	lun_id_t	 lun_id;
114 	struct	camq drvq;		/*
115 					 * Queue of type drivers wanting to do
116 					 * work on this device.
117 					 */
118 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
119 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
120 	struct	periph_list periphs;	/* All attached devices */
121 	u_int	generation;		/* Generation number */
122 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
123 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
124 					/* Storage for the inquiry data */
125 	struct	scsi_inquiry_data inq_data;
126 	u_int8_t	 inq_flags;	/*
127 					 * Current settings for inquiry flags.
128 					 * This allows us to override settings
129 					 * like disconnection and tagged
130 					 * queuing for a device.
131 					 */
132 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
133 	u_int8_t	 serial_num_len;
134 	u_int8_t	 *serial_num;
135 	u_int32_t	 qfrozen_cnt;
136 	u_int32_t	 flags;
137 #define CAM_DEV_UNCONFIGURED	 	0x01
138 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
139 #define CAM_DEV_REL_ON_COMPLETE		0x04
140 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
141 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
142 #define CAM_DEV_TAG_AFTER_COUNT		0x20
143 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
144 	u_int32_t	 tag_delay_count;
145 #define	CAM_TAG_DELAY_COUNT		5
146 	u_int32_t	 refcount;
147 	struct		 callout c_handle;
148 };
149 
150 /*
151  * Each target is represented by an ET (Existing Target).  These
152  * entries are created when a target is successfully probed with an
153  * identify, and removed when a device fails to respond after a number
154  * of retries, or a bus rescan finds the device missing.
155  */
156 struct cam_et {
157 	TAILQ_HEAD(, cam_ed) ed_entries;
158 	TAILQ_ENTRY(cam_et) links;
159 	struct	cam_eb	*bus;
160 	target_id_t	target_id;
161 	u_int32_t	refcount;
162 	u_int		generation;
163 	struct		timeval last_reset;	/* uptime of last reset */
164 };
165 
166 /*
167  * Each bus is represented by an EB (Existing Bus).  These entries
168  * are created by calls to xpt_bus_register and deleted by calls to
169  * xpt_bus_deregister.
170  */
171 struct cam_eb {
172 	TAILQ_HEAD(, cam_et) et_entries;
173 	TAILQ_ENTRY(cam_eb)  links;
174 	path_id_t	     path_id;
175 	struct cam_sim	     *sim;
176 	struct timeval	     last_reset;	/* uptime of last reset */
177 	u_int32_t	     flags;
178 #define	CAM_EB_RUNQ_SCHEDULED	0x01
179 	u_int32_t	     refcount;
180 	u_int		     generation;
181 };
182 
183 struct cam_path {
184 	struct cam_periph *periph;
185 	struct cam_eb	  *bus;
186 	struct cam_et	  *target;
187 	struct cam_ed	  *device;
188 };
189 
190 struct xpt_quirk_entry {
191 	struct scsi_inquiry_pattern inq_pat;
192 	u_int8_t quirks;
193 #define	CAM_QUIRK_NOLUNS	0x01
194 #define	CAM_QUIRK_NOSERIAL	0x02
195 #define	CAM_QUIRK_HILUNS	0x04
196 	u_int mintags;
197 	u_int maxtags;
198 };
199 #define	CAM_SCSI2_MAXLUN	8
200 
201 typedef enum {
202 	XPT_FLAG_OPEN		= 0x01
203 } xpt_flags;
204 
205 struct xpt_softc {
206 	xpt_flags	flags;
207 	u_int32_t	generation;
208 };
209 
210 static const char quantum[] = "QUANTUM";
211 static const char sony[] = "SONY";
212 static const char west_digital[] = "WDIGTL";
213 static const char samsung[] = "SAMSUNG";
214 static const char seagate[] = "SEAGATE";
215 static const char microp[] = "MICROP";
216 
217 static struct xpt_quirk_entry xpt_quirk_table[] =
218 {
219 	{
220 		/* Reports QUEUE FULL for temporary resource shortages */
221 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
222 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
223 	},
224 	{
225 		/* Reports QUEUE FULL for temporary resource shortages */
226 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
227 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
228 	},
229 	{
230 		/* Reports QUEUE FULL for temporary resource shortages */
231 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
232 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
233 	},
234 	{
235 		/* Broken tagged queuing drive */
236 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
237 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
238 	},
239 	{
240 		/* Broken tagged queuing drive */
241 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
242 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
243 	},
244 	{
245 		/* Broken tagged queuing drive */
246 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
247 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
248 	},
249 	{
250 		/*
251 		 * Unfortunately, the Quantum Atlas III has the same
252 		 * problem as the Atlas II drives above.
253 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
254 		 *
255 		 * For future reference, the drive with the problem was:
256 		 * QUANTUM QM39100TD-SW N1B0
257 		 *
258 		 * It's possible that Quantum will fix the problem in later
259 		 * firmware revisions.  If that happens, the quirk entry
260 		 * will need to be made specific to the firmware revisions
261 		 * with the problem.
262 		 *
263 		 */
264 		/* Reports QUEUE FULL for temporary resource shortages */
265 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
266 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
267 	},
268 	{
269 		/*
270 		 * 18 Gig Atlas III, same problem as the 9G version.
271 		 * Reported by: Andre Albsmeier
272 		 *		<andre.albsmeier@mchp.siemens.de>
273 		 *
274 		 * For future reference, the drive with the problem was:
275 		 * QUANTUM QM318000TD-S N491
276 		 */
277 		/* Reports QUEUE FULL for temporary resource shortages */
278 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
279 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
280 	},
281 	{
282 		/*
283 		 * Broken tagged queuing drive
284 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
285 		 *         and: Martin Renters <martin@tdc.on.ca>
286 		 */
287 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
288 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
289 	},
290 		/*
291 		 * The Seagate Medalist Pro drives have very poor write
292 		 * performance with anything more than 2 tags.
293 		 *
294 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
295 		 * Drive:  <SEAGATE ST36530N 1444>
296 		 *
297 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
298 		 * Drive:  <SEAGATE ST34520W 1281>
299 		 *
300 		 * No one has actually reported that the 9G version
301 		 * (ST39140*) of the Medalist Pro has the same problem, but
302 		 * we're assuming that it does because the 4G and 6.5G
303 		 * versions of the drive are broken.
304 		 */
305 	{
306 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
307 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
308 	},
309 	{
310 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
311 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
312 	},
313 	{
314 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
315 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
316 	},
317 	{
318 		/*
319 		 * Slow when tagged queueing is enabled.  Write performance
320 		 * steadily drops off with more and more concurrent
321 		 * transactions.  Best sequential write performance with
322 		 * tagged queueing turned off and write caching turned on.
323 		 *
324 		 * PR:  kern/10398
325 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
326 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
327 		 *
328 		 * The drive with the problem had the "S65A" firmware
329 		 * revision, and has also been reported (by Stephen J.
330 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
331 		 * firmware revision.
332 		 *
333 		 * Although no one has reported problems with the 2 gig
334 		 * version of the DCAS drive, the assumption is that it
335 		 * has the same problems as the 4 gig version.  Therefore
336 		 * this quirk entries disables tagged queueing for all
337 		 * DCAS drives.
338 		 */
339 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
340 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
341 	},
342 	{
343 		/* Broken tagged queuing drive */
344 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
345 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
346 	},
347 	{
348 		/* Broken tagged queuing drive */
349 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 	{
353 		/*
354 		 * Broken tagged queuing drive.
355 		 * Submitted by:
356 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
357 		 * in PR kern/9535
358 		 */
359 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
360 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
361 	},
362         {
363 		/*
364 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
365 		 * 8MB/sec.)
366 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
367 		 * Best performance with these drives is achieved with
368 		 * tagged queueing turned off, and write caching turned on.
369 		 */
370 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
371 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
372         },
373         {
374 		/*
375 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
376 		 * 8MB/sec.)
377 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
378 		 * Best performance with these drives is achieved with
379 		 * tagged queueing turned off, and write caching turned on.
380 		 */
381 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
382 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
383         },
384 	{
385 		/*
386 		 * Doesn't handle queue full condition correctly,
387 		 * so we need to limit maxtags to what the device
388 		 * can handle instead of determining this automatically.
389 		 */
390 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
391 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
392 	},
393 	{
394 		/* Really only one LUN */
395 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
396 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
397 	},
398 	{
399 		/* I can't believe we need a quirk for DPT volumes. */
400 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
401 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
402 		/*mintags*/0, /*maxtags*/255
403 	},
404 	{
405 		/*
406 		 * Many Sony CDROM drives don't like multi-LUN probing.
407 		 */
408 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
409 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
410 	},
411 	{
412 		/*
413 		 * This drive doesn't like multiple LUN probing.
414 		 * Submitted by:  Parag Patel <parag@cgt.com>
415 		 */
416 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
417 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
418 	},
419 	{
420 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
421 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
422 	},
423 	{
424 		/*
425 		 * The 8200 doesn't like multi-lun probing, and probably
426 		 * don't like serial number requests either.
427 		 */
428 		{
429 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
430 			"EXB-8200*", "*"
431 		},
432 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
433 	},
434 	{
435 		/*
436 		 * Let's try the same as above, but for a drive that says
437 		 * it's an IPL-6860 but is actually an EXB 8200.
438 		 */
439 		{
440 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
441 			"IPL-6860*", "*"
442 		},
443 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
444 	},
445 	{
446 		/*
447 		 * These Hitachi drives don't like multi-lun probing.
448 		 * The PR submitter has a DK319H, but says that the Linux
449 		 * kernel has a similar work-around for the DK312 and DK314,
450 		 * so all DK31* drives are quirked here.
451 		 * PR:            misc/18793
452 		 * Submitted by:  Paul Haddad <paul@pth.com>
453 		 */
454 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
455 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
456 	},
457 	{
458 		/*
459 		 * This old revision of the TDC3600 is also SCSI-1, and
460 		 * hangs upon serial number probing.
461 		 */
462 		{
463 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
464 			" TDC 3600", "U07:"
465 		},
466 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
467 	},
468 	{
469 		/*
470 		 * Would repond to all LUNs if asked for.
471 		 */
472 		{
473 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
474 			"CP150", "*"
475 		},
476 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
477 	},
478 	{
479 		/*
480 		 * Would repond to all LUNs if asked for.
481 		 */
482 		{
483 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
484 			"96X2*", "*"
485 		},
486 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
487 	},
488 	{
489 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
490 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
491 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
492 	},
493 	{
494 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
495 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
496 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
497 	},
498 	{
499 		/* TeraSolutions special settings for TRC-22 RAID */
500 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
501 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
502 	},
503 	{
504 		/* Veritas Storage Appliance */
505 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
506 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
507 	},
508 	{
509 		/*
510 		 * Would respond to all LUNs.  Device type and removable
511 		 * flag are jumper-selectable.
512 		 */
513 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
514 		  "Tahiti 1", "*"
515 		},
516 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
517 	},
518 	{
519 		/* Default tagged queuing parameters for all devices */
520 		{
521 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
522 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
523 		},
524 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
525 	},
526 };
527 
528 static const int xpt_quirk_table_size =
529 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
530 
531 typedef enum {
532 	DM_RET_COPY		= 0x01,
533 	DM_RET_FLAG_MASK	= 0x0f,
534 	DM_RET_NONE		= 0x00,
535 	DM_RET_STOP		= 0x10,
536 	DM_RET_DESCEND		= 0x20,
537 	DM_RET_ERROR		= 0x30,
538 	DM_RET_ACTION_MASK	= 0xf0
539 } dev_match_ret;
540 
541 typedef enum {
542 	XPT_DEPTH_BUS,
543 	XPT_DEPTH_TARGET,
544 	XPT_DEPTH_DEVICE,
545 	XPT_DEPTH_PERIPH
546 } xpt_traverse_depth;
547 
548 struct xpt_traverse_config {
549 	xpt_traverse_depth	depth;
550 	void			*tr_func;
551 	void			*tr_arg;
552 };
553 
554 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
555 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
556 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
557 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
558 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
559 
560 /* Transport layer configuration information */
561 static struct xpt_softc xsoftc;
562 
563 /* Queues for our software interrupt handler */
564 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
565 static cam_isrq_t cam_bioq;
566 static cam_isrq_t cam_netq;
567 
568 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
569 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
570 static u_int xpt_max_ccbs;	/*
571 				 * Maximum size of ccb pool.  Modified as
572 				 * devices are added/removed or have their
573 				 * opening counts changed.
574 				 */
575 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
576 
577 struct cam_periph *xpt_periph;
578 
579 static periph_init_t xpt_periph_init;
580 
581 static periph_init_t probe_periph_init;
582 
583 static struct periph_driver xpt_driver =
584 {
585 	xpt_periph_init, "xpt",
586 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
587 };
588 
589 static struct periph_driver probe_driver =
590 {
591 	probe_periph_init, "probe",
592 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
593 };
594 
595 DATA_SET(periphdriver_set, xpt_driver);
596 DATA_SET(periphdriver_set, probe_driver);
597 
598 #define XPT_CDEV_MAJOR 104
599 
600 static d_open_t xptopen;
601 static d_close_t xptclose;
602 static d_ioctl_t xptioctl;
603 
604 static struct cdevsw xpt_cdevsw = {
605 	/* name */	"xpt",
606 	/* maj */	XPT_CDEV_MAJOR,
607 	/* flags */	0,
608 	/* port */	NULL,
609 	/* clone */	NULL,
610 
611 	/* open */	xptopen,
612 	/* close */	xptclose,
613 	/* read */	noread,
614 	/* write */	nowrite,
615 	/* ioctl */	xptioctl,
616 	/* poll */	nopoll,
617 	/* mmap */	nommap,
618 	/* strategy */	nostrategy,
619 	/* dump */	nodump,
620 	/* psize */	nopsize
621 };
622 
623 static struct intr_config_hook *xpt_config_hook;
624 
625 /* Registered busses */
626 static TAILQ_HEAD(,cam_eb) xpt_busses;
627 static u_int bus_generation;
628 
629 /* Storage for debugging datastructures */
630 #ifdef	CAMDEBUG
631 struct cam_path *cam_dpath;
632 u_int32_t cam_dflags;
633 u_int32_t cam_debug_delay;
634 #endif
635 
636 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
637 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
638 #endif
639 
640 /*
641  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
642  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
643  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
644  */
645 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
646     || defined(CAM_DEBUG_LUN)
647 #ifdef CAMDEBUG
648 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
649     || !defined(CAM_DEBUG_LUN)
650 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
651         and CAM_DEBUG_LUN"
652 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
653 #else /* !CAMDEBUG */
654 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
655 #endif /* CAMDEBUG */
656 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
657 
658 /* Our boot-time initialization hook */
659 static void	xpt_init(void *);
660 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
661 
662 static cam_status	xpt_compile_path(struct cam_path *new_path,
663 					 struct cam_periph *perph,
664 					 path_id_t path_id,
665 					 target_id_t target_id,
666 					 lun_id_t lun_id);
667 
668 static void		xpt_release_path(struct cam_path *path);
669 
670 static void		xpt_async_bcast(struct async_list *async_head,
671 					u_int32_t async_code,
672 					struct cam_path *path,
673 					void *async_arg);
674 static void		xpt_dev_async(u_int32_t async_code,
675 				      struct cam_eb *bus,
676 				      struct cam_et *target,
677 				      struct cam_ed *device,
678 				      void *async_arg);
679 static path_id_t xptnextfreepathid(void);
680 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
681 static union ccb *xpt_get_ccb(struct cam_ed *device);
682 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
683 				  u_int32_t new_priority);
684 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
685 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
686 static timeout_t xpt_release_devq_timeout;
687 static void	 xpt_release_bus(struct cam_eb *bus);
688 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
689 					 int run_queue);
690 static struct cam_et*
691 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
692 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
693 static struct cam_ed*
694 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
695 				  lun_id_t lun_id);
696 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
697 				    struct cam_ed *device);
698 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
699 static struct cam_eb*
700 		 xpt_find_bus(path_id_t path_id);
701 static struct cam_et*
702 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
703 static struct cam_ed*
704 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
705 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
706 static void	 xpt_scan_lun(struct cam_periph *periph,
707 			      struct cam_path *path, cam_flags flags,
708 			      union ccb *ccb);
709 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
710 static xpt_busfunc_t	xptconfigbuscountfunc;
711 static xpt_busfunc_t	xptconfigfunc;
712 static void	 xpt_config(void *arg);
713 static xpt_devicefunc_t xptpassannouncefunc;
714 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
715 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
716 static void	 xptpoll(struct cam_sim *sim);
717 static inthand2_t swi_camnet;
718 static inthand2_t swi_cambio;
719 static void	 camisr(cam_isrq_t *queue);
720 #if 0
721 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
722 static void	 xptasync(struct cam_periph *periph,
723 			  u_int32_t code, cam_path *path);
724 #endif
725 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
726 				    int num_patterns, struct cam_eb *bus);
727 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
728 				       int num_patterns, struct cam_ed *device);
729 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
730 				       int num_patterns,
731 				       struct cam_periph *periph);
732 static xpt_busfunc_t	xptedtbusfunc;
733 static xpt_targetfunc_t	xptedttargetfunc;
734 static xpt_devicefunc_t	xptedtdevicefunc;
735 static xpt_periphfunc_t	xptedtperiphfunc;
736 static xpt_pdrvfunc_t	xptplistpdrvfunc;
737 static xpt_periphfunc_t	xptplistperiphfunc;
738 static int		xptedtmatch(struct ccb_dev_match *cdm);
739 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
740 static int		xptbustraverse(struct cam_eb *start_bus,
741 				       xpt_busfunc_t *tr_func, void *arg);
742 static int		xpttargettraverse(struct cam_eb *bus,
743 					  struct cam_et *start_target,
744 					  xpt_targetfunc_t *tr_func, void *arg);
745 static int		xptdevicetraverse(struct cam_et *target,
746 					  struct cam_ed *start_device,
747 					  xpt_devicefunc_t *tr_func, void *arg);
748 static int		xptperiphtraverse(struct cam_ed *device,
749 					  struct cam_periph *start_periph,
750 					  xpt_periphfunc_t *tr_func, void *arg);
751 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
752 					xpt_pdrvfunc_t *tr_func, void *arg);
753 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
754 					    struct cam_periph *start_periph,
755 					    xpt_periphfunc_t *tr_func,
756 					    void *arg);
757 static xpt_busfunc_t	xptdefbusfunc;
758 static xpt_targetfunc_t	xptdeftargetfunc;
759 static xpt_devicefunc_t	xptdefdevicefunc;
760 static xpt_periphfunc_t	xptdefperiphfunc;
761 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
762 #ifdef notusedyet
763 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
764 					    void *arg);
765 #endif
766 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
767 					    void *arg);
768 #ifdef notusedyet
769 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
770 					    void *arg);
771 #endif
772 static xpt_devicefunc_t	xptsetasyncfunc;
773 static xpt_busfunc_t	xptsetasyncbusfunc;
774 static cam_status	xptregister(struct cam_periph *periph,
775 				    void *arg);
776 static cam_status	proberegister(struct cam_periph *periph,
777 				      void *arg);
778 static void	 probeschedule(struct cam_periph *probe_periph);
779 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
780 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
781 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
782 static void	 probecleanup(struct cam_periph *periph);
783 static void	 xpt_find_quirk(struct cam_ed *device);
784 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
785 					   struct cam_ed *device,
786 					   int async_update);
787 static void	 xpt_toggle_tags(struct cam_path *path);
788 static void	 xpt_start_tags(struct cam_path *path);
789 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
790 					    struct cam_ed *dev);
791 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
792 					   struct cam_ed *dev);
793 static __inline int periph_is_queued(struct cam_periph *periph);
794 static __inline int device_is_alloc_queued(struct cam_ed *device);
795 static __inline int device_is_send_queued(struct cam_ed *device);
796 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
797 
798 static __inline int
799 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
800 {
801 	int retval;
802 
803 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
804 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
805 			cam_ccbq_resize(&dev->ccbq,
806 					dev->ccbq.dev_openings
807 					+ dev->ccbq.dev_active);
808 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
809 		}
810 		/*
811 		 * The priority of a device waiting for CCB resources
812 		 * is that of the the highest priority peripheral driver
813 		 * enqueued.
814 		 */
815 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
816 					  &dev->alloc_ccb_entry.pinfo,
817 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
818 	} else {
819 		retval = 0;
820 	}
821 
822 	return (retval);
823 }
824 
825 static __inline int
826 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
827 {
828 	int	retval;
829 
830 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
831 		/*
832 		 * The priority of a device waiting for controller
833 		 * resources is that of the the highest priority CCB
834 		 * enqueued.
835 		 */
836 		retval =
837 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
838 				     &dev->send_ccb_entry.pinfo,
839 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
840 	} else {
841 		retval = 0;
842 	}
843 	return (retval);
844 }
845 
846 static __inline int
847 periph_is_queued(struct cam_periph *periph)
848 {
849 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
850 }
851 
852 static __inline int
853 device_is_alloc_queued(struct cam_ed *device)
854 {
855 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
856 }
857 
858 static __inline int
859 device_is_send_queued(struct cam_ed *device)
860 {
861 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
862 }
863 
864 static __inline int
865 dev_allocq_is_runnable(struct cam_devq *devq)
866 {
867 	/*
868 	 * Have work to do.
869 	 * Have space to do more work.
870 	 * Allowed to do work.
871 	 */
872 	return ((devq->alloc_queue.qfrozen_cnt == 0)
873 	     && (devq->alloc_queue.entries > 0)
874 	     && (devq->alloc_openings > 0));
875 }
876 
877 static void
878 xpt_periph_init(void)
879 {
880 	cdevsw_add(&xpt_cdevsw, 0, 0);
881 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
882 }
883 
884 static void
885 probe_periph_init(void)
886 {
887 }
888 
889 
890 static void
891 xptdone(struct cam_periph *periph, union ccb *done_ccb)
892 {
893 	/* Caller will release the CCB */
894 	wakeup(&done_ccb->ccb_h.cbfcnp);
895 }
896 
897 static int
898 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
899 {
900 	int unit;
901 
902 	unit = minor(dev) & 0xff;
903 
904 	/*
905 	 * Only allow read-write access.
906 	 */
907 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
908 		return(EPERM);
909 
910 	/*
911 	 * We don't allow nonblocking access.
912 	 */
913 	if ((flags & O_NONBLOCK) != 0) {
914 		printf("xpt%d: can't do nonblocking access\n", unit);
915 		return(ENODEV);
916 	}
917 
918 	/*
919 	 * We only have one transport layer right now.  If someone accesses
920 	 * us via something other than minor number 1, point out their
921 	 * mistake.
922 	 */
923 	if (unit != 0) {
924 		printf("xptopen: got invalid xpt unit %d\n", unit);
925 		return(ENXIO);
926 	}
927 
928 	/* Mark ourselves open */
929 	xsoftc.flags |= XPT_FLAG_OPEN;
930 
931 	return(0);
932 }
933 
934 static int
935 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
936 {
937 	int unit;
938 
939 	unit = minor(dev) & 0xff;
940 
941 	/*
942 	 * We only have one transport layer right now.  If someone accesses
943 	 * us via something other than minor number 1, point out their
944 	 * mistake.
945 	 */
946 	if (unit != 0) {
947 		printf("xptclose: got invalid xpt unit %d\n", unit);
948 		return(ENXIO);
949 	}
950 
951 	/* Mark ourselves closed */
952 	xsoftc.flags &= ~XPT_FLAG_OPEN;
953 
954 	return(0);
955 }
956 
957 static int
958 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
959 {
960 	int unit, error;
961 
962 	error = 0;
963 	unit = minor(dev) & 0xff;
964 
965 	/*
966 	 * We only have one transport layer right now.  If someone accesses
967 	 * us via something other than minor number 1, point out their
968 	 * mistake.
969 	 */
970 	if (unit != 0) {
971 		printf("xptioctl: got invalid xpt unit %d\n", unit);
972 		return(ENXIO);
973 	}
974 
975 	switch(cmd) {
976 	/*
977 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
978 	 * to accept CCB types that don't quite make sense to send through a
979 	 * passthrough driver.
980 	 */
981 	case CAMIOCOMMAND: {
982 		union ccb *ccb;
983 		union ccb *inccb;
984 
985 		inccb = (union ccb *)addr;
986 
987 		switch(inccb->ccb_h.func_code) {
988 		case XPT_SCAN_BUS:
989 		case XPT_RESET_BUS:
990 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
991 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
992 				error = EINVAL;
993 				break;
994 			}
995 			/* FALLTHROUGH */
996 		case XPT_PATH_INQ:
997 		case XPT_ENG_INQ:
998 		case XPT_SCAN_LUN:
999 
1000 			ccb = xpt_alloc_ccb();
1001 
1002 			/*
1003 			 * Create a path using the bus, target, and lun the
1004 			 * user passed in.
1005 			 */
1006 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1007 					    inccb->ccb_h.path_id,
1008 					    inccb->ccb_h.target_id,
1009 					    inccb->ccb_h.target_lun) !=
1010 					    CAM_REQ_CMP){
1011 				error = EINVAL;
1012 				xpt_free_ccb(ccb);
1013 				break;
1014 			}
1015 			/* Ensure all of our fields are correct */
1016 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1017 				      inccb->ccb_h.pinfo.priority);
1018 			xpt_merge_ccb(ccb, inccb);
1019 			ccb->ccb_h.cbfcnp = xptdone;
1020 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1021 			bcopy(ccb, inccb, sizeof(union ccb));
1022 			xpt_free_path(ccb->ccb_h.path);
1023 			xpt_free_ccb(ccb);
1024 			break;
1025 
1026 		case XPT_DEBUG: {
1027 			union ccb ccb;
1028 
1029 			/*
1030 			 * This is an immediate CCB, so it's okay to
1031 			 * allocate it on the stack.
1032 			 */
1033 
1034 			/*
1035 			 * Create a path using the bus, target, and lun the
1036 			 * user passed in.
1037 			 */
1038 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1039 					    inccb->ccb_h.path_id,
1040 					    inccb->ccb_h.target_id,
1041 					    inccb->ccb_h.target_lun) !=
1042 					    CAM_REQ_CMP){
1043 				error = EINVAL;
1044 				break;
1045 			}
1046 			/* Ensure all of our fields are correct */
1047 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1048 				      inccb->ccb_h.pinfo.priority);
1049 			xpt_merge_ccb(&ccb, inccb);
1050 			ccb.ccb_h.cbfcnp = xptdone;
1051 			xpt_action(&ccb);
1052 			bcopy(&ccb, inccb, sizeof(union ccb));
1053 			xpt_free_path(ccb.ccb_h.path);
1054 			break;
1055 
1056 		}
1057 		case XPT_DEV_MATCH: {
1058 			struct cam_periph_map_info mapinfo;
1059 			struct cam_path *old_path;
1060 
1061 			/*
1062 			 * We can't deal with physical addresses for this
1063 			 * type of transaction.
1064 			 */
1065 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1066 				error = EINVAL;
1067 				break;
1068 			}
1069 
1070 			/*
1071 			 * Save this in case the caller had it set to
1072 			 * something in particular.
1073 			 */
1074 			old_path = inccb->ccb_h.path;
1075 
1076 			/*
1077 			 * We really don't need a path for the matching
1078 			 * code.  The path is needed because of the
1079 			 * debugging statements in xpt_action().  They
1080 			 * assume that the CCB has a valid path.
1081 			 */
1082 			inccb->ccb_h.path = xpt_periph->path;
1083 
1084 			bzero(&mapinfo, sizeof(mapinfo));
1085 
1086 			/*
1087 			 * Map the pattern and match buffers into kernel
1088 			 * virtual address space.
1089 			 */
1090 			error = cam_periph_mapmem(inccb, &mapinfo);
1091 
1092 			if (error) {
1093 				inccb->ccb_h.path = old_path;
1094 				break;
1095 			}
1096 
1097 			/*
1098 			 * This is an immediate CCB, we can send it on directly.
1099 			 */
1100 			xpt_action(inccb);
1101 
1102 			/*
1103 			 * Map the buffers back into user space.
1104 			 */
1105 			cam_periph_unmapmem(inccb, &mapinfo);
1106 
1107 			inccb->ccb_h.path = old_path;
1108 
1109 			error = 0;
1110 			break;
1111 		}
1112 		default:
1113 			error = ENOTSUP;
1114 			break;
1115 		}
1116 		break;
1117 	}
1118 	/*
1119 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1120 	 * with the periphal driver name and unit name filled in.  The other
1121 	 * fields don't really matter as input.  The passthrough driver name
1122 	 * ("pass"), and unit number are passed back in the ccb.  The current
1123 	 * device generation number, and the index into the device peripheral
1124 	 * driver list, and the status are also passed back.  Note that
1125 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1126 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1127 	 * (or rather should be) impossible for the device peripheral driver
1128 	 * list to change since we look at the whole thing in one pass, and
1129 	 * we do it within a critical section.
1130 	 *
1131 	 */
1132 	case CAMGETPASSTHRU: {
1133 		union ccb *ccb;
1134 		struct cam_periph *periph;
1135 		struct periph_driver **p_drv;
1136 		char   *name;
1137 		int unit;
1138 		int cur_generation;
1139 		int base_periph_found;
1140 		int splbreaknum;
1141 
1142 		ccb = (union ccb *)addr;
1143 		unit = ccb->cgdl.unit_number;
1144 		name = ccb->cgdl.periph_name;
1145 		/*
1146 		 * Every 100 devices, we want to call splz() to check for
1147 		 * and allow the software interrupt handler a chance to run.
1148 		 *
1149 		 * Most systems won't run into this check, but this should
1150 		 * avoid starvation in the software interrupt handler in
1151 		 * large systems.
1152 		 */
1153 		splbreaknum = 100;
1154 
1155 		ccb = (union ccb *)addr;
1156 
1157 		base_periph_found = 0;
1158 
1159 		/*
1160 		 * Sanity check -- make sure we don't get a null peripheral
1161 		 * driver name.
1162 		 */
1163 		if (*ccb->cgdl.periph_name == '\0') {
1164 			error = EINVAL;
1165 			break;
1166 		}
1167 
1168 		/* Keep the list from changing while we traverse it */
1169 		crit_enter();
1170 ptstartover:
1171 		cur_generation = xsoftc.generation;
1172 
1173 		/* first find our driver in the list of drivers */
1174 		SET_FOREACH(p_drv, periphdriver_set) {
1175 			if (strcmp((*p_drv)->driver_name, name) == 0)
1176 				break;
1177 		}
1178 
1179 		if (*p_drv == NULL) {
1180 			crit_exit();
1181 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1182 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1183 			*ccb->cgdl.periph_name = '\0';
1184 			ccb->cgdl.unit_number = 0;
1185 			error = ENOENT;
1186 			break;
1187 		}
1188 
1189 		/*
1190 		 * Run through every peripheral instance of this driver
1191 		 * and check to see whether it matches the unit passed
1192 		 * in by the user.  If it does, get out of the loops and
1193 		 * find the passthrough driver associated with that
1194 		 * peripheral driver.
1195 		 */
1196 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1197 		     periph = TAILQ_NEXT(periph, unit_links)) {
1198 
1199 			if (periph->unit_number == unit) {
1200 				break;
1201 			} else if (--splbreaknum == 0) {
1202 				splz();
1203 				splbreaknum = 100;
1204 				if (cur_generation != xsoftc.generation)
1205 				       goto ptstartover;
1206 			}
1207 		}
1208 		/*
1209 		 * If we found the peripheral driver that the user passed
1210 		 * in, go through all of the peripheral drivers for that
1211 		 * particular device and look for a passthrough driver.
1212 		 */
1213 		if (periph != NULL) {
1214 			struct cam_ed *device;
1215 			int i;
1216 
1217 			base_periph_found = 1;
1218 			device = periph->path->device;
1219 			for (i = 0, periph = device->periphs.slh_first;
1220 			     periph != NULL;
1221 			     periph = periph->periph_links.sle_next, i++) {
1222 				/*
1223 				 * Check to see whether we have a
1224 				 * passthrough device or not.
1225 				 */
1226 				if (strcmp(periph->periph_name, "pass") == 0) {
1227 					/*
1228 					 * Fill in the getdevlist fields.
1229 					 */
1230 					strcpy(ccb->cgdl.periph_name,
1231 					       periph->periph_name);
1232 					ccb->cgdl.unit_number =
1233 						periph->unit_number;
1234 					if (periph->periph_links.sle_next)
1235 						ccb->cgdl.status =
1236 							CAM_GDEVLIST_MORE_DEVS;
1237 					else
1238 						ccb->cgdl.status =
1239 						       CAM_GDEVLIST_LAST_DEVICE;
1240 					ccb->cgdl.generation =
1241 						device->generation;
1242 					ccb->cgdl.index = i;
1243 					/*
1244 					 * Fill in some CCB header fields
1245 					 * that the user may want.
1246 					 */
1247 					ccb->ccb_h.path_id =
1248 						periph->path->bus->path_id;
1249 					ccb->ccb_h.target_id =
1250 						periph->path->target->target_id;
1251 					ccb->ccb_h.target_lun =
1252 						periph->path->device->lun_id;
1253 					ccb->ccb_h.status = CAM_REQ_CMP;
1254 					break;
1255 				}
1256 			}
1257 		}
1258 
1259 		/*
1260 		 * If the periph is null here, one of two things has
1261 		 * happened.  The first possibility is that we couldn't
1262 		 * find the unit number of the particular peripheral driver
1263 		 * that the user is asking about.  e.g. the user asks for
1264 		 * the passthrough driver for "da11".  We find the list of
1265 		 * "da" peripherals all right, but there is no unit 11.
1266 		 * The other possibility is that we went through the list
1267 		 * of peripheral drivers attached to the device structure,
1268 		 * but didn't find one with the name "pass".  Either way,
1269 		 * we return ENOENT, since we couldn't find something.
1270 		 */
1271 		if (periph == NULL) {
1272 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1273 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1274 			*ccb->cgdl.periph_name = '\0';
1275 			ccb->cgdl.unit_number = 0;
1276 			error = ENOENT;
1277 			/*
1278 			 * It is unfortunate that this is even necessary,
1279 			 * but there are many, many clueless users out there.
1280 			 * If this is true, the user is looking for the
1281 			 * passthrough driver, but doesn't have one in his
1282 			 * kernel.
1283 			 */
1284 			if (base_periph_found == 1) {
1285 				printf("xptioctl: pass driver is not in the "
1286 				       "kernel\n");
1287 				printf("xptioctl: put \"device pass0\" in "
1288 				       "your kernel config file\n");
1289 			}
1290 		}
1291 		crit_exit();
1292 		break;
1293 		}
1294 	default:
1295 		error = ENOTTY;
1296 		break;
1297 	}
1298 
1299 	return(error);
1300 }
1301 
1302 /* Functions accessed by the peripheral drivers */
1303 static void
1304 xpt_init(void *dummy)
1305 {
1306 	struct cam_sim *xpt_sim;
1307 	struct cam_path *path;
1308 	struct cam_devq *devq;
1309 	cam_status status;
1310 
1311 	TAILQ_INIT(&xpt_busses);
1312 	TAILQ_INIT(&cam_bioq);
1313 	TAILQ_INIT(&cam_netq);
1314 	SLIST_INIT(&ccb_freeq);
1315 	STAILQ_INIT(&highpowerq);
1316 
1317 	/*
1318 	 * The xpt layer is, itself, the equivelent of a SIM.
1319 	 * Allow 16 ccbs in the ccb pool for it.  This should
1320 	 * give decent parallelism when we probe busses and
1321 	 * perform other XPT functions.
1322 	 */
1323 	devq = cam_simq_alloc(16);
1324 	xpt_sim = cam_sim_alloc(xptaction,
1325 				xptpoll,
1326 				"xpt",
1327 				/*softc*/NULL,
1328 				/*unit*/0,
1329 				/*max_dev_transactions*/0,
1330 				/*max_tagged_dev_transactions*/0,
1331 				devq);
1332 	cam_simq_release(devq);
1333 	xpt_max_ccbs = 16;
1334 
1335 	xpt_bus_register(xpt_sim, /*bus #*/0);
1336 
1337 	/*
1338 	 * Looking at the XPT from the SIM layer, the XPT is
1339 	 * the equivelent of a peripheral driver.  Allocate
1340 	 * a peripheral driver entry for us.
1341 	 */
1342 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1343 				      CAM_TARGET_WILDCARD,
1344 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1345 		printf("xpt_init: xpt_create_path failed with status %#x,"
1346 		       " failing attach\n", status);
1347 		return;
1348 	}
1349 
1350 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1351 			 path, NULL, 0, NULL);
1352 	xpt_free_path(path);
1353 
1354 	xpt_sim->softc = xpt_periph;
1355 
1356 	/*
1357 	 * Register a callback for when interrupts are enabled.
1358 	 */
1359 	xpt_config_hook = malloc(sizeof(struct intr_config_hook),
1360 				  M_TEMP, M_INTWAIT | M_ZERO);
1361 	xpt_config_hook->ich_func = xpt_config;
1362 	xpt_config_hook->ich_desc = "xpt";
1363 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1364 		free (xpt_config_hook, M_TEMP);
1365 		printf("xpt_init: config_intrhook_establish failed "
1366 		       "- failing attach\n");
1367 	}
1368 
1369 	/* Install our software interrupt handlers */
1370 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet", NULL);
1371 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL);
1372 }
1373 
1374 static cam_status
1375 xptregister(struct cam_periph *periph, void *arg)
1376 {
1377 	if (periph == NULL) {
1378 		printf("xptregister: periph was NULL!!\n");
1379 		return(CAM_REQ_CMP_ERR);
1380 	}
1381 
1382 	periph->softc = NULL;
1383 
1384 	xpt_periph = periph;
1385 
1386 	return(CAM_REQ_CMP);
1387 }
1388 
1389 int32_t
1390 xpt_add_periph(struct cam_periph *periph)
1391 {
1392 	struct cam_ed *device;
1393 	int32_t	 status;
1394 	struct periph_list *periph_head;
1395 
1396 	device = periph->path->device;
1397 
1398 	periph_head = &device->periphs;
1399 
1400 	status = CAM_REQ_CMP;
1401 
1402 	if (device != NULL) {
1403 		/*
1404 		 * Make room for this peripheral
1405 		 * so it will fit in the queue
1406 		 * when it's scheduled to run
1407 		 */
1408 		crit_enter();
1409 		status = camq_resize(&device->drvq,
1410 				     device->drvq.array_size + 1);
1411 
1412 		device->generation++;
1413 
1414 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1415 		crit_exit();
1416 	}
1417 
1418 	xsoftc.generation++;
1419 
1420 	return (status);
1421 }
1422 
1423 void
1424 xpt_remove_periph(struct cam_periph *periph)
1425 {
1426 	struct cam_ed *device;
1427 
1428 	device = periph->path->device;
1429 
1430 	if (device != NULL) {
1431 		struct periph_list *periph_head;
1432 
1433 		periph_head = &device->periphs;
1434 
1435 		/* Release the slot for this peripheral */
1436 		crit_enter();
1437 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1438 
1439 		device->generation++;
1440 
1441 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1442 		crit_exit();
1443 	}
1444 
1445 	xsoftc.generation++;
1446 
1447 }
1448 
1449 void
1450 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1451 {
1452 	u_int mb;
1453 	struct cam_path *path;
1454 	struct ccb_trans_settings cts;
1455 
1456 	path = periph->path;
1457 	/*
1458 	 * To ensure that this is printed in one piece,
1459 	 * mask out CAM interrupts.
1460 	 */
1461 	crit_enter();
1462 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1463 	       periph->periph_name, periph->unit_number,
1464 	       path->bus->sim->sim_name,
1465 	       path->bus->sim->unit_number,
1466 	       path->bus->sim->bus_id,
1467 	       path->target->target_id,
1468 	       path->device->lun_id);
1469 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1470 	scsi_print_inquiry(&path->device->inq_data);
1471 	if ((bootverbose)
1472 	 && (path->device->serial_num_len > 0)) {
1473 		/* Don't wrap the screen  - print only the first 60 chars */
1474 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1475 		       periph->unit_number, path->device->serial_num);
1476 	}
1477 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1478 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1479 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1480 	xpt_action((union ccb*)&cts);
1481 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1482 		u_int speed;
1483 		u_int freq;
1484 
1485 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1486 		  && cts.sync_offset != 0) {
1487 			freq = scsi_calc_syncsrate(cts.sync_period);
1488 			speed = freq;
1489 		} else {
1490 			struct ccb_pathinq cpi;
1491 
1492 			/* Ask the SIM for its base transfer speed */
1493 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1494 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1495 			xpt_action((union ccb *)&cpi);
1496 
1497 			speed = cpi.base_transfer_speed;
1498 			freq = 0;
1499 		}
1500 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1501 			speed *= (0x01 << cts.bus_width);
1502 		mb = speed / 1000;
1503 		if (mb > 0)
1504 			printf("%s%d: %d.%03dMB/s transfers",
1505 			       periph->periph_name, periph->unit_number,
1506 			       mb, speed % 1000);
1507 		else
1508 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1509 			       periph->unit_number, speed);
1510 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1511 		 && cts.sync_offset != 0) {
1512 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1513 			       freq % 1000, cts.sync_offset);
1514 		}
1515 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1516 		 && cts.bus_width > 0) {
1517 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1518 			 && cts.sync_offset != 0) {
1519 				printf(", ");
1520 			} else {
1521 				printf(" (");
1522 			}
1523 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1524 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1525 			&& cts.sync_offset != 0) {
1526 			printf(")");
1527 		}
1528 
1529 		if (path->device->inq_flags & SID_CmdQue
1530 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1531 			printf(", Tagged Queueing Enabled");
1532 		}
1533 
1534 		printf("\n");
1535 	} else if (path->device->inq_flags & SID_CmdQue
1536    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1537 		printf("%s%d: Tagged Queueing Enabled\n",
1538 		       periph->periph_name, periph->unit_number);
1539 	}
1540 
1541 	/*
1542 	 * We only want to print the caller's announce string if they've
1543 	 * passed one in..
1544 	 */
1545 	if (announce_string != NULL)
1546 		printf("%s%d: %s\n", periph->periph_name,
1547 		       periph->unit_number, announce_string);
1548 	crit_exit();
1549 }
1550 
1551 
1552 static dev_match_ret
1553 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1554 	    struct cam_eb *bus)
1555 {
1556 	dev_match_ret retval;
1557 	int i;
1558 
1559 	retval = DM_RET_NONE;
1560 
1561 	/*
1562 	 * If we aren't given something to match against, that's an error.
1563 	 */
1564 	if (bus == NULL)
1565 		return(DM_RET_ERROR);
1566 
1567 	/*
1568 	 * If there are no match entries, then this bus matches no
1569 	 * matter what.
1570 	 */
1571 	if ((patterns == NULL) || (num_patterns == 0))
1572 		return(DM_RET_DESCEND | DM_RET_COPY);
1573 
1574 	for (i = 0; i < num_patterns; i++) {
1575 		struct bus_match_pattern *cur_pattern;
1576 
1577 		/*
1578 		 * If the pattern in question isn't for a bus node, we
1579 		 * aren't interested.  However, we do indicate to the
1580 		 * calling routine that we should continue descending the
1581 		 * tree, since the user wants to match against lower-level
1582 		 * EDT elements.
1583 		 */
1584 		if (patterns[i].type != DEV_MATCH_BUS) {
1585 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1586 				retval |= DM_RET_DESCEND;
1587 			continue;
1588 		}
1589 
1590 		cur_pattern = &patterns[i].pattern.bus_pattern;
1591 
1592 		/*
1593 		 * If they want to match any bus node, we give them any
1594 		 * device node.
1595 		 */
1596 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1597 			/* set the copy flag */
1598 			retval |= DM_RET_COPY;
1599 
1600 			/*
1601 			 * If we've already decided on an action, go ahead
1602 			 * and return.
1603 			 */
1604 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1605 				return(retval);
1606 		}
1607 
1608 		/*
1609 		 * Not sure why someone would do this...
1610 		 */
1611 		if (cur_pattern->flags == BUS_MATCH_NONE)
1612 			continue;
1613 
1614 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1615 		 && (cur_pattern->path_id != bus->path_id))
1616 			continue;
1617 
1618 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1619 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1620 			continue;
1621 
1622 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1623 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1624 			continue;
1625 
1626 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1627 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1628 			     DEV_IDLEN) != 0))
1629 			continue;
1630 
1631 		/*
1632 		 * If we get to this point, the user definitely wants
1633 		 * information on this bus.  So tell the caller to copy the
1634 		 * data out.
1635 		 */
1636 		retval |= DM_RET_COPY;
1637 
1638 		/*
1639 		 * If the return action has been set to descend, then we
1640 		 * know that we've already seen a non-bus matching
1641 		 * expression, therefore we need to further descend the tree.
1642 		 * This won't change by continuing around the loop, so we
1643 		 * go ahead and return.  If we haven't seen a non-bus
1644 		 * matching expression, we keep going around the loop until
1645 		 * we exhaust the matching expressions.  We'll set the stop
1646 		 * flag once we fall out of the loop.
1647 		 */
1648 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1649 			return(retval);
1650 	}
1651 
1652 	/*
1653 	 * If the return action hasn't been set to descend yet, that means
1654 	 * we haven't seen anything other than bus matching patterns.  So
1655 	 * tell the caller to stop descending the tree -- the user doesn't
1656 	 * want to match against lower level tree elements.
1657 	 */
1658 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1659 		retval |= DM_RET_STOP;
1660 
1661 	return(retval);
1662 }
1663 
1664 static dev_match_ret
1665 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1666 	       struct cam_ed *device)
1667 {
1668 	dev_match_ret retval;
1669 	int i;
1670 
1671 	retval = DM_RET_NONE;
1672 
1673 	/*
1674 	 * If we aren't given something to match against, that's an error.
1675 	 */
1676 	if (device == NULL)
1677 		return(DM_RET_ERROR);
1678 
1679 	/*
1680 	 * If there are no match entries, then this device matches no
1681 	 * matter what.
1682 	 */
1683 	if ((patterns == NULL) || (patterns == 0))
1684 		return(DM_RET_DESCEND | DM_RET_COPY);
1685 
1686 	for (i = 0; i < num_patterns; i++) {
1687 		struct device_match_pattern *cur_pattern;
1688 
1689 		/*
1690 		 * If the pattern in question isn't for a device node, we
1691 		 * aren't interested.
1692 		 */
1693 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1694 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1695 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1696 				retval |= DM_RET_DESCEND;
1697 			continue;
1698 		}
1699 
1700 		cur_pattern = &patterns[i].pattern.device_pattern;
1701 
1702 		/*
1703 		 * If they want to match any device node, we give them any
1704 		 * device node.
1705 		 */
1706 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1707 			/* set the copy flag */
1708 			retval |= DM_RET_COPY;
1709 
1710 
1711 			/*
1712 			 * If we've already decided on an action, go ahead
1713 			 * and return.
1714 			 */
1715 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1716 				return(retval);
1717 		}
1718 
1719 		/*
1720 		 * Not sure why someone would do this...
1721 		 */
1722 		if (cur_pattern->flags == DEV_MATCH_NONE)
1723 			continue;
1724 
1725 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1726 		 && (cur_pattern->path_id != device->target->bus->path_id))
1727 			continue;
1728 
1729 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1730 		 && (cur_pattern->target_id != device->target->target_id))
1731 			continue;
1732 
1733 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1734 		 && (cur_pattern->target_lun != device->lun_id))
1735 			continue;
1736 
1737 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1738 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1739 				    (caddr_t)&cur_pattern->inq_pat,
1740 				    1, sizeof(cur_pattern->inq_pat),
1741 				    scsi_static_inquiry_match) == NULL))
1742 			continue;
1743 
1744 		/*
1745 		 * If we get to this point, the user definitely wants
1746 		 * information on this device.  So tell the caller to copy
1747 		 * the data out.
1748 		 */
1749 		retval |= DM_RET_COPY;
1750 
1751 		/*
1752 		 * If the return action has been set to descend, then we
1753 		 * know that we've already seen a peripheral matching
1754 		 * expression, therefore we need to further descend the tree.
1755 		 * This won't change by continuing around the loop, so we
1756 		 * go ahead and return.  If we haven't seen a peripheral
1757 		 * matching expression, we keep going around the loop until
1758 		 * we exhaust the matching expressions.  We'll set the stop
1759 		 * flag once we fall out of the loop.
1760 		 */
1761 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1762 			return(retval);
1763 	}
1764 
1765 	/*
1766 	 * If the return action hasn't been set to descend yet, that means
1767 	 * we haven't seen any peripheral matching patterns.  So tell the
1768 	 * caller to stop descending the tree -- the user doesn't want to
1769 	 * match against lower level tree elements.
1770 	 */
1771 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1772 		retval |= DM_RET_STOP;
1773 
1774 	return(retval);
1775 }
1776 
1777 /*
1778  * Match a single peripheral against any number of match patterns.
1779  */
1780 static dev_match_ret
1781 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1782 	       struct cam_periph *periph)
1783 {
1784 	dev_match_ret retval;
1785 	int i;
1786 
1787 	/*
1788 	 * If we aren't given something to match against, that's an error.
1789 	 */
1790 	if (periph == NULL)
1791 		return(DM_RET_ERROR);
1792 
1793 	/*
1794 	 * If there are no match entries, then this peripheral matches no
1795 	 * matter what.
1796 	 */
1797 	if ((patterns == NULL) || (num_patterns == 0))
1798 		return(DM_RET_STOP | DM_RET_COPY);
1799 
1800 	/*
1801 	 * There aren't any nodes below a peripheral node, so there's no
1802 	 * reason to descend the tree any further.
1803 	 */
1804 	retval = DM_RET_STOP;
1805 
1806 	for (i = 0; i < num_patterns; i++) {
1807 		struct periph_match_pattern *cur_pattern;
1808 
1809 		/*
1810 		 * If the pattern in question isn't for a peripheral, we
1811 		 * aren't interested.
1812 		 */
1813 		if (patterns[i].type != DEV_MATCH_PERIPH)
1814 			continue;
1815 
1816 		cur_pattern = &patterns[i].pattern.periph_pattern;
1817 
1818 		/*
1819 		 * If they want to match on anything, then we will do so.
1820 		 */
1821 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1822 			/* set the copy flag */
1823 			retval |= DM_RET_COPY;
1824 
1825 			/*
1826 			 * We've already set the return action to stop,
1827 			 * since there are no nodes below peripherals in
1828 			 * the tree.
1829 			 */
1830 			return(retval);
1831 		}
1832 
1833 		/*
1834 		 * Not sure why someone would do this...
1835 		 */
1836 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1837 			continue;
1838 
1839 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1840 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1841 			continue;
1842 
1843 		/*
1844 		 * For the target and lun id's, we have to make sure the
1845 		 * target and lun pointers aren't NULL.  The xpt peripheral
1846 		 * has a wildcard target and device.
1847 		 */
1848 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1849 		 && ((periph->path->target == NULL)
1850 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1851 			continue;
1852 
1853 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1854 		 && ((periph->path->device == NULL)
1855 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1856 			continue;
1857 
1858 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1859 		 && (cur_pattern->unit_number != periph->unit_number))
1860 			continue;
1861 
1862 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1863 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1864 			     DEV_IDLEN) != 0))
1865 			continue;
1866 
1867 		/*
1868 		 * If we get to this point, the user definitely wants
1869 		 * information on this peripheral.  So tell the caller to
1870 		 * copy the data out.
1871 		 */
1872 		retval |= DM_RET_COPY;
1873 
1874 		/*
1875 		 * The return action has already been set to stop, since
1876 		 * peripherals don't have any nodes below them in the EDT.
1877 		 */
1878 		return(retval);
1879 	}
1880 
1881 	/*
1882 	 * If we get to this point, the peripheral that was passed in
1883 	 * doesn't match any of the patterns.
1884 	 */
1885 	return(retval);
1886 }
1887 
1888 static int
1889 xptedtbusfunc(struct cam_eb *bus, void *arg)
1890 {
1891 	struct ccb_dev_match *cdm;
1892 	dev_match_ret retval;
1893 
1894 	cdm = (struct ccb_dev_match *)arg;
1895 
1896 	/*
1897 	 * If our position is for something deeper in the tree, that means
1898 	 * that we've already seen this node.  So, we keep going down.
1899 	 */
1900 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1901 	 && (cdm->pos.cookie.bus == bus)
1902 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1903 	 && (cdm->pos.cookie.target != NULL))
1904 		retval = DM_RET_DESCEND;
1905 	else
1906 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1907 
1908 	/*
1909 	 * If we got an error, bail out of the search.
1910 	 */
1911 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1912 		cdm->status = CAM_DEV_MATCH_ERROR;
1913 		return(0);
1914 	}
1915 
1916 	/*
1917 	 * If the copy flag is set, copy this bus out.
1918 	 */
1919 	if (retval & DM_RET_COPY) {
1920 		int spaceleft, j;
1921 
1922 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1923 			sizeof(struct dev_match_result));
1924 
1925 		/*
1926 		 * If we don't have enough space to put in another
1927 		 * match result, save our position and tell the
1928 		 * user there are more devices to check.
1929 		 */
1930 		if (spaceleft < sizeof(struct dev_match_result)) {
1931 			bzero(&cdm->pos, sizeof(cdm->pos));
1932 			cdm->pos.position_type =
1933 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1934 
1935 			cdm->pos.cookie.bus = bus;
1936 			cdm->pos.generations[CAM_BUS_GENERATION]=
1937 				bus_generation;
1938 			cdm->status = CAM_DEV_MATCH_MORE;
1939 			return(0);
1940 		}
1941 		j = cdm->num_matches;
1942 		cdm->num_matches++;
1943 		cdm->matches[j].type = DEV_MATCH_BUS;
1944 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1945 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1946 		cdm->matches[j].result.bus_result.unit_number =
1947 			bus->sim->unit_number;
1948 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1949 			bus->sim->sim_name, DEV_IDLEN);
1950 	}
1951 
1952 	/*
1953 	 * If the user is only interested in busses, there's no
1954 	 * reason to descend to the next level in the tree.
1955 	 */
1956 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1957 		return(1);
1958 
1959 	/*
1960 	 * If there is a target generation recorded, check it to
1961 	 * make sure the target list hasn't changed.
1962 	 */
1963 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1964 	 && (bus == cdm->pos.cookie.bus)
1965 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1966 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1967 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1968 	     bus->generation)) {
1969 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1970 		return(0);
1971 	}
1972 
1973 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1974 	 && (cdm->pos.cookie.bus == bus)
1975 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1976 	 && (cdm->pos.cookie.target != NULL))
1977 		return(xpttargettraverse(bus,
1978 					(struct cam_et *)cdm->pos.cookie.target,
1979 					 xptedttargetfunc, arg));
1980 	else
1981 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1982 }
1983 
1984 static int
1985 xptedttargetfunc(struct cam_et *target, void *arg)
1986 {
1987 	struct ccb_dev_match *cdm;
1988 
1989 	cdm = (struct ccb_dev_match *)arg;
1990 
1991 	/*
1992 	 * If there is a device list generation recorded, check it to
1993 	 * make sure the device list hasn't changed.
1994 	 */
1995 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1996 	 && (cdm->pos.cookie.bus == target->bus)
1997 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1998 	 && (cdm->pos.cookie.target == target)
1999 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2000 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2001 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2002 	     target->generation)) {
2003 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2004 		return(0);
2005 	}
2006 
2007 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2008 	 && (cdm->pos.cookie.bus == target->bus)
2009 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2010 	 && (cdm->pos.cookie.target == target)
2011 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2012 	 && (cdm->pos.cookie.device != NULL))
2013 		return(xptdevicetraverse(target,
2014 					(struct cam_ed *)cdm->pos.cookie.device,
2015 					 xptedtdevicefunc, arg));
2016 	else
2017 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2018 }
2019 
2020 static int
2021 xptedtdevicefunc(struct cam_ed *device, void *arg)
2022 {
2023 
2024 	struct ccb_dev_match *cdm;
2025 	dev_match_ret retval;
2026 
2027 	cdm = (struct ccb_dev_match *)arg;
2028 
2029 	/*
2030 	 * If our position is for something deeper in the tree, that means
2031 	 * that we've already seen this node.  So, we keep going down.
2032 	 */
2033 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2034 	 && (cdm->pos.cookie.device == device)
2035 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2036 	 && (cdm->pos.cookie.periph != NULL))
2037 		retval = DM_RET_DESCEND;
2038 	else
2039 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2040 					device);
2041 
2042 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2043 		cdm->status = CAM_DEV_MATCH_ERROR;
2044 		return(0);
2045 	}
2046 
2047 	/*
2048 	 * If the copy flag is set, copy this device out.
2049 	 */
2050 	if (retval & DM_RET_COPY) {
2051 		int spaceleft, j;
2052 
2053 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2054 			sizeof(struct dev_match_result));
2055 
2056 		/*
2057 		 * If we don't have enough space to put in another
2058 		 * match result, save our position and tell the
2059 		 * user there are more devices to check.
2060 		 */
2061 		if (spaceleft < sizeof(struct dev_match_result)) {
2062 			bzero(&cdm->pos, sizeof(cdm->pos));
2063 			cdm->pos.position_type =
2064 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2065 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2066 
2067 			cdm->pos.cookie.bus = device->target->bus;
2068 			cdm->pos.generations[CAM_BUS_GENERATION]=
2069 				bus_generation;
2070 			cdm->pos.cookie.target = device->target;
2071 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2072 				device->target->bus->generation;
2073 			cdm->pos.cookie.device = device;
2074 			cdm->pos.generations[CAM_DEV_GENERATION] =
2075 				device->target->generation;
2076 			cdm->status = CAM_DEV_MATCH_MORE;
2077 			return(0);
2078 		}
2079 		j = cdm->num_matches;
2080 		cdm->num_matches++;
2081 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2082 		cdm->matches[j].result.device_result.path_id =
2083 			device->target->bus->path_id;
2084 		cdm->matches[j].result.device_result.target_id =
2085 			device->target->target_id;
2086 		cdm->matches[j].result.device_result.target_lun =
2087 			device->lun_id;
2088 		bcopy(&device->inq_data,
2089 		      &cdm->matches[j].result.device_result.inq_data,
2090 		      sizeof(struct scsi_inquiry_data));
2091 
2092 		/* Let the user know whether this device is unconfigured */
2093 		if (device->flags & CAM_DEV_UNCONFIGURED)
2094 			cdm->matches[j].result.device_result.flags =
2095 				DEV_RESULT_UNCONFIGURED;
2096 		else
2097 			cdm->matches[j].result.device_result.flags =
2098 				DEV_RESULT_NOFLAG;
2099 	}
2100 
2101 	/*
2102 	 * If the user isn't interested in peripherals, don't descend
2103 	 * the tree any further.
2104 	 */
2105 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2106 		return(1);
2107 
2108 	/*
2109 	 * If there is a peripheral list generation recorded, make sure
2110 	 * it hasn't changed.
2111 	 */
2112 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2113 	 && (device->target->bus == cdm->pos.cookie.bus)
2114 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2115 	 && (device->target == cdm->pos.cookie.target)
2116 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2117 	 && (device == cdm->pos.cookie.device)
2118 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2119 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2120 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2121 	     device->generation)){
2122 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2123 		return(0);
2124 	}
2125 
2126 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2127 	 && (cdm->pos.cookie.bus == device->target->bus)
2128 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2129 	 && (cdm->pos.cookie.target == device->target)
2130 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2131 	 && (cdm->pos.cookie.device == device)
2132 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2133 	 && (cdm->pos.cookie.periph != NULL))
2134 		return(xptperiphtraverse(device,
2135 				(struct cam_periph *)cdm->pos.cookie.periph,
2136 				xptedtperiphfunc, arg));
2137 	else
2138 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2139 }
2140 
2141 static int
2142 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2143 {
2144 	struct ccb_dev_match *cdm;
2145 	dev_match_ret retval;
2146 
2147 	cdm = (struct ccb_dev_match *)arg;
2148 
2149 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2150 
2151 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2152 		cdm->status = CAM_DEV_MATCH_ERROR;
2153 		return(0);
2154 	}
2155 
2156 	/*
2157 	 * If the copy flag is set, copy this peripheral out.
2158 	 */
2159 	if (retval & DM_RET_COPY) {
2160 		int spaceleft, j;
2161 
2162 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2163 			sizeof(struct dev_match_result));
2164 
2165 		/*
2166 		 * If we don't have enough space to put in another
2167 		 * match result, save our position and tell the
2168 		 * user there are more devices to check.
2169 		 */
2170 		if (spaceleft < sizeof(struct dev_match_result)) {
2171 			bzero(&cdm->pos, sizeof(cdm->pos));
2172 			cdm->pos.position_type =
2173 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2174 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2175 				CAM_DEV_POS_PERIPH;
2176 
2177 			cdm->pos.cookie.bus = periph->path->bus;
2178 			cdm->pos.generations[CAM_BUS_GENERATION]=
2179 				bus_generation;
2180 			cdm->pos.cookie.target = periph->path->target;
2181 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2182 				periph->path->bus->generation;
2183 			cdm->pos.cookie.device = periph->path->device;
2184 			cdm->pos.generations[CAM_DEV_GENERATION] =
2185 				periph->path->target->generation;
2186 			cdm->pos.cookie.periph = periph;
2187 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2188 				periph->path->device->generation;
2189 			cdm->status = CAM_DEV_MATCH_MORE;
2190 			return(0);
2191 		}
2192 
2193 		j = cdm->num_matches;
2194 		cdm->num_matches++;
2195 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2196 		cdm->matches[j].result.periph_result.path_id =
2197 			periph->path->bus->path_id;
2198 		cdm->matches[j].result.periph_result.target_id =
2199 			periph->path->target->target_id;
2200 		cdm->matches[j].result.periph_result.target_lun =
2201 			periph->path->device->lun_id;
2202 		cdm->matches[j].result.periph_result.unit_number =
2203 			periph->unit_number;
2204 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2205 			periph->periph_name, DEV_IDLEN);
2206 	}
2207 
2208 	return(1);
2209 }
2210 
2211 static int
2212 xptedtmatch(struct ccb_dev_match *cdm)
2213 {
2214 	int ret;
2215 
2216 	cdm->num_matches = 0;
2217 
2218 	/*
2219 	 * Check the bus list generation.  If it has changed, the user
2220 	 * needs to reset everything and start over.
2221 	 */
2222 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2223 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2224 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2225 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2226 		return(0);
2227 	}
2228 
2229 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2230 	 && (cdm->pos.cookie.bus != NULL))
2231 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2232 				     xptedtbusfunc, cdm);
2233 	else
2234 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2235 
2236 	/*
2237 	 * If we get back 0, that means that we had to stop before fully
2238 	 * traversing the EDT.  It also means that one of the subroutines
2239 	 * has set the status field to the proper value.  If we get back 1,
2240 	 * we've fully traversed the EDT and copied out any matching entries.
2241 	 */
2242 	if (ret == 1)
2243 		cdm->status = CAM_DEV_MATCH_LAST;
2244 
2245 	return(ret);
2246 }
2247 
2248 static int
2249 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2250 {
2251 	struct ccb_dev_match *cdm;
2252 
2253 	cdm = (struct ccb_dev_match *)arg;
2254 
2255 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2256 	 && (cdm->pos.cookie.pdrv == pdrv)
2257 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2258 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2259 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2260 	     (*pdrv)->generation)) {
2261 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2262 		return(0);
2263 	}
2264 
2265 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2266 	 && (cdm->pos.cookie.pdrv == pdrv)
2267 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2268 	 && (cdm->pos.cookie.periph != NULL))
2269 		return(xptpdperiphtraverse(pdrv,
2270 				(struct cam_periph *)cdm->pos.cookie.periph,
2271 				xptplistperiphfunc, arg));
2272 	else
2273 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2274 }
2275 
2276 static int
2277 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2278 {
2279 	struct ccb_dev_match *cdm;
2280 	dev_match_ret retval;
2281 
2282 	cdm = (struct ccb_dev_match *)arg;
2283 
2284 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2285 
2286 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2287 		cdm->status = CAM_DEV_MATCH_ERROR;
2288 		return(0);
2289 	}
2290 
2291 	/*
2292 	 * If the copy flag is set, copy this peripheral out.
2293 	 */
2294 	if (retval & DM_RET_COPY) {
2295 		int spaceleft, j;
2296 
2297 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2298 			sizeof(struct dev_match_result));
2299 
2300 		/*
2301 		 * If we don't have enough space to put in another
2302 		 * match result, save our position and tell the
2303 		 * user there are more devices to check.
2304 		 */
2305 		if (spaceleft < sizeof(struct dev_match_result)) {
2306 			struct periph_driver **pdrv;
2307 
2308 			pdrv = NULL;
2309 			bzero(&cdm->pos, sizeof(cdm->pos));
2310 			cdm->pos.position_type =
2311 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2312 				CAM_DEV_POS_PERIPH;
2313 
2314 			/*
2315 			 * This may look a bit non-sensical, but it is
2316 			 * actually quite logical.  There are very few
2317 			 * peripheral drivers, and bloating every peripheral
2318 			 * structure with a pointer back to its parent
2319 			 * peripheral driver linker set entry would cost
2320 			 * more in the long run than doing this quick lookup.
2321 			 */
2322 			SET_FOREACH(pdrv, periphdriver_set) {
2323 				if (strcmp((*pdrv)->driver_name,
2324 				    periph->periph_name) == 0)
2325 					break;
2326 			}
2327 
2328 			if (*pdrv == NULL) {
2329 				cdm->status = CAM_DEV_MATCH_ERROR;
2330 				return(0);
2331 			}
2332 
2333 			cdm->pos.cookie.pdrv = pdrv;
2334 			/*
2335 			 * The periph generation slot does double duty, as
2336 			 * does the periph pointer slot.  They are used for
2337 			 * both edt and pdrv lookups and positioning.
2338 			 */
2339 			cdm->pos.cookie.periph = periph;
2340 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2341 				(*pdrv)->generation;
2342 			cdm->status = CAM_DEV_MATCH_MORE;
2343 			return(0);
2344 		}
2345 
2346 		j = cdm->num_matches;
2347 		cdm->num_matches++;
2348 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2349 		cdm->matches[j].result.periph_result.path_id =
2350 			periph->path->bus->path_id;
2351 
2352 		/*
2353 		 * The transport layer peripheral doesn't have a target or
2354 		 * lun.
2355 		 */
2356 		if (periph->path->target)
2357 			cdm->matches[j].result.periph_result.target_id =
2358 				periph->path->target->target_id;
2359 		else
2360 			cdm->matches[j].result.periph_result.target_id = -1;
2361 
2362 		if (periph->path->device)
2363 			cdm->matches[j].result.periph_result.target_lun =
2364 				periph->path->device->lun_id;
2365 		else
2366 			cdm->matches[j].result.periph_result.target_lun = -1;
2367 
2368 		cdm->matches[j].result.periph_result.unit_number =
2369 			periph->unit_number;
2370 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2371 			periph->periph_name, DEV_IDLEN);
2372 	}
2373 
2374 	return(1);
2375 }
2376 
2377 static int
2378 xptperiphlistmatch(struct ccb_dev_match *cdm)
2379 {
2380 	int ret;
2381 
2382 	cdm->num_matches = 0;
2383 
2384 	/*
2385 	 * At this point in the edt traversal function, we check the bus
2386 	 * list generation to make sure that no busses have been added or
2387 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2388 	 * For the peripheral driver list traversal function, however, we
2389 	 * don't have to worry about new peripheral driver types coming or
2390 	 * going; they're in a linker set, and therefore can't change
2391 	 * without a recompile.
2392 	 */
2393 
2394 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2395 	 && (cdm->pos.cookie.pdrv != NULL))
2396 		ret = xptpdrvtraverse(
2397 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2398 				xptplistpdrvfunc, cdm);
2399 	else
2400 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2401 
2402 	/*
2403 	 * If we get back 0, that means that we had to stop before fully
2404 	 * traversing the peripheral driver tree.  It also means that one of
2405 	 * the subroutines has set the status field to the proper value.  If
2406 	 * we get back 1, we've fully traversed the EDT and copied out any
2407 	 * matching entries.
2408 	 */
2409 	if (ret == 1)
2410 		cdm->status = CAM_DEV_MATCH_LAST;
2411 
2412 	return(ret);
2413 }
2414 
2415 static int
2416 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2417 {
2418 	struct cam_eb *bus, *next_bus;
2419 	int retval;
2420 
2421 	retval = 1;
2422 
2423 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2424 	     bus != NULL;
2425 	     bus = next_bus) {
2426 		next_bus = TAILQ_NEXT(bus, links);
2427 
2428 		retval = tr_func(bus, arg);
2429 		if (retval == 0)
2430 			return(retval);
2431 	}
2432 
2433 	return(retval);
2434 }
2435 
2436 static int
2437 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2438 		  xpt_targetfunc_t *tr_func, void *arg)
2439 {
2440 	struct cam_et *target, *next_target;
2441 	int retval;
2442 
2443 	retval = 1;
2444 	for (target = (start_target ? start_target :
2445 		       TAILQ_FIRST(&bus->et_entries));
2446 	     target != NULL; target = next_target) {
2447 
2448 		next_target = TAILQ_NEXT(target, links);
2449 
2450 		retval = tr_func(target, arg);
2451 
2452 		if (retval == 0)
2453 			return(retval);
2454 	}
2455 
2456 	return(retval);
2457 }
2458 
2459 static int
2460 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2461 		  xpt_devicefunc_t *tr_func, void *arg)
2462 {
2463 	struct cam_ed *device, *next_device;
2464 	int retval;
2465 
2466 	retval = 1;
2467 	for (device = (start_device ? start_device :
2468 		       TAILQ_FIRST(&target->ed_entries));
2469 	     device != NULL;
2470 	     device = next_device) {
2471 
2472 		next_device = TAILQ_NEXT(device, links);
2473 
2474 		retval = tr_func(device, arg);
2475 
2476 		if (retval == 0)
2477 			return(retval);
2478 	}
2479 
2480 	return(retval);
2481 }
2482 
2483 static int
2484 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2485 		  xpt_periphfunc_t *tr_func, void *arg)
2486 {
2487 	struct cam_periph *periph, *next_periph;
2488 	int retval;
2489 
2490 	retval = 1;
2491 
2492 	for (periph = (start_periph ? start_periph :
2493 		       SLIST_FIRST(&device->periphs));
2494 	     periph != NULL;
2495 	     periph = next_periph) {
2496 
2497 		next_periph = SLIST_NEXT(periph, periph_links);
2498 
2499 		retval = tr_func(periph, arg);
2500 		if (retval == 0)
2501 			return(retval);
2502 	}
2503 
2504 	return(retval);
2505 }
2506 
2507 static int
2508 xptpdrvtraverse(struct periph_driver **start_pdrv,
2509 		xpt_pdrvfunc_t *tr_func, void *arg)
2510 {
2511 	struct periph_driver **pdrv;
2512 	int retval;
2513 
2514 	retval = 1;
2515 
2516 	/*
2517 	 * We don't traverse the peripheral driver list like we do the
2518 	 * other lists, because it is a linker set, and therefore cannot be
2519 	 * changed during runtime.  If the peripheral driver list is ever
2520 	 * re-done to be something other than a linker set (i.e. it can
2521 	 * change while the system is running), the list traversal should
2522 	 * be modified to work like the other traversal functions.
2523 	 */
2524 	SET_FOREACH(pdrv, periphdriver_set) {
2525 		if (start_pdrv == NULL || start_pdrv == pdrv) {
2526 			retval = tr_func(pdrv, arg);
2527 			if (retval == 0)
2528 				return(retval);
2529 			start_pdrv = NULL; /* traverse remainder */
2530 		}
2531 	}
2532 	return(retval);
2533 }
2534 
2535 static int
2536 xptpdperiphtraverse(struct periph_driver **pdrv,
2537 		    struct cam_periph *start_periph,
2538 		    xpt_periphfunc_t *tr_func, void *arg)
2539 {
2540 	struct cam_periph *periph, *next_periph;
2541 	int retval;
2542 
2543 	retval = 1;
2544 
2545 	for (periph = (start_periph ? start_periph :
2546 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2547 	     periph = next_periph) {
2548 
2549 		next_periph = TAILQ_NEXT(periph, unit_links);
2550 
2551 		retval = tr_func(periph, arg);
2552 		if (retval == 0)
2553 			return(retval);
2554 	}
2555 	return(retval);
2556 }
2557 
2558 static int
2559 xptdefbusfunc(struct cam_eb *bus, void *arg)
2560 {
2561 	struct xpt_traverse_config *tr_config;
2562 
2563 	tr_config = (struct xpt_traverse_config *)arg;
2564 
2565 	if (tr_config->depth == XPT_DEPTH_BUS) {
2566 		xpt_busfunc_t *tr_func;
2567 
2568 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2569 
2570 		return(tr_func(bus, tr_config->tr_arg));
2571 	} else
2572 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2573 }
2574 
2575 static int
2576 xptdeftargetfunc(struct cam_et *target, void *arg)
2577 {
2578 	struct xpt_traverse_config *tr_config;
2579 
2580 	tr_config = (struct xpt_traverse_config *)arg;
2581 
2582 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2583 		xpt_targetfunc_t *tr_func;
2584 
2585 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2586 
2587 		return(tr_func(target, tr_config->tr_arg));
2588 	} else
2589 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2590 }
2591 
2592 static int
2593 xptdefdevicefunc(struct cam_ed *device, void *arg)
2594 {
2595 	struct xpt_traverse_config *tr_config;
2596 
2597 	tr_config = (struct xpt_traverse_config *)arg;
2598 
2599 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2600 		xpt_devicefunc_t *tr_func;
2601 
2602 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2603 
2604 		return(tr_func(device, tr_config->tr_arg));
2605 	} else
2606 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2607 }
2608 
2609 static int
2610 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2611 {
2612 	struct xpt_traverse_config *tr_config;
2613 	xpt_periphfunc_t *tr_func;
2614 
2615 	tr_config = (struct xpt_traverse_config *)arg;
2616 
2617 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2618 
2619 	/*
2620 	 * Unlike the other default functions, we don't check for depth
2621 	 * here.  The peripheral driver level is the last level in the EDT,
2622 	 * so if we're here, we should execute the function in question.
2623 	 */
2624 	return(tr_func(periph, tr_config->tr_arg));
2625 }
2626 
2627 /*
2628  * Execute the given function for every bus in the EDT.
2629  */
2630 static int
2631 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2632 {
2633 	struct xpt_traverse_config tr_config;
2634 
2635 	tr_config.depth = XPT_DEPTH_BUS;
2636 	tr_config.tr_func = tr_func;
2637 	tr_config.tr_arg = arg;
2638 
2639 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2640 }
2641 
2642 #ifdef notusedyet
2643 /*
2644  * Execute the given function for every target in the EDT.
2645  */
2646 static int
2647 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2648 {
2649 	struct xpt_traverse_config tr_config;
2650 
2651 	tr_config.depth = XPT_DEPTH_TARGET;
2652 	tr_config.tr_func = tr_func;
2653 	tr_config.tr_arg = arg;
2654 
2655 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2656 }
2657 #endif /* notusedyet */
2658 
2659 /*
2660  * Execute the given function for every device in the EDT.
2661  */
2662 static int
2663 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2664 {
2665 	struct xpt_traverse_config tr_config;
2666 
2667 	tr_config.depth = XPT_DEPTH_DEVICE;
2668 	tr_config.tr_func = tr_func;
2669 	tr_config.tr_arg = arg;
2670 
2671 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2672 }
2673 
2674 #ifdef notusedyet
2675 /*
2676  * Execute the given function for every peripheral in the EDT.
2677  */
2678 static int
2679 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2680 {
2681 	struct xpt_traverse_config tr_config;
2682 
2683 	tr_config.depth = XPT_DEPTH_PERIPH;
2684 	tr_config.tr_func = tr_func;
2685 	tr_config.tr_arg = arg;
2686 
2687 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2688 }
2689 #endif /* notusedyet */
2690 
2691 static int
2692 xptsetasyncfunc(struct cam_ed *device, void *arg)
2693 {
2694 	struct cam_path path;
2695 	struct ccb_getdev cgd;
2696 	struct async_node *cur_entry;
2697 
2698 	cur_entry = (struct async_node *)arg;
2699 
2700 	/*
2701 	 * Don't report unconfigured devices (Wildcard devs,
2702 	 * devices only for target mode, device instances
2703 	 * that have been invalidated but are waiting for
2704 	 * their last reference count to be released).
2705 	 */
2706 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2707 		return (1);
2708 
2709 	xpt_compile_path(&path,
2710 			 NULL,
2711 			 device->target->bus->path_id,
2712 			 device->target->target_id,
2713 			 device->lun_id);
2714 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2715 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2716 	xpt_action((union ccb *)&cgd);
2717 	cur_entry->callback(cur_entry->callback_arg,
2718 			    AC_FOUND_DEVICE,
2719 			    &path, &cgd);
2720 	xpt_release_path(&path);
2721 
2722 	return(1);
2723 }
2724 
2725 static int
2726 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2727 {
2728 	struct cam_path path;
2729 	struct ccb_pathinq cpi;
2730 	struct async_node *cur_entry;
2731 
2732 	cur_entry = (struct async_node *)arg;
2733 
2734 	xpt_compile_path(&path, /*periph*/NULL,
2735 			 bus->sim->path_id,
2736 			 CAM_TARGET_WILDCARD,
2737 			 CAM_LUN_WILDCARD);
2738 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2739 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2740 	xpt_action((union ccb *)&cpi);
2741 	cur_entry->callback(cur_entry->callback_arg,
2742 			    AC_PATH_REGISTERED,
2743 			    &path, &cpi);
2744 	xpt_release_path(&path);
2745 
2746 	return(1);
2747 }
2748 
2749 void
2750 xpt_action(union ccb *start_ccb)
2751 {
2752 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2753 
2754 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2755 
2756 	crit_enter();
2757 
2758 	switch (start_ccb->ccb_h.func_code) {
2759 	case XPT_SCSI_IO:
2760 	{
2761 #ifdef CAMDEBUG
2762 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2763 		struct cam_path *path;
2764 
2765 		path = start_ccb->ccb_h.path;
2766 #endif
2767 
2768 		/*
2769 		 * For the sake of compatibility with SCSI-1
2770 		 * devices that may not understand the identify
2771 		 * message, we include lun information in the
2772 		 * second byte of all commands.  SCSI-1 specifies
2773 		 * that luns are a 3 bit value and reserves only 3
2774 		 * bits for lun information in the CDB.  Later
2775 		 * revisions of the SCSI spec allow for more than 8
2776 		 * luns, but have deprecated lun information in the
2777 		 * CDB.  So, if the lun won't fit, we must omit.
2778 		 *
2779 		 * Also be aware that during initial probing for devices,
2780 		 * the inquiry information is unknown but initialized to 0.
2781 		 * This means that this code will be exercised while probing
2782 		 * devices with an ANSI revision greater than 2.
2783 		 */
2784 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2785 		 && start_ccb->ccb_h.target_lun < 8
2786 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2787 
2788 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2789 			    start_ccb->ccb_h.target_lun << 5;
2790 		}
2791 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2792 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2793 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2794 			  	       &path->device->inq_data),
2795 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2796 					  cdb_str, sizeof(cdb_str))));
2797 		/* FALLTHROUGH */
2798 	}
2799 	case XPT_TARGET_IO:
2800 	case XPT_CONT_TARGET_IO:
2801 		start_ccb->csio.sense_resid = 0;
2802 		start_ccb->csio.resid = 0;
2803 		/* FALLTHROUGH */
2804 	case XPT_RESET_DEV:
2805 	case XPT_ENG_EXEC:
2806 	{
2807 		struct cam_path *path;
2808 		int runq;
2809 
2810 		path = start_ccb->ccb_h.path;
2811 
2812 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2813 		if (path->device->qfrozen_cnt == 0)
2814 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2815 		else
2816 			runq = 0;
2817 		if (runq != 0)
2818 			xpt_run_dev_sendq(path->bus);
2819 		break;
2820 	}
2821 	case XPT_SET_TRAN_SETTINGS:
2822 	{
2823 		xpt_set_transfer_settings(&start_ccb->cts,
2824 					  start_ccb->ccb_h.path->device,
2825 					  /*async_update*/FALSE);
2826 		break;
2827 	}
2828 	case XPT_CALC_GEOMETRY:
2829 	{
2830 		struct cam_sim *sim;
2831 
2832 		/* Filter out garbage */
2833 		if (start_ccb->ccg.block_size == 0
2834 		 || start_ccb->ccg.volume_size == 0) {
2835 			start_ccb->ccg.cylinders = 0;
2836 			start_ccb->ccg.heads = 0;
2837 			start_ccb->ccg.secs_per_track = 0;
2838 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2839 			break;
2840 		}
2841 		sim = start_ccb->ccb_h.path->bus->sim;
2842 		(*(sim->sim_action))(sim, start_ccb);
2843 		break;
2844 	}
2845 	case XPT_ABORT:
2846 	{
2847 		union ccb* abort_ccb;
2848 
2849 		abort_ccb = start_ccb->cab.abort_ccb;
2850 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2851 
2852 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2853 				struct cam_ccbq *ccbq;
2854 
2855 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2856 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2857 				abort_ccb->ccb_h.status =
2858 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2859 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2860 				xpt_done(abort_ccb);
2861 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2862 				break;
2863 			}
2864 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2865 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2866 				/*
2867 				 * We've caught this ccb en route to
2868 				 * the SIM.  Flag it for abort and the
2869 				 * SIM will do so just before starting
2870 				 * real work on the CCB.
2871 				 */
2872 				abort_ccb->ccb_h.status =
2873 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2874 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2875 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2876 				break;
2877 			}
2878 		}
2879 		if (XPT_FC_IS_QUEUED(abort_ccb)
2880 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2881 			/*
2882 			 * It's already completed but waiting
2883 			 * for our SWI to get to it.
2884 			 */
2885 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2886 			break;
2887 		}
2888 		/*
2889 		 * If we weren't able to take care of the abort request
2890 		 * in the XPT, pass the request down to the SIM for processing.
2891 		 */
2892 		/* FALLTHROUGH */
2893 	}
2894 	case XPT_ACCEPT_TARGET_IO:
2895 	case XPT_EN_LUN:
2896 	case XPT_IMMED_NOTIFY:
2897 	case XPT_NOTIFY_ACK:
2898 	case XPT_GET_TRAN_SETTINGS:
2899 	case XPT_RESET_BUS:
2900 	{
2901 		struct cam_sim *sim;
2902 
2903 		sim = start_ccb->ccb_h.path->bus->sim;
2904 		(*(sim->sim_action))(sim, start_ccb);
2905 		break;
2906 	}
2907 	case XPT_PATH_INQ:
2908 	{
2909 		struct cam_sim *sim;
2910 
2911 		sim = start_ccb->ccb_h.path->bus->sim;
2912 		(*(sim->sim_action))(sim, start_ccb);
2913 		break;
2914 	}
2915 	case XPT_PATH_STATS:
2916 		start_ccb->cpis.last_reset =
2917 			start_ccb->ccb_h.path->bus->last_reset;
2918 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2919 		break;
2920 	case XPT_GDEV_TYPE:
2921 	{
2922 		struct cam_ed *dev;
2923 
2924 		dev = start_ccb->ccb_h.path->device;
2925 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2926 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2927 		} else {
2928 			struct ccb_getdev *cgd;
2929 			struct cam_eb *bus;
2930 			struct cam_et *tar;
2931 
2932 			cgd = &start_ccb->cgd;
2933 			bus = cgd->ccb_h.path->bus;
2934 			tar = cgd->ccb_h.path->target;
2935 			cgd->inq_data = dev->inq_data;
2936 			cgd->ccb_h.status = CAM_REQ_CMP;
2937 			cgd->serial_num_len = dev->serial_num_len;
2938 			if ((dev->serial_num_len > 0)
2939 			 && (dev->serial_num != NULL))
2940 				bcopy(dev->serial_num, cgd->serial_num,
2941 				      dev->serial_num_len);
2942 		}
2943 		break;
2944 	}
2945 	case XPT_GDEV_STATS:
2946 	{
2947 		struct cam_ed *dev;
2948 
2949 		dev = start_ccb->ccb_h.path->device;
2950 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2951 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2952 		} else {
2953 			struct ccb_getdevstats *cgds;
2954 			struct cam_eb *bus;
2955 			struct cam_et *tar;
2956 
2957 			cgds = &start_ccb->cgds;
2958 			bus = cgds->ccb_h.path->bus;
2959 			tar = cgds->ccb_h.path->target;
2960 			cgds->dev_openings = dev->ccbq.dev_openings;
2961 			cgds->dev_active = dev->ccbq.dev_active;
2962 			cgds->devq_openings = dev->ccbq.devq_openings;
2963 			cgds->devq_queued = dev->ccbq.queue.entries;
2964 			cgds->held = dev->ccbq.held;
2965 			cgds->last_reset = tar->last_reset;
2966 			cgds->maxtags = dev->quirk->maxtags;
2967 			cgds->mintags = dev->quirk->mintags;
2968 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2969 				cgds->last_reset = bus->last_reset;
2970 			cgds->ccb_h.status = CAM_REQ_CMP;
2971 		}
2972 		break;
2973 	}
2974 	case XPT_GDEVLIST:
2975 	{
2976 		struct cam_periph	*nperiph;
2977 		struct periph_list	*periph_head;
2978 		struct ccb_getdevlist	*cgdl;
2979 		int			i;
2980 		struct cam_ed		*device;
2981 		int			found;
2982 
2983 
2984 		found = 0;
2985 
2986 		/*
2987 		 * Don't want anyone mucking with our data.
2988 		 */
2989 		device = start_ccb->ccb_h.path->device;
2990 		periph_head = &device->periphs;
2991 		cgdl = &start_ccb->cgdl;
2992 
2993 		/*
2994 		 * Check and see if the list has changed since the user
2995 		 * last requested a list member.  If so, tell them that the
2996 		 * list has changed, and therefore they need to start over
2997 		 * from the beginning.
2998 		 */
2999 		if ((cgdl->index != 0) &&
3000 		    (cgdl->generation != device->generation)) {
3001 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3002 			break;
3003 		}
3004 
3005 		/*
3006 		 * Traverse the list of peripherals and attempt to find
3007 		 * the requested peripheral.
3008 		 */
3009 		for (nperiph = periph_head->slh_first, i = 0;
3010 		     (nperiph != NULL) && (i <= cgdl->index);
3011 		     nperiph = nperiph->periph_links.sle_next, i++) {
3012 			if (i == cgdl->index) {
3013 				strncpy(cgdl->periph_name,
3014 					nperiph->periph_name,
3015 					DEV_IDLEN);
3016 				cgdl->unit_number = nperiph->unit_number;
3017 				found = 1;
3018 			}
3019 		}
3020 		if (found == 0) {
3021 			cgdl->status = CAM_GDEVLIST_ERROR;
3022 			break;
3023 		}
3024 
3025 		if (nperiph == NULL)
3026 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3027 		else
3028 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3029 
3030 		cgdl->index++;
3031 		cgdl->generation = device->generation;
3032 
3033 		cgdl->ccb_h.status = CAM_REQ_CMP;
3034 		break;
3035 	}
3036 	case XPT_DEV_MATCH:
3037 	{
3038 		dev_pos_type position_type;
3039 		struct ccb_dev_match *cdm;
3040 		int ret;
3041 
3042 		cdm = &start_ccb->cdm;
3043 
3044 		/*
3045 		 * Prevent EDT changes while we traverse it.
3046 		 */
3047 		/*
3048 		 * There are two ways of getting at information in the EDT.
3049 		 * The first way is via the primary EDT tree.  It starts
3050 		 * with a list of busses, then a list of targets on a bus,
3051 		 * then devices/luns on a target, and then peripherals on a
3052 		 * device/lun.  The "other" way is by the peripheral driver
3053 		 * lists.  The peripheral driver lists are organized by
3054 		 * peripheral driver.  (obviously)  So it makes sense to
3055 		 * use the peripheral driver list if the user is looking
3056 		 * for something like "da1", or all "da" devices.  If the
3057 		 * user is looking for something on a particular bus/target
3058 		 * or lun, it's generally better to go through the EDT tree.
3059 		 */
3060 
3061 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3062 			position_type = cdm->pos.position_type;
3063 		else {
3064 			int i;
3065 
3066 			position_type = CAM_DEV_POS_NONE;
3067 
3068 			for (i = 0; i < cdm->num_patterns; i++) {
3069 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3070 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3071 					position_type = CAM_DEV_POS_EDT;
3072 					break;
3073 				}
3074 			}
3075 
3076 			if (cdm->num_patterns == 0)
3077 				position_type = CAM_DEV_POS_EDT;
3078 			else if (position_type == CAM_DEV_POS_NONE)
3079 				position_type = CAM_DEV_POS_PDRV;
3080 		}
3081 
3082 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3083 		case CAM_DEV_POS_EDT:
3084 			ret = xptedtmatch(cdm);
3085 			break;
3086 		case CAM_DEV_POS_PDRV:
3087 			ret = xptperiphlistmatch(cdm);
3088 			break;
3089 		default:
3090 			cdm->status = CAM_DEV_MATCH_ERROR;
3091 			break;
3092 		}
3093 
3094 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3095 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3096 		else
3097 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3098 
3099 		break;
3100 	}
3101 	case XPT_SASYNC_CB:
3102 	{
3103 		struct ccb_setasync *csa;
3104 		struct async_node *cur_entry;
3105 		struct async_list *async_head;
3106 		u_int32_t added;
3107 
3108 		csa = &start_ccb->csa;
3109 		added = csa->event_enable;
3110 		async_head = &csa->ccb_h.path->device->asyncs;
3111 
3112 		/*
3113 		 * If there is already an entry for us, simply
3114 		 * update it.
3115 		 */
3116 		cur_entry = SLIST_FIRST(async_head);
3117 		while (cur_entry != NULL) {
3118 			if ((cur_entry->callback_arg == csa->callback_arg)
3119 			 && (cur_entry->callback == csa->callback))
3120 				break;
3121 			cur_entry = SLIST_NEXT(cur_entry, links);
3122 		}
3123 
3124 		if (cur_entry != NULL) {
3125 		 	/*
3126 			 * If the request has no flags set,
3127 			 * remove the entry.
3128 			 */
3129 			added &= ~cur_entry->event_enable;
3130 			if (csa->event_enable == 0) {
3131 				SLIST_REMOVE(async_head, cur_entry,
3132 					     async_node, links);
3133 				csa->ccb_h.path->device->refcount--;
3134 				free(cur_entry, M_DEVBUF);
3135 			} else {
3136 				cur_entry->event_enable = csa->event_enable;
3137 			}
3138 		} else {
3139 			cur_entry = malloc(sizeof(*cur_entry),
3140 					    M_DEVBUF, M_INTWAIT);
3141 			cur_entry->event_enable = csa->event_enable;
3142 			cur_entry->callback_arg = csa->callback_arg;
3143 			cur_entry->callback = csa->callback;
3144 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3145 			csa->ccb_h.path->device->refcount++;
3146 		}
3147 
3148 		if ((added & AC_FOUND_DEVICE) != 0) {
3149 			/*
3150 			 * Get this peripheral up to date with all
3151 			 * the currently existing devices.
3152 			 */
3153 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3154 		}
3155 		if ((added & AC_PATH_REGISTERED) != 0) {
3156 			/*
3157 			 * Get this peripheral up to date with all
3158 			 * the currently existing busses.
3159 			 */
3160 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3161 		}
3162 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3163 		break;
3164 	}
3165 	case XPT_REL_SIMQ:
3166 	{
3167 		struct ccb_relsim *crs;
3168 		struct cam_ed *dev;
3169 
3170 		crs = &start_ccb->crs;
3171 		dev = crs->ccb_h.path->device;
3172 		if (dev == NULL) {
3173 
3174 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3175 			break;
3176 		}
3177 
3178 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3179 
3180  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3181 
3182 				/* Don't ever go below one opening */
3183 				if (crs->openings > 0) {
3184 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3185 							    crs->openings);
3186 
3187 					if (bootverbose) {
3188 						xpt_print_path(crs->ccb_h.path);
3189 						printf("tagged openings "
3190 						       "now %d\n",
3191 						       crs->openings);
3192 					}
3193 				}
3194 			}
3195 		}
3196 
3197 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3198 
3199 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3200 
3201 				/*
3202 				 * Just extend the old timeout and decrement
3203 				 * the freeze count so that a single timeout
3204 				 * is sufficient for releasing the queue.
3205 				 */
3206 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3207 				callout_stop(&dev->c_handle);
3208 			} else {
3209 
3210 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3211 			}
3212 
3213 			callout_reset(&dev->c_handle,
3214 				      (crs->release_timeout * hz) / 1000,
3215 				      xpt_release_devq_timeout, dev);
3216 
3217 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3218 
3219 		}
3220 
3221 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3222 
3223 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3224 				/*
3225 				 * Decrement the freeze count so that a single
3226 				 * completion is still sufficient to unfreeze
3227 				 * the queue.
3228 				 */
3229 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3230 			} else {
3231 
3232 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3233 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3234 			}
3235 		}
3236 
3237 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3238 
3239 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3240 			 || (dev->ccbq.dev_active == 0)) {
3241 
3242 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3243 			} else {
3244 
3245 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3246 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3247 			}
3248 		}
3249 
3250 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3251 
3252 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3253 					 /*run_queue*/TRUE);
3254 		}
3255 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3256 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3257 		break;
3258 	}
3259 	case XPT_SCAN_BUS:
3260 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3261 		break;
3262 	case XPT_SCAN_LUN:
3263 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3264 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3265 			     start_ccb);
3266 		break;
3267 	case XPT_DEBUG: {
3268 #ifdef CAMDEBUG
3269 #ifdef CAM_DEBUG_DELAY
3270 		cam_debug_delay = CAM_DEBUG_DELAY;
3271 #endif
3272 		cam_dflags = start_ccb->cdbg.flags;
3273 		if (cam_dpath != NULL) {
3274 			xpt_free_path(cam_dpath);
3275 			cam_dpath = NULL;
3276 		}
3277 
3278 		if (cam_dflags != CAM_DEBUG_NONE) {
3279 			if (xpt_create_path(&cam_dpath, xpt_periph,
3280 					    start_ccb->ccb_h.path_id,
3281 					    start_ccb->ccb_h.target_id,
3282 					    start_ccb->ccb_h.target_lun) !=
3283 					    CAM_REQ_CMP) {
3284 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3285 				cam_dflags = CAM_DEBUG_NONE;
3286 			} else {
3287 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3288 				xpt_print_path(cam_dpath);
3289 				printf("debugging flags now %x\n", cam_dflags);
3290 			}
3291 		} else {
3292 			cam_dpath = NULL;
3293 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3294 		}
3295 #else /* !CAMDEBUG */
3296 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3297 #endif /* CAMDEBUG */
3298 		break;
3299 	}
3300 	case XPT_NOOP:
3301 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3302 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3303 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3304 		break;
3305 	default:
3306 	case XPT_SDEV_TYPE:
3307 	case XPT_TERM_IO:
3308 	case XPT_ENG_INQ:
3309 		/* XXX Implement */
3310 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3311 		break;
3312 	}
3313 	crit_exit();
3314 }
3315 
3316 void
3317 xpt_polled_action(union ccb *start_ccb)
3318 {
3319 	u_int32_t timeout;
3320 	struct	  cam_sim *sim;
3321 	struct	  cam_devq *devq;
3322 	struct	  cam_ed *dev;
3323 
3324 	timeout = start_ccb->ccb_h.timeout;
3325 	sim = start_ccb->ccb_h.path->bus->sim;
3326 	devq = sim->devq;
3327 	dev = start_ccb->ccb_h.path->device;
3328 
3329 	crit_enter();
3330 
3331 	/*
3332 	 * Steal an opening so that no other queued requests
3333 	 * can get it before us while we simulate interrupts.
3334 	 */
3335 	dev->ccbq.devq_openings--;
3336 	dev->ccbq.dev_openings--;
3337 
3338 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3339 	   && (--timeout > 0)) {
3340 		DELAY(1000);
3341 		(*(sim->sim_poll))(sim);
3342 		swi_camnet(NULL, NULL);
3343 		swi_cambio(NULL, NULL);
3344 	}
3345 
3346 	dev->ccbq.devq_openings++;
3347 	dev->ccbq.dev_openings++;
3348 
3349 	if (timeout != 0) {
3350 		xpt_action(start_ccb);
3351 		while(--timeout > 0) {
3352 			(*(sim->sim_poll))(sim);
3353 			swi_camnet(NULL, NULL);
3354 			swi_cambio(NULL, NULL);
3355 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3356 			    != CAM_REQ_INPROG)
3357 				break;
3358 			DELAY(1000);
3359 		}
3360 		if (timeout == 0) {
3361 			/*
3362 			 * XXX Is it worth adding a sim_timeout entry
3363 			 * point so we can attempt recovery?  If
3364 			 * this is only used for dumps, I don't think
3365 			 * it is.
3366 			 */
3367 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3368 		}
3369 	} else {
3370 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3371 	}
3372 	crit_exit();
3373 }
3374 
3375 /*
3376  * Schedule a peripheral driver to receive a ccb when it's
3377  * target device has space for more transactions.
3378  */
3379 void
3380 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3381 {
3382 	struct cam_ed *device;
3383 	int runq;
3384 
3385 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3386 	device = perph->path->device;
3387 	crit_enter();
3388 	if (periph_is_queued(perph)) {
3389 		/* Simply reorder based on new priority */
3390 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3391 			  ("   change priority to %d\n", new_priority));
3392 		if (new_priority < perph->pinfo.priority) {
3393 			camq_change_priority(&device->drvq,
3394 					     perph->pinfo.index,
3395 					     new_priority);
3396 		}
3397 		runq = 0;
3398 	} else {
3399 		/* New entry on the queue */
3400 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3401 			  ("   added periph to queue\n"));
3402 		perph->pinfo.priority = new_priority;
3403 		perph->pinfo.generation = ++device->drvq.generation;
3404 		camq_insert(&device->drvq, &perph->pinfo);
3405 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3406 	}
3407 	crit_exit();
3408 	if (runq != 0) {
3409 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3410 			  ("   calling xpt_run_devq\n"));
3411 		xpt_run_dev_allocq(perph->path->bus);
3412 	}
3413 }
3414 
3415 
3416 /*
3417  * Schedule a device to run on a given queue.
3418  * If the device was inserted as a new entry on the queue,
3419  * return 1 meaning the device queue should be run. If we
3420  * were already queued, implying someone else has already
3421  * started the queue, return 0 so the caller doesn't attempt
3422  * to run the queue.  Must be run in a critical section.
3423  */
3424 static int
3425 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3426 		 u_int32_t new_priority)
3427 {
3428 	int retval;
3429 	u_int32_t old_priority;
3430 
3431 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3432 
3433 	old_priority = pinfo->priority;
3434 
3435 	/*
3436 	 * Are we already queued?
3437 	 */
3438 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3439 		/* Simply reorder based on new priority */
3440 		if (new_priority < old_priority) {
3441 			camq_change_priority(queue, pinfo->index,
3442 					     new_priority);
3443 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3444 					("changed priority to %d\n",
3445 					 new_priority));
3446 		}
3447 		retval = 0;
3448 	} else {
3449 		/* New entry on the queue */
3450 		if (new_priority < old_priority)
3451 			pinfo->priority = new_priority;
3452 
3453 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3454 				("Inserting onto queue\n"));
3455 		pinfo->generation = ++queue->generation;
3456 		camq_insert(queue, pinfo);
3457 		retval = 1;
3458 	}
3459 	return (retval);
3460 }
3461 
3462 static void
3463 xpt_run_dev_allocq(struct cam_eb *bus)
3464 {
3465 	struct	cam_devq *devq;
3466 
3467 	if ((devq = bus->sim->devq) == NULL) {
3468 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3469 		return;
3470 	}
3471 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3472 
3473 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3474 			("   qfrozen_cnt == 0x%x, entries == %d, "
3475 			 "openings == %d, active == %d\n",
3476 			 devq->alloc_queue.qfrozen_cnt,
3477 			 devq->alloc_queue.entries,
3478 			 devq->alloc_openings,
3479 			 devq->alloc_active));
3480 
3481 	crit_enter();
3482 	devq->alloc_queue.qfrozen_cnt++;
3483 	while ((devq->alloc_queue.entries > 0)
3484 	    && (devq->alloc_openings > 0)
3485 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3486 		struct	cam_ed_qinfo *qinfo;
3487 		struct	cam_ed *device;
3488 		union	ccb *work_ccb;
3489 		struct	cam_periph *drv;
3490 		struct	camq *drvq;
3491 
3492 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3493 							   CAMQ_HEAD);
3494 		device = qinfo->device;
3495 
3496 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3497 				("running device %p\n", device));
3498 
3499 		drvq = &device->drvq;
3500 
3501 #ifdef CAMDEBUG
3502 		if (drvq->entries <= 0) {
3503 			panic("xpt_run_dev_allocq: "
3504 			      "Device on queue without any work to do");
3505 		}
3506 #endif
3507 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3508 			devq->alloc_openings--;
3509 			devq->alloc_active++;
3510 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3511 			crit_exit();
3512 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3513 				      drv->pinfo.priority);
3514 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3515 					("calling periph start\n"));
3516 			drv->periph_start(drv, work_ccb);
3517 		} else {
3518 			/*
3519 			 * Malloc failure in alloc_ccb
3520 			 */
3521 			/*
3522 			 * XXX add us to a list to be run from free_ccb
3523 			 * if we don't have any ccbs active on this
3524 			 * device queue otherwise we may never get run
3525 			 * again.
3526 			 */
3527 			break;
3528 		}
3529 
3530 		/* Raise IPL for possible insertion and test at top of loop */
3531 		crit_enter();
3532 
3533 		if (drvq->entries > 0) {
3534 			/* We have more work.  Attempt to reschedule */
3535 			xpt_schedule_dev_allocq(bus, device);
3536 		}
3537 	}
3538 	devq->alloc_queue.qfrozen_cnt--;
3539 	crit_exit();
3540 }
3541 
3542 static void
3543 xpt_run_dev_sendq(struct cam_eb *bus)
3544 {
3545 	struct	cam_devq *devq;
3546 
3547 	if ((devq = bus->sim->devq) == NULL) {
3548 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3549 		return;
3550 	}
3551 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3552 
3553 	crit_enter();
3554 	devq->send_queue.qfrozen_cnt++;
3555 	while ((devq->send_queue.entries > 0)
3556 	    && (devq->send_openings > 0)) {
3557 		struct	cam_ed_qinfo *qinfo;
3558 		struct	cam_ed *device;
3559 		union ccb *work_ccb;
3560 		struct	cam_sim *sim;
3561 
3562 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3563 			break;
3564 		}
3565 
3566 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3567 							   CAMQ_HEAD);
3568 		device = qinfo->device;
3569 
3570 		/*
3571 		 * If the device has been "frozen", don't attempt
3572 		 * to run it.
3573 		 */
3574 		if (device->qfrozen_cnt > 0) {
3575 			continue;
3576 		}
3577 
3578 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3579 				("running device %p\n", device));
3580 
3581 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3582 		if (work_ccb == NULL) {
3583 			printf("device on run queue with no ccbs???\n");
3584 			continue;
3585 		}
3586 
3587 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3588 
3589 		 	if (num_highpower <= 0) {
3590 				/*
3591 				 * We got a high power command, but we
3592 				 * don't have any available slots.  Freeze
3593 				 * the device queue until we have a slot
3594 				 * available.
3595 				 */
3596 				device->qfrozen_cnt++;
3597 				STAILQ_INSERT_TAIL(&highpowerq,
3598 						   &work_ccb->ccb_h,
3599 						   xpt_links.stqe);
3600 
3601 				continue;
3602 			} else {
3603 				/*
3604 				 * Consume a high power slot while
3605 				 * this ccb runs.
3606 				 */
3607 				num_highpower--;
3608 			}
3609 		}
3610 		devq->active_dev = device;
3611 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3612 
3613 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3614 
3615 		devq->send_openings--;
3616 		devq->send_active++;
3617 
3618 		if (device->ccbq.queue.entries > 0)
3619 			xpt_schedule_dev_sendq(bus, device);
3620 
3621 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3622 			/*
3623 			 * The client wants to freeze the queue
3624 			 * after this CCB is sent.
3625 			 */
3626 			device->qfrozen_cnt++;
3627 		}
3628 
3629 		/* In Target mode, the peripheral driver knows best... */
3630 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3631 			if ((device->inq_flags & SID_CmdQue) != 0
3632 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3633 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3634 			else
3635 				/*
3636 				 * Clear this in case of a retried CCB that
3637 				 * failed due to a rejected tag.
3638 				 */
3639 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3640 		}
3641 
3642 		/*
3643 		 * Device queues can be shared among multiple sim instances
3644 		 * that reside on different busses.  Use the SIM in the queue
3645 		 * CCB's path, rather than the one in the bus that was passed
3646 		 * into this function.
3647 		 */
3648 		sim = work_ccb->ccb_h.path->bus->sim;
3649 		(*(sim->sim_action))(sim, work_ccb);
3650 
3651 		devq->active_dev = NULL;
3652 		/* Raise IPL for possible insertion and test at top of loop */
3653 	}
3654 	devq->send_queue.qfrozen_cnt--;
3655 	crit_exit();
3656 }
3657 
3658 /*
3659  * This function merges stuff from the slave ccb into the master ccb, while
3660  * keeping important fields in the master ccb constant.
3661  */
3662 void
3663 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3664 {
3665 	/*
3666 	 * Pull fields that are valid for peripheral drivers to set
3667 	 * into the master CCB along with the CCB "payload".
3668 	 */
3669 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3670 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3671 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3672 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3673 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3674 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3675 }
3676 
3677 void
3678 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3679 {
3680 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3681 	callout_init(&ccb_h->timeout_ch);
3682 	ccb_h->pinfo.priority = priority;
3683 	ccb_h->path = path;
3684 	ccb_h->path_id = path->bus->path_id;
3685 	if (path->target)
3686 		ccb_h->target_id = path->target->target_id;
3687 	else
3688 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3689 	if (path->device) {
3690 		ccb_h->target_lun = path->device->lun_id;
3691 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3692 	} else {
3693 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3694 	}
3695 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3696 	ccb_h->flags = 0;
3697 }
3698 
3699 /* Path manipulation functions */
3700 cam_status
3701 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3702 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3703 {
3704 	struct	   cam_path *path;
3705 	cam_status status;
3706 
3707 	path = malloc(sizeof(*path), M_DEVBUF, M_INTWAIT);
3708 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3709 	if (status != CAM_REQ_CMP) {
3710 		free(path, M_DEVBUF);
3711 		path = NULL;
3712 	}
3713 	*new_path_ptr = path;
3714 	return (status);
3715 }
3716 
3717 static cam_status
3718 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3719 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3720 {
3721 	struct	     cam_eb *bus;
3722 	struct	     cam_et *target;
3723 	struct	     cam_ed *device;
3724 	cam_status   status;
3725 
3726 	status = CAM_REQ_CMP;	/* Completed without error */
3727 	target = NULL;		/* Wildcarded */
3728 	device = NULL;		/* Wildcarded */
3729 
3730 	/*
3731 	 * We will potentially modify the EDT, so block interrupts
3732 	 * that may attempt to create cam paths.
3733 	 */
3734 	crit_enter();
3735 	bus = xpt_find_bus(path_id);
3736 	if (bus == NULL) {
3737 		status = CAM_PATH_INVALID;
3738 	} else {
3739 		target = xpt_find_target(bus, target_id);
3740 		if (target == NULL) {
3741 			/* Create one */
3742 			struct cam_et *new_target;
3743 
3744 			new_target = xpt_alloc_target(bus, target_id);
3745 			if (new_target == NULL) {
3746 				status = CAM_RESRC_UNAVAIL;
3747 			} else {
3748 				target = new_target;
3749 			}
3750 		}
3751 		if (target != NULL) {
3752 			device = xpt_find_device(target, lun_id);
3753 			if (device == NULL) {
3754 				/* Create one */
3755 				struct cam_ed *new_device;
3756 
3757 				new_device = xpt_alloc_device(bus,
3758 							      target,
3759 							      lun_id);
3760 				if (new_device == NULL) {
3761 					status = CAM_RESRC_UNAVAIL;
3762 				} else {
3763 					device = new_device;
3764 				}
3765 			}
3766 		}
3767 	}
3768 	crit_exit();
3769 
3770 	/*
3771 	 * Only touch the user's data if we are successful.
3772 	 */
3773 	if (status == CAM_REQ_CMP) {
3774 		new_path->periph = perph;
3775 		new_path->bus = bus;
3776 		new_path->target = target;
3777 		new_path->device = device;
3778 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3779 	} else {
3780 		if (device != NULL)
3781 			xpt_release_device(bus, target, device);
3782 		if (target != NULL)
3783 			xpt_release_target(bus, target);
3784 		if (bus != NULL)
3785 			xpt_release_bus(bus);
3786 	}
3787 	return (status);
3788 }
3789 
3790 static void
3791 xpt_release_path(struct cam_path *path)
3792 {
3793 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3794 	if (path->device != NULL) {
3795 		xpt_release_device(path->bus, path->target, path->device);
3796 		path->device = NULL;
3797 	}
3798 	if (path->target != NULL) {
3799 		xpt_release_target(path->bus, path->target);
3800 		path->target = NULL;
3801 	}
3802 	if (path->bus != NULL) {
3803 		xpt_release_bus(path->bus);
3804 		path->bus = NULL;
3805 	}
3806 }
3807 
3808 void
3809 xpt_free_path(struct cam_path *path)
3810 {
3811 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3812 	xpt_release_path(path);
3813 	free(path, M_DEVBUF);
3814 }
3815 
3816 
3817 /*
3818  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3819  * in path1, 2 for match with wildcards in path2.
3820  */
3821 int
3822 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3823 {
3824 	int retval = 0;
3825 
3826 	if (path1->bus != path2->bus) {
3827 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3828 			retval = 1;
3829 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3830 			retval = 2;
3831 		else
3832 			return (-1);
3833 	}
3834 	if (path1->target != path2->target) {
3835 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3836 			if (retval == 0)
3837 				retval = 1;
3838 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3839 			retval = 2;
3840 		else
3841 			return (-1);
3842 	}
3843 	if (path1->device != path2->device) {
3844 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3845 			if (retval == 0)
3846 				retval = 1;
3847 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3848 			retval = 2;
3849 		else
3850 			return (-1);
3851 	}
3852 	return (retval);
3853 }
3854 
3855 void
3856 xpt_print_path(struct cam_path *path)
3857 {
3858 	if (path == NULL)
3859 		printf("(nopath): ");
3860 	else {
3861 		if (path->periph != NULL)
3862 			printf("(%s%d:", path->periph->periph_name,
3863 			       path->periph->unit_number);
3864 		else
3865 			printf("(noperiph:");
3866 
3867 		if (path->bus != NULL)
3868 			printf("%s%d:%d:", path->bus->sim->sim_name,
3869 			       path->bus->sim->unit_number,
3870 			       path->bus->sim->bus_id);
3871 		else
3872 			printf("nobus:");
3873 
3874 		if (path->target != NULL)
3875 			printf("%d:", path->target->target_id);
3876 		else
3877 			printf("X:");
3878 
3879 		if (path->device != NULL)
3880 			printf("%d): ", path->device->lun_id);
3881 		else
3882 			printf("X): ");
3883 	}
3884 }
3885 
3886 path_id_t
3887 xpt_path_path_id(struct cam_path *path)
3888 {
3889 	return(path->bus->path_id);
3890 }
3891 
3892 target_id_t
3893 xpt_path_target_id(struct cam_path *path)
3894 {
3895 	if (path->target != NULL)
3896 		return (path->target->target_id);
3897 	else
3898 		return (CAM_TARGET_WILDCARD);
3899 }
3900 
3901 lun_id_t
3902 xpt_path_lun_id(struct cam_path *path)
3903 {
3904 	if (path->device != NULL)
3905 		return (path->device->lun_id);
3906 	else
3907 		return (CAM_LUN_WILDCARD);
3908 }
3909 
3910 struct cam_sim *
3911 xpt_path_sim(struct cam_path *path)
3912 {
3913 	return (path->bus->sim);
3914 }
3915 
3916 struct cam_periph*
3917 xpt_path_periph(struct cam_path *path)
3918 {
3919 	return (path->periph);
3920 }
3921 
3922 /*
3923  * Release a CAM control block for the caller.  Remit the cost of the structure
3924  * to the device referenced by the path.  If the this device had no 'credits'
3925  * and peripheral drivers have registered async callbacks for this notification
3926  * call them now.
3927  */
3928 void
3929 xpt_release_ccb(union ccb *free_ccb)
3930 {
3931 	struct	 cam_path *path;
3932 	struct	 cam_ed *device;
3933 	struct	 cam_eb *bus;
3934 
3935 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3936 	path = free_ccb->ccb_h.path;
3937 	device = path->device;
3938 	bus = path->bus;
3939 	crit_enter();
3940 	cam_ccbq_release_opening(&device->ccbq);
3941 	if (xpt_ccb_count > xpt_max_ccbs) {
3942 		xpt_free_ccb(free_ccb);
3943 		xpt_ccb_count--;
3944 	} else {
3945 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
3946 	}
3947 	if (bus->sim->devq) {
3948 		bus->sim->devq->alloc_openings++;
3949 		bus->sim->devq->alloc_active--;
3950 	}
3951 	/* XXX Turn this into an inline function - xpt_run_device?? */
3952 	if ((device_is_alloc_queued(device) == 0)
3953 	 && (device->drvq.entries > 0)) {
3954 		xpt_schedule_dev_allocq(bus, device);
3955 	}
3956 	crit_exit();
3957 	if (bus->sim->devq && dev_allocq_is_runnable(bus->sim->devq))
3958 		xpt_run_dev_allocq(bus);
3959 }
3960 
3961 /* Functions accessed by SIM drivers */
3962 
3963 /*
3964  * A sim structure, listing the SIM entry points and instance
3965  * identification info is passed to xpt_bus_register to hook the SIM
3966  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3967  * for this new bus and places it in the array of busses and assigns
3968  * it a path_id.  The path_id may be influenced by "hard wiring"
3969  * information specified by the user.  Once interrupt services are
3970  * availible, the bus will be probed.
3971  */
3972 int32_t
3973 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
3974 {
3975 	struct cam_eb *new_bus;
3976 	struct cam_eb *old_bus;
3977 	struct ccb_pathinq cpi;
3978 
3979 	sim->bus_id = bus;
3980 	new_bus = malloc(sizeof(*new_bus), M_DEVBUF, M_INTWAIT);
3981 
3982 	if (strcmp(sim->sim_name, "xpt") != 0) {
3983 		sim->path_id =
3984 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3985 	}
3986 
3987 	TAILQ_INIT(&new_bus->et_entries);
3988 	new_bus->path_id = sim->path_id;
3989 	new_bus->sim = sim;
3990 	++sim->refcount;
3991 	timevalclear(&new_bus->last_reset);
3992 	new_bus->flags = 0;
3993 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3994 	new_bus->generation = 0;
3995 	crit_enter();
3996 	old_bus = TAILQ_FIRST(&xpt_busses);
3997 	while (old_bus != NULL
3998 	    && old_bus->path_id < new_bus->path_id)
3999 		old_bus = TAILQ_NEXT(old_bus, links);
4000 	if (old_bus != NULL)
4001 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4002 	else
4003 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4004 	bus_generation++;
4005 	crit_exit();
4006 
4007 	/* Notify interested parties */
4008 	if (sim->path_id != CAM_XPT_PATH_ID) {
4009 		struct cam_path path;
4010 
4011 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4012 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4013 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4014 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4015 		xpt_action((union ccb *)&cpi);
4016 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4017 		xpt_release_path(&path);
4018 	}
4019 	return (CAM_SUCCESS);
4020 }
4021 
4022 /*
4023  * Deregister a bus.  We must clean out all transactions pending on the bus.
4024  * This routine is typically called prior to cam_sim_free() (e.g. see
4025  * dev/usbmisc/umass/umass.c)
4026  */
4027 int32_t
4028 xpt_bus_deregister(path_id_t pathid)
4029 {
4030 	struct cam_path bus_path;
4031 	cam_status status;
4032 
4033 	status = xpt_compile_path(&bus_path, NULL, pathid,
4034 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4035 	if (status != CAM_REQ_CMP)
4036 		return (status);
4037 
4038 	/*
4039 	 * This should clear out all pending requests and timeouts, but
4040 	 * the ccb's may be queued to a software interrupt.
4041 	 *
4042 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4043 	 * and it really ought to.
4044 	 */
4045 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4046 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4047 
4048 	/* make sure all responses have been processed */
4049 	camisr(&cam_netq);
4050 	camisr(&cam_bioq);
4051 
4052 	/* Release the reference count held while registered. */
4053 	xpt_release_bus(bus_path.bus);
4054 	xpt_release_path(&bus_path);
4055 
4056 	return (CAM_REQ_CMP);
4057 }
4058 
4059 static path_id_t
4060 xptnextfreepathid(void)
4061 {
4062 	struct cam_eb *bus;
4063 	path_id_t pathid;
4064 	char *strval;
4065 
4066 	pathid = 0;
4067 	bus = TAILQ_FIRST(&xpt_busses);
4068 retry:
4069 	/* Find an unoccupied pathid */
4070 	while (bus != NULL
4071 	    && bus->path_id <= pathid) {
4072 		if (bus->path_id == pathid)
4073 			pathid++;
4074 		bus = TAILQ_NEXT(bus, links);
4075 	}
4076 
4077 	/*
4078 	 * Ensure that this pathid is not reserved for
4079 	 * a bus that may be registered in the future.
4080 	 */
4081 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4082 		++pathid;
4083 		/* Start the search over */
4084 		goto retry;
4085 	}
4086 	return (pathid);
4087 }
4088 
4089 static path_id_t
4090 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4091 {
4092 	path_id_t pathid;
4093 	int i, dunit, val;
4094 	char buf[32], *strval;
4095 
4096 	pathid = CAM_XPT_PATH_ID;
4097 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4098 	i = -1;
4099 	while ((i = resource_locate(i, "scbus")) != -1) {
4100 		dunit = resource_query_unit(i);
4101 		if (dunit < 0)		/* unwired?! */
4102 			continue;
4103 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4104 			continue;
4105 		if (strcmp(buf, strval) != 0)
4106 			continue;
4107 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4108 			if (sim_bus == val) {
4109 				pathid = dunit;
4110 				break;
4111 			}
4112 		} else if (sim_bus == 0) {
4113 			/* Unspecified matches bus 0 */
4114 			pathid = dunit;
4115 			break;
4116 		} else {
4117 			printf("Ambiguous scbus configuration for %s%d "
4118 			       "bus %d, cannot wire down.  The kernel "
4119 			       "config entry for scbus%d should "
4120 			       "specify a controller bus.\n"
4121 			       "Scbus will be assigned dynamically.\n",
4122 			       sim_name, sim_unit, sim_bus, dunit);
4123 			break;
4124 		}
4125 	}
4126 
4127 	if (pathid == CAM_XPT_PATH_ID)
4128 		pathid = xptnextfreepathid();
4129 	return (pathid);
4130 }
4131 
4132 void
4133 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4134 {
4135 	struct cam_eb *bus;
4136 	struct cam_et *target, *next_target;
4137 	struct cam_ed *device, *next_device;
4138 
4139 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4140 
4141 	/*
4142 	 * Most async events come from a CAM interrupt context.  In
4143 	 * a few cases, the error recovery code at the peripheral layer,
4144 	 * which may run from our SWI or a process context, may signal
4145 	 * deferred events with a call to xpt_async. Ensure async
4146 	 * notifications are serialized by blocking cam interrupts.
4147 	 */
4148 	crit_enter();
4149 
4150 	bus = path->bus;
4151 
4152 	if (async_code == AC_BUS_RESET) {
4153 		/* Update our notion of when the last reset occurred */
4154 		microuptime(&bus->last_reset);
4155 	}
4156 
4157 	for (target = TAILQ_FIRST(&bus->et_entries);
4158 	     target != NULL;
4159 	     target = next_target) {
4160 
4161 		next_target = TAILQ_NEXT(target, links);
4162 
4163 		if (path->target != target
4164 		 && path->target->target_id != CAM_TARGET_WILDCARD
4165 		 && target->target_id != CAM_TARGET_WILDCARD)
4166 			continue;
4167 
4168 		if (async_code == AC_SENT_BDR) {
4169 			/* Update our notion of when the last reset occurred */
4170 			microuptime(&path->target->last_reset);
4171 		}
4172 
4173 		for (device = TAILQ_FIRST(&target->ed_entries);
4174 		     device != NULL;
4175 		     device = next_device) {
4176 
4177 			next_device = TAILQ_NEXT(device, links);
4178 
4179 			if (path->device != device
4180 			 && path->device->lun_id != CAM_LUN_WILDCARD
4181 			 && device->lun_id != CAM_LUN_WILDCARD)
4182 				continue;
4183 
4184 			xpt_dev_async(async_code, bus, target,
4185 				      device, async_arg);
4186 
4187 			xpt_async_bcast(&device->asyncs, async_code,
4188 					path, async_arg);
4189 		}
4190 	}
4191 
4192 	/*
4193 	 * If this wasn't a fully wildcarded async, tell all
4194 	 * clients that want all async events.
4195 	 */
4196 	if (bus != xpt_periph->path->bus)
4197 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4198 				path, async_arg);
4199 	crit_exit();
4200 }
4201 
4202 static void
4203 xpt_async_bcast(struct async_list *async_head,
4204 		u_int32_t async_code,
4205 		struct cam_path *path, void *async_arg)
4206 {
4207 	struct async_node *cur_entry;
4208 
4209 	cur_entry = SLIST_FIRST(async_head);
4210 	while (cur_entry != NULL) {
4211 		struct async_node *next_entry;
4212 		/*
4213 		 * Grab the next list entry before we call the current
4214 		 * entry's callback.  This is because the callback function
4215 		 * can delete its async callback entry.
4216 		 */
4217 		next_entry = SLIST_NEXT(cur_entry, links);
4218 		if ((cur_entry->event_enable & async_code) != 0)
4219 			cur_entry->callback(cur_entry->callback_arg,
4220 					    async_code, path,
4221 					    async_arg);
4222 		cur_entry = next_entry;
4223 	}
4224 }
4225 
4226 /*
4227  * Handle any per-device event notifications that require action by the XPT.
4228  */
4229 static void
4230 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4231 	      struct cam_ed *device, void *async_arg)
4232 {
4233 	cam_status status;
4234 	struct cam_path newpath;
4235 
4236 	/*
4237 	 * We only need to handle events for real devices.
4238 	 */
4239 	if (target->target_id == CAM_TARGET_WILDCARD
4240 	 || device->lun_id == CAM_LUN_WILDCARD)
4241 		return;
4242 
4243 	/*
4244 	 * We need our own path with wildcards expanded to
4245 	 * handle certain types of events.
4246 	 */
4247 	if ((async_code == AC_SENT_BDR)
4248 	 || (async_code == AC_BUS_RESET)
4249 	 || (async_code == AC_INQ_CHANGED))
4250 		status = xpt_compile_path(&newpath, NULL,
4251 					  bus->path_id,
4252 					  target->target_id,
4253 					  device->lun_id);
4254 	else
4255 		status = CAM_REQ_CMP_ERR;
4256 
4257 	if (status == CAM_REQ_CMP) {
4258 
4259 		/*
4260 		 * Allow transfer negotiation to occur in a
4261 		 * tag free environment.
4262 		 */
4263 		if (async_code == AC_SENT_BDR
4264 		 || async_code == AC_BUS_RESET)
4265 			xpt_toggle_tags(&newpath);
4266 
4267 		if (async_code == AC_INQ_CHANGED) {
4268 			/*
4269 			 * We've sent a start unit command, or
4270 			 * something similar to a device that
4271 			 * may have caused its inquiry data to
4272 			 * change. So we re-scan the device to
4273 			 * refresh the inquiry data for it.
4274 			 */
4275 			xpt_scan_lun(newpath.periph, &newpath,
4276 				     CAM_EXPECT_INQ_CHANGE, NULL);
4277 		}
4278 		xpt_release_path(&newpath);
4279 	} else if (async_code == AC_LOST_DEVICE) {
4280 		/*
4281 		 * When we lose a device the device may be about to detach
4282 		 * the sim, we have to clear out all pending timeouts and
4283 		 * requests before that happens.  XXX it would be nice if
4284 		 * we could abort the requests pertaining to the device.
4285 		 */
4286 		xpt_release_devq_timeout(device);
4287 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4288 			device->flags |= CAM_DEV_UNCONFIGURED;
4289 			xpt_release_device(bus, target, device);
4290 		}
4291 	} else if (async_code == AC_TRANSFER_NEG) {
4292 		struct ccb_trans_settings *settings;
4293 
4294 		settings = (struct ccb_trans_settings *)async_arg;
4295 		xpt_set_transfer_settings(settings, device,
4296 					  /*async_update*/TRUE);
4297 	}
4298 }
4299 
4300 u_int32_t
4301 xpt_freeze_devq(struct cam_path *path, u_int count)
4302 {
4303 	struct ccb_hdr *ccbh;
4304 
4305 	crit_enter();
4306 	path->device->qfrozen_cnt += count;
4307 
4308 	/*
4309 	 * Mark the last CCB in the queue as needing
4310 	 * to be requeued if the driver hasn't
4311 	 * changed it's state yet.  This fixes a race
4312 	 * where a ccb is just about to be queued to
4313 	 * a controller driver when it's interrupt routine
4314 	 * freezes the queue.  To completly close the
4315 	 * hole, controller drives must check to see
4316 	 * if a ccb's status is still CAM_REQ_INPROG
4317 	 * under critical section protection just before they queue
4318 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4319 	 * an example.
4320 	 */
4321 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4322 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4323 		ccbh->status = CAM_REQUEUE_REQ;
4324 	crit_exit();
4325 	return (path->device->qfrozen_cnt);
4326 }
4327 
4328 u_int32_t
4329 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4330 {
4331 	if (sim->devq == NULL)
4332 		return(count);
4333 	sim->devq->send_queue.qfrozen_cnt += count;
4334 	if (sim->devq->active_dev != NULL) {
4335 		struct ccb_hdr *ccbh;
4336 
4337 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4338 				  ccb_hdr_tailq);
4339 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4340 			ccbh->status = CAM_REQUEUE_REQ;
4341 	}
4342 	return (sim->devq->send_queue.qfrozen_cnt);
4343 }
4344 
4345 /*
4346  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4347  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4348  * freed, which is not the case here), but the device queue is also freed XXX
4349  * and we have to check that here.
4350  *
4351  * XXX fixme: could we simply not null-out the device queue via
4352  * cam_sim_free()?
4353  */
4354 static void
4355 xpt_release_devq_timeout(void *arg)
4356 {
4357 	struct cam_ed *device;
4358 
4359 	device = (struct cam_ed *)arg;
4360 
4361 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4362 }
4363 
4364 void
4365 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4366 {
4367 	xpt_release_devq_device(path->device, count, run_queue);
4368 }
4369 
4370 static void
4371 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4372 {
4373 	int	rundevq;
4374 
4375 	rundevq = 0;
4376 	crit_enter();
4377 
4378 	if (dev->qfrozen_cnt > 0) {
4379 
4380 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4381 		dev->qfrozen_cnt -= count;
4382 		if (dev->qfrozen_cnt == 0) {
4383 
4384 			/*
4385 			 * No longer need to wait for a successful
4386 			 * command completion.
4387 			 */
4388 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4389 
4390 			/*
4391 			 * Remove any timeouts that might be scheduled
4392 			 * to release this queue.
4393 			 */
4394 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4395 				callout_stop(&dev->c_handle);
4396 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4397 			}
4398 
4399 			/*
4400 			 * Now that we are unfrozen schedule the
4401 			 * device so any pending transactions are
4402 			 * run.
4403 			 */
4404 			if ((dev->ccbq.queue.entries > 0)
4405 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4406 			 && (run_queue != 0)) {
4407 				rundevq = 1;
4408 			}
4409 		}
4410 	}
4411 	if (rundevq != 0)
4412 		xpt_run_dev_sendq(dev->target->bus);
4413 	crit_exit();
4414 }
4415 
4416 void
4417 xpt_release_simq(struct cam_sim *sim, int run_queue)
4418 {
4419 	struct	camq *sendq;
4420 
4421 	if (sim->devq == NULL)
4422 		return;
4423 
4424 	sendq = &(sim->devq->send_queue);
4425 	crit_enter();
4426 
4427 	if (sendq->qfrozen_cnt > 0) {
4428 		sendq->qfrozen_cnt--;
4429 		if (sendq->qfrozen_cnt == 0) {
4430 			struct cam_eb *bus;
4431 
4432 			/*
4433 			 * If there is a timeout scheduled to release this
4434 			 * sim queue, remove it.  The queue frozen count is
4435 			 * already at 0.
4436 			 */
4437 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4438 				callout_stop(&sim->c_handle);
4439 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4440 			}
4441 			bus = xpt_find_bus(sim->path_id);
4442 			crit_exit();
4443 
4444 			if (run_queue) {
4445 				/*
4446 				 * Now that we are unfrozen run the send queue.
4447 				 */
4448 				xpt_run_dev_sendq(bus);
4449 			}
4450 			xpt_release_bus(bus);
4451 		} else {
4452 			crit_exit();
4453 		}
4454 	} else {
4455 		crit_exit();
4456 	}
4457 }
4458 
4459 void
4460 xpt_done(union ccb *done_ccb)
4461 {
4462 	crit_enter();
4463 
4464 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4465 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4466 		/*
4467 		 * Queue up the request for handling by our SWI handler
4468 		 * any of the "non-immediate" type of ccbs.
4469 		 */
4470 		switch (done_ccb->ccb_h.path->periph->type) {
4471 		case CAM_PERIPH_BIO:
4472 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4473 					  sim_links.tqe);
4474 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4475 			setsoftcambio();
4476 			break;
4477 		case CAM_PERIPH_NET:
4478 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4479 					  sim_links.tqe);
4480 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4481 			setsoftcamnet();
4482 			break;
4483 		}
4484 	}
4485 	crit_exit();
4486 }
4487 
4488 union ccb *
4489 xpt_alloc_ccb(void)
4490 {
4491 	union ccb *new_ccb;
4492 
4493 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4494 	return (new_ccb);
4495 }
4496 
4497 void
4498 xpt_free_ccb(union ccb *free_ccb)
4499 {
4500 	free(free_ccb, M_DEVBUF);
4501 }
4502 
4503 
4504 
4505 /* Private XPT functions */
4506 
4507 /*
4508  * Get a CAM control block for the caller. Charge the structure to the device
4509  * referenced by the path.  If the this device has no 'credits' then the
4510  * device already has the maximum number of outstanding operations under way
4511  * and we return NULL. If we don't have sufficient resources to allocate more
4512  * ccbs, we also return NULL.
4513  */
4514 static union ccb *
4515 xpt_get_ccb(struct cam_ed *device)
4516 {
4517 	union ccb *new_ccb;
4518 
4519 	crit_enter();
4520 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4521 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4522 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4523 				  xpt_links.sle);
4524 		xpt_ccb_count++;
4525 	}
4526 	cam_ccbq_take_opening(&device->ccbq);
4527 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4528 	crit_exit();
4529 	return (new_ccb);
4530 }
4531 
4532 static void
4533 xpt_release_bus(struct cam_eb *bus)
4534 {
4535 
4536 	crit_enter();
4537 	if (bus->refcount == 1) {
4538 		KKASSERT(TAILQ_FIRST(&bus->et_entries) == NULL);
4539 		TAILQ_REMOVE(&xpt_busses, bus, links);
4540 		if (bus->sim) {
4541 			cam_sim_release(bus->sim, 0);
4542 			bus->sim = NULL;
4543 		}
4544 		bus_generation++;
4545 		KKASSERT(bus->refcount == 1);
4546 		free(bus, M_DEVBUF);
4547 	} else {
4548 		--bus->refcount;
4549 	}
4550 	crit_exit();
4551 }
4552 
4553 static struct cam_et *
4554 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4555 {
4556 	struct cam_et *target;
4557 	struct cam_et *cur_target;
4558 
4559 	target = malloc(sizeof(*target), M_DEVBUF, M_INTWAIT);
4560 
4561 	TAILQ_INIT(&target->ed_entries);
4562 	target->bus = bus;
4563 	target->target_id = target_id;
4564 	target->refcount = 1;
4565 	target->generation = 0;
4566 	timevalclear(&target->last_reset);
4567 	/*
4568 	 * Hold a reference to our parent bus so it
4569 	 * will not go away before we do.
4570 	 */
4571 	bus->refcount++;
4572 
4573 	/* Insertion sort into our bus's target list */
4574 	cur_target = TAILQ_FIRST(&bus->et_entries);
4575 	while (cur_target != NULL && cur_target->target_id < target_id)
4576 		cur_target = TAILQ_NEXT(cur_target, links);
4577 
4578 	if (cur_target != NULL) {
4579 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4580 	} else {
4581 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4582 	}
4583 	bus->generation++;
4584 	return (target);
4585 }
4586 
4587 static void
4588 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4589 {
4590 	crit_enter();
4591 	if (target->refcount == 1) {
4592 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4593 		TAILQ_REMOVE(&bus->et_entries, target, links);
4594 		bus->generation++;
4595 		xpt_release_bus(bus);
4596 		KKASSERT(target->refcount == 1);
4597 		free(target, M_DEVBUF);
4598 	} else {
4599 		--target->refcount;
4600 	}
4601 	crit_exit();
4602 }
4603 
4604 static struct cam_ed *
4605 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4606 {
4607 	struct	   cam_ed *device;
4608 	struct	   cam_devq *devq;
4609 	cam_status status;
4610 
4611 	/* Make space for us in the device queue on our bus */
4612 	if (bus->sim->devq == NULL)
4613 		return(NULL);
4614 	devq = bus->sim->devq;
4615 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4616 
4617 	if (status != CAM_REQ_CMP) {
4618 		device = NULL;
4619 	} else {
4620 		device = malloc(sizeof(*device), M_DEVBUF, M_INTWAIT);
4621 	}
4622 
4623 	if (device != NULL) {
4624 		struct cam_ed *cur_device;
4625 
4626 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4627 		device->alloc_ccb_entry.device = device;
4628 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4629 		device->send_ccb_entry.device = device;
4630 		device->target = target;
4631 		device->lun_id = lun_id;
4632 		/* Initialize our queues */
4633 		if (camq_init(&device->drvq, 0) != 0) {
4634 			free(device, M_DEVBUF);
4635 			return (NULL);
4636 		}
4637 		if (cam_ccbq_init(&device->ccbq,
4638 				  bus->sim->max_dev_openings) != 0) {
4639 			camq_fini(&device->drvq);
4640 			free(device, M_DEVBUF);
4641 			return (NULL);
4642 		}
4643 		SLIST_INIT(&device->asyncs);
4644 		SLIST_INIT(&device->periphs);
4645 		device->generation = 0;
4646 		device->owner = NULL;
4647 		/*
4648 		 * Take the default quirk entry until we have inquiry
4649 		 * data and can determine a better quirk to use.
4650 		 */
4651 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4652 		bzero(&device->inq_data, sizeof(device->inq_data));
4653 		device->inq_flags = 0;
4654 		device->queue_flags = 0;
4655 		device->serial_num = NULL;
4656 		device->serial_num_len = 0;
4657 		device->qfrozen_cnt = 0;
4658 		device->flags = CAM_DEV_UNCONFIGURED;
4659 		device->tag_delay_count = 0;
4660 		device->refcount = 1;
4661 		callout_init(&device->c_handle);
4662 
4663 		/*
4664 		 * Hold a reference to our parent target so it
4665 		 * will not go away before we do.
4666 		 */
4667 		target->refcount++;
4668 
4669 		/*
4670 		 * XXX should be limited by number of CCBs this bus can
4671 		 * do.
4672 		 */
4673 		xpt_max_ccbs += device->ccbq.devq_openings;
4674 		/* Insertion sort into our target's device list */
4675 		cur_device = TAILQ_FIRST(&target->ed_entries);
4676 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4677 			cur_device = TAILQ_NEXT(cur_device, links);
4678 		if (cur_device != NULL) {
4679 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4680 		} else {
4681 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4682 		}
4683 		target->generation++;
4684 	}
4685 	return (device);
4686 }
4687 
4688 static void
4689 xpt_reference_device(struct cam_ed *device)
4690 {
4691 	++device->refcount;
4692 }
4693 
4694 static void
4695 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4696 		   struct cam_ed *device)
4697 {
4698 	struct cam_devq *devq;
4699 
4700 	crit_enter();
4701 	if (device->refcount == 1) {
4702 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
4703 
4704 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4705 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4706 			panic("Removing device while still queued for ccbs");
4707 
4708 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4709 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4710 			callout_stop(&device->c_handle);
4711 		}
4712 
4713 		TAILQ_REMOVE(&target->ed_entries, device,links);
4714 		target->generation++;
4715 		xpt_max_ccbs -= device->ccbq.devq_openings;
4716 		/* Release our slot in the devq */
4717 		devq = bus->sim->devq;
4718 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4719 		xpt_release_target(bus, target);
4720 		KKASSERT(device->refcount == 1);
4721 		free(device, M_DEVBUF);
4722 	} else {
4723 		--device->refcount;
4724 	}
4725 	crit_exit();
4726 }
4727 
4728 static u_int32_t
4729 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4730 {
4731 	int	diff;
4732 	int	result;
4733 	struct	cam_ed *dev;
4734 
4735 	dev = path->device;
4736 
4737 	crit_enter();
4738 
4739 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4740 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4741 	if (result == CAM_REQ_CMP && (diff < 0)) {
4742 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4743 	}
4744 	/* Adjust the global limit */
4745 	xpt_max_ccbs += diff;
4746 	crit_exit();
4747 	return (result);
4748 }
4749 
4750 static struct cam_eb *
4751 xpt_find_bus(path_id_t path_id)
4752 {
4753 	struct cam_eb *bus;
4754 
4755 	for (bus = TAILQ_FIRST(&xpt_busses);
4756 	     bus != NULL;
4757 	     bus = TAILQ_NEXT(bus, links)) {
4758 		if (bus->path_id == path_id) {
4759 			bus->refcount++;
4760 			break;
4761 		}
4762 	}
4763 	return (bus);
4764 }
4765 
4766 static struct cam_et *
4767 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4768 {
4769 	struct cam_et *target;
4770 
4771 	for (target = TAILQ_FIRST(&bus->et_entries);
4772 	     target != NULL;
4773 	     target = TAILQ_NEXT(target, links)) {
4774 		if (target->target_id == target_id) {
4775 			target->refcount++;
4776 			break;
4777 		}
4778 	}
4779 	return (target);
4780 }
4781 
4782 static struct cam_ed *
4783 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4784 {
4785 	struct cam_ed *device;
4786 
4787 	for (device = TAILQ_FIRST(&target->ed_entries);
4788 	     device != NULL;
4789 	     device = TAILQ_NEXT(device, links)) {
4790 		if (device->lun_id == lun_id) {
4791 			device->refcount++;
4792 			break;
4793 		}
4794 	}
4795 	return (device);
4796 }
4797 
4798 typedef struct {
4799 	union	ccb *request_ccb;
4800 	struct 	ccb_pathinq *cpi;
4801 	int	pending_count;
4802 } xpt_scan_bus_info;
4803 
4804 /*
4805  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4806  * As the scan progresses, xpt_scan_bus is used as the
4807  * callback on completion function.
4808  */
4809 static void
4810 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4811 {
4812 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4813 		  ("xpt_scan_bus\n"));
4814 	switch (request_ccb->ccb_h.func_code) {
4815 	case XPT_SCAN_BUS:
4816 	{
4817 		xpt_scan_bus_info *scan_info;
4818 		union	ccb *work_ccb;
4819 		struct	cam_path *path;
4820 		u_int	i;
4821 		u_int	max_target;
4822 		u_int	initiator_id;
4823 
4824 		/* Find out the characteristics of the bus */
4825 		work_ccb = xpt_alloc_ccb();
4826 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4827 			      request_ccb->ccb_h.pinfo.priority);
4828 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4829 		xpt_action(work_ccb);
4830 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4831 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4832 			xpt_free_ccb(work_ccb);
4833 			xpt_done(request_ccb);
4834 			return;
4835 		}
4836 
4837 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4838 			/*
4839 			 * Can't scan the bus on an adapter that
4840 			 * cannot perform the initiator role.
4841 			 */
4842 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4843 			xpt_free_ccb(work_ccb);
4844 			xpt_done(request_ccb);
4845 			return;
4846 		}
4847 
4848 		/* Save some state for use while we probe for devices */
4849 		scan_info = (xpt_scan_bus_info *)
4850 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_INTWAIT);
4851 		scan_info->request_ccb = request_ccb;
4852 		scan_info->cpi = &work_ccb->cpi;
4853 
4854 		/* Cache on our stack so we can work asynchronously */
4855 		max_target = scan_info->cpi->max_target;
4856 		initiator_id = scan_info->cpi->initiator_id;
4857 
4858 		/*
4859 		 * Don't count the initiator if the
4860 		 * initiator is addressable.
4861 		 */
4862 		scan_info->pending_count = max_target + 1;
4863 		if (initiator_id <= max_target)
4864 			scan_info->pending_count--;
4865 
4866 		for (i = 0; i <= max_target; i++) {
4867 			cam_status status;
4868 		 	if (i == initiator_id)
4869 				continue;
4870 
4871 			status = xpt_create_path(&path, xpt_periph,
4872 						 request_ccb->ccb_h.path_id,
4873 						 i, 0);
4874 			if (status != CAM_REQ_CMP) {
4875 				printf("xpt_scan_bus: xpt_create_path failed"
4876 				       " with status %#x, bus scan halted\n",
4877 				       status);
4878 				break;
4879 			}
4880 			work_ccb = xpt_alloc_ccb();
4881 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4882 				      request_ccb->ccb_h.pinfo.priority);
4883 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4884 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4885 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4886 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4887 #if 0
4888 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4889 				request_ccb->ccb_h.path_id, i, 0);
4890 #endif
4891 			xpt_action(work_ccb);
4892 		}
4893 		break;
4894 	}
4895 	case XPT_SCAN_LUN:
4896 	{
4897 		xpt_scan_bus_info *scan_info;
4898 		path_id_t path_id;
4899 		target_id_t target_id;
4900 		lun_id_t lun_id;
4901 
4902 		/* Reuse the same CCB to query if a device was really found */
4903 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4904 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4905 			      request_ccb->ccb_h.pinfo.priority);
4906 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4907 
4908 		path_id = request_ccb->ccb_h.path_id;
4909 		target_id = request_ccb->ccb_h.target_id;
4910 		lun_id = request_ccb->ccb_h.target_lun;
4911 		xpt_action(request_ccb);
4912 
4913 #if 0
4914 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4915 			path_id, target_id, lun_id);
4916 #endif
4917 
4918 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4919 			struct cam_ed *device;
4920 			struct cam_et *target;
4921 			int phl;
4922 
4923 			/*
4924 			 * If we already probed lun 0 successfully, or
4925 			 * we have additional configured luns on this
4926 			 * target that might have "gone away", go onto
4927 			 * the next lun.
4928 			 */
4929 			target = request_ccb->ccb_h.path->target;
4930 			/*
4931 			 * We may touch devices that we don't
4932 			 * hold references too, so ensure they
4933 			 * don't disappear out from under us.
4934 			 * The target above is referenced by the
4935 			 * path in the request ccb.
4936 			 */
4937 			phl = 0;
4938 			crit_enter();
4939 			device = TAILQ_FIRST(&target->ed_entries);
4940 			if (device != NULL) {
4941 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
4942 				if (device->lun_id == 0)
4943 					device = TAILQ_NEXT(device, links);
4944 			}
4945 			crit_exit();
4946 			if ((lun_id != 0) || (device != NULL)) {
4947 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
4948 					lun_id++;
4949 			}
4950 		} else {
4951 			struct cam_ed *device;
4952 
4953 			device = request_ccb->ccb_h.path->device;
4954 
4955 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
4956 				/* Try the next lun */
4957 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4958 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4959 					lun_id++;
4960 			}
4961 		}
4962 
4963 		xpt_free_path(request_ccb->ccb_h.path);
4964 
4965 		/* Check Bounds */
4966 		if ((lun_id == request_ccb->ccb_h.target_lun)
4967 		 || lun_id > scan_info->cpi->max_lun) {
4968 			/* We're done */
4969 
4970 			xpt_free_ccb(request_ccb);
4971 			scan_info->pending_count--;
4972 			if (scan_info->pending_count == 0) {
4973 				xpt_free_ccb((union ccb *)scan_info->cpi);
4974 				request_ccb = scan_info->request_ccb;
4975 				free(scan_info, M_TEMP);
4976 				request_ccb->ccb_h.status = CAM_REQ_CMP;
4977 				xpt_done(request_ccb);
4978 			}
4979 		} else {
4980 			/* Try the next device */
4981 			struct cam_path *path;
4982 			cam_status status;
4983 
4984 			path = request_ccb->ccb_h.path;
4985 			status = xpt_create_path(&path, xpt_periph,
4986 						 path_id, target_id, lun_id);
4987 			if (status != CAM_REQ_CMP) {
4988 				printf("xpt_scan_bus: xpt_create_path failed "
4989 				       "with status %#x, halting LUN scan\n",
4990 			 	       status);
4991 				xpt_free_ccb(request_ccb);
4992 				scan_info->pending_count--;
4993 				if (scan_info->pending_count == 0) {
4994 					xpt_free_ccb(
4995 						(union ccb *)scan_info->cpi);
4996 					request_ccb = scan_info->request_ccb;
4997 					free(scan_info, M_TEMP);
4998 					request_ccb->ccb_h.status = CAM_REQ_CMP;
4999 					xpt_done(request_ccb);
5000 					break;
5001 				}
5002 			}
5003 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5004 				      request_ccb->ccb_h.pinfo.priority);
5005 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5006 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5007 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5008 			request_ccb->crcn.flags =
5009 				scan_info->request_ccb->crcn.flags;
5010 #if 0
5011 			xpt_print_path(path);
5012 			printf("xpt_scan bus probing\n");
5013 #endif
5014 			xpt_action(request_ccb);
5015 		}
5016 		break;
5017 	}
5018 	default:
5019 		break;
5020 	}
5021 }
5022 
5023 typedef enum {
5024 	PROBE_TUR,
5025 	PROBE_INQUIRY,
5026 	PROBE_FULL_INQUIRY,
5027 	PROBE_MODE_SENSE,
5028 	PROBE_SERIAL_NUM,
5029 	PROBE_TUR_FOR_NEGOTIATION
5030 } probe_action;
5031 
5032 typedef enum {
5033 	PROBE_INQUIRY_CKSUM	= 0x01,
5034 	PROBE_SERIAL_CKSUM	= 0x02,
5035 	PROBE_NO_ANNOUNCE	= 0x04
5036 } probe_flags;
5037 
5038 typedef struct {
5039 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5040 	probe_action	action;
5041 	union ccb	saved_ccb;
5042 	probe_flags	flags;
5043 	MD5_CTX		context;
5044 	u_int8_t	digest[16];
5045 } probe_softc;
5046 
5047 static void
5048 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5049 	     cam_flags flags, union ccb *request_ccb)
5050 {
5051 	struct ccb_pathinq cpi;
5052 	cam_status status;
5053 	struct cam_path *new_path;
5054 	struct cam_periph *old_periph;
5055 
5056 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5057 		  ("xpt_scan_lun\n"));
5058 
5059 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5060 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5061 	xpt_action((union ccb *)&cpi);
5062 
5063 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5064 		if (request_ccb != NULL) {
5065 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5066 			xpt_done(request_ccb);
5067 		}
5068 		return;
5069 	}
5070 
5071 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5072 		/*
5073 		 * Can't scan the bus on an adapter that
5074 		 * cannot perform the initiator role.
5075 		 */
5076 		if (request_ccb != NULL) {
5077 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5078 			xpt_done(request_ccb);
5079 		}
5080 		return;
5081 	}
5082 
5083 	if (request_ccb == NULL) {
5084 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_INTWAIT);
5085 		new_path = malloc(sizeof(*new_path), M_TEMP, M_INTWAIT);
5086 		status = xpt_compile_path(new_path, xpt_periph,
5087 					  path->bus->path_id,
5088 					  path->target->target_id,
5089 					  path->device->lun_id);
5090 
5091 		if (status != CAM_REQ_CMP) {
5092 			xpt_print_path(path);
5093 			printf("xpt_scan_lun: can't compile path, can't "
5094 			       "continue\n");
5095 			free(request_ccb, M_TEMP);
5096 			free(new_path, M_TEMP);
5097 			return;
5098 		}
5099 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5100 		request_ccb->ccb_h.cbfcnp = xptscandone;
5101 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5102 		request_ccb->crcn.flags = flags;
5103 	}
5104 
5105 	crit_enter();
5106 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5107 		probe_softc *softc;
5108 
5109 		softc = (probe_softc *)old_periph->softc;
5110 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5111 				  periph_links.tqe);
5112 	} else {
5113 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5114 					  probestart, "probe",
5115 					  CAM_PERIPH_BIO,
5116 					  request_ccb->ccb_h.path, NULL, 0,
5117 					  request_ccb);
5118 
5119 		if (status != CAM_REQ_CMP) {
5120 			xpt_print_path(path);
5121 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5122 			       "error, can't continue probe\n");
5123 			request_ccb->ccb_h.status = status;
5124 			xpt_done(request_ccb);
5125 		}
5126 	}
5127 	crit_exit();
5128 }
5129 
5130 static void
5131 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5132 {
5133 	xpt_release_path(done_ccb->ccb_h.path);
5134 	free(done_ccb->ccb_h.path, M_TEMP);
5135 	free(done_ccb, M_TEMP);
5136 }
5137 
5138 static cam_status
5139 proberegister(struct cam_periph *periph, void *arg)
5140 {
5141 	union ccb *request_ccb;	/* CCB representing the probe request */
5142 	probe_softc *softc;
5143 
5144 	request_ccb = (union ccb *)arg;
5145 	if (periph == NULL) {
5146 		printf("proberegister: periph was NULL!!\n");
5147 		return(CAM_REQ_CMP_ERR);
5148 	}
5149 
5150 	if (request_ccb == NULL) {
5151 		printf("proberegister: no probe CCB, "
5152 		       "can't register device\n");
5153 		return(CAM_REQ_CMP_ERR);
5154 	}
5155 
5156 	softc = malloc(sizeof(*softc), M_TEMP, M_INTWAIT | M_ZERO);
5157 	TAILQ_INIT(&softc->request_ccbs);
5158 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5159 			  periph_links.tqe);
5160 	softc->flags = 0;
5161 	periph->softc = softc;
5162 	cam_periph_acquire(periph);
5163 	/*
5164 	 * Ensure we've waited at least a bus settle
5165 	 * delay before attempting to probe the device.
5166 	 * For HBAs that don't do bus resets, this won't make a difference.
5167 	 */
5168 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5169 				      SCSI_DELAY);
5170 	probeschedule(periph);
5171 	return(CAM_REQ_CMP);
5172 }
5173 
5174 static void
5175 probeschedule(struct cam_periph *periph)
5176 {
5177 	struct ccb_pathinq cpi;
5178 	union ccb *ccb;
5179 	probe_softc *softc;
5180 
5181 	softc = (probe_softc *)periph->softc;
5182 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5183 
5184 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5185 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5186 	xpt_action((union ccb *)&cpi);
5187 
5188 	/*
5189 	 * If a device has gone away and another device, or the same one,
5190 	 * is back in the same place, it should have a unit attention
5191 	 * condition pending.  It will not report the unit attention in
5192 	 * response to an inquiry, which may leave invalid transfer
5193 	 * negotiations in effect.  The TUR will reveal the unit attention
5194 	 * condition.  Only send the TUR for lun 0, since some devices
5195 	 * will get confused by commands other than inquiry to non-existent
5196 	 * luns.  If you think a device has gone away start your scan from
5197 	 * lun 0.  This will insure that any bogus transfer settings are
5198 	 * invalidated.
5199 	 *
5200 	 * If we haven't seen the device before and the controller supports
5201 	 * some kind of transfer negotiation, negotiate with the first
5202 	 * sent command if no bus reset was performed at startup.  This
5203 	 * ensures that the device is not confused by transfer negotiation
5204 	 * settings left over by loader or BIOS action.
5205 	 */
5206 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5207 	 && (ccb->ccb_h.target_lun == 0)) {
5208 		softc->action = PROBE_TUR;
5209 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5210 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5211 		proberequestdefaultnegotiation(periph);
5212 		softc->action = PROBE_INQUIRY;
5213 	} else {
5214 		softc->action = PROBE_INQUIRY;
5215 	}
5216 
5217 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5218 		softc->flags |= PROBE_NO_ANNOUNCE;
5219 	else
5220 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5221 
5222 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5223 }
5224 
5225 static void
5226 probestart(struct cam_periph *periph, union ccb *start_ccb)
5227 {
5228 	/* Probe the device that our peripheral driver points to */
5229 	struct ccb_scsiio *csio;
5230 	probe_softc *softc;
5231 
5232 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5233 
5234 	softc = (probe_softc *)periph->softc;
5235 	csio = &start_ccb->csio;
5236 
5237 	switch (softc->action) {
5238 	case PROBE_TUR:
5239 	case PROBE_TUR_FOR_NEGOTIATION:
5240 	{
5241 		scsi_test_unit_ready(csio,
5242 				     /*retries*/4,
5243 				     probedone,
5244 				     MSG_SIMPLE_Q_TAG,
5245 				     SSD_FULL_SIZE,
5246 				     /*timeout*/60000);
5247 		break;
5248 	}
5249 	case PROBE_INQUIRY:
5250 	case PROBE_FULL_INQUIRY:
5251 	{
5252 		u_int inquiry_len;
5253 		struct scsi_inquiry_data *inq_buf;
5254 
5255 		inq_buf = &periph->path->device->inq_data;
5256 		/*
5257 		 * If the device is currently configured, we calculate an
5258 		 * MD5 checksum of the inquiry data, and if the serial number
5259 		 * length is greater than 0, add the serial number data
5260 		 * into the checksum as well.  Once the inquiry and the
5261 		 * serial number check finish, we attempt to figure out
5262 		 * whether we still have the same device.
5263 		 */
5264 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5265 
5266 			MD5Init(&softc->context);
5267 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5268 				  sizeof(struct scsi_inquiry_data));
5269 			softc->flags |= PROBE_INQUIRY_CKSUM;
5270 			if (periph->path->device->serial_num_len > 0) {
5271 				MD5Update(&softc->context,
5272 					  periph->path->device->serial_num,
5273 					  periph->path->device->serial_num_len);
5274 				softc->flags |= PROBE_SERIAL_CKSUM;
5275 			}
5276 			MD5Final(softc->digest, &softc->context);
5277 		}
5278 
5279 		if (softc->action == PROBE_INQUIRY)
5280 			inquiry_len = SHORT_INQUIRY_LENGTH;
5281 		else
5282 			inquiry_len = inq_buf->additional_length + 5;
5283 
5284 		scsi_inquiry(csio,
5285 			     /*retries*/4,
5286 			     probedone,
5287 			     MSG_SIMPLE_Q_TAG,
5288 			     (u_int8_t *)inq_buf,
5289 			     inquiry_len,
5290 			     /*evpd*/FALSE,
5291 			     /*page_code*/0,
5292 			     SSD_MIN_SIZE,
5293 			     /*timeout*/60 * 1000);
5294 		break;
5295 	}
5296 	case PROBE_MODE_SENSE:
5297 	{
5298 		void  *mode_buf;
5299 		int    mode_buf_len;
5300 
5301 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5302 			     + sizeof(struct scsi_mode_blk_desc)
5303 			     + sizeof(struct scsi_control_page);
5304 		mode_buf = malloc(mode_buf_len, M_TEMP, M_INTWAIT);
5305 		scsi_mode_sense(csio,
5306 				/*retries*/4,
5307 				probedone,
5308 				MSG_SIMPLE_Q_TAG,
5309 				/*dbd*/FALSE,
5310 				SMS_PAGE_CTRL_CURRENT,
5311 				SMS_CONTROL_MODE_PAGE,
5312 				mode_buf,
5313 				mode_buf_len,
5314 				SSD_FULL_SIZE,
5315 				/*timeout*/60000);
5316 		break;
5317 	}
5318 	case PROBE_SERIAL_NUM:
5319 	{
5320 		struct scsi_vpd_unit_serial_number *serial_buf;
5321 		struct cam_ed* device;
5322 
5323 		serial_buf = NULL;
5324 		device = periph->path->device;
5325 		device->serial_num = NULL;
5326 		device->serial_num_len = 0;
5327 
5328 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5329 			serial_buf = malloc(sizeof(*serial_buf), M_TEMP,
5330 					    M_INTWAIT | M_ZERO);
5331 			scsi_inquiry(csio,
5332 				     /*retries*/4,
5333 				     probedone,
5334 				     MSG_SIMPLE_Q_TAG,
5335 				     (u_int8_t *)serial_buf,
5336 				     sizeof(*serial_buf),
5337 				     /*evpd*/TRUE,
5338 				     SVPD_UNIT_SERIAL_NUMBER,
5339 				     SSD_MIN_SIZE,
5340 				     /*timeout*/60 * 1000);
5341 			break;
5342 		}
5343 		/*
5344 		 * We'll have to do without, let our probedone
5345 		 * routine finish up for us.
5346 		 */
5347 		start_ccb->csio.data_ptr = NULL;
5348 		probedone(periph, start_ccb);
5349 		return;
5350 	}
5351 	}
5352 	xpt_action(start_ccb);
5353 }
5354 
5355 static void
5356 proberequestdefaultnegotiation(struct cam_periph *periph)
5357 {
5358 	struct ccb_trans_settings cts;
5359 
5360 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5361 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5362 	cts.flags = CCB_TRANS_USER_SETTINGS;
5363 	xpt_action((union ccb *)&cts);
5364 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5365 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5366 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5367 	xpt_action((union ccb *)&cts);
5368 }
5369 
5370 static void
5371 probedone(struct cam_periph *periph, union ccb *done_ccb)
5372 {
5373 	probe_softc *softc;
5374 	struct cam_path *path;
5375 	u_int32_t  priority;
5376 
5377 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5378 
5379 	softc = (probe_softc *)periph->softc;
5380 	path = done_ccb->ccb_h.path;
5381 	priority = done_ccb->ccb_h.pinfo.priority;
5382 
5383 	switch (softc->action) {
5384 	case PROBE_TUR:
5385 	{
5386 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5387 
5388 			if (cam_periph_error(done_ccb, 0,
5389 					     SF_NO_PRINT, NULL) == ERESTART)
5390 				return;
5391 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5392 				/* Don't wedge the queue */
5393 				xpt_release_devq(done_ccb->ccb_h.path,
5394 						 /*count*/1,
5395 						 /*run_queue*/TRUE);
5396 		}
5397 		softc->action = PROBE_INQUIRY;
5398 		xpt_release_ccb(done_ccb);
5399 		xpt_schedule(periph, priority);
5400 		return;
5401 	}
5402 	case PROBE_INQUIRY:
5403 	case PROBE_FULL_INQUIRY:
5404 	{
5405 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5406 			struct scsi_inquiry_data *inq_buf;
5407 			u_int8_t periph_qual;
5408 
5409 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5410 			inq_buf = &path->device->inq_data;
5411 
5412 			periph_qual = SID_QUAL(inq_buf);
5413 
5414 			switch(periph_qual) {
5415 			case SID_QUAL_LU_CONNECTED:
5416 			{
5417 				u_int8_t alen;
5418 
5419 				/*
5420 				 * We conservatively request only
5421 				 * SHORT_INQUIRY_LEN bytes of inquiry
5422 				 * information during our first try
5423 				 * at sending an INQUIRY. If the device
5424 				 * has more information to give,
5425 				 * perform a second request specifying
5426 				 * the amount of information the device
5427 				 * is willing to give.
5428 				 */
5429 				alen = inq_buf->additional_length;
5430 				if (softc->action == PROBE_INQUIRY
5431 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5432 					softc->action = PROBE_FULL_INQUIRY;
5433 					xpt_release_ccb(done_ccb);
5434 					xpt_schedule(periph, priority);
5435 					return;
5436 				}
5437 
5438 				xpt_find_quirk(path->device);
5439 
5440 				if ((inq_buf->flags & SID_CmdQue) != 0)
5441 					softc->action = PROBE_MODE_SENSE;
5442 				else
5443 					softc->action = PROBE_SERIAL_NUM;
5444 
5445 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5446 				xpt_reference_device(path->device);
5447 
5448 				xpt_release_ccb(done_ccb);
5449 				xpt_schedule(periph, priority);
5450 				return;
5451 			}
5452 			default:
5453 				break;
5454 			}
5455 		} else if (cam_periph_error(done_ccb, 0,
5456 					    done_ccb->ccb_h.target_lun > 0
5457 					    ? SF_RETRY_UA|SF_QUIET_IR
5458 					    : SF_RETRY_UA,
5459 					    &softc->saved_ccb) == ERESTART) {
5460 			return;
5461 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5462 			/* Don't wedge the queue */
5463 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5464 					 /*run_queue*/TRUE);
5465 		}
5466 		/*
5467 		 * If we get to this point, we got an error status back
5468 		 * from the inquiry and the error status doesn't require
5469 		 * automatically retrying the command.  Therefore, the
5470 		 * inquiry failed.  If we had inquiry information before
5471 		 * for this device, but this latest inquiry command failed,
5472 		 * the device has probably gone away.  If this device isn't
5473 		 * already marked unconfigured, notify the peripheral
5474 		 * drivers that this device is no more.
5475 		 */
5476 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5477 			/* Send the async notification. */
5478 			xpt_async(AC_LOST_DEVICE, path, NULL);
5479 		}
5480 
5481 		xpt_release_ccb(done_ccb);
5482 		break;
5483 	}
5484 	case PROBE_MODE_SENSE:
5485 	{
5486 		struct ccb_scsiio *csio;
5487 		struct scsi_mode_header_6 *mode_hdr;
5488 
5489 		csio = &done_ccb->csio;
5490 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5491 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5492 			struct scsi_control_page *page;
5493 			u_int8_t *offset;
5494 
5495 			offset = ((u_int8_t *)&mode_hdr[1])
5496 			    + mode_hdr->blk_desc_len;
5497 			page = (struct scsi_control_page *)offset;
5498 			path->device->queue_flags = page->queue_flags;
5499 		} else if (cam_periph_error(done_ccb, 0,
5500 					    SF_RETRY_UA|SF_NO_PRINT,
5501 					    &softc->saved_ccb) == ERESTART) {
5502 			return;
5503 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5504 			/* Don't wedge the queue */
5505 			xpt_release_devq(done_ccb->ccb_h.path,
5506 					 /*count*/1, /*run_queue*/TRUE);
5507 		}
5508 		xpt_release_ccb(done_ccb);
5509 		free(mode_hdr, M_TEMP);
5510 		softc->action = PROBE_SERIAL_NUM;
5511 		xpt_schedule(periph, priority);
5512 		return;
5513 	}
5514 	case PROBE_SERIAL_NUM:
5515 	{
5516 		struct ccb_scsiio *csio;
5517 		struct scsi_vpd_unit_serial_number *serial_buf;
5518 		u_int32_t  priority;
5519 		int changed;
5520 		int have_serialnum;
5521 
5522 		changed = 1;
5523 		have_serialnum = 0;
5524 		csio = &done_ccb->csio;
5525 		priority = done_ccb->ccb_h.pinfo.priority;
5526 		serial_buf =
5527 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5528 
5529 		/* Clean up from previous instance of this device */
5530 		if (path->device->serial_num != NULL) {
5531 			free(path->device->serial_num, M_DEVBUF);
5532 			path->device->serial_num = NULL;
5533 			path->device->serial_num_len = 0;
5534 		}
5535 
5536 		if (serial_buf == NULL) {
5537 			/*
5538 			 * Don't process the command as it was never sent
5539 			 */
5540 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5541 			&& (serial_buf->length > 0)) {
5542 
5543 			have_serialnum = 1;
5544 			path->device->serial_num =
5545 				malloc((serial_buf->length + 1),
5546 				       M_DEVBUF, M_INTWAIT);
5547 			bcopy(serial_buf->serial_num,
5548 			      path->device->serial_num,
5549 			      serial_buf->length);
5550 			path->device->serial_num_len = serial_buf->length;
5551 			path->device->serial_num[serial_buf->length] = '\0';
5552 		} else if (cam_periph_error(done_ccb, 0,
5553 					    SF_RETRY_UA|SF_NO_PRINT,
5554 					    &softc->saved_ccb) == ERESTART) {
5555 			return;
5556 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5557 			/* Don't wedge the queue */
5558 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5559 					 /*run_queue*/TRUE);
5560 		}
5561 
5562 		/*
5563 		 * Let's see if we have seen this device before.
5564 		 */
5565 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5566 			MD5_CTX context;
5567 			u_int8_t digest[16];
5568 
5569 			MD5Init(&context);
5570 
5571 			MD5Update(&context,
5572 				  (unsigned char *)&path->device->inq_data,
5573 				  sizeof(struct scsi_inquiry_data));
5574 
5575 			if (have_serialnum)
5576 				MD5Update(&context, serial_buf->serial_num,
5577 					  serial_buf->length);
5578 
5579 			MD5Final(digest, &context);
5580 			if (bcmp(softc->digest, digest, 16) == 0)
5581 				changed = 0;
5582 
5583 			/*
5584 			 * XXX Do we need to do a TUR in order to ensure
5585 			 *     that the device really hasn't changed???
5586 			 */
5587 			if ((changed != 0)
5588 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5589 				xpt_async(AC_LOST_DEVICE, path, NULL);
5590 		}
5591 		if (serial_buf != NULL)
5592 			free(serial_buf, M_TEMP);
5593 
5594 		if (changed != 0) {
5595 			/*
5596 			 * Now that we have all the necessary
5597 			 * information to safely perform transfer
5598 			 * negotiations... Controllers don't perform
5599 			 * any negotiation or tagged queuing until
5600 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5601 			 * received.  So, on a new device, just retreive
5602 			 * the user settings, and set them as the current
5603 			 * settings to set the device up.
5604 			 */
5605 			proberequestdefaultnegotiation(periph);
5606 			xpt_release_ccb(done_ccb);
5607 
5608 			/*
5609 			 * Perform a TUR to allow the controller to
5610 			 * perform any necessary transfer negotiation.
5611 			 */
5612 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5613 			xpt_schedule(periph, priority);
5614 			return;
5615 		}
5616 		xpt_release_ccb(done_ccb);
5617 		break;
5618 	}
5619 	case PROBE_TUR_FOR_NEGOTIATION:
5620 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5621 			/* Don't wedge the queue */
5622 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5623 					 /*run_queue*/TRUE);
5624 		}
5625 
5626 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5627 		xpt_reference_device(path->device);
5628 
5629 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5630 			/* Inform the XPT that a new device has been found */
5631 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5632 			xpt_action(done_ccb);
5633 
5634 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5635 		}
5636 		xpt_release_ccb(done_ccb);
5637 		break;
5638 	}
5639 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5640 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5641 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5642 	xpt_done(done_ccb);
5643 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5644 		cam_periph_invalidate(periph);
5645 		cam_periph_release(periph);
5646 	} else {
5647 		probeschedule(periph);
5648 	}
5649 }
5650 
5651 static void
5652 probecleanup(struct cam_periph *periph)
5653 {
5654 	free(periph->softc, M_TEMP);
5655 }
5656 
5657 static void
5658 xpt_find_quirk(struct cam_ed *device)
5659 {
5660 	caddr_t	match;
5661 
5662 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5663 			       (caddr_t)xpt_quirk_table,
5664 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5665 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5666 
5667 	if (match == NULL)
5668 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5669 
5670 	device->quirk = (struct xpt_quirk_entry *)match;
5671 }
5672 
5673 static void
5674 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5675 			  int async_update)
5676 {
5677 	struct	cam_sim *sim;
5678 	int	qfrozen;
5679 
5680 	sim = cts->ccb_h.path->bus->sim;
5681 	if (async_update == FALSE) {
5682 		struct	scsi_inquiry_data *inq_data;
5683 		struct	ccb_pathinq cpi;
5684 		struct	ccb_trans_settings cur_cts;
5685 
5686 		if (device == NULL) {
5687 			cts->ccb_h.status = CAM_PATH_INVALID;
5688 			xpt_done((union ccb *)cts);
5689 			return;
5690 		}
5691 
5692 		/*
5693 		 * Perform sanity checking against what the
5694 		 * controller and device can do.
5695 		 */
5696 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5697 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5698 		xpt_action((union ccb *)&cpi);
5699 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5700 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5701 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5702 		xpt_action((union ccb *)&cur_cts);
5703 		inq_data = &device->inq_data;
5704 
5705 		/* Fill in any gaps in what the user gave us */
5706 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5707 			cts->sync_period = cur_cts.sync_period;
5708 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5709 			cts->sync_offset = cur_cts.sync_offset;
5710 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5711 			cts->bus_width = cur_cts.bus_width;
5712 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5713 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5714 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5715 		}
5716 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5717 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5718 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5719 		}
5720 
5721 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5722 		  && (inq_data->flags & SID_Sync) == 0)
5723 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5724 		 || (cts->sync_offset == 0)
5725 		 || (cts->sync_period == 0)) {
5726 			/* Force async */
5727 			cts->sync_period = 0;
5728 			cts->sync_offset = 0;
5729 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5730 
5731 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5732 			 && cts->sync_period <= 0x9) {
5733 				/*
5734 				 * Don't allow DT transmission rates if the
5735 				 * device does not support it.
5736 				 */
5737 				cts->sync_period = 0xa;
5738 			}
5739 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5740 			 && cts->sync_period <= 0x8) {
5741 				/*
5742 				 * Don't allow PACE transmission rates
5743 				 * if the device does support packetized
5744 				 * transfers.
5745 				 */
5746 				cts->sync_period = 0x9;
5747 			}
5748 		}
5749 
5750 		switch (cts->bus_width) {
5751 		case MSG_EXT_WDTR_BUS_32_BIT:
5752 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5753 			  || (inq_data->flags & SID_WBus32) != 0)
5754 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5755 				break;
5756 			/* Fall Through to 16-bit */
5757 		case MSG_EXT_WDTR_BUS_16_BIT:
5758 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5759 			  || (inq_data->flags & SID_WBus16) != 0)
5760 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5761 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5762 				break;
5763 			}
5764 			/* Fall Through to 8-bit */
5765 		default: /* New bus width?? */
5766 		case MSG_EXT_WDTR_BUS_8_BIT:
5767 			/* All targets can do this */
5768 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5769 			break;
5770 		}
5771 
5772 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5773 			/*
5774 			 * Can't tag queue without disconnection.
5775 			 */
5776 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5777 			cts->valid |= CCB_TRANS_TQ_VALID;
5778 		}
5779 
5780 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5781 		 || (inq_data->flags & SID_CmdQue) == 0
5782 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5783 		 || (device->quirk->mintags == 0)) {
5784 			/*
5785 			 * Can't tag on hardware that doesn't support,
5786 			 * doesn't have it enabled, or has broken tag support.
5787 			 */
5788 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5789 		}
5790 	}
5791 
5792 	qfrozen = FALSE;
5793 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5794 		int device_tagenb;
5795 
5796 		/*
5797 		 * If we are transitioning from tags to no-tags or
5798 		 * vice-versa, we need to carefully freeze and restart
5799 		 * the queue so that we don't overlap tagged and non-tagged
5800 		 * commands.  We also temporarily stop tags if there is
5801 		 * a change in transfer negotiation settings to allow
5802 		 * "tag-less" negotiation.
5803 		 */
5804 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5805 		 || (device->inq_flags & SID_CmdQue) != 0)
5806 			device_tagenb = TRUE;
5807 		else
5808 			device_tagenb = FALSE;
5809 
5810 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5811 		  && device_tagenb == FALSE)
5812 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5813 		  && device_tagenb == TRUE)) {
5814 
5815 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5816 				/*
5817 				 * Delay change to use tags until after a
5818 				 * few commands have gone to this device so
5819 				 * the controller has time to perform transfer
5820 				 * negotiations without tagged messages getting
5821 				 * in the way.
5822 				 */
5823 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5824 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5825 			} else {
5826 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5827 				qfrozen = TRUE;
5828 		  		device->inq_flags &= ~SID_CmdQue;
5829 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5830 						    sim->max_dev_openings);
5831 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5832 				device->tag_delay_count = 0;
5833 			}
5834 		}
5835 	}
5836 
5837 	if (async_update == FALSE) {
5838 		/*
5839 		 * If we are currently performing tagged transactions to
5840 		 * this device and want to change its negotiation parameters,
5841 		 * go non-tagged for a bit to give the controller a chance to
5842 		 * negotiate unhampered by tag messages.
5843 		 */
5844 		if ((device->inq_flags & SID_CmdQue) != 0
5845 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5846 				   CCB_TRANS_SYNC_OFFSET_VALID|
5847 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5848 			xpt_toggle_tags(cts->ccb_h.path);
5849 
5850 		(*(sim->sim_action))(sim, (union ccb *)cts);
5851 	}
5852 
5853 	if (qfrozen) {
5854 		struct ccb_relsim crs;
5855 
5856 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5857 			      /*priority*/1);
5858 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5859 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5860 		crs.openings
5861 		    = crs.release_timeout
5862 		    = crs.qfrozen_cnt
5863 		    = 0;
5864 		xpt_action((union ccb *)&crs);
5865 	}
5866 }
5867 
5868 static void
5869 xpt_toggle_tags(struct cam_path *path)
5870 {
5871 	struct cam_ed *dev;
5872 
5873 	/*
5874 	 * Give controllers a chance to renegotiate
5875 	 * before starting tag operations.  We
5876 	 * "toggle" tagged queuing off then on
5877 	 * which causes the tag enable command delay
5878 	 * counter to come into effect.
5879 	 */
5880 	dev = path->device;
5881 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5882 	 || ((dev->inq_flags & SID_CmdQue) != 0
5883  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5884 		struct ccb_trans_settings cts;
5885 
5886 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5887 		cts.flags = 0;
5888 		cts.valid = CCB_TRANS_TQ_VALID;
5889 		xpt_set_transfer_settings(&cts, path->device,
5890 					  /*async_update*/TRUE);
5891 		cts.flags = CCB_TRANS_TAG_ENB;
5892 		xpt_set_transfer_settings(&cts, path->device,
5893 					  /*async_update*/TRUE);
5894 	}
5895 }
5896 
5897 static void
5898 xpt_start_tags(struct cam_path *path)
5899 {
5900 	struct ccb_relsim crs;
5901 	struct cam_ed *device;
5902 	struct cam_sim *sim;
5903 	int    newopenings;
5904 
5905 	device = path->device;
5906 	sim = path->bus->sim;
5907 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5908 	xpt_freeze_devq(path, /*count*/1);
5909 	device->inq_flags |= SID_CmdQue;
5910 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
5911 	xpt_dev_ccbq_resize(path, newopenings);
5912 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
5913 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5914 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5915 	crs.openings
5916 	    = crs.release_timeout
5917 	    = crs.qfrozen_cnt
5918 	    = 0;
5919 	xpt_action((union ccb *)&crs);
5920 }
5921 
5922 static int busses_to_config;
5923 static int busses_to_reset;
5924 
5925 static int
5926 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
5927 {
5928 	if (bus->path_id != CAM_XPT_PATH_ID) {
5929 		struct cam_path path;
5930 		struct ccb_pathinq cpi;
5931 		int can_negotiate;
5932 
5933 		busses_to_config++;
5934 		xpt_compile_path(&path, NULL, bus->path_id,
5935 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5936 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
5937 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5938 		xpt_action((union ccb *)&cpi);
5939 		can_negotiate = cpi.hba_inquiry;
5940 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5941 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
5942 		 && can_negotiate)
5943 			busses_to_reset++;
5944 		xpt_release_path(&path);
5945 	}
5946 
5947 	return(1);
5948 }
5949 
5950 static int
5951 xptconfigfunc(struct cam_eb *bus, void *arg)
5952 {
5953 	struct	cam_path *path;
5954 	union	ccb *work_ccb;
5955 
5956 	if (bus->path_id != CAM_XPT_PATH_ID) {
5957 		cam_status status;
5958 		int can_negotiate;
5959 
5960 		work_ccb = xpt_alloc_ccb();
5961 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
5962 					      CAM_TARGET_WILDCARD,
5963 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
5964 			printf("xptconfigfunc: xpt_create_path failed with "
5965 			       "status %#x for bus %d\n", status, bus->path_id);
5966 			printf("xptconfigfunc: halting bus configuration\n");
5967 			xpt_free_ccb(work_ccb);
5968 			busses_to_config--;
5969 			xpt_finishconfig(xpt_periph, NULL);
5970 			return(0);
5971 		}
5972 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5973 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5974 		xpt_action(work_ccb);
5975 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5976 			printf("xptconfigfunc: CPI failed on bus %d "
5977 			       "with status %d\n", bus->path_id,
5978 			       work_ccb->ccb_h.status);
5979 			xpt_finishconfig(xpt_periph, work_ccb);
5980 			return(1);
5981 		}
5982 
5983 		can_negotiate = work_ccb->cpi.hba_inquiry;
5984 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5985 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
5986 		 && (can_negotiate != 0)) {
5987 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5988 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
5989 			work_ccb->ccb_h.cbfcnp = NULL;
5990 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
5991 				  ("Resetting Bus\n"));
5992 			xpt_action(work_ccb);
5993 			xpt_finishconfig(xpt_periph, work_ccb);
5994 		} else {
5995 			/* Act as though we performed a successful BUS RESET */
5996 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
5997 			xpt_finishconfig(xpt_periph, work_ccb);
5998 		}
5999 	}
6000 
6001 	return(1);
6002 }
6003 
6004 static void
6005 xpt_config(void *arg)
6006 {
6007 	/* Now that interrupts are enabled, go find our devices */
6008 
6009 #ifdef CAMDEBUG
6010 	/* Setup debugging flags and path */
6011 #ifdef CAM_DEBUG_FLAGS
6012 	cam_dflags = CAM_DEBUG_FLAGS;
6013 #else /* !CAM_DEBUG_FLAGS */
6014 	cam_dflags = CAM_DEBUG_NONE;
6015 #endif /* CAM_DEBUG_FLAGS */
6016 #ifdef CAM_DEBUG_BUS
6017 	if (cam_dflags != CAM_DEBUG_NONE) {
6018 		if (xpt_create_path(&cam_dpath, xpt_periph,
6019 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6020 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6021 			printf("xpt_config: xpt_create_path() failed for debug"
6022 			       " target %d:%d:%d, debugging disabled\n",
6023 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6024 			cam_dflags = CAM_DEBUG_NONE;
6025 		}
6026 	} else
6027 		cam_dpath = NULL;
6028 #else /* !CAM_DEBUG_BUS */
6029 	cam_dpath = NULL;
6030 #endif /* CAM_DEBUG_BUS */
6031 #endif /* CAMDEBUG */
6032 
6033 	/*
6034 	 * Scan all installed busses.
6035 	 */
6036 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6037 
6038 	if (busses_to_config == 0) {
6039 		/* Call manually because we don't have any busses */
6040 		xpt_finishconfig(xpt_periph, NULL);
6041 	} else  {
6042 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6043 			printf("Waiting %d seconds for SCSI "
6044 			       "devices to settle\n", SCSI_DELAY/1000);
6045 		}
6046 		xpt_for_all_busses(xptconfigfunc, NULL);
6047 	}
6048 }
6049 
6050 /*
6051  * If the given device only has one peripheral attached to it, and if that
6052  * peripheral is the passthrough driver, announce it.  This insures that the
6053  * user sees some sort of announcement for every peripheral in their system.
6054  */
6055 static int
6056 xptpassannouncefunc(struct cam_ed *device, void *arg)
6057 {
6058 	struct cam_periph *periph;
6059 	int i;
6060 
6061 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6062 	     periph = SLIST_NEXT(periph, periph_links), i++);
6063 
6064 	periph = SLIST_FIRST(&device->periphs);
6065 	if ((i == 1)
6066 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6067 		xpt_announce_periph(periph, NULL);
6068 
6069 	return(1);
6070 }
6071 
6072 static void
6073 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6074 {
6075 	struct	periph_driver **p_drv;
6076 
6077 	if (done_ccb != NULL) {
6078 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6079 			  ("xpt_finishconfig\n"));
6080 		switch(done_ccb->ccb_h.func_code) {
6081 		case XPT_RESET_BUS:
6082 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6083 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6084 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6085 				xpt_action(done_ccb);
6086 				return;
6087 			}
6088 			/* FALLTHROUGH */
6089 		case XPT_SCAN_BUS:
6090 		default:
6091 			xpt_free_path(done_ccb->ccb_h.path);
6092 			busses_to_config--;
6093 			break;
6094 		}
6095 	}
6096 
6097 	if (busses_to_config == 0) {
6098 		/* Register all the peripheral drivers */
6099 		/* XXX This will have to change when we have loadable modules */
6100 		SET_FOREACH(p_drv, periphdriver_set) {
6101 			(*p_drv)->init();
6102 		}
6103 
6104 		/*
6105 		 * Check for devices with no "standard" peripheral driver
6106 		 * attached.  For any devices like that, announce the
6107 		 * passthrough driver so the user will see something.
6108 		 */
6109 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6110 
6111 		/* Release our hook so that the boot can continue. */
6112 		config_intrhook_disestablish(xpt_config_hook);
6113 		free(xpt_config_hook, M_TEMP);
6114 		xpt_config_hook = NULL;
6115 	}
6116 	if (done_ccb != NULL)
6117 		xpt_free_ccb(done_ccb);
6118 }
6119 
6120 static void
6121 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6122 {
6123 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6124 
6125 	switch (work_ccb->ccb_h.func_code) {
6126 	/* Common cases first */
6127 	case XPT_PATH_INQ:		/* Path routing inquiry */
6128 	{
6129 		struct ccb_pathinq *cpi;
6130 
6131 		cpi = &work_ccb->cpi;
6132 		cpi->version_num = 1; /* XXX??? */
6133 		cpi->hba_inquiry = 0;
6134 		cpi->target_sprt = 0;
6135 		cpi->hba_misc = 0;
6136 		cpi->hba_eng_cnt = 0;
6137 		cpi->max_target = 0;
6138 		cpi->max_lun = 0;
6139 		cpi->initiator_id = 0;
6140 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6141 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6142 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6143 		cpi->unit_number = sim->unit_number;
6144 		cpi->bus_id = sim->bus_id;
6145 		cpi->base_transfer_speed = 0;
6146 		cpi->ccb_h.status = CAM_REQ_CMP;
6147 		xpt_done(work_ccb);
6148 		break;
6149 	}
6150 	default:
6151 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6152 		xpt_done(work_ccb);
6153 		break;
6154 	}
6155 }
6156 
6157 /*
6158  * The xpt as a "controller" has no interrupt sources, so polling
6159  * is a no-op.
6160  */
6161 static void
6162 xptpoll(struct cam_sim *sim)
6163 {
6164 }
6165 
6166 /*
6167  * Should only be called by the machine interrupt dispatch routines,
6168  * so put these prototypes here instead of in the header.
6169  */
6170 
6171 static void
6172 swi_camnet(void *arg, void *frame)
6173 {
6174 	camisr(&cam_netq);
6175 }
6176 
6177 static void
6178 swi_cambio(void *arg, void *frame)
6179 {
6180 	camisr(&cam_bioq);
6181 }
6182 
6183 static void
6184 camisr(cam_isrq_t *queue)
6185 {
6186 	struct	ccb_hdr *ccb_h;
6187 
6188 	crit_enter();
6189 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6190 		int	runq;
6191 
6192 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6193 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6194 		splz();
6195 
6196 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6197 			  ("camisr\n"));
6198 
6199 		runq = FALSE;
6200 
6201 		if (ccb_h->flags & CAM_HIGH_POWER) {
6202 			struct highpowerlist	*hphead;
6203 			struct cam_ed		*device;
6204 			union ccb		*send_ccb;
6205 
6206 			hphead = &highpowerq;
6207 
6208 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6209 
6210 			/*
6211 			 * Increment the count since this command is done.
6212 			 */
6213 			num_highpower++;
6214 
6215 			/*
6216 			 * Any high powered commands queued up?
6217 			 */
6218 			if (send_ccb != NULL) {
6219 				device = send_ccb->ccb_h.path->device;
6220 
6221 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6222 
6223 				xpt_release_devq(send_ccb->ccb_h.path,
6224 						 /*count*/1, /*runqueue*/TRUE);
6225 			}
6226 		}
6227 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6228 			struct cam_ed *dev;
6229 
6230 			dev = ccb_h->path->device;
6231 
6232 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6233 
6234 			if (ccb_h->path->bus->sim->devq) {
6235 				ccb_h->path->bus->sim->devq->send_active--;
6236 				ccb_h->path->bus->sim->devq->send_openings++;
6237 			}
6238 
6239 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6240 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6241 			  && (dev->ccbq.dev_active == 0))) {
6242 
6243 				xpt_release_devq(ccb_h->path, /*count*/1,
6244 						 /*run_queue*/TRUE);
6245 			}
6246 
6247 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6248 			 && (--dev->tag_delay_count == 0))
6249 				xpt_start_tags(ccb_h->path);
6250 
6251 			if ((dev->ccbq.queue.entries > 0)
6252 			 && (dev->qfrozen_cnt == 0)
6253 			 && (device_is_send_queued(dev) == 0)) {
6254 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6255 							      dev);
6256 			}
6257 		}
6258 
6259 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6260 			xpt_release_simq(ccb_h->path->bus->sim,
6261 					 /*run_queue*/TRUE);
6262 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6263 			runq = FALSE;
6264 		}
6265 
6266 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6267 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6268 			xpt_release_devq(ccb_h->path, /*count*/1,
6269 					 /*run_queue*/TRUE);
6270 			ccb_h->status &= ~CAM_DEV_QFRZN;
6271 		} else if (runq) {
6272 			xpt_run_dev_sendq(ccb_h->path->bus);
6273 		}
6274 
6275 		/* Call the peripheral driver's callback */
6276 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6277 	}
6278 	crit_exit();
6279 }
6280